WO2014063525A1 - 微波网络规划的方法及系统 - Google Patents

微波网络规划的方法及系统 Download PDF

Info

Publication number
WO2014063525A1
WO2014063525A1 PCT/CN2013/082113 CN2013082113W WO2014063525A1 WO 2014063525 A1 WO2014063525 A1 WO 2014063525A1 CN 2013082113 W CN2013082113 W CN 2013082113W WO 2014063525 A1 WO2014063525 A1 WO 2014063525A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
network
network topology
candidate
tower
Prior art date
Application number
PCT/CN2013/082113
Other languages
English (en)
French (fr)
Inventor
欧阳俊
邵燃
孙继勇
朱振明
苏兴明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014063525A1 publication Critical patent/WO2014063525A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method and system for microwave network planning. Background technique
  • Digital microwave communication is a wireless communication method for transmitting digital information through terrestrial line-of-sight propagation in the microwave frequency range of 300 MHz to 30 GHz (300 MHz to 30 GHz).
  • microwave network planning needs to quickly complete the microwave network topology planning and parameter configuration in the ever-changing requirements to ensure that it can meet the target network capacity and Key Performance Indication (KPI).
  • KPI Key Performance Indication
  • the construction of the microwave network is usually limited to the network topology structure, for example, how to apply the genetic algorithm to search for the scheme, or first plan the backbone network, then plan the branch network, and support the loop planning, and the idea is similar to the traditional manual planning experience. .
  • the microwave network planning is mostly based on computer-aided visual communication analysis, assisting manual single-hop or local topology planning, and its design scheme only stays in satisfying the visual communication and the most Basic network construction requirements, and the design is greatly affected by personal experience.
  • the object of the embodiments of the present invention is to provide a method and system for planning a microwave network, construct a network construction cost model based on the analysis of the cost composition of the microwave network, and obtain a microwave network construction based on the model using a cost-optimized search algorithm. Program.
  • the solution provided by the embodiment of the present invention is as follows:
  • a method for network planning which is applied to a group of sites including a central site and a non-central site, wherein each non-central site is connected to the central site through a link, and the method includes:
  • the link configuration template library and the tower construction cost model are used to calculate the entire network construction cost corresponding to the network topology structure obtained by the search;
  • the network topological structure and its link parameters are selected and output from the network topology obtained from the multiple search.
  • the generating a network topology that meets a predetermined network planning requirement includes: calculating a weight of a candidate link, where the weight is related to the tower construction cost, link length, and link of the candidate link. At least one of a depth, a site construction difficulty factor is related, and the weight decreases as the factor is improved;
  • the construction cost of the tower corresponding to the candidate link is: the total cost of the minimum link construction at both ends of the link determined according to the tower construction cost model of the stations at both ends of the candidate link.
  • the link template in the link configuration template library includes the following field information: an index indicating a length interval, a link capacity interval, a link type, and rain zone information of a link to which the link template is applicable.
  • Field information an index indicating a length interval, a link capacity interval, a link type, and rain zone information of a link to which the link template is applicable.
  • Configuration field information indicating antenna device model, antenna model, frequency, modulation mode, protection mode, and performance parameter configuration information configurable by the link template
  • Link device cost information used to calculate the total cost of the device corresponding to the link template.
  • the parameter configuration of the network topology structure by using the link configuration template library includes:
  • the link configuration template library and the tower construction cost model are used to calculate the entire network construction cost corresponding to the network topology structure obtained by the search, including:
  • the link configuration template library is used to determine the link equipment cost of each link in the network topology structure obtained by the search; and the tower construction cost model is used to determine the tower construction cost of each link after the antenna suspension height optimization;
  • the entire network construction cost corresponding to the network topology structure obtained by this search is calculated.
  • the embodiment of the invention further provides a microwave network planning system, including:
  • the modeling unit is configured to establish a tower construction cost model corresponding to the relationship between the tower parameters of each station in the station group and the tower construction cost, wherein the tower parameters include the tower antenna hanging height and the tower direction number, and establishing the configuration as a configuration chain Road equipment and link parameters and computing link equipment a cost link configuration template library, where the site group includes a central site and a site group of a non-central site, and each non-central site is connected to the central site through a link;
  • the link selection unit is configured to analyze the link between each two sites in the site group, and determine a candidate link set in the site group that meets the preset microwave engineering planning requirements;
  • a search computing unit configured to generate a network topology structure that satisfies a predetermined network planning requirement by searching for a candidate link in the candidate link set, and configuring a parameter configuration of the network topology structure by using a link configuration template library, and After optimizing the whole network antenna for the network topology structure, the link configuration template library and the tower construction cost model are used to calculate the entire network construction cost corresponding to the network topology structure obtained by the search;
  • an output unit configured to select and output a cost-optimized network topology structure and link parameters from the network topology obtained by the search computing unit after the predetermined search termination condition is satisfied.
  • the search calculation unit includes:
  • a weight calculation subunit configured to calculate a weight of the candidate link, wherein the weight is at least one of a tower construction cost, a link length, a link depth, and a site construction difficulty coefficient corresponding to the candidate link Correlation, and the weight decreases as the factor is improved;
  • Selecting a subunit configured to proceed from the central station, based on a minimum tree generation algorithm, each time selecting a candidate link with a predetermined random selection strategy to attempt to join the network topology, wherein the likelihood that the candidate link is selected is followed by its right The value is decreased and increased, and the candidate link is formally added to the network topology when the selected candidate link meets the network planning requirements;
  • the control subunit is configured to control the selection unit to repeat the selection and join process until all candidate links have been tried or all sites are already present in the network topology.
  • the construction cost of the tower corresponding to the candidate link is: the total cost of the minimum link construction at both ends of the link determined according to the tower construction cost model of the stations at both ends of the candidate link.
  • the link template in the link configuration template library includes the following field information: Index field information indicating a length interval, a link capacity interval, a link type, and rain zone information of a link to which the link template is applicable;
  • Configuration field information indicating antenna device model, antenna model, frequency, modulation mode, protection mode, and performance parameter configuration information configurable by the link template
  • Link device cost information used to calculate the total cost of the device corresponding to the link template.
  • the search calculation unit is further configured to calculate a link type, a link capacity, a link length, and rain zone information of each link in the network topology, and a chain in the link configuration template library.
  • the road templates are matched, and the parameters and devices of the link are configured by using the matched link modules.
  • the search calculation unit is further configured to determine a link device cost of each link in the network topology structure obtained by the current search by using a link configuration template library; and determine an antenna hanging by using a tower construction cost model.
  • the tower construction cost at each end of each link after high optimization; and based on the link equipment cost of each link and the tower construction cost at both ends of the link, the overall network construction cost corresponding to the network topology structure obtained by this search is calculated.
  • the method and system for planning a microwave network provided by the embodiments of the present invention can generate a microwave network planning solution that meets the requirements of the microwave network planning and is cost-effective. Moreover, the embodiment of the present invention can not only automatically complete the network topology planning, but also complete the automatic configuration of the device and parameters of the link, and estimate the total network construction cost, thereby greatly reducing the workload of the manual planning, and also realizing the manual. The design configuration scheme with the lowest construction cost based on the whole network search is difficult to plan.
  • FIG. 1 is a schematic structural diagram of an exemplary network in an embodiment of the present invention
  • FIG. 2 is a general flowchart of a method for planning a microwave network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a cost model of an iron tower according to an embodiment of the present invention
  • FIG. 5 is a flowchart of searching a network topology scheme according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a microwave network planning system according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a search calculation unit 63 in a microwave network planning system according to an embodiment of the present invention.
  • the embodiment of the invention is based on the analysis of the construction cost of the microwave network, constructs a network construction cost model, and uses the cost optimal search algorithm to obtain an ideal microwave network construction scheme based on the model.
  • the embodiment of the present invention generates a microwave network planning and design scheme based on the existing site information and meets the planning requirements, which is based on the principle of cost optimization.
  • the design scheme includes link topology planning, link parameters, and device configuration. Since the factors affecting the final construction cost of the network are very complicated, involving multiple stages of equipment selection, network planning, engineering implementation, and network delivery, the embodiments of the present invention focus on the network design phase and have a network construction cost.
  • the major impact factors mainly include the two parts of the tower construction cost and equipment cost.
  • the embodiment of the present invention can complete the microwave network design through software module calculation, and the information to be input includes site information (such as site location information, required service capacity information, etc.), map elevation information, microwave device information, and microwave network planning. Related engineering configuration information, etc.
  • the microwave planning scheme referred to in the embodiment of the present invention is for a site group, and the site group includes a central site and a non-central site, wherein all non-collected sites need to be connected to the central site through a link.
  • the non-central site may be directly connected to the central site, or may be connected to the central site via other non-central sites.
  • FIG. 1 is a schematic diagram of an exemplary network topology in the embodiment of the present invention, as shown in FIG. For the site, the numbers in the circle represent the site label. In Figure 1, Site 1 is the central site, and Site 2 ⁇ Site 21 are non-central sites.
  • the embodiment of the invention is also applicable to the case where the site group includes a partial old link.
  • FIG. 2 is a general flowchart of a method for planning a microwave network according to an embodiment of the present invention. As shown in FIG. 2, a method for planning a microwave network according to an embodiment of the present invention is applied to the foregoing group, and includes the following steps:
  • Step 21 Establish a tower construction cost model for each site in the site group.
  • the model is mainly to establish the correspondence between the two factors of the tower antenna hanging height and the tower direction and the tower construction cost, wherein the direction number refers to the number of links directly connected to the station.
  • FIG. 3 is a schematic diagram of a cost model of an iron tower according to an embodiment of the present invention. As shown in FIG. 3, a graph of antenna hanging height and tower construction cost of a specific site in a specific direction number. For existing towers, the construction cost can be set to 0 or a very low value.
  • Step 22 Establish a link configuration template library, configured to automatically configure and calculate the device cost of the link device and link parameters.
  • link configuration template library there are two main functions of the link configuration template library, namely, automatic configuration for link devices and link parameters, and calculation of link device costs.
  • the link parameters and configuration of the link device are mainly determined by key factors such as the length, capacity, type, and rain zone of the link. Therefore, a link configuration template library is established corresponding to these key fields. For the newly planned link, you can find the matching link profile from the template library through the index field, and use the configuration field information in the found link template to configure parameters and device information for the newly created link.
  • the field information of a link template information base described in this embodiment may include the following three parts:
  • Index field information of the link template may include a link length interval to which the link template can be applied, a link capacity interval, a link type, a rain zone, and the like;
  • Configuration field information of the link template may include device model, antenna model, frequency, modulation mode, protection mode, performance parameter configuration, etc.
  • Link device cost information Calculate the total device cost of the link corresponding to the link template.
  • Step 23 According to the requirements of the microwave engineering planning, analyze the link between each two sites in the site group, and determine a candidate link set that meets the requirements in the site group. According to the actual requirements of the project, you can set the requirements that the entire network or some sites must meet, including but not limited to at least one of the following requirements: maximum height of the site antenna, link view-through, maximum length of the single-hop link, Forbidden links, etc. Based on these requirements and map elevation information, the link between every two sites in the site group is analyzed, and if the requirements are met, the candidate link set is included; otherwise, it is excluded from the candidate link set.
  • Step 24 Search for a candidate topology in the candidate link set, generate a network topology structure that satisfies a predetermined network planning requirement, and configure a parameter configuration of the network topology structure by using a link configuration template library, and After the network topology structure is optimized for the whole network antenna, the link configuration template library and the tower construction cost model are used to calculate the entire network construction cost corresponding to the network topology structure obtained by the search.
  • Step 25 After the predetermined search termination condition is satisfied, select and output the cost optimal network topology structure and its link parameters from the network topology obtained by the multiple search.
  • the minimum spanning tree and the random selection strategy are used to search for a cost-optimized network design scheme that satisfies the network planning requirements.
  • a network topology is first generated by searching, and then parameters are configured according to link parameters and automatic matching of the device, and then the antenna height of the whole network is optimized, and finally the total cost of the solution is calculated.
  • the scheme search is ended by setting a search termination condition, which may be that the operation time reaches a predetermined time limit, the number of searches reaches a predetermined number of times, the total cost is less than a predetermined value, and of course, may be a combination of the above conditions.
  • network planning requirements may be preset, such as the maximum capacity of a single link, the maximum depth of the link, and the rules for automatically configuring the link device and parameters according to the link template library.
  • Step 24 can also be implemented by using steps 241 to 245:
  • Step 241 Starting from the central site, based on a minimum tree generation algorithm (ie, Prim algorithm), combined with a certain random selection strategy, generating a topology structure that satisfies the requirements.
  • Figure 5 shows the actual In the search flow chart of the network topology scheme in the embodiment, as shown in FIG. 5, step 241 can also be implemented by using steps 2411 to 2417:
  • Step 2411 Calculate the weight of the candidate link.
  • the weight of the candidate link affects the probability that the link is selected. Strategically speaking, favorable factors can be reflected in the weight, such as: link tower construction cost, link distance, and so on.
  • the weight is related to at least one of a tower construction cost, a link length, a link depth, and a site construction difficulty coefficient corresponding to the candidate link, and the weight is related to the factor The change is reduced and reduced.
  • the tower construction cost corresponding to the candidate link is the total cost of the minimum link construction of the two ends of the link determined according to the tower construction cost model of the stations at both ends of the candidate link. For example, based on the principle of cost optimization, the optimal antenna height of each candidate link and the corresponding tower construction cost can be calculated: For each candidate link, the tower construction cost model of the two sites is taken, combined with the link view. Through the condition and elevation profile, calculate the optimal antenna height.
  • the optimal antenna hanging height refers to the minimum total cost of the tower construction at both ends of the link.
  • the stepwise heuristic method can be used to calculate the optimal antenna height, and the calculation efficiency can be improved by setting a reasonable step size or step-by-step refinement. At the same time, calculate the total cost of the tower's construction of the link.
  • Step 2412 Create an initial site set U and a link set TE.
  • Step 2413 in a side of all u U, v e V-U, try to select an edge ( ⁇ , ⁇ ) to merge into the set TE according to a certain random strategy, and incorporate ⁇ into U.
  • V is the set of all sites;
  • the Prim algorithm starting from the central site, each time a candidate (candidate link) is selected to join the network with a predetermined random strategy, the smaller the weight The greater the likelihood of being selected.
  • step 2414 it is determined whether the TE meets the rules of network planning. If yes, step 2416 is performed and step 2413 is re-executed; otherwise, step 2415 is performed.
  • step 2415 ( ⁇ , ⁇ ) is formally incorporated into the set TE, and ⁇ is incorporated into U.
  • step 2416 the addition of (u0, v0) and v0 is abandoned.
  • step 2414 to step 2416 each time a new edge joins the network, the depth calculation and capacity calculation of the topology network are performed, and the legality of the topology network is checked. If the network planning rule is not met, another candidate is reselected. Edge, if it is satisfied, formally join the network and merge the changes into the set TE.
  • Step 242 Complete link parameters and device configuration according to the link configuration template library.
  • each edge is automatically matched, and the link parameters and device configuration of the network are completed by using the matched link module.
  • Step 243 optimizing the overall height of the whole network tower antenna.
  • the cost of antenna hanging is shared by multiple links.
  • the cost of the tower depends only on the highest antenna height and direction. Therefore, the antenna hanging height is mutually influential and needs to be optimized for the whole network.
  • the antenna height is optimized by genetic algorithm or similar search algorithm to ensure the optimal construction cost of the tower.
  • Step 244 calculating the entire network construction cost.
  • the network construction cost is mainly composed of two parts: the tower construction cost and the equipment cost. Using the link configuration template library and the tower construction cost model calculation, the equipment cost of each link and the tower construction cost of each station are recalculated, and the total cost of the entire network construction is calculated.
  • Step 245 Whether the search termination condition is reached: If not, return to step 241 to re-search for a new network design; if yes, go to step 25.
  • the method for planning the microwave network may further include: Step 26, by means of human-computer interaction, Provide a suitable network planning solution for users to choose, accept the user-selected solution as the final construction plan.
  • Step 1 as shown in FIG. Get information on 21 sites, where Site 1 is the central site and the other 20 sites need to be aggregated to Site 1 through the link.
  • Step 3 based on the survey report, establish a tower cost model for each site, and enter the constraints for each site, such as the highest height of the tower (the highest antenna height) must be less than 70 meters, the link length must be Less than 100 kilometers and the number of directions is limited.
  • a corresponding table of station height and construction cost for a possible tower cost model is shown in Table 1 below, and a cost model graph can be generated based on the table:
  • Step 2 Establish a link configuration template library according to the requirements of the project: Determine the available frequency bands, devices, antennas, rain zones, and corresponding performance requirements.
  • the link profile is required to cover all possible ranges, such as link distance, capacity, etc., or have a default template link.
  • the link template library can include the following: link capacity range, link length range, rain zone, frequency band, protection mode, device name, antenna name, total device cost, and so on.
  • Step 3 Analyze the candidate link.
  • Step 3 can be implemented through steps 3.1 to 3.3:
  • Step 3.1 Restriction Filtering: Analyze every 2 site combinations of 21 sites in the example. If the distance exceeds 100 km, link Sight Analysis is not required. If the user specifies that a link is forbidden to build a link, then there is no need to include link-through analytics.
  • Step 3.2 Vision analysis, that is, according to the Geographic Information System (GIS) elevation profile, analyze whether the link between each two sites is in the highest range of the allowed maximum tower.
  • GIS Geographic Information System
  • Step 3.3 Establish a view-through matrix.
  • Table 2 Step 4 Based on the principle of lowest cost, calculate the optimal antenna height of each candidate link and the corresponding tower construction cost.
  • the candidate links of Site 1 and Site 2 take the site construction cost model of Site 1 and Site 2, and combine the link vision conditions and the elevation profile to calculate the optimal antenna height.
  • the optimal antenna height is the minimum total cost of the tower construction at both ends of the link.
  • the step-by-step test method can be used to calculate the optimal antenna height. In the above table, when the height of Site 1 is 25 meters and the height of Site 2 is 40 meters, the cost of building the link is the lowest, which is 125,000 yuan.
  • Step 5 Search for a cost-optimized network design that meets network planning requirements by using a minimum spanning tree and a random selection strategy.
  • Step 5 can be implemented through steps 5.0 to 5.1:
  • Step 5.0 Calculate the weight of the candidate link.
  • Step 5.1 Starting from the central site, based on the minimum spanning tree algorithm (Prim algorithm), combined with a certain random selection strategy, a topology structure that satisfies the requirements is generated.
  • Step 5.1 can also be implemented through steps 5.1.1 ⁇ 5.1.4:
  • Step 5.1.2 calculate the weights of the edges of all u U, v VUs, that is, calculate the weights of the edges between all u and V stations.
  • the main factors to be considered in the weight calculation are: tower tower cost, link Length, link depth, difficulty factor for site construction.
  • the formula for calculating the weight used in this embodiment is as follows: (Cost_a * f_a + Cost_b * f_b) * L * ( l + k * d ); wherein, the meanings of the parameters in the above formula are as follows:
  • Cost_a, Cost_b the cost of establishing the station at both ends of the link, that is, the tower construction cost; the link distance coefficient L of the link, the coefficient of the link usually having a larger distance, not less than the coefficient of the link with a smaller distance, for example The coefficient of the link of 0 ⁇ 5 km is 1, and the coefficient of 5 ⁇ 10 km is 1.2; F_a, f_b: The difficulty coefficient of each station's construction can be set according to the actual website environment; k: link depth coefficient, which can be set by the user;
  • d the number of hops of the link from the central site, calculated according to the topology of the TE;
  • the number on each link represents the weight of the link.
  • the weight determines the probability that the link will be selected when the topology is searched.
  • Step 5.1.3 Using the rules of the Russian turntable, the smaller the weight, the smaller the combined cost, the greater the probability of being selected.
  • Step 5 ⁇ 4 repeat step 5 ⁇ 3 until V is empty, or there is no suitable ( ⁇ , ⁇ ) edge to choose from.
  • Step 5.2 according to the template matching technology, complete the link parameters and device configuration.
  • each edge is automatically matched to complete the link parameters and device configuration of the network.
  • Step 5.3 the antenna is hung up overall optimization.
  • the cost of the tower depends only on the highest antenna height and direction. For non-end stations, the cost of the antenna is high. It is shared by multiple links. Therefore, the antenna height is mutually influential and must be optimized.
  • an antenna algorithm can be optimized by using a genetic algorithm or the like to ensure that the construction cost of the tower is optimal.
  • Step 5.4 calculate the construction cost of the whole network.
  • the network construction cost mainly considers the construction cost of the tower and the equipment cost. Based on step 3, Recalculate the equipment cost per link and the tower cost per site.
  • Step 5.5 determine whether the search termination condition is met: If yes, perform step 6; No. From step 5.1, re-execute and search for a new network design.
  • Step 6 Through the human-computer interaction method, select the solution that meets the topology requirements and the cost is the best as the final construction plan.
  • the method for planning a microwave network can generate a microwave network planning solution that meets the requirements of the microwave network planning and is cost-effective.
  • the embodiment of the present invention can not only automatically complete the network topology planning, but also complete the automatic configuration of the device and parameters of the link, and estimate the total network construction cost, thereby greatly reducing the workload of the manual planning, and also realizing the manual.
  • the design configuration scheme with the lowest construction cost based on the whole network search is difficult to plan.
  • FIG. 6 is a schematic structural diagram of a microwave network planning system according to an embodiment of the present invention, as shown in FIG.
  • the system includes:
  • the modeling unit 61 is configured to establish a tower construction cost model corresponding to the relationship between the tower parameters of each station in the station group and the tower construction cost, wherein the tower parameters include the tower antenna hanging height and the tower direction number, and establishing for configuration a link configuration template library, and a link configuration template library for calculating a link device cost, where the site group includes a central site and a site group of the non-central site, and each non-central site is connected to the central site through a link;
  • the link selection unit 62 is configured to analyze the link between each two sites in the site group, and determine a candidate link set in the site group that meets the preset microwave engineering planning requirements;
  • the search calculation unit 63 is configured to generate a network topology structure that satisfies a predetermined network planning requirement by searching for candidate links in the candidate link set, and configure a parameter configuration of the network topology structure by using a link configuration template library. After optimizing the whole network antenna for the topology of the network, the link configuration template library and the tower construction cost model are used to calculate the network obtained by the search. The entire network construction cost corresponding to the topology structure;
  • the output unit 64 is configured to select and output a cost-optimized network topology and its link parameters from the network topology obtained by the search calculation unit multiple times after the predetermined search termination condition is satisfied.
  • FIG. 7 is a schematic structural diagram of a search calculation unit 63 in a microwave network planning system according to an embodiment of the present invention. As shown in FIG. 7, the search calculation unit 63 includes:
  • the weight calculation sub-unit 631 is configured to calculate a weight of the candidate link, wherein the weight is at least one of a tower construction cost, a link length, a link depth, and a site construction difficulty coefficient corresponding to the candidate link.
  • the factors are related, and the weights decrease as the factors are improved;
  • the selection sub-unit 632 is configured to start from the central station, based on a minimum tree generation algorithm, each time selecting a candidate link with a predetermined random selection policy to try to join the network topology, wherein the likelihood that the candidate link is selected is The weight is increased and increased, and the candidate link is formally added to the network topology when the selected candidate link meets the network planning requirements;
  • Control sub-unit 633 is configured to control the selection unit to repeat the selection and join process until all candidate links have been tried or all sites are already present in the network topology.
  • the construction cost of the tower corresponding to the candidate link is: the total cost of the minimum link construction at both ends of the link determined according to the tower construction cost model of the stations at both ends of the candidate link.
  • the link template in the link configuration template library includes the following field information:
  • Index field information indicating a length interval, a link capacity interval, a link type, and rain zone information of a link to which the link template is applicable;
  • Configuration field information indicating antenna device model, antenna model, frequency, modulation mode, protection mode, and performance parameter configuration information configurable by the link template
  • Link device cost information used to calculate the total cost of the device corresponding to the link template.
  • the search calculation unit 63 is further configured to calculate a link type, a link capacity, a link length, and rain zone information of each link in the network topology, and the link configuration template library The link templates in the match are matched, and the parameters and devices of the link are configured by using the matched link modules.
  • the search calculation unit 63 is further configured to determine, by using a link configuration template library, a link device cost of each link in the network topology obtained by the current search; and using a tower construction cost model to determine The cost of the tower construction at each end of each link after the antenna is optimised; and based on the link equipment cost of each link and the tower construction cost at both ends of the link, the overall network construction cost corresponding to the network topology structure obtained by the search is calculated.
  • the modeling unit 61, the link selection unit 62, the search calculation unit 63, and the output unit 64 may each be a central processing unit (CPU) in a microwave network planning system, and a digital signal processor (DSP). , Digital Signal Processor ) or Field Programmable Gate Array (FPGA) implementation;
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the weight calculation unit 631, the selection unit 632, and the control unit 633 can all be implemented by a CPU, DSP or FPGA in the microwave network planning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明实施例公开了一种微波网络规划的方法及系统,通过建站点的铁塔参数与铁塔建设成本之间对应关系的铁塔建设成本模型,对站点组站点之间的链路进行分析,确定站点组内满足预设微波工程规划要求的候选链路集合,利用链路配置模板库对生成的网络拓扑结构进行参数配置,并计算网络拓扑结构对应的整网建造成本;从多次搜索得到的网络拓扑结构中选择并输出成本最优的网络拓扑结构及其链路参数。如此,可以生成一个满足微波网络规划要求,且成本较优的微波网络规划方案。

Description

微波网络规划的方法及系统 技术领域
本发明涉及无线通信技术, 尤其涉及一种微波网络规划的方法及系统。 背景技术
数字微波通信是在微波频段 300兆赫兹 ~ 30吉赫兹( 300MHz ~ 30GHz ) 通过地面视距传播进行数字信息传输的一种无线通信手段, 目前随着移动 业务的大规模部署和发展, 微波通信因为其部署迅速, 成本低廉等特点, 成为电信接入网络中业务回传的重要组成部分。 在实际的工程中, 微波网 络规划需要在不断变化的需求中, 迅速的完成微波网络拓朴规划及参数配 置, 确保既能满足目标网络容量及关键业绩指标(KPI, Key Performance Indication ), 又达到总体建网成本最低。
相关技术中微波网络构建通常是局限于网络拓朴结构, 例如如何应用 遗传算法进行方案搜索, 或者先规划骨干网, 然后规划支路网, 支持环路 规划, 其思路和传统的人工规划经验类似。
综上所述, 相关技术微波网络构建的解决方案中, 微波网络规划大多 是根据计算机辅助视通分析, 协助人工进行单跳或者局部的拓朴规划, 其 设计方案仅仅停留在满足视通以及最基本的建网要求, 且设计方案受个人 经验影响非常大。 发明内容
有鉴于此, 本发明实施例的目的是提供一种微波网络规划的方法及系 统, 基于微波网络建设成本组成分析, 构建网络建设成本模型, 并基于该 模型利用成本最优搜索算法获取微波网络建设方案。 为解决上述技术问题, 本发明实施例提供方案如下:
一种^波网络规划的方法, 应用于包括中心站点和非中心站点的站点 组, 其中各非中心站点均通过链路连接至中心站点, 所述方法包括:
建立站点组中的每一个站点的铁塔参数与铁塔建设成本之间对应关系 的铁塔建设成本模型, 其中铁塔参数包括铁塔天线挂高和铁塔方向数, 以 及建立用于配置链路设备及链路参数和计算链路设备成本的链路配置模板 库;
对站点组内每两个站点之间的链路进行分析, 确定站点组内满足预设 微波工程规划要求的候选链路集合;
通过搜索所述候选链路集合中的候选链路, 生成满足预定网络规划要 求的网络拓朴结构, 利用链路配置模板库对该网络拓朴结构进行参数配置, 并在对该网络拓朴结构进行整网天线挂高优化后, 利用链路配置模板库和 铁塔建设成本模型计算本次搜索得到的网络拓朴结构对应的整网建造成 本;
在预定搜索终止条件满足后, 从多次搜索得到的网络拓朴结构中选择 并输出成本最优的网络拓朴结构及其链路参数。
优选地, 所述生成满足预定网络规划要求的网络拓朴结构, 包括: 计算候选链路的权值, 其中所述权值与所述候选链路对应的铁塔建设 成本、 链路长度、 链路深度、 站点建设难度系数中的至少一个因素相关, 且所述权值随所述因素的变优而减小;
从中心站点出发, 基于最小树生成算法, 每次以预定随机选择策略选 择一条候选链路尝试加入网络拓朴结构, 其中候选链路被选择到的可能性 随着其权值减小而增大, 并在被选择的候选链路满足网络规划要求时将该 候选链路正式加入网络拓朴结构;
重复上述选择及加入处理, 直至所有候选链路都尝试完毕或所有站点 都已存在于网络拓朴结构中。
优选地, 所述候选链路对应的铁塔建设成本是: 根据候选链路两端站 点的铁塔建设成本模型所确定的最小的链路两端铁塔建设的总成本。
优选地, 所述链路配置模板库中的链路模板包括以下字段信息: 用于指示该链路模板可应用的链路的长度区间、 链路容量区间、 链路 类型及雨区信息的索引字段信息;
用于指示该链路模板可配置的天线设备型号、 天线型号、 频率、 调制 方式、 保护方式及性能参数配置信息的配置字段信息;
用于计算该链路模板对应的设备总成本的链路设备成本信息。
优选地, 所述利用链路配置模板库对该网络拓朴结构进行参数配置, 包括:
计算该网络拓朴结构中每条链路的链路类型、 链路容量、 链路长度及 雨区信息, 并与链路配置模板库中的链路模板相匹配, 利用匹配到的链路 模块, 配置链路的参数及设备。
优选地, 所述利用链路配置模板库和铁塔建设成本模型计算本次搜索 得到的网络拓朴结构对应的整网建造成本, 包括:
利用链路配置模板库, 确定本次搜索得到的网络拓朴结构中各个链路 的链路设备成本; 以及利用铁塔建设成本模型, 确定在天线挂高优化后各 个链路两端的铁塔建设成本;
基于各个链路的链路设备成本及链路两端的铁塔建设成本, 计算本次 搜索得到的网络拓朴结构对应的整网建造成本。
本发明实施例还提供了一种微波网络规划系统, 包括:
建模单元, 配置为建立站点组中的每一个站点的铁塔参数与铁塔建设 成本之间对应关系的铁塔建设成本模型, 其中铁塔参数包括铁塔天线挂高 和铁塔方向数, 以及建立配置为配置链路设备及链路参数和计算链路设备 成本的链路配置模板库, 其中所述站点组包括中心站点和非中心站点的站 点组, 各非中心站点均通过链路连接至中心站点;
链路选择单元, 配置为对站点组内每两个站点之间的链路进行分析, 确定站点组内满足预设微波工程规划要求的候选链路集合;
搜索计算单元, 配置为通过搜索所述候选链路集合中的候选链路, 生 成满足预定网络规划要求的网络拓朴结构, 利用链路配置模板库对该网络 拓朴结构进行参数配置, 并在对该网络拓朴结构进行整网天线挂高优化后, 利用链路配置模板库和铁塔建设成本模型计算本次搜索得到的网络拓朴结 构对应的整网建造成本;
输出单元, 配置为在预定搜索终止条件满足后, 从所述搜索计算单元 多次搜索得到的网络拓朴结构中选择并输出成本最优的网络拓朴结构及其 链路参数。
优选地, 所述搜索计算单元包括:
权值计算子单元, 配置为计算候选链路的权值, 其中所述权值与所述 候选链路对应的铁塔建设成本、 链路长度、 链路深度、 站点建设难度系数 中的至少一个因素相关, 且所述权值随所述因素的变优而减小;
选择子单元, 配置为从中心站点出发, 基于最小树生成算法, 每次以 预定随机选择策略选择一条候选链路尝试加入网络拓朴结构, 其中候选链 路被选择到的可能性随着其权值减小而增大, 并在被选择的候选链路满足 网络规划要求时将该候选链路正式加入网络拓朴结构;
控制子单元, 配置为控制所述选择单元重复上述选择及加入处理, 直 至所有候选链路都尝试完毕或所有站点都已存在于网络拓朴结构中。
优选地, 所述候选链路对应的铁塔建设成本是: 根据候选链路两端站 点的铁塔建设成本模型所确定的最小的链路两端铁塔建设的总成本。
优选地, 所述链路配置模板库中的链路模板包括以下字段信息: 用于指示该链路模板可应用的链路的长度区间、 链路容量区间、 链路 类型及雨区信息的索引字段信息;
用于指示该链路模板可配置的天线设备型号、 天线型号、 频率、 调制 方式、 保护方式及性能参数配置信息的配置字段信息;
用于计算该链路模板对应的设备总成本的链路设备成本信息。
优选地, 所述搜索计算单元, 还配置为计算该网络拓朴结构中每条链 路的链路类型、 链路容量、 链路长度及雨区信息, 并与链路配置模板库中 的链路模板相匹配, 利用匹配到的链路模块, 配置链路的参数及设备。
优选地, 所述搜索计算单元, 还配置为利用链路配置模板库, 确定本 次搜索得到的网络拓朴结构中各个链路的链路设备成本; 以及利用铁塔建 设成本模型, 确定在天线挂高优化后各个链路两端的铁塔建设成本; 并基 于各个链路的链路设备成本及链路两端的铁塔建设成本, 计算本次搜索得 到的网络拓朴结构对应的整网建造成本。
本发明实施例提供的微波网络规划的方法及系统, 可以生成一个满足 微波网络规划要求, 且成本较优的微波网络规划方案。 并且, 本发明实施 例不仅能自动完成网络拓朴规划, 而且同时完成对链路的设备及参数自动 配置, 并估算网络总建设成本, 从而大大降低了人工规划的工作量, 而且 还实现了人工规划难以做到的基于全网搜索建设成本最低的设计配置方 案。 附图说明
图 1为本发明实施例中的示例网络拓朴结构图;
图 2为本发明实施例记载的微波网络规划方法的总体流程图; 图 3为本发明实施例记载的一种铁塔成本模型示意图;
图 4为本发明实施例中设计方案的搜索流程图;
图 5为本发明实施例中网络拓朴方案的搜索流程图; 图 6为本发明实施例记载的微波网络规划系统的结构示意图; 图 7为本发明实施例记载的微波网络规划系统中搜索计算单元 63的结 构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具 体实施例对本发明进行详细描述。
本发明实施例基于微波网络建设成本组成分析, 构建网络建设成本模 型, 并基于该模型利用成本最优搜索算法获取理想的微波网络建设方案。 本发明实施例基于已有的站点信息生成一个满足规划要求的、 基于成本最 优原则的微波网络规划设计方案, 该设计方案包括链路拓朴规划和链路参 数及设备配置。 由于影响网络最终建设成本的因素是非常复杂的, 涉及到 设备选型、 网络规划、 工程实施和网络交付等多个阶段, 而本发明实施例 重点关注网络设计阶段相关的、 对网络建设成本具有重大影响的因素, 主 要包括铁塔建造成本和设备成本两部分。
本发明实施例可以通过软件模块计算来完成微波网络设计, 需要输入 的信息包括站点信息(如站点位置信息、 所需的业务容量信息等), 地图高 程信息、 微波设备信息、 以及与微波网络规划相关的工程配置信息等。
本发明实施例所指的微波规划方案是针对一个站点组而言的, 该站点 组包括中心站点和非中心站点, 其中所有非汇集站点都需要通过链路连接 到中心站点。 非中心站点既可以是直接与中心站点连接, 也可以是经由其 他非中心站点连接至中心站点, 图 1 为本发明实施例中的示例网络拓朴结 构图, 如图 1所示, 其中圆圈代表站点, 圆圈中的数字代表站点标号, 图 1 中站点 1为中心站点, 站点 2 ~站点 21均为非中心站点。 本发明实施例同 样适用于站点组中包括有部分利旧链路的情况。 另外, 如果需要对多个站 点组进行规划, 则可以依次使用本发明实施例的规划方案。 图 2为本发明实施例记载的微波网络规划方法的总体流程图, 如图 2 所示, 本发明实施例记载的微波网络规划的方法, 应用于上述站点组, 包 括以下步驟:
步驟 21 , 对于站点组内的每一个站点, 建立铁塔建设成本模型。 该模 型主要是建立铁塔天线挂高和铁塔方向数这两个因素与铁塔建设成本之间 的对应关系, 其中方向数是指与该站点直接相连的链路条数。
图 3为本发明实施例记载的一种铁塔成本模型示意图, 如图 3所示, 在一个特定方向数下, 一个特定站点的天线挂高与铁塔建设成本的一种曲 线图。 对于已有的铁塔, 其建设成本可以设为 0或者非常低的数值。
步驟 22, 建立链路配置模板库, 配置为链路设备及链路参数自动配置 和计算链路的设备成本。
可见, 链路配置模板库的作用主要有 2个, 即用于链路设备及链路参 数的自动配置, 以及用于计算链路设备成本。 链路参数及链路设备的配置 主要由链路的长度、 容量、 类型、 雨区等关键因素决定。 因此, 对应这些 关键字段, 建立链路配置模板库。 对于新规划的链路, 可以通过索引字段 从模板库中找到匹配的链路模板, 从而利用找到的链路模板中的配置字段 信息, 对新建链路进行参数和设备信息的配置。 本实施例记载的一种链路 模板信息库的字段信息可以包括以下三部分:
1 )链路模板的索引字段信息: 可以包括该链路模板可应用的链路长度 区间、 链路容量区间、 链路类型、 雨区等;
2 )链路模板的配置字段信息: 可以包括设备型号、 天线型号、 频率、 调制方式、 保护方式、 性能参数配置等;
3 )链路设备成本信息: 计算该链路模板对应链路的设备总成本。
步驟 23 , 根据微波工程规划要求, 对站点组内每两个站点之间的链路 进行分析, 确定站点组内满足要求的候选链路集合。 根据工程实际要求, 可以设定整网或者某些站点必须要满足的要求, 包括但不限于以下要求中的至少一种: 站点天线最大挂高、 链路视通、 单 跳链路最大长度、 禁连链路等。 根据这些要求以及地图高程信息, 对站点 组内每 2个站点之间的链路进行分析, 如果满足要求, 则纳入候选链路集 合; 否则, 排除在候选链路集合之外。
步驟 24, 通过搜索所述候选链路集合中的候选链路, 生成一满足预定 网络规划要求的网络拓朴结构, 利用链路配置模板库对该网络拓朴结构进 行参数配置, 并在对该网络拓朴结构进行整网天线挂高优化后, 利用链路 配置模板库和铁塔建设成本模型计算本次搜索得到的网络拓朴结构对应的 整网建造成本。
步驟 25 , 在预定搜索终止条件满足后, 从多次搜索得到的网络拓朴结 构中选择并输出成本最优的网络拓朴结构及其链路参数。
上述步驟 24及步驟 25中, 采用最小生成树以及随机选择策略, 搜索 满足网络规划要求的成本最优网络设计方案。
上述步驟 24中, 首先通过搜索的方式生成一个网络拓朴结构, 然后根 据链路参数及设备的自动匹配对网络进行参数配置, 再进行整网天线高度 优化, 最后计算该方案的总成本。 上述步驟 25中, 通过设定搜索终止条件 来结束方案搜索, 终止条件可以是运算时间达到预定时限、 搜索次数达到 预定次数、 总成本小于预定数值, 当然还可以是上述条件的组合。
在执行步驟 24中的网络规划方案搜索之前, 可以预先设定网络规划要 求, 如单条链路最大容量、 链路最大深度、 以及根据链路模板库自动配置 链路设备及参数的规则等。
其中, 步驟 24还可以通过步驟 241 ~步驟 245实现:
步驟 241 , 从中心站点出发, 基于最小树生成算法(即 Prim算法), 结 合一定的随机选择策略, 生成一个满足要求的拓朴结构。 图 5 为本发明实 施例中网络拓朴方案的搜索流程图, 如图 5所示, 步驟 241还可以通过步 驟 2411〜步驟 2417实现:
步驟 2411 , 计算候选链路的权值。
候选链路的权值影响到该条链路被选中的概率。 从策略上来说, 有利 的因素可以在权值上有所体现, 比如: 链路铁塔建设成本, 链路的距离等。
作为一种实施方式, 所述权值与所述候选链路对应的铁塔建设成本、 链路长度、 链路深度、 站点建设难度系数中的至少一个因素相关, 且所述 权值随所述因素的变优而减小。 其中, 所述候选链路对应的铁塔建设成本 是根据候选链路两端站点的铁塔建设成本模型所确定的最小的链路两端铁 塔建设的总成本。 例如, 可以基于成本最优的原则, 计算每条候选链路的 天线最佳挂高以及对应的铁塔建设成本: 对于每条候选链路, 取两端站点 的铁塔建设成本模型, 结合链路视通条件和高程剖面图, 计算最优天线挂 高。 最优天线挂高是指链路两端铁塔建设总成本最小, 例如可以采用逐步 试探法计算最优天线挂高, 通过设定合理步长, 或者步长逐步求精的方式, 提高计算效率; 同时, 计算该链路的铁塔建造总成本。
步驟 2412 , 新建初始的站点集合 U和链路集合 TE。
步驟 2413, 在所有 u U, v e V-U的边中按照一定的随机策略尝试选 一条边( ιιθ,νθ )并入集合 TE, 同时将 νθ并入 U。
初始时, U只包含中心站点, ΤΕ=φ, V为所有站点集合; 基于 Prim算 法, 从中心站点出发, 每次以预定的随机策略选择一条边(候选链路)加 入网络, 权值越小则被选择的可能性就越大。
步驟 2414, 判断 TE是否满足网络规划的规则, 如果满足, 则执行步 驟 2416并重新执行步驟 2413; 否则, 执行步驟 2415。
步驟 2415, 正式将(ιιθ,νθ ) 并入集合 TE, 同时将 νθ并入 U 。
步驟 2416, 放弃加入 ( u0,v0 )和 v0。 步驟 2414〜步驟 2416中,每次有新的边加入网络时, 进行拓朴网络的 深度计算和容量计算, 对拓朴网络的合法性进行检查, 如果不满足网络规 划规则就重新选择另外一条候选边, 如果满足则正式加入网络将改变并入 集合 TE。
步驟 2417, 判断是否满足以下条件中的一个: U=V, 再无有效边可选 择; 如果满足, 则结束当前处理, 否则重新执行步驟 2413直至满足以上条 件中的一个。
步驟 2417的判断条件中, U=V标识所有的站点都连入到网络, 再无有 效边可选择标识虽然有站点没有连入网络, 但没有更合适的候选链路可供 选择。
步驟 242, 根据链路配置模板库, 完成链路参数及设备的配置。
对于步驟 241 生成的拓朴网络, 计算每条链路的容量、 长度、 类型、 雨区等信息。 根据步驟 22中的链路配置模板库, 对每一条边都进行自动匹 配, 利用匹配到的链路模块, 完成网络的链路参数和设备配置。
步驟 243, 对整网铁塔天线挂高整体优化。 对于非末端站点, 天线挂高 的成本是多条链路共享式的, 铁塔的成本只取决于最高天线挂高和方向数。 所以天线挂高是相互影响的, 需要进行整网优化。 采用遗传算法或者类似 搜索算法对天线挂高进行优化, 确保该设计方案的铁塔建造成本最优。
步驟 244, 计算整网建造成本。
网络建造成本主要由铁塔建造成本和设备成本两部分组成。 利用链路 配置模板库和铁塔建设成本模型计算, 重新计算每条链路的设备成本以及 每个站点的铁塔建设成本, 再计算整网建设总成本。
步驟 245, 是否达搜索终止条件: 如果没有达到就返回到步驟 241 , 重 新搜索一个新的网络设计方案; 如果达到, 则执行步驟 25。
上述微波网络规划的方法还可以包括: 步驟 26, 通过人机交互的方式, 提供合适的网络规划方案供用户选择, 接受用户选择的方案作为最终建设 方案。
为了进一步对以上步驟进行说明, 下面通过以图 1 所示网络为例进一 步阐述本发明实施例的方法, 主要包括以下六个步驟(步驟 1〜步驟 6 ): 步驟 1 , 如图 1所示, 获取 21个站点的信息, 其中站点 1为中心站点, 其它 20个站点都需要通过链路汇集到站点 1。如图 3所示,根据勘站报告, 建立每个站点的铁塔成本模型, 并输入每个站点的限制条件, 如铁塔的最 高高度(天线最高挂高)必须低于 70米, 链路长度必须小于 100公里以及 方向数限制等。
一种可能的铁塔成本模型的站高与建设成本的对应表格如下表 1所示, 可以基于该表生成成本模型曲线图:
Figure imgf000013_0001
表 1
步驟 2, 根据工程的要求, 建立链路配置模板库: 确定可用的频段、 设 备、 天线、 雨区、 以及对应的性能要求。 链路模板要求能覆盖所有可能的 范围, 如链路距离, 容量等, 或者有默认的模板链路。 链路模板库可以包括以下内容: 链路容量范围、 链路长度范围、 雨区、 频段、 保护方式、 设备名称、 天线名称、 设备总成本等字段。
步驟 3, 分析候选链路。
其中, 步驟 3可以通过步驟 3.1〜步驟 3.3实现:
步驟 3.1 , 限制条件过滤: 对示例中 21个站点的每 2个站点组合进行 分析, 如果距离超过 100公里, 则不需要纳入链路视通分析。 如果用户指 定某 2个站点禁止建链路, 那么也不需要纳入链路视通分析。
步驟 3.2, 视通分析, 即根据地理信息系统(GIS ) 高程剖面图, 分析 每两个站点之间的链路在允许的最高铁塔挂高范围内是否视通。
步驟 3.3建立视通矩阵。
一种可能的视通矩阵如下表 2所示:
Figure imgf000014_0001
表 2 步驟 4,基于成本最低原则, 计算每条候选链路的天线最佳挂高以及对 应的铁塔建设成本。
如示例中的 Site 1和 Site 2的候选链路, 取 Site 1和 Site 2的铁塔建设 成本模型, 结合链路视通条件和高程剖面图, 计算最优天线挂高。 最优天 线挂高是指链路两端铁塔建设总成本最小。 可以采用逐步试探法计算最优 天线挂高, 上表中当 Site 1的挂高为 25米, Site 2的挂高为 40米时, 该条 链路的建塔成本最低, 为 12.5万元。
步驟 5, 采用最小生成树和随机选择策略,搜索满足网络规划要求的成 本最优网络设计方案。
其中, 步驟 5可以通过步驟 5.0〜步驟 5.1实现:
步驟 5.0, 计算候选链路的权值。
步驟 5.1 , 从中心站点出发, 基于最小生成树算法(Prim算法), 结合 一定的随机选择策略, 生成一个满足要求的拓朴结构。
其中, 步驟 5.1还可以通过步驟 5.1.1 ~步驟 5.1.4实现:
步驟 5.1.1 , 设站点集合 V, U 和链路集合 TE, 初始 U={Sitel }, V={Site2, ,Site21 } , ΤΕ= φ。
步驟 5.1.2, 计算所有 u U,v V-U的边的权值, 即计算所有 u、 V站 点之间的边的权值, 权值计算主要需要考虑的因素有: 铁塔建塔成本、 链 路长度、 链路深度、 站点建设的难度系数。 本实施例中采用的计算权值的 公式如下: (Cost_a * f_a+Cost_b * f_b)*L* ( l+k*d ); 其中, 上式中各参数 的含义如以下所述:
Cost_a, Cost_b: 链路两端站点的建站成本, 即铁塔建设成本; 链路的链接距离系数 L,通常具有较大距离的链路的系数, 不小于具有 较小距离的链路的系数, 例如 0 ~ 5公里的链路的系数为 1,5 ~ 10公里的系 数为 1.2; f_a, f_b:每个站点的建站难度系数,可以根据实际建站环境自行设置; k: 链路深度系数, 可以由用户自行设置;
d: 链路离中心站点的跳数, 根据 TE拓朴结构计算得出;
当然本发明并不局限于此, 本领域技术人员可以根据工程特点对公式 和因子进行调整。
如图 1 所示, 每条链路上的数字代表该链路的权值。 权值决定着拓朴 方案搜索时该条链路被选择的概率。
步驟 5.1.3, 采用俄罗斯转盘的规则, 权值越小的链路, 意味着综合成 本越小, 被选中的概率越大。 选取一条边( ιιθ,νθ ), 其中 u( U, v( V-U, 将该边尝试加入 TE, 并检查 TE网络是否满足网络规划的要求, 如容量限 制, 深度限制等。 如果满足则将(ιιθ,νθ )加入 TE, 同时将 νθ并入 U, 并 从 V中删除; 如果不满足则选取另外一条边。
步驟 5丄 4,重复执行步驟 5丄 3,直到 V为空,或者没有合适的(ιιθ,νθ ) 边可供选择。
步驟 5.2, 根据模板匹配技术, 完成链路参数及设备的配置。
对于步驟 5.1生成的拓朴网络, 计算每条链路的容量、 长度、 雨区等信 息。 然后, 根据步驟 22中的链路模板库, 对每一条边都进行自动匹配, 完 成网络的链路参数和设备配置。
步驟 5.3 , 天线挂高整体优化。
铁塔的成本只取决于最高天线挂高和方向数, 而对于非末端站点, 天 线挂高的成本是多条链路共享式的, 所以天线挂高是相互影响的, 必须进 行整网优化。 本实施例可以采用遗传算法或者类似算法对天线挂高进行优 化, 确保该设计方案的铁塔建造成本最优。
步驟 5.4, 计算整网建造成本。
网络建造成本主要考虑铁塔建设成本和设备成本两部分。 基于步驟 3, 重新计算每条链路的设备成本以及每个站点的铁塔成本。
步驟 5.5 , 判断是否满足搜索终止条件: 如果满足, 则执行步驟 6; 否 贝 从步驟 5.1开始重新执行, 重新搜索一个新的网络设计方案。
步驟 6, 通过人机交互的方式, 选择满足拓朴要求, 成本最优的方案作 为最终建设方案。
从以上所述可以看出, 本发明实施例记载的微波网络规划的方法, 可 以生成一个满足微波网络规划要求, 且成本较优的微波网络规划方案。 并 且, 本发明实施例不仅能自动完成网络拓朴规划, 而且同时完成对链路的 设备及参数自动配置, 并估算网络总建设成本, 从而大大降低了人工规划 的工作量, 而且还实现了人工规划难以做到的基于全网搜索建设成本最低 的设计配置方案。
基于以上实施例所记载的微波网络规划方法, 本发明实施例还记载了 一种微波网络规划系统, 图 6为本发明实施例记载的微波网络规划系统的 结构示意图, 如图 6所示, 所述系统包括:
建模单元 61 , 配置为建立站点组中的每一个站点的铁塔参数与铁塔建 设成本之间对应关系的铁塔建设成本模型, 其中铁塔参数包括铁塔天线挂 高和铁塔方向数, 以及建立用于配置链路设备及链路参数和计算链路设备 成本的链路配置模板库, 其中所述站点组包括中心站点和非中心站点的站 点组, 各非中心站点均通过链路连接至中心站点;
链路选择单元 62,配置为对站点组内每两个站点之间的链路进行分析, 确定站点组内满足预设微波工程规划要求的候选链路集合;
搜索计算单元 63 , 配置为通过搜索所述候选链路集合中的候选链路, 生成一满足预定网络规划要求的网络拓朴结构, 利用链路配置模板库对该 网络拓朴结构进行参数配置, 并在对该网络拓朴结构进行整网天线挂高优 化后, 利用链路配置模板库和铁塔建设成本模型计算本次搜索得到的网络 拓朴结构对应的整网建造成本;
输出单元 64, 配置为在预定搜索终止条件满足后, 从所述搜索计算单 元多次搜索得到的网络拓朴结构中选择并输出成本最优的网络拓朴结构及 其链路参数。
图 7为本发明实施例记载的微波网络规划系统中搜索计算单元 63的结 构示意图, 如图 7所示, 搜索计算单元 63包括:
权值计算子单元 631 , 配置为计算候选链路的权值, 其中所述权值与所 述候选链路对应的铁塔建设成本、 链路长度、 链路深度、 站点建设难度系 数中的至少一个因素相关, 且所述权值随所述因素的变优而减小;
选择子单元 632, 配置为从中心站点出发, 基于最小树生成算法, 每次 以预定随机选择策略选择一条候选链路尝试加入网络拓朴结构, 其中候选 链路被选择到的可能性随着其权值减小而增大, 并在被选择的候选链路满 足网络规划要求时将该候选链路正式加入网络拓朴结构;
控制子单元 633 , 配置为控制所述选择单元重复上述选择及加入处理, 直至所有候选链路都尝试完毕或所有站点都已存在于网络拓朴结构中。
优选地, 所述候选链路对应的铁塔建设成本是: 根据候选链路两端站 点的铁塔建设成本模型所确定的最小的链路两端铁塔建设的总成本。 所述 链路配置模板库中的链路模板包括以下字段信息:
用于指示该链路模板可应用的链路的长度区间、 链路容量区间、 链路 类型及雨区信息的索引字段信息;
用于指示该链路模板可配置的天线设备型号、 天线型号、 频率、 调制 方式、 保护方式及性能参数配置信息的配置字段信息;
用于计算该链路模板对应的设备总成本的链路设备成本信息。
优选地, 所述搜索计算单元 63 , 还配置为计算该网络拓朴结构中每条 链路的链路类型、 链路容量、 链路长度及雨区信息, 并与链路配置模板库 中的链路模板相匹配, 利用匹配到的链路模块, 配置链路的参数及设备。 优选地, 所述搜索计算单元 63 , 还配置为计利用链路配置模板库, 确 定本次搜索得到的网络拓朴结构中各个链路的链路设备成本; 以及利用铁 塔建设成本模型, 确定在天线挂高优化后各个链路两端的铁塔建设成本; 并基于各个链路的链路设备成本及链路两端的铁塔建设成本, 计算本次搜 索得到的网络拓朴结构对应的整网建造成本。
实际应用中, 所述建模单元 61、 链路选择单元 62、 搜索计算单元 63 和输出单元 64 均可由微波网络规划系统中的中央处理器 (CPU, Central Processing Unit )、 数字信号处理器(DSP, Digital Signal Processor )或现场 可编程门阵列 (FPGA, Field Programmable Gate Array ) 实现;
所述权值计算单元 631、选择单元 632和控制单元 633均可由微波网络 规划系统中的 CPU 、 DSP或 FPGA实现。
上面给出的仅仅是本发明的一个典型案例, 用于说明本发明, 而非用 于限定本发明。 同样, 根据本发明的技术方案还可扩展到其它场景中, 如 网络扩容规划等。 本领域的普通技术人员应当理解: 其依然可以对前述实 施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明实施例的技 术方案的原则范围。

Claims

权利要求书
1、 一种微波网络规划的方法, 应用于包括中心站点和非中心站点的站 点组, 其中各非中心站点均通过链路连接至中心站点, 所述方法包括: 建立站点组中的每一个站点的铁塔参数与铁塔建设成本之间对应关系 的铁塔建设成本模型, 其中铁塔参数包括铁塔天线挂高和铁塔方向数, 以 及建立用于配置链路设备及链路参数和计算链路设备成本的链路配置模板 库;
对站点组内每两个站点之间的链路进行分析, 确定站点组内满足预设 微波工程规划要求的候选链路集合;
通过搜索所述候选链路集合中的候选链路, 生成满足预定网络规划要 求的网络拓朴结构, 利用链路配置模板库对该网络拓朴结构进行参数配置, 并在对该网络拓朴结构进行整网天线挂高优化后, 利用链路配置模板库和 铁塔建设成本模型计算本次搜索得到的网络拓朴结构对应的整网建造成 本;
在预定搜索终止条件满足后, 从多次搜索得到的网络拓朴结构中选择 并输出成本最优的网络拓朴结构及其链路参数。
2、 如权利要求 1所述的方法, 其中, 所述生成满足预定网络规划要求 的网络拓朴结构, 包括:
计算候选链路的权值, 其中所述权值与所述候选链路对应的铁塔建设 成本、 链路长度、 链路深度、 站点建设难度系数中的至少一个因素相关, 且所述权值随所述因素的变优而减小;
从中心站点出发, 基于最小树生成算法, 每次以预定随机选择策略选 择一条候选链路尝试加入网络拓朴结构, 其中候选链路被选择到的可能性 随着其权值减小而增大, 并在被选择的候选链路满足网络规划要求时将该 候选链路正式加入网络拓朴结构; 重复上述选择及加入处理, 直至所有候选链路都尝试完毕或所有站点 都已存在于网络拓朴结构中。
3、 如权利要求 2所述的方法, 其中,
所述候选链路对应的铁塔建设成本是: 根据候选链路两端站点的铁塔 建设成本模型所确定的最小的链路两端铁塔建设的总成本。
4、 如权利要求 1所述的方法, 其中, 所述链路配置模板库中的链路模 板包括以下字段信息:
用于指示该链路模板可应用的链路的长度区间、 链路容量区间、 链路 类型及雨区信息的索引字段信息;
用于指示该链路模板可配置的天线设备型号、 天线型号、 频率、 调制 方式、 保护方式及性能参数配置信息的配置字段信息;
用于计算该链路模板对应的设备总成本的链路设备成本信息。
5、 如权利要求 4所述的方法, 其中, 所述利用链路配置模板库对该网 络拓朴结构进行参数配置, 包括:
计算该网络拓朴结构中每条链路的链路类型、 链路容量、 链路长度及 雨区信息, 并与链路配置模板库中的链路模板相匹配, 利用匹配到的链路 模块, 配置链路的参数及设备。
6、 如权利要求 1所述的方法, 其中,
所述利用链路配置模板库和铁塔建设成本模型计算本次搜索得到的网 络拓朴结构对应的整网建造成本, 包括:
利用链路配置模板库, 确定本次搜索得到的网络拓朴结构中各个链路 的链路设备成本; 以及利用铁塔建设成本模型, 确定在天线挂高优化后各 个链路两端的铁塔建设成本;
基于各个链路的链路设备成本及链路两端的铁塔建设成本, 计算本次 搜索得到的网络拓朴结构对应的整网建造成本。
7、 一种微波网络规划系统, 包括:
建模单元, 配置为建立站点组中的每一个站点的铁塔参数与铁塔建设 成本之间对应关系的铁塔建设成本模型, 其中铁塔参数包括铁塔天线挂高 和铁塔方向数, 以及建立用于配置链路设备及链路参数和计算链路设备成 本的链路配置模板库, 其中所述站点组包括中心站点和非中心站点的站点 组, 各非中心站点均通过链路连接至中心站点;
链路选择单元, 配置为对站点组内每两个站点之间的链路进行分析, 确定站点组内满足预设微波工程规划要求的候选链路集合;
搜索计算单元, 配置为通过搜索所述候选链路集合中的候选链路, 生 成满足预定网络规划要求的网络拓朴结构, 利用链路配置模板库对该网络 拓朴结构进行参数配置, 并在对该网络拓朴结构进行整网天线挂高优化后, 利用链路配置模板库和铁塔建设成本模型计算本次搜索得到的网络拓朴结 构对应的整网建造成本;
输出单元, 配置为在预定搜索终止条件满足后, 从所述搜索计算单元 多次搜索得到的网络拓朴结构中选择并输出成本最优的网络拓朴结构及其 链路参数。
8、 如权利要求 7所述的系统, 其中, 所述搜索计算单元包括: 权值计算子单元, 配置为计算候选链路的权值, 其中所述权值与所述 候选链路对应的铁塔建设成本、 链路长度、 链路深度、 站点建设难度系数 中的至少一个因素相关, 且所述权值随所述因素的变优而减小;
选择子单元, 配置为从中心站点出发, 基于最小树生成算法, 每次以 预定随机选择策略选择一条候选链路尝试加入网络拓朴结构, 其中候选链 路被选择到的可能性随着其权值减小而增大, 并在被选择的候选链路满足 网络规划要求时将该候选链路正式加入网络拓朴结构;
控制子单元, 配置为控制所述选择单元重复上述选择及加入处理, 直 至所有候选链路都尝试完毕或所有站点都已存在于网络拓朴结构中。
9、 如权利要求 8所述的系统, 其中,
所述候选链路对应的铁塔建设成本是: 根据候选链路两端站点的铁塔 建设成本模型所确定的最小的链路两端铁塔建设的总成本。
10、 如权利要求 7所述的系统, 其中,
所述链路配置模板库中的链路模板包括以下字段信息:
用于指示该链路模板可应用的链路的长度区间、 链路容量区间、 链路 类型及雨区信息的索引字段信息;
用于指示该链路模板可配置的天线设备型号、 天线型号、 频率、 调制 方式、 保护方式及性能参数配置信息的配置字段信息;
用于计算该链路模板对应的设备总成本的链路设备成本信息。
11、 如权利要求 10所述的系统, 其中,
所述搜索计算单元, 还配置为计算该网络拓朴结构中每条链路的链路 类型、 链路容量、 链路长度及雨区信息, 并与链路配置模板库中的链路模 板相匹配, 利用匹配到的链路模块, 配置链路的参数及设备。
12、 如权利要求 7所述的系统, 其中,
所述搜索计算单元, 还配置为利用链路配置模板库, 确定本次搜索得 到的网络拓朴结构中各个链路的链路设备成本; 以及利用铁塔建设成本模 型, 确定在天线挂高优化后各个链路两端的铁塔建设成本; 并基于各个链 路的链路设备成本及链路两端的铁塔建设成本, 计算本次搜索得到的网络 拓朴结构对应的整网建造成本。
PCT/CN2013/082113 2012-10-25 2013-08-22 微波网络规划的方法及系统 WO2014063525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210413015.1 2012-10-25
CN201210413015.1A CN102946610B (zh) 2012-10-25 2012-10-25 一种微波网络规划的方法及系统

Publications (1)

Publication Number Publication Date
WO2014063525A1 true WO2014063525A1 (zh) 2014-05-01

Family

ID=47729509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082113 WO2014063525A1 (zh) 2012-10-25 2013-08-22 微波网络规划的方法及系统

Country Status (2)

Country Link
CN (1) CN102946610B (zh)
WO (1) WO2014063525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125947A1 (en) * 2018-12-18 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and controller for managing a microwave network

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946610B (zh) * 2012-10-25 2015-10-28 中兴通讯股份有限公司 一种微波网络规划的方法及系统
US9780909B2 (en) * 2014-12-29 2017-10-03 Juniper Networks, Inc. Network topology optimization with feasible optical paths
CN110324159B (zh) * 2018-03-28 2020-11-03 华为技术有限公司 链路配置方法、控制器和存储介质
CN111062106A (zh) * 2019-12-18 2020-04-24 贵州省水利水电勘测设计研究院 一种厂房尾水管参数化建模方法
CN113810217B (zh) * 2021-01-07 2023-12-05 北京京东振世信息技术有限公司 分拣网络的节点功能配置方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1682551A (zh) * 2002-09-13 2005-10-12 艾利森电话股份有限公司 频率复用的优化机制
WO2008098010A1 (en) * 2007-02-05 2008-08-14 Telecom Transport Management, Inc. Automated microwave network planner
CN102130737A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 网络拓扑获取方法及装置
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置
CN102946610A (zh) * 2012-10-25 2013-02-27 中兴通讯股份有限公司 一种微波网络规划的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1682551A (zh) * 2002-09-13 2005-10-12 艾利森电话股份有限公司 频率复用的优化机制
WO2008098010A1 (en) * 2007-02-05 2008-08-14 Telecom Transport Management, Inc. Automated microwave network planner
CN102130737A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 网络拓扑获取方法及装置
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置
CN102946610A (zh) * 2012-10-25 2013-02-27 中兴通讯股份有限公司 一种微波网络规划的方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125947A1 (en) * 2018-12-18 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and controller for managing a microwave network

Also Published As

Publication number Publication date
CN102946610A (zh) 2013-02-27
CN102946610B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2014063525A1 (zh) 微波网络规划的方法及系统
Qiu et al. ROSE: Robustness strategy for scale-free wireless sensor networks
CN102149138B (zh) 无线Mesh网络网关负载均衡的方法
CN109699033B (zh) 面向成本和负载均衡的LoRa电力物联网基站部署方法及装置
da Silva et al. On best drone tour plans for data collection in wireless sensor network
CN111163477B (zh) 一种广域三维环境下一体化智能基站自动部署方法
CN103002520A (zh) 多模终端选择能够保证服务质量的目标网络的方法
CN105848242A (zh) 一种无线传感器网络中基于信任感知的安全路由优化方法
Li et al. Multi-objective topology planning for microwave-based wireless backhaul networks
CN102916879A (zh) 一种快速路由收敛方法
CN104581864A (zh) 无线d2d网络中基于干扰感知的最小跳数的路由选择方法
Wang et al. A joint channel selection and routing protocol for cognitive radio network
CN104684095A (zh) 一种异构网络融合场景中基于遗传运算的资源分配方法
CN108471628A (zh) 一种具备优化网络负载的路由控制器
Fly et al. Predicted link expiration time based connected dominating sets for mobile ad hoc networks
Meghanathan Use of minimum node velocity based stable connected dominating sets for mobile ad hoc networks
He et al. Greedy construction of load‐balanced virtual backbones in wireless sensor networks
CN103209453A (zh) 基于拓扑结构的无线传感网络的信任路由算法
CN105072660A (zh) 一种面向消防的无线传感器执行器网络的路由方法
CN108600981A (zh) 一种基于树的无线传感器网络数据收集方法
Lee et al. Qrmsc: Efficient qos-aware relay node placement in wireless sensor networks using minimum steiner tree on the convex hull
CN112966893A (zh) 一种物流网络规划方法及装置
CN105959141B (zh) 一种虚拟网络拓扑构建方法及装置
Chiu et al. The adaptive routing algorithm for linked-list wireless network with wormhole mechanism
CN102711127B (zh) 一种基于场景库的传播场景配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849896

Country of ref document: EP

Kind code of ref document: A1