WO2014061982A1 - Apparatus for determining error of sensorless motor using counter-electromotive force signal - Google Patents

Apparatus for determining error of sensorless motor using counter-electromotive force signal Download PDF

Info

Publication number
WO2014061982A1
WO2014061982A1 PCT/KR2013/009230 KR2013009230W WO2014061982A1 WO 2014061982 A1 WO2014061982 A1 WO 2014061982A1 KR 2013009230 W KR2013009230 W KR 2013009230W WO 2014061982 A1 WO2014061982 A1 WO 2014061982A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electromotive force
sensorless motor
time difference
motor
Prior art date
Application number
PCT/KR2013/009230
Other languages
French (fr)
Korean (ko)
Inventor
김봉준
Original Assignee
콘티넨탈 오토모티브 시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콘티넨탈 오토모티브 시스템 주식회사 filed Critical 콘티넨탈 오토모티브 시스템 주식회사
Publication of WO2014061982A1 publication Critical patent/WO2014061982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero

Definitions

  • the present invention relates to a method of driving a sensorless motor, and more particularly, by detecting a counter electromotive force generation time of a sensorless motor and allowing only a counter electromotive force signal corresponding to the prediction result, thereby detecting a counter electromotive force signal according to an external environment.
  • the present invention relates to an error determination device of a sensorless motor using a back EMF signal which can be prevented in advance.
  • the rotor position and speed of the observer are determined from the current error of each axis by setting the virtual q axis and the d axis to convert the phase current of the actual system into the virtual axis, and comparing the current with the model equation in the observer.
  • the sensorless control of the sensorless permanent magnet synchronous motor is performed only after a certain speed after the motor is started. This is because the back electromotive force of the sensorless permanent magnet synchronous motor is deteriorated as the speed decreases. This is because it is difficult to estimate the electronic position and velocity.
  • the sensor-less permanent magnet synchronous motor is required to provide a current corresponding to the position of the rotor at the initial start-up and generate a proper amount of motor torque
  • the position and speed of the rotor are not known. Regardless of the rotor's position and speed, it will provide current based on peak load. Therefore, in the past, when the sensorless permanent magnet synchronous motor is initially started, at low loads, the inertia coefficient is not the same as the actual load, and unnecessary torque is required. Accordingly, torque is applied more than necessary to increase the starting current, and also the starting current. Increasing the increase in the heat generated by the inverter also could not be continued operation.
  • the attached patent document estimates the position of the rotor from a preset inertia coefficient and torque acceleration. That is, as shown in FIG. 1, a voltage source inverter 180 for supplying a three-phase voltage, a current estimator 110 according to a phase voltage application, and a first speed / position estimator 120 estimated based on a motor model.
  • a second speed / position estimator 130 estimated based on a machine model, a mixer 140 having a crossover function that mixes positions and velocities estimated by the motor model and the machine model, respectively, measured or estimated Speed controller 150 that generates torque command by comparing speed and command, Current command converter 160 that converts torque command into current command, and Vector current controller that generates voltage by comparing command current with estimated and measured current It consists of 170.
  • the current estimator 110 may be configured in various forms. First, three-phase current is directly detected by using three current converters or a series shunt resistor in three phases of the motor, and second, Two current transducers or series shunt resistors to detect the current in two phases, and the other phase is obtained as a two-phase current value. Third, one series shunt resistor on the DC bus side or the lower switches of the inverter and ground It consists of estimating current reconstruction with three or three shunt resistors in series.
  • the inertia coefficient and torque acceleration according to the actual load are used to estimate the speed and position information.
  • the present invention has been made to solve the above problems, and an object of the present invention is to predict the occurrence of back EMF of a sensorless motor and allow only back EMF signal corresponding to the prediction result, thereby detecting a detection error of the back EMF signal according to an external environment.
  • an error determination device for a sensorless motor using a back EMF signal that can prevent the in advance.
  • the present invention provides a device for determining an error of a sensorless motor using a counter electromotive force signal that can reduce a system cost by simplifying a circuit configuration of an inverter.
  • An apparatus for determining an error of a sensorless motor using a back electromotive force signal for achieving the above object is a device for determining an error signal when driving a sensorless motor using a back electromotive force signal, the sensorless motor driving A signal amplifier for amplifying a back-EMF (BEMF) signal generated at a predetermined level; An AD converter for converting an output signal of the signal amplifier into a digital signal; A zero crossing detector for detecting a zero-crossing point of the counter electromotive force signal based on the output signal of the AD converter; And calculating a time difference between zero crossing time points of the counter electromotive force signal based on the rotational speed of the sensorless motor, determining whether the zero crossing time point output from the zero crossing detector is included in the calculated time difference category, and outputting the AD converter. And a control unit for determining the authenticity of the counter electromotive force signal.
  • BEMF back-EMF
  • the calculated time difference is a time difference between zero crossing points computed from the rotational speed V [rps] of the current sensorless motor, and the calculated time difference category allows for a time difference between calculated zero crossing points. It is characterized by the possible range.
  • the allowable range for the time difference according to a preferred embodiment of the present invention is characterized in that the ratio of 100% to 200 ⁇ s, or 10% to 20% of the time difference.
  • the error determination device of the sensorless motor using the back EMF signal proposed in the present invention by predicting the back electromotive force generation time of the sensorless motor, by allowing only the back EMF signal corresponding to the prediction result, according to the external environment Has an effect of preventing the detection error in advance.
  • the circuit configuration of the inverter for driving the sensorless motor By simplifying the system cost can be reduced.
  • FIG. 1 is a configuration diagram illustrating a conventional sensorless motor driving device.
  • FIG. 2 is a block diagram showing an error determination device of a sensorless motor using a back EMF signal according to the present invention.
  • FIG. 3 is a timing graph for explaining the operation of FIG. 2.
  • the operation of the sensorless motor proposed by the present invention predicts a zero-crossing time point of the counter electromotive force with reference to the motor rotation speed, and determines whether the currently detected back electromotive force signal is authentic based on the predicted time point. . That is, the counter electromotive force signal may be confused with noise caused by electrical or mechanical noise, and the noise of the motor control is lost due to such noise, so that the noise and the counter electromotive force signal are distinguished based on the zero crossing point of the counter electromotive force.
  • the rotational speed of the rotor that is, rotation per second (rps) should be recognized, and it can be predicted by calculating the time therefrom.
  • the counter electromotive force signal generated per rotation of the sensorless motor is generated 'n ⁇ 6' times for the magnetic pole number n of the motor rotor in the case of a three-phase DC motor. This is because back EMF is generated as a positive signal and a negative signal, respectively, for the U, V, and W phases.
  • the counter electromotive force signal generated per one revolution of the motor is substantially 'n / 2 ⁇ . 6 'occurs.
  • the number of occurrences of the back EMF signal may be assumed to be the number of zero-crossings of the back EMF signal.
  • the rotational speed (V) [rps] of the rotor is calculated as "(n / 2 x 6) / t" divided by the time (t) required for one revolution of the rotor, and the period for zero crossing of counter electromotive force Is "t / (n / 2 x 6)". This represents the time difference of the counter electromotive force zero crossing, and is a means for predicting the occurrence time of the counter electromotive force.
  • FIG. 2 is a block diagram showing an inverter for driving a sensorless motor according to the present invention.
  • a signal amplifier 203 for amplifying a back-EMF (BEMF) signal generated when driving a sensorless motor to a predetermined level, and converts an output signal of the signal amplifier 203 into a digital signal.
  • An AD converter 205 for amplifying a back-EMF (BEMF) signal generated when driving a sensorless motor to a predetermined level, and converts an output signal of the signal amplifier 203 into a digital signal.
  • An AD converter 205 An AD converter 205, a zero crossing detection unit 207 for detecting a zero crossing point of the counter electromotive force signal based on the output signal of the AD converter 205, and a rotation speed of the sensorless motor.
  • the time difference between the zero crossing points of the counter electromotive force signal is predicted, and according to the prediction result, it is determined whether the zero crossing points output from the zero crossing detection unit 207 are included in the predicted time difference category and are output from the AD converter 205.
  • the control unit 201 determines the authenticity of the counter electromotive force signal.
  • the rotational speed of the sensorless motor may be detected by an external sensor
  • the time difference predicted from the controller 201 is a time difference between zero crossing points calculated from the rotational speed V [rps] of the current sensorless motor.
  • the predicted time difference category may be set to approximately 100 ms to 200 ms as an acceptable range for the time difference between the calculated zero crossing points. If necessary, the allowable range may not be set, but may be set to a certain ratio, such as 10% to 20% of the time difference.
  • a zero crossing signal is detected within the time difference category, it is regarded as a normal counter electromotive force signal.
  • the above-described time difference category may be very small or need not be set.
  • the estimated time difference calculated by the controller 201 should be variable. The controller 201 recognizes that the rotation speed of the sensorless motor currently detected is variable, and the zero crossing timing detected by the zero crossing detection unit 207 is allowed as the estimated time difference between the zero crossing times is changed therefrom. To give a scope.
  • the controller 201 determines that the current back EMF signal output from the AD converter 205 is included in the predicted time difference category, the controller 201 determines that the back EMF signal output from the AD converter 205 is a normal signal.
  • the inverter including such a configuration ensures reliability of the control of the sensorless motor by discriminating noise and normal back EMF signal.
  • FIG. 3 is a graph showing a back EMF signal together with a PWM signal which is a control signal of a sensorless motor according to the present invention.
  • 3A illustrates a superimposed PWM signal and a counter electromotive force signal
  • FIG. 3B illustrates a predicted time difference category of the controller 201.
  • the counter electromotive force a is generated at the positive edge portion of the PWM signal.
  • the counter electromotive force (d) is generated at the negative edge portion of the PWM signal on the U phase.
  • the back electromotive force (BEMF) signal is amplified by a signal amplifier 203 into a signal of a predetermined level, and is converted into a digital signal by the AD converter 205.
  • the digital signal samples an analog counter electromotive force signal at a set frequency.
  • the zero crossing detection unit 207 detects zero crossing of the counter electromotive force signal based on the digital signal. That is, the zero crossing detection unit 207 extracts a zero-crossing time point for each counter electromotive force signal.
  • control unit 201 receives the rotational speed information of the sensorless motor, the rotational speed information is measured by the rpm of the sensorless motor using a separate speed detector connected from the outside, the measurement result is the control unit ( 201).
  • the controller 201 predicts a zero crossing time point for the counter electromotive force based on the currently detected rotational speed V and the number of poles n of the sensorless motor currently applied.
  • the time difference between the counter electromotive force signals is calculated to be 1.33 msec.
  • the controller 201 calculates an allowable range for the time difference between the counter electromotive force signals, that is, a predicted time difference category within a preset range. If the allowable time difference category is 200 ms, the controller 201 calculates the estimated time difference as 1.13 msec to 1.53 msec.
  • the controller 201 determines whether the zero crossing time point of the counter electromotive force signal detected by the zero crossing detection unit 207 is included in the predicted time difference category.
  • the controller 201 determines that there is no zero crossing time point of the currently detected back EMF signal within the estimated time difference category, the currently detected back EMF signal is determined as noise.
  • the currently detected back EMF signal is a normal signal.
  • FIG. 3B is a diagram in which the time difference predicted by the controller 201 and the counter electromotive force signal currently detected are superimposed.
  • the controller 201 performs the counter electromotive force (a).
  • the estimated time difference is calculated based on, and it is determined whether the counter electromotive force (b) exists in the predicted time difference category based on the calculation result.
  • the currently detected back EMF signal b is included in the predicted time difference category detected by the controller 201, and thus is determined to be a normal signal.
  • the control unit 201 calculates the third time difference, the counter electromotive force c is not detected in the predicted time difference category.
  • the control unit 201 regards the currently detected signal as noise.
  • the control unit 201 removes the signal determined as noise, thereby enabling the control of the sensorless motor.
  • a masking method is used to remove the noise. That is, the controller 201 stores the back EMF signal (data) detected by the zero crossing detection unit 207 in the internal memory as shown in FIG. 3B and generates masking data according to the prediction time difference calculated by the controller 201.
  • the back EMF data detected in a predetermined time unit is stored in the memory in time series, and the prediction time difference information calculated by the controller 201 is set to '1' and the remaining information is set to '0' to mask the memory. It is. Therefore, when the current counter electromotive force data '1' exists in correspondence with the predicted time difference, the predicted time difference information '1' and the counter electromotive force data '1' are outputted to the AND gate to maintain only a normal signal.
  • the memory Since the memory is written as '0' during the unexpected time, when the back EMF data '1' is present at the unexpected time, it is masked as '0' by the AND gate output. Therefore, the signal determined to be noise is cleared by the masking data, and only normal back EMF data exists in the memory.
  • the control unit 201 removes noise according to the masking technique and extracts only normal data, thereby providing only data for accurately driving the sensorless motor.
  • the error determination device of the sensorless motor using the back electromotive force signal predicts the occurrence of the back electromotive force of the sensorless motor and allows only the back electromotive force signal corresponding to the prediction result, thereby preventing the detection error of the back electromotive force signal in advance according to the external environment. Has an effect.
  • the circuit configuration of the inverter for driving the sensorless motor It can greatly improve the operation accuracy and reliability of the error determination device of the sensorless motor using the back electromotive force signal which can reduce the system cost by simplifying the system cost, and further improve the performance efficiency. It is an invention with industrial applicability, since the possibility of business is not only sufficient but also practically obvious.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention relates to an apparatus for determining an error of a sensorless motor using a counter-electromotive force signal. The apparatus for determining the error of the sensorless motor using the counter-electromotive force signal, according to the present invention, can prevent a detection error for the counter-electromotive force signal according to the external environment by predicting a generation time point of the counter-electromotive force in the sensorless motor and permitting only the counter-electromotive force signal corresponding to the predicted result. In addition, the present invention predicts a generation location of the counter-electromotive force signal on the basis of the stable filtering of the counter-electromotive force signal so as to detect the location of the sensorless motor, and controlling a driving operation of the motor from the predicted result, thereby simplifying the configuration of an inverter circuit and reducing a unit cost of a system.

Description

역기전력 신호를 이용한 센서리스 모터의 오류 판단장치Error Determination Device of Sensorless Motor Using Back EMF Signal
본 발명은 센서리스(sensorless) 모터 구동방법에 관한 것으로, 더욱 상세하게는 센서리스 모터의 역기전력 발생 시점을 예측하고, 예측 결과에 대응하는 역기전력 신호만을 허용함으로써, 외부 환경에 따라 역기전력 신호의 검출 에러를 사전에 방지할 수 있는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치에 관한 것이다.The present invention relates to a method of driving a sensorless motor, and more particularly, by detecting a counter electromotive force generation time of a sensorless motor and allowing only a counter electromotive force signal corresponding to the prediction result, thereby detecting a counter electromotive force signal according to an external environment. The present invention relates to an error determination device of a sensorless motor using a back EMF signal which can be prevented in advance.
일반적으로, 세탁기 등에 적용되는 센서리스 영구자석 동기모터를 이용하여 세탁조 등을 회전시키는 경우, 일정한 속도로 운전되는 정상상태 영역은 거의 없고 가속 및 감속운전을 반복함으로, 안정한 운전을 위해서는 센서리스 영구자석 동기모터가 정/역 회전을 할 때, 가/감속 운전특성이 양호해야 한다. 이러한 센서리스 제어에서는 정/역 구간의 저속운전 및 가/감속시의 회전자 위치검출 및 제어성능이 중요하다In general, in the case of rotating a washing tank using a sensorless permanent magnet synchronous motor applied to a washing machine, there is almost no steady state region that operates at a constant speed, and the acceleration and deceleration are repeated, so that the sensorless permanent magnet is operated for stable operation. When the synchronous motor makes forward / reverse rotation, the acceleration / deceleration operation characteristics should be good. In such sensorless control, rotor position detection and control performance during low / low speed operation and acceleration / deceleration are important.
따라서, 종래에는 가상의 q축 및 d축을 설정하여 실제 시스템의 상전류를 가상의 축으로 축 변환하여 관측기 내의 모델식에 의한 전류와 비교하여 각 축의 전류 오차로부터 관측기의 회전자 위치와 속도가 실제 시스템의 위치와 속도를 추종하도록 한다. 하지만, 이러한 센서리스 영구자석 동기모터에 대한 센서리스 제어는 모터 기동 후 일정속도 이상일 때 비로소 수행되게 되는데, 이는 센서리스 영구자석 동기모터의 역기전력은 속도가 낮아짐에 따라 품질(quality)이 저하되어 회전자 위치와 속도를 추정하는 데 어려움이 있기 때문이다.Therefore, in the related art, the rotor position and speed of the observer are determined from the current error of each axis by setting the virtual q axis and the d axis to convert the phase current of the actual system into the virtual axis, and comparing the current with the model equation in the observer. Follow the position and speed of. However, the sensorless control of the sensorless permanent magnet synchronous motor is performed only after a certain speed after the motor is started. This is because the back electromotive force of the sensorless permanent magnet synchronous motor is deteriorated as the speed decreases. This is because it is difficult to estimate the electronic position and velocity.
이에 따라, 종래에는 센서리스 영구자석 동기모터의 초기 기동 시, 회전자의 위치에 상응하는 전류를 제공하여 그에 합당한 모터 토크량을 발생시켜야 함에도 불구하고, 회전자의 위치와 속도를 알 수 없기 때문에 회전자의 위치와 속도에 관계없이 최고 부하를 기준으로 전류를 제공하게 된다. 그러므로, 종래에는 센서리스 영구자석 동기모터의 초기 기동 시 저부하에서는 관성계수가 실제 부하와 같지 않아 불필요한 토크를 필요로 하게 되고, 이에 따라 필요 이상으로 토크가 인가되어 기동 전류가 증가할 뿐만 아니라, 기동 전류가 증가하면 인버터에 발생되는 열도 증가하여 지속적인 운전이 불가능할 우려가 있었다.Thus, although the sensor-less permanent magnet synchronous motor is required to provide a current corresponding to the position of the rotor at the initial start-up and generate a proper amount of motor torque, the position and speed of the rotor are not known. Regardless of the rotor's position and speed, it will provide current based on peak load. Therefore, in the past, when the sensorless permanent magnet synchronous motor is initially started, at low loads, the inertia coefficient is not the same as the actual load, and unnecessary torque is required. Accordingly, torque is applied more than necessary to increase the starting current, and also the starting current. Increasing the increase in the heat generated by the inverter also could not be continued operation.
이와 같은 문제점을 해결하기 위해 첨부된 특허문헌에서는 기 설정한 관성계수와 토크 가속도로부터 회전자의 위치를 추정토록 하고 있다. 즉, 첨부된 도 1에서와 같이, 3상 전압을 공급하기 위한 전압소스 인버터(180), 상전압 인가에 따른 전류추정기(110), 모터모델을 기반으로 추정한 제1 속도/위치 추정기(120), 기계모델을 기반으로 추정한 제2 속도/위치 추정기(130), 상기 모터모델과 기계모델로 각각 추정한 위치/속도를 혼합하는 크로스오버 함수를 가진 혼합기(140), 측정된 또는 추정된 속도와 지령을 비교하여 토오크 지령을 발생하는 속도제어기(150), 토오크 지령을 전류 지령으로 변환하는 전류지령 변환기(160) 및 지령 전류와 추정 및 측정한 전류와 비교하여 전압을 발생하는 백터 전류 제어기(170)로 구성된다.In order to solve such a problem, the attached patent document estimates the position of the rotor from a preset inertia coefficient and torque acceleration. That is, as shown in FIG. 1, a voltage source inverter 180 for supplying a three-phase voltage, a current estimator 110 according to a phase voltage application, and a first speed / position estimator 120 estimated based on a motor model. ), A second speed / position estimator 130 estimated based on a machine model, a mixer 140 having a crossover function that mixes positions and velocities estimated by the motor model and the machine model, respectively, measured or estimated Speed controller 150 that generates torque command by comparing speed and command, Current command converter 160 that converts torque command into current command, and Vector current controller that generates voltage by comparing command current with estimated and measured current It consists of 170.
상기 전류 추정기(110)는 여러 가지 형태로 구성될 수 있는데, 첫 번째로 모터의 3상에 세 개의 전류 변환기나 직렬의 션트(shunt) 저항을 이용하여 삼상 전류를 직접 검출하는 형태와, 두 번째로 두 개의 전류 변환기나 직렬의 션트 저항으로 두 상의 전류 검출 후 나머지 한 상은 2상 전류값으로 구하는 형태 및 세 번째로 직류 버스(bus)측의 하나의 직렬 션트 저항이나 인버터의 아래쪽 스위치들과 접지사이에 직렬로 두 개 혹은 세 개의 션트 저항으로 3상 전류를 재구성하여(current reconstruction) 추정하는 형태로 구성된다.The current estimator 110 may be configured in various forms. First, three-phase current is directly detected by using three current converters or a series shunt resistor in three phases of the motor, and second, Two current transducers or series shunt resistors to detect the current in two phases, and the other phase is obtained as a two-phase current value. Third, one series shunt resistor on the DC bus side or the lower switches of the inverter and ground It consists of estimating current reconstruction with three or three shunt resistors in series.
결국, 센서리스 영구자석 동기모터 초기 기동 시 속도, 위치 정보를 추정할 때 실제 부하에 따른 관성계수와 토크 가속도를 이용함으로써, 필요 이상으로 토크 인가에 따른 기동 전류가 증가를 억제할 뿐만 아니라, 기동 전류 최소화에 의한 인버터에 발생되는 열 증가를 방지함으로써, 지속적인 운전이 불가능할 경우를 미연에 방지토록 하고 있다.As a result, when the sensorless permanent magnet synchronous motor is initially started, the inertia coefficient and torque acceleration according to the actual load are used to estimate the speed and position information. By preventing the increase of heat generated by the inverter by minimizing the current, it is possible to prevent the case that continuous operation is impossible.
그러나, 전술한 바와 같이 관성계와 토크 가속도를 이용하여 센서리스 모터의 위치를 추정하는 것은 관성 및 토크 가속도 센서 등이 부가되어야 하기 때문에, 실질적으로 제품의 단가를 상승시키는 원인이 된다. 따라서, 센서리스 모터의 위치 추정이 용이한 시스템 개발이 시급한 실정이다.However, estimating the position of the sensorless motor using the inertial system and torque acceleration as described above causes an increase in the unit cost of the product since an inertial and torque acceleration sensor or the like must be added. Therefore, it is urgent to develop a system for easily estimating the position of the sensorless motor.
본 발명은 이와 같은 문제점을 해결하기 위해 창출된 것으로, 본 발명의 목적은 센서리스 모터의 역기전력 발생 시점을 예측하고, 예측 결과에 대응하는 역기전력 신호만을 허용함으로써, 외부 환경에 따라 역기전력 신호의 검출 에러를 사전에 방지할 수 있는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치를 제공함에 있다.The present invention has been made to solve the above problems, and an object of the present invention is to predict the occurrence of back EMF of a sensorless motor and allow only back EMF signal corresponding to the prediction result, thereby detecting a detection error of the back EMF signal according to an external environment. To provide an error determination device for a sensorless motor using a back EMF signal that can prevent the in advance.
본 발명의 다른 목적은, 센서리스 모터의 위치검출을 위한 역기전력 신호의 안정적인 필터링을 기반으로, 역기전력 신호에 대한 발생 위치를 예측하고, 예측 결과로부터 모터의 구동 제어를 수행함으로써, 센서리스 모터 구동을 위한 인버터의 회로 구성을 단순화하여 시스템 단가를 격감시킬 수 있는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치를 제공함에 있다.Another object of the present invention, based on the stable filtering of the back electromotive force signal for detecting the position of the sensorless motor, by predicting the generation position for the back electromotive force signal, and performing the drive control of the motor from the prediction result, The present invention provides a device for determining an error of a sensorless motor using a counter electromotive force signal that can reduce a system cost by simplifying a circuit configuration of an inverter.
상기 목적을 달성하기 위한 본 발명의 관점에 따른 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치는, 역기전력 신호를 이용하여 센서리스 모터의 구동 시 오류 신호를 판단하기 위한 장치에 있어서, 센서리스 모터 구동 시 발생하는 역기전력(Back-EMF:BEMF) 신호를 소정 레벨로 증폭 처리하는 신호 증폭부; 상기 신호 증폭부의 출력 신호를 디지털 신호로 변환하는 AD 컨버터; 상기 AD 컨버터의 출력 신호에 근거하여 역기전력 신호의 제로 크로싱(Zero-crossing) 시점을 검출하는 제로크로싱 검출부; 및 상기 센서리스 모터의 회전속도에 기초하여 역기전력 신호의 제로 크로싱 시점 간의 시간차를 산출하고, 상기 제로크로싱 검출부에서 출력되는 제로 크로싱 시점이 산출된 시간차 범주에 포함되는지를 판단하여 상기 AD 컨버터에서 출력되는 역기전력 신호의 진위를 판단하는 제어부;로 이루어진 것을 특징으로 한다.An apparatus for determining an error of a sensorless motor using a back electromotive force signal according to an aspect of the present invention for achieving the above object is a device for determining an error signal when driving a sensorless motor using a back electromotive force signal, the sensorless motor driving A signal amplifier for amplifying a back-EMF (BEMF) signal generated at a predetermined level; An AD converter for converting an output signal of the signal amplifier into a digital signal; A zero crossing detector for detecting a zero-crossing point of the counter electromotive force signal based on the output signal of the AD converter; And calculating a time difference between zero crossing time points of the counter electromotive force signal based on the rotational speed of the sensorless motor, determining whether the zero crossing time point output from the zero crossing detector is included in the calculated time difference category, and outputting the AD converter. And a control unit for determining the authenticity of the counter electromotive force signal.
본 발명의 바람직한 실시 예에 따른 산출된 시간차는 현재 센서리스 모터의 회전속도(V[rps])로부터 연산되는 제로크로싱 시점 간의 시간차이고, 산출된 시간차 범주는 연산된 제로크로싱 시점 간의 시간차에 대한 허용 가능한 범위인 것을 특징으로 한다.The calculated time difference according to the preferred embodiment of the present invention is a time difference between zero crossing points computed from the rotational speed V [rps] of the current sensorless motor, and the calculated time difference category allows for a time difference between calculated zero crossing points. It is characterized by the possible range.
또한 본 발명의 바람직한 실시 예에 따른 시간차에 대한 허용 가능한 범위는 100㎲ 내지 200㎲이거나, 상기 시간차에 대한 10% 내지 20% 비율인 것을 특징으로 한다.In addition, the allowable range for the time difference according to a preferred embodiment of the present invention is characterized in that the ratio of 100% to 200㎲, or 10% to 20% of the time difference.
전술된 바와 같이, 본 발명에서 제시하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치는 센서리스 모터의 역기전력 발생 시점을 예측하고, 예측 결과에 대응하는 역기전력 신호만을 허용함으로써, 외부 환경에 따라 역기전력 신호의 검출 에러를 사전에 방지할 수 있는 효과를 갖는다. 또한, 센서리스 모터의 위치검출을 위한 역기전력 신호의 안정적인 필터링을 기반으로, 역기전력 신호에 대한 발생 위치를 예측하고, 예측 결과로부터 모터의 구동 제어를 수행함으로써, 센서리스 모터 구동을 위한 인버터의 회로 구성을 단순화하여 시스템 단가를 격감시킬 수 있는 효과가 있다.As described above, the error determination device of the sensorless motor using the back EMF signal proposed in the present invention by predicting the back electromotive force generation time of the sensorless motor, by allowing only the back EMF signal corresponding to the prediction result, according to the external environment Has an effect of preventing the detection error in advance. In addition, based on the stable filtering of the back EMF signal for detecting the position of the sensorless motor, by predicting the occurrence position of the back EMF signal, and performing the drive control of the motor from the prediction result, the circuit configuration of the inverter for driving the sensorless motor By simplifying the system cost can be reduced.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached in this specification are illustrative of the preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은 종래 센서리스 모터 구동 장치를 설명하기 위한 구성도이다.1 is a configuration diagram illustrating a conventional sensorless motor driving device.
도 2는 본 발명에 따른 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치를 나타낸 구성도이다.2 is a block diagram showing an error determination device of a sensorless motor using a back EMF signal according to the present invention.
도 3은 도 2의 동작을 설명하기 위한 타이밍 그래프이다.3 is a timing graph for explaining the operation of FIG. 2.
이하, 본 발명의 바람직한 실시 예를 첨부된 예시도면에 의거 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명에서 제시하는 센서리스 모터의 동작은 모터 회전 속도를 참고하여 역기전력의 제로크로싱(Zero-crossing) 시점을 예측하고, 예측된 시점을 기반으로 현재 검출되는 역기전력 신호의 진위 여부를 판단한다. 즉, 역기전력 신호는 전기 또는 기계적 잡음에 의한 노이즈와 혼동될 수 있으며, 이러한 노이즈로 인해 모터 제어의 신뢰성을 상실하게 됨에 따라, 역기전력의 제로크로싱 시점에 기반하여 노이즈와 역기전력 신호를 구분하는 것이다.First, the operation of the sensorless motor proposed by the present invention predicts a zero-crossing time point of the counter electromotive force with reference to the motor rotation speed, and determines whether the currently detected back electromotive force signal is authentic based on the predicted time point. . That is, the counter electromotive force signal may be confused with noise caused by electrical or mechanical noise, and the noise of the motor control is lost due to such noise, so that the noise and the counter electromotive force signal are distinguished based on the zero crossing point of the counter electromotive force.
여기서, 역기전력 신호를 예측하기 위해서는 회전자의 회전속도 즉, rps(rotation per second)를 인지해야 하고, 이로부터 시간을 산출함으로써 예측 가능하다. 센서리스 모터의 1회전 당 발생하는 역기전력 신호는 3상 DC 모터일 경우 모터 회전자의 자력 극수(n)에 대한 'n×6'회 발생한다. 이는 U, V, W 상에 대하여 역기전력이 포지티브 신호 및 네거티브 신호로 각각 발생하기 때문이다.Here, in order to predict the counter electromotive force signal, the rotational speed of the rotor, that is, rotation per second (rps) should be recognized, and it can be predicted by calculating the time therefrom. The counter electromotive force signal generated per rotation of the sensorless motor is generated 'n × 6' times for the magnetic pole number n of the motor rotor in the case of a three-phase DC motor. This is because back EMF is generated as a positive signal and a negative signal, respectively, for the U, V, and W phases.
그러나, 자력 극수(n)는 회전자에 대한 N극과 S극이 대향되어 동일한 시점에서 상호 극성이 다른 역기전력 신호가 발생하기 때문에, 실질적으로 모터 1회전당 발생하는 역기전력 신호는 'n/2×6'회가 발생한다. 그리고, 역기전력 신호의 발생 횟수는 역기전력 신호에 대한 제로크로싱(zero-crossing)의 횟수로 상정될 수 있을 것이다.However, since the number of magnetic poles n is opposite to the north pole and the south pole of the rotor, and the counter electromotive force signals having different polarities are generated at the same time, the counter electromotive force signal generated per one revolution of the motor is substantially 'n / 2 ×. 6 'occurs. The number of occurrences of the back EMF signal may be assumed to be the number of zero-crossings of the back EMF signal.
따라서, 회전자의 회전속도(V)[rps]는 회전자의 1회전 시 소요되는 시간(t)으로 나눈 "(n/2×6)/t"로 산출되며, 역기전력의 제로크로싱에 대한 주기는 "t/(n/2×6)"이다. 이는 역기전력 제로크로싱의 시간 차를 나타내는 것으로, 역기전력의 발생시점을 예측할 수 있는 수단이 된다.Therefore, the rotational speed (V) [rps] of the rotor is calculated as "(n / 2 x 6) / t" divided by the time (t) required for one revolution of the rotor, and the period for zero crossing of counter electromotive force Is "t / (n / 2 x 6)". This represents the time difference of the counter electromotive force zero crossing, and is a means for predicting the occurrence time of the counter electromotive force.
도 2는 본 발명에 따른 센서리스 모터 구동을 위한 인버터를 나타낸 구성도이다. 도시된 바와 같이 센서리스 모터 구동 시 발생하는 역기전력(Back-EMF:BEMF) 신호를 소정 레벨로 증폭 처리하는 신호 증폭부(203)와, 상기 신호 증폭부(203)의 출력 신호를 디지털 신호로 변환하는 AD 컨버터(205)와, 상기 AD 컨버터(205)의 출력 신호에 근거하여 역기전력 신호의 제로 크로싱(Zero-crossing) 시점을 검출하는 제로크로싱 검출부(207), 상기 센서리스 모터의 회전속도에 기초하여 역기전력 신호의 제로 크로싱 시점 간의 시간차를 예측하고, 예측 결과에 따라 상기 제로크로싱 검출부(207)에서 출력되는 제로 크로싱 시점이 예측된 시간차 범주에 포함되는지를 판단하여 상기 AD 컨버터(205)에서 출력되는 역기전력 신호의 진위를 판단하는 제어부(201)로 이루어진다.2 is a block diagram showing an inverter for driving a sensorless motor according to the present invention. As shown, a signal amplifier 203 for amplifying a back-EMF (BEMF) signal generated when driving a sensorless motor to a predetermined level, and converts an output signal of the signal amplifier 203 into a digital signal. An AD converter 205, a zero crossing detection unit 207 for detecting a zero crossing point of the counter electromotive force signal based on the output signal of the AD converter 205, and a rotation speed of the sensorless motor. The time difference between the zero crossing points of the counter electromotive force signal is predicted, and according to the prediction result, it is determined whether the zero crossing points output from the zero crossing detection unit 207 are included in the predicted time difference category and are output from the AD converter 205. The control unit 201 determines the authenticity of the counter electromotive force signal.
여기서, 상기 센서리스 모터의 회전속도는 외부 센서에 의해 검출될 수 있으며, 상기 제어부(201)로부터 예측된 시간차는 현재 센서리스 모터의 회전속도(V[rps])로부터 연산되는 제로크로싱 시점 간의 시간차를 나타낸다. 그리고, 예측된 시간차 범주는 연산된 제로크로싱 시점 간의 시간차에 대한 허용 가능한 범위로서 대략 100㎲ 내지 200㎲로 설정할 수 있을 것이다. 필요에 따라, 허용 가능한 범위를 설정하지 아니하고, 시간차에 대한 일정 비율 예컨대 10% 내지 20%로 설정할 수 있을 것이다.Here, the rotational speed of the sensorless motor may be detected by an external sensor, and the time difference predicted from the controller 201 is a time difference between zero crossing points calculated from the rotational speed V [rps] of the current sensorless motor. Indicates. The predicted time difference category may be set to approximately 100 ms to 200 ms as an acceptable range for the time difference between the calculated zero crossing points. If necessary, the allowable range may not be set, but may be set to a certain ratio, such as 10% to 20% of the time difference.
또한, 시간차 범주 내에서 제로크로싱 신호가 검출되면 이는 정상적인 역기전력 신호로 간주되는 것으로, 상기 센서리스 모터가 등속도로 회전할 경우 전술된 시간차 범주는 매우 작아지거나 설정할 필요가 없을 것이다. 그러나, 센서리스 모터의 회전이 가속 또는 감속 상태일 경우에는 제어부(201)에서 연산되는 예측 시간차가 가변되어야 할 것이다. 이는 상기 제어부(201)가 현재 검출되는 센서리스 모터의 회전속도가 가변됨을 인지하고, 이로부터 제로크로싱 시점 간의 예측 시간차가 가변함에 따라 상기 제로크로싱 검출부(207)에서 검출되는 제로크로싱 시점에 대한 허용 범위를 부여하기 위한 것이다.In addition, if a zero crossing signal is detected within the time difference category, it is regarded as a normal counter electromotive force signal. When the sensorless motor rotates at constant speed, the above-described time difference category may be very small or need not be set. However, when the rotation of the sensorless motor is in an acceleration or deceleration state, the estimated time difference calculated by the controller 201 should be variable. The controller 201 recognizes that the rotation speed of the sensorless motor currently detected is variable, and the zero crossing timing detected by the zero crossing detection unit 207 is allowed as the estimated time difference between the zero crossing times is changed therefrom. To give a scope.
따라서, 상기 제어부(201)는 AD 컨버터(205)에서 출력되는 현재의 역기전력 신호가 예측된 시간차 범주 내에 포함되는 것으로 판단할 경우, AD 컨버터(205)에서 출력된 역기전력 신호가 정상적인 신호로 판단하는 것이다. 이러한 구성을 포함하고 있는 인버터는 노이즈와 정상적인 역기전력 신호를 판별함으로써 센서리스 모터의 제어에 대한 신뢰성을 확보하게 된다.Therefore, when the controller 201 determines that the current back EMF signal output from the AD converter 205 is included in the predicted time difference category, the controller 201 determines that the back EMF signal output from the AD converter 205 is a normal signal. . The inverter including such a configuration ensures reliability of the control of the sensorless motor by discriminating noise and normal back EMF signal.
도 3은 본 발명에 따른 센서리스 모터의 제어신호인 PWM 신호와 더불어 역기전력 신호를 나타낸 그래프이다. 도 3a는 PWM 신호와 역기전력 신호를 중첩한 도면이고, 도 3b는 상기 제어부(201)의 예측 시간차 범주를 도시하고 있다.3 is a graph showing a back EMF signal together with a PWM signal which is a control signal of a sensorless motor according to the present invention. 3A illustrates a superimposed PWM signal and a counter electromotive force signal, and FIG. 3B illustrates a predicted time difference category of the controller 201.
먼저 도시된 바와 같이, U상에서 센서리스 모터를 구동하기 위한 PWM 신호가 발생되면 PWM 신호의 포지티브 에지 부분에서 역기전력(a)이 발생한다. 또한, U상에서 PWM 신호의 네거티브 에지 부분에서는 역기전력 (d)이 발생한다. 이와 같이 각 상별(U,V,W) PWM 신호가 순차적으로 공급되면, 이에 대응하는 역기전력 신호가 도면과 같이 b,c,d,e,f...가 생성된다.As shown first, when the PWM signal for driving the sensorless motor is generated on the U phase, the counter electromotive force a is generated at the positive edge portion of the PWM signal. In addition, the counter electromotive force (d) is generated at the negative edge portion of the PWM signal on the U phase. As such, when each phase (U, V, W) PWM signal is sequentially supplied, the counter electromotive force signal corresponding thereto is generated as shown in the figures b, c, d, e, f ...
이러한 역기전력(BEMF) 신호는 신호증폭부(203)를 통해 소정 레벨의 신호로 증폭 처리되며, 상기 AD 컨버터(205)에 의해 디지털 신호로 변환된다. 디지털 신호는 아날로그의 역기전력 신호를 설정 주파수로 샘플링하는 것으로, 이를 근거로 상기 제로크로싱 검출부(207)에서 역기전력 신호의 제로 크로싱을 검출한다. 즉, 상기 제로크로싱 검출부(207)는 각 역기전력 신호에 대한 제로크로싱(zero-crossing) 시점이 추출한다.The back electromotive force (BEMF) signal is amplified by a signal amplifier 203 into a signal of a predetermined level, and is converted into a digital signal by the AD converter 205. The digital signal samples an analog counter electromotive force signal at a set frequency. The zero crossing detection unit 207 detects zero crossing of the counter electromotive force signal based on the digital signal. That is, the zero crossing detection unit 207 extracts a zero-crossing time point for each counter electromotive force signal.
이와 동시에 상기 제어부(201)는 센서리스 모터의 회전속도 정보를 수신하며, 상기 회전속도 정보는 외부로부터 접속되는 별도의 속도 검출계를 이용하여 센서리스 모터의 rpm을 측정하고, 측정결과가 제어부(201)로 제공된다. 상기 제어부(201)는 현재 검출되는 회전속도(V)와 현재 적용되는 센서리스 모터의 극수(n)를 토대로 역기전력에 대한 제로크로싱 시점을 예측한다.At the same time, the control unit 201 receives the rotational speed information of the sensorless motor, the rotational speed information is measured by the rpm of the sensorless motor using a separate speed detector connected from the outside, the measurement result is the control unit ( 201). The controller 201 predicts a zero crossing time point for the counter electromotive force based on the currently detected rotational speed V and the number of poles n of the sensorless motor currently applied.
예컨대, 상기 센서리스 모터의 극수(n)가 4극이고, 현재 검출되는 센서리스 모터의 회전수가 3000rpm일 경우, 역기전력 신호 간 시간차는 1.33msec로 산출된다. 또한, 상기 제어부(201)는 역기전력 신호 간 시간차에 대한 허용범위 즉, 예측 시간차 범주를 기 설정된 범위 내에서 산출한다. 만약, 허용 가능한 시간차 범주가 200㎲일 경우, 상기 제어부(201)는 예측 시간차를 1.13msec 내지 1.53msec로 산정한다.For example, when the pole number n of the sensorless motor is 4 poles and the rotation speed of the currently detected sensorless motor is 3000 rpm, the time difference between the counter electromotive force signals is calculated to be 1.33 msec. In addition, the controller 201 calculates an allowable range for the time difference between the counter electromotive force signals, that is, a predicted time difference category within a preset range. If the allowable time difference category is 200 ms, the controller 201 calculates the estimated time difference as 1.13 msec to 1.53 msec.
이후 상기 제어부(201)는 제로크로싱 검출부(207)에서 검출된 역기전력 신호의 제로크로싱 시점이 예측 시간차 범주 내에 포함되는지를 판단한다. 여기서, 제어부(201)의 판단결과, 예측 시간차 범주 내에 현재 검출된 역기전력 신호의 제로크로싱 시점이 존재하지 않을 경우, 현재 검출된 역기전력 신호는 노이즈로 판단한다. 반면, 상기 예측 시간차 범주 내에 현재 검출된 역기전력 신호의 제로크로싱 시점이 존재할 경우에는, 현재 검출된 역기전력 신호가 정상적인 신호임으로 인지하는 것이다.Thereafter, the controller 201 determines whether the zero crossing time point of the counter electromotive force signal detected by the zero crossing detection unit 207 is included in the predicted time difference category. Here, when the controller 201 determines that there is no zero crossing time point of the currently detected back EMF signal within the estimated time difference category, the currently detected back EMF signal is determined as noise. On the other hand, when there is a zero crossing time point of the currently detected back EMF signal within the predicted time difference category, it is recognized that the currently detected back EMF signal is a normal signal.
도 3b는 제어부(201)에서 예측한 시간차와 현재 검출되는 역기전력 신호를 중첩시킨 도면으로, 역기전력(a) 신호가 발생한 후, 역기전력(b) 신호가 발생할 때, 제어부(201)는 역기전력(a)를 기준으로 예측한 시간차를 산출하고, 산출 결과를 기반으로 예측한 시간차 범주에 역기전력(b)가 존재하는지를 판단한다. 도 3b에서는 현재 검출된 역기전력(b) 신호가 제어부(201)에서 검출된 예측 시간차 범주에 포함되고 있어 정상적인 신호로 판단한다.FIG. 3B is a diagram in which the time difference predicted by the controller 201 and the counter electromotive force signal currently detected are superimposed. When the counter electromotive force (b) signal is generated after the counter electromotive force (a) signal is generated, the controller 201 performs the counter electromotive force (a). The estimated time difference is calculated based on, and it is determined whether the counter electromotive force (b) exists in the predicted time difference category based on the calculation result. In FIG. 3B, the currently detected back EMF signal b is included in the predicted time difference category detected by the controller 201, and thus is determined to be a normal signal.
반면, 상기 제로크로싱 검출부(207)가 현재 역기전력(c)을 검출하고, 제어부(201)가 세 번째 예측한 시간차를 산출한 결과, 예측 시간차 범주에 역기전력(c) 신호가 검출되지 아니할 경우, 상기 제어부(201)는 현재 검출된 신호를 노이즈로 간주하는 것이다.On the other hand, when the zero crossing detection unit 207 detects the current counter electromotive force c and the control unit 201 calculates the third time difference, the counter electromotive force c is not detected in the predicted time difference category. The control unit 201 regards the currently detected signal as noise.
상기 제어부(201)는 이와 같이 노이즈로 판단되는 신호를 제거함으로써, 센서리스 모터의 컨트롤이 가능하게 되는데, 노이즈 제거를 위해서는 마스킹법을 사용한다. 즉, 제어부(201)는 내부 메모리에 도 3b와 같이 제로크로싱 검출부(207)에서 검출된 역기전력 신호(데이터)를 저장하고, 제어부(201)에서 산출된 예측 시간차에 따라 마스킹 데이터를 생성한다.The control unit 201 removes the signal determined as noise, thereby enabling the control of the sensorless motor. A masking method is used to remove the noise. That is, the controller 201 stores the back EMF signal (data) detected by the zero crossing detection unit 207 in the internal memory as shown in FIG. 3B and generates masking data according to the prediction time difference calculated by the controller 201.
즉, 일정 시간 단위로 검출되는 역기전력 데이터를 시계열적으로 메모리에 저장하고 더불어, 제어부(201)에서 산출된 예측 시간차 정보를 '1'로 설정하고 나머지 정보를 '0'으로 설정하여 상기 메모리에 마스킹하는 것이다. 따라서, 예측된 시간차에 대응하여 현재 역기전력 데이터('1')가 존재할 경우, 예측된 시간차 정보 '1'과 역기전력 데이터 '1'을 AND 게이트로 출력함으로써, 정상적인 신호만을 유지토록 하는 것이다.That is, the back EMF data detected in a predetermined time unit is stored in the memory in time series, and the prediction time difference information calculated by the controller 201 is set to '1' and the remaining information is set to '0' to mask the memory. It is. Therefore, when the current counter electromotive force data '1' exists in correspondence with the predicted time difference, the predicted time difference information '1' and the counter electromotive force data '1' are outputted to the AND gate to maintain only a normal signal.
예측되지 않은 시간 동안에는 메모리에 '0'으로 라이팅하기 때문에, 예측되지 않은 시간에 역기전력 데이터('1')가 존재할 경우 AND 게이트 출력에 의해 '0'으로 마스킹 되는 것이다. 따라서, 노이즈임으로 판단되는 신호는 마스킹 데이터에 의해 클리어되고, 정상적인 역기전력 데이터만 메모리에 존재하게 된다.Since the memory is written as '0' during the unexpected time, when the back EMF data '1' is present at the unexpected time, it is masked as '0' by the AND gate output. Therefore, the signal determined to be noise is cleared by the masking data, and only normal back EMF data exists in the memory.
상기 제어부(201)는 이와 같이 마스킹 기법에 따라 노이즈를 제거하고, 정상적인 데이터만 추출함으로써, 센서리스 모터의 구동을 정확하게 수행할 수 있는 데이터만을 제공하게 되는 것이다. The control unit 201 removes noise according to the masking technique and extracts only normal data, thereby providing only data for accurately driving the sensorless motor.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described above with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
역기전력 신호를 이용한 센서리스 모터의 오류 판단장치는 센서리스 모터의 역기전력 발생 시점을 예측하고, 예측 결과에 대응하는 역기전력 신호만을 허용함으로써, 외부 환경에 따라 역기전력 신호의 검출 에러를 사전에 방지할 수 있는 효과를 갖는다. 또한, 센서리스 모터의 위치검출을 위한 역기전력 신호의 안정적인 필터링을 기반으로, 역기전력 신호에 대한 발생 위치를 예측하고, 예측 결과로부터 모터의 구동 제어를 수행함으로써, 센서리스 모터 구동을 위한 인버터의 회로 구성을 단순화하여 시스템 단가를 격감시킬 수 있는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치에 대한 운용의 정확성 및 신뢰도 측면, 더 나아가 성능 효율 면에 매우 큰 진보를 가져올 수 있으며, 적용되는 차량의 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있는 발명이다.The error determination device of the sensorless motor using the back electromotive force signal predicts the occurrence of the back electromotive force of the sensorless motor and allows only the back electromotive force signal corresponding to the prediction result, thereby preventing the detection error of the back electromotive force signal in advance according to the external environment. Has an effect. In addition, based on the stable filtering of the back EMF signal for detecting the position of the sensorless motor, by predicting the occurrence position of the back EMF signal, and performing the drive control of the motor from the prediction result, the circuit configuration of the inverter for driving the sensorless motor It can greatly improve the operation accuracy and reliability of the error determination device of the sensorless motor using the back electromotive force signal which can reduce the system cost by simplifying the system cost, and further improve the performance efficiency. It is an invention with industrial applicability, since the possibility of business is not only sufficient but also practically obvious.

Claims (6)

  1. 역기전력 신호를 이용하여 센서리스 모터의 구동 시 오류 신호를 판단하기 위한 장치에 있어서,An apparatus for determining an error signal when driving a sensorless motor using a back electromotive force signal,
    센서리스 모터 구동 시 발생하는 역기전력(Back-EMF:BEMF) 신호를 소정 레벨로 증폭 처리하는 신호 증폭부;A signal amplifier for amplifying a back-EMF (BEMF) signal generated when driving the sensorless motor to a predetermined level;
    상기 신호 증폭부의 출력 신호를 디지털 신호로 변환하는 AD 컨버터;An AD converter for converting an output signal of the signal amplifier into a digital signal;
    상기 AD 컨버터의 출력 신호에 근거하여 역기전력 신호의 제로 크로싱(Zero-crossing) 시점을 검출하는 제로크로싱 검출부; 및A zero crossing detector for detecting a zero-crossing point of the counter electromotive force signal based on the output signal of the AD converter; And
    상기 센서리스 모터의 회전속도에 기초하여 역기전력 신호의 제로 크로싱 시점 간의 시간차를 산출하고, 상기 제로크로싱 검출부에서 출력되는 제로 크로싱 시점이 산출된 시간차 범주에 포함되는지를 판단하여 상기 AD 컨버터에서 출력되는 역기전력 신호의 진위를 판단하는 제어부;로 이루어진 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.Based on the rotational speed of the sensorless motor, the time difference between the zero crossing points of the counter electromotive force signal is calculated, the zero crossing point output from the zero crossing detector is included in the calculated time difference category, and the counter electromotive force output from the AD converter is determined. Control unit for determining the authenticity of the signal; error determination device of a sensorless motor using a back electromotive force signal, characterized in that consisting of.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센서리스 모터의 회전속도는 외부 센서에 의해 검출되는 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.The rotation speed of the sensorless motor is an error determination device of the sensorless motor using a back EMF signal, characterized in that detected by an external sensor.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 제어부로부터 산출된 시간차는 현재 센서리스 모터의 회전속도(V[rps])로부터 연산되는 제로크로싱 시점 간의 시간차이고, 산출된 시간차 범주는 연산된 제로크로싱 시점에서 허용 가능한 시간차 범위인 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.The time difference calculated from the controller is a time difference between zero crossing points calculated from the rotational speed V [rps] of the current sensorless motor, and the calculated time difference category is an allowable time difference range at the zero crossing point of time calculated. Error determination device of sensorless motor using back EMF signal.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 산출된 시간차는 아래의 수학식 1에 의해 산출되는 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.The calculated time difference is an error determination device of a sensorless motor using a back EMF signal, characterized in that calculated by Equation 1 below.
    시간 차= t/(n/2×6)... 수학식 1Time difference = t / (n / 2 × 6) ...
    여기서, t는 센서리스 모터 1회전당 소요 시간, n은 모터의 극수이다.Here, t is the time required per rotation of the sensorless motor, and n is the number of poles of the motor.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 시간차 범위는 100㎲ 내지 200㎲인 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.The error difference apparatus of the sensorless motor using a back EMF signal, characterized in that the time difference range is 100 kHz to 200 kHz.
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 시간차 범위는 상기 시간차에 대한 10% 내지 20% 비율인 것을 특징으로 하는 역기전력 신호를 이용한 센서리스 모터의 오류 판단장치.The time difference range is an error determination device of a sensorless motor using a back EMF signal, characterized in that the ratio of 10% to 20% with respect to the time difference.
PCT/KR2013/009230 2012-10-16 2013-10-16 Apparatus for determining error of sensorless motor using counter-electromotive force signal WO2014061982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120114702A KR101937958B1 (en) 2012-10-16 2012-10-16 Device for detecting error of sensorless motor using bemf signal
KR10-2012-0114702 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061982A1 true WO2014061982A1 (en) 2014-04-24

Family

ID=50488483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009230 WO2014061982A1 (en) 2012-10-16 2013-10-16 Apparatus for determining error of sensorless motor using counter-electromotive force signal

Country Status (2)

Country Link
KR (1) KR101937958B1 (en)
WO (1) WO2014061982A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152635B1 (en) * 2019-04-18 2020-09-07 현대모비스 주식회사 Apparatus and method for estimating motor rpm of electronic brake system
KR102317068B1 (en) * 2019-09-02 2021-10-25 (주)현대케피코 Control system and control method for bldc motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117187A (en) * 1995-08-23 1997-05-02 Samsung Electron Co Ltd Unbalance clock generator and start-up circuit of brushless dc motor using it
JPH11122977A (en) * 1997-10-08 1999-04-30 Daewoo Electron Co Ltd Sensorless/brushless dc motor rotation control method and device
KR20100002783A (en) * 2008-06-30 2010-01-07 엠에스웨이 주식회사 Sensorless blushless motor high-speed startup algorithm with smart align process
KR20100052858A (en) * 2008-11-11 2010-05-20 주식회사 현대오토넷 Apparatus and method for controlling bldc motor
KR20110112995A (en) * 2010-04-08 2011-10-14 포항공과대학교 산학협력단 Rotor position estimation system and method for synchronous motor using a pll(phase locked loop) based incorporation of two sensorless algorithms

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473240A (en) 1993-12-30 1995-12-05 Whirlpool Corporation Motor control using third harmonic stator voltage signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117187A (en) * 1995-08-23 1997-05-02 Samsung Electron Co Ltd Unbalance clock generator and start-up circuit of brushless dc motor using it
JPH11122977A (en) * 1997-10-08 1999-04-30 Daewoo Electron Co Ltd Sensorless/brushless dc motor rotation control method and device
KR20100002783A (en) * 2008-06-30 2010-01-07 엠에스웨이 주식회사 Sensorless blushless motor high-speed startup algorithm with smart align process
KR20100052858A (en) * 2008-11-11 2010-05-20 주식회사 현대오토넷 Apparatus and method for controlling bldc motor
KR20110112995A (en) * 2010-04-08 2011-10-14 포항공과대학교 산학협력단 Rotor position estimation system and method for synchronous motor using a pll(phase locked loop) based incorporation of two sensorless algorithms

Also Published As

Publication number Publication date
KR20140048581A (en) 2014-04-24
KR101937958B1 (en) 2019-01-11

Similar Documents

Publication Publication Date Title
US6441572B2 (en) Detection of rotor angle in a permanent magnet synchronous motor at zero speed
Morimoto et al. Sinusoidal current drive system of permanent magnet synchronous motor with low resolution position sensor
KR101702440B1 (en) Image forming apparatus, motor controlling apparatus and method for controlling thereof
JP4797323B2 (en) Sensorless control device for synchronous motor
US8558495B2 (en) Sensorless BLDC motor control by comparing instantaneous and average BEMF voltages
EP2133989B1 (en) Brushless motor, brushless motor control system, and brushless motor control method
JP5643496B2 (en) Brushless motor drive device and electric vehicle using brushless motor
JP2009189176A (en) Drive system for synchronous motor
US9787243B2 (en) Controller for a brushless direct-current motor
US7893640B2 (en) Brushless motor control apparatus and control method and motor system
CN100370689C (en) Startup procedure for sensorless brushless DC motor
JP2018033301A (en) Method for determining orientation of rotor of non-iron pmsm motor in sensor free manner
JP2009077503A (en) Motor controller and controller for air conditioner
CA2727125C (en) Control of brushless motor
EP1684411A2 (en) Motor Control
EP2755319B1 (en) Control system for synchronous motor
WO2014061982A1 (en) Apparatus for determining error of sensorless motor using counter-electromotive force signal
KR100981936B1 (en) Motor driving apparatus
CN109600087B (en) Rotation speed calculating device
US7058537B2 (en) Method and device for detecting a rotational speed comprising an estimation of a measured value at low rotational speeds
CN107852113B (en) Power conversion device and control method for power conversion device
CN106169892A (en) System and method for operating a Hall sensor
US20040037541A1 (en) BLDC motor speed control apparatus and method
CN109268299B (en) Fan steering detection device, detection method and fan
JP2016042785A (en) Systems and methods involving permanent magnet electric machine rotor position determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848070

Country of ref document: EP

Kind code of ref document: A1