WO2014061805A1 - L-アミノ酸の製造法 - Google Patents

L-アミノ酸の製造法 Download PDF

Info

Publication number
WO2014061805A1
WO2014061805A1 PCT/JP2013/078373 JP2013078373W WO2014061805A1 WO 2014061805 A1 WO2014061805 A1 WO 2014061805A1 JP 2013078373 W JP2013078373 W JP 2013078373W WO 2014061805 A1 WO2014061805 A1 WO 2014061805A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
strain
amino acid
activity
protein
Prior art date
Application number
PCT/JP2013/078373
Other languages
English (en)
French (fr)
Inventor
星野 康
由起子 宮川
清三郎 白神
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to BR112015008602-0A priority Critical patent/BR112015008602B1/pt
Publication of WO2014061805A1 publication Critical patent/WO2014061805A1/ja
Priority to US14/687,025 priority patent/US20150218605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01003Long-chain-fatty-acid-CoA ligase (6.2.1.3)

Definitions

  • the present invention relates to a method for producing L-amino acids such as L-lysine using bacteria.
  • L-amino acids are used in various fields such as seasonings, food additives, feed additives, chemical products, and pharmaceuticals.
  • L-amino acids such as L-lysine are industrially produced by fermentation using L-amino acid producing bacteria such as Escherichia bacteria having L-amino acid producing ability.
  • L-amino acid-producing bacteria strains isolated from nature and modified strains thereof are used. Examples of the method for producing L-lysine include the methods described in Patent Documents 1 to 4.
  • saccharides such as glucose, fructose, sucrose, waste molasses and starch hydrolyzate are generally used as carbon sources.
  • a method for producing L-amino acid by fermentation using fatty acid as a carbon source is also known.
  • a method using an L-amino acid-producing bacterium belonging to the family Enterobacteriaceae having a mutant rpsA gene for example, a method using an L-amino acid-producing bacterium belonging to the family Enterobacteriaceae having a mutant rpsA gene (Patent Document 5), an enterobacteria modified so as to reduce the activity of UspA protein A method using an L-amino acid-producing bacterium belonging to the family (Patent Document 6), and a method using an L-amino acid-producing bacterium belonging to the family Enterobacteriaceae modified so as to enhance the ability to assimilate fatty acids (Patent Document 7). .
  • Non-patent Document 1 Fatty acids are assimilated via an assimilation pathway called ⁇ -oxidation (Non-patent Document 1). Enzymes that catalyze ⁇ -oxidation are encoded by the fad regulon consisting of fadL, fadD, fadE, fadB, and fadA, and the expression of the fad regulon is suppressed by the transcription factor encoded by fadR (Non-patent Document 1). ).
  • the fadD gene generates a fatty acyl-CoA from a long-chain fatty acid and encodes a protein taken up through the inner membrane (Non-patent Document 2).
  • Non-patent Document 7 it is known that production of L-amino acids such as L-lysine and L-threonine can be improved by enhancing expression of the Escherichia coli fadD gene (Patent Document 7).
  • Bacillus subtilis has the lcfA gene as a gene corresponding to the fadD gene (Non-patent Document 3).
  • the protein encoded by the Bacillus subtilis lcfA gene shows only 39% identity to the protein encoded by the Escherichia coli fadD gene, and introduction of the lcfA gene into intestinal bacteria There is no known effect on L-amino acid production using as a carbon source.
  • JP 10-165180 A Japanese Patent Application Laid-Open No. 11-192088 JP 2000-253879 A JP 2001-057896 A International Publication No. 2011/096554 pamphlet WO 2011/096555 pamphlet JP 2011-167071 A
  • An object of the present invention is to develop a novel technique for improving L-amino acid producing ability of bacteria when using fatty acid as a carbon source, and to provide a method for producing L-amino acid using fatty acid as a carbon source.
  • the present inventor has introduced the lcfA gene derived from Bacillus subtilis into the bacterium, thereby improving the ability of the bacterium to produce L-amino acids when fatty acids are used as a carbon source.
  • the present invention has been completed by finding that it can be improved.
  • a method for producing an L-amino acid comprising: Culturing a bacterium belonging to the family Enterobacteriaceae having the ability to produce L-amino acid in a medium containing a fatty acid, and collecting L-amino acid from the medium;
  • the bacterium is a bacterium introduced with the lcfA gene;
  • the lcfA gene is DNA selected from the group consisting of the following (A) to (D): (A) DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 18; (B) In the amino acid sequence shown in SEQ ID NO: 18, the amino acid sequence includes one or several amino acid substitutions, deletions, insertions, or additions.
  • DNA encoding a protein having activity to be taken up through the membrane (C) DNA containing the base sequence shown in SEQ ID NO: 17; (D) hybridizes with a base sequence complementary to the base sequence shown in SEQ ID NO: 17 or a probe that can be prepared from the base sequence under stringent conditions, and generates fatty acyl-CoA from long-chain fatty acids; DNA encoding a protein having an activity of taking up through the inner membrane.
  • Bacteria used in the method of the present invention are bacteria belonging to the family Enterobacteriaceae having the ability to produce L-amino acids. And a bacterium into which the lcfA gene has been introduced. The bacterium of the present invention has an ability to use fatty acid as a carbon source.
  • bacteria having L-amino acid-producing ability means that a desired L-amino acid is produced when cultured in a medium containing fatty acids. Refers to a bacterium having an ability to accumulate in a medium or in a microbial cell to such an extent that it can be recovered.
  • the bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
  • L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc.
  • Aliphatic amino acids amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine.
  • the bacterium of the present invention may have an ability to produce two or more amino acids.
  • the L-amino acid may be a free form, a salt thereof, or a mixture thereof.
  • the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • amino acids are L-amino acids unless otherwise specified.
  • NCBI National Center for Biotechnology Information
  • the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
  • Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Nehard (ed.) “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC).
  • bacteria belonging to the genus Escherichia include Escherichia coli.
  • Specific examples of Escherichia coli include Escherichia coli W3110 (ATCC11027325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild-type strain K12.
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, each strain is given a registration number, and can be sold using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists.
  • Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes.
  • Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain.
  • Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048 strain, NBRC12010 strain (Biotechonol Bioeng.2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) strain .
  • Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221.
  • Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists.
  • Pantoea bacteria include Pantoea ⁇ ⁇ ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea.
  • Pantoea Ananatis AJ13355 (FERM BP-6614), AJ13356 (FERMFERBP-6615), AJ13601 (FERM BP-7207), SC17 (FERM ⁇ BP-11091) And SC17 (0) strain (VKPM B-9246).
  • Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
  • Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora.
  • Examples of Klebsiella bacteria include Klebsiella planticola.
  • An L-amino acid-producing bacterium belonging to the family Enterobacteriaceae belongs, for example, by imparting an L-amino acid-producing ability to a bacterium belonging to the above Enterobacteriaceae family, or belongs to the above Enterobacteriaceae family. It can be obtained by enhancing the ability of bacteria to produce L-amino acids.
  • L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids.
  • normal mutation treatment include irradiation with X-rays and ultraviolet rays, and treatment with a mutation agent such as N-methyl-N′-nitro-N-nitrosoguanidine.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
  • the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
  • L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below.
  • any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
  • L-lysine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-lysine biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No.
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyl diamino
  • the activity of one or more enzymes selected from pimelate deacylase is enhanced.
  • a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels.
  • Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No.
  • the L-lysine-producing bacterium or the parent strain for deriving it is selected from enzymes selected from enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine. Examples include strains in which the activity of the above enzymes is reduced or deficient. Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
  • L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs.
  • L-lysine analogs inhibit the growth of bacteria belonging to the family Enterobacteriaceae such as the genus Escherichia, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • the L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, and ⁇ -chlorocaprolactam. Mutants having resistance to these lysine analogs can be obtained by subjecting bacteria belonging to the family Enterobacteriaceae to ordinary artificial mutation treatment.
  • L-lysine-producing bacteria or parent strains for deriving them include, but are not limited to, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E ... coli VL611. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
  • L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain.
  • the WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698).
  • the WC196 strain was named E.
  • L-lysine producing bacteria include E.coli WC196 ⁇ cadA ⁇ ldc and E.coli WC196 ⁇ cadA ⁇ ldc / pCABD2 (WO2006 / 078039).
  • WC196 ⁇ cadA ⁇ ldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain.
  • WC196 ⁇ cadA ⁇ ldc / pCABD2 is a strain obtained by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into the WC196 ⁇ cadA ⁇ ldc strain.
  • WC196 ⁇ cadA ⁇ ldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently, National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: 2-5-8 120, Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture, Japan) was deposited under the accession number FERM BP-11027.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from E. coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • DDPS dihydrodipicolinate synthase
  • a mutant lysC gene encoding aspartokinase III derived from E. coli, dapB gene encoding dihydrodipicolinate reductase derived from E. coli, and diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains the ddh gene.
  • L-threonine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-threonine biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
  • the L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed.
  • strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so as not to receive feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation.
  • Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 (1987); WO02 / 26993; WO 2005/049808; WO2005 / 049808; WO2003 / 097839 reference).
  • the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792).
  • Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV), which is an L-threonine analog.
  • HAV ⁇ -amino- ⁇ -hydroxyvaleric acid
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter.
  • An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host.
  • An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
  • examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance.
  • the imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine.
  • genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No.
  • L-threonine-producing bacteria or parent strains for deriving them include, but not limited to, E.Ecoli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent) No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Pat.No. 5,631,157), E. coli NRRL-21593 (U.S. Pat.No. 5,939,307), E. coli FERM BP-3756 (U.S. Pat. ), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Pat.No. 5,376,538), E.
  • E. Examples include strains belonging to the genus Escherichia such as E. coli VL643 and VL2055 (EP1149911A), and E. coli VKPM B-5318 (EP0593792A).
  • VKPM B-3996 is a strain obtained by introducing plasmid pVIC40 into TDH-6.
  • the TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene.
  • the B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene.
  • Plasmid pVIC40 is a plasmid in which a mutant thrA gene encoding aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a thrA * BC operon containing a wild type thrBC gene are inserted into an RSF1010-derived vector (US Patent) No. 5,705,371).
  • This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine.
  • B-3996 was deposited on 19 November 1987 at the All Union Scientific Center of Antibiotics (Nagatinskaya Street 3-A, 117105 Moscow, Russia) under the deposit number RIA 1867. . This stock was also deposited on April 7, 1987 at Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) under accession number B-3996 Has been
  • the strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter.
  • VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318. Has been deposited internationally.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12.
  • thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
  • the rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes an element of the glutamine transport system.
  • the rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)).
  • the asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E. ⁇ ⁇ coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to.
  • the aspC gene of other microorganisms can be obtained similarly.
  • L-arginine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-arginine biosynthesis enzymes are enhanced.
  • enzymes include, but are not limited to, N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase ( argF), arginosuccinate synthetase (argG), arginosuccinate lyase (argH), carbamoyl phosphate synthetase (carAB).
  • argC N-acetylglutamylphosphate reductase
  • argJ ornithine acetyltransferase
  • argB N-acetylglutamate kinas
  • N-acetylglutamate synthase (argA) gene examples include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
  • L-arginine-producing bacteria or parent strains for deriving them include, but are not particularly limited to, E. ⁇ ⁇ coli ⁇ 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N -Derivative strains that retain acetylglutamate synthase ( Russian patent application No. 2001112869), E. coli 382 strain (VKPM B-7926) (EP1170358A1), which has improved acetic acid-assimilating ability derived from 237 strains, and N -Strains belonging to the genus Escherichia such as E.
  • E. coli arginine producing strain (EP1170361A1) into which an argA gene encoding acetylglutamate synthetase has been introduced.
  • E. coli 237 shares were registered with VKPM B-7925 on April 10, 2000 at Lucian National Collection of Industrial Microorganisms (1 Dorozhny proezd., 1 Moscow 117545, Russia) And was transferred to an international deposit under the Budapest Treaty on May 18, 2001.
  • E. coli 382 shares were awarded VKPM B-7926 to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on April 10, 2000 Deposited at
  • L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, ⁇ -methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, ⁇ -methylserine, ⁇ -2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
  • L-citrulline and L-ornithine-producing bacteria share a biosynthetic pathway with L-arginine.
  • N-acetylglutamate synthase argA
  • N-acetylglutamylphosphate reductase argC
  • ornithine acetyltransferase argJ
  • N-acetylglutamate kinase argB
  • acetylornithine transaminase argD
  • WO 2006-35831 By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
  • L-histidine producing bacteria examples include strains in which the activity of one or more enzymes selected from L-histidine biosynthetic enzymes are enhanced.
  • enzymes include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribotide
  • isomerase examples include isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are inhibited by L-histidine. Therefore, the ability to produce L-histidine can be conferred or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) ( Russian Patent No. 2003677 and No. 2). 2119536).
  • L-histidine-producing bacteria or parent strains for inducing them include, but are not limited to, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli 80 strain (VKPM B-7270, RU2119536), E. coli NRRL B-12116-B-12121 (US Patent No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (US Patent No. 6,344,347) ), E. coli H-9341 (FERM BP-6674) (EP1085087), E. coli AI80 / pFM201 (US Pat. No.
  • E. coli FERM-P 5038 and 5048 JP-A-56-005099
  • E. coli strain into which an amino acid transporting gene was introduced EP1016710A
  • sulfaguanidine DL-1,2,4-triazole-3- Examples include strains belonging to the genus Escherichia such as E. coli 80 strain (VKPM B-7270, Russian Patent No. 2119536) imparted resistance to alanine and streptomycin.
  • Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased. .
  • Examples of such an enzyme include, but are not limited to, serine acetyltransferase and 3-phosphoglycerate dehydrogenase.
  • Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria.
  • Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731.
  • the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into bacteria.
  • Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • the method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine.
  • an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include enzymes involved in the degradation of L-cysteine.
  • the enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine- ⁇ -lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et.
  • examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system.
  • Proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No.
  • sulfate / thiosulfate transport system protein examples include proteins encoded by the cysPTWAM gene cluster.
  • L-cysteine-producing bacteria or parent strains for deriving them include, but are not limited to, E. coli JM15 (US) transformed with various cysE alleles encoding a feedback inhibition resistant serine acetyltransferase. (Patent No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663) having an overexpressed gene encoding a protein suitable for excretion of a substance toxic to cells, cysteine desulfide Examples include strains belonging to the genus Escherichia such as E. coli strain (JP11155571A2) in which the lyase activity has been reduced and E. coli W3110 (WO0127307A1) in which the activity of the transcription regulator of the positive cysteine regulon encoded by the cysB gene has been increased.
  • L-methionine producing bacteria examples include, but are not particularly limited to, L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471). issue).
  • examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424).
  • L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
  • L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E.
  • coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471).
  • the AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine ⁇ -synthase activity, and aspartokinase-homoserine dehydrogenase II.
  • L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
  • L-leucine producing bacteria examples include strains in which the activity of one or more enzymes selected from L-leucine biosynthesis enzymes are enhanced.
  • examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon.
  • a mutant leuA gene US Pat. No. 6,403,342
  • isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
  • the L-leucine-producing bacterium or the parent strain for deriving the L-leucine-producing bacterium is a leucine-resistant E. coli strain 57 (for example, 57 strain (VKPM B-7386, U.S. Patent No. 6,124,121)) E. coli strains resistant to leucine analogs such as ⁇ , 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (Japanese Patent Publication No. 62-34397 and JP-A-8-70879) ), E. coli strains obtained by the genetic engineering method described in WO96 / 06926, E. coli H-9068 (JP-A-8-70879), and other strains belonging to the genus Escherichia.
  • E. coli strain 57 for example, 57 strain (VKPM B-7386, U.S. Patent No. 6,124,121)
  • Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), isoleucine analogs such as thiisoleucine and isoleucine hydroxamate. Examples include, but are not limited to, mutant strains having resistance, and mutant strains having resistance to DL-ethionine and / or arginine hydroxamate (Japanese Patent Laid-Open No. 5-130882).
  • L-valine producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-valine biosynthesis enzymes is enhanced.
  • enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon.
  • ilvBN encodes acetohydroxy acid synthase
  • ilvC encodes isomeroreductase (WO 00/50624).
  • the ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine.
  • the threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
  • the L-valine-producing bacterium or the parent strain for deriving it is selected from an enzyme that catalyzes a reaction that produces a compound other than L-valine by branching from the biosynthetic pathway of L-valine.
  • a strain in which the activity of the above enzyme is reduced is also mentioned.
  • enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
  • L-valine-producing bacteria or parent strains for deriving the same include, but are not limited to, Escherichia such as E. coli strain (US Pat. No. 5,998,178) strain modified to overexpress the ilvGMEDA operon. Examples include strains belonging to the genus.
  • examples of L-valine-producing bacteria and parent strains for inducing them include strains having mutations in aminoacyl t-RNA synthetases (US Pat. No. 5,658,766).
  • examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase.
  • E. coli VL1970 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411 It has been deposited.
  • examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase.
  • Examples of the L-glutamic acid-producing bacterium or the parent strain for inducing it include a strain in which the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes are enhanced.
  • enzymes are not particularly limited, but include glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltBD), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citrate Synthase (gltA), methyl citrate synthase (prpC), phosphoenol pyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenol pyruvate synthase (ppsA)
  • Strains belonging to the family Enterobacteriaceae modified to increase expression of citrate synthetase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned.
  • Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
  • L-glutamic acid-producing bacteria or parent strains for deriving the same are reduced or deficient in the activity of enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-glutamic acid to produce compounds other than L-glutamic acid.
  • enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-glutamic acid to produce compounds other than L-glutamic acid.
  • Such enzymes include, but are not limited to, isocitrate triase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase (ilvG ), Acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate dehydrogenase (putA) Can be mentioned.
  • aceA isocitrate triase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetate kinase
  • ack acetohydroxy acid synthase
  • ilvI Ace
  • Escherichia bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase ( ⁇ KGDH) activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945.
  • a method for reducing or eliminating ⁇ -ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483.
  • bacteria belonging to the genus Escherichia with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following.
  • E. coli W3110sucA Kmr
  • E. coli AJ12624 (FERM BP-3853)
  • E. coli AJ12628 (FERM BP-3854)
  • E. coli AJ12949 (FERM BP-4881)
  • E. coli W3110sucA is a strain obtained by disrupting the ⁇ -ketoglutarate dehydrogenase gene (hereinafter also referred to as "sucA gene") of E. coli W3110. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase activity.
  • Pantoea ananatis AJ13355 strain (FERM BP-6614), SC17 strain (FERM BP-11091), SC17 (0) strain (VKPM B-9246)
  • Pantoea bacteria such as
  • the AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture.
  • the SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517).
  • L-glutamic acid-producing bacteria or parent strains for inducing them also include Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity.
  • Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity examples include AJ13356 (US Pat. No. 6,331,419) which is an ⁇ KGDH-E1 subunit gene (sucA) deficient strain of AJ13355 strain, and SC17sucA (US Pat. No. 6,596,517) which is a sucA gene deficient strain of SC17 strain. Is mentioned.
  • AJ13356 was founded on February 19, 1998, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently, National Institute for Product Evaluation Technology, Patent Biological Deposit Center, Postal Code: 292-0818, Address: Kisarazu City, Chiba Prefecture, Japan No. 2-5-8 120, Kazusa Kamashita) was deposited under the deposit number FERM P-16645, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6616. . The SC17sucA strain was also granted the private number AJ417.
  • Patent Biological Depositary Center On February 26, 2004, the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently the National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292 -0818, Address: 2-5-8 120, Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan), deposited under the accession number FERM BP-08646.
  • AJ13355 was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea Ananatis by 16S rRNA sequencing. Therefore, AJ13355 and AJ13356 are deposited as Enterobacter agglomerans in the depository, but are described as Pantoea ananatis in this specification.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, AJ13601 strain, NP106 strain, and NA1 strain.
  • the SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), phosphoenolpyruvate carboxylase gene (ppc), and glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi
  • This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum.
  • the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
  • AIST National Institute of Advanced Industrial Science and Technology
  • Patent Biological Deposit Center currently the National Institute for Product Evaluation Technology, Patent Biological Deposit Center, ZIP Code: 292-0818, Address: Japan No.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both ⁇ -ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920).
  • specific examples of such a strain include, for example, a pantoea ananatis NA1 sucAsdhA double-deficient strain (Japanese Patent Laid-Open No. 2010-041920).
  • auxotrophic mutants examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL334thrC + (VKPM B-8961) (EP 1172433).
  • E. coli VL334 (VKPM) B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334.
  • the wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown in cells of wild type E.Ecoli K12 strain (VKPM B-7).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase activity, for example.
  • examples of strains resistant to aspartate analogs and lacking ⁇ -ketoglutarate dehydrogenase activity include, for example, E.768coli AJ13199 (FERM BP-5807) (US Patent No. 5.908,768), and L-glutamate resolution FFRM P-12379 (US Patent No. 5,393,671), AJ13138 (FERM BP-5565) (US Patent No. 6,110,714).
  • examples of L-glutamic acid-producing bacteria or parent strains for deriving the same also include strains modified to enhance D-xylose-5-phosphate phosphoketolase and / or fructose-6-phosphate phosphoketolase activity. (Special Table 2008-509661). Either one or both of D-xylose-5-phosphate phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced. In the present specification, D-xylose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
  • D- xylose-5-phosphate - phosphoketolase and active consumes phosphoric acid, to convert xylulose-5-phosphate to glyceraldehyde-3-phosphate and acetyl phosphate, in one molecule H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA).
  • the method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such an enzyme is not particularly limited, and includes glutaminase.
  • L-glutamine producing bacteria or parent strains for inducing them include strains belonging to the genus Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue. (US Patent Application Publication No. 2003-0148474).
  • L-proline producing bacteria examples include a strain in which the activity of one or more enzymes selected from L-proline biosynthesis enzymes are enhanced.
  • enzymes involved in L-proline biosynthesis include glutamate 5-kinase, ⁇ -glutamyl-phosphate reductase, and pyrroline-5-carboxylate reductase.
  • the proB gene German Patent No. 3127361 encoding glutamate kinase which is desensitized to feedback inhibition by L-proline can be preferably used.
  • examples of L-proline-producing bacteria or parent strains for inducing them also include strains in which the activity of an enzyme involved in L-proline degradation is reduced.
  • examples of such an enzyme include proline dehydrogenase and ornithine aminotransferase.
  • L-proline-producing bacteria or parent strains for deriving them include, but are not limited to, E. coli NRRL B-12403 and NRRL B-12404 (UK Patent No. 2075056), E. coli VKPM B -8012 (Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34) Strains belonging to the genus Escherichia such as E. coli 702ilvA (VKPM B-8012) (EP 1172433) capable of producing L-proline without the ilvA gene.
  • L-tryptophan producing bacteria L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
  • methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine.
  • Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
  • tyrR tyrosine repressor
  • L-tryptophan biosynthesis enzyme examples include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA).
  • trpE anthranilate synthase
  • trpAB tryptophan synthase
  • serA phosphoglycerate dehydrogenase
  • L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon.
  • Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively.
  • anthranilate synthase is subject to feedback inhibition by L-tryptophan
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • phosphoglycerate dehydrogenase is feedback-inhibited by L-serine
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme.
  • L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
  • the L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered.
  • L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced.
  • By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
  • E.Ecoli JP4735 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase / pMU3028 (DSM10122) and JP6015 / pMU91 (DSM10123) ⁇ (U.S. Pat.No. 5,756,345)
  • E. coli SV164 with trpE allele that encodes anthranilate synthase not subject to feedback inhibition by tryptophan Fos not subject to feedback inhibition by serine E. coli SV164 (pGH5) ⁇
  • examples of L-tryptophan-producing bacteria or parent strains for deriving the same also include strains belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene (US Patent Application Publication 2003 / 014847348A1). And 2003/0157667 A1).
  • L-phenylalanine-producing bacteria or parent strains for deriving them include, but are not limited to, E. coli AJ12739 (tyrA :: Tn10, tyrR, which is deficient in chorismate mutase-prefenate dehydrogenase and tyrosine repressor. ) (VKPM B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (US Pat. No. 5,354,672) carrying the mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with desensitized feedback inhibition ), E.
  • E. coli MWEC101-b KR8903681
  • E. coli NRRL B-12141 E. coli NRRL B-12141
  • NRRL B-12145 E. coli NRRL B-12146
  • NRRL B-12147 U.S. Pat.No. 4,407,952
  • E. coli K-12 [W3110 (tyrA) / TylA) carrying a gene encoding chorismate mutase-prefenate dehydratase whose feedback inhibition is released pPHAB] (FERM BP-3566)
  • E. coli K-12 [W3110 (tyrA) / TylA) carrying a gene encoding chorismate mutase-prefenate dehydratase whose feedback inhibition is released pPHAB]
  • examples of L-phenylalanine-producing bacteria or parent strains for deriving them also include strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US Patent Application Publication No. 2003/0148473 A1). And 2003/0157667 A1, WO03 / 044192).
  • examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased.
  • the activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids.
  • genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
  • examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
  • Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes.
  • genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Child (
  • non-PTS sucrose uptake gene gene csc; European Application Publication No. 149911 pamphlet
  • sucrose utilization gene scrAB operon; International Publication No. 90/04636 pamphlet
  • genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
  • the gene used for breeding the L-amino acid-producing bacterium is not limited to the gene having the above-described gene information or a gene having a known base sequence unless the function of the encoded protein is impaired. It may be a variant.
  • a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence.
  • the descriptions of lcfA gene and LcfA protein variants described later can be applied mutatis mutandis.
  • the bacterium of the present invention has an lcfA gene introduced therein.
  • the bacterium of the present invention can be obtained by introducing the lcfA gene into a bacterium belonging to the family Enterobacteriaceae having the ability to produce L-amino acids as described above.
  • the bacterium of the present invention can also be obtained by imparting or enhancing L-amino acid-producing ability after introducing the lcfA gene into a bacterium belonging to the family Enterobacteriaceae.
  • the bacterium of the present invention may have acquired L-amino acid-producing ability by introducing the lcfA gene.
  • the modification for constructing the bacterium of the present invention can be performed in any order.
  • the “lcfA gene” refers to a gene that generates a fatty acyl-CoA from a long-chain fatty acid and encodes a protein taken up through the inner membrane.
  • the activity of “generating fatty acyl-CoA from a long chain fatty acid and taking it in through the inner membrane” is also referred to as “LcfA activity”.
  • LcfA activity can be measured, for example, as long-chain fatty acid uptake activity.
  • the long-chain fatty acid uptake activity can be measured, for example, by a known method (Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170).
  • the LcfA activity can also be measured as an activity that catalyzes a reaction for producing fatty acyl-CoA (fatty-acyl-CoA) from a long-chain fatty acid (fatty-acyl-CoA synthetase activity).
  • the fatty acyl-CoA synthetase activity can be measured, for example, by a known method (Black, PN. Et al. J Biol Chem. 1992. 267 (35): 25513-20).
  • Examples of the lcfA gene include the Bacillus subtilis lcfA gene (J. Biol. Chem. Vol. 282 No. 8 p. 5180-5194).
  • the nucleotide sequence of the LcfA gene of Bacillus subtilis and the amino acid sequence of the protein (LcfA protein) encoded by the same gene are shown in SEQ ID NOs: 17 and 18, respectively.
  • the lcfA gene may encode a variant of the LcfA protein as long as it has LcfA activity. Such variants may be referred to as “conservative variants”. Examples of conservative variants include homologues and artificially modified forms of the LcfA protein.
  • the homolog of the lcfA gene can be easily obtained from a public database by BLAST search or FASTA search using the base sequence of the lcfA gene (SEQ ID NO: 17) as a query sequence, for example.
  • the homolog of the lcfA gene can be obtained, for example, by PCR using a bacterial or yeast chromosome as a template and oligonucleotides prepared based on these known gene sequences as primers.
  • the gene encoding a conservative variant of LcfA protein may be, for example, the following gene. That is, as long as the lcfA gene encodes a protein having LcfA activity, the lcfA gene represents an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the above amino acid sequence. It may be a gene encoding a protein having the same. In this case, the LcfA activity can usually be maintained at 70% or more, preferably 80% or more, more preferably 90% or more with respect to the protein before one or several substitutions, deletions, insertions or additions. .
  • one or several differs depending on the position of the amino acid residue in the three-dimensional structure of the protein and the kind of amino acid residue, but specifically, preferably 1 to 20, more preferably 1 to 10 More preferably, it means 1 to 5, particularly preferably 1 to 3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%, based on the entire amino acid sequence. It may be a gene encoding a protein having a homology of at least% and having LcfA activity. In the present specification, “homology” may refer to “identity”.
  • the lcfA gene is a DNA that encodes a protein having LcfA activity by hybridizing under a stringent condition with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to the whole or a part of the base sequence. May be.
  • Stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • highly homologous DNAs for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
  • the probe used for the hybridization may be a part of a complementary sequence of a gene.
  • a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • any codon may be substituted with an equivalent codon.
  • the lcfA gene may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used.
  • the introduction of the lcfA gene into a bacterium can be performed according to the method for increasing the gene copy number in the “method for increasing protein activity” described later.
  • a DNA fragment containing the lcfA gene can be obtained, for example, by PCR using the genomic DNA of a microorganism having the lcfA gene as a template.
  • the obtained DNA fragment containing the lcfA gene may be introduced onto a bacterial chromosome, for example.
  • the obtained DNA fragment containing the lcfA gene is introduced into the bacterium by, for example, constructing an expression vector for the lcfA gene by ligating with a vector that functions in the host bacterium, and transforming the host bacterium with the expression vector. May be.
  • bacteria belonging to the family Enterobacteriaceae may originally have the fadD gene as a gene corresponding to the lcfA gene.
  • the bacterium of the present invention may be modified so that the expression of the fadD gene that it originally has is weakened.
  • the bacterium of the present invention may be modified to increase the expression of the fadD gene.
  • the bacterium of the present invention may be further modified so that the ability to assimilate fatty acids is further increased.
  • modifications may include reducing the expression of the fadR gene, enhancing the expression of one or more genes selected from the group consisting of the fadL, fadE, fadD, fadB, and fadA genes, and the cyoABCDE operon. Examples thereof include enhancing expression and combinations thereof (Japanese Patent Laid-Open No. 2011-167071).
  • the fadR gene encodes a negative transcription factor for the fad regulon (DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. Mol Microbiol. 7: 311-322).
  • the fad regulon includes the fadL, fadE, fadD, fadB, and fadA genes, which encode proteins involved in fatty acid metabolism.
  • the fadR gene and fad regulon are found, for example, in bacteria belonging to the family Enterobacteriaceae.
  • the fadR gene of Escherichia coli K12 MG1655 strain corresponds to the sequence at positions 124161-1234880 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadR protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_415705.
  • the fadL gene encodes an outer membrane transporter capable of taking up long-chain fatty acids (Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419).
  • the fadL gene of Escherichia coli K12 MG1655 strain corresponds to the sequence from 2459328 to 2460668 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadL protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416846.
  • the fadD gene catalyzes the reaction to produce fatty acyl-CoA (fatty-acyl-CoA) from long-chain fatty acids (fatty-acyl-CoA-synthetase activity) and encodes a protein incorporated through the inner membrane ( Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170).
  • the fadD gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences 160885 to 1887770 in the genome sequence (GenBank ⁇ accession No. NC_000913) of the same strain.
  • the FadD protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416319.
  • the fadE gene encodes a protein having an acyl-CoA dehydrogenase activity that catalyzes a reaction to oxidize fatty acyl-CoA (O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3759-3764).
  • the fadE gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences from 240859 to 243303 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414756.
  • the fadB gene encodes the ⁇ subunit of the fatty acid oxidation complex.
  • the ⁇ subunit includes enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyacyl-CoA epimerase, ⁇ 3-cis- ⁇ 2 -Has four activities of trans-enoyl CoA isomerase ( ⁇ 3-cis- ⁇ 2-trans-enoyl-CoA isomerase) (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785).
  • the fadB gene of Escherichia coli K12 MG1655 strain corresponds to the complementary sequence of the 4026805-4028994 position in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadB protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_418288.
  • the fadA gene encodes the ⁇ subunit of the fatty acid oxidation complex.
  • the ⁇ subunit has 3-ketoacyl-CoA thiolase activity (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473).
  • the fadA gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the 4025632 to 4026795 positions in the genome sequence (GenBank accession No. NC_000913) of the same strain.
  • the FadA protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. YP_026272.
  • the fadA and fadB genes form the fadBA operon (Yang, S. Y. et al. 1990. J. Biol. Chem. 265: 10424-10429).
  • the expression of the entire fadBA operon may be enhanced.
  • the cyoABCDE operon encodes a cytochrome bo-terminal oxidase complex, which is one of the terminal oxidases.
  • cyoB gene has subunit I
  • cyoA gene has subunit II
  • cyoC gene has subunit III
  • cyoC gene has subunit IV
  • cyoE gene has heme O synthase activity.
  • the cyo operon is found, for example, in bacteria belonging to the family Enterobacteriaceae.
  • the cyoABCDE gene of Escherichia coli K12 MG1655 strain is complementary to the sequences of 449887 to 450834, 447874 to 449865, 447270 to 448884, 446941 to 447270, and 446039 to 446929 in the genome sequence (GenBank ⁇ accession No. NC_000913), respectively.
  • CyoABCDE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414966, NP_414965, NP_414964, NP_414963, and NP_414962, respectively.
  • the bacterium of the present invention may be modified so that the activity of pyruvate synthase (also referred to as “PS”) and / or pyruvate: NADP + oxidoreductase (also referred to as “PNO”) is increased. (WO2009 / 031565).
  • “Pyruvate synthase” refers to an enzyme (EC 1.2.7.1) that reversibly catalyzes the reaction of producing pyruvate from acetyl-CoA and CO 2 using reduced ferredoxin or reduced flavodoxin as an electron donor.
  • PS is also referred to as pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, or pyruvate flavodoxin oxidoreductase.
  • the activity of PS can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279).
  • PS-encoding genes include PS genes of bacteria having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, and enterobacteria such as Escherichia coli Autotrophic methane-producing archaea such as PS gene of bacteria belonging to the family, Methanococcus maripaludis, Methanococdocus janaschi (Methanocaldococcus jannaschii), Methanothermobacter thermautotrophicus, etc. methanogens) PS gene.
  • enterobacteria such as Escherichia coli Autotrophic methane-producing archaea
  • PS gene of bacteria belonging to the family Methanococcus maripaludis
  • Methanococdocus janaschi Methanocaldococcus jannaschii
  • Methanothermobacter thermautotrophicus etc. methanogens
  • Pyruvate: NADP + oxidoreductase refers to an enzyme (EC 1.2.1.15) that reversibly catalyzes the reaction of generating pyruvate from acetyl-CoA and CO 2 using NADPH or NADH as an electron donor. Pyruvate: NADP + oxidoreductase is also referred to as pyruvate dehydrogenase.
  • the activity of PNO can be measured, for example, according to the method of Inui et al. (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135).
  • PNO gene As a gene encoding PNO (PNO gene), a PNO gene (Nakazawa, M. ⁇ ⁇ ⁇ et al. 2000. FEBS Lett. 479: 155) of Euglena gracilis which is classified as a protozoan in a photosynthetic eukaryotic microorganism. -156; GenBank Accession No. AB021127), PNO gene of the protozoan Cryptosporidium parvum (Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720), diatom Talasiosila pseudonana (Tharassiosira pseudonana) PNO homologous gene (Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231).
  • Enhancement of PS activity can be achieved by improving the supply of electron donors required for PS activity in addition to the method for increasing protein activity as described later.
  • PS activity can be enhanced by enhancing the activity of recycling ferredoxin or flavodoxin oxidized form to reduced form, enhancing the biosynthetic ability of ferredoxin or flavodoxin, or a combination thereof (WO2009 / 031565 ).
  • ferredoxin-NADP + reductase examples include ferredoxin-NADP + reductase.
  • Feredoxin-NADP + reductase refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes a reaction of converting ferredoxin or an oxidized form of flavodoxin into a reduced form using NADPH as an electron donor.
  • Ferredoxin-NADP + reductase is also referred to as flavodoxin-NADP + reductase.
  • the activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569).
  • ferredoxin-NADP + reductase The genes encoding ferredoxin-NADP + reductase (ferredoxin-NADP + reductase gene) include the fpr gene of Escherichia coli, the ferredoxin-NADP + reductase gene of Corynebacterium glutamicum, and NADPH- of Pseedomonas putida. And putidaredoxin reductase gene (Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836).
  • ferredoxin or flavodoxin can be enhanced by enhancing the expression of a gene encoding ferredoxin (ferredoxin gene) or a gene encoding flavodoxin (flavodoxin gene).
  • the ferredoxin gene or flavodoxin gene is not particularly limited as long as it encodes ferredoxin or flavodoxin that can be used by PS and an electron donor regeneration system.
  • ferredoxin gene examples include Escherichia coli fdx gene and yfhL gene, corynebacterium glutamicum fer gene, bacteria ferredoxin gene having a reductive TCA cycle such as Chlorobium tepidum and Hydrogenobacter thermophilus.
  • flavodoxin gene examples include Escherichia coli fldA gene and fldB gene, and bacterial flavodoxin gene having a reductive TCA cycle.
  • the above genes for example, fadR gene, fad regulon, cyoABCDE operon, PS gene, PNO gene, ferredoxin-NADP + reductase gene, ferredoxin gene, flavodoxin gene are as described above unless the function of the encoded protein is impaired.
  • the gene is not limited to a gene having genetic information and a gene having a known base sequence, and may be a variant thereof.
  • the gene is a gene encoding a protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. May be.
  • gene and protein variants the above descriptions concerning the lcfA gene and LcfA protein variants can be applied mutatis mutandis.
  • Protein activity increases “means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. The activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain.
  • the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain.
  • “the protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting.
  • a suitable protein may be introduced after weakening and / or deleting the activity of the target protein originally possessed by the bacterium.
  • Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein.
  • increasing gene expression is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • increasing gene expression means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the chromosome of the host microorganism.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced.
  • multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for L-amino acid production.
  • Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
  • the increase in the copy number of the gene can also be achieved by introducing a vector containing the target gene into the host bacterium.
  • a DNA fragment containing a target gene is linked to a vector that functions in the host bacterium to construct an expression vector for the gene, and the host bacterium is transformed with the expression vector to increase the copy number of the gene.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
  • a vector capable of autonomous replication in a host bacterial cell can be used.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
  • vectors capable of autonomous replication in Escherichia coli cells include pUC19, pUC18, pHSG299, pHSG399, pHSG398, pACYC184, pBR322, pSTV29 (all available from Takara Bio Inc.), pMW219 (Nippon Gene) ), PTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), and wide host range vector RSF1010.
  • the gene may be retained in the bacterium of the present invention so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a native promoter of a gene to be introduced or a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed.
  • all the genes may be held on a single expression vector, or all may be held on a chromosome.
  • each gene may be separately hold
  • an operon may be constructed by introducing two or more genes.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, tac promoter, and PL promoter.
  • a highly active promoter of a conventional promoter may be obtained by using various reporter genes.
  • the promoter activity can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
  • the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene.
  • Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • a stronger SD sequence is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence.
  • RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235).
  • substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
  • a site that affects gene expression such as a promoter, an SD sequence, and a spacer region between the RBS and the start codon is also collectively referred to as an “expression control region”.
  • the expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX.
  • GENETYX gene analysis software
  • These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • codon modification when performing heterologous expression of a gene, the translation efficiency of the gene can be improved by replacing rare codons present in the gene with synonymous codons that are used more frequently. Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA. Alternatively, gene fragments in which codons have been replaced may be fully synthesized. The frequency of codon usage in various organisms can be found in the “Codon Usage Database” (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)) Is disclosed.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the modification that increases the enzyme activity can be achieved, for example, by enhancing the specific activity of the enzyme.
  • Enzymes with enhanced specific activity can be obtained by searching for various organisms, for example.
  • a highly active type may be obtained by introducing a mutation into a conventional enzyme.
  • the enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
  • Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning A Laboratory Manual / Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA ), 2001).
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the amount of protein can be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
  • the above-described techniques for increasing the activity of the protein include enhancing the activity of any protein, such as an L-amino acid biosynthetic enzyme or transporter, or any gene, such as any of these It can be used to enhance the expression of protein-encoding genes, fad regulon, cyoABCDE operon, PS gene and PNO gene.
  • any protein such as an L-amino acid biosynthetic enzyme or transporter
  • any gene such as any of these It can be used to enhance the expression of protein-encoding genes, fad regulon, cyoABCDE operon, PS gene and PNO gene.
  • Protein activity decreases means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all.
  • the function per molecule of the protein is reduced includes the case where the function per molecule of the protein is completely lost.
  • the activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 50% or less, 20% or less, 10% or less, 5% or less, or 0, compared to the non-modified strain. %.
  • the modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein.
  • Gene expression decreases includes the case where the gene is not expressed at all.
  • the expression of the gene is reduced is also referred to as “the expression of the gene is weakened”. Gene expression may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to an unmodified strain.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • Reduction of gene expression can be achieved, for example, by modifying an expression regulatory sequence such as a gene promoter or Shine-Dalgarno (SD) sequence.
  • the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted.
  • reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like.
  • the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome.
  • the entire gene including the sequences before and after the gene on the chromosome may be deleted.
  • the region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved.
  • the longer region to be deleted can surely inactivate the gene.
  • it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
  • gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997) Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833 -20839 (1991)).
  • gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated.
  • Other sequences are not particularly limited as long as they reduce or eliminate the activity of the encoded protein, and examples include marker genes such as antibiotic resistance genes and genes useful for heterologous protein production.
  • Modifying a gene on a chromosome as described above includes, for example, deleting a partial sequence of the gene and preparing a deleted gene modified so as not to produce a normally functioning protein.
  • transforming bacteria with recombinant DNA containing, and causing homologous recombination between the deleted gene and the wild-type gene on the chromosome to replace the wild-type gene on the chromosome with the deleted gene Can be achieved.
  • the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost.
  • the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment.
  • Mutation treatment includes X-ray irradiation or ultraviolet irradiation, or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethyl methanesulfonate (EMS), methylmethanesulfonate (MMS), etc.
  • MNNG N-methyl-N′-nitro-N-nitrosoguanidine
  • EMS ethyl methanesulfonate
  • MMS methylmethanesulfonate
  • the decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
  • the decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
  • the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Laboratory Laboratory, Cold spring Harbor (USA), 2001)).
  • the amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
  • the above-described method for reducing the activity of a protein can be performed by any protein, for example, an enzyme or L-amino acid that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid. It can be used to reduce the activity of a biosynthetic enzyme repressor, and to reduce the expression of any gene, for example, the gene encoding these arbitrary proteins or the fadR gene.
  • the method of the present invention comprises culturing the bacterium of the present invention in a medium containing a fatty acid, and collecting L-amino acid from the medium. It is a manufacturing method of an amino acid. That is, in the method of the present invention, L-amino acid can be produced by fermentation using fatty acid as a carbon source.
  • “Fatty acid” means a monovalent carboxylic acid of a long-chain hydrocarbon represented by the general formula C n H m COOH (where n + 1 and m + 1 represent the number of carbon atoms and the number of hydrogen atoms contained in the fatty acid, respectively). Says acid. There are various types of fatty acids having different carbon numbers and unsaturation levels. In general, fatty acids having 12 or more carbon atoms are often referred to as long-chain fatty acids. Moreover, it is known that a fatty acid is a structural component of fats and oils, and the composition of the fatty acid which comprises fats and oils changes with kinds of fats and oils.
  • the fatty acid is not particularly limited as long as the bacterium of the present invention can be used as a carbon source.
  • the fatty acid include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid.
  • fatty acids selected from lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid are preferable because they are easily used by the bacterium of the present invention.
  • Lauric acid (C 11 H 23 COOH) is a saturated fatty acid having 12 carbon atoms and is contained in coconut oil and palm oil.
  • Myristic acid (C 13 H 27 COOH) is a saturated fatty acid having 14 carbon atoms and is contained in palm oil and palm oil. Palmitic acid (C 15 H 31 COOH) is a saturated fatty acid having 16 carbon atoms, and is generally abundant in vegetable oils. Stearic acid (C 17 H 35 COOH) is a saturated fatty acid having 18 carbon atoms, and is abundant in animal fats and vegetable oils. Oleic acid (C 17 H 33 COOH) is a monovalent unsaturated fatty acid having 18 carbon atoms, and is abundant in animal fats and vegetable oils.
  • Linoleic acid (C 17 H 31 COOH) is a polyunsaturated fatty acid having 18 carbon atoms containing cis-type double bonds at the 9th and 12th positions, and is abundant in vegetable oils such as safflower oil and corn oil. .
  • the fatty acid one kind of fatty acid may be used, or two or more kinds of fatty acids may be used in combination. When two or more fatty acids are used in combination, the ratio of each fatty acid is not particularly limited as long as the bacterium of the present invention can use the fatty acid as a carbon source.
  • fatty acid a pure fatty acid such as a purified fatty acid may be used, or a mixture containing a fatty acid and a component other than the fatty acid may be used. Examples of such a mixture include a hydrolyzate of fats and oils.
  • Oils and fats are esters of fatty acids and glycerol and are also called triglycerides.
  • the fats and oils are not particularly limited as long as the fats and oils contain fatty acids that can be used as a carbon source by the bacterium of the present invention and can be hydrolyzed.
  • the fats and oils preferably contain fatty acids that can be used as a carbon source by the bacterium of the present invention as a constituent component in a high ratio.
  • As fats and oils those in any form such as fatty oil (oil) indicating liquid at normal temperature and fat (fat) indicating solid at normal temperature may be used.
  • fatty oil (oil) indicating liquid at normal temperature
  • fat (fat) indicating solid at normal temperature
  • fats and oils 1 type of fats and oils may be used, and 2 or more types of fats and oils may be used in combination.
  • fats and oils pure fats and oils, such as refined fats and oils, may be used, and a mixture containing fats and oils and components other than fats and oils may be used.
  • the plant extract containing fats and oils, the fraction containing fats and oils, for example, an oil cake, are mentioned.
  • Oil lees are mainly produced from the deoxidation process for removing free fatty acids in the vegetable oil refining process, and are a by-product of the vegetable oil production process, generally containing 40 to 70% moisture, Contains 20-50% fats and oils.
  • crude glycerol produced in the production process of biodiesel may contain several percent of fatty acid methyl ester or free fatty acid that is biodiesel, which can be fractionated for use.
  • animal fats include butter, pork fat, beef tallow, sheep fat, whale oil, sardine oil, and herring oil.
  • vegetable oils include palm oil, olive oil, rapeseed oil, soybean oil, rice bran oil, walnut oil, sesame oil, and peanut oil. Palm oil is an oil and fat that can be obtained from the fruit of oil palm, and its production volume has increased in recent years due to the increasing use of biodiesel fuel.
  • Oil palm (oil palm) is a general term for plants classified into the genus Elaeis. Crude palm oil (crude palm oil) generally refers to unrefined palm oil produced in an oil mill and is traded as crude palm oil.
  • microalgae that accumulate fats and oils are known (Chisti, Y. 2007. Biotechnol Adv. 25: 294-306), and it is also possible to extract and use fats and oils from the algal bodies.
  • algal bodies contain organic substances such as saccharides, proteins, and amino acids. However, a mixture containing these may be hydrolyzed and used as a carbon source.
  • the hydrolyzate of fats and oils is obtained by hydrolyzing fats and oils.
  • Hydrolysis may be performed, for example, chemically or enzymatically.
  • Industrially for example, a continuous high-temperature hydrolysis method is generally performed in which oil and fat are in countercurrent contact with water under high temperature (250-260 ° C.) and high pressure (5-6 MPa).
  • the hydrolysis reaction is carried out at low temperatures (around 30 ° C) using enzymes (Jaeger, K. E. et al. 1994. FEMS Microbiol. Rev. 15: 29-63) .
  • an enzyme lipase that catalyzes the hydrolysis reaction of fats and oils can be used.
  • Lipase is an industrially important enzyme and has various industrial uses (Hasan, F. et al. 2006. Enzyme and Microbiol. Technol. 39: 235-251).
  • the hydrolyzate of fats and oils is obtained as a mixture containing a fatty acid and glycerol. It is known that the weight ratio of glycerol to fatty acid is about 10% in a general fat and oil hydrolyzate such as palm oil.
  • the hydrolyzate of fats and oils is not particularly limited as long as it contains a fatty acid.
  • the hydrolyzate of fats and oils may be used as it is, or may be used after adding or removing desired components.
  • a mixture of fatty acids obtained by removing glycerol from a hydrolyzate of fats and oils may be used as the carbon source.
  • a desired fatty acid may be obtained from a hydrolyzate of fats and oils and used as a carbon source.
  • the fatty acid may be a free form or a salt thereof, or a mixture thereof.
  • the salt include alkali metal salts such as sodium salt and potassium salt.
  • Alkali metal salts of fatty acids are highly water-soluble, and are micellized and retained in water, so that they can be efficiently used by the bacteria of the present invention.
  • fatty acids it is preferable to increase the solubility of fatty acids by performing a treatment for promoting homogenization of fatty acids so that the bacterium of the present invention can use fatty acids more efficiently.
  • Examples of the treatment for promoting homogenization include emulsification.
  • Emulsification can be carried out, for example, by adding an emulsification accelerator or a surfactant.
  • Examples of the emulsification accelerator include phospholipids and sterols.
  • As the surfactant for example, a surfactant generally used in the field of biology can be used.
  • nonionic surfactants include, for example, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate (Tween 80), alkyl glucosides such as n-octyl ⁇ -D-glucoside, Sucrose fatty acid esters such as sugar stearate, polyglycerin fatty acid esters such as polyglycerol stearate, Triton X-100 (TritonTriX-100), polyoxyethylene (20) cetyl ether (Brij-58), nonylphenol ethoxy Rate (Tergitol NP-40).
  • the surfactant include zwitterionic surfactants such as alkylbetaines such as N, N-dimethyl-N-dodecylglycine betaine.
  • examples of the treatment for promoting homogenization include homogenizer treatment, homomixer treatment, ultrasonic treatment, high pressure treatment, and high temperature treatment.
  • homogenizer treatment and / or ultrasonic treatment are preferable.
  • the treatment for promoting homogenization is preferably performed under alkaline conditions in which fatty acids can exist stably.
  • the alkaline condition is preferably pH 9 or more, more preferably pH 10 or more.
  • the fatty acid may or may not be used as the sole carbon source. That is, in the method of the present invention, other carbon sources may be used in combination with the fatty acid.
  • Other carbon sources are not particularly limited, but include sugars such as glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses, starch hydrolyzate, hydrolyzate of biomass, fumaric acid, citric acid, succinate
  • sugars such as glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses
  • starch hydrolyzate hydrolyzate of biomass
  • fumaric acid citric acid
  • succinate examples thereof include organic acids such as acids, and alcohols such as ethanol, glycerol, and crude glycerol.
  • the ratio of fatty acids in the total carbon source may be, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.
  • the ratio of fatty acid to the total amount of fatty acid and glucose is, for example, 2.5% by weight, 5% by weight, 10% by weight, 15% by weight, and 20% by weight. You may select suitably according to the raw material to be used.
  • one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • components in addition to the carbon source, other components can be appropriately used as the medium component.
  • components other than the carbon source include a nitrogen source, a sulfur source, a phosphate source, and a growth promoting factor (a component having a growth promoting effect).
  • Nitrogen sources include ammonia, ammonium salts, nitrates, and urea.
  • ammonium salts include ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, and ammonium acetate.
  • Ammonia gas and ammonia water used for pH adjustment can also be used as a nitrogen source.
  • the nitrogen source also include organic nitrogen sources such as peptone, yeast extract, meat extract, malt extract, corn steep liquor, and soybean hydrolysate. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • sulfur source examples include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione. Of these, ammonium sulfate is preferred.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • Examples of the growth promoting factor include trace metals, amino acids, vitamins, nucleic acids, peptone containing these, casamino acid, yeast extract, and soybean protein degradation product.
  • Examples of trace metals include iron, manganese, magnesium, and calcium.
  • Vitamins include vitamin B1, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12.
  • As the growth promoting factor one kind of growth promoting factor may be used, or two or more kinds of growth promoting factors may be used in combination.
  • L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more components selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and the target L-amino acid is produced.
  • the culture can be performed, for example, under normal conditions used for culture of bacteria such as Escherichia coli.
  • the culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture medium at the start of the culture is also referred to as “initial culture medium”.
  • a medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”.
  • feeding-batch medium supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”.
  • each medium component for example, a carbon source such as a fatty acid, a nitrogen source, a sulfur source, a phosphate source, and a growth promoting factor may be contained in the initial medium, the fed-batch medium, or both.
  • the type of component contained in the initial culture medium may or may not be the same as the type of component contained in the fed-batch medium.
  • concentration of each component contained in a starting culture medium may be the same as the density
  • the fatty acid concentration in the medium is not particularly limited as long as the bacterium of the present invention can use the fatty acid as a carbon source.
  • the fatty acid concentration in the medium may be, for example, 10 w / v% or less, preferably 5 w / v% or less, more preferably 2 w / v% or less.
  • the fatty acid concentration in the medium may be, for example, 0.2 w / v% or more, preferably 0.5 w / v% or more, more preferably 1.0 w / v% or more.
  • the fatty acid may be contained in the initial culture medium, the feed medium, or both in the concentration range exemplified above.
  • the fatty acid when fatty acid is contained in the fed-batch medium, the fatty acid has a fatty acid concentration in the medium after feeding of, for example, 5 w / v% or less, preferably 2 w / v% or less, more preferably 1 w / v%. It may be contained in a fed-batch medium so that Further, when fatty acid is contained in the fed-batch medium, the fatty acid has a fatty acid concentration in the medium after feeding of, for example, 0.01 w / v% or more, preferably 0.02 w / v% or more, more preferably You may contain in a feeding medium so that it may become 0.05 w / v% or more.
  • Fatty acid may be contained in the concentration range exemplified above when used only as a carbon source. Moreover, when using another carbon source together, a fatty acid may be contained in the concentration range illustrated above. In addition, when other carbon sources are used in combination, the fatty acid may be contained in a concentration range in which the above exemplified concentration range is appropriately modified, for example, according to the ratio of fatty acids in the total carbon source.
  • the fatty acid may or may not be contained in the medium in a certain concentration range throughout the culture.
  • the fatty acid may be insufficient for a certain period. “Insufficient” means that the required amount is not satisfied.
  • the concentration in the medium may be zero.
  • the “certain period” may be, for example, a period of 10% or less, a period of 20% or less, or a period of 30% or less of the entire culture period. It is preferable that other carbon sources are satisfied during the period of shortage of fatty acids.
  • the fatty acid is insufficient for a certain period, it is included in “culturing bacteria in a medium containing fatty acid” as long as there is a culture period in a medium containing fatty acid.
  • the fatty acid concentration is determined by gas chromatography (Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70: 22-30) or HPLC (Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49).
  • the culture can be performed aerobically, for example.
  • the culture can be performed by aeration culture or shaking culture.
  • the oxygen concentration may be controlled to be, for example, about 5 to 50%, preferably about 10% of the saturated oxygen concentration.
  • the temperature may be controlled, for example, at 20 to 45 ° C., preferably 33 to 42 ° C.
  • the pH may be controlled, for example, 5-9.
  • calcium carbonate can be added in advance, or the culture can be neutralized with an alkali such as ammonia gas or aqueous ammonia. Under such conditions, for example, by culturing for about 10 to 120 hours, a significant amount of L-amino acid is accumulated in the culture solution.
  • the culture of bacteria may be performed separately for seed culture and main culture.
  • the culture conditions of the seed culture and the main culture may or may not be the same.
  • both seed culture and main culture may be performed by batch culture.
  • seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • fed-batch culture or continuous culture fed-batch may be continued throughout the entire culture period or only during a part of the culture period.
  • multiple feedings may be performed intermittently.
  • the duration of each feeding is, for example, 30% or less, preferably 20% or less, more preferably 10% of the total time of the plurality of feedings.
  • the start and stop of fed batch may be repeated so that:
  • the second and subsequent feedings are controlled so that they are started when the carbon source in the fermentation medium is depleted in the immediately preceding feeding stop phase.
  • Carbon source depletion can be detected, for example, by increasing pH or increasing dissolved oxygen concentration.
  • extraction of the culture solution may be continued throughout the entire culture period, or may be continued only during a part of the culture period. Further, in continuous culture, a plurality of culture solutions may be extracted intermittently. Extraction and feeding of the culture solution may or may not be performed simultaneously. For example, the feeding may be performed after the culture solution is extracted, or the culture solution may be extracted after the feeding.
  • the amount of the culture solution to be withdrawn is preferably the same as the amount of the medium to be fed.
  • the “same amount” may be, for example, an amount of 93 to 107% with respect to the amount of medium to be fed.
  • the withdrawal may be started within 5 hours, preferably within 3 hours, more preferably within 1 hour after the start of fed-batch.
  • the bacterial cells can be reused by recovering L-amino acid from the extracted culture medium and recirculating the filtration residue containing the bacterial cells in the fermenter (French Patent No. 2669935). ).
  • a method for producing a basic amino acid such as L-lysine there is known a method for fermenting and producing a basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of the basic amino acid. (Unexamined-Japanese-Patent No. 2002-65287, US2002-0025564A, EP1813677A).
  • the pH of the medium during the culture is controlled to 6.5 to 9.0, preferably 6.5 to 8.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0.
  • the pressure in the fermenter during the fermentation is controlled to be positive, and the carbon dioxide gas is cultured. It is preferred to feed the liquid or both.
  • the supply air pressure may be set higher than the exhaust pressure.
  • the carbon dioxide gas generated by fermentation dissolves in the culture solution to produce bicarbonate ions and / or carbonate ions, and the bicarbonate ions and / or carbonate ions are counter ions of basic amino acids.
  • the fermenter pressure is 0.03 to 0.2 MPa, preferably 0.05 to 0.15 MPa, more preferably 0.1 to 0.3 MPa in terms of gauge pressure (differential pressure relative to atmospheric pressure). Is mentioned.
  • Fermenter pressure, carbon dioxide supply, and limited air supply can be determined, for example, by measuring the pH of the medium, the concentration of bicarbonate and / or carbonate ions in the medium, or the concentration of ammonia in the medium. Can be determined.
  • sulfate ions and / or chloride ions are used as counter ions for basic amino acids, so a sufficient amount of ammonium sulfate and / or ammonium chloride, or sulfate such as protein as a nutrient component Degradation products and / or hydrochloric acid degradation products were added to the medium. Therefore, a large amount of sulfate ion and / or chloride ion was present in the medium, and the weakly acidic carbonate ion concentration was extremely low, on the order of ppm.
  • one of the purposes is to reduce the amount of sulfate ions and / or chloride ions used, so the total molar concentration of sulfate ions and chloride ions contained in the medium is usually 700 mM or less, preferably 500 mM or less, more preferably 300 mM or less, further preferably 200 mM or less, particularly preferably 100 mM or less.
  • the concentration of sulfate ions and / or chloride ions bicarbonate ions and / or carbonate ions can be more easily present in the medium. That is, in this method, compared to the conventional method, it is possible to keep the pH of the medium for making the amount of bicarbonate ions and / or carbonate ions necessary for counter ions of basic amino acids present in the medium low. Become.
  • the concentration of bicarbonate ions and / or anions other than carbonate ions (also referred to as other anions) in the medium only needs to include an amount necessary for the growth of basic amino acid-producing bacteria. Preferably, it is low.
  • other anions include chloride ions, sulfate ions, phosphate ions, ionized organic acids, and hydroxide ions.
  • the total molar concentration of other anions contained in the medium is usually 900 mM or less, preferably 700 mM or less, more preferably 500 mM or less, still more preferably 300 mM or less, and particularly preferably 200 mM or less.
  • ammonium sulfate or the like is fed to the medium at the beginning of the culture, and the feed is stopped during the culture. Or you may feed ammonium sulfate etc., maintaining the balance with the dissolved amount of the carbonate ion and / or bicarbonate ion in a culture medium.
  • ammonia may be fed to the medium as a nitrogen source for basic amino acids.
  • pH is controlled with ammonia
  • ammonia supplied to increase the pH can be used as a nitrogen source for basic amino acids.
  • Ammonia can be supplied to the medium alone or with other gases.
  • the total ammonia concentration in the medium is preferably controlled to a concentration that does not inhibit the production of basic amino acids.
  • the total ammonia concentration that “does not inhibit the production of basic amino acids” is, for example, preferably 50% or more, more preferably compared to the yield and / or productivity in the case of producing basic amino acids under optimum conditions. Examples include a total ammonia concentration that provides a yield and / or productivity of 70% or more, particularly preferably 90% or more.
  • the total ammonia concentration in the medium is preferably a concentration of 300 mM or less, more preferably 250 mM, particularly preferably 200 mM or less. The degree of ammonia dissociation decreases with increasing pH.
  • Undissociated ammonia is more toxic to bacteria than ammonium ions. Therefore, the upper limit of the total ammonia concentration also depends on the pH of the culture solution. That is, the higher the pH of the culture solution, the lower the allowable total ammonia concentration. Therefore, the total ammonia concentration that does not inhibit the production of basic amino acids is preferably set for each pH. However, the total ammonia concentration range allowed at the highest pH during the culture may be used as the total ammonia concentration range throughout the culture period.
  • the total ammonia concentration as a nitrogen source necessary for the growth of basic amino acid-producing bacteria and the production of basic amino acids does not continue to be a state where ammonia is depleted during the culture, and the microorganism is due to a shortage of nitrogen source.
  • the productivity of the target substance is not reduced by the above, it is not particularly limited and can be set appropriately.
  • the ammonia concentration may be measured over time during the culture, and a small amount of ammonia may be added to the medium when the ammonia in the medium is depleted.
  • the ammonia concentration when ammonia is added is not particularly limited.
  • the total ammonia concentration is preferably 1 mM or more, more preferably 10 mM or more, and particularly preferably 20 mM or more.
  • the medium may contain cations other than basic amino acids.
  • cations other than basic amino acids include K, Na, Mg, and Ca derived from medium components.
  • the total molar concentration of cations other than basic amino acids is preferably 50% or less of the molar concentration of total cations.
  • L-amino acids from the fermentation broth is usually performed by ion exchange resin method (Nagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710), precipitation method, membrane separation method 9-164323, Japanese Patent Laid-Open No. 9-173792), crystallization methods (WO2008 / 078448, WO2008 / 078646), and other known methods can be combined.
  • ion exchange resin method Naagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710
  • precipitation method precipitation method
  • membrane separation method 9-164323 Japanese Patent Laid-Open No. 9-173792
  • crystallization methods WO2008 / 078448, WO2008 / 078646
  • other known methods can be combined.
  • L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant
  • the recovered L-amino acid may contain bacterial cells, medium components, moisture, and bacterial metabolic byproducts in addition to the L-amino acid.
  • the purity of the collected L-amino acid is, for example, 50% or more, preferably 85% or more, particularly preferably 95% or more (JP1214636B, USP 5,431,933, 4,956,471, 4,777,051, 4946654, 5,840,358, 6,238,714, US2005 / 0025878)) .
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • Example 1 Construction of Escherichia coli L-lysine production strain into which fadLDEBA gene group has been introduced ⁇ 1-1> Outline of construction of fadLDEBA gene group introduction strain In this example, from fadL, fadD, fadE, fadB, and fadA An Escherichia coli L-lysine production strain into which the gene group described above was introduced was constructed. This gene group encodes enzymes in the ⁇ -oxidation pathway of fatty acids (Clark, DP and Cronan Jr., JE 1996. p. 343-357.
  • FadB and fadA form an operon composed of fadBA.
  • the Escherichia coli L-lysine producing strain WC196 ⁇ cadA ⁇ ldcC (AJ110692: hereinafter this strain is also referred to as WC196LC) described in International Patent Publication WO2006 / 078039 was used.
  • This strain is a strain in which the cadA gene and the ldcC gene are disrupted in the WC196 strain (FERM BP-5252).
  • the gene group was introduced by constructing the fadEBA operon and fadLD operon by PCR and inserting them on the chromosome of WC196LC.
  • the fadEBA operon and fadLD operon were first developed in a method called “Red-driven integration”, first developed by Datsenko and Wanner (Datsenko, K. A. and Wanner, B. L. 2000. Proc. ⁇ ⁇ Natl. Acad. Sci USA. 97: 6640-6645) was inserted into the chromosome of Escherichia coli K-12 MG1655 strain. Subsequently, the fadEBA operon and the fadLD operon were inserted on the chromosome of WC196LC by P1 transduction using the obtained strain as a donor.
  • the antibiotic resistance gene incorporated into the constructed strain was extracted from the ⁇ phage-derived excision system (Cho, E. H., Gumport, R. I., and Gardner, J. F. 2002. J. Bacteriol. 184 : 5200-5203). The specific construction procedure is shown below.
  • fadEBA operon-introduced strain As a fadEBA operon sequence, a DNA fragment (att-cat) linking a lambda phage attachment site and a chloramphenicol resistance gene upstream of the fadE gene and a tac promoter sequence (Ptac) A DNA fragment having an att-cat-Ptac fragment ligated with (Gene 25 (2-3) 167-178 (1983)) and having a fadBA gene downstream of the fadE gene was constructed. The att-cat-Ptac fragment can be constructed with reference to pMW118-attL-Cm-attR (WO2005 / 010175).
  • PCR was performed using the chromosomal DNA of Escherichia coli K-12 MG1655 as a template using the primers shown in SEQ ID NOs: 1 and 2, and an atd-cat-Ptac fragment and a fadE fragment linked to the fadBA gene were obtained. Obtained. Furthermore, PCR was performed using the primers shown in SEQ ID NOs: 3 and 4 using the att-cat-Ptac fragment as a template to obtain an att-cat-Ptac fragment linked to the 5 ′ side of the fadE fragment.
  • PCR was carried out using the primers shown in SEQ ID NOs: 5 and 6 using the chromosomal DNA of Escherichia coli K-12 MG1655 as a template to obtain a fadBA fragment linked to the 3 ′ side of the fadE fragment.
  • These three PCR products were purified and ligated to the vector pMW119 digested with BamHI using In-Fusion Advantage PCR PCR Cloning Kit (Clontech) to construct plasmid pMW-att-cat-PtacfadEBA for fadEBA operon sequence amplification .
  • PCR was performed using the plasmid pMW-att-cat-PtacfadEBA as a template using the primers shown in SEQ ID NOs: 7 and 8, and the fadEBA operon was genomically located at the site of the yciQ gene, an unknown function gene of Escherichia coli K-12KMG1655 strain.
  • the att-cat-PtacfadEBA fragment for introduction above was obtained.
  • the obtained att-cat-PtacfadEBA fragment was inserted into the yciQ gene site of Escherichia coli K-12 MG1655 strain by the red-driven integration method.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadEBA operon-introduced strain was named MG1655 ⁇ yciQ :: att-cat-PtacfadEBA.
  • MG1655 ⁇ yciQ :: att-cat-PtacfadEBA was obtained.
  • P1 transduction was performed on the WC196LC strain, and a strain in which the fadEBA operon was inserted at the site of the yciQ gene on the chromosome of the WC196LC strain was constructed.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadEBA operon-introduced strain was named WC196LC ⁇ yciQ :: att-cat-PtacfadEBA.
  • pMW-intxis-ts Japanese Patent Laid-Open No. 2005-058227
  • pMW-intxis-ts is a plasmid carrying a gene encoding lambda phage integrase (Int) and a gene encoding excisionase (Xis) and having temperature-sensitive replication ability.
  • a WC196LC ⁇ yciQ :: att-cat-PtacfadEBA strain competent cell obtained above was prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and LB containing 100 mg / L ampicillin at 30 ° C. Plated on an agar medium, ampicillin resistant strains were selected. Next, in order to remove the pMW-intxis-ts plasmid, it was subcultured on LB agar medium at 42 ° C., and the resulting colonies were tested for ampicillin resistance and chloramphenicol resistance. Att-cat and pMW -Acquired stocks where intxis-ts is missing. This strain was named WC196LCPtacfadEBA strain.
  • the fadLD operon sequence has a tac promoter sequence upstream of the fadL gene and a ribosome binding site (RBS) ⁇ (Gene 73 (1988) 227-235) derived from the upstream sequence of the T7 phage 10 gene, and the T7 phage 10 downstream of the fadL gene.
  • RBS ribosome binding site
  • PCR using Escherichia coli K-12 ⁇ MG1655 chromosomal DNA as a template using the primers shown in SEQ ID NOs: 9 and 10 was performed to obtain the atd-cat-Ptac fragment and the fadL fragment linked to the fadD gene. It was. Further, PCR was performed using the primers shown in SEQ ID NOs: 11 and 12 and the att-cat-Ptac fragment as a template to obtain an att-cat-Ptac fragment linked to the 5 ′ side of the fadL fragment.
  • PCR was carried out using the primers shown in SEQ ID NOs: 13 and 14 using the chromosomal DNA of Escherichia coli K-12 MG1655 as a template to obtain a fadD fragment linked to the 3 ′ side of the fadL fragment.
  • the start codon sequence of fadD was ttg in the chromosomal DNA sequence of Escherichia coli K-12 MG1655 strain, but it was replaced with atg.
  • PCR was performed using the plasmid pMW-att-cat-PtacfadLD as a template using the primers shown in SEQ ID NOs: 15 and 16, and the genome of the fadLD operon at the site of the yegD gene, a function-unknown gene of Escherichia coli K-12655MG1655 strain
  • the att-cat-PtacfadLD fragment for introduction above was obtained.
  • the obtained att-cat-PtacfadLD fragment was inserted into the yegD gene site of Escherichia coli K-12 MG1655 strain by the red-driven integration method.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadLD operon-introduced strain was named MG1655 ⁇ yegD :: att-cat-PtacfadLD.
  • WC196LCPtacfadEBA strain was subjected to P1 transduction, and a strain in which the fadLD operon was inserted into the yegD gene site on the chromosome of WC196LCPtacfadEBA strain was constructed.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadLD operon-introduced strain was named WC196LCPtacfadEBA ⁇ yegD :: att-cat-PtacfadLD.
  • the WC196LCPtacfadEBA ⁇ yegD :: att-cat-PtacfadLD strain competent cell obtained above was prepared according to a conventional method, and transformed with the helper plasmid pMW-intxis-ts. Plated on LB agar medium containing 100 mg / L ampicillin at 30 ° C. to select ampicillin resistant strains. Next, in order to remove the pMW-intxis-ts plasmid, it was subcultured on LB agar medium at 42 ° C., and the resulting colonies were tested for ampicillin resistance and chloramphenicol resistance. Att-cat and pMW -Acquired stocks where intxis-ts is missing. This strain was named WC196LCPtacfadEBAPtacfadLD strain.
  • the obtained WC196LCPtacfadEBAPtacfadLD / pCABD2 strain was cultured at 37 ° C. in an LB medium containing 20 ⁇ g / L streptomycin until the OD600 was about 0.3.
  • an equal volume of 40% glycerol solution and the culture solution were added and stirred, and then dispensed in appropriate amounts and stored at ⁇ 80 ° C. to obtain a glycerol stock.
  • Example 2 Construction of Escherichia coli L-lysine producing bacterium introduced with lcfA gene and fadLEBA gene group ⁇ 2-1> Outline of construction of lcfA gene and fadLEBA gene group introduction strain lcfA as a fadD gene derived from Bacillus subtilis A gene (J. Biol. Chem. Vol. 282 No. 8 p. 5180-5194) has been reported. The complete nucleotide sequence of the Bacillus subtilis chromosome has already been clarified (Nature 390: 249-56 (1997)), and the nucleotide sequence of the lcfA gene has been reported in this document.
  • SEQ ID NO: 17 shows the nucleotide sequence of the lcfA gene
  • SEQ ID NO: 18 shows the amino acid sequence encoded by the lcfA gene.
  • the fadLlcfA operon was constructed based on the base sequence of the lcfA gene and inserted into the chromosome of the MG1655 strain by the Red-driven integration method. Subsequently, the fadLlcfA operon was inserted on the chromosome of WC196LCPtacfadEBA by P1 transduction using the MG1655 strain into which the fadLlcfA operon was inserted as a donor. Furthermore, the antibiotic resistance gene integrated into the constructed strain was removed by a ⁇ phage-derived excision system. The specific construction procedure is shown below.
  • a fadLlcfA operon sequence As a fadLlcfA operon sequence, a tac promoter sequence upstream of the fadL gene and a ribosome binding site (RBS) derived from a T7 phage 10 gene upstream sequence (Gene 73 (1988) 227 -235) and a DNA fragment having a ribosome binding site (RBS) derived from the upstream sequence of the T7 phage 10 gene and the lcfA gene downstream of the fadL gene.
  • RBS ribosome binding site
  • PCR using Escherichia coli K-12 MG1655 chromosomal DNA as a template using the primers shown in SEQ ID NOs: 19 and 20 was performed to obtain an atd-cat-Ptac fragment and a fadL fragment linked to the lcfA gene. It was. Furthermore, PCR was performed using the primers shown in SEQ ID NOs: 21 and 22 and the att-cat-Ptac fragment as a template to obtain an att-cat-Ptac fragment linked to the 5 ′ side of the fadL fragment.
  • PCR was performed using the primers shown in SEQ ID NOs: 23 and 24 using the chromosomal DNA of Bacillus subtilis 168M as a template to obtain an lcfA fragment linked to the 3 ′ side of the fadL fragment.
  • These three PCR products were purified and ligated to BamHI-digested vector pMW119 using In-Fusion Advantage PCR PCR Cloning Kit (Clontech) to construct plasmid pMW-att-cat-PtacfadLlcfA for fadLlcfA operon sequence amplification .
  • PCR was performed using the plasmid pMW-att-cat-PtacfadLlcfA as a template using the primers shown in SEQ ID NOs: 25 and 26, and the genome of the fadLlcfA operon at the site of the yegD gene, a function-unknown gene of Escherichia coli K-121MG1655 strain
  • the att-cat-PtacfadLlcfA fragment for introduction above was obtained.
  • the obtained att-cat-PtacfadLlcfA fragment was inserted into the yegD gene site of Escherichia coli K-12 MG1655 strain by the red-driven integration method.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadLlcfA operon-introduced strain was named MG1655 ⁇ yegD :: att-cat-PtacfadLlcfA.
  • MG1655 ⁇ yegD att-cat-PtacfadLlcfA as a donor
  • P1 transduction was performed on the WC196LCPtacfadEBA strain, and a strain in which the fadLlcfA operon was inserted at the site of the yegD gene on the chromosome of the WC196LCPtacfadEBA strain was constructed.
  • Candidate strains with the desired gene replacement were selected using chloramphenicol resistance as an index. It was confirmed by PCR that the target gene replacement occurred in the candidate strain.
  • the obtained fadLlcfA operon-introduced strain was named WC196LCPtacfadEBA ⁇ yegD :: att-cat-PtacfadLlcfA.
  • the WC196LCPtacfadEBA ⁇ yegD :: att-cat-PtacfadLlcfA strain competent cell obtained above was prepared according to a conventional method, and transformed with the helper plasmid pMW-intxis-ts. Plated on LB agar medium containing 100 mg / L ampicillin at 30 ° C. to select ampicillin resistant strains. Next, in order to remove the pMW-intxis-ts plasmid, it was subcultured on LB agar medium at 42 ° C., and the resulting colonies were tested for ampicillin resistance and chloramphenicol resistance. Att-cat and pMW -Acquired stocks where intxis-ts is missing. This strain was named WC196LCPtacfadEBAPtacfadLlcfA strain.
  • the obtained WC196LCPtacfadEBAPtacfadLlcfA / pCABD2 strain was cultured at 37 ° C. in an LB medium containing 20 mg / L of streptomycin until the OD600 reached about 0.3. Next, an equal volume of 40% glycerol solution and the culture solution were added and stirred, and then dispensed in appropriate amounts and stored at ⁇ 80 ° C. to obtain a glycerol stock.
  • Example 3 L-lysine production by lcfA gene and fadLEBA gene group-introduced strains Melt glycerol stock of WC196LCPtacfadEBAPtacfadLlcfA / pCABD2 strain, WC196LCPtacfadEBAPtacfadLfadD / pCABD2 strain, and control strain WC196LC / pCABD2 strain (WO2006 / 078039) was uniformly applied to an LB agar medium plate containing 20 mg / L of streptomycin and cultured at 37 ° C. for 24 hours.
  • the amount of L-lysine in the culture supernatant was measured with a biosensor BF-5 (Oji Scientific Instruments).
  • the degree of growth was measured by turbidity (OD600) after the medium was diluted with a Tween 0.5% solution.
  • Table 1 shows the average results when glucose 30 g / L and sodium oleate 4 g / L are used as the carbon source.Table 1 shows the average results when glucose 20 g / L and sodium oleate 3 g / L is used as the carbon source. It shows in Table 2.
  • the L-lysine producing strain (WC196LCPtacfadEBAPtacfadLlcfA / pCABD2) introduced with the lcfA gene and the fadLEBA gene group is the control strain (WC196LC / pCABD2) and the L-lysine producing strain (WC196LCPtacfadEBAPtacfadLfaD introduced with the fadLDEBA gene group.
  • WC196LCPtacfadEBAPtacfadLfaD introduced with the fadLDEBA gene group.
  • L-lysine production was significantly higher.
  • L-amino acid-producing ability of bacteria when fatty acids are used as a carbon source can be improved, and L-amino acids can be efficiently produced using fatty acids as a carbon source.
  • SEQ ID NOs: 1, 2 PCR primers for amplification of fadE gene fragments
  • SEQ ID NOs: 3, 4 PCR primers for amplification of att-cat-Ptac fragments
  • SEQ ID NOs: 5 6: PCR primers for amplification of fadBA gene fragments
  • SEQ ID NOs: 7, 8 att- PCR primer for cat-PtacfadEBA gene fragment amplification
  • 10 PCR primer for amplification of fadL gene fragment
  • 12 PCR primer for amplification of att-cat-Ptac fragment
  • 14 PCR for amplification of fadD gene fragment
  • Primer SEQ ID NOs: 15 and 16 PCR primers for amplification of att-cat-PtacfadLfadD gene fragment
  • SEQ ID NO: 17 Base sequence of lcfA gene of Bacillus subtilis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 脂肪酸を炭素源として用いるL-アミノ酸の製造法を提供する。lcfA遺伝子が導入されたL-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸を含有する培地中で培養し、該培地からL-アミノ酸を採取することにより、L-アミノ酸を製造する。

Description

L-アミノ酸の製造法
 本発明は、細菌を用いたL-リジン等のL-アミノ酸の製造法に関する。L-アミノ酸は、調味料、食品添加物、飼料添加物、化学製品、医薬品などの様々な分野に利用される。
 L-リジン等のL-アミノ酸は、L-アミノ酸生産能を有するエシェリヒア属細菌等のL-アミノ酸生産菌を用いて発酵法により工業生産されている。L-アミノ酸生産菌としては、自然界から分離した菌株やその改変株が用いられている。L-リジンの製造法としては、例えば、特許文献1~4に記載された方法が挙げられる。
 L-アミノ酸の発酵生産においては、炭素源として、一般的に、グルコース、フラクトース、スクロース、廃糖蜜、澱粉加水分解物等の糖類が使用されている。
 一方、脂肪酸を炭素源としてL-アミノ酸を発酵生産する方法も知られている。そのような方法としては、例えば、変異型rpsA遺伝子を有する腸内細菌科に属するL-アミノ酸生産菌を用いる方法(特許文献5)、UspAタンパク質の活性が低下するように改変された腸内細菌科に属するL-アミノ酸生産菌を用いる方法(特許文献6)、脂肪酸資化能が高まるように改変された腸内細菌科に属するL-アミノ酸生産菌を用いる方法(特許文献7)が挙げられる。
 脂肪酸は、β酸化と呼ばれる資化経路を経て資化される(非特許文献1)。β酸化を触媒する酵素群は、fadL、fadD、fadE、fadB、fadAからなるfadレギュロンにコードされており、fadレギュロンの発現は、fadRにコードされる転写因子により抑制される(非特許文献1)。よって、例えば、fadR遺伝子の発現を弱化させることや、fadL、fadE、fadD、fadB、及びfadA遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現を増強させることにより、細菌の脂肪酸資化能を高めることができる(特許文献7)。
 fadD遺伝子は、長鎖脂肪酸から脂肪酸アシルCoA(fatty acyl-CoA)を生成するとともに、内膜を通して取り込むタンパク質をコードする(非特許文献2)。例えば、エシェリヒア・コリのfadD遺伝子の発現を増強することにより、L-リジンやL-スレオニン等のL-アミノ酸の生産を向上させることができることが知られている(特許文献7)。一方、バチルス・ズブチリスは、fadD遺伝子に相当する遺伝子として、lcfA遺伝子を有する(非特許文献3)。
 しかしながら、バチルス・ズブチリスのlcfA遺伝子がコードするタンパク質は、エシェリヒア・コリのfadD遺伝子がコードするタンパク質に対し、わずか39%の同一性しか示さず、lcfA遺伝子を腸内細菌に導入することが、脂肪酸を炭素源とするL-アミノ酸生産に与える影響については知られていない。
特開平10-165180号公報 特開平11-192088号公報 特開2000-253879号公報 特開2001-057896号公報 国際公開第2011/096554号パンフレット 国際公開第2011/096555号パンフレット 特開2011-167071号公報
Clark, D. P. and Cronan, J. E. Jr. 1996. p. 343-357. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170 Matsuoka, H. et al. 2007. J. Biol. Chem. Vol. 282 No. 8 p.5180-5194
 本発明は、脂肪酸を炭素源として用いる場合の細菌のL-アミノ酸生産能を向上させる新規な技術を開発し、脂肪酸を炭素源として用いるL-アミノ酸の製造法を提供することを課題とする。
 本発明者は、上記課題を解決するために鋭意研究を行った結果、バチルス・ズブチリス由来のlcfA遺伝子を細菌に導入することによって、脂肪酸を炭素源として用いる場合の細菌のL-アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通り例示できる。
[1]
 L-アミノ酸の製造方法であって、
 L-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸を含有する培地中で培養すること、および該培地からL-アミノ酸を採取すること、を含み、
 前記細菌が、lcfA遺伝子が導入された細菌であり、
 前記lcfA遺伝子が、下記(A)~(D)からなる群より選択されるDNAである、方法:
(A)配列番号18に示すアミノ酸配列を含むタンパク質をコードするDNA;
(B)配列番号18に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、又は付加を含むアミノ酸配列を含み、かつ、長鎖脂肪酸から脂肪酸アシルCoAを生成するとともに、内膜を通して取り込む活性を有するタンパク質をコードするDNA;
(C)配列番号17に示す塩基配列を含むDNA;
(D)配列番号17に示す塩基配列に相補的な塩基配列又は該塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、長鎖脂肪酸から脂肪酸アシルCoAを生成するとともに、内膜を通して取り込む活性を有するタンパク質をコードするDNA。
[2]
 前記細菌が、さらに、脂肪酸資化能が高まるように改変されている、前記方法。
[3]
 下記(a)~(d)のいずれかにより脂肪酸資化能が高まるように改変された、前記方法。
(a)fadR遺伝子の発現を弱化させること;
(b)fadL、fadE、fadD、fadB、及びfadA遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現を増強させること;
(c)cyoABCDEオペロンの発現の発現を増強させること;
(d)それらの組み合わせ。
[4]
 前記脂肪酸がオレイン酸である、前記方法。
[5]
 前記培地が、さらに、脂肪酸以外の炭素源を含有する、前記方法。
[6]
 前記脂肪酸以外の炭素源がグルコースである、前記方法。
[7]
 前記L-アミノ酸がL-リジンである、前記方法。
[8]
 前記細菌がエシェリヒア属細菌である、前記方法。
[9]
 前記細菌がエシェリヒア・コリである、前記方法。
 以下、本発明を詳細に説明する。
<1>本発明の方法に用いられる細菌
 本発明の方法に用いられる細菌(以下、「本発明の細菌」ともいう)は、L-アミノ酸生産能を有する腸内細菌科に属する細菌であって、且つ、lcfA遺伝子が導入された細菌である。本発明の細菌は、脂肪酸を炭素源として利用する能力を有する。
<1-1>L-アミノ酸生産能を有する細菌
 本発明において、「L-アミノ酸生産能を有する細菌」とは、脂肪酸を含有する培地で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
 L-アミノ酸としては、L-リジン、L-オルニチン、L-アルギニン、L-ヒスチジン、L-シトルリン等の塩基性アミノ酸、L-イソロイシン、L-アラニン、L-バリン、L-ロイシン、グリシン等の脂肪族アミノ酸、L-スレオニン、L-セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L-プロリン等の環式アミノ酸、L-フェニルアラニン、L-チロシン、L-トリプトファン等の芳香族アミノ酸、L-システイン、L-シスチン、L-メチオニン等の含硫アミノ酸、L-グルタミン酸、L-アスパラギン酸等の酸性アミノ酸、L-グルタミン、L-アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、2またはそれ以上のアミノ酸の生産能を有していてもよい。
 本発明において、L-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。
 なお、本発明において、アミノ酸は、特記しない限りL-アミノ酸である。
 腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、プロトタイプの野生株K12由来のエシェリヒア・コリW3110(ATCC 27325)やエシェリヒア・コリMG1655(ATCC 47076)が挙げられる。
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることができる。すなわち、各菌株には登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。
 エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng.2007 Mar 27; 98(2) 340-348)、AJ110637(FERM BP-10955)株が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。
 パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスAJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、及びSC17(0)株(VKPM B-9246)が挙げられる。なお、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。
 エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。
 腸内細菌科に属するL-アミノ酸生産菌は、例えば、上記のような腸内細菌科に属する細菌にL-アミノ酸生産能を付与することにより、または、上記のような腸内細菌科に属する細菌のL-アミノ酸生産能を増強することにより、取得できる。
 L-アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL-アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N’-ニトロ-N-ニトロソグアニジン等の変異剤処理が挙げられる。
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。
 以下、L-アミノ酸生産菌、およびL-アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL-アミノ酸生産菌が有する性質およびL-アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。
<L-リジン生産菌>
 L-リジン生産菌又はそれを誘導するための親株としては、L-リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyrvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenease)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。なお、カッコ内は、その遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下または欠損している株も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンアナログに耐性を有する変異株も挙げられる。L-リジンアナログはエシェリヒア属細菌等の腸内細菌科に属する細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、腸内細菌科に属する細菌を通常の人工変異処理に付すことによって得ることができる。
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、E. coli AJ11442(FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL611が挙げられる。これらの株では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され、1994年12月6日、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。
 好ましいL-リジン生産菌としては、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadAΔldc/pCABD2が挙げられる(WO2006/078039)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子が破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldc株に、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより得られた株である。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-11027として寄託された。pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するE. coli由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するE. coli由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、E. coli由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来のジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含む。
<L-スレオニン生産菌>
 L-スレオニン生産菌又はそれを誘導するための親株としては、L-スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578号)が挙げられる。
 L-スレオニン生合成系酵素の活性は、最終産物のL-スレオニンによって阻害される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO 2005/049808; WO2005/049808; WO2003/097839参照)。
 スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ-ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L-スレオニンによるフィードバック阻害を受けないように改変された細菌は、L-スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。
 このようにL-スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。
 また、L-スレオニン生産能を付与または増強する方法としては、宿主にL-スレオニン耐性を付与する方法やL-ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L-スレオニンに耐性を付与する遺伝子やL-ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123-135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK遺伝子、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また、宿主にL-スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や国際公開第90/04636号パンフレットに記載の方法を参照出来る。
 L-スレオニン生産菌又はそれを誘導するための親株の例として、具体的には、特に制限されないが、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)、ならびにE. coli VKPM B-5318 (EP 0593792 B)などのエシェリヒア属に属する株が挙げられる。
 VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、スクロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有する。また、B-3996株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号B-3996で寄託されている。
 VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-5318で国際寄託されている。
 E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。
 E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。
<L-アルギニン生産菌>
 L-アルギニン生産菌又はそれを誘導するための親株としては、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミルフォスフェートレダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタメートキナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、オルニチンカルバモイルトランスフェラーゼ(argF)、アルギノコハク酸シンテターゼ(argG)、アルギノコハク酸リアーゼ(argH)、カルバモイルフォスフェートシンテターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換され、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
 L-アルギニン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、変異型N-アセチルグルタメートシンターゼを保持するその誘導株(ロシア特許出願第2001112869号)、237株由来の酢酸資化能が向上した株であるE. coli 382株 (VKPM B-7926) (EP1170358A1)、及びN-アセチルグルタメートシンテターゼをコードするargA遺伝子が導入されたE. coliアルギニン生産株(EP1170361A1)などのエシェリヒア属に属する株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管された。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7926の受託番号で寄託されている。
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α-メチルメチオニン、p-フルオロフェニルアラニン、D-アルギニン、アルギニンヒドロキサム酸、S-(2-アミノエチル)-システイン、α-メチルセリン、β-2-チエニルアラニン、またはスルファグアニジンに耐性を有するエシェリヒア・コリ変異株(特開昭56-106598号公報参照)が挙げられる。
<L-シトルリン生産菌およびL-オルニチン生産菌>
 L-シトルリンおよびL-オルニチンは、L-アルギニンと生合成経路が共通している。よって、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L-シトルリンおよび/またはL-オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L-ヒスチジン生産菌>
 L-ヒスチジン生産菌又はそれを誘導するための親株としては、L-ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシルAMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
 hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素は、L-ヒスチジンにより阻害されることが知られている。従って、L-ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、 付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。
 L-ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli 80株 (VKPM B-7270, RU2119536)、E. coli NRRL B-12116~B-12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM-P 5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE. coli株(EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270, ロシア特許第2119536号)などのエシェリヒア属に属する株が挙げられる。
<L-システイン生産菌>
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼや3-ホスホグリセリン酸デヒドロゲナーゼが挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L-システインの分解に関与する酵素が挙げられる。L-システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン-β-リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O-アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)が挙げられる。
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L-システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。
 L-システイン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、フィードバック阻害耐性のセリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフォヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO0127307A1)などのエシェリヒア属に属する株が挙げられる。
<L-メチオニン生産菌>
 また、L-メチオニン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471号)。また、L-メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
 L-メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11539 (NRRL B-12399)、E. coli AJ11540 (NRRL B-12400)、E. coli AJ11541 (NRRL B-12401)、E. coli AJ11542 (NRRL B-12402) (英国特許第2075055号)、L-メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) (ロシア特許第2215782号)、E. coli AJ13425 (FERM P-16808)(特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性、及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来のL-スレオニン要求株である。
<L-ロイシン生産菌>
 L-ロイシン生産菌又はそれを誘導するための親株としては、L-ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
 L-ロイシン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、ロイシン耐性のE. coli株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))、β-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられる。
<L-イソロイシン生産菌>
 L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
 L-イソロイシン生産菌又はそれを誘導するための親株の例としては、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらにDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号).が挙げられるが、これらに限定されない。
<L-バリン生産菌>
 L-バリン生産菌又はそれを誘導するための親株としては、L-バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
 また、L-バリン生産菌又はそれを誘導するための親株としては、L-バリンの生合成経路から分岐してL-バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下した株も挙げられる。そのような酵素としては、特に制限されないが、L-ロイシン合成に関与するスレオニンデヒドラターゼやD-パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。
 L-バリン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号) などのエシェリヒア属に属する株が挙げられる。
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNAシンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L-バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。
<L-グルタミン酸生産菌>
 L-グルタミン酸生産菌又はそれを誘導するための親株としては、L-グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。そのような酵素としては、特に制限されないが、グルタメートデヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタメートシンテターゼ(gltBD)、イソシトレートデヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ホスホエノールピルベートカルボシラーゼ(ppc)、ピルベートデヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルベートシンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセレートキナーゼ(pgk)、グリセルアルデヒド-3-フォスフェートデヒドロゲナーゼ(gapA)、トリオースフォスフェートイソメラーゼ(tpiA)、フルクトースビスフォスフェートアルドラーゼ(fbp)、ホスホフルクトキナーゼ(pfkA, pfkB)、グルコースフォスフェートイソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。これらの酵素の中では、グルタメートデヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルベートカルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
 シトレートシンテターゼ遺伝子、ホスホエノールピルベートカルボキシラーゼ遺伝子、および/またはグルタメートデヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損している株も挙げられる。そのような酵素としては、特に制限されないが、イソシトレートリアーゼ(aceA)、α-ケトグルタレートデヒドロゲナーゼ(sucA)、ホスホトランスアセチラーゼ(pta)、アセテートキナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセトラクテートシンターゼ(ilvI)、フォルメートアセチルトランスフェラーゼ(pfl)、ラクテートデヒドロゲナーゼ(ldh)、グルタメートデカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)、1-ピロリン-5-カルボキシレートデヒドロゲナーゼ(putA)が挙げられる。
 α-ケトグルタレートデヒドロゲナーゼ(αKGDH)活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα-ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許6,197,559号公報、米国特許6,682,912号公報、米国特許6,331,419号公報、米国特許8,129,151号公報、およびWO2008/075483に開示されている。α-ケトグルタレートデヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、下記のものが挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
 E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタレートデヒドロゲナーゼ遺伝子(以下、「sucA遺伝子」ともいう)を破壊することにより得られた株である。この株は、α-ケトグルタレートデヒドロゲナーゼ活性を完全に欠損している。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、パントエア・アナナティスAJ13355株(FERM BP-6614)、SC17株(FERM BP-11091)、SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。SC17株は、平成21年2月4日に、産業技術総合研究所特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタレートデヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のαKGDH-E1サブユニット遺伝子(sucA)欠損株であるAJ13356(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA(米国特許第6,596,517号)が挙げられる。AJ13356は、1998年2月19日、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417株が付与され、2004年2月26日に産業技術総合研究所特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-08646として寄託されている。
 尚、AJ13355は、分離された当時はエンテロバクター・アグロメランスと同定されたが、近年、16S rRNAの塩基配列解析などにより、パントエア・アナナティスに再分類されている。よって、AJ13355及びAJ13356は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、パントエア・アナナティスSC17sucA/RSFCPG+pSTVCB株、AJ13601株、NP106株、及びNA1株も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタメートデヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得た株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株が挙げられる(特開2010-041920号)
 L-グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、特に制限されないが、E. coli VL334thrC+ (VKPM B-8961) (EP 1172433)などのエシェリヒア属に属する株が挙げられる。E. coli VL334 (VKPM B-1641)は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である(米国特許第4,278,765号)。VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L-イソロイシン要求性のL-グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K12株 (VKPM B-7)の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α-ケトグルタレートデヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α-ケトグルタレートデヒドロゲナーゼ活性を欠損した株としては、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5.908,768号)、さらにL-グルタミン酸分解能が低下したFFRM P-12379(米国特許第5,393,671号)、AJ13138 (FERM BP-5565) (米国特許第6,110,714号)が挙げられる。
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、D-キシロース-5-リン酸-ホスホケトラーゼ及び/又はフルクトース-6-リン酸ホスホケトラーゼ活性を増強するように改変された株も挙げられる(特表2008-509661)。D-キシロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD-キシロース-5-リン酸-ホスホケトラーゼとフルクトース-6-リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。
 D-キシロース-5-リン酸-ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース-5-リン酸をグリセルアルデヒド-3-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
 また、フルクトース-6-リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6-リン酸をエリスロース-4-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
<L-グルタミン生産菌>
 L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。
 また、L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミンの生合成経路から分岐してL-グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。
 L-グルタミン生産菌又はそれを誘導するための親株としては、グルタミンシンセターゼの397位のチロシン残基が他のアミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(米国特許出願公開第2003-0148474号明細書)。
<L-プロリン生産菌>
 L-プロリン生産菌又はそれを誘導するための親株としては、L-プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増強された株が挙げられる。L-プロリン生合成に関与する酵素としては、グルタミン酸5-キナーゼ、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼが挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタメートキナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
 また、L-プロリン生産菌又はそれを誘導するための親株としては、L-プロリン分解に関与する酵素の活性が低下した株も挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。
 L-プロリン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、E. coli NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、E. coli VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、ilvA遺伝子が欠損しL-プロリンを生産できるE. coli 702ilvA (VKPM B-8012) (EP 1172433)などのエシェリヒア属に属する株が挙げられる。
<L-トリプトファン生産菌、L-フェニルアラニン生産菌、L-チロシン生産菌>
 L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
 これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。
 L-トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL-トリプトファン生産能を付与または増強してもよい(WO2005/103275)。
 L-フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
 L-チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼはL-チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
 L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L-トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L-フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L-チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。
 L-トリプトファン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィードバック阻害を受けないフォスフォグリセリレートデヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニレートシンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株 (特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、ホスホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)などのエシェリヒア属に属する株が挙げられる。また、L-トリプトファン生産菌又はそれを誘導するための親株としては、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(米国特許出願公開2003/0148473 A1及び2003/0157667 A1)。
 L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、特に制限されないが、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141, NRRL B-12145, NRRL B-12146及びNRRL B-12147 (米国特許第4,407,952号)などのエシェリヒア属に属する株が挙げられる。また、L-フェニルアラニン生産菌又はそれを誘導するための親株としては、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP-3566)、E. coli K-12 [W3110 (tyrA)/pPHAD] (FERM BP-12659)、E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM BP-12662)、及びE. coli K-12 AJ 12604 [W3110 (tyrA)/pBR-aroG4, pACMAB] (FERM BP-3579)も 挙げられる(EP 488424 B1)。また、L-フェニルアラニン生産菌又はそれを誘導するための親株としては、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(米国特許出願公開2003/0148473 A1及び2003/0157667 A1、WO03/044192)。
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL-アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L-アミノ酸を排出する活性は、例えば、L-アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。
 糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6-リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps;欧州出願公開877090号明細書)、ホスホエノ-ルピルビン酸カルボキシラ-ゼ遺伝子(ppc;国際公開95/06114号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、ピルビン酸キナーゼ遺伝子(pykF;国際公開03/008609号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。
 エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。
 なお、上記のL-アミノ酸生産菌の育種に使用される遺伝子は、コードされるタンパク質の機能が損なわれない限り、上述した遺伝子情報を持つ遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、L-アミノ酸生産菌の育種に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、後述するlcfA遺伝子およびLcfAタンパク質のバリアントに関する記載を準用できる。
<1-2>lcfA遺伝子の導入
 本発明の細菌には、lcfA遺伝子が導入されている。本発明の細菌は、上述のようなL-アミノ酸生産能を有する腸内細菌科に属する細菌に、lcfA遺伝子を導入することにより取得できる。また、本発明の細菌は、腸内細菌科に属する細菌にlcfA遺伝子を導入した後に、L-アミノ酸生産能を付与または増強することによっても得ることができる。なお、本発明の細菌は、lcfA遺伝子が導入されたことにより、L-アミノ酸生産能を獲得したものであってもよい。本発明において、本発明の細菌を構築するための改変は、任意の順番で行うことができる。
 以下に、lcfA遺伝子について説明する。
 本発明において、「lcfA遺伝子」とは、長鎖脂肪酸から脂肪酸アシルCoA(fatty acyl-CoA)を生成するとともに、内膜を通して取り込むタンパク質をコードする遺伝子をいう。本発明において、「長鎖脂肪酸から脂肪酸アシルCoAを生成するとともに、内膜を通して取り込む」活性を、「LcfA活性」ともいう。
 LcfA活性は、例えば、長鎖脂肪酸の取り込み活性として測定できる。長鎖脂肪酸の取り込み活性は、例えば、公知の手法により測定できる(Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170)。また、LcfA活性は、長鎖脂肪酸から脂肪酸アシルCoA(fatty acyl-CoA)を生成する反応を触媒する活性(脂肪酸アシルCoA合成酵素(fatty acyl-CoA synthetase)活性)としても測定できる。脂肪酸アシルCoA合成酵素活性は、例えば、公知の手法により測定できる(Black, PN. et al. J Biol Chem. 1992. 267(35):25513-20)。
 lcfA遺伝子としては、バチルス・ズブチリス(Bacillus subtilis)のlcfA遺伝子が挙げられる(J. Biol. Chem. Vol. 282 No. 8 p.5180-5194)。バチルス・ズブチリスのlcfA遺伝子の塩基配列、及び同遺伝子がコードするタンパク質(LcfAタンパク質)のアミノ酸配列を、それぞれ配列番号17及び18に示す。
 lcfA遺伝子は、LcfA活性を有する限り、上記LcfAタンパク質のバリアントをコードするものであってもよい。なお、そのようなバリアントを「保存的バリアント」という場合がある。保存的バリアントとしては、例えば、上記LcfAタンパク質のホモログや人為的な改変体が挙げられる。
 上記lcfA遺伝子のホモログは、例えば、上記lcfA遺伝子の塩基配列(配列番号17)を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、上記lcfA遺伝子のホモログは、例えば、細菌や酵母の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
 LcfAタンパク質の保存的バリアントをコードする遺伝子は、例えば、以下のような遺伝子であってよい。すなわち、lcfA遺伝子は、LcfA活性を有するタンパク質をコードする限りにおいて、上記アミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。この場合、LcfA活性は、1又は数個の置換、欠失、挿入又は付加される前のタンパク質に対して、通常70%以上、好ましくは80%以上、より好ましくは90%以上が維持され得る。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する細菌の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
 さらに、上記のような保存的変異を有する遺伝子は、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、LcfA活性を有するタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を指すことがある。
 また、lcfA遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、LcfA活性を有するタンパク質をコードするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
 また、lcfA遺伝子は、LcfA活性を有するタンパク質をコードする限り、任意のコドンがそれと等価のコドンに置換されたものであってもよい。例えば、lcfA遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されたものであってもよい。
 なお、上記の遺伝子やタンパク質のバリアントに関する記載は、L-アミノ酸生合成系酵素やトランスポーター等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。
 lcfA遺伝子を細菌に導入することは、後述する「タンパク質の活性を増大させる手法」における、遺伝子のコピー数を増加させる手法にしたがって行うことができる。lcfA遺伝子を含むDNA断片は、例えば、lcfA遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。取得したlcfA遺伝子を含むDNA断片は、例えば、細菌の染色体上に導入してもよい。また、取得したlcfA遺伝子を含むDNA断片は、例えば、宿主細菌で機能するベクターと連結してlcfA遺伝子の発現ベクターを構築し、当該発現ベクターで宿主細菌を形質転換することにより、細菌に導入してもよい。
 なお、腸内細菌科に属する細菌は、もともと、lcfA遺伝子に相当する遺伝子として、fadD遺伝子を有し得る。本発明の細菌は、lcfA遺伝子が導入されている限り、もともと有するfadD遺伝子の発現が弱化するように改変されていてもよい。また、本発明の細菌は、lcfA遺伝子が導入されていることに加えて、fadD遺伝子の発現が増大するように改変されていてもよい。
<1-3>その他の改変
 また、本発明の細菌は、さらに、脂肪酸資化能が高まるように改変されていてもよい。そのような改変としては、fadR遺伝子の発現を弱化すること、fadL、fadE、fadD、fadB、及びfadA遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現を増強すること、cyoABCDEオペロンの発現を増強すること、およびそれらの組み合わせが挙げられる(特開2011-167071)。
 fadR遺伝子は、fadレギュロンの負の転写因子をコードする(DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. Mol. Microbiol. 7: 311-322)。fadレギュロンには、fadL、fadE、fadD、fadB、及びfadA遺伝子が含まれ、これらの遺伝子は脂肪酸代謝に関与するタンパク質をコードする。fadR遺伝子およびfadレギュロンは、例えば、腸内細菌科に属する細菌に見出される。エシェリヒア・コリK12 MG1655株のfadR遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における1234161~1234880位の配列に相当する。エシェリヒア・コリK12 MG1655株のFadRタンパク質は、GenBank accession No. NP_415705で登録されている。
 fadL遺伝子は、長鎖脂肪酸の取り込み能を有する外膜のトランスポーターをコードする(Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419)。エシェリヒア・コリK12 MG1655株のfadL遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における2459328~2460668位の配列に相当する。エシェリヒア・コリK12 MG1655株のFadLタンパク質は、GenBank accession No. NP_416846で登録されている。
 fadD遺伝子は、長鎖脂肪酸から脂肪酸アシルCoA(fatty acyl-CoA)を生成する反応を触媒するとともに(脂肪酸アシルCoA合成酵素(fatty acyl-CoA synthetase)活性)、内膜を通して取り込むタンパク質をコードする(Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170)。エシェリヒア・コリK12 MG1655株のfadD遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における1886085~1887770位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadDタンパク質は、GenBank accession No. NP_416319で登録されている。
 fadE遺伝子は、脂肪酸アシルCoAを酸化する反応を触媒するアシルCoAデヒドロゲナーゼ(acyl-CoA dehydrogenase)活性を有するタンパク質をコードする(O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3759-3764)。エシェリヒア・コリK12 MG1655株のfadE遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における240859~243303位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadEタンパク質は、GenBank accession No. NP_414756で登録されている。
 fadB遺伝子は、脂肪酸酸化複合体(fatty acid oxidation complex)のαサブユニットをコードする。αサブユニットは、エノイルCoAヒドラターゼ(enoyl-CoA hydratase)、3-ヒドロキシアシルCoAデヒドロゲナーゼ(3-hydroxyacyl-CoA dehydrogenase)、3-ヒドロキシアシルCoAエピメラーゼ(3-hydroxyacyl-CoA epimerase)、Δ3-シス-Δ2-トランス-エノイルCoAイソメラーゼ(Δ3-cis-Δ2-trans-enoyl-CoA isomerase)の4つの活性を有する(Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785)。エシェリヒア・コリK12 MG1655株のfadB遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における4026805~4028994位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadBタンパク質は、GenBank accession No. NP_418288で登録されている。
 fadA遺伝子は、脂肪酸酸化複合体(fatty acid oxidation complex)のβサブユニットをコードする。βサブユニットは、3-ケトアシルCoAチオラーゼ(3-ketoacyl-CoA thiolase)活性を有する(Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473)。エシェリヒア・コリK12 MG1655株のfadA遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における4025632~4026795位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadAタンパク質は、GenBank accession No.  YP_026272で登録されている。
 fadAおよびfadB遺伝子は、fadBAオペロンを形成している(Yang, S. Y. et al. 1990. J. Biol. Chem. 265: 10424-10429)。よって、例えば、fadBAオペロン全体の発現を増強してもよい。
 cyoABCDEオペロン(cyoオペロン)は、末端酸化酵素の一つであるシトクロムbo型酸化酵素複合体(cytochrome bo terminal oxidase complex)をコードする。具体的には、cyoB遺伝子がサブユニットIを、cyoA遺伝子がサブユニットIIを、cyoC遺伝子がサブユニットIIIを、cyoC遺伝子がサブユニットIVを、cyoE遺伝子がヘムOシンターゼ(heme O synthase)活性を有するタンパク質をコードする(Gennis, R. B. and Stewart, V. 1996. p. 217-261. In F. D.Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C; Chepuri et al. 1990. J. Biol. Chem. 265: 11185-11192)。cyoオペロンは、例えば、腸内細菌科に属する細菌に見出される。エシェリヒア・コリK12 MG1655株のcyoABCDE遺伝子は、それぞれ、同株のゲノム配列(GenBank accession No. NC_000913)における449887~450834、447874~449865、447270~447884、446941~447270、446039~446929位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のCyoABCDEタンパク質は、それぞれ、GenBank accession No. NP_414966、NP_414965、NP_414964、NP_414963、NP_414962で登録されている。
 また、本発明の細菌は、ピルビン酸シンターゼ(「PS」ともいう)、および/または、ピルビン酸:NADP+オキシドレダクターゼ(「PNO」ともいう)の活性が増大するように改変されていてもよい(WO2009/031565)。
 「ピルビン酸シンターゼ」とは、還元型フェレドキシンまたは還元型フラボドキシンを電子供与体として、アセチル-CoAとCO2からピルビン酸を生成する反応を可逆的に触媒する酵素(EC 1.2.7.1)をいう。PSは、ピルビン酸オキシドレダクターゼ、ピルビン酸フェレドキシンオキシドレダクターゼ、またはピルビン酸フラボドキシンオキシドレダクターゼともいう。PSの活性は、例えば、Yoonらの方法(Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279)に従って測定できる。
 PSをコードする遺伝子(PS遺伝子)としては、クロロビウム・テピダム(Chlorobium tepidum)、ハイドロジェノバクター・サーモフィラス(Hydrogenobacter thermophilus)等の還元的TCAサイクルを有する細菌のPS遺伝子、エシェリヒア・コリ等の腸内細菌科に属する細菌のPS遺伝子、メタノコッカス・マリパルディス(Methanococcus maripaludis)、メタノカルドコッカス・ジャナスチ(Methanocaldococcus jannaschii)、メタノサーモバクター・サーモオートトロフィカス(Methanothermobacter thermautotrophicus)等の独立栄養性メタン生成古細菌(autotrophic methanogens)のPS遺伝子が挙げられる。
 「ピルビン酸:NADP+オキシドレダクターゼ」とは、NADPHあるいはNADHを電子供与体として、アセチル-CoAとCO2からピルビン酸を生成する反応を可逆的に触媒する酵素(EC 1.2.1.15)をいう。ピルビン酸:NADP+オキシドレダクターゼは、ピルビン酸デヒドロゲナーゼともいう。PNOの活性は、例えば、Inuiらの方法(Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135)に従って測定できる。
 PNOをコードする遺伝子(PNO遺伝子)としては、光合成真核微生物で原生動物にも分類されるユーグレナ・グラシリス(Euglena gracilis)のPNO遺伝子(Nakazawa, M. et al. 2000. FEBS Lett. 479: 155-156;GenBank Accession No. AB021127)、原生動物クリプトスポリジウム・パルバム(Cryptosporidium parvum)のPNO遺伝子(Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720)、珪藻タラシオシラ・シュードナナ(Tharassiosira pseudonana)のPNO相同遺伝子(Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231)が挙げられる。
 PS活性の増強は、後述するようなタンパク質の活性を増大する手法に加えて、PS活性に要求される電子供与体の供給を向上させることによっても達成できる。例えば、フェレドキシンまたはフラボドキシンの酸化型を還元型にリサイクルする活性を増強すること、フェレドキシンまたはフラボドキシンの生合成能を増強すること、またはそれらの組み合わせにより、PS活性を増強することができる(WO2009/031565)。
 フェレドキシンまたはフラボドキシンの酸化型を還元型にリサイクルする活性を有するタンパク質としては、フェレドキシン-NADP+レダクターゼが挙げられる。「フェレドキシン-NADP+レダクターゼ」とは、NADPHを電子供与体として、フェレドキシンまたはフラボドキシンの酸化型を還元型に変換する反応を可逆的に触媒する酵素(EC 1.18.1.2)をいう。フェレドキシン-NADP+レダクターゼは、フラボドキシン-NADP+レダクターゼともいう。フェレドキシン-NADP+レダクターゼの活性は、例えば、Blaschkowskiらの方法(Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569)に従って測定できる。
 フェレドキシン-NADP+レダクターゼをコードする遺伝子(フェレドキシン-NADP+レダクターゼ遺伝子)としては、エシェリヒア・コリのfpr遺伝子、コリネバクテリウム・グルタミカムのフェレドキシン-NADP+レダクターゼ遺伝子、シュードモナス・プチダ(Psuedomonas putida)のNADPH-プチダレドキシンレダクターゼ(Putidaredoxin reductase)遺伝子(Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836)が挙げられる。
 フェレドキシンまたはフラボドキシンの生合成能は、フェレドキシンをコードする遺伝子(フェレドキシン遺伝子)またはフラボドキシンをコードする遺伝子(フラボドキシン遺伝子)の発現を増強することにより、増強することができる。フェレドキシン遺伝子またはフラボドキシン遺伝子としては、PSおよび電子供与体再生系が利用可能なフェレドキシンまたはフラボドキシンをコードするものであれば、特に制限されない。
 フェレドキシン遺伝子としては、エシェリヒア・コリのfdx遺伝子やyfhL遺伝子、コリネバクテリウム・グルタミカムのfer遺伝子、クロロビウム・テピダムやハイドロジェノバクター・サーモフィラス等の還元的TCAサイクルを有する細菌のフェレドキシン遺伝子が挙げられる。フラボドキシン遺伝子としては、エシェリヒア・コリのfldA遺伝子やfldB遺伝子、還元的TCAサイクルを有する細菌のフラボドキシン遺伝子が挙げられる。
 なお、上記の遺伝子、例えば、fadR遺伝子、fadレギュロン、cyoABCDEオペロン、PS遺伝子、PNO遺伝子、フェレドキシン-NADP+レダクターゼ遺伝子、フェレドキシン遺伝子、フラボドキシン遺伝子は、コードされるタンパク質の機能が損なわれない限り、上述した遺伝子情報を持つ遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、同遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、上記したlcfA遺伝子およびLcfAタンパク質のバリアントに関する記載を準用できる。
<1-4>タンパク質の活性を増大させる手法
 以下に、タンパク質の活性を増大させる手法について説明する。
 「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が野生株や親株等の非改変株に対して増大していることを意味する。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、細菌が本来有する標的のタンパク質の活性を弱化および/または欠損させた上で、好適な同タンパク質を導入してもよい。
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。
 遺伝子のコピー数の増加は、宿主微生物の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、L-アミノ酸生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。相同組み換えは、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、またはファージを用いたtransduction法により行うことができる。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。
 また、遺伝子のコピー数の増加は、標的遺伝子を含むベクターを宿主細菌に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主細菌で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主細菌を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主細菌の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ細胞内において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pACYC184、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、広宿主域ベクターRSF1010が挙げられる。
 遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、tacプロモーター、およびPLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。
 また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
 本発明においては、プロモーター、SD配列、およびRBSと開始コドンとの間のスペーサー領域等の遺伝子の発現に影響する部位を総称して「発現調節領域」ともいう。発現調節領域は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節領域の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。例えば、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。
 また、酵素活性が増大するような改変は、例えば、酵素の比活性を増強することによっても達成できる。比活性が増強された酵素は、例えば、種々の生物を探索し取得することができる。また、在来の酵素に変異を導入することで高活性型のものを取得してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強させる手法と任意に組み合わせて用いてもよい。
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning A Laboratory Manual/Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
 上記したタンパク質の活性を増大させる手法は、lcfA遺伝子の導入に加えて、任意のタンパク質、例えば、L-アミノ酸生合成系酵素やトランスポーター、の活性増強や、任意の遺伝子、例えば、それら任意のタンパク質をコードする遺伝子、fadレギュロン、cyoABCDEオペロン、PS遺伝子、PNO遺伝子、の発現増強に利用できる。
<1-5>タンパク質の活性を低下させる手法
 以下に、タンパク質の活性を低下させる手法について説明する。
 「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が野性株や親株等の非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成される。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーターやシャインダルガノ(SD)配列等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997) Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や異種タンパク質生産に有用な遺伝子が挙げられる。
 染色体上の遺伝子を上記のように改変することは、例えば、遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで細菌を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線もしくは紫外線の照射、またはN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による通常の変異処理が挙げられる。
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。mRNAの量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。
 上記したタンパク質の活性を低下させる手法は、任意のタンパク質、例えば、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素やL-アミノ酸生合成系酵素のリプレッサー、の活性低下や、任意の遺伝子、例えば、それら任意のタンパク質をコードする遺伝子やfadR遺伝子、の発現低下に利用できる。
<2>本発明のL-アミノ酸の製造方法
 本発明の方法は、脂肪酸を含有する培地中で本発明の細菌を培養すること、および該培地からL-アミノ酸を採取することを含む、L-アミノ酸の製造方法である。すなわち、本発明の方法においては、脂肪酸を炭素源として利用して、L-アミノ酸を発酵生産することができる。
 「脂肪酸」とは、一般式 CnHmCOOH(n+1、m+1は、それぞれ、脂肪酸に含まれる炭素数、水素数を表す)で表される長鎖炭化水素の1価のカルボン酸をいう。脂肪酸は、その炭素数と不飽和度の異なる様々な種類のものが存在する。一般的に、炭素数が12以上の脂肪酸を、長鎖脂肪酸と呼ぶことが多い。また、脂肪酸は、油脂の構成成分であり、油脂の種類によって油脂を構成する脂肪酸の組成は異なることが知られている。
 脂肪酸としては、本発明の細菌が炭素源として利用できる限り、特に制限されない。脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸が挙げられる。これらの中では、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸から選択される脂肪酸が、本発明の細菌により利用されやすく、好ましい。ラウリン酸(C11H23COOH)は、炭素数12の飽和脂肪酸であり、ヤシ油やパーム油に含まれる。ミリスチン酸(C13H27COOH)は、炭素数14の飽和脂肪酸であり、ヤシ油やパーム油に含まれる。パルミチン酸(C15H31COOH)は、炭素数16の飽和脂肪酸であり、植物油脂一般に多く含まれる。ステアリン酸(C17H35COOH)は、炭素数18の飽和脂肪酸であり、動物性脂肪や植物性油に多く含まれる。オレイン酸(C17H33COOH)は、炭素数18の一価の不飽和脂肪酸であり、動物性脂肪や植物油に多く含まれる。リノール酸(C17H31COOH)は、9位と12位にシス型二重結合を含む炭素数18の多価不飽和脂肪酸であり、ベニバナ油やコーン油等の植物性油に多く含まれる。脂肪酸としては、1種の脂肪酸を用いてもよく、2種またはそれ以上の脂肪酸を組み合わせて用いてもよい。2種またはそれ以上の脂肪酸を組み合わせて用いる場合、各脂肪酸の比率は、本発明の細菌が脂肪酸を炭素源として利用できる限り、特に制限されない。
 脂肪酸としては、精製された脂肪酸等の純粋な脂肪酸を用いてもよく、脂肪酸と脂肪酸以外の成分を含有する混合物を用いてもよい。そのような混合物としては、油脂の加水分解物が挙げられる。
 油脂は、脂肪酸とグリセロールのエステルであり、トリグリセリド(triglyceride)とも呼ばれる。油脂は、本発明の細菌が炭素源として利用できる脂肪酸を構成成分として含み、且つ、加水分解が可能な油脂であれば、特に制限されない。油脂は、本発明の細菌が炭素源として利用できる脂肪酸を、高い比率で、構成成分として含むものが好ましい。油脂としては、常温で液体のものを指す脂肪油(oil)や常温で固体のものを指す脂肪(fat)など、いずれの形態のものを使用してもよい。また、油脂としては、動物由来(魚類を含む)油脂や植物由来油脂など、いずれの由来のものを使用してもよい。また、油脂としては、1種の油脂を用いてもよく、2種またはそれ以上の油脂を組み合わせて用いてもよい。油脂としては、精製された油脂等の純粋な油脂を用いてもよく、油脂と油脂以外の成分を含有する混合物を用いてもよい。例えば、油脂が植物由来のものである場合は、そのような混合物としては、油脂を含有する植物抽出物や、油脂を含有するその分画物、例えば油滓、が挙げられる。油滓は、主に植物油の精製工程における遊離脂肪酸を除去するための脱酸処理工程から生じるものであって、植物油の製造工程の副生成物であり、一般的に水分を40~70%、油脂を20~50%含むものである。また、バイオディーゼルの製造過程で生じる粗グリセロールは、バイオディーゼルである脂肪酸メチルエステルや遊離の脂肪酸を数パーセント含んでいることがあり、これを分画して用いることも出来る。
 動物油脂として、具体的には、例えば、バター、豚脂、牛脂、羊脂、クジラ油、イワシ油、ニシン油が挙げられる。植物油脂として、具体的には、例えば、パーム油、オリーブ油、菜種油、大豆油、米糠油、クルミ油、ゴマ油、ピーナッツ油が挙げられる。パーム油は、アブラヤシの果実から採れる油脂であり、近年、バイオディーセル(biodiesel)燃料としての利用が盛んになったことにより生産量が高まっている。アブラヤシ(oil palm)は、ヤシ科アブラヤシ属(Elaeis)に分類される植物の総称である。粗パーム油(crude palm oil)は、一般的に搾油工場で生産される未精製のパーム油を指し、粗パーム油として取引が行われている。また、油脂を蓄積する微細藻類が知られており(Chisti, Y. 2007. Biotechnol Adv. 25: 294-306)、その藻体から油脂を抽出して利用することも可能である。なお、藻体には、油脂以外にも、糖類、タンパク質、アミノ酸などの有機物が含まれているが、これらを含む混合物を加水分解して炭素源として用いてもよい。
 油脂の加水分解物は、油脂を加水分解することにより得られる。加水分解は、例えば、化学的に行われてもよく、酵素的に行われてもよい。工業的には、例えば、高温(250-260℃)、高圧(5-6MPa)下で油脂と水を向流接触させる連続高温加水分解法が一般的に行われている。また、酵素を用いて低温(30℃前後)で加水分解反応を行うことも工業的に行われている(Jaeger, K. E. et al. 1994. FEMS Microbiol. Rev. 15: 29-63)。酵素としては、油脂の加水分解反応を触媒する酵素リパーゼを用いることができる。リパーゼは工業的に重要な酵素であり、様々な産業的利用がなされている(Hasan, F. et al. 2006. Enzyme and Microbiol. Technol. 39: 235-251)。油脂の加水分解物は、脂肪酸およびグリセロールを含有する混合物として得られる。パーム油等の一般的な油脂の加水分解物において、脂肪酸に対するグリセロールの重量比は10%程度であることが知られている。油脂の加水分解物は、脂肪酸を含む限り、特に制限されない。油脂の加水分解物は、そのまま用いてもよく、所望の成分を添加して、あるいは除去して、用いてもよい。例えば、油脂の加水分解物からグリセロールを除去して得られる脂肪酸の混合物を炭素源として用いてもよい。また、例えば、油脂の加水分解物から所望の脂肪酸を取得して炭素源として用いてもよい。
 脂肪酸は、いずれもフリー体もしくはその塩、またはそれらの混合物であってよい。塩としては、ナトリウム塩やカリウム塩等のアルカリ金属塩が挙げられる。脂肪酸のアルカリ金属塩は、水溶性が高く、また、ミセル化して水中に保持されるため、本発明の細菌により効率的に利用され得る。
 また、本発明の細菌が脂肪酸をより効率的に利用できるよう、脂肪酸の均一化を促進する処理を行い、脂肪酸の溶解度を高めるのが好ましい。
 均一化を促進する処理としては、例えば、乳化が挙げられる。乳化は、例えば、乳化促進剤や界面活性剤を添加することにより実施できる。乳化促進剤としては、例えば、リン脂質やステロールが挙げられる。界面活性剤としては、例えば、一般的に生物学の分野で用いられる界面活性剤が利用できる。界面活性剤としては、非イオン界面活性剤では、例えば、ポリオキシエチレンソルビタンモノオレイン酸エステル(Tween 80)などのポリオキシエチレンソルビタン脂肪酸エステル、n-オクチルβ-D-グルコシドなどのアルキルグルコシド、ショ糖ステアリン酸エステルなどのショ糖脂肪酸エステル、ポリグリセリンステアリン酸エステルなどのポリグリセリン脂肪酸エステル、トライトンX-100(Triton X-100)、ポリオキシエチレン(20)セチルエーテル(Brij-58)、ノニルフェノールエトキシレート(Tergitol NP-40)が挙げられる。また、界面活性剤としては、両性イオン界面活性剤では、例えば、N,N-ジメチル-N-ドデシルグリシンベタインなどのアルキルベタインが挙げられる。
 また、均一化を促進する処理としては、例えば、ホモジナイザー処理、ホモミキサー処理、超音波処理、高圧処理、高温処理が挙げられる。これらの中では、ホモジナイザー処理および/または超音波処理が好ましい。また、ホモジナイザー処理および/または超音波処理と、界面活性剤による処理を、組み合わせて用いるのがより好ましい。
 均一化を促進する処理は、脂肪酸が安定に存在できるアルカリ条件下で行われるのが好ましい。アルカリ条件とは、好ましくはpH9以上、より好ましくはpH10以上であってよい。
 本発明の方法においては、脂肪酸は、唯一炭素源(sole carbon source)として利用されてもよく、そうでなくてもよい。すなわち、本発明の方法においては、脂肪酸に加えて、他の炭素源を併用してもよい。他の炭素源としては、特に制限されないが、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、フマル酸、クエン酸、コハク酸等の有機酸類、エタノール、グリセロール、粗グリセロール等のアルコール類が挙げられる。他の炭素源を用いる場合には、総炭素源中の脂肪酸の比率は、例えば、10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上であってよい。具体的には、脂肪酸とグルコースを炭素源として用いる場合、脂肪酸とグルコースの総量に対する脂肪酸の比率は、例えば、2.5重量%、5重量%、10重量%、15重量%、20重量%と使用する原料に応じて適宜選択してもよい。他の炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。
 本発明の方法において、培地成分としては、炭素源に加えて、他の成分を適宜用いることができる。炭素源以外の成分としては、例えば、窒素源、硫黄源、リン酸源、増殖促進因子(増殖促進効果を有する成分)が挙げられる。
 窒素源としては、アンモニア、アンモニウム塩、硝酸塩、ウレアが挙げられる。アンモニウム塩としては、硫酸アンモニウム、炭酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウムが挙げられる。また、pH調整に用いられるアンモニアガス、アンモニア水も窒素源として利用できる。また、窒素源としては、ペプトン、酵母エキス、肉エキス、麦芽エキス、コーンスティープリカー、大豆加水分解物等の有機窒素源も挙げられる。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。
 リン酸源としては、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマー等が挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。
 硫黄源としては、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。これらの中では、硫酸アンモニウムが好ましい。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。
 増殖促進因子としては、微量金属類、アミノ酸、ビタミン、核酸、これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物が挙げられる。微量金属類としては、鉄、マンガン、マグネシウム、カルシウムが挙げられる。ビタミンとしては、ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12が挙げられる。増殖促進因子としては、1種の増殖促進因子を用いてもよく、2種またはそれ以上の増殖促進因子を組み合わせて用いてもよい。
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L-リジン生産菌は、L-リジン生合成経路が強化され、L-リジン分解能が弱化されている場合が多い。よって、そのようなL-リジン生産菌を培養する場合には、例えば、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1またはそれ以上の成分を培地に補添するのが好ましい。
 培養条件は、本発明の細菌が増殖でき、目的のL-アミノ酸が生産される限り、特に制限されない。培養は、例えば、エシェリヒア・コリ等の細菌の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を供給することを、「流加」ともいう。
 本発明において、各培地成分、例えば、脂肪酸等の炭素源、窒素源、硫黄源、リン酸源、増殖促進因子は、初発培地、流加培地、またはその両方に含有されていてよい。初発培地に含有される成分の種類は、流加培地に含有される成分の種類と、同一であってもよく、そうでなくてもよい。また、初発培地に含有される各成分の濃度は、流加培地に含有される各成分の濃度と、同一であってもよく、そうでなくてもよい。また、含有する成分の種類および/または濃度の異なる2種またはそれ以上の流加培地を用いてもよい。例えば、複数回の流加が間欠的に行われる場合、各流加培地に含有される成分の種類および/または濃度は、同一であってもよく、そうでなくてもよい。
 本発明の方法において、培地中の脂肪酸濃度は、本発明の細菌が脂肪酸を炭素源として利用できる限り、特に制限されない。培地中の脂肪酸濃度は、例えば、10w/v%以下、好ましくは5w/v%以下、より好ましくは2w/v%以下であってよい。また、培地中の脂肪酸濃度は、例えば、0.2w/v%以上、好ましくは0.5w/v%以上、より好ましくは1.0w/v%以上であってよい。脂肪酸は、初発培地、流加培地、またはその両方に、上記例示した濃度範囲で含有されていてよい。
 また、脂肪酸が流加培地に含有される場合、脂肪酸は、流加後の培地中の脂肪酸濃度が、例えば、5w/v%以下、好ましくは2w/v%以下、より好ましくは1w/v%以下となるように、流加培地に含有されてもよい。また、脂肪酸が流加培地に含有される場合、脂肪酸は、流加後の培地中の脂肪酸濃度が、例えば、0.01w/v%以上、好ましくは0.02w/v%以上、より好ましくは0.05w/v%以上となるように、流加培地に含有されてもよい。
 脂肪酸は、唯一炭素源として利用される場合に、上記例示した濃度範囲で含有されていてよい。また、脂肪酸は、他の炭素源を併用する場合に、上記例示した濃度範囲で含有されてもよい。また、脂肪酸は、他の炭素源を併用する場合に、例えば、総炭素源中の脂肪酸の比率等に応じて、上記例示した濃度範囲を適宜修正した濃度範囲で含有されてもよい。
 脂肪酸は、培養の全期間において一定の濃度範囲で培地に含有されていてもよく、そうでなくてもよい。例えば、一定期間、脂肪酸が不足していてもよい。「不足する」とは、要求量を満たさないことをいい、例えば、培地中の濃度がゼロとなることであってよい。「一定期間」とは、例えば、培養の全期間の内の、10%以下の期間、20%以下の期間、または30%以下の期間であってよい。脂肪酸が不足する期間には、他の炭素源が充足されているのが好ましい。このように、一定期間、脂肪酸が不足していても、脂肪酸を含有する培地での培養期間が存在する限り、「脂肪酸を含有する培地中で細菌を培養する」ことに含まれる。
 脂肪酸の濃度は、ガスクロマトグラフィー(Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70:22-30)やHPLC(Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49)により測定することができる。
 培養は、例えば、好気的に行うことができる。例えば、培養は、通気培養または振盪培養で行うことができる。酸素濃度は、例えば、飽和酸素濃度の5~50%、好ましくは10%程度に制御されてよい。温度は、例えば、20~45℃、好ましくは33~42℃に制御されてよい。pHは、例えば、5~9に制御されてよい。培養中にpHが下がる場合には、例えば、あらかじめ炭酸カルシウムを加えて培養を行うか、アンモニアガス、アンモニア水等のアルカリで中和することができる。このような条件下で、例えば10時間~120時間程度培養することにより、培養液中に著量のL-アミノ酸が蓄積される。
 本発明において、細菌の培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。
 流加培養または連続培養においては、流加は、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、流加培養または連続培養においては、複数回の流加が間欠的に行われてもよい。
 複数回の流加が間欠的に行われる場合、1回当たりの流加の継続時間が、複数回の流加の合計時間の、例えば30%以下、好ましくは20%以下、より好ましくは10%以下となるように、流加の開始と停止を繰り返してもよい。
 また、複数回の流加が間欠的に行われる場合、2回目以降の流加を、その直前の流加停止期において発酵培地中の炭素源が枯渇したときに開始されるように制御することにより、発酵培地中の炭素源濃度を自動的に低レベルに維持することもできる(米国特許5,912,113号明細書)。炭素源の枯渇は、例えば、pHの上昇または溶存酸素濃度の上昇により検出できる。
 連続培養においては、培養液の引き抜きは、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、連続培養においては、複数回の培養液の引き抜きが間欠的に行われてもよい。培養液の引き抜きと流加は、同時に行われてもよく、そうでなくてもよい。例えば、培養液の引き抜きを行った後で流加を行ってもよく、流加を行った後で培養液の引き抜きを行ってもよい。引き抜く培養液量は、流加させる培地量と同量であるのが好ましい。ここで、「同量」とは、例えば、流加させる培地量に対して93~107%の量であってよい。
 培養液を連続的に引き抜く場合には、流加と同時に、または流加の開始後に、引き抜きを開始するのが好ましい。例えば、流加の開始後5時間以内、好ましくは3時間以内、より好ましくは1時間以内に、引き抜きを開始してよい。
 培養液を間欠的に引き抜く場合には、予定したL-アミノ酸濃度に到達したときに、培養液を一部引き抜いてL-アミノ酸を回収し、新たに培地を流加して培養を継続するのが好ましい。
 また、引き抜かれた培養液から、L-アミノ酸を回収し、菌体を含むろ過残留物を発酵槽中に再循環させることにより、菌体を再利用することもできる(フランス特許2669935号明細書)。
 また、L-リジン等の塩基性アミノ酸を製造する方法として、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法が知られている(特開2002-65287、US2002-0025564A、EP1813677A)。
 同方法においては、培養中の培地のpHを6.5~9.0、好ましくは6.5~8.0、培養終了時の培地のpHを7.2~9.0となるように制御し、重炭酸イオン及び/又は炭酸イオンが培地中に20mM以上、好ましくは30mM以上、より好ましくは40mM以上存在する培養期があるようにする。塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるためには、発酵中の発酵槽内圧力を正となるように制御すること、炭酸ガスを培養液に供給すること、またはその両方を行うのが好ましい。
 発酵中の発酵槽内圧力を正となるように制御するには、例えば、給気圧を排気圧より高くすればよい。発酵槽内圧力を正にすることによって、発酵により生成する炭酸ガスが培養液に溶解して重炭酸イオン及び/又は炭酸イオンを生じ、重炭酸イオン及び/又は炭酸イオンが塩基性アミノ酸のカウンタイオンとなり得る。発酵槽内圧力として、具体的には、ゲージ圧(大気圧に対する差圧)で、0.03~0.2MPa、好ましくは0.05~0.15MPa、より好ましくは0.1~0.3MPaが挙げられる。また、炭酸ガスを培養液に供給する場合は、例えば、純炭酸ガス又は炭酸ガスを5体積%以上含む混合ガスを培養液に吹き込めばよい。発酵槽内圧力、炭酸ガスの供給量、および制限された給気量は、例えば、培地のpH、培地中の重炭酸イオン及び/又は炭酸イオン濃度、または培地中のアンモニア濃度を測定することにより決定できる。
 従来の塩基性アミノ酸の製造方法においては、硫酸イオン及び/又は塩化物イオンを塩基牲アミノ酸のカウンタイオンとして利用するため、十分量の硫酸アンモニウム及び/又は塩化アンモニウム、あるいは、栄養成分として蛋白等の硫酸分解物及び/又は塩酸分解物が培地に添加されていた。そのため、培地中には、硫酸イオン及び/又は塩化物イオンが多量に存在し、弱酸性である炭酸イオン濃度はppmオーダーと極めて低かった。
 一方、上記方法(特開2002-65287、US2002-0025564A、EP1813677A)は、これら硫酸イオンおよび塩化物イオンの使用量を減じ、微生物が発酵時に放出する炭酸ガスを培地中に溶解せしめ、カウンタイオンとして利用することに特徴がある。
 すなわち、同方法においては、硫酸イオン及び/又は塩化物イオンの使用量を削減することが目的の一つであるため、培地に含まれる硫酸イオンおよび塩化物イオンのモル濃度の合計は、通常、700mM以下、好ましくは500mM以下、より好ましくは300mM以下、さらに好ましくは200mM以下、特に好ましくは100mM以下である。硫酸イオン及び/又は塩化物イオン濃度を低減することで、重炭酸イオン及び/又は炭酸イオンをより容易に培地中に存在させることができる。すなわち、同方法においては、従来法に比べて、塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるための培地のpHを低く抑えることが可能となる。
 また、同方法においては、培地中の重炭酸イオン及び/又は炭酸イオン以外のアニオン(他のアニオンともいう)の濃度は、塩基性アミノ酸生産菌の生育に必要な量が含まれてさえいれば、低いことが好ましい。他のアニオンとしては、塩化物イオン、硫酸イオン、リン酸イオン、イオン化した有機酸、水酸化物イオンが挙げられる。培地に含まれる他のアニオンのモル濃度の合計は、通常900mM以下、好ましくは700mM以下、より好ましくは500mM以下、さらに好ましくは300mM以下、特に好ましくは200mM以下である。
 同方法においては、硫酸イオンや塩化物イオンを塩基性アミノ酸生産菌の生育に必要な量以上に培地に添加する必要はない。好ましくは、培養当初は硫酸アンモニウム等を培地に適当量フィードし、培養途中でフィードを止める。あるいは、培地中の炭酸イオン及び/又は重炭酸イオンの溶存量とのバランスを保ちつつ、硫酸アンモニウム等をフィードしてもよい。また、塩基性アミノ酸の窒素源として、アンモニアを培地にフィードしてもよい。例えば、アンモニアでpHを制御する場合、pHを高めるために供給されたアンモニアが、塩基性アミノ酸の窒素源として利用され得る。アンモニアは、単独で、又は他の気体とともに培地に供給することができる。
 また、同方法においては、培地中の総アンモニア濃度を、塩基性アミノ酸の生産を阻害しない濃度に制御するのが好ましい。「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度としては、例えば、最適な条件において塩基性アミノ酸を生産する場合の収率及び/又は生産性に比べて、好ましくは50%以上、より好ましくは70%以上、特に好ましくは90%以上の収率及び/又は生産性が得られる総アンモニア濃度が挙げられる。培地中の総アンモニア濃度として、具体的には、好ましくは300mM以下、より好ましくは250mM、特に好ましくは200mM以下の濃度が挙げられる。アンモニアの解離度はpHが高くなると低下する。解離していないアンモニアは、アンモニウムイオンよりも菌に対して毒性が強い。そのため、総アンモニア濃度の上限は、培養液のpHにも依存する。すなわち、培養液のpHが高いほど、許容される総アンモニア濃度は低くなる。したがって、「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度は、pH毎に設定することが好ましい。しかし、培養中の最も高いpHにおいて許容される総アンモニア濃度範囲を、培養期間を通じての総アンモニア濃度範囲として用いてもよい。
 一方、塩基性アミノ酸生産菌の生育及び塩基性アミノ酸の生産に必要な窒素源としての総アンモニア濃度は、培養中にアンモニアが枯渇した状態が継続せず、且つ、窒素源が不足することによる微生物による目的物質の生産性の低下が起こらない限り、特に制限されず、適宜設定することができる。例えば、培養中にアンモニア濃度を経時的に測定し、培地中のアンモニアが枯渇したら少量のアンモニアを培地に添加してもよい。アンモニアを添加したときのアンモニア濃度としては、特に制限されないが、例えば、総アンモニア濃度として好ましくは1mM以上、より好ましくは10mM以上、特に好ましくは20mM以上の濃度が挙げられる。
 また、同方法において、培地には、塩基性アミノ酸以外のカチオンが含まれ得る。塩基性アミノ酸以外のカチオンとしては、培地成分由来のK、Na、Mg、Caが挙げられる。塩基性アミノ酸以外のカチオンのモル濃度の合計は、好ましくは、総カチオンのモル濃度の50%以下である。
 発酵液からのL-アミノ酸の回収は、通常、イオン交換樹脂法(Nagai,H.et al., Separation Science and Technology, 39(16),3691-3710)、沈殿法、膜分離法(特開平9-164323号、特開平9-173792号)、晶析法(WO2008/078448、WO2008/078646)、その他の公知の方法を組み合わせることにより実施できる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。
 尚、回収されるL-アミノ酸は、L-アミノ酸以外に、細菌菌体、培地成分、水分、及び細菌の代謝副産物を含んでいてもよい。採取されたL-アミノ酸の純度は、例えば50%以上、好ましくは85%以上、特に好ましくは95%以上である (JP1214636B, USP 5,431,933, 4,956,471, 4,777,051, 4946654, 5,840,358, 6,238,714, US2005/0025878))。
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。
 本発明は以下の実施例によって、更に具体的に説明されるが、これらはいかなる意味でも本発明を限定するものと解してはならない。
〔実施例1〕fadLDEBA遺伝子群を導入したエシェリヒア・コリL-リジン生産株の構築
<1-1>fadLDEBA遺伝子群導入株の構築の概要
 本実施例では、fadL、fadD、fadE、fadB、fadAからなる遺伝子群を導入したエシェリヒア・コリL-リジン生産株を構築した。同遺伝子群は、脂肪酸のβ酸化経路の酵素をコードしている(Clark, D. P. and Cronan Jr., J. E. 1996. p. 343-357. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C)。なお、fadBとfadAは、fadBAからなるオペロンを形成している。
 本遺伝子群導入株の親株としては、国際特許公報WO2006/078039に記載のエシェリヒア・コリL-リジン生産株WC196ΔcadAΔldcC株(AJ110692:以下では本株をWC196LCともいう)を用いた。この株は、WC196株(FERM BP-5252)において、cadA遺伝子とldcC遺伝子を破壊した株である。WC196LC株は、2008年10月7日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)にブダペスト条約に基づく国際寄託され、受託番号FERM BP-11027が付与されている。
 同遺伝子群の導入は、fadEBAオペロンおよびfadLDオペロンをPCRによって構築し、WC196LCの染色体上に挿入することにより行った。
 fadEBAオペロンおよびfadLDオペロンは、まず、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Datsenko, K. A. and Wanner, B. L. 2000. Proc. Natl. Acad. Sci. USA. 97: 6640-6645)によってエシェリヒア・コリ K-12 MG1655株の染色体上に挿入した。次いで、得られた株をドナーとするP1トランスダクションにより、WC196LCの染色体上にfadEBAオペロンおよびfadLDオペロンを挿入した。さらに、構築した株に組み込まれた抗生物質耐性遺伝子を、λファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., and Gardner, J. F. 2002. J. Bacteriol. 184: 5200-5203)により除去した。具体的な構築手順を以下に示す。
<1-2>fadEBAオペロン導入株の構築
 fadEBAオペロン配列として、fadE遺伝子の上流にラムダファージのアタッチメントサイトとクロラムフェニコール耐性遺伝子を連結したDNA断片(att-cat)とtacプロモーター配列(Ptac) (Gene 25(2-3) 167-178 (1983))を連結したatt-cat-Ptac断片を有し、fadE遺伝子の下流にfadBA遺伝子を有するDNA断片を構築した。なおatt-cat-Ptac断片はpMW118-attL-Cm-attR(WO2005/010175)を参考に構築することが可能である。
 具体的には、配列番号1及び2に示すプライマーを用いてエシェリヒア・コリ K-12 MG1655株の染色体DNAを鋳型としたPCRを行い、att-cat-Ptac断片およびfadBA遺伝子と連結するfadE断片を得た。さらに、配列番号3及び4に示すプライマーを用いてatt-cat-Ptac断片を鋳型としたPCRを行い、fadE断片の5'側と連結するatt-cat-Ptac断片を得た。さらに、配列番号5及び6に示すプライマーを用いてエシェリヒア・コリ K-12 MG1655株の染色体DNAを鋳型としたPCRを行い、fadE断片の3'側と連結するfadBA断片を得た。これらの3つのPCR産物を精製し、BamHIで消化したベクターpMW119にIn-Fusion Advantage PCR Cloning Kit(クロンテック社)を用いて連結し、fadEBAオペロン配列増幅用プラスミドpMW-att-cat-PtacfadEBAを構築した。
 配列番号7および8に示すプライマーを用いてプラスミドpMW-att-cat-PtacfadEBAを鋳型としたPCRを行い、エシェリヒア・コリK-12 MG1655株の機能未知遺伝子であるyciQ遺伝子の部位にfadEBAオペロンをゲノム上へ導入するためのatt-cat-PtacfadEBA断片を得た。
 得られたatt-cat-PtacfadEBA断片を、Red-driven integration法によってエシェリヒア・コリ K-12 MG1655株のyciQ遺伝子の部位に挿入した。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadEBAオペロン導入株をMG1655ΔyciQ::att-cat-PtacfadEBAと名づけた。
 得られたMG1655ΔyciQ::att-cat-PtacfadEBAをドナーとして、WC196LC株にP1トランスダクションを行い、WC196LC株の染色体上のyciQ遺伝子の部位にfadEBAオペロンが挿入された株の構築を行った。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadEBAオペロン導入株をWC196LCΔyciQ::att-cat-PtacfadEBAと名づけた。
 次に、att-cat遺伝子を除去するために、ヘルパープラスミドpMW-intxis-ts(特開2005-058227)を使用した。pMW-intxis-tsは、λファージのインテグラーゼ(Int)をコードする遺伝子およびエクシジョナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである。
 上記で得られたWC196LCΔyciQ::att-cat-PtacfadEBA株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃で100 mg/Lのアンピシリンを含むLB寒天培地上にて平板培養し、アンピシリン耐性株を選択した。次に、pMW-intxis-tsプラスミドを除去するために、LB寒天培地上、42℃で継代し、得られたコロニーのアンピシリン耐性、及びクロラムフェニコール耐性を試験し、att-cat及びpMW-intxis-tsが脱落している株を取得した。この株をWC196LCPtacfadEBA株と名づけた。
<1-3>fadLDオペロンおよびfadEBAオペロン導入株の構築
fadLDオペロン配列として、fadL遺伝子の上流にtacプロモーター配列とT7ファージ10遺伝子上流配列由来のリボソーム結合部位(RBS) (Gene 73 (1988) 227-235)を有し、fadL遺伝子の下流にT7ファージ10遺伝子上流配列由来のリボソーム結合部位(RBS)とfadD遺伝子を有するDNA断片を構築した。
 具体的には配列番号9および10に示すプライマーを用いてエシェリヒア・コリ K-12 MG1655株の染色体DNAを鋳型としたPCRを行い、att-cat-Ptac断片およびfadD遺伝子と連結するfadL断片を得た。さらに、配列番号11及び12に示すプライマーを用いてatt-cat-Ptac断片を鋳型としたPCRを行い、fadL断片の5'側と連結するatt-cat-Ptac断片を得た。さらに、配列番号13及び14に示すプライマーを用いてエシェリヒア・コリ K-12 MG1655株の染色体DNAを鋳型としたPCRを行い、fadL断片の3'側と連結するfadD断片を得た。fadD断片を得る際にエシェリヒア・コリ K-12 MG1655株の染色体DNA配列ではfadDの開始コドン配列はttgになっているが、atgに置換した。これらの3つのPCR産物を精製し、BamHIで消化したベクターpMW119にIn-Fusion Advantage PCR Cloning Kit(クロンテック社)を用いて連結し、fadLDオペロン配列増幅用プラスミドpMW-att-cat-PtacfadLDを構築した。
 配列番号15及び16に示すプライマーを用いてプラスミドpMW-att-cat-PtacfadLDを鋳型としたPCRを行い、エシェリヒア・コリK-12 MG1655株の機能未知遺伝子であるyegD遺伝子の部位にfadLDオペロンをゲノム上へ導入するためのatt-cat-PtacfadLD断片を得た。
 得られたatt-cat-PtacfadLD断片を、Red-driven integration法によってエシェリヒア・コリ K-12 MG1655株のyegD遺伝子の部位に挿入した。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadLDオペロン導入株をMG1655ΔyegD::att-cat-PtacfadLDと名づけた。
 得られたMG1655ΔyegD::att-cat-PtacfadLDをドナーとして、WC196LCPtacfadEBA株にP1トランスダクションを行い、WC196LCPtacfadEBA株の染色体上のyegD遺伝子の部位にfadLDオペロンが挿入された株の構築を行った。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadLDオペロン導入株をWC196LCPtacfadEBAΔyegD::att-cat-PtacfadLDと名づけた。
 次に、att-cat遺伝子を除去するために、上記で得られたWC196LCPtacfadEBAΔyegD::att-cat-PtacfadLD株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃で100 mg/Lのアンピシリンを含むLB寒天培地上にて平板培養し、アンピシリン耐性株を選択した。次に、pMW-intxis-tsプラスミドを除去するために、LB寒天培地上、42℃で継代し、得られたコロニーのアンピシリン耐性、及びクロラムフェニコール耐性を試験し、att-cat及びpMW-intxis-tsが脱落している株を取得した。この株をWC196LCPtacfadEBAPtacfadLD株と名づけた。
<1-4>WC196LCPtacfadEBAPtacfadLD株へのリジン生産用プラスミド導入
 WC196LCPtacfadEBAPtacfadLD株を、dapA、dapB、lysC、及びddh遺伝子を搭載したリジン生産用プラスミドpCABD2(WO95/16042)で常法に従い形質転換し、WC196LCPtacfadEBAPtacfadLD/pCABD2株を得た。
 得られたWC196LCPtacfadEBAPtacfadLD/pCABD2株を、20 mg/Lのストレプトマイシンを含むLB培地にてOD600が約0.3となるまで37℃にて培養した。次いで、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注、-80℃に保存し、グリセロールストックとした。
〔実施例2〕lcfA遺伝子およびfadLEBA遺伝子群を導入したエシェリヒア・コリL-リジン生産菌の構築
<2-1>lcfA遺伝子およびfadLEBA遺伝子群導入株の構築の概要
 バチルス・ズブチリス由来のfadD遺伝子としてlcfA遺伝子(J. Biol. Chem. Vol. 282 No. 8 p.5180-5194)が報告されている。バチルス・ズブチリスの染色体の全塩基配列は既に明らかにされており(Nature 390:249-56 (1997))、この文献にはlcfA遺伝子の塩基配列が報告されている。配列番号17にlcfA遺伝子の塩基配列を、配列番号18にlcfA遺伝子によってコードされるアミノ酸配列を示す。まず、lcfA遺伝子の塩基配列に基づいてfadLlcfAオペロンを構築し、Red-driven integration法によるMG1655株の染色体上へ挿入した。次いで、fadLlcfAオペロンが挿入されたMG1655株をドナーとするP1トランスダクションにより、WC196LCPtacfadEBAの染色体上にfadLlcfAオペロンを挿入した。さらに、構築した株に組み込まれた抗生物質耐性遺伝子を、λファージ由来の切り出しシステムにより除去した。具体的な構築手順を以下に示す。
<2-2>lcfA遺伝子およびfadLEBA遺伝子群導入株の構築
 fadLlcfAオペロン配列として、fadL遺伝子の上流にtacプロモーター配列とT7ファージ10遺伝子上流配列由来のリボソーム結合部位(RBS)(Gene 73 (1988) 227-235)を有し、fadL遺伝子の下流にT7ファージ10遺伝子上流配列由来のリボソーム結合部位(RBS)とlcfA遺伝子を有するDNA断片を構築した。
 具体的には配列番号19及び20に示すプライマーを用いてエシェリヒア・コリ K-12 MG1655株の染色体DNAを鋳型としたPCRを行い、att-cat-Ptac断片およびlcfA遺伝子と連結するfadL断片を得た。さらに、配列番号21及び22に示すプライマーを用いてatt-cat-Ptac断片を鋳型としたPCRを行い、fadL断片の5'側と連結するatt-cat-Ptac断片を得た。さらに、配列番号23及び24に示すプライマーを用いてバチルス・ズブチリス168M株の染色体DNAを鋳型としたPCRを行い、fadL断片の3'側と連結するlcfA断片を得た。これらの3つのPCR産物を精製し、BamHIで消化したベクターpMW119にIn-Fusion Advantage PCR Cloning Kit(クロンテック社)を用いて連結し、fadLlcfAオペロン配列増幅用プラスミドpMW-att-cat-PtacfadLlcfAを構築した。
 配列番号25及び26に示すプライマーを用いてプラスミドpMW-att-cat-PtacfadLlcfAを鋳型としたPCRを行い、エシェリヒア・コリK-12 MG1655株の機能未知遺伝子であるyegD遺伝子の部位にfadLlcfAオペロンをゲノム上へ導入するためのatt-cat-PtacfadLlcfA断片を得た。
 得られたatt-cat-PtacfadLlcfA断片を、Red-driven integration法によってエシェリヒア・コリ K-12 MG1655株のyegD遺伝子の部位に挿入した。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadLlcfAオペロン導入株をMG1655ΔyegD::att-cat-PtacfadLlcfAと名づけた。
 得られたMG1655ΔyegD::att-cat-PtacfadLlcfAをドナーとして、WC196LCPtacfadEBA株にP1トランスダクションを行い、WC196LCPtacfadEBA株の染色体上のyegD遺伝子の部位にfadLlcfAオペロンが挿入された株の構築を行った。目的の遺伝子置換が生じた株の候補を、クロラムフェニコール耐性を指標として選択した。候補株において目的の遺伝子置換が起きていることをPCRによって確認した。得られたfadLlcfAオペロン導入株をWC196LCPtacfadEBAΔyegD::att-cat-PtacfadLlcfAと名づけた。
 次に、att-cat遺伝子を除去するために、上記で得られたWC196LCPtacfadEBAΔyegD::att-cat-PtacfadLlcfA株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃で100 mg/Lのアンピシリンを含むLB寒天培地上にて平板培養し、アンピシリン耐性株を選択した。次に、pMW-intxis-tsプラスミドを除去するために、LB寒天培地上、42℃で継代し、得られたコロニーのアンピシリン耐性、及びクロラムフェニコール耐性を試験し、att-cat及びpMW-intxis-tsが脱落している株を取得した。この株をWC196LCPtacfadEBAPtacfadLlcfA株と名づけた。
<2-3>WC196LCPtacfadEBAPtacfadLlcfA株へのリジン生産用プラスミド導入
 WC196LCPtacfadEBAPtacfadLlcfA株を、dapA、dapB、lysC、及びddh遺伝子を搭載したリジン生産用プラスミドpCABD2(WO95/16042)で常法に従い形質転換し、WC196LCPtacfadEBAPtacfadLlcfA/pCABD2株を得た。
 得られたWC196LCPtacfadEBAPtacfadLlcfA/pCABD2株を20 mg/Lのストレプトマイシンを含むLB培地にてOD600が約0.3となるまで37℃にて培養した。次いで、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注、-80℃に保存し、グリセロールストックとした。
〔実施例3〕lcfA遺伝子およびfadLEBA遺伝子群導入株によるL-リジン生産
 WC196LCPtacfadEBAPtacfadLlcfA/pCABD2株、WC196LCPtacfadEBAPtacfadLfadD/pCABD2株、および対照株WC196LC/pCABD2株(WO2006/078039)のグリセロールストックを融解し、各100 μLを、20 mg/Lのストレプトマイシンを含むLB寒天培地プレートに均一に塗布し、37℃にて24時間培養した。次いで、プレートのおよそ1/8量の菌体を、500 mL容三角フラスコの、60 mg/Lのストレプトマイシンを含む以下に記載の発酵培地40 mLに接種し、往復振とう培養装置で37℃において42時間培養した。本培養は、それぞれの株について2連で行った。本培養における炭素源としては、グルコース30g/Lおよびオレイン酸ナトリウム4g/L、またはグルコース20g/Lおよびオレイン酸ナトリウム3g/Lを用いた。また、乳化促進剤として、ポリ(オキシエチレン)ソルビタンモノオレイン酸エステル(Tween 80:ナカライテスク社製)を終濃度0.5%(w/v)となるように添加した。これらの株がTween80を資化できないことは、別途確認した。培養に用いた培地組成を以下に示す。
[エシェリヒア属細菌 L-リジン生産培地]
<炭素源>
グルコース          30 g/L
オレイン酸ナトリウム     4 g/L
または
グルコース          20 g/L
オレイン酸ナトリウム     3 g/L

<その他の成分>
(NH4)2SO4                     24 g/L
KH2PO4                        1 g/L
MgSO4・7H2O          1 g/L
FeSO4・7H2O          0.01 g/L
MnSO4・7H2O          0.008 g/L
Yeast Extract         2 g/L
Tween 80                      5 g/L
CaCO3(日本薬局方)           22.5 g/L

 KOHでpH7.0に調整し、120℃で20分オートクレーブを行なった。但し、炭素源とMgSO4・7H2Oは別滅菌した後、混合した。CaCO3は乾熱滅菌後に添加した。
 42時間培養後に、培養上清のL-リジンの量をバイオセンサーBF-5(王子計測機器)により測定した。生育度は、Tween0.5%溶液で培地を希釈後、濁度(OD600)にて測定した。
 グルコース30g/Lおよびオレイン酸ナトリウム4g/Lを炭素源とした場合の結果の平均値を表1に、グルコース20g/Lおよびオレイン酸ナトリウム3g/Lを炭素源とした場合の結果の平均値を表2に示す。いずれの場合にも、lcfA遺伝子およびfadLEBA遺伝子群が導入されたL-リジン生産株(WC196LCPtacfadEBAPtacfadLlcfA/pCABD2)は、対照株(WC196LC/pCABD2)およびfadLDEBA遺伝子群が導入されたL-リジン生産株(WC196LCPtacfadEBAPtacfadLfadD/pCABD2)と比して、有意に高いL-リジン生産を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、脂肪酸を炭素源として用いる場合の細菌のL-アミノ酸生産能を向上させることができ、脂肪酸を炭素源として用いてL-アミノ酸を効率よく製造することができる。
〔配列表の説明〕
配列番号1、2:fadE遺伝子断片増幅用PCRプライマー
配列番号3、4:att-cat-Ptac断片増幅用PCRプライマー
配列番号5、6:fadBA遺伝子断片増幅用PCRプライマー
配列番号7、8:att-cat-PtacfadEBA遺伝子断片増幅用PCRプライマー
配列番号9、10:fadL遺伝子断片増幅用PCRプライマー
配列番号11、12:att-cat-Ptac断片増幅用PCRプライマー
配列番号13、14:fadD遺伝子断片増幅用PCRプライマー
配列番号15、16:att-cat-PtacfadLfadD遺伝子断片増幅用PCRプライマー
配列番号17:Bacillus subtilisのlcfA遺伝子の塩基配列
配列番号18:Bacillus subtilisのLcfAタンパク質のアミノ酸配列
配列番号19、20:fadL遺伝子断片増幅用PCRプライマー
配列番号21、22:att-cat-Ptac断片増幅用PCRプライマー
配列番号23、24:lcfA遺伝子断片増幅用PCRプライマー
配列番号25、26:att-cat-PtacfadLlcfA遺伝子断片増幅用PCRプライマー

Claims (9)

  1.  L-アミノ酸の製造方法であって、
     L-アミノ酸生産能を有する腸内細菌科に属する細菌を、脂肪酸を含有する培地中で培養すること、および該培地からL-アミノ酸を採取すること、を含み、
     前記細菌が、lcfA遺伝子が導入された細菌であり、
     前記lcfA遺伝子が、下記(A)~(D)からなる群より選択されるDNAである、方法:
    (A)配列番号18に示すアミノ酸配列を含むタンパク質をコードするDNA;
    (B)配列番号18に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、又は付加を含むアミノ酸配列を含み、かつ、長鎖脂肪酸から脂肪酸アシルCoAを生成するとともに、内膜を通して取り込む活性を有するタンパク質をコードするDNA;
    (C)配列番号17に示す塩基配列を含むDNA;
    (D)配列番号17に示す塩基配列に相補的な塩基配列又は該塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、長鎖脂肪酸から脂肪酸アシルCoAを生成するとともに、内膜を通して取り込む活性を有するタンパク質をコードするDNA。
  2.  前記細菌が、さらに、脂肪酸資化能が高まるように改変されている、請求項1に記載の方法。
  3.  下記(a)~(d)のいずれかにより脂肪酸資化能が高まるように改変された、請求項2に記載の方法。
    (a)fadR遺伝子の発現を弱化させること;
    (b)fadL、fadE、fadD、fadB、及びfadA遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現を増強させること;
    (c)cyoABCDEオペロンの発現の発現を増強させること;
    (d)それらの組み合わせ。
  4.  前記脂肪酸がオレイン酸である、請求項1~3のいずれか1項に記載の方法。
  5.  前記培地が、さらに、脂肪酸以外の炭素源を含有する、請求項1~4のいずれか1項に記載の方法。
  6.  前記脂肪酸以外の炭素源がグルコースである、請求項5に記載の方法。
  7.  前記L-アミノ酸がL-リジンである、請求項1~6のいずれか1項に記載の方法。
  8.  前記細菌がエシェリヒア属細菌である、請求項1~7のいずれか1項に記載の方法。
  9.  前記細菌がエシェリヒア・コリである、請求項8に記載の方法。
PCT/JP2013/078373 2012-10-19 2013-10-18 L-アミノ酸の製造法 WO2014061805A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112015008602-0A BR112015008602B1 (pt) 2012-10-19 2013-10-18 Método para produzir um aminoácido-l
US14/687,025 US20150218605A1 (en) 2012-10-19 2015-04-15 Method for Producing L-Amino Acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-231582 2012-10-19
JP2012231582A JP2016010317A (ja) 2012-10-19 2012-10-19 L−アミノ酸の製造法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/687,025 Continuation US20150218605A1 (en) 2012-10-19 2015-04-15 Method for Producing L-Amino Acid

Publications (1)

Publication Number Publication Date
WO2014061805A1 true WO2014061805A1 (ja) 2014-04-24

Family

ID=50488360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078373 WO2014061805A1 (ja) 2012-10-19 2013-10-18 L-アミノ酸の製造法

Country Status (4)

Country Link
US (1) US20150218605A1 (ja)
JP (1) JP2016010317A (ja)
BR (1) BR112015008602B1 (ja)
WO (1) WO2014061805A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079872A1 (en) * 2015-11-09 2017-05-18 Cathay R & D Center Co., Ltd. Modified membrane permeability
CN116286566A (zh) * 2022-07-13 2023-06-23 南京盛德生物科技研究院有限公司 一种l-高丝氨酸高产菌株及其构建方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167071A (ja) * 2008-05-22 2011-09-01 Ajinomoto Co Inc L−アミノ酸の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167071A (ja) * 2008-05-22 2011-09-01 Ajinomoto Co Inc L−アミノ酸の製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLACK, PN. ET AL.: "Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase.", J BIOL CHEM, vol. 267, 1992, pages 25513 - 25520 *
KUNST, F. ET AL.: "The complete genome sequence of the gram-positive bacterium Bacillus subtilis.", NATURE, vol. 390, 1997, pages 249 - 256 *
MATSUOKA, H. ET AL.: "Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation.", J BIOL CHEM, vol. 282, 2007, pages 5180 - 5194 *
WIPAT, A. ET AL.: "The dnaB-pheA (256 degrees- 240 degrees) region of the Bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism.", MICROBIOLOGY, vol. 142, 1996, pages 3067 - 3078 *

Also Published As

Publication number Publication date
BR112015008602B1 (pt) 2022-03-29
JP2016010317A (ja) 2016-01-21
BR112015008602A2 (pt) 2017-09-26
US20150218605A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US8389249B2 (en) Method for production of L-amino acid
US8951760B2 (en) Method for producing an L-amino acid
JP2009060791A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法
JP2009165355A (ja) L−アミノ酸を生産する微生物及びl−アミノ酸の製造法
JP2018174717A (ja) L−アミノ酸の製造法
US10787691B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2012002486A1 (ja) L-アミノ酸の製造法
WO2015064648A1 (ja) 脂肪酸を生成する緑藻類
US8975045B2 (en) Mutant RpsA gene and method for producing L-amino acid
JP6459962B2 (ja) L−アミノ酸の製造法
US20150218605A1 (en) Method for Producing L-Amino Acid
US20150211033A1 (en) Method for Producing L-Amino Acid
JP2010246483A (ja) L−アミノ酸の製造法
WO2010101053A1 (ja) L-アミノ酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015008602

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13847993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112015008602

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150416