WO2014063325A1 - 对偶式观测用尺仪合一复合水准仪 - Google Patents

对偶式观测用尺仪合一复合水准仪 Download PDF

Info

Publication number
WO2014063325A1
WO2014063325A1 PCT/CN2012/083480 CN2012083480W WO2014063325A1 WO 2014063325 A1 WO2014063325 A1 WO 2014063325A1 CN 2012083480 W CN2012083480 W CN 2012083480W WO 2014063325 A1 WO2014063325 A1 WO 2014063325A1
Authority
WO
WIPO (PCT)
Prior art keywords
leveling
measuring device
ruler
dual
observation
Prior art date
Application number
PCT/CN2012/083480
Other languages
English (en)
French (fr)
Inventor
刘雁春
Original Assignee
付建国
王海亭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 付建国, 王海亭 filed Critical 付建国
Priority to PCT/CN2012/083480 priority Critical patent/WO2014063325A1/zh
Publication of WO2014063325A1 publication Critical patent/WO2014063325A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/10Plumb lines

Definitions

  • the invention belongs to the technical field of measurement, and particularly relates to a dual-purpose composite level which can effectively improve the efficiency and reliability of the leveling measurement and is not limited by the terrain environment.
  • known leveling devices consist of a level and two leveling scales.
  • two leveling gauges on the ground, A and B.
  • Two points then set the level at A, B In the middle position of the two points, in order to ensure the measurement accuracy, the horizontal distance of the level gauge from the two leveling gauges is generally required to be equal or substantially equal.
  • Use the horizontal line of sight of the leveling level to accurately read the elevation values of the two leveling scales.
  • the difference between the measured height values is the ground.
  • the existing leveling methods have the following problems:
  • the present invention is to solve the above technical problems existing in the prior art, and to provide a A dual-composite level that can effectively improve the efficiency and reliability of leveling and is not limited by the terrain environment.
  • the technical solution of the present invention is:
  • the utility model relates to a dual-purpose observation level measuring instrument, which is provided with a cylindrical ruler and a leveling device.
  • a leveling ruler and an observation unit capable of sliding up and down are fixed, and the observation unit has The counterpart height signal measuring device and the local height signal measuring device that are fixedly connected to each other, the collimating axes of the opponent height signal measuring device and the local height signal measuring device are parallel to each other and perpendicular to the leveling scale.
  • the leveling device is a leveling monitoring device fixedly connected with a counterpart height signal measuring device or a local height signal measuring device, and the counterpart height signal measuring device, the local height signal measuring device and the leveling monitoring device respectively and digital signal processing Connected to the cylindrical ruler, a power module, an adjustment control button and a display screen are arranged, and the digital signal processor is connected to the display screen and the data transmission unit.
  • the opponent height signal tester or And the height signal measuring device of the present side comprises a laser emitting device, the leveling scale is a laser sensing scale, and the laser sensing scale is connected to the digital signal processor.
  • the power module is located at the bottom of the cylindrical ruler.
  • Two sides of the cylindrical ruler are correspondingly provided with a handle, and the button is placed on the handle.
  • a positioning unit is connected to the digital signal processor.
  • the invention integrates the traditionally separated level and level gauge into one, and can be paired for dual observation, that is, synchronous leveling, mutual alignment, peer observation, two-way inspection, and truly realize point-to-point.
  • the direct level measurement eliminates the need for time-consuming and laborious consideration of the rational configuration of the distance between the level gauge and the leveling scale, and also eliminates the need for round-trip measurement due to the reliability check of the dual-observation system, improving the efficiency and reliability of the leveling measurement.
  • the selected points and locations of the survey are not limited by the terrain environment, and the level measurement can be conveniently carried out in complex terrain such as steep slopes, potholes, ponds, ditches, gullies, rivers, and mountains.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • Fig. 2 is a view showing the state of use of the embodiment 1 of the present invention.
  • FIG 3 and 4 are schematic views showing the structure of Embodiment 2 of the present invention.
  • Figure 5 is a block diagram showing the circuit principle of Embodiment 2 of the present invention.
  • Figure 6 is a schematic view showing the structure of Embodiment 3 of the present invention.
  • Figure 7 is a block diagram showing the circuit principle of Embodiment 3 of the present invention.
  • Figure 8 is a block diagram showing the circuit principle of Embodiment 4 of the present invention.
  • a 2 to 4 meter high cylindrical ruler made of metal, plastic or wood, in a cylindrical ruler 1
  • a leveling ruler 2 (ordinary ruler 2) parallel to the axis of the cylindrical ruler 1 and an observation unit 3 which can slide up and down are fixed on the same cylinder surface, and a slide rail can be installed on the cylindrical ruler 1, and the observation unit 3
  • the upper slider slides up and down along the slide rail and can be fixed to the slide rail according to the needs of different terrains for the horizontal line of sight height.
  • the observation unit 3 has a mutual height signal measuring device which is fixedly connected to each other and whose collimation axes are parallel to each other 4
  • the height signal measuring device 5 and the height measuring device 4 of the other side adopt a telescope with aiming function, and are placed beside the leveling ruler 2, and the collimation axis is perpendicular to the leveling ruler 2, and the height measuring instrument of the square is 5
  • Level 6 fixed connection Mounted under the observation unit 3, using the axis and telescope A quasi-axis vertical circular level or / and a tube level with an axis parallel to the telescope's collimation axis.
  • Peer-to-peer observation The two sides simultaneously perform relatively independent peer observations, and the telescope can obtain the other party (B Height data of point), the height data of the side (point A) can be read by the pointer, A, B The difference between the two points is the level difference. The observation needs to be read multiple times (such as three times). If the error tolerance reaches the standard, the average value is taken as the measured value.
  • Two-way check Exchange the measurement data of both parties and check the measurement results of both parties, that is, judge whether the mutual difference of the measurement results of both parties is exceeded according to the requirements of the specification, judge the qualified transfer station to continue the operation, and repeat the measurement at the original station if the evaluation fails.
  • the basic structure is the same as that of the first embodiment.
  • the difference between the first embodiment and the first embodiment is that the leveling scale 2 adopts an indium steel bar code scale, and the other height level signal measuring device 4 adopts an automatic anping electronic function with an aiming function.
  • the height signal measuring device 5 of the present invention uses a macro camera, and the lens faces the leveling scale 2, and the collimating axes of the opponent height signal measuring device 4 and the local height signal measuring device 5 are perpendicular to the leveling scale 2.
  • the leveling device 6 is a leveling monitoring device fixedly connected to the observation unit 3, and the leveling monitoring device adopts a high-precision dual-axis tilting angle sensor (Ruifen HCA526T), and the two sensitive axes are perpendicular to the leveling scale 2, and one of them Parallel to the collimation axis of the opponent's height signal measuring device 4, the leveling monitoring device can also be fixed on the slider or connected to the opponent height signal measuring device 4 or/and the local height signal measuring device 5 to dynamically monitor the other party's height signal. The level of the quasi-axis of the measuring device 4 or the local height signal measuring device 5 is determined.
  • the output signal of the leveling monitoring device 6 is also connected to the digital signal processor
  • the cylindrical ruler 1 is provided with a power module 7 (iron lithium battery, etc.) and a display screen 9, the digital signal processing And display 9 and the data transmission unit is connected.
  • the battery can be mounted on the bottom of the ruler 1 to reduce the center of gravity of the ruler 1 and improve the stability of the ruler 1 when it is erected on the basis of reliable power supply; It can be a touch screen display, and the button 8 for adjusting the control height signal measuring device 4, the height measuring instrument 5 of the square, the leveling monitoring device, etc. can be set as the touch button in the touch display screen.
  • the touch button can be used for interactive input, and at the same time, the display interface (electronic telescope image, leveling monitoring screen, status indication, data display, control menu, etc.) can be provided, and the digital signal processor adopts FLASH.
  • the memory stores data, and functions such as scale reading and reading, measurement data exchange and processing, and inspection are implemented by software.
  • the data transmission unit can be used by the audio codec (CODEC) and ZigBee, RF, etc.
  • the wireless data transmission module is configured to complete data transmission such as voice, graphics, and digital.
  • the position of the observation unit 3 is not limited by the height of the surveyor and can be adjusted to the entire ruler 1 .
  • Synchronous roughing and flattening Both sides adopt the telescopic coarse adjustment and the spiral fine adjustment auxiliary tripod to make the display 9 display according to the output signal of the leveling monitoring device 6.
  • the circular level electronic bubble is centered, and the data transfer unit exchanges the two levels of state data in real time and displays it on the display 9 in real time.
  • Mutual alignment Observing the image displayed on the display screen 9 to achieve mutual coarse alignment, observing the image transmitted by the other party height signal measuring device 4, and performing focus adjustment on the other party height signal measuring device 4 by using the display screen touch button To make the goal clear and to align the level of the opponent.
  • Synchronized finishing level both sides are measured by the other height signal detector 4
  • the automatic leveling function achieves precise leveling, and the data transfer unit exchanges the leveling status data of both sides in real time and displays it on the display screen 9 in real time.
  • the observation operation can be performed.
  • the automatic Anping telescope can obtain the scale image of the height of the other side (point B) on the horizontal line of sight, and the macro camera can obtain the height of the horizontal line of sight (point A).
  • the scale image, the obtained square and the other party height signal (graphic) are input to the digital signal processor for processing and height difference calculation, display and storage.
  • the observation needs to be read multiple times (such as three times). If the error tolerance reaches the standard, the average value is taken as the measured value;
  • Two-way check The data transmission unit exchanges the measurement data of both parties in real time and checks the measurement results of both parties, that is, whether the difference between the measurement results of both parties is judged according to the specification requirements, and the qualified transfer station continues to operate, and the evaluation fails. Repeat the measurement at the original station.
  • the basic structure is the same as that of the second embodiment.
  • the height signal measuring device 5 of the present invention uses a laser or infrared ranging device, and the measuring quasi-axis is parallel to the axis of the cylindrical ruler 1.
  • the observation direction is directed to the bottom end of the cylindrical ruler 1, and the opponent height signal measuring device 4 employs an electronic telescope that does not have an automatic leveling function.
  • a handle 10 is disposed on both sides of the cylindrical ruler 1 and the button 8 is fixed on the handle 10.
  • the button 8 can be a button switch or an adjustment knob.
  • the output of the button 8 is connected to the digital signal processor. 9 is not limited to the touch screen.
  • Synchronous roughing Both measuring personnel display the output signal according to the leveling monitoring device 6 on the display screen 9 The circular level screen, artificially supporting the ruler to keep the electronic bubble centered to achieve rough leveling.
  • Synchronous finishing level Since the artificial ruler can not be stably maintained in the leveling state for a long time, the leveling state of both sides is continuously monitored, that is, the digital signal processor continuously acquires the signal output by the leveling monitoring device, and dynamically monitors the height of the other party in real time.
  • the signal measuring device 4 views the posture information of the quasi-axis, and realizes the communication between the two through the data transmission unit, so that both sides grasp the leveling state information of the other party in real time, and the digital signal processor captures the time when both sides reach the leveling request state at the same time.
  • the leveling threshold can be set according to the measurement accuracy requirements. When the measurement accuracy is high, more precise leveling is required, and the skilled personnel's skilled operation skills are required.
  • the basic structure is the same as that of the embodiment 2 or 3.
  • the difference from the embodiment 2 is the leveling ruler 2
  • the bar code scale is combined with the laser inductive scale and placed on both sides of the observation unit 3, and the other height signal measuring device 4 adopts a composite automatic anping electronic telescope with embedded optical axis coincident laser emission, and the height signal measuring device of the square 5 Adopt absolute linear grating.
  • a positioning unit GPS / GLONASS receiving module
  • the laser-sensitive scale is connected to the digital signal processor.
  • the B-side laser-sensing scale can be irradiated by the laser beam emitted by the A-side laser emitter, and the reading of the center position of the spot on the laser-sensing scale is the height data signal of the B-party (the other party).
  • the digital signal processor is sent to the B side and sent to the A side through the data transmission unit, so that the A side obtains the height data signal of the other party; at the same time, the AB distance detection by the laser beam can synchronously measure the horizontal distance between the two parties.
  • the A side simultaneously reads the height data of the square from the absolute linear grating; the satellite positioning unit can perform the specific position location of the measurement point and provide the geographical location information of the measurement point.

Abstract

一种对偶式观测用尺仪合一复合水准仪,设有柱形尺体(1)及水准器(6),在柱形尺体(1)的同一柱面上固定有与柱形尺体(1)轴线平行的水准标尺(2)及可上下滑动的观测单元(3),所述观测单元(3)有相互固定连接的对方高度信号测定器(4)和本方高度信号测定器(5),对方高度信号测定器(4)的视准轴与柱形尺体(1)轴线垂直。真正实现了点对点的直接水准测量,选点、布点不受地形环境限制,可以方便地在陡坡、沟渠、江河、山区等复杂地形实施水准测量。

Description

对偶式观测用尺仪合一复合水准仪 技术领域
本发明属于测量技术领域,尤其涉及一种可有效提高水准测量工作效率和可靠性,不受地形环境限制的对偶式观测用尺仪合一复合水准仪。
背景技术
目前,公知的水准测量装置是由一个水准仪和两个水准标尺组成。测量时先将两个水准标尺分别置于地面上的 A 、 B 两点,再将水准仪设置在 A 、 B 两点的中间位置,为了保证测量精度,一般要求水准仪距两个水准标尺的水平距离相等或大致相等。利用整平后水准仪的水平视线分别照准读取两个水准标尺的标高数值,所测标高数值之差即为地面 A 、 B 两点的水准高差,若已知其中一点的高程,即可由高差推算出另一点的高程。现有水准测量方法存在如下问题:
( 1 )测量工作效率及可靠性低
在复杂的地形环境中实现水准仪和水准标尺之间位置的合理配置,往往耗费测量人员大量的精力和时间,影响测量效率;采用一台水准仪进行测量,不能对测量的高差数据进行多观测系统的可靠性检核,为了提高水准测量的可靠性,往往采用往返测量检核模式,不仅同样耗费测量人员大量的精力和时间,影响测量效率,而且其可靠性还会因人为因素而难以保证;
( 2 )测量受到地形环境限制
当遇到陡坡、坑洼、水塘、沟渠、沟壑、江河、山区等复杂地形环境时,往往不能将水准仪架设在两个水准标尺的中间位置,导致水准测量无法实施。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种 可有效提高水准测量工作效率和可靠性,不受地形环境限制的对偶式观测用尺仪合一复合水准仪。
本发明的技术解决方案是: 一种对偶式观测用尺仪合一复合水准仪,设有柱形尺体及水准器,在柱形尺体的同一柱面上固定有水准标尺及可上下滑动的观测单元,所述观测单元有相互固定连接的对方高度信号测定器和本方高度信号测定器,对方高度信号测定器及本方高度信号测定器的视准轴相互平行且与水准标尺垂直。
所述水准器是与对方高度信号测定器或本方高度信号测定器固定连接的整平监测装置,所述对方高度信号测定器、本方高度信号测定器及整平监测装置分别与数字信号处理器相接,在所述柱形尺体上设有电源模块、调节控制按钮及显示屏,所述数字信号处理器与显示屏及数据传输单元相接。
所述对方高度信号测定器或 / 和本方高度信号测定器含有激光发射装置,所述水准标尺是激光感应标尺,所述激光感应标尺与数字信号处理器相接。
所述电源模块位于柱形尺体的底部。
所述柱形尺体的两侧对应设置有把手,所述按钮置于把手上。
与所述数字信号处理器相接有定位单元。
本发明是将传统分离设置的水准仪和水准标尺合二为一地集成为一体,可配对用于对偶式观测,即同步整平、相互照准、对等观测、双向检核,真正实现了点对点的直接水准测量,无需费时费力地考虑水准仪和水准标尺位置距离的合理配置,同时也由于双观测系统的可靠性检核而不再需要往返测量,提高了水准测量的工作效率及可靠性,水准测量的选点、布点不受地形环境限制,可以方便地在陡坡、坑洼、水塘、沟渠、沟壑、江河、山区等复杂地形环境下实施水准测量。
附图说明
图 1 是本发明实施例 1 的结构示意图。
图 2 是本 发明实施例 1 的使用状态图。
图 3 、 4 是本发明实施例 2 的结构示意图。
图 5 是本发明实施例 2 的电路原理框图。
图 6 是本发明实施例 3 的结构示意图。
图 7 是 本发明实施例 3 的电路原理框图。
图8是本发明实施例4的电路原理框图。
具体实施方式
实施例 1 :
如图1所示:有用金属 、塑料或木材等 制成的 2~4米高的柱形尺体 1 ,在柱形尺体 1 的同一柱面上固定有 与柱形尺体 1 轴线平行的 水准标尺 2 ( 普通标尺 2 )及可上下滑动的观测单元 3 ,可在柱形尺体 1 安装有滑轨,观测单元 3 上的滑块沿滑轨上下滑动且可根据 不同地形对水平视线高度的需要而固定在滑轨上。观测单元 3 有相互固定连接且视准轴相互平行的对方高度信号测定器 4 、本方高度信号测定器 5 ,对方高度信号测定器 4 采用具有 瞄准功能的望远镜,置于水准标尺 2 旁,其视准轴与水准标尺 2 垂直,本方高度信号测定器 5 采用 指针等,与水准标尺 2 相对设置,即设置在水准标尺 2 的相对面上 。水准器 6 固定连接 安装在观测单元 3 下方,采用轴线与望远镜视 准轴垂直的圆水准器或 / 和轴线 与望远镜视准轴平行的管水准器。
配对使用本发明实施例 1 ,可如图 2 所示实现对偶式观测,以测量 A 、 B 两点的高差,A为本方,B为对方,具体工作过程如下:
( 1 ). 安置仪器:将现有的尺垫 11 放置于 A 、 B 两个测量点,使其稳固。根据 A 、 B 两个测量点的高差和人工可直接观测的范围,将尺体 1 上的观测单元 3 调整至合适位置。将现有的辅助脚架 12 调节至合适长度,利用搭扣连接辅助脚架 12 与尺体 1 ,然后将尺体 1 轻放至尺垫 11 上,固定好辅助脚架 12 。
( 2 ).同步 粗整平:双方均通过伸缩粗调和螺旋精调辅助脚架,使水准器 6 的圆水准器气泡居中。
( 3 ). 相互照准:双方进行对偶式观测,互为靶向,用望远镜筒上的照门与准星相互粗照准,从望远镜中观察,进行调焦对光调整,使目标清晰,并照准对方水准标尺。
( 4 ).同步 精整平:双方均调整观测单元 3 上的微倾螺旋,使水准器 6 的管水准器气泡居中 。
( 5 ). 对等观测:双方同时进行相对独立的对等观测,望远镜可获得对方( B 点)的高度数据,利用指针可读出本方( A 点)的高度数据, A 、 B 两点的差值即为水准差值。观测需进行多次(如三次)数据读取,若误差容限达标,则取其均值作为测量值。
(6).双向检核:交换双方测量数据并检核双方的测量结果,即按照规范要求对双方测量结果的互差作出是否超限的评判,评判合格转站继续作业,评判不合格则在原站重复测量。
实施例 2 :
如图3、图4、图5所示:基本结构如实施例1,与实施例1所不同的是水准标尺2采用铟钢条码标尺,对方高度信号测定器4采用具有瞄准功能的自动安平电子望远镜,本方高度信号测定器5采用微距摄像头,且镜头朝向水准标尺2,对方高度信号测定器4、本方高度信号测定器5的视准轴均与水准标尺2垂直。水准器6是与观测单元3相对固定连接的整平监测装置,整平监测装置采用高精度双轴倾角传感器(瑞芬HCA526T),其两个敏感轴均与水准标尺2垂直,且其中之一与对方高度信号测定器4视准轴平行,整平监测装置同样可以固定在滑块上或与对方高度信号测定器4或/和本方高度信号测定器5相接,以动态监测对方高度信号测定器4或本方高度信号测定器5视准轴的整平状态。
对方高度信号测定器 4 及本方高度信号测定器 5 与数字信号处理器( DSP 、 ARM 等) 相接,整平监测装置 6 的输出信号也与数字信号处理器相接,在所述柱形尺体 1 上设有电源模块 7 ( 铁锂电池等)及显示屏 9 ,所述数字信号处理器与显示屏 9 及数据传输单元相接。 电池可安装于尺体 1 底部,在保证可靠供电的基础上,降低尺体 1 的重心,提高尺体 1 直立时的稳性;显示屏 9 可为触摸显示屏,即可将 用于调节控制对方高度信号测定器 4 、本方高度信号测定器 5 、整平监测装置等的按钮 8 设定为触摸显示屏中的触摸按键 ,可利用触摸按键实现交互输入,同时又可提供显示界面(电子望远镜图像、整平监测画面、状态指示、数据显示、控制菜单等),数字信号处理器采用 FLASH 存储器保存数据,通过软件实现标尺读数测读、测量数据交换与处理、检核等功能。数据传输单元可由音频编解码器( CODEC )与 ZigBee 、 RF 等 无线数据传输模块构成,完成语音、图形、数字等数据传输。
工作过程同实施例 1 基本相同,不同之处如下:
安置仪器:观测单元 3 的位置不受测量人员身高的限制,可调整范围为整个尺体 1 。
同步粗整平:双方均通过伸缩粗调和螺旋精调辅助脚架,使显示屏 9 上根据整平监测装置 6 输出信号显示的 圆水准器电子气泡居中,利用数据传输单元实时交换双方整平状态数据,并在显示屏 9 上实时显示。
相互照准:通过观察显示屏9上显示的的图像实现相互粗照准,观察对方高度信号测定器4传送的图像,并利用显示屏触摸按键对对方高度信号测定器4进行调焦对光调整,使目标清晰,并照准对方水准标尺。
同步精整平:双方均由对方高度信号测定器 4 的自动安平功能实现精确整平,利用数据传输单元实时交换双方整平状态数据,并在显示屏 9 上实时显示。
对等观测:在触摸按键控制下,可进行观测操作,自动安平电子望远镜可获得水平视线上对方(B点)高度的标尺图像,微距摄像头可获得水平视线上本方(A点)高度的标尺图像,所得到的本方及对方高度信号(图形)均输入至数字信号处理器进行处理及高度差值计算并显示及存储。观测需进行多次(如三次)信号读取,若误差容限达标,则取其均值作为测量值;
双向检核:利用数据传输单元实时交换双方测量数据并检核双方的测量结果,即按照规范要求对双方测量结果的互差作出是否超限的评判,评判合格转站继续作业,评判不合格则在原站重复测量。
实施例 3 :
如图6、7所示:基本结构同实施例2,与实施例2所不同的是本方高度信号测定器5采用激光或红外测距装置,其测量准轴与柱形尺体1轴线平行,观测方向指向柱形尺体1底端,对方高度信号测定器4采用不具有自动安平功能的电子望远镜。在柱形尺体1的两侧对应设置有把手10,并将按钮8固定在把手10上,按钮8可以是按键开关或调节旋钮等,按钮8的输出与数字信号处理器相接,显示屏9并不局限是触摸显示屏。
工作过程同实施例 2 基本相同,不同之处如下:
安置仪器:不使用辅助脚架,与传统水准测量相同,由测量人员人工扶尺。
同步粗整平:双方测量人员均通过观察显示屏 9 上根据整平监测装置 6 输出信号显示的 圆水准器画面,人工扶持尺体使电子气泡保持居中来实现粗整平。
同步精整平:由于人工扶尺无法长时间稳定保持在精整平状态,故连续监测双方的整平状态,即由数字信号处理器不断获取整平监测装置输出的信号,实时动态监测对方高度信号测定器4视准轴的姿态信息,并通过数据传输单元实现双方通信,以使双方均实时掌握对方的整平状态信息,由数字信号处理器捕捉双方同时达到整平要求状态的时刻。其整平状态判定门限可根据测量精度要求设定,测量精度要求高时,需要更加精确的整平,同时对测量人员的熟练操作技能要求更高。
对等观测:在捕捉到双方同时达到整平要求状态的时刻,操作按钮 8 并由通过数字信号处理器测读本方及对方高度数据。
实施例 4 :
基本结构同实施例 2 或 3 ,与实施例 2 所不同之处是水准标尺 2 采用条码标尺与激光感应标尺组合,分别置于观测单元 3 的两侧,对方高度信号测定器 4 采用 内嵌光轴重合激光发射的复合式自动安平电子望远镜,本方高度信号测定器 5 采用 绝对式直线光栅。如图 8 所示:与所述数字信号处理器相接有设置在尺体 1 上的定位单元( GPS /GLONASS 接收模块); 激光感应标尺与数字信号处理器相接。
工作过程与实施例2、3不同之处是可由A方激光发射器发射激光束照射B方激光感应标尺,激光感应标尺上光斑中心位置的读数即B方(对方)的高度数据信号,此信号输送至B方的数字信号处理器并通过数据传输单元发送至A方,使A方得到对方的高度数据信号;与此同时,利用激光束进行AB距离探测,即可同步测量双方间的水平距离;A方同时从绝对式直线光栅读取本方高度数据;卫星定位单元可进行测量点具体位置定位,提供测量点所处地理位置信息。

Claims (6)

  1. 一种对偶式观测用尺仪合一复合水准仪,其特征在于:设有柱形尺体(1)及水准器(6),在柱形尺体(1)的同一柱面上固定有与柱形尺体(1)轴线平行的水准标尺(2)及可上下滑动的观测单元(3),所述观测单元(3)有相互固定连接的对方高度信号测定器(4)和本方高度信号测定器(5),对方高度信号测定器(4)的视准轴与柱形尺体(1)轴线垂直。
  2. 根据权利要求1所述对偶式观测用尺仪合一复合水准仪,其特征在于:所述水准器(6)是与对方高度信号测定器(4)或本方高度信号测定器(5)固定连接的整平监测装置,所述对方高度信号测定器(4)、本方高度信号测定器(5)及整平监测装置分别与数字信号处理器相接,在所述柱形尺体(1)上设有电源模块(7)、调节控制按钮(8)及显示屏(9),所述数字信号处理器与显示屏(9)及数据传输单元相接。
  3. 根据权利要求2所述对偶式观测用尺仪合一复合水准仪,其特征在于:所述对方高度信号测定器(4)或/和本方高度信号测定器(5)含有激光发射装置,所述水准标尺(2)是激光感应标尺,所述激光感应标尺与数字信号处理器相接。
  4. 根据权利要求2或3所述的对偶式观测用尺仪合一复合水准仪,其特征在于:所述电源模块(7)位于柱形尺体(1)的底部。
  5. 根据权利要求2或3所述的对偶式观测用尺仪合一复合水准仪,其特征在于:所述柱形尺体(1)的两侧对应设置有把手(10),所述按钮(8)置于把手(10)上。
  6. 根据权利要求2或3所述的的 对偶式观测用尺仪合一复合水准仪,其特征在于:与所述数字信号处理器相接有定位单元。
PCT/CN2012/083480 2012-10-25 2012-10-25 对偶式观测用尺仪合一复合水准仪 WO2014063325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083480 WO2014063325A1 (zh) 2012-10-25 2012-10-25 对偶式观测用尺仪合一复合水准仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083480 WO2014063325A1 (zh) 2012-10-25 2012-10-25 对偶式观测用尺仪合一复合水准仪

Publications (1)

Publication Number Publication Date
WO2014063325A1 true WO2014063325A1 (zh) 2014-05-01

Family

ID=50543879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083480 WO2014063325A1 (zh) 2012-10-25 2012-10-25 对偶式观测用尺仪合一复合水准仪

Country Status (1)

Country Link
WO (1) WO2014063325A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713531A (zh) * 2015-03-10 2015-06-17 武汉建工集团股份有限公司 一种带刻度自动安平激光水准仪可调支架
CN105890571A (zh) * 2016-05-25 2016-08-24 大连圣博尔测绘仪器科技有限公司 尺仪一体化快速水准测量装置
CN106767680A (zh) * 2016-11-30 2017-05-31 国网河南栾川县供电公司 一种带电架空线的测量装置
CN108867652A (zh) * 2018-07-02 2018-11-23 辽宁工程技术大学 一种基坑开挖快速监测仪
CN110595510A (zh) * 2019-10-10 2019-12-20 河南省计量科学研究院 数字水准仪电子i角及视距误差检定用旋转条码尺
CN112033357A (zh) * 2020-09-08 2020-12-04 重庆交通大学 用于三角高程测量的免整平多棱镜测量装置及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2090044U (zh) * 1991-01-26 1991-12-04 王荣章 光电水准尺
US5894344A (en) * 1997-04-07 1999-04-13 Tamez Construction Elevation Measurement apparatus
CN2388588Y (zh) * 1999-08-06 2000-07-19 于雪岩 激光水准尺
CN102778220A (zh) * 2012-07-17 2012-11-14 刘雁春 对偶式观测用尺仪合一复合水准仪
CN202793375U (zh) * 2012-07-17 2013-03-13 刘雁春 对偶式观测用尺仪合一复合水准仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2090044U (zh) * 1991-01-26 1991-12-04 王荣章 光电水准尺
US5894344A (en) * 1997-04-07 1999-04-13 Tamez Construction Elevation Measurement apparatus
CN2388588Y (zh) * 1999-08-06 2000-07-19 于雪岩 激光水准尺
CN102778220A (zh) * 2012-07-17 2012-11-14 刘雁春 对偶式观测用尺仪合一复合水准仪
CN202793375U (zh) * 2012-07-17 2013-03-13 刘雁春 对偶式观测用尺仪合一复合水准仪

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713531A (zh) * 2015-03-10 2015-06-17 武汉建工集团股份有限公司 一种带刻度自动安平激光水准仪可调支架
CN105890571A (zh) * 2016-05-25 2016-08-24 大连圣博尔测绘仪器科技有限公司 尺仪一体化快速水准测量装置
CN106767680A (zh) * 2016-11-30 2017-05-31 国网河南栾川县供电公司 一种带电架空线的测量装置
CN108867652A (zh) * 2018-07-02 2018-11-23 辽宁工程技术大学 一种基坑开挖快速监测仪
CN108867652B (zh) * 2018-07-02 2020-09-29 辽宁工程技术大学 一种基坑开挖快速监测仪
CN110595510A (zh) * 2019-10-10 2019-12-20 河南省计量科学研究院 数字水准仪电子i角及视距误差检定用旋转条码尺
CN110595510B (zh) * 2019-10-10 2024-03-15 河南省计量测试科学研究院 数字水准仪电子i角及视距误差检定用旋转条码尺
CN112033357A (zh) * 2020-09-08 2020-12-04 重庆交通大学 用于三角高程测量的免整平多棱镜测量装置及测量方法
CN112033357B (zh) * 2020-09-08 2022-09-23 重庆交通大学 用于三角高程测量的免整平多棱镜测量装置及测量方法

Similar Documents

Publication Publication Date Title
WO2014063325A1 (zh) 对偶式观测用尺仪合一复合水准仪
CN202994137U (zh) 对偶式观测用尺仪合一复合水准仪
US8280677B2 (en) Geographical data collecting device
CN104515498B (zh) 激光测量系统
CN105890571B (zh) 尺仪一体化快速水准测量装置
CN105509702A (zh) 光电惯性校靶系统三维空间角度测量仪
CN205785186U (zh) 尺仪一体化快速水准测量装置
CN103115610B (zh) 适用于复合水准仪的水准测量方法
CN102798359A (zh) 非接触式倾角测量装置及方法
CN102620710A (zh) 测算数据的方法和系统
CN103344215B (zh) 双通道水准仪
CN208254461U (zh) 对向照准标尺自读式复合水准仪
CN202793375U (zh) 对偶式观测用尺仪合一复合水准仪
WO2010139206A1 (zh) 空间数字化大地测量方法及装置
CN207798070U (zh) 标尺自读式水准测量装置
CN102901486A (zh) 对偶式观测用尺仪合一复合水准仪
CN108469250A (zh) 对向照准标尺自读式复合水准仪测量方法及装置
CN109556459A (zh) 一种火箭炮惯导寻北精度检测系统和方法
CN102937440A (zh) 激光感应水准测量标尺
CN108180892B (zh) 复合水准仪互换式参数测定方法
CN102865861A (zh) 微型管状全站仪
CN207689674U (zh) 一种基于观瞄测定目标位置的装置
KR101223243B1 (ko) 기준점 및 수준점 확인을 통한 지표면의 지리정보 측지데이터 관리시스템
CN203422086U (zh) 双通道水准仪
CN202757622U (zh) 测算数据的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886922

Country of ref document: EP

Kind code of ref document: A1