WO2014061719A1 - Photoelectric conversion device, built structure, and electronic instrument - Google Patents
Photoelectric conversion device, built structure, and electronic instrument Download PDFInfo
- Publication number
- WO2014061719A1 WO2014061719A1 PCT/JP2013/078139 JP2013078139W WO2014061719A1 WO 2014061719 A1 WO2014061719 A1 WO 2014061719A1 JP 2013078139 W JP2013078139 W JP 2013078139W WO 2014061719 A1 WO2014061719 A1 WO 2014061719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- photoelectric conversion
- semiconductor layer
- optical waveguide
- planar optical
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 214
- 239000004065 semiconductor Substances 0.000 claims abstract description 327
- 230000003287 optical effect Effects 0.000 claims abstract description 213
- 239000000969 carrier Substances 0.000 claims abstract description 13
- 230000000644 propagated effect Effects 0.000 claims description 52
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 16
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 13
- 230000002829 reductive effect Effects 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910002704 AlGaN Inorganic materials 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000013081 microcrystal Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 11
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 38
- 239000000758 substrate Substances 0.000 description 30
- 229910021417 amorphous silicon Inorganic materials 0.000 description 24
- 239000000463 material Substances 0.000 description 24
- 238000001228 spectrum Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- -1 poly (p -Phenylene vinylene) Polymers 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 230000000737 periodic effect Effects 0.000 description 15
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 14
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 14
- 239000000203 mixture Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000002585 base Substances 0.000 description 10
- 230000004907 flux Effects 0.000 description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 239000011112 polyethylene naphthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920003026 Acene Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 2
- 229940081735 acetylcellulose Drugs 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 239000013308 plastic optical fiber Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- RCNOGGGBSSVMAS-UHFFFAOYSA-N 2-thiophen-3-ylacetic acid Chemical compound OC(=O)CC=1C=CSC=1 RCNOGGGBSSVMAS-UHFFFAOYSA-N 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- SHAHUJQWVQOHFE-UHFFFAOYSA-N CC(C)(C)c1ccc2=Cc3cc4=c5cc(ccc5=Cc4cc3=c2c1)C(C)(C)C Chemical compound CC(C)(C)c1ccc2=Cc3cc4=c5cc(ccc5=Cc4cc3=c2c1)C(C)(C)C SHAHUJQWVQOHFE-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229910018287 SbF 5 Inorganic materials 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910003363 ZnMgO Inorganic materials 0.000 description 1
- ROMGORYQQKCCII-UHFFFAOYSA-N acetylene 4-methylpyridine Chemical group C#C.CC1=CC=NC=C1 ROMGORYQQKCCII-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical group C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- KDEZIUOWTXJEJK-UHFFFAOYSA-N heptacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=C3C=C21 KDEZIUOWTXJEJK-UHFFFAOYSA-N 0.000 description 1
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- YVCYLGYUDUYFQZ-UHFFFAOYSA-N oct-1-ynylbenzene Chemical group CCCCCCC#CC1=CC=CC=C1 YVCYLGYUDUYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000264 poly(3',7'-dimethyloctyloxy phenylene vinylene) Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical compound N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0543—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12078—Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a photoelectric conversion device, a building, and an electronic device.
- the photoelectric conversion device suitable for use as a solar cell installed on a building window or a display of various electronic devices, and the photoelectric conversion device are used. It relates to buildings and electronic equipment.
- a solar cell using amorphous or crystalline silicon, a solar cell using GaAs crystal, a solar cell using an organic semiconductor, and the like are known. These solar cells have a structure in which a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer is sandwiched between an anode electrode and a cathode electrode, and sunlight is vertically incident on the junction surface of the pn junction.
- a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer is sandwiched between an anode electrode and a cathode electrode, and sunlight is vertically incident on the junction surface of the pn junction.
- FIG. 1 This conventional solar cell is shown in FIG.
- a p-type semiconductor layer 151 and an n-type semiconductor layer 152 form a pn junction
- an anode electrode 153 is formed on the p-type semiconductor layer 151
- an n-type semiconductor is formed.
- a cathode electrode 154 is formed on the layer 152 and has a plate-like shape as a whole.
- the traveling direction of the light 156 incident perpendicularly to one main surface 155, and the cathode electrode 154 and the electrons and holes generated in the pn junction by the incidence of the light 156 are caused by drift or diffusion, respectively.
- the direction toward the anode electrode 153 in other words, the net moving direction of the carriers is parallel.
- the distance between the anode electrode 153 and the cathode electrode 154 becomes large. It has been extremely difficult to achieve both an increase in absorption and an improvement in carrier collection efficiency, and this has hindered improvement in photoelectric conversion efficiency. That is, in the conventional solar cell, the number of absorbed photons and the photocarrier collection efficiency both depend on the electrode spacing, in other words, the total thickness d of the p-type semiconductor layer 151 and the n-type semiconductor layer 152, and have a trade-off relationship.
- a solar cell of a type in which sunlight is incident in parallel to the joint surface of a pn junction has recently been proposed (for example, see Patent Document 1).
- an anode electrode and a cathode electrode are formed in a spiral shape with a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer interposed therebetween, and have a thin disk shape as a whole.
- the band gap E g of the p-type semiconductor layer and the n-type semiconductor layer decreases stepwise from the light incident surface in the thickness direction of the disk in n steps (n ⁇ 2).
- FIG. 4 shows an example of a solar cell described in Patent Document 1 manufactured by a roll-to-roll process, and shows a cross section in the diameter direction of a disk.
- an anode electrode, a semiconductor layer, and a cathode electrode of a solar cell are formed on a transparent resin base film, and a spiral structure is formed while the base film is wound.
- anode electrodes 202, 203, 204, and 205 are sequentially formed in the width direction of the base film 201 (the thickness direction of the disk). These anode electrodes 202, 203, 204, and 205 are formed to be elongated in the longitudinal direction of the base film 201.
- a cathode electrode 210 which is a full-surface electrode is formed on the surface of these regions 206, 207, 208 and 209 opposite to the anode electrodes 202, 203, 204 and 205.
- the width in the thickness direction of the disk in the regions 206, 207, 208, and 209 is typically about several tens of ⁇ m, and the width in the diameter direction of the disk is typically about 150 nm.
- the thickness of the base film 201 is drawn extremely small for convenience of illustration, but the thickness of the base film 201 is about 100 ⁇ m, for example, and the regions 206, 207, 208, and 209 are drawn. It is about three orders of magnitude larger than the width of the disk in the diameter direction.
- Non-Patent Document 2 3
- the area of the element can be reduced relative to the area that receives sunlight, and the photoelectric conversion efficiency can be improved by increasing the number of photons by condensing.
- the temperature of the solar cell also rises due to light collection, leading to a decrease in photoelectric conversion efficiency.
- SW Stebbler-Lonsky
- the problem to be solved by the present invention is that the insensitive area for incident light can be eliminated, deterioration of the organic semiconductor due to the Stebbler-Lonsky effect and ultraviolet components can be suppressed, and extremely high photoelectric conversion efficiency can be obtained. It is possible to provide a photoelectric conversion device suitable for use as a solar cell and the like, and a building and an electronic device using this excellent photoelectric conversion device, which can be increased in area and extremely easily.
- Another problem to be solved by the present invention is that, in the concentrating solar power generation, the temperature increase as a by-product due to the introduction of the condensed light cancels out the photoelectric conversion efficiency that is higher than that in the case without the original condensing. It is providing the photoelectric conversion apparatus which can prevent that.
- Another problem to be solved by the present invention is that, in concentrating solar power generation using a lens or the like, the photoelectric conversion efficiency decreases when the direct sunlight of the sun is lost, that is, when the diffused light becomes main.
- the present invention provides: A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light; A planar optical waveguide for guiding the two-dimensional spatial propagation light; Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide, The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer, A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide;
- the photoelectric conversion device is characterized in that the angle ⁇ formed by is substantially a right angle.
- planar optical waveguide and the semiconductor layer are provided integrally with each other, and, for example, their ends are joined together.
- a first electrode and a second electrode are provided on a pair of surfaces of the semiconductor layer facing each other.
- One of the first electrode and the second electrode is used as an anode electrode, and the other is used as a cathode electrode.
- ⁇ / 2 ⁇ ⁇ ⁇ ⁇ ⁇ / 2 + ⁇ is selected as ⁇ .
- ⁇ is used as the anode electrode of the first electrode and the second electrode, the ratio of the thickness of the semiconductor layer to the width (electrode width) in the direction parallel to the light traveling direction in the semiconductor layer ⁇ to semiconductor layer thickness / electrode width.
- the structure for converting the three-dimensional spatially propagated light into the two-dimensional spatially propagated light includes, for example, a first band-shaped portion and a second band-shaped portion having different refractive indexes alternately periodically or at regular intervals. It has an ordered structure.
- the structure that converts the three-dimensional spatially propagated light into two-dimensional spatially propagated light is typically provided in the main surface of the planar optical waveguide or in the planar optical waveguide.
- the structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light is, for example, a main surface of a planar optical waveguide or a diffraction grating provided in the planar optical waveguide.
- This diffraction grating can be formed by a conventionally known method.
- the diffraction grating can be formed by embedding or changing the refractive index by ion exchange.
- a transparent plastic film on which a diffraction grating having a periodic structure is formed can be attached to the main surface of the planar optical waveguide.
- a light wave traveling direction converting sheet see, for example, Non-Patent Document 4; Is provided).
- the planar optical waveguide may be a planar optical waveguide or a curved optical waveguide.
- the planar shape of the planar optical waveguide is selected as necessary, but typically has a quadrangular shape, for example, a rectangular shape or a square shape.
- a semiconductor layer is provided at an end of the planar optical waveguide corresponding to at least one of a pair of opposite sides of the rectangular optical waveguide.
- a light reflection mechanism is provided at the end of the planar optical waveguide corresponding to at least one of a pair of sides different from the pair of sides facing each other. In this case, the light incident on the main surface of the planar optical waveguide is reflected when entering the light reflecting mechanism when guided in the planar optical waveguide, and the optical path is bent in the direction toward the semiconductor layer. The amount of light incident on the end face of the semiconductor layer increases.
- the light is not directly incident on the semiconductor layer when the light is incident on the main surface of the planar optical waveguide.
- the light when light is incident on the main surface of the photoelectric conversion device, the light is incident on the main surface of the planar optical waveguide, but the light is not directly incident on the surface of the semiconductor layer.
- the thickness of the planar optical waveguide is generally larger than the thickness of the semiconductor layer, it is preferably guided in the planar optical waveguide in order to effectively use the light guided in the planar optical waveguide.
- the collected light is collected and incident on the semiconductor layer.
- the planar optical waveguide has a portion (having the same thickness as the semiconductor layer) in which the light guided in the planar optical waveguide is in contact with the semiconductor layer of the planar optical waveguide.
- a refractive index profile that is collected asymptotically is provided. That is, the light guided in the planar optical waveguide is guided according to the refractive index distribution of the planar optical waveguide, and thus is collected asymptotically to the portion that contacts the semiconductor layer while being guided.
- the semiconductor layer is composed of an inorganic semiconductor or an organic semiconductor, and is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer.
- the thickness of the semiconductor layer is appropriately selected as a function of the diffusion length of carriers in the semiconductor layer, and is typically 10 nm or more and 100 ⁇ m or less.
- the semiconductor constituting the semiconductor layer may be amorphous (amorphous), polycrystalline, or single crystal.
- inorganic semiconductors include II-VI group compound semiconductors such as CdSe, PbS, PbSe, and PbTe, III-V group compound semiconductors such as GaSb, InAs, InN, AlInN, GaInN, GaN, AlGaN, GaAsN, and GaPN, and Si and SiGe.
- Group IV semiconductors such as Si x Ge y Sn 1-xy O, SiN x , SiO x , CIS (CuInSe), CIGS (CuInGaSe), CuInGaSeTe, and the like can be used (see, for example, Non-Patent Documents 5 to 10). ).
- These semiconductors are characterized in that the band gap can be controlled, for example, by controlling the composition ratio of group III elements such as In and Ga or mixing sulfur (S).
- the semiconductor layer can also be constituted by fine particles made of these inorganic semiconductors.
- organic solar cell materials all materials generally reported as organic solar cell materials can be used.
- polyacenes such as pentacene, polyacetylene (preferably disubstituted polyacetylene), poly (p -Phenylene vinylene), poly (2,5-thienylene vinylene), polypyrrole, poly (3-methylthiophene), polyaniline, poly (9,9-dialkylfluorene) (PDAF), poly (9,9-dioctylfluorene- co-bithiophene) (F8T2), poly (1-hexyl-2-phenylacetylene) (PH X PA) (shows blue emission as the light-emitting material), poly (diphenylacetylene) derivative (PDPA- n Bu) (light emission)
- the materials are green light emission), poly (pyridine) (PPy), poly (pyridylbi) Ren) (PPyV), cyano-substituted poly (p-phenylene vinylen
- alkali metals Li, Na, K, Cs
- halogens Br 2 , I 2 , CI 2
- Lewis acids BF 3 , PF 5 , AsF 5 , SbF 5 , SO 3
- transition metal halides FeCl 3 , MoCl 5 , WCl 5 , SnCl 4
- TCNE TCNQ
- dopant ions used in the tetraethylammonium ions as cations TEA +
- tetrabutylammonium Ion TAA +
- specific examples of the polymer electrolyte include polyanions such as sulfonate polyaniline, poly (thiophene-3-acetic acid), sulfonate polystyrene, poly (3-thiophene).
- polycations such as alkane sulfonates include polyallylamine, poly (p-phenylene-vinylene) precursor polymer, poly (p-methylpyridinium vinylene), protonated poly (p-pyridylvinylene), and polotone (2- N-methylpyridinium acetylene) and the like can be used.
- the organic semiconductor layer doped with a low impurity concentration is used as the semiconductor layer, the organic semiconductor layer can have a heterojunction type or bulk heterojunction type structure. In the organic semiconductor layer having the heterojunction structure, the p-type organic semiconductor film and the n-type organic semiconductor film are joined so as to be in contact with the first electrode and the second electrode.
- the organic semiconductor layer having a bulk heterojunction structure is composed of a mixture of p-type organic semiconductor molecules and n-type organic semiconductor molecules, and has a fine structure in which the p-type organic semiconductor and the n-type organic semiconductor are intertwined with each other.
- an organic-inorganic hybrid semiconductor can be used in addition to an inorganic semiconductor and an organic semiconductor.
- an organic-inorganic hybrid semiconductor for example, a perovskite-based semiconductor (see, for example, Non-Patent Document 11) can be used.
- the first electrode and the second electrode are in ohmic contact with the semiconductor layer.
- the first electrode and the second electrode may not be in ohmic contact with the semiconductor layer.
- various transparent conductive oxides such as indium tin oxide (ITO) as well as metals such as gold (Au), nickel (Ni), and aluminum (Al) are used. Although it can be used, it is not limited to this.
- the band gap of the semiconductor layer or, if the semiconductor layer is made of an organic semiconductor, the HOMO (highest occupied molecular orbital) -LUMO (lowest unoccupied molecular orbital) gap is stepwise and / or sequentially in the light traveling direction. Or make it decrease continuously.
- the band gap or HOMO ⁇ When sunlight is incident on the main surface of the semiconductor layer of the photoelectric conversion device, when the sunlight is guided through the planar optical waveguide and incident on the semiconductor layer, the band gap or HOMO ⁇ The light enters the semiconductor with the largest LUMO gap first, and finally enters the semiconductor with the smallest band gap. In this process, the short wavelength light to the long wavelength light in the solar spectrum are spread.
- the semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap gradually decreases in the light traveling direction, and the first electrode and the second electrode are formed on a pair of surfaces facing each other. Two electrodes are provided, and at least one of the first electrode and the second electrode is provided separately between the regions.
- the semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap is gradually reduced in the light traveling direction, and the width in the light traveling direction of each region is equal to the band gap or HOMO of each region. It is greater than or equal to the reciprocal of the absorption coefficient in each region of light having energy equal to the LUMO gap.
- the semiconductor layer is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap gradually decreases in the light traveling direction
- these regions include Si x C 1 in order in the light traveling direction.
- -x (0 ⁇ x ⁇ 1) region consisting of a region consisting of a region made of Si and Si y Ge 1-y (0 ⁇ y ⁇ 1) or a region consisting of Si x C 1-x, made of Si
- a region composed of a region and a microcrystal Si y Ge 1 -y or a region containing at least one semiconductor selected from the group consisting of AlGaN, GaN and IGZO (In, Ga, Zn oxide), Si x C 1 -x region, Si region and Si y Ge 1 -y region, or Si x C 1 -x region, Si region, Si y Ge 1 -y region and Ge Territory It is an area.
- Photoelectric conversion device includes not only solar cells but also optical sensors. If necessary, a plurality of photoelectric conversion devices or solar cells may be combined to form a module or system.
- the photoelectric conversion device is A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
- the light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer, A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide;
- the building is characterized in that the angle ⁇ formed by is substantially a right angle.
- the building may basically be any building as long as it can install a photoelectric conversion device.
- a building a condominium, a detached house
- the installation location of the photoelectric conversion device in these buildings is not particularly limited, and is selected as necessary. Examples of installation locations are the glass windows and daylighting sections of these buildings.
- the photoelectric conversion device is, for example, a solar cell used as a power source for these buildings and electrical products installed therein.
- the semiconductor layer is disposed in a shaded part of the building so that the light does not directly enter the semiconductor layer when the light enters the main surface of the planar optical waveguide.
- the planar optical waveguide includes a portion having a gentle curvature, and this portion is disposed, for example, under a tile, under a protruding central portion of a roof, on a window frame or a crosspiece.
- the photoelectric conversion device is A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
- the light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer, A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide;
- the electronic device is characterized in that the angle ⁇ formed by is substantially a right angle.
- Electronic devices may be basically any type, including both portable and stationary types, but specific examples include mobile phones, mobile devices, robots, personal computers. , In-vehicle equipment, various home appliances.
- the photoelectric conversion device is, for example, a solar battery used as a power source for these electronic devices.
- the net traveling direction of light guided in the planar optical waveguide and the net movement of carriers generated in the semiconductor layer by light incident on the semiconductor layer from the end surface of the planar optical waveguide Since the angle ⁇ formed with the direction is substantially a right angle, it is possible to achieve both the maximization of the amount of light absorption and the minimization of the distance between the electrodes by selecting the thickness of the photoelectric conversion layer in the light incident direction. For this reason, extremely high photoelectric conversion efficiency can be obtained. Further, since the incident light can be received by the entire main surface of the planar optical waveguide, there is no insensitive region for the incident light.
- the planar optical waveguide since light incident on the main surface of the planar optical waveguide is guided through the planar optical waveguide and incident on the semiconductor layer, it is possible to prevent light from directly entering the semiconductor layer. For this reason, even when the semiconductor layer is made of, for example, amorphous silicon or an organic semiconductor, the deterioration of the organic semiconductor due to the Stebbler-Lonsky (SW) effect or an ultraviolet component can be suppressed. Further, it is very easy to increase the area of the photoelectric conversion device by increasing the area of the planar optical waveguide. Further, when the band gap of the semiconductor layer or the semiconductor layer is made of an organic semiconductor, the HOMO-LUMO gap is decreased stepwise and / or continuously in the light incident direction, so that the main part of the solar spectrum can be obtained. Alternatively, photoelectric conversion can be performed by absorbing light of all wavelengths, and ultimately, photoelectric conversion efficiency approaching the theoretical maximum efficiency can be obtained.
- SW Stebbler-Lonsky
- FIG. 18 is a schematic diagram showing the results of measuring the current density-voltage characteristics of the SiGe element portion of the sample shown in FIGS. 17A and 17B.
- FIG. 18 is a schematic diagram showing the results of measuring the current density-voltage characteristics of the Si element portion of the sample shown in FIGS. 17A and 17B.
- FIG. 18 is a schematic diagram showing a result of measuring current-voltage characteristics of the SiC element portion of the sample shown in FIGS. 17A and 17B.
- It is a top view for demonstrating an example of the growth method of the semiconductor layer of the photoelectric conversion apparatus by 1st Embodiment of this invention.
- It is sectional drawing for demonstrating an example of the growth method of the semiconductor layer of the photoelectric conversion apparatus by 1st Embodiment of this invention.
- Photoelectric conversion device 5A and 5B show the photoelectric conversion device according to the first embodiment.
- this photoelectric conversion device includes a rectangular or square planar optical waveguide 20 and a photoelectric conversion provided on end faces corresponding to a pair of parallel sides of the planar optical waveguide 20.
- the semiconductor layer 30 generally has an elongated rectangular shape.
- the planar optical waveguide 20 and the semiconductor layer 30 are provided integrally with each other and have a planar shape as a whole.
- the planar optical waveguide 20 and the semiconductor layer 30 are provided on the support substrate 40.
- a first electrode 50 and a second electrode 60 are provided on a pair of mutually opposing surfaces (upper surface and lower surface) of the semiconductor layer 30, respectively.
- One of the first electrode 50 and the second electrode 60 is used as an anode electrode, and the other as a cathode electrode.
- the first electrode 50 is used as an anode electrode
- the second electrode 60 is used as a cathode electrode.
- the semiconductor layer 30 is divided into a plurality of regions made of different semiconductors, the first electrode 50 and the second electrode 60 may be provided for each region, or one of them may be on all the regions. It may be a full-surface electrode extending to the surface.
- the refractive index of the material constituting the planar optical waveguide 20 is n 1 .
- stripe-shaped (band-shaped) buried layers 70 made of a material having a refractive index of n 2 (n 2 > n 1 ) are provided in a predetermined arrangement on the light incident surface 20 a that is the main surface of the planar optical waveguide 20.
- the strict periodicity has rather a delta function-like wavelength discrimination, it has a periodicity globally, but is locally random or systematic. It is effective to provide a quasi-periodic refractive index modulation structure that has fluctuations or deviates from strict periodicity. That is, as shown in FIGS.
- the stripe-shaped buried layer 70 and the stripe-like planar light between the buried layers 70 are within a certain range in the plane of the planar optical waveguide 20.
- the waveguides 20 are arranged alternately at regular intervals P at regular intervals or at regular intervals, whereby the three-dimensional spatially propagated light incident on the light incident surface 20a of the planar optical waveguide 20 is converted into the two-dimensional spatially propagated light.
- a structure 80 to be converted into is formed.
- the buried layer 70 is shown on the entire surface of the planar optical waveguide 20 for convenience.
- the buried layer 70 extends parallel to the side of the planar optical waveguide 20 where the semiconductor layer 30 is provided.
- the light having the wavelength ⁇ that is perpendicularly incident on the light incident surface 20 a of the planar optical waveguide 20 has a planar shape on both sides of the light that has passed through the buried layer 70 and the buried layer 70.
- a phase difference expressed by 2 ⁇ (n 2 ⁇ n 1 ) D / ⁇ is obtained when the light passes through the structure 80 with respect to the light passing through the optical waveguide 20.
- D so that this phase difference is ⁇ or an odd multiple thereof, the amplitude of the light traveling in the vertical direction when passing through the structure 80 can be made zero.
- an antireflection film nonreflective coating
- the three-dimensional spatially propagated light becomes two-dimensional spatially propagated light and is efficiently guided in the planar optical waveguide 20.
- SiN is preferable as a material having a refractive index of ⁇ 2 and transparent in the ultraviolet (UV) to infrared (IR) region, but is not limited thereto.
- Multiplicity here means that there is a periodic structure of a plurality of layers in the thickness direction of the planar optical waveguide 20 (this periodicity is along the extending direction of the planar optical waveguide 20). By doing so, it is possible to convert the three-dimensional spatially propagated light into the two-dimensional spatially propagated light with respect to the entire sunlight spectrum.
- the multiplicity N is made equal to the number of later-described E gi regions constituting the semiconductor layer 30, in other words, the number of band gaps set stepwise in the light traveling direction in the semiconductor layer 30.
- the multiplicity of the periodic structure or the plurality of the structure interval may be set in the plane of the structure 80, or may be set in the depth direction. This corresponds to the configuration of the bandpass multilayer structure in the lateral direction.
- the three-dimensional spatially propagated light (incident light) incident on the light incident surface 20 a of the planar optical waveguide 20 is converted into two-dimensional spatially propagated light and guided through the planar optical waveguide 20.
- the light is collected and then incident on the semiconductor layer 30.
- the net traveling direction of the light guided in the planar optical waveguide 20 and the light incident on the semiconductor layer 30 from the end surface of the planar optical waveguide 20 The angle ⁇ formed by the net movement direction of the carriers (photocarriers) generated in (the direction connecting the first electrode 50 and the second electrode 60 in the shortest) is substantially a right angle.
- the angle ⁇ is divided into a plurality of regions in which the width of the light travel direction of the first electrode 50 or the semiconductor layer 30 is made of different semiconductors, and the first electrode 50 is provided for each region. If the width of the first electrode 50 provided in each region in the light traveling direction is W ′ and the thickness of the semiconductor layer 30 is d, then ⁇ / 2 ⁇ ⁇ ⁇ ⁇ ⁇ / 2 + ⁇ (provided that ⁇ ⁇ d / W ′), typically 80 ° ⁇ ⁇ ⁇ 100 °, and most preferably 90 °.
- the light incident surface 20a of the planar optical waveguide 20 in FIG. A membrane is provided. A conventionally known antireflection film can be used.
- a periodic multilayer structure composed of a plurality of materials having different refractive indexes can be given.
- it is also effective to arrange a fine structure (nanostructure / microstructure) generated by pyramid or etching on the surface.
- the fine structure provided on the surface of the planar optical waveguide 20, that is, the buried layer 70 has a functional structure having a distance x along the optical waveguide direction and has a diffractive action, so that FIGS.
- the redirection wave guide (that is, the direction-reducing optical waveguide) (that is, the incident light, which is a three-dimensional spatial propagation light, is converted into a two-dimensional spatial propagation light by, for example, diffraction, A functional thin film structure that can be guided in the lateral direction immediately).
- These low reflectance structures are selected as needed.
- an antireflection film is preferably provided on the joint surface between the planar optical waveguide 20 and the semiconductor layer 30 in order to prevent reflection of light incident on the semiconductor layer 30 from the planar optical waveguide 20.
- a light reflecting mechanism is provided on the end face of the planar optical waveguide 20 corresponding to a pair of sides different from the pair of sides on which the semiconductor layer 30 is provided.
- the light reflecting film provided on the end surface of the planar optical waveguide 20 or the end surface of the planar optical waveguide 20 is configured as a mirror surface.
- light incident on the main surface of the planar optical waveguide 20 is reflected when entering the light reflecting mechanism when guided in the planar optical waveguide 20, and the optical path is bent in the direction toward the semiconductor layer 30. As a result, the amount of light incident on the semiconductor layer 30 increases.
- This photoelectric conversion device is configured such that light does not directly enter the semiconductor layer 30 when light enters the light incident surface 20a of the planar optical waveguide 20.
- the photoelectric conversion device when light is incident on the photoelectric conversion device, the light is incident on the light incident surface 20 a of the planar optical waveguide 20, but the light is not directly incident on the surface of the semiconductor layer 30.
- a light shielding layer is provided above the semiconductor layer 30 so as to cover the first electrode 50.
- a conventionally well-known thing can be used for a light shielding layer, and it selects as needed, For example, it is the aluminum laminated film etc. in which the plastic film was formed on both surfaces of the aluminum foil.
- This light shielding layer can prevent light from directly entering the semiconductor layer 30.
- the support substrate 40 constitutes a part of the outer surface of a building or an electronic device
- sunlight is incident on the planar optical waveguide 20, but sunlight is not incident on the semiconductor layer 30.
- the semiconductor layer 30 is covered with a member or the like so as to be shaded.
- the window glass serves as the support substrate 40
- the planar optical waveguide 20 is provided on the window glass exposed to the outside
- the semiconductor layer 30 is made of, for example, aluminum. Hide inside the window frame.
- the end portions of adjacent photoelectric conversion devices overlap each other, and the lower photoelectric conversion device is formed by the semiconductor layer 30 at the end portion of the upper photoelectric conversion device.
- the semiconductor layer 30 is covered at the end.
- the planar optical waveguide 20 is made of transparent glass or transparent plastic.
- the transparent plastic include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, Examples include polysulfones and polyolefins.
- a fluorine-based material used for a plastic optical fiber (POF) or the like is particularly suitable because of its low light loss.
- the thickness of the planar optical waveguide 20 is selected as necessary, and is, for example, 1 to 1000 ⁇ m.
- the size (vertical and horizontal lengths) of the planar optical waveguide 20 is appropriately selected according to the location where the photoelectric conversion device is installed. Generally, for example, (1 cm to 1 m) ⁇ (1 cm to 1 m). is there.
- the semiconductor layer 30 is selected, for example, from those already listed as necessary.
- the semiconductor layer 30 is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer.
- a portion of the semiconductor layer 30 in contact with the first electrode 50 and the second electrode 60 is doped with a high impurity concentration, and the first electrode 50 and the second electrode 60 are doped with the semiconductor layer 30.
- the length of one side of the semiconductor layer 30 is typically selected to be the same as the length of the side of the planar optical waveguide 20 on which the semiconductor layer 30 is provided, but the length of the side perpendicular to this side is generally For example, the thickness is 10 ⁇ m to 1 cm, typically 20 ⁇ m to 1 mm.
- the area of the semiconductor layer 30 is generally much larger than the area of the planar optical waveguide 20. It's small. That is, in this photoelectric conversion device, the planar optical waveguide 20 occupies most and the semiconductor layer 30 occupies only a small part at the end. For example, when the size of the planar optical waveguide 20 is 10 cm ⁇ 10 cm and the size of the semiconductor layer 30 is 1 mm ⁇ 10 cm, the two semiconductor layers occupy the entire area of the planar optical waveguide 20 and the two semiconductor layers 30.
- the thickness of the semiconductor layer 30 is generally as small as several tens of ⁇ m or less, the volume of the semiconductor layer 30 is extremely small. That is, the amount of semiconductor layer 30 used can be extremely small. For this reason, the manufacturing cost of the photoelectric conversion device can be reduced.
- the end portion of the planar optical waveguide 20 is bent (bended), for example, by 90 degrees downward with a finite radius of curvature, so that the light propagates in the semiconductor layer 30 in the vertical direction in FIG. 5B. be able to. Thereby, as described above, it is possible to minimize the light shielding loss that occurs when the light shielding layer is provided above the semiconductor layer 30 so as to cover the first electrode 50.
- the band gap or HOMO-LUMO gap E g of the semiconductor layer 30 decreases stepwise in N stages (N ⁇ 2) in the light traveling direction in the semiconductor layer 30, and in order, E g1 , E g2,. E gN (E g1 > E g2 >...> E gN ).
- the semiconductor layer 30 is composed of regions 31, 32, 33, and 34 having band gaps or HOMO-LUMO gaps E g of E g1 , E g2 , E g3 , and E g4 , respectively.
- Each of the regions 31, 32, 33, and 34 has an elongated stripe shape extending in a direction parallel to the side where the semiconductor layer 30 of the planar optical waveguide 20 is provided.
- first electrodes 51, 52, 53, and 54 are provided on the respective regions 31, 32, 33, and 34 so as to be separated from each other.
- the second electrode 60 is a full-surface electrode and is a common electrode for each of the regions 31, 32, 33, and 34. (The width in the traveling direction of light, the length of the lateral direction in FIG.
- each E gi region constituting the semiconductor layer 30 the photoelectric conversion target photons (bandgap E of the E gi region of the E gi region If the absorption coefficient of this E gi region with respect to the one having the lowest energy among the photons having the energy of gi or higher) is ⁇ i , it is 1 / ⁇ i or higher.
- E gi can be set as follows.
- the wavelength is divided into N sections in the entire wavelength range of the AM1.5 sunlight spectrum or its main wavelength range (including a portion with a high incident energy). These sections are numbered in order from the short wavelength side (high energy side) 1, 2,..., N, and E gi is selected to be equal to the minimum photon energy in the i-th section. In this way, when a photon having photon energy in the kth section is incident on the E gi region, an electron-hole pair is generated and photoelectric conversion is performed.
- the photon having the photon energy in the k-th section reaches each Egi region and is sufficiently absorbed, so that the Egi is introduced from the junction surface between the planar optical waveguide 20 and the semiconductor layer 30. Choose the distance to the area.
- sunlight that is guided through the planar optical waveguide 20 and incident on the semiconductor layer 30 first enters the E g1 region, and in the spectrum, the photon energy of E g1 or higher is absorbed and photoelectric conversion is performed. Then, it enters the E g2 region and the spectrum whose photon energy is greater than or equal to E g2 and smaller than E g1 is absorbed and photoelectrically converted, and finally enters the E gN region and enters the photon of the spectrum. Those whose energy is greater than or equal to E gN and less than E gN-1 are absorbed and photoelectrically converted. As a result, light in almost the entire solar spectrum or in the main wavelength range can be used for photoelectric conversion.
- FIG. 3 shows the relationship between the photon energy h ⁇ of the AM1.5 sunlight spectrum and the number of photons n (h ⁇ ).
- the photon energy of the AM1.5 sunlight spectrum is equally divided into 10 sections of energy width ⁇ .
- Each E gi can be set by changing the composition of the semiconductor constituting each E gi region, the form of the semiconductor (amorphous, polycrystalline, single crystal), or the like. Specifically, each E gi region is formed of a different type of semiconductor. In this case, the semiconductor has a wide range of choices because it can be selected to have a high carrier mobility ⁇ regardless of the absorption coefficient ⁇ .
- N 2
- N 4
- ⁇ 1.8eV
- the CdSe fine particles (absorption peak wavelength 445 nm) having a diameter of about 1.9 nm in the E g1 region, the CdSe fine particles (absorption peak wavelength 585 nm) having a diameter of about 4.0 nm in the E g2 region,
- the Eg3 region has a PbSe fine particle (absorption peak wavelength 800 nm) with a diameter of about 2 nm
- the Eg4 region has a PbSe fine particle with a diameter of about 4.5 nm (absorption peak wavelength 1100 nm)
- the Eg5 region has a PbSe fine particle with a diameter of about 90 nm (absorption peak wavelength).
- E gi region in the case of N to 10 by controlling x only using GaInN x As 1-x or GaInN x P 1-x .
- it may be configured E gi region using the group II-VI compound semiconductor to exhibit significant bowing the inclusion of Te (bowing) is known.
- Specific examples of the case where an organic semiconductor and an inorganic semiconductor are used are as follows.
- photons that cause the Stebler-Lonsky reaction which has been shown to be generated by light having a wavelength of 450 nm or less, are photoelectrically converted in advance before entering the a-Si layer. Therefore, the reaction can be suppressed, and therefore the lifetime of the photoelectric conversion region composed of the a-Si layer can be extended.
- This high-energy photon removal function that suppresses coherent energy while performing effective photoelectric conversion is not just passivation, but also improves the reliability and extends the life of organic semiconductor photoelectric conversion units, which are also considered to be weak for outdoor use. Is also effective.
- each E gi region is selected as necessary, and is several ⁇ m to several tens ⁇ m, for example.
- the width of each E gi region (the width of the light traveling direction in the semiconductor layer 30) is also selected as necessary, and is, for example, several tens ⁇ m to several hundreds ⁇ m.
- FIG. 8 is an enlarged view of the regions 31 to 34 in FIG. 7.
- the thickness d of each region 31 to 34 is several ⁇ m to several tens of ⁇ m, and the widths w 1 to w 4 of each region 31 to 34 are several. Select from 10 ⁇ m to several hundred ⁇ m, for example, to 100 ⁇ m.
- each of the regions 31 to 34 is composed of a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer.
- the junction surfaces of the pn junctions constituting the regions 31 to 34 are indicated by broken lines.
- a light wave traveling direction conversion sheet 85 (for example, non-patent document) is formed on the structure 80 of the planar optical waveguide 20 that converts the three-dimensional space propagation light into the two-dimensional space propagation light. It is desirable to provide 4).
- the antireflection film non-reflective coating
- the planar optical waveguide 20 it is formed on the light wave traveling direction changing sheet 85, and the effective refraction due to the nanostructure that the light wave traveling direction changing sheet 85 itself has on its surface.
- FIG. 11A, FIG. 11B, and FIG. 11C are photographs of the light orientation characteristics with respect to the incident light of the light wave traveling direction conversion sheet 85. Was taken in a photo. From FIG. 11A, FIG. 11B, and FIG.
- the light wave traveling direction changing sheet 85 can be a parabolic aggregate or a prismatic aggregate.
- the support substrate 40 may be basically any type, but is typically a transparent substrate that is at least transparent to visible light.
- the transparent substrate is, for example, a glass plate or a transparent plastic plate.
- the transparent plastic constituting the transparent plastic plate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, and polystyrene.
- Polyarylates, polysulfones, polyolefins and the like can be used.
- the support substrate 40 is, for example, a window glass of various buildings (public facilities, building diggs, condominiums, detached houses, etc.), various electronic devices (cell phones, smartphones, notebook personal computers, desktop personal computers, TV, liquid crystal display, organic EL display) and the like, but not limited thereto.
- the semiconductor layer 30 is a pn junction.
- three-dimensional spatial propagation light for example, the sun, is formed on the light incident surface 20a of the planar optical waveguide 20 of the photoelectric conversion device on which the structure 80 that converts to two-dimensional spatial propagation light is formed. Light enters. Light does not directly enter the surface of the semiconductor layer 30.
- the three-dimensional spatial propagation light incident on the light incident surface 20a of the planar optical waveguide 20 is converted into two-dimensional spatial propagation light by the structure 80 that converts the three-dimensional spatial propagation light into the two-dimensional spatial propagation light.
- the two-dimensional spatially propagated light is efficiently guided through the planar optical waveguide 20 while being repeatedly reflected on its upper and lower surfaces (see FIG. 24 described later), and exits from the end surface of the planar optical waveguide 20.
- the electrons and holes thus generated move in the semiconductor layer 30 by drift or diffusion, and are collected by one and the other of the first electrode 50 and the second electrode 60. In this way, photoelectric conversion is performed in the semiconductor layer 30, and current (photocurrent) is extracted from the first electrode 50 and the second electrode 60 to the outside.
- the number of absorbed photons of the semiconductor layer 30 is governed by the width in the incident direction of light (in the case where the semiconductor layer 30 is composed of regions 31 to 34, for example, the widths w 1 to w 4 of the regions 31 to 34).
- the conversion efficiency ⁇ is not controlled by the thickness d of the semiconductor layer 30 in the light absorption rate limiting region (thick dashed line in FIG. 2). That is, the photoelectric conversion device is extremely advantageous in that it optimizes light absorption and carrier collection efficiency by making the incident direction of light with respect to the planar optical waveguide 20 and the moving direction of carriers orthogonal to each other, for example. Is completely compatible with each other.
- the small absorption coefficient ⁇ of the semiconductor layer 30 is determined by the width of the semiconductor layer 30 in the light incident direction (in the case where the semiconductor layer 30 is composed of the regions 31 to 34, for example, the widths w 1 to w 4 ) Can be compensated for, so that the material of the semiconductor layer 30 can be a material having a large ⁇ that is the only dominant parameter, regardless of the size of ⁇ . By doing so, it is possible to obtain a high photoelectric conversion efficiency ⁇ as shown by a thick dashed line in FIG. Thereby, it is possible to obtain the photoelectric conversion efficiency approaching the thermodynamic limit.
- 12 and 13 show the results of experiments conducted to verify that the photoelectric conversion efficiency ⁇ is released from the constraint due to ⁇ in this photoelectric conversion device.
- an IZO (indium zinc oxide) film, a PEDOT: PSS film, and a P3HT: PCBM film are sequentially formed on a PEN (polyethylene naphthalate) film, and the P3HT: PCBM film is formed.
- An Al film was formed.
- the thickness of the P3HT: PCBM film is d.
- the result of measuring the voltage-current characteristics by applying a voltage between the IZO film and the Al film is shown in the lower inset of FIG. The black rhombus plot in FIG.
- FIG. 12 is ⁇ when light is incident on the P3HT: PCBM film from the vertical direction, and the white ellipse plot is ⁇ measurement results when light is incident from the end face of the P3HT: PCBM film. Indicates. The dotted straight line in FIG. 12 indicates ⁇ d.
- FIG. 13 shows the results of another lot (sample). The dependence of I SC V OC (I SC is the saturation current, V OC is the open circuit voltage) on the thickness d of the P3HT: PCBM film is shown as P3HT: PCBM. The measurement result about the case where light is incident on the film from the vertical direction and the case where light is incident from the end face of the P3HT: PCBM film is shown.
- FIG. 14 shows the relationship between the photon energy h ⁇ of the AM1.5 sunlight spectrum and the number of photons n ph .
- E g1 , E g2 , E g3 , and E g4 are described as E g (1), E g (2), E g (3), and E g (4).
- N can be increased by using a gradient composition structure in which the composition of the semiconductor layer 30 can be easily realized by using the gradient parameter arrangement described later, and the composition of the semiconductor layer 30 is inclined in the direction of light traveling in the semiconductor layer 30.
- at least one of the electrodes 50 and 60 is allowed to be formed in batch with respect to N regions (segments) (that is, a tandem structure connected in parallel). Taking advantage of this photoelectric conversion device, it is possible to realize an ideal condensing system that can be as thin as 85% of the thermodynamic limit.
- FIG. 15 shows the temperature dependence of the diffusion coefficients of various elements in Si. From FIG. 15, for example, Si x C 1-x can be produced by diffusing C in the Si layer, and Si y Ge 1-y can be produced by diffusing Ge.
- FIG. 16 shows the result of Raman scattering measurement of a sample obtained by using an a-Si layer doped with phosphorus (P) as the semiconductor layer 30 and crystallizing the a-Si layer by laser annealing.
- Laser annealing was performed using laser light having a wavelength of 514 nm obtained using an argon (Ar) laser.
- the irradiation energy density was 6.1 mW and the irradiation time was 10 minutes.
- the number of times of laser light irradiation was changed to 1, 2, 3, and 4. From this result, it can be seen that the a-Si layer can be selectively converted into crystalline Si only at the portion irradiated with light. Since a-Si and crystalline Si have different band gaps, it can be seen that two regions having different band gaps can be formed.
- the stripe width can be controlled by the irradiation width of the laser beam.
- FIG. 17A shows a sample in which Ge is partially diffused on the surface of the Si substrate to form a striped SiGe region, and C is diffused to another portion of the surface of the Si substrate to form a striped SiC region. It is the photograph which image
- FIG. 17B shows the cross-sectional shape of this sample.
- 18 to 20 show measurement results of current density (J) -voltage (V) characteristics of the SiGe element portion, JV characteristics of the Si element portion, and IV characteristics of the SiC element portion, respectively.
- J current density
- V voltage
- the SiGe element, the Si element, and the SiC element have different built-in voltages, and the open-circuit voltages V oc are 0.22 to 0.24 V, .about.0.42 V,. Since it is 45 to 0.6 V, it can be seen that the band gap of the pn junction surface can be changed by controlling the composition by diffusing elements other than Si into the Si substrate. This is evidence that photons in different energy ranges of the sunlight spectrum can be photoelectrically converted.
- the semiconductor layer 30 is composed of three types of semiconductors having a gradient composition in the light traveling direction in the semiconductor layer 30 and the band gap decreasing in the light traveling direction.
- This growth method is not limited to this, and can generally be applied to the case of N kinds of semiconductors.
- these three types of semiconductors are A p B 1-p C, A q B 1-q C, and A r B 1-r C (p>q> r or p
- ⁇ q ⁇ r will be described.
- the present invention is not limited to this, and in general, a binary or quaternary or higher semiconductor may be used.
- C ⁇ (empty set)
- these three types of semiconductors become binary materials (for example, Si x Ge 1-x ).
- an A p B 1-p C layer 102, an A q B 1-q C layer 103, and an A r B 1-r C layer 104 are grown in this order on the substrate 101 in the x-axis direction.
- the A p B 1-p C layer 102, the A q B 1-q C layer 103, and the A r B 1-r C layer 104 have an elongated stripe shape extending in the y-axis direction.
- the growth of these A p B 1-p C layer 102, A q B 1-q C layer 103, and A r B 1-r C layer 104 occurs on the substrate 101 in the x-axis direction.
- an inclination parameter arrangement is performed at this time. That is, the parameter value monotonously changes (increases or decreases) along the x-axis direction of FIGS. 21A and 21B.
- the parameters include the growth temperature, the lattice constant of the substrate 101, the number of off-angles of the substrate 101, and the light intensity at the time of light irradiation when using light during growth. It is also effective to combine a plurality of these.
- Examples of a method for changing the lattice constant of the substrate 101 include ion implantation and diffusion. As an atomic species used for ion implantation or diffusion, use of a constituent element of the substrate 101 or a constituent element of a target growth layer has high affinity, but is not limited thereto.
- the light irradiation is selected according to the purpose, such as a case where the crystal growth reaction itself is promoted or a case where the substrate temperature rises.
- Examples of the raw material flux include a raw material-containing gas, a molecular beam, and a raw material-containing solution.
- a multi-stripe semiconductor layer can be grown on a virtually infinitely long tape-like substrate. Since doping can be performed simultaneously with growth, a pn junction can also be formed, the semiconductor layer 30 can be easily formed, and a photoelectric conversion device can be easily manufactured. Note that when the substrate 101 is left as it is after the growth of the semiconductor layer 30, a conductive substrate is used as the substrate 101. Either a conductive substrate or a non-conductive substrate may be used.
- the raw material flux supply device 105 supplies the raw material flux 106 for supplying A and C
- the raw material flux supply device 107 supplies the raw material flux 108 for supplying B and C, for example, from the other side in the left-right direction.
- the raw material fluxes 106 and 108 are, for example, a raw material gas, a molecular beam, a mist spray (for example, see Non-Patent Documents 12 to 13), and the like.
- the semiconductor layer 30 made of three kinds of semiconductors having a gradient composition in the light traveling direction in the semiconductor layer 30 and having a band gap decreasing in the light traveling direction.
- a necessary number of raw material flux supply devices are prepared. Further, the combined use of the growth method shown in FIGS. 21A and 21B and the growth method shown in FIG. 22 is also effective.
- the planar optical waveguide 20 occupies most of the area, and the entire planar optical waveguide 20 can receive incident light. Absent. Further, in this photoelectric conversion device, the light incident on the light incident surface 20a of the planar optical waveguide 20 and guided by being condensed in the planar optical waveguide 20 is incident on the semiconductor layer 30. As shown in the inset of FIG. 3, extremely high photoelectric conversion efficiency can be obtained.
- the light collection rate is (planar optical waveguide).
- the photoelectric conversion efficiency at this time exceeds 60% from the inset of FIG.
- the semiconductor layer 30 is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap decreases stepwise in the light traveling direction in the semiconductor layer 30, a high-energy ultraviolet component of sunlight Can be absorbed in the region of the first stage, for example, so that the ultraviolet component can be prevented from entering the region of the subsequent stage.
- this photoelectric conversion device can be easily increased in area simply by increasing the area of the planar optical waveguide 20.
- the semiconductor layer 30 is provided at the end of the planar optical waveguide 20, and the light guided in the planar optical waveguide 20 exits from the end surface of the planar optical waveguide 20 and enters the semiconductor layer 30.
- a lens for condensing light is not necessary, the configuration is extremely simple, and optical axis alignment is not necessary, so that not only manufacturing is easy, but also manufacturing cost is reduced. It is also possible to prevent changes over time and changes over time.
- the point that the photoelectric conversion efficiency decreases with respect to the diffused light which was a drawback of the lens-type condensing system, is extremely compatible with the light wave traveling direction changing sheet 85 in the sense that they are mutually planar and can be bonded together.
- the structure of the planar optical waveguide 20 even diffused light can be recovered to about 95% (which is the efficiency of the light wave traveling direction changing sheet 85) compared to the photoelectric conversion efficiency for direct light. .
- the space charge effect that is a problem in the amorphous silicon solar cell can be suppressed. That is, the amorphous silicon solar cell has a problem that even if the thickness of the amorphous silicon is increased to increase the light absorption, the internal electric field is canceled by the space charge and the characteristics are not improved.
- the amorphous silicon solar cell has a problem that even if the thickness of the amorphous silicon is increased to increase the light absorption, the internal electric field is canceled by the space charge and the characteristics are not improved.
- this photoelectric conversion device when a partial region of the semiconductor layer 30 is composed of amorphous silicon, the region between the first electrode 50 and the second electrode 60 provided above and below the semiconductor layer 30 is used. The distance can be reduced, and at the same time, the length of the amorphous silicon region in the light traveling direction in the semiconductor layer 30 can be increased, so that the space charge effect can be suppressed.
- the surface that can convert the three-dimensional spatially propagated light into the two-dimensional spatially propagated light and efficiently propagate the two-dimensional spatially propagated light that is, the light receiving surface (planar optical waveguide 20).
- the semiconductor layer 30 which is a photoelectric conversion region can be spatially separated, so that an increase in the temperature of the semiconductor layer 30 due to direct sunlight can be suppressed.
- the planar optical waveguide 30 includes a portion having a gentle curvature, and the other portion is disposed under the tile, under the protruding central portion of the roof, under the window rail, etc. When light is incident on the light incident surface 20a, the semiconductor layer 30 can be disposed in a shaded portion.
- this photoelectric conversion device on the basis of the suppression of the temperature rise (through the reduction of energy lost as heat) due to the high efficiency, further, the bad place of the condensing system (due to the incidence of high intensity light) Temperature rise) can be eliminated, and only a good point (a point where the conversion efficiency increases by about 20% as shown in the inset in FIG. 3 as compared with the non-condensing system) can be utilized.
- the advantages of this photoelectric conversion device can be summarized as follows. (1) The optical absorption and carrier collection efficiency can be independently and simultaneously optimized by the orthogonality between the photon traveling direction and the photocarrier moving direction. (2) Multi-stage multi-striping with a gradient composition is possible, and full-width photoelectric conversion of the sunlight spectrum is possible. (3) Due to the light condensing system, an efficiency increase of about 20% is expected compared to the non-light condensing system. (4) Since it is possible to perform photoelectric conversion using multi-stage multi-gap semiconductors, energy dissipated as heat can be minimized, so that temperature rise, which was a weak point of a concentrated solar power generation system, can be suppressed. .
- this photoelectric conversion device is the ultimate photoelectric conversion system having many characteristics.
- ⁇ Second Embodiment> [Photoelectric conversion device]
- three-dimensional spatial propagation light incident on the light incident surface 20 a of the planar optical waveguide 20 is provided by providing the buried layer 70 on the light incident surface 20 a that is the main surface of the planar optical waveguide 20.
- a periodic concavo-convex structure is provided on the light incident surface 20a by stamping or nano-microimprinting.
- the structure 80 that converts the three-dimensional space propagation light into the two-dimensional space propagation light is formed.
- the periodic concavo-convex structure has, for example, a comb tooth shape, a sawtooth shape, a sinusoidal shape, or the like. Others are the same as in the first embodiment.
- a simulation was performed to verify the optical waveguide performance of the planar optical waveguide 20 in which the structure 80 that converts the three-dimensional spatially propagated light into the two-dimensional spatially propagated light is formed on the light incident surface 20a.
- the model used for the simulation is shown in FIG.
- convex portions 112 a having a rectangular cross section are periodically formed in a part of one main surface (light incident surface) of the planar optical waveguide 111 to form a periodic concavo-convex structure 112.
- the planar optical waveguide 111 corresponds to the planar optical waveguide 20
- the periodic uneven structure 92 corresponds to the structure 80 that converts the three-dimensional spatial propagation light into the two-dimensional spatial propagation light.
- a back metal 113 made of Al that functions as a reflection film is formed over a larger area than the periodic uneven structure 112.
- the interface between the back metal 113 and the planar optical waveguide 111 is formed in a sawtooth shape, and light hitting a minute inclined surface of the back metal 113 on the sawtooth interface is reflected in various directions. ing.
- the simulation conditions are as follows.
- the (x, y, z) coordinate system was taken as shown in FIG.
- the width of the planar optical waveguide 111 in the x-axis direction was 80 ⁇ m, and the thickness in the z-axis direction was 4 ⁇ m.
- the direction in which the convex portions 112 a are arranged is the x-axis direction, the direction orthogonal to the x-axis direction in the plane of the planar optical waveguide 111 is the y-axis direction, and the direction perpendicular to the plane of the planar optical waveguide 111 is the z-axis direction. It is.
- the number of protrusions 112a is 5, the pitch of protrusions 112a in the x-axis direction is 2.0 ⁇ m, the width of protrusions 112a in the x-axis direction is 1.0 ⁇ m, and the groove between the protrusions 112a and 112a The width is 1.0 ⁇ m, the height in the z-axis direction of the projection 112a is 1.5384 ⁇ m, and the width in the y-axis direction of the projection 112a is 3.9 ⁇ m.
- Light having a wavelength of 2.1 ⁇ m plane wave
- the y component E y of the electric field in the planar optical waveguide 111 was calculated using the Maxwell equation.
- the distribution of the amplitude of Ey thus calculated is shown in the upper diagram of FIG.
- most of the light incident perpendicularly to the periodic concavo-convex structure 112 is diffracted by the periodic concavo-convex structure 112 and the traveling direction thereof is changed by 90 °, and the light travels in the planar optical waveguide 111.
- Waveguide. the redirection wave guide was shown to be feasible, and the structural parameters were also clarified. It is possible to cope with light of other wavelengths by appropriately changing the size and period of the convex portion 112a (or the embedded layer 70).
- the lower part of FIG. 24 shows the result of the same calculation performed by setting the height of the projection 112a in the z-axis direction to 1.0 ⁇ m.
- the diffraction condition is not satisfied, the diffraction hardly occurs, and the light incident perpendicularly to the periodic concavo-convex structure 112 hardly guides the planar optical waveguide 111. From the above results, it was verified that the optical waveguide performance of the planar optical waveguide 20 in which the periodic concavo-convex structure of the photoelectric conversion device is provided on the light incident surface 20a is high.
- the above result is similarly established when the structure 80 for converting the three-dimensional spatial propagation light into the two-dimensional spatial propagation light is formed by providing the embedded layer 70 as in the first embodiment. . According to the second embodiment, advantages similar to those of the first embodiment can be obtained.
- a minute uneven structure (a jagged structure) is provided on the side surface of the semiconductor layer 30 in contact with the end face of the planar optical waveguide 20. Others are the same as in the first embodiment.
- Non-Patent Document 14 a p-type polycrystalline silicon wafer doped with boron is immersed in an aqueous solution containing 15 wt% H 2 O 2 and 25 wt% HF at room temperature, and is applied to the surface of the p-type polycrystalline silicon wafer.
- a fine concavo-convex structure is formed by contacting the platinum mesh attached to the roller and etching the surface of the p-type polycrystalline silicon wafer from the opening of the platinum mesh while rotating the roller.
- Non-Patent Document 14 the reflectance of the p-type polycrystalline silicon wafer can be suppressed to 1 to 3% in the wavelength range of 300 nm to 800 nm. Further, as can be seen from FIGS. 1 (b) and 2 (a) of Non-Patent Document 14, since the structure has no periodicity in the range of 0 to 10 ⁇ m, it is almost the same in the wavelength range of 800 nm to 2.4 ⁇ m. Low reflectance can be obtained.
- the solar cell When such a micro uneven structure is used in a conventional planar solar cell, the solar cell may be used outdoors, and if dust or the like accumulates on the surface, the effect tends to be reduced.
- this minute uneven structure is formed on the side surface of the semiconductor layer 30, it is not only horizontally oriented, but also directly coupled to the end surface of the planar optical waveguide 20, so that dust can be contained in the unevenness. Since there is no room for such deposition, high characteristics can be constantly maintained and long-term stability is achieved.
- the third embodiment in addition to the same advantages as those of the first embodiment, it is possible to obtain the advantage that the long-term stability of the photoelectric conversion device can be realized. .
- the semiconductor layer 30 includes two semiconductor layers 30 having four band gaps, that is, photoelectric conversion devices 121 and 122.
- photoelectric conversion devices 121 and 122 have, for example, the configuration shown in FIG. E g (1), E g (2), E g (3), and E g (4) correspond to the E g1 region, the E g2 region, the E g3 region, and the E g4 region.
- these photoelectric conversion devices 121 and 122 are connected to each other.
- the first electrode 51, the first electrode 52, the first electrode 53, and the first electrode 54 of the photoelectric conversion device 121 are respectively connected to the first electrode 54, the first electrode 53, and the photoelectric conversion device 122. Connected to the first electrode 52 and the first electrode 51.
- the same advantages as those of the first embodiment can be obtained, and a composite photoelectric conversion device having a high photoelectric conversion efficiency ⁇ can be realized while maintaining a single output voltage. be able to.
- a layer having a small refractive index has been formed from the back side by changing the refractive index of the glass waveguide, for example, by ion exchange, and has been guided two-dimensionally.
- the light is condensed also in the direction perpendicular to the surface, and gathers to the same thickness as the semiconductor layer 30 at the contact portion between the planar optical waveguide 20 and the semiconductor layer 30 ( Asymptotically concentrate the light).
- the UV light component in the sunlight spectrum does not have a high ratio, as can be seen from FIG. 3, so that it is not converted into two-dimensional spatially propagated light from the beginning, and therefore is guided in the planar optical waveguide 20. Instead, only the light having a lower energy component than this is converted into two-dimensional spatially propagated light, guided in the planar optical waveguide 20 and incident on the semiconductor layer 30 to be photoelectrically converted.
- a-Si or an organic semiconductor is included, the lifetime of the photoelectric conversion device can be improved and the reliability can be improved.
- the connection as shown in FIG. 25 is achieved.
- the probability / risk of the malfunction of the photoelectric conversion device due to the defect generated in the element unit of the tandem structure that occurs when the operation is performed can be reduced. This is because in the conventional series-connected tandem structure, the larger the area, the higher the probability of the above-mentioned problem, whereas in the photoelectric conversion device according to the present invention, the element unit of the tandem structure is in a line shape and the area is small. In addition to being extremely small, this element unit is segmented in the stripe direction as described above, and as described above, the probability that a local defect will cause the entire photoelectric conversion device to be defective is markedly increased. Can be lowered.
- a photoelectric conversion device system (or a solar cell system) may be configured by laying a plurality of photoelectric conversion devices according to the first to fourth embodiments.
- the entire side surface of the building is wrapped around in a headband shape, and the photoelectric conversion element portion (semiconductor layer 30) coupled thereto is, for example, one place on the north side surface of the building (that is, For example, they may be arranged collectively in a region of several meters in the vertical direction and several millimeters to 1 cm in the lateral direction.
- this headband-shaped redirection wave guide itself has a so-called reverse redirection (that is, two-dimensional spatial propagation light is returned to three-dimensional spatial propagation light) in a part of the shade that exists in the building. Therefore, it can also be used for applications that substantially eliminate the shade formed by the building.
- a structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light can be omitted. That is, it has a planar optical waveguide that guides two-dimensional spatially propagated light, and a photoelectric conversion semiconductor layer provided at an end of the planar optical waveguide, and is incident on the main surface of the planar optical waveguide. Light is guided in the planar optical waveguide and incident on the semiconductor layer, and the net traveling direction of the light guided in the planar optical waveguide and the planar optical waveguide A photoelectric conversion device is also effective in that the angle ⁇ formed with the net movement direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from the end face is substantially a right angle. In this case, the three-dimensional spatial propagation light is incident on the main surface of the planar optical waveguide, the light enters the planar optical waveguide, and the two-dimensional spatial propagation light is guided through the planar optical waveguide.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Photovoltaic Devices (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Provided is a photoelectric conversion device which allows regions that are insensitive to incident light to be eliminated, allows degradation of the organic semiconductor due to the Staebler-Wronski effect or UV components to be suppressed, makes it possible to obtain an extremely high photoelectric conversion efficiency, allows the area to be increased with exceptional ease, and can be suitably used as a solar cell or the like. The photoelectric conversion device has: a structural body (80) for converting 3D-space-propagating light into 2D-space-propagating light; a planar optical waveguide (20) for guiding the 2D-space-propagating light; and semiconductor layers (30) for photoelectric conversion, provided to the edge parts of the planar optical waveguide (20). Light incident on a principal surface of the planar optical waveguide (20) is guided through the interior thereof and caused to be incident on a semiconductor layer (30). The angle (θ) between the net direction of progression of light guided through the planar optical waveguide (20) and the net direction of movement of carriers generated in a semiconductor layer (30) by the light incident on the semiconductor layer (30) from the edge surface of the planar optical waveguide (20) is substantially a right angle.
Description
この発明は、光電変換装置、建築物および電子機器に関し、例えば、ビルの窓や各種の電子機器のディスプレイなどに設置して太陽電池として用いて好適な光電変換装置ならびにこの光電変換装置を用いた建築物および電子機器に関する。
TECHNICAL FIELD The present invention relates to a photoelectric conversion device, a building, and an electronic device. For example, the photoelectric conversion device suitable for use as a solar cell installed on a building window or a display of various electronic devices, and the photoelectric conversion device are used. It relates to buildings and electronic equipment.
未来の循環型社会のキーテクノロジーとして、また単に地球温暖化を防止するのみならず、自然環境の調和した緑の地球を次代の人類に手渡すためには、太陽光のより一層の有効利用が望まれる。この観点から世界的に太陽電池が注目され、光電変換効率の向上や製造コストの低減を図るべく盛んに研究開発が行われている。
In order not only to prevent global warming, but also to pass the green earth in harmony with the natural environment to the next generation, as a key technology for the future recycling society, more effective use of sunlight is desirable. It is. From this point of view, solar cells are attracting attention worldwide, and active research and development are being carried out in order to improve photoelectric conversion efficiency and reduce manufacturing costs.
従来の太陽電池としては、アモルファスまたは結晶シリコンを用いた太陽電池、GaAs結晶を用いた太陽電池、有機半導体を用いた太陽電池などが知られている。これらの太陽電池は、p型半導体層とn型半導体層とからなるpn接合をアノード電極とカソード電極との間に挟んだ構造を有し、pn接合の接合面に太陽光が垂直入射するタイプのものが一般的である(例えば、非特許文献1参照。)。
As a conventional solar cell, a solar cell using amorphous or crystalline silicon, a solar cell using GaAs crystal, a solar cell using an organic semiconductor, and the like are known. These solar cells have a structure in which a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer is sandwiched between an anode electrode and a cathode electrode, and sunlight is vertically incident on the junction surface of the pn junction. Are common (see, for example, Non-Patent Document 1).
この従来の太陽電池を図1に示す。図1に示すように、この従来の太陽電池は、p型半導体層151とn型半導体層152とによりpn接合を構成し、p型半導体層151上にアノード電極153を形成し、n型半導体層152上にカソード電極154を形成したものであり、全体として板状の形状を有する。この太陽電池においては、一方の主面155に垂直に入射する光156の進行方向と、この光156の入射によりpn接合中に生成される電子および正孔がドリフトまたは拡散によりそれぞれカソード電極154およびアノード電極153に向かう方向、言い換えるとキャリアの正味の移動方向とが平行になっている。このため、光156の吸収を十分に行うためにp型半導体層151およびn型半導体層152を厚くしようとすると、アノード電極153とカソード電極154との間の距離が大きくなってしまうため、光吸収の増大とキャリアの収集効率の向上とを両立させることは極めて困難であり、ひいてはこれが光電変換効率の向上を妨げていた。即ち、従来の太陽電池においては、吸収光子数およびフォトキャリア収集効率は、共に電極間隔、言い換えればp型半導体層151およびn型半導体層152の合計の厚さdに依存し、トレードオフの関係にあるため、光電変換効率ηはdに対し、図2の太い実線で示すように振舞う。また、従来の太陽電池は、量産性に富むものはその多くが単一のバンドギャップを用いているため、光電変換効率としては、図3の実線で示すように、理論的に最大でも30%程度しか得られない問題があった。これを補うために、太陽電池をスタック構造としたり、マルチ接合構造や互いにバンドギャップが異なる複数種の半導体を用いて太陽電池を構成したりする試みもあるが、これらの太陽電池はいずれも大面積化が容易ではないという問題がある。理論的には、図3に示すように、N=10、即ち10段階のバンドギャップを用いることで約60%の高効率が得られる。
This conventional solar cell is shown in FIG. As shown in FIG. 1, in this conventional solar cell, a p-type semiconductor layer 151 and an n-type semiconductor layer 152 form a pn junction, an anode electrode 153 is formed on the p-type semiconductor layer 151, and an n-type semiconductor is formed. A cathode electrode 154 is formed on the layer 152 and has a plate-like shape as a whole. In this solar cell, the traveling direction of the light 156 incident perpendicularly to one main surface 155, and the cathode electrode 154 and the electrons and holes generated in the pn junction by the incidence of the light 156 are caused by drift or diffusion, respectively. The direction toward the anode electrode 153, in other words, the net moving direction of the carriers is parallel. For this reason, if the p-type semiconductor layer 151 and the n-type semiconductor layer 152 are made thick in order to sufficiently absorb the light 156, the distance between the anode electrode 153 and the cathode electrode 154 becomes large. It has been extremely difficult to achieve both an increase in absorption and an improvement in carrier collection efficiency, and this has hindered improvement in photoelectric conversion efficiency. That is, in the conventional solar cell, the number of absorbed photons and the photocarrier collection efficiency both depend on the electrode spacing, in other words, the total thickness d of the p-type semiconductor layer 151 and the n-type semiconductor layer 152, and have a trade-off relationship. Therefore, the photoelectric conversion efficiency η behaves as shown by the thick solid line in FIG. Moreover, since many conventional solar cells are mass-productive and use a single band gap, the photoelectric conversion efficiency is theoretically at most 30% as shown by the solid line in FIG. There was a problem that could only be obtained. To make up for this, there are attempts to make solar cells into a stack structure, or to construct a solar cell using a multi-junction structure or multiple types of semiconductors with different band gaps. There is a problem that area-ization is not easy. Theoretically, as shown in FIG. 3, high efficiency of about 60% can be obtained by using N = 10, that is, a band gap of 10 steps.
他方、光電変換効率の大幅な向上を図ることを目的として、最近、pn接合の接合面に平行に太陽光が入射するタイプの太陽電池が提案されている(例えば、特許文献1参照。)。この太陽電池は、アノード電極とカソード電極とが、間にp型半導体層とn型半導体層とからなるpn接合を挟んで渦巻き状に形成されたもので、全体として薄い円板の形状を有する。p型半導体層およびn型半導体層のバンドギャップEg は、光入射面から円板の厚さ方向にn段階(n≧2)に段階的に減少しており、光入射面側から順にEg1、Eg2、…、Egn(Eg1>Eg2>…>Egn)となっている。
On the other hand, for the purpose of significantly improving photoelectric conversion efficiency, a solar cell of a type in which sunlight is incident in parallel to the joint surface of a pn junction has recently been proposed (for example, see Patent Document 1). In this solar cell, an anode electrode and a cathode electrode are formed in a spiral shape with a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer interposed therebetween, and have a thin disk shape as a whole. . The band gap E g of the p-type semiconductor layer and the n-type semiconductor layer decreases stepwise from the light incident surface in the thickness direction of the disk in n steps (n ≧ 2). g1 , Eg2 ,..., Egn ( Eg1 > Eg2 >...> Egn ).
図4は、ロールツーロールプロセスで製造された、特許文献1に記載の太陽電池の一例を示し、円板の直径方向の断面を示す。この太陽電池を製造するには、透明な樹脂製のベースフィルムを用いて、その上に太陽電池のアノード電極、半導体層およびカソード電極を形成し、ベースフィルムを巻き込みながら渦巻き構造を形成する。図4に示すように、この太陽電池では、ベースフィルム201の幅方向(円板の厚さ方向)に順にアノード電極202、203、204、205が形成されている。これらのアノード電極202、203、204、205はベースフィルム201の長手方向に細長く延びて形成されている。これらのアノード電極202、203、204、205の上にバンドギャップEg がそれぞれEg1、Eg2、Eg3、Eg4(Eg1>Eg2>Eg3>Eg4)の半導体からなる領域206、207、208、209が形成されている。これらの領域206、207、208、209のアノード電極202、203、204、205とは反対側の面には全面電極であるカソード電極210が形成されている。ここで、領域206、207、208、209の円板の厚さ方向の幅は典型的には数十μm程度、円板の直径方向の幅は典型的には150nm程度である。これに対し、図4においては図示の都合上ベースフィルム201の厚さは極端に小さく描かれているが、ベースフィルム201の厚さは例えば約100μm程度であり、領域206、207、208、209の円板の直径方向の幅に比べて3桁程度大きい。
FIG. 4 shows an example of a solar cell described in Patent Document 1 manufactured by a roll-to-roll process, and shows a cross section in the diameter direction of a disk. In order to manufacture this solar cell, an anode electrode, a semiconductor layer, and a cathode electrode of a solar cell are formed on a transparent resin base film, and a spiral structure is formed while the base film is wound. As shown in FIG. 4, in this solar cell, anode electrodes 202, 203, 204, and 205 are sequentially formed in the width direction of the base film 201 (the thickness direction of the disk). These anode electrodes 202, 203, 204, and 205 are formed to be elongated in the longitudinal direction of the base film 201. On the anode electrodes 202, 203, 204, 205, a region 206 made of a semiconductor having band gaps E g of E g1 , E g2 , E g3 , E g4 (E g1 > E g2 > E g3 > E g4 ), respectively. , 207, 208, and 209 are formed. A cathode electrode 210 which is a full-surface electrode is formed on the surface of these regions 206, 207, 208 and 209 opposite to the anode electrodes 202, 203, 204 and 205. Here, the width in the thickness direction of the disk in the regions 206, 207, 208, and 209 is typically about several tens of μm, and the width in the diameter direction of the disk is typically about 150 nm. On the other hand, in FIG. 4, the thickness of the base film 201 is drawn extremely small for convenience of illustration, but the thickness of the base film 201 is about 100 μm, for example, and the regions 206, 207, 208, and 209 are drawn. It is about three orders of magnitude larger than the width of the disk in the diameter direction.
なお、光電変換材料に単一物質を用いた太陽電池に関するものであるが、集光システムを使わず、光の伝播を考えて光電変換効率の向上を目指した報告がある(非特許文献2、3参照。)。また、レンズ等を用いた集光システムを使うと、太陽光を受ける面積に対し、素子の面積を小さくすることができ、また、集光による光子数の増大により光電変換効率が向上することが知られているが、集光により太陽電池の温度も上昇してしまうため、光電変換効率の低下に繋がっていた。
Although it relates to a solar cell using a single substance as a photoelectric conversion material, there is a report aiming at improvement of photoelectric conversion efficiency in consideration of light propagation without using a condensing system (Non-Patent Document 2, 3). In addition, when a condensing system using a lens or the like is used, the area of the element can be reduced relative to the area that receives sunlight, and the photoelectric conversion efficiency can be improved by increasing the number of photons by condensing. As is known, the temperature of the solar cell also rises due to light collection, leading to a decrease in photoelectric conversion efficiency.
しかしながら、図4に示す太陽電池では、円板の一方の面に垂直に入射する光は、透明なベースフィルム201を透過して円板の他方の面から外部に抜け出てしまい、光電変換には何ら寄与しない。即ち、ベースフィルム201は入射光に対して不感領域となるが、円板の面積に占めるこのベースフィルム201の端面の面積、つまり不感領域の面積の割合は極めて大きいことが分かる。これがこの太陽電池の光電変換効率を制約していた。また、太陽光がベースフィルム201内を導波されて深部に位置する半導体領域に直接侵入する経路も存在するため、深部の半導体がアモルファスシリコンである場合には、光入射により太陽電池の光電変換効率が低下する、いわゆるステブラー・ロンスキー(SW)効果があり、深部の半導体が有機半導体である場合には、太陽光の紫外成分による有機半導体の劣化の問題があった。この問題は、一般のアモルファスシリコン太陽電池でも同様である。加えて、アモルファスシリコン太陽電池では、半導体層の厚さを大きくしても空間電荷効果により内部電界が減殺され、特性が向上しないという問題があった。
However, in the solar cell shown in FIG. 4, light perpendicularly incident on one surface of the disk passes through the transparent base film 201 and escapes to the outside from the other surface of the disk. Does not contribute anything. That is, it can be seen that the base film 201 is insensitive to incident light, but the area of the end face of the base film 201 in the area of the disk, that is, the ratio of the area of the insensitive area is extremely large. This restricted the photoelectric conversion efficiency of this solar cell. In addition, since there is a path through which sunlight is guided in the base film 201 and directly enters a semiconductor region located in the deep part, when the semiconductor in the deep part is amorphous silicon, photoelectric conversion of the solar cell is caused by light incidence. When there is a so-called Stebbler-Lonsky (SW) effect that lowers the efficiency and the deep semiconductor is an organic semiconductor, there is a problem of deterioration of the organic semiconductor due to the ultraviolet component of sunlight. This problem is the same in general amorphous silicon solar cells. In addition, the amorphous silicon solar cell has a problem that even if the thickness of the semiconductor layer is increased, the internal electric field is reduced by the space charge effect, and the characteristics are not improved.
そこで、この発明が解決しようとする課題は、入射光に対する不感領域をなくすことができ、ステブラー・ロンスキー効果や紫外成分による有機半導体の劣化を抑えることができ、極めて高い光電変換効率を得ることができ、大面積化も極めて容易な、太陽電池などとして用いて好適な光電変換装置ならびにこの優れた光電変換装置を用いた建築物および電子機器を提供することである。
Therefore, the problem to be solved by the present invention is that the insensitive area for incident light can be eliminated, deterioration of the organic semiconductor due to the Stebbler-Lonsky effect and ultraviolet components can be suppressed, and extremely high photoelectric conversion efficiency can be obtained. It is possible to provide a photoelectric conversion device suitable for use as a solar cell and the like, and a building and an electronic device using this excellent photoelectric conversion device, which can be increased in area and extremely easily.
また、この発明が解決しようとする他の課題は、集光型太陽発電において、集光した光の導入による副産物としての温度上昇により、本来集光無しの場合よりも高まる光電変換効率が相殺されてしまうのを防止することができる光電変換装置を提供することである。
Another problem to be solved by the present invention is that, in the concentrating solar power generation, the temperature increase as a by-product due to the introduction of the condensed light cancels out the photoelectric conversion efficiency that is higher than that in the case without the original condensing. It is providing the photoelectric conversion apparatus which can prevent that.
また、この発明が解決しようとするさらに他の課題は、レンズ等を用いる集光型太陽発電において、太陽の直射光が欠けた場合、つまり拡散光がメインとなった場合に光電変換効率が低下する問題があったが、これを解決することができる光電変換装置を提供することである。
Further, another problem to be solved by the present invention is that, in concentrating solar power generation using a lens or the like, the photoelectric conversion efficiency decreases when the direct sunlight of the sun is lost, that is, when the diffused light becomes main. However, it is an object of the present invention to provide a photoelectric conversion device that can solve this problem.
上記課題を解決するために、この発明は、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする光電変換装置である。 In order to solve the above problems, the present invention provides:
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The photoelectric conversion device is characterized in that the angle θ formed by is substantially a right angle.
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする光電変換装置である。 In order to solve the above problems, the present invention provides:
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The photoelectric conversion device is characterized in that the angle θ formed by is substantially a right angle.
典型的には、面状光導波路と半導体層とは互いに一体に設けられ、例えば、それらの端部同士が接合されて一体化される。半導体層の互いに対向する一対の面にそれぞれ第1の電極および第2の電極が設けられる。これらの第1の電極および第2の電極の一方はアノード電極、他方はカソード電極として用いられる。
Typically, the planar optical waveguide and the semiconductor layer are provided integrally with each other, and, for example, their ends are joined together. A first electrode and a second electrode are provided on a pair of surfaces of the semiconductor layer facing each other. One of the first electrode and the second electrode is used as an anode electrode, and the other is used as a cathode electrode.
θは、具体的には、例えば、π/2-δ≦θ≦π/2+δに選ばれる。ただし、δは、第1の電極および第2の電極のうちのアノード電極として用いられるものの、半導体層内の光の進行方向に平行な方向の幅(電極幅)に対する半導体層の厚さの比に対応し、δ~半導体層の厚さ/電極幅である。
Specifically, for example, π / 2−δ ≦ θ ≦ π / 2 + δ is selected as θ. However, although δ is used as the anode electrode of the first electrode and the second electrode, the ratio of the thickness of the semiconductor layer to the width (electrode width) in the direction parallel to the light traveling direction in the semiconductor layer Δ to semiconductor layer thickness / electrode width.
3次元空間伝播光を2次元空間伝播光に変換する構造体は、例えば、互いに屈折率が異なる帯状の第1の部分および帯状の第2の部分が交互に周期的に、または一定間隔で、配列された構造を有する。この3次元空間伝播光を2次元空間伝播光に変換する構造体は、典型的には、面状光導波路の主面または面状光導波路内に設けられる。具体的には、3次元空間伝播光を2次元空間伝播光に変換する構造体は、例えば、面状光導波路の主面または面状光導波路内に設けられた回折格子である。この回折格子は従来公知の方法により形成することができる。例えば、面状光導波路の主面にインプリント技術により凸部を周期的に形成したり、この主面に周期的に凹部を形成し、この凹部に面状光導波路と異なる屈折率を有する材料を埋め込んだり、イオン交換により屈折率を変えたりすることにより回折格子を形成することができる。あるいは、面状光導波路の主面に、周期構造からなる回折格子が形成された透明プラスチックフィルムを張り付けたりすることもできる。3次元空間伝播光を2次元空間伝播光に変換する構造体上には、必要に応じて、光波進行方向変換シート(例えば、非特許文献4参照。非特許文献4では集光シートと呼ばれている。)が設けられる。
The structure for converting the three-dimensional spatially propagated light into the two-dimensional spatially propagated light includes, for example, a first band-shaped portion and a second band-shaped portion having different refractive indexes alternately periodically or at regular intervals. It has an ordered structure. The structure that converts the three-dimensional spatially propagated light into two-dimensional spatially propagated light is typically provided in the main surface of the planar optical waveguide or in the planar optical waveguide. Specifically, the structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light is, for example, a main surface of a planar optical waveguide or a diffraction grating provided in the planar optical waveguide. This diffraction grating can be formed by a conventionally known method. For example, a material having a refractive index different from that of the planar optical waveguide, in which convex portions are periodically formed on the main surface of the planar optical waveguide by imprint technology, or concave portions are periodically formed on the main surface. The diffraction grating can be formed by embedding or changing the refractive index by ion exchange. Alternatively, a transparent plastic film on which a diffraction grating having a periodic structure is formed can be attached to the main surface of the planar optical waveguide. On the structure that converts the three-dimensional spatially propagated light into the two-dimensional spatially propagated light, if necessary, a light wave traveling direction converting sheet (see, for example, Non-Patent Document 4; Is provided).
面状光導波路は、平面状光導波路であっても、曲面状光導波路であってもよい。また、面状光導波路の平面形状は必要に応じて選ばれるが、典型的には、四角形、例えば長方形または正方形の形状を有する。この場合、面状光導波路のこの四角形の互いに対向する一対の辺のうちの少なくとも一方の辺に相当する面状光導波路の端部に半導体層が設けられ、好適には、この四角形の上記の互いに対向する一対の辺と異なる一対の辺のうちの少なくとも一方の辺に相当する面状光導波路の端部に光反射機構が設けられる。この場合、面状光導波路の主面に入射した光が面状光導波路内を導波される際にこの光反射機構に入射すると反射され、半導体層に向かう方向に光路が曲げられることにより、半導体層の端面に入射する光の量が多くなる。
The planar optical waveguide may be a planar optical waveguide or a curved optical waveguide. The planar shape of the planar optical waveguide is selected as necessary, but typically has a quadrangular shape, for example, a rectangular shape or a square shape. In this case, a semiconductor layer is provided at an end of the planar optical waveguide corresponding to at least one of a pair of opposite sides of the rectangular optical waveguide. A light reflection mechanism is provided at the end of the planar optical waveguide corresponding to at least one of a pair of sides different from the pair of sides facing each other. In this case, the light incident on the main surface of the planar optical waveguide is reflected when entering the light reflecting mechanism when guided in the planar optical waveguide, and the optical path is bent in the direction toward the semiconductor layer. The amount of light incident on the end face of the semiconductor layer increases.
好適には、面状光導波路の主面に光が入射する際に半導体層に光が直接入射しないように構成される。言い換えると、光電変換装置の主面に光が入射する場合、面状光導波路の主面には光が入射するが、半導体層の面には光が直接入射しない。こうすることで、半導体層に直接入射する光により半導体層が加熱されて温度が上昇するのを防止することができるので、半導体層の特性劣化を防止することができ、ひいては、熱として散逸するエネルギーも少ないことと相まって、この光電変換装置の光電変換効率の低下を防止することができ、高い光電変換効率を得ることができる。
It is preferable that the light is not directly incident on the semiconductor layer when the light is incident on the main surface of the planar optical waveguide. In other words, when light is incident on the main surface of the photoelectric conversion device, the light is incident on the main surface of the planar optical waveguide, but the light is not directly incident on the surface of the semiconductor layer. By doing so, it is possible to prevent the temperature of the semiconductor layer from being increased due to light that is directly incident on the semiconductor layer, thereby preventing deterioration of the characteristics of the semiconductor layer, and thus dissipating as heat. Coupled with the low energy, the photoelectric conversion efficiency of the photoelectric conversion device can be prevented from being lowered, and high photoelectric conversion efficiency can be obtained.
面状光導波路の厚さは一般に半導体層の厚さに比べて大きいので、面状光導波路内を導波される光の有効利用を図るため、好適には、面状光導波路内を導波される光を集光して半導体層に入射させる。このためには、例えば、面状光導波路が、面状光導波路内を導波される光が面状光導波路のうちの半導体層と接触する部分(半導体層と同じ厚さを有する)に、例えば漸近的に集光される屈折率分布を有するようにする。即ち、面状光導波路内を導波される光は、この面状光導波路の屈折率分布に従って導波されるため、導波されながら漸近的に半導体層と接触する部分に集光される。
Since the thickness of the planar optical waveguide is generally larger than the thickness of the semiconductor layer, it is preferably guided in the planar optical waveguide in order to effectively use the light guided in the planar optical waveguide. The collected light is collected and incident on the semiconductor layer. For this purpose, for example, the planar optical waveguide has a portion (having the same thickness as the semiconductor layer) in which the light guided in the planar optical waveguide is in contact with the semiconductor layer of the planar optical waveguide. For example, a refractive index profile that is collected asymptotically is provided. That is, the light guided in the planar optical waveguide is guided according to the refractive index distribution of the planar optical waveguide, and thus is collected asymptotically to the portion that contacts the semiconductor layer while being guided.
半導体層は、無機半導体または有機半導体からなり、典型的には、p型半導体層とn型半導体層とからなるpn接合である。半導体層の厚さは、この半導体層内のキャリアの拡散長の関数として適宜選ばれるが、典型的には10nm以上100μm以下である。半導体層を構成する半導体は、アモルファス(非晶質)、多結晶、単結晶のいずれの形態のものであってもよい。
The semiconductor layer is composed of an inorganic semiconductor or an organic semiconductor, and is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer. The thickness of the semiconductor layer is appropriately selected as a function of the diffusion length of carriers in the semiconductor layer, and is typically 10 nm or more and 100 μm or less. The semiconductor constituting the semiconductor layer may be amorphous (amorphous), polycrystalline, or single crystal.
無機半導体としては、CdSe、PbS、PbSe、PbTeなどのII-VI族化合物半導体、GaSb、InAs、InN、AlInN、GaInN、GaN、AlGaN、GaAsN、GaPNなどのIII-V族化合物半導体、SiやSiGeなどのIV族半導体、Six Gey Sn1-x-y O、SiNx 、SiOx 、CIS(CuInSe)、CIGS(CuInGaSe)、CuInGaSeTeなどを用いることができる(例えば、非特許文献5~10参照。)。これらの半導体は、例えば、In、GaなどのIII族元素の組成比の制御や硫黄(S)の混合などによってバンドギャップを制御することができるのが特徴である。半導体層は、これらの無機半導体からなる微粒子により構成することもできる。
Examples of inorganic semiconductors include II-VI group compound semiconductors such as CdSe, PbS, PbSe, and PbTe, III-V group compound semiconductors such as GaSb, InAs, InN, AlInN, GaInN, GaN, AlGaN, GaAsN, and GaPN, and Si and SiGe. Group IV semiconductors such as Si x Ge y Sn 1-xy O, SiN x , SiO x , CIS (CuInSe), CIGS (CuInGaSe), CuInGaSeTe, and the like can be used (see, for example, Non-Patent Documents 5 to 10). ). These semiconductors are characterized in that the band gap can be controlled, for example, by controlling the composition ratio of group III elements such as In and Ga or mixing sulfur (S). The semiconductor layer can also be constituted by fine particles made of these inorganic semiconductors.
有機半導体としては、有機太陽電池の材料として一般的に報告されているものは全て用いることができるが、具体的には、ペンタセンなどのポリアセン、ポリアセチレン(好ましくは二置換型ポリアセチレン)、ポリ(p-フェニレンビニレン)、ポリ(2,5-チエニレンビニレン)、ポリピロール、ポリ(3-メチルチオフェン)、ポリアニリン、ポリ(9,9-ジアルキルフルオレン)(PDAF)、ポリ(9,9-ジオクチルフルオレン-co-ビチオフェン)(F8T2)、ポリ(1-ヘキシル-2-フェニルアセチレン)(PHX PA)(発光材料としては青色の発光を示す)、ポリ(ジフェニルアセチレン)誘導体(PDPA-n Bu)(発光材料としては緑色の発光を示す)、ポリ(ピリジン)(PPy)、ポリ(ピリジルビニレン)(PPyV)、シアノ置換型ポリ(p-フェニレンビニレン)(CNPPV)、ポリ(3,9-ジ-tert-ブチルインデノ[1,2-b]フルオレン(PIF)などを用いることができる。これらの有機半導体のドーパントについては、ドナーとしてはアルカリ金属(Li、Na、K、Cs)を用いることができ、アクセプタとしてはハロゲン類(Br2 、I2 、CI2 )、ルイス酸(BF3 、PF5 、AsF5 、SbF5 、SO3 )、遷移金属ハロゲン化物(FeCl3 、MoCl5 、WCl5 、SnCl4 )、有機アクセプタ分子としてはTCNE、TCNQを用いることができる。また、電気化学ドーピングに用いられるドーパントイオンは、陽イオンとしてはテトラエチルアンモニウムイオン(TEA+ )、テトラブチルアンモニウムイオン(TBA+ )、Li+ 、Na+ 、K+ 、陰イオンとしてはClO4
- 、BF4
- 、PF6
- 、AsF6
- 、SbF6
- などを用いることができる。有機半導体としてはさらに、高分子電解質を用いることもできる。この高分子電解質の具体例を挙げると、ポリアニオンとしては、サルフォネートポリアニリン、ポリ(チオフェン-3-酢酸)、サルフォネートポリスチレン、ポリ(3-チオフェンアルカンサルフォネート)など、ポリカチオンとしては、ポリアリルアミン、ポリ(p-フェニレン-ビニレン)前駆体高分子、ポリ(p-メチルピリジニウムビニレン)、プロトン化ポリ(p-ピリジルビニレン)、ポロトン(2-N-メチルピリジニウムアセチレン)などを用いることができる。半導体層として低不純物濃度にドープされた有機半導体層を用いる場合、この有機半導体層はヘテロジャンクション型あるいはバルクヘテロジャンクション型の構造とすることができる。ヘテロジャンクション型構造の有機半導体層においては、p型有機半導体膜およびn型有機半導体膜とを第1の電極および第2の電極と接触するように接合する。バルクヘテロジャンクション型構造の有機半導体層は、p型有機半導体分子とn型有機半導体分子との混合物からなり、p型有機半導体とn型有機半導体とが互いに入り組んで互いに接触した微細構造を有する。
As the organic semiconductor, all materials generally reported as organic solar cell materials can be used. Specifically, polyacenes such as pentacene, polyacetylene (preferably disubstituted polyacetylene), poly (p -Phenylene vinylene), poly (2,5-thienylene vinylene), polypyrrole, poly (3-methylthiophene), polyaniline, poly (9,9-dialkylfluorene) (PDAF), poly (9,9-dioctylfluorene- co-bithiophene) (F8T2), poly (1-hexyl-2-phenylacetylene) (PH X PA) (shows blue emission as the light-emitting material), poly (diphenylacetylene) derivative (PDPA- n Bu) (light emission) The materials are green light emission), poly (pyridine) (PPy), poly (pyridylbi) Ren) (PPyV), cyano-substituted poly (p-phenylene vinylene) (CNPPV), poly (3,9-di-tert-butylindeno [1,2-b] fluorene (PIF), etc. can be used. As for the dopant of the organic semiconductor, alkali metals (Li, Na, K, Cs) can be used as donors, and halogens (Br 2 , I 2 , CI 2 ), Lewis acids (BF 3 , PF 5 , AsF 5 , SbF 5 , SO 3 ), transition metal halides (FeCl 3 , MoCl 5 , WCl 5 , SnCl 4 ), TCNE, TCNQ can be used as organic acceptor molecules, and electrochemical doping. dopant ions used in the tetraethylammonium ions as cations (TEA +), tetrabutylammonium Ion (TBA +), Li +, Na +, K +, ClO 4 as the anion -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -. Or the like can be used as the organic semiconductor In addition, specific examples of the polymer electrolyte include polyanions such as sulfonate polyaniline, poly (thiophene-3-acetic acid), sulfonate polystyrene, poly (3-thiophene). Examples of polycations such as alkane sulfonates include polyallylamine, poly (p-phenylene-vinylene) precursor polymer, poly (p-methylpyridinium vinylene), protonated poly (p-pyridylvinylene), and polotone (2- N-methylpyridinium acetylene) and the like can be used. When an organic semiconductor layer doped with a low impurity concentration is used as the semiconductor layer, the organic semiconductor layer can have a heterojunction type or bulk heterojunction type structure. In the organic semiconductor layer having the heterojunction structure, the p-type organic semiconductor film and the n-type organic semiconductor film are joined so as to be in contact with the first electrode and the second electrode. The organic semiconductor layer having a bulk heterojunction structure is composed of a mixture of p-type organic semiconductor molecules and n-type organic semiconductor molecules, and has a fine structure in which the p-type organic semiconductor and the n-type organic semiconductor are intertwined with each other.
半導体層を構成する半導体としては、無機半導体および有機半導体のほかに、有機無機ハイブリッド半導体を用いることもできる。このような有機無機ハイブリッド半導体としては、例えば、ペロブスカイト系半導体(例えば、非特許文献11参照。)を用いることができる。
As a semiconductor constituting the semiconductor layer, an organic-inorganic hybrid semiconductor can be used in addition to an inorganic semiconductor and an organic semiconductor. As such an organic-inorganic hybrid semiconductor, for example, a perovskite-based semiconductor (see, for example, Non-Patent Document 11) can be used.
好適には、第1の電極および第2の電極は半導体層とオーミック接触している。半導体層として有機半導体を用いる場合は、第1の電極および第2の電極は半導体層とオーミック接触していなくてもよい。第1の電極および第2の電極としては、金(Au)、ニッケル(Ni)、アルミニウム(Al)などの金属のほか、インジウム錫酸化物(ITO)などの各種の透明導電性酸化物などを用いることができるが、これに限定されるものではない。
Preferably, the first electrode and the second electrode are in ohmic contact with the semiconductor layer. In the case where an organic semiconductor is used as the semiconductor layer, the first electrode and the second electrode may not be in ohmic contact with the semiconductor layer. As the first electrode and the second electrode, various transparent conductive oxides such as indium tin oxide (ITO) as well as metals such as gold (Au), nickel (Ni), and aluminum (Al) are used. Although it can be used, it is not limited to this.
好適には、半導体層のバンドギャップ、あるいは半導体層が有機半導体からなる場合にはHOMO(最高被占分子軌道)-LUMO(最低非占分子軌道)ギャップが光の進行方向に順に段階的および/または連続的に減少するようにする。こうすることで、例えば、光電変換装置の半導体層の主面に太陽光が入射した場合、この太陽光は、面状光導波路内を導波されて半導体層に入射すると、バンドギャップあるいはHOMO-LUMOギャップが一番大きい半導体にまず入射し、最終的にバンドギャップが一番小さい半導体に入射することになり、この過程で太陽光スペクトルのうちの短い波長の光から長い波長の光に亘って順次吸収され、しかもこの吸収量は最大化される。このため、半導体層のバンドギャップあるいはHOMO-LUMOギャップの変化のさせ方および使用する半導体の種類によって、太陽光スペクトルの主要部あるいは実質的に全部の光を光電変換することができ、究極的には光電変換効率を理論最大効率に近づけることができる。典型的には、半導体層は、バンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的に減少した複数の領域からなり、各領域の互いに対向する一対の面に第1の電極および第2の電極が設けられ、これらの第1の電極および第2の電極のうちの少なくとも一方は各領域間で互いに分離して設けられる。
Preferably, the band gap of the semiconductor layer, or, if the semiconductor layer is made of an organic semiconductor, the HOMO (highest occupied molecular orbital) -LUMO (lowest unoccupied molecular orbital) gap is stepwise and / or sequentially in the light traveling direction. Or make it decrease continuously. In this way, for example, when sunlight is incident on the main surface of the semiconductor layer of the photoelectric conversion device, when the sunlight is guided through the planar optical waveguide and incident on the semiconductor layer, the band gap or HOMO− The light enters the semiconductor with the largest LUMO gap first, and finally enters the semiconductor with the smallest band gap. In this process, the short wavelength light to the long wavelength light in the solar spectrum are spread. It is absorbed sequentially and this amount of absorption is maximized. For this reason, depending on how the band gap or HOMO-LUMO gap of the semiconductor layer is changed and the type of semiconductor used, the main part of the solar spectrum or substantially all light can be photoelectrically converted. Can bring the photoelectric conversion efficiency close to the theoretical maximum efficiency. Typically, the semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap gradually decreases in the light traveling direction, and the first electrode and the second electrode are formed on a pair of surfaces facing each other. Two electrodes are provided, and at least one of the first electrode and the second electrode is provided separately between the regions.
好適には、半導体層はバンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的に減少した複数の領域からなり、各領域の光の進行方向の幅が、各領域のバンドギャップまたはHOMO-LUMOギャップと等しいエネルギーを有する光の各領域における吸収係数の逆数以上である。
Preferably, the semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap is gradually reduced in the light traveling direction, and the width in the light traveling direction of each region is equal to the band gap or HOMO of each region. It is greater than or equal to the reciprocal of the absorption coefficient in each region of light having energy equal to the LUMO gap.
半導体層が、バンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的に減少した複数の領域からなる場合、これらの領域の例を挙げると、光の進行方向に順に、Six C1-x (0<x<1)からなる領域、Siからなる領域およびSiy Ge1-y (0<y<1)からなる領域、あるいは、Six C1-x からなる領域、Siからなる領域およびマイクロクリスタルSiy Ge1-y からなる領域、あるいは、AlGaN、GaNおよびIGZO(In、Ga、Znの酸化物)からなる群より選ばれた少なくとも一つの半導体を含む領域、Six C1-x からなる領域、Siからなる領域およびSiy Ge1-y からなる領域、あるいは、Six C1-x からなる領域、Siからなる領域、Siy Ge1-y からなる領域およびGeからなる領域である。
When the semiconductor layer is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap gradually decreases in the light traveling direction, examples of these regions include Si x C 1 in order in the light traveling direction. -x (0 <x <1) region consisting of a region consisting of a region made of Si and Si y Ge 1-y (0 <y <1) or a region consisting of Si x C 1-x, made of Si A region composed of a region and a microcrystal Si y Ge 1 -y , or a region containing at least one semiconductor selected from the group consisting of AlGaN, GaN and IGZO (In, Ga, Zn oxide), Si x C 1 -x region, Si region and Si y Ge 1 -y region, or Si x C 1 -x region, Si region, Si y Ge 1 -y region and Ge Territory It is an area.
光電変換装置には、太陽電池のほか、光センサーなども含まれる。必要に応じて、光電変換装置または太陽電池を複数組み合わせてモジュール化あるいはシステム化してもよい。
Photoelectric conversion device includes not only solar cells but also optical sensors. If necessary, a plurality of photoelectric conversion devices or solar cells may be combined to form a module or system.
また、この発明は、
少なくとも一つの光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする建築物である。 In addition, this invention
Having at least one photoelectric conversion device;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The building is characterized in that the angle θ formed by is substantially a right angle.
少なくとも一つの光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする建築物である。 In addition, this invention
Having at least one photoelectric conversion device;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The building is characterized in that the angle θ formed by is substantially a right angle.
ここで、建築物は、光電変換装置を設置可能な建築物であれば、基本的にはどのようなものであってもよいが、具体的には、例えば、ビルディング、マンション、戸建住宅、アパート、駅舎、校舎、庁舎、競技場、球場、病院、教会、工場、倉庫、小屋、橋などが挙げられる。これらの建築物への光電変換装置の設置箇所は特に限定されず、必要に応じて選ばれる。設置箇所の例を挙げると、これらの建築物のガラス窓や採光部などである。この場合、光電変換装置は、例えば、これらの建築物やその内部に設置される電気製品の電源として用いられる太陽電池である。好適には、面状光導波路の主面に光が入射する際に半導体層に光が直接入射しないように半導体層が建築物の陰の部分に配置される。例えば、面状光導波路が緩やかな曲率を有する部分を含むようにし、この部分を、例えば、瓦の下、屋根の中央部迫り出し稜線の下、窓の枠あるいは桟等に配置する。
Here, the building may basically be any building as long as it can install a photoelectric conversion device. Specifically, for example, a building, a condominium, a detached house, There are apartments, station buildings, school buildings, government buildings, stadiums, stadiums, hospitals, churches, factories, warehouses, huts, and bridges. The installation location of the photoelectric conversion device in these buildings is not particularly limited, and is selected as necessary. Examples of installation locations are the glass windows and daylighting sections of these buildings. In this case, the photoelectric conversion device is, for example, a solar cell used as a power source for these buildings and electrical products installed therein. Preferably, the semiconductor layer is disposed in a shaded part of the building so that the light does not directly enter the semiconductor layer when the light enters the main surface of the planar optical waveguide. For example, the planar optical waveguide includes a portion having a gentle curvature, and this portion is disposed, for example, under a tile, under a protruding central portion of a roof, on a window frame or a crosspiece.
また、この発明は、
外面に取り付けられた光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする電子機器である。 In addition, this invention
Having a photoelectric conversion device attached to the outer surface;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The electronic device is characterized in that the angle θ formed by is substantially a right angle.
外面に取り付けられた光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする電子機器である。 In addition, this invention
Having a photoelectric conversion device attached to the outer surface;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The electronic device is characterized in that the angle θ formed by is substantially a right angle.
電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、車載機器、各種家庭電気製品などである。この場合、光電変換装置は、例えば、これらの電子機器の電源として用いられる太陽電池である。
Electronic devices may be basically any type, including both portable and stationary types, but specific examples include mobile phones, mobile devices, robots, personal computers. , In-vehicle equipment, various home appliances. In this case, the photoelectric conversion device is, for example, a solar battery used as a power source for these electronic devices.
この発明によれば、面状光導波路内を導波される光の正味の進行方向と、面状光導波路の端面から半導体層に入射した光により半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であるので、光の入射方向の光電変換層の厚さの選択による光の吸収量の最大化と電極間距離の最小化とを両立させることができる。このため、極めて高い光電変換効率を得ることができる。また、面状光導波路の主面の全体で入射光を受けることができるので、入射光に対する不感領域がない。また、面状光導波路の主面に入射した光が面状光導波路内を導波されて半導体層に入射するので、半導体層に光が直接入射しないようにすることができる。このため、半導体層が例えばアモルファスシリコンや有機半導体からなる場合であっても、ステブラー・ロンスキー(SW)効果や紫外成分による有機半導体の劣化を抑えることができる。また、面状光導波路の面積を大きくすることにより、光電変換装置の大面積化も極めて容易である。また、半導体層のバンドギャップあるいは半導体層が有機半導体からなる場合にはHOMO-LUMOギャップが光の入射方向に段階的および/または連続的に減少するようにすることにより、太陽光スペクトルの主要部あるいは全部の波長の光を吸収して光電変換することができ、究極的には理論最大効率に迫る光電変換効率を得ることができる。
According to the present invention, the net traveling direction of light guided in the planar optical waveguide and the net movement of carriers generated in the semiconductor layer by light incident on the semiconductor layer from the end surface of the planar optical waveguide. Since the angle θ formed with the direction is substantially a right angle, it is possible to achieve both the maximization of the amount of light absorption and the minimization of the distance between the electrodes by selecting the thickness of the photoelectric conversion layer in the light incident direction. For this reason, extremely high photoelectric conversion efficiency can be obtained. Further, since the incident light can be received by the entire main surface of the planar optical waveguide, there is no insensitive region for the incident light. In addition, since light incident on the main surface of the planar optical waveguide is guided through the planar optical waveguide and incident on the semiconductor layer, it is possible to prevent light from directly entering the semiconductor layer. For this reason, even when the semiconductor layer is made of, for example, amorphous silicon or an organic semiconductor, the deterioration of the organic semiconductor due to the Stebbler-Lonsky (SW) effect or an ultraviolet component can be suppressed. Further, it is very easy to increase the area of the photoelectric conversion device by increasing the area of the planar optical waveguide. Further, when the band gap of the semiconductor layer or the semiconductor layer is made of an organic semiconductor, the HOMO-LUMO gap is decreased stepwise and / or continuously in the light incident direction, so that the main part of the solar spectrum can be obtained. Alternatively, photoelectric conversion can be performed by absorbing light of all wavelengths, and ultimately, photoelectric conversion efficiency approaching the theoretical maximum efficiency can be obtained.
以下、発明を実施するための形態(以下、「実施の形態」という。)について図面を参照しながら説明する。なお、以下の実施の形態においては、原則として、同一または対応する部分には同一の符号を付す。
Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings. In the following embodiments, in principle, the same or corresponding parts are denoted by the same reference numerals.
〈第1の実施の形態〉
[光電変換装置]
図5Aおよび図5Bは第1の実施の形態による光電変換装置を示す。図5Aおよび図5Bに示すように、この光電変換装置は、長方形または正方形の面状光導波路20と、この面状光導波路20の互いに平行な一対の辺に相当する端面に設けられた光電変換用の半導体層30とを有する。半導体層30は一般的には細長い長方形の形状を有する。面状光導波路20と半導体層30とは互いに一体に設けられており、全体として面状の形状を有する。面状光導波路20および半導体層30は支持基板40上に設けられている。 <First Embodiment>
[Photoelectric conversion device]
5A and 5B show the photoelectric conversion device according to the first embodiment. As shown in FIGS. 5A and 5B, this photoelectric conversion device includes a rectangular or square planaroptical waveguide 20 and a photoelectric conversion provided on end faces corresponding to a pair of parallel sides of the planar optical waveguide 20. And a semiconductor layer 30 for use. The semiconductor layer 30 generally has an elongated rectangular shape. The planar optical waveguide 20 and the semiconductor layer 30 are provided integrally with each other and have a planar shape as a whole. The planar optical waveguide 20 and the semiconductor layer 30 are provided on the support substrate 40.
[光電変換装置]
図5Aおよび図5Bは第1の実施の形態による光電変換装置を示す。図5Aおよび図5Bに示すように、この光電変換装置は、長方形または正方形の面状光導波路20と、この面状光導波路20の互いに平行な一対の辺に相当する端面に設けられた光電変換用の半導体層30とを有する。半導体層30は一般的には細長い長方形の形状を有する。面状光導波路20と半導体層30とは互いに一体に設けられており、全体として面状の形状を有する。面状光導波路20および半導体層30は支持基板40上に設けられている。 <First Embodiment>
[Photoelectric conversion device]
5A and 5B show the photoelectric conversion device according to the first embodiment. As shown in FIGS. 5A and 5B, this photoelectric conversion device includes a rectangular or square planar
半導体層30の互いに対向する一対の面(上面および下面)にそれぞれ第1の電極50および第2の電極60が設けられている。これらの第1の電極50および第2の電極60の一方はアノード電極、他方はカソード電極として用いられる。例えば、第1の電極50がアノード電極、第2の電極60がカソード電極として用いられる。第1の電極50および第2の電極60は、半導体層30が互いに異なる半導体からなる複数の領域に分割されている場合には各領域毎に設けられてもよいし、一方が全ての領域上に延在する全面電極であってもよい。
A first electrode 50 and a second electrode 60 are provided on a pair of mutually opposing surfaces (upper surface and lower surface) of the semiconductor layer 30, respectively. One of the first electrode 50 and the second electrode 60 is used as an anode electrode, and the other as a cathode electrode. For example, the first electrode 50 is used as an anode electrode, and the second electrode 60 is used as a cathode electrode. When the semiconductor layer 30 is divided into a plurality of regions made of different semiconductors, the first electrode 50 and the second electrode 60 may be provided for each region, or one of them may be on all the regions. It may be a full-surface electrode extending to the surface.
面状光導波路20を構成する材料の屈折率をn1 とする。この場合、面状光導波路20の主面からなる光入射面20aに屈折率n2 (n2 >n1 )の材料からなるストライプ状(帯状)の埋め込み層70が所定の配列で設けられている。この埋め込み層70の配列に関しては、厳密な周期性は、むしろデルタ関数状の波長弁別性を持ってしまうことを考慮し、大局的には周期性を持つものの、局所的にはランダムあるいは系統的揺らぎを持たせたり、厳密な周期性からはずれた準周期性の屈折率変調構造とするのが有効である。即ち、図5Aおよび図5Bに示すように、この場合、面状光導波路20の面内の一定の範囲内において、ストライプ状の埋め込み層70およびこの埋め込み層70の間のストライプ状の面状光導波路20が一定周期Pで交互に周期的に、または一定間隔で、配列されており、これによって、面状光導波路20の光入射面20aに入射する3次元空間伝播光を2次元空間伝播光に変換する構造体80が形成されている。ただし、図5Aおよび図5Bにおいては、便宜上、面状光導波路20の全面に埋め込み層70が示されている。埋め込み層70は面状光導波路20の半導体層30が設けられた辺に平行に延在している。埋め込み層70の深さをDとすると、面状光導波路20の光入射面20aに垂直入射する波長λの光は、埋め込み層70を通過した光と埋め込み層70の両脇の部分の面状光導波路20を通過した光との間に、構造体80を通過した時点で、2π(n2 -n1 )D/λで表される位相差を持つ。この位相差がπ、あるいはその奇数倍となるようにDを設定することで、構造体80を通過した時点での垂直方向に進行する光の振幅をゼロとすることができる。好適には、構造体80の上面にはさらに反射防止膜(無反射コート)が施される。こうすることで、入射光は、横方向(面状光導波路20の面内の方向)に伝播せざるを得なくなる。こうして、3次元空間伝播光は2次元空間伝播光になり、面状光導波路20内を効率的に導波される。埋め込み層70の材料としては、例えばSiNが屈折率~2で、かつ紫外(UV)~赤外(IR)域で透明な材料として好ましいが、これに限定されるものではない。
The refractive index of the material constituting the planar optical waveguide 20 is n 1 . In this case, stripe-shaped (band-shaped) buried layers 70 made of a material having a refractive index of n 2 (n 2 > n 1 ) are provided in a predetermined arrangement on the light incident surface 20 a that is the main surface of the planar optical waveguide 20. Yes. With regard to the arrangement of the buried layers 70, considering that the strict periodicity has rather a delta function-like wavelength discrimination, it has a periodicity globally, but is locally random or systematic. It is effective to provide a quasi-periodic refractive index modulation structure that has fluctuations or deviates from strict periodicity. That is, as shown in FIGS. 5A and 5B, in this case, the stripe-shaped buried layer 70 and the stripe-like planar light between the buried layers 70 are within a certain range in the plane of the planar optical waveguide 20. The waveguides 20 are arranged alternately at regular intervals P at regular intervals or at regular intervals, whereby the three-dimensional spatially propagated light incident on the light incident surface 20a of the planar optical waveguide 20 is converted into the two-dimensional spatially propagated light. A structure 80 to be converted into is formed. However, in FIG. 5A and FIG. 5B, the buried layer 70 is shown on the entire surface of the planar optical waveguide 20 for convenience. The buried layer 70 extends parallel to the side of the planar optical waveguide 20 where the semiconductor layer 30 is provided. Assuming that the depth of the buried layer 70 is D, the light having the wavelength λ that is perpendicularly incident on the light incident surface 20 a of the planar optical waveguide 20 has a planar shape on both sides of the light that has passed through the buried layer 70 and the buried layer 70. A phase difference expressed by 2π (n 2 −n 1 ) D / λ is obtained when the light passes through the structure 80 with respect to the light passing through the optical waveguide 20. By setting D so that this phase difference is π or an odd multiple thereof, the amplitude of the light traveling in the vertical direction when passing through the structure 80 can be made zero. Preferably, an antireflection film (nonreflective coating) is further applied to the upper surface of the structure 80. By doing so, incident light must be propagated in the lateral direction (in-plane direction of the planar optical waveguide 20). Thus, the three-dimensional spatially propagated light becomes two-dimensional spatially propagated light and is efficiently guided in the planar optical waveguide 20. As a material of the buried layer 70, for example, SiN is preferable as a material having a refractive index of ˜2 and transparent in the ultraviolet (UV) to infrared (IR) region, but is not limited thereto.
また、上記周期P(あるいは一定間隔W)は、太陽光スペクトルを構成する光子の波長に対して、好適には、3eV~0.5eVのエネルギーに対応する光子の波長帯全体に亘って3次元空間伝播光を2次元空間伝播光に変換するように設定する。最も単純には、周期をPi =λi (λi は太陽光スペクトルを構成する光子の波長帯から選ばれた波長、i=1~N)とし、多重(N重)周期構造、複数間隔構造を設定する。ここでいう多重性は、面状光導波路20の厚さ方向に複数層の周期構造(この周期性は面状光導波路20の延在方向に沿ったものである)が存在することを言う。こうすることで、上記太陽光スペクトル全般に対し、3次元空間伝播光を2次元空間伝播光に変換することができる。好適には、多重度Nは、半導体層30を構成する後述のEgi領域の数、言い換えると半導体層30において光の進行方向に段階的に設定されるバンドギャップの数に一致させる。周期構造の多重性、あるいは構造間隔の複数性は、構造体80の面内に設定してもよいし、深さ方向に設定してもよく、Nが大きいところでは両者の併用が望ましい。これは、バンドパス多層膜構造をラテラル方向に構成することに相当する。
The period P (or the constant interval W) is preferably three-dimensional over the entire wavelength band of photons corresponding to the energy of 3 eV to 0.5 eV with respect to the wavelengths of the photons constituting the sunlight spectrum. Setting is made so that the spatially propagated light is converted into two-dimensional spatially propagated light. Most simply, P i = λ i (λ i is a wavelength selected from the wavelength band of photons constituting the solar spectrum, i = 1 to N), a multiple (N-fold) periodic structure, a plurality of intervals Set the structure. Multiplicity here means that there is a periodic structure of a plurality of layers in the thickness direction of the planar optical waveguide 20 (this periodicity is along the extending direction of the planar optical waveguide 20). By doing so, it is possible to convert the three-dimensional spatially propagated light into the two-dimensional spatially propagated light with respect to the entire sunlight spectrum. Preferably, the multiplicity N is made equal to the number of later-described E gi regions constituting the semiconductor layer 30, in other words, the number of band gaps set stepwise in the light traveling direction in the semiconductor layer 30. The multiplicity of the periodic structure or the plurality of the structure interval may be set in the plane of the structure 80, or may be set in the depth direction. This corresponds to the configuration of the bandpass multilayer structure in the lateral direction.
この光電変換装置においては、面状光導波路20の光入射面20aに入射した3次元空間伝播光(入射光)が2次元空間伝播光に変換されてこの面状光導波路20内を導波され、集光された後に半導体層30に入射するように構成されている。図6に示すように、この場合、面状光導波路20内を導波される光の正味の進行方向と、面状光導波路20の端面から半導体層30に入射した光によりこの半導体層30中に生成されるキャリア(フォトキャリア)の正味の移動方向(第1の電極50と第2の電極60とを最短で結ぶ方向)とのなす角度θはほぼ直角である。角度θは、具体的には、第1の電極50の光の進行方向の幅あるいは半導体層30が互いに異なる半導体からなる複数の領域に分割されており第1の電極50が各領域毎に設けられる場合には各領域毎に設けられる第1の電極50の光の進行方向の幅をW´、半導体層30の厚さをdとすると、π/2-δ≦θ≦π/2+δ(ただし、δ~d/W´)であり、典型的には80°≦θ≦100°であり、最も好適には90°である。入射光、例えば太陽光が最初に入射する面(最上面)、図5Bにおいては面状光導波路20の光入射面20aには、必要に応じて、入射光の反射を防止するために反射防止膜が設けられる。反射防止膜としては、従来公知のものを用いることができる。例えば、屈折率の異なる複数の材料からなる周期的多層構造が挙げられる。このほかに、ピラミッド状やエッチングにより生じる微細構造(ナノ構造・マイクロ構造)を表面に配することも有効である。特に、この面状光導波路20の表面に設ける微細構造、即ち埋め込み層70に、光導波方向に沿った距離xのある関数構造を持たせ、回折作用を持たせることで、図5Aおよび図5Bに示す構造を、方向変換光導波路とも言えるリディレクション ウエイブガイド(redirection waveguide)(即ち、3次元空間伝播光である入射光を、例えば回折により、方向転換させて2次元空間伝播光とした後、直ちに横方向に導波させることのできる機能性薄膜構造)とすることができる。これらの低反射率構造は、必要に応じて選ばれる。また、面状光導波路20と半導体層30との接合面には、面状光導波路20から半導体層30に入射する光の反射を防止するために、好適には反射防止膜が設けられる。
In this photoelectric conversion device, the three-dimensional spatially propagated light (incident light) incident on the light incident surface 20 a of the planar optical waveguide 20 is converted into two-dimensional spatially propagated light and guided through the planar optical waveguide 20. The light is collected and then incident on the semiconductor layer 30. As shown in FIG. 6, in this case, the net traveling direction of the light guided in the planar optical waveguide 20 and the light incident on the semiconductor layer 30 from the end surface of the planar optical waveguide 20 The angle θ formed by the net movement direction of the carriers (photocarriers) generated in (the direction connecting the first electrode 50 and the second electrode 60 in the shortest) is substantially a right angle. Specifically, the angle θ is divided into a plurality of regions in which the width of the light travel direction of the first electrode 50 or the semiconductor layer 30 is made of different semiconductors, and the first electrode 50 is provided for each region. If the width of the first electrode 50 provided in each region in the light traveling direction is W ′ and the thickness of the semiconductor layer 30 is d, then π / 2−δ ≦ θ ≦ π / 2 + δ (provided that Δ˜d / W ′), typically 80 ° ≦ θ ≦ 100 °, and most preferably 90 °. In order to prevent reflection of incident light as necessary, the light incident surface 20a of the planar optical waveguide 20 in FIG. A membrane is provided. A conventionally known antireflection film can be used. For example, a periodic multilayer structure composed of a plurality of materials having different refractive indexes can be given. In addition to this, it is also effective to arrange a fine structure (nanostructure / microstructure) generated by pyramid or etching on the surface. In particular, the fine structure provided on the surface of the planar optical waveguide 20, that is, the buried layer 70, has a functional structure having a distance x along the optical waveguide direction and has a diffractive action, so that FIGS. The redirection wave guide (that is, the direction-reducing optical waveguide) (that is, the incident light, which is a three-dimensional spatial propagation light, is converted into a two-dimensional spatial propagation light by, for example, diffraction, A functional thin film structure that can be guided in the lateral direction immediately). These low reflectance structures are selected as needed. Further, an antireflection film is preferably provided on the joint surface between the planar optical waveguide 20 and the semiconductor layer 30 in order to prevent reflection of light incident on the semiconductor layer 30 from the planar optical waveguide 20.
面状光導波路20の、半導体層30が設けられている一対の辺とは異なる一対の辺に相当する面状光導波路20の端面に光反射機構が設けられている。この光反射機構は、例えば、面状光導波路20の端面に設けられた光反射膜あるいは面状光導波路20の端面が鏡面に構成されたものである。この場合、面状光導波路20の主面に入射した光が面状光導波路20内を導波される際にこの光反射機構に入射すると反射され、半導体層30に向かう方向に光路が曲げられることにより、半導体層30に入射する光量が大きくなる。
A light reflecting mechanism is provided on the end face of the planar optical waveguide 20 corresponding to a pair of sides different from the pair of sides on which the semiconductor layer 30 is provided. In this light reflecting mechanism, for example, the light reflecting film provided on the end surface of the planar optical waveguide 20 or the end surface of the planar optical waveguide 20 is configured as a mirror surface. In this case, light incident on the main surface of the planar optical waveguide 20 is reflected when entering the light reflecting mechanism when guided in the planar optical waveguide 20, and the optical path is bent in the direction toward the semiconductor layer 30. As a result, the amount of light incident on the semiconductor layer 30 increases.
この光電変換装置においては、面状光導波路20の光入射面20aに光が入射する際に半導体層30に光が直接入射しないように構成される。言い換えると、光電変換装置に光が入射する場合、面状光導波路20の光入射面20aには光が入射するが、半導体層30の面には光が直接入射しないようにする。このためには、具体的には、例えば次のようにする。例えば、第1の電極50を覆うように半導体層30の上方に遮光層を設ける。遮光層は従来公知のものを用いることができ、必要に応じて選ばれるが、例えば、アルミ箔の両面にプラスチックフィルムが形成されたアルミラミネートフィルムなどである。この遮光層により、半導体層30に光が直接入射しないようにすることができる。また、支持基板40が建築物や電子機器の外面の一部を構成する場合には、面状光導波路20には太陽光が入射するが、半導体層30には太陽光が入射しないように、言い換えれば半導体層30が陰になるように部材等により覆うようにする。例えば、建築物の窓にこの光電変換装置を設置する場合には、窓ガラスが支持基板40となり、外部に露出した窓ガラス上に面状光導波路20が設けられ、半導体層30は例えばアルミニウム製の窓枠の内側に隠れるようにする。また、この光電変換装置を建築物の屋根に敷き詰める場合には、隣接する光電変換装置の端部が上下に重なり合うようにし、上の光電変換装置の端部の半導体層30により下の光電変換装置の端部の半導体層30が覆われるようにする。また、電子機器、例えばスマートフォンのディスプレイ部にこの光電変換装置を設置する場合には、このディスプレイ部の表面の透明部材が支持基板40となり、外部に露出した透明部材上に面状光導波路20が設けられ、半導体層30はこのディスプレイ部の表面に設けられた部材の内側に隠れるようにする。
This photoelectric conversion device is configured such that light does not directly enter the semiconductor layer 30 when light enters the light incident surface 20a of the planar optical waveguide 20. In other words, when light is incident on the photoelectric conversion device, the light is incident on the light incident surface 20 a of the planar optical waveguide 20, but the light is not directly incident on the surface of the semiconductor layer 30. For this purpose, for example, the following is performed. For example, a light shielding layer is provided above the semiconductor layer 30 so as to cover the first electrode 50. A conventionally well-known thing can be used for a light shielding layer, and it selects as needed, For example, it is the aluminum laminated film etc. in which the plastic film was formed on both surfaces of the aluminum foil. This light shielding layer can prevent light from directly entering the semiconductor layer 30. In addition, when the support substrate 40 constitutes a part of the outer surface of a building or an electronic device, sunlight is incident on the planar optical waveguide 20, but sunlight is not incident on the semiconductor layer 30. In other words, the semiconductor layer 30 is covered with a member or the like so as to be shaded. For example, when this photoelectric conversion device is installed in a window of a building, the window glass serves as the support substrate 40, the planar optical waveguide 20 is provided on the window glass exposed to the outside, and the semiconductor layer 30 is made of, for example, aluminum. Hide inside the window frame. Further, when this photoelectric conversion device is spread on the roof of a building, the end portions of adjacent photoelectric conversion devices overlap each other, and the lower photoelectric conversion device is formed by the semiconductor layer 30 at the end portion of the upper photoelectric conversion device. The semiconductor layer 30 is covered at the end. When the photoelectric conversion device is installed in a display unit of an electronic device, for example, a smartphone, the transparent member on the surface of the display unit becomes the support substrate 40, and the planar optical waveguide 20 is formed on the transparent member exposed to the outside. The semiconductor layer 30 is provided so as to be hidden inside a member provided on the surface of the display unit.
面状光導波路20は透明ガラスや透明プラスチックなどからなる。透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などが挙げられる。面状光導波路20の素材としては、特に、プラスティックオプティカルファイバー(POF)等に用いられるフッ素系の素材が、その低光損失性により好適である。面状光導波路20の厚さは必要に応じて選ばれるが、例えば1~1000μmである。面状光導波路20の大きさ(縦横の長さ)は、この光電変換装置を設置する箇所に応じて適宜選ばれるが、一般的には、例えば(1cm~1m)×(1cm~1m)である。
The planar optical waveguide 20 is made of transparent glass or transparent plastic. Examples of the transparent plastic include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, Examples include polysulfones and polyolefins. As the material of the planar optical waveguide 20, a fluorine-based material used for a plastic optical fiber (POF) or the like is particularly suitable because of its low light loss. The thickness of the planar optical waveguide 20 is selected as necessary, and is, for example, 1 to 1000 μm. The size (vertical and horizontal lengths) of the planar optical waveguide 20 is appropriately selected according to the location where the photoelectric conversion device is installed. Generally, for example, (1 cm to 1 m) × (1 cm to 1 m). is there.
半導体層30は、例えば、既に挙げたものの中から必要に応じて選ばれる。半導体層30は、典型的には、p型半導体層とn型半導体層とからなるpn接合である。好適には、半導体層30のうちの第1の電極50および第2の電極60が接触する部分が高不純物濃度にドープされ、これらの第1の電極50および第2の電極60が半導体層30とオーミック接触するようにする。半導体層30の一辺の長さは、典型的には、この半導体層30が設けられる面状光導波路20の辺の長さと同一に選ばれるが、この辺と直角な辺の長さは、一般的には、例えば10μm~1cmであり、典型的には20μm~1mmである。面状光導波路20の大きさは上述のように例えば(1cm~1m)×(1cm~1m)であるので、この半導体層30の面積は一般的には面状光導波路20の面積よりはるかに小さくて済む。即ち、この光電変換装置は、面状光導波路20が大部分を占め、半導体層30は端のわずかな部分しか占めない。例えば、面状光導波路20の大きさが10cm×10cm、半導体層30の大きさが1mm×10cmとすると、面状光導波路20と二つの半導体層30との全体の面積に占める二つの半導体層30の面積の割合は、2×0.1×10/10.2×10.2=0.019≒2%に過ぎない。これに加えて、半導体層30の厚さは、一般的には数十μm以下と小さいので、半導体層30の体積も極めて小さい。即ち、半導体層30の使用量が極めて少なくて済む。このため、光電変換装置の製造コストの低減を図ることができる。また、この面状光導波路20の端部を有限の曲率半径を以て、例えば下向きに90度曲げる(ベンドする)ことで、半導体層30中を図5Bにおいて縦方向に光が進行するように構成することができる。これにより、上記のように、第1の電極50を覆うように半導体層30の上方に遮光層を設けた場合に発生する遮光ロスを最小限に抑えることができる。
The semiconductor layer 30 is selected, for example, from those already listed as necessary. The semiconductor layer 30 is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer. Preferably, a portion of the semiconductor layer 30 in contact with the first electrode 50 and the second electrode 60 is doped with a high impurity concentration, and the first electrode 50 and the second electrode 60 are doped with the semiconductor layer 30. And make ohmic contact. The length of one side of the semiconductor layer 30 is typically selected to be the same as the length of the side of the planar optical waveguide 20 on which the semiconductor layer 30 is provided, but the length of the side perpendicular to this side is generally For example, the thickness is 10 μm to 1 cm, typically 20 μm to 1 mm. Since the size of the planar optical waveguide 20 is, for example, (1 cm to 1 m) × (1 cm to 1 m) as described above, the area of the semiconductor layer 30 is generally much larger than the area of the planar optical waveguide 20. It's small. That is, in this photoelectric conversion device, the planar optical waveguide 20 occupies most and the semiconductor layer 30 occupies only a small part at the end. For example, when the size of the planar optical waveguide 20 is 10 cm × 10 cm and the size of the semiconductor layer 30 is 1 mm × 10 cm, the two semiconductor layers occupy the entire area of the planar optical waveguide 20 and the two semiconductor layers 30. The ratio of the area of 30 is only 2 × 0.1 × 10 / 10.2 × 10.2 = 0.199≈2%. In addition, since the thickness of the semiconductor layer 30 is generally as small as several tens of μm or less, the volume of the semiconductor layer 30 is extremely small. That is, the amount of semiconductor layer 30 used can be extremely small. For this reason, the manufacturing cost of the photoelectric conversion device can be reduced. Further, the end portion of the planar optical waveguide 20 is bent (bended), for example, by 90 degrees downward with a finite radius of curvature, so that the light propagates in the semiconductor layer 30 in the vertical direction in FIG. 5B. be able to. Thereby, as described above, it is possible to minimize the light shielding loss that occurs when the light shielding layer is provided above the semiconductor layer 30 so as to cover the first electrode 50.
半導体層30のバンドギャップあるいはHOMO-LUMOギャップEg は、半導体層30内の光の進行方向にN段階(N≧2)に段階的に減少しており、順にEg1、Eg2、…、EgN(Eg1>Eg2>…>EgN)となっている。図7に一例としてN=4の場合を示すが、これに限定されるものではない。図7に示すように、半導体層30は、バンドギャップあるいはHOMO-LUMOギャップEg がそれぞれEg1、Eg2、Eg3、Eg4の領域31、32、33、34からなる。各領域31、32、33、34は、面状光導波路20の半導体層30が設けられた辺に平行な方向に延在する細長いストライプ状の形状を有する。図7においては、各領域31、32、33、34上に互いに分離してそれぞれ第1の電極51、52、53、54が設けられている。第2の電極60は全面電極であり、各領域31、32、33、34の共通電極である。半導体層30を構成する各Egi領域の幅(光の進行方向の幅で、図7の横方向の長さ)は、各Egi領域の光電変換対象光子(各Egi領域のバンドギャップEgi以上のエネルギーを有する光子)のうち、最低エネルギーのものに対するこのEgi領域の吸収係数をαi とすると、1/αi 以上とする。
The band gap or HOMO-LUMO gap E g of the semiconductor layer 30 decreases stepwise in N stages (N ≧ 2) in the light traveling direction in the semiconductor layer 30, and in order, E g1 , E g2,. E gN (E g1 > E g2 >...> E gN ). FIG. 7 shows an example where N = 4, but the present invention is not limited to this. As shown in FIG. 7, the semiconductor layer 30 is composed of regions 31, 32, 33, and 34 having band gaps or HOMO-LUMO gaps E g of E g1 , E g2 , E g3 , and E g4 , respectively. Each of the regions 31, 32, 33, and 34 has an elongated stripe shape extending in a direction parallel to the side where the semiconductor layer 30 of the planar optical waveguide 20 is provided. In FIG. 7, first electrodes 51, 52, 53, and 54 are provided on the respective regions 31, 32, 33, and 34 so as to be separated from each other. The second electrode 60 is a full-surface electrode and is a common electrode for each of the regions 31, 32, 33, and 34. (The width in the traveling direction of light, the length of the lateral direction in FIG. 7) the width of each E gi region constituting the semiconductor layer 30, the photoelectric conversion target photons (bandgap E of the E gi region of the E gi region If the absorption coefficient of this E gi region with respect to the one having the lowest energy among the photons having the energy of gi or higher) is α i , it is 1 / α i or higher.
Egiは次のように設定することができる。例えば、AM1.5太陽光スペクトルの全波長範囲またはその主要な波長範囲(入射エネルギーが高い部分を含む範囲)において、波長をN個の区間に分ける。そして、これらの区間に短波長側(高エネルギー側)から順に1、2、…、Nというように番号を付け、i番目の区間の最小光子エネルギーに等しくEgiを選ぶ。こうすることで、k番目の区間の光子エネルギーを有する光子がEgi領域に入射すると電子-正孔対が発生し、光電変換が行われる。また、この場合、このk番目の区間の光子エネルギーを有する光子が各Egi領域に到達して十分に吸収されるように、面状光導波路20と半導体層30との接合面からこのEgi領域までの距離を選ぶ。これによって、面状光導波路20内を導波されて半導体層30に入射する太陽光は、まずEg1領域に入射してそのスペクトルのうち光子エネルギーがEg1以上のものが吸収されて光電変換され、続いてEg2領域に入射してそのスペクトルのうち光子エネルギーがEg2以上でEg1より小さいものが吸収されて光電変換され、最終的にEgN領域に入射してそのスペクトルのうち光子エネルギーがEgN以上でEgN-1より小さいものが吸収されて光電変換される。この結果、太陽光スペクトルのほぼ全範囲あるいは主要な波長範囲の光を光電変換に使用することができる。
E gi can be set as follows. For example, the wavelength is divided into N sections in the entire wavelength range of the AM1.5 sunlight spectrum or its main wavelength range (including a portion with a high incident energy). These sections are numbered in order from the short wavelength side (high energy side) 1, 2,..., N, and E gi is selected to be equal to the minimum photon energy in the i-th section. In this way, when a photon having photon energy in the kth section is incident on the E gi region, an electron-hole pair is generated and photoelectric conversion is performed. In this case, the photon having the photon energy in the k-th section reaches each Egi region and is sufficiently absorbed, so that the Egi is introduced from the junction surface between the planar optical waveguide 20 and the semiconductor layer 30. Choose the distance to the area. As a result, sunlight that is guided through the planar optical waveguide 20 and incident on the semiconductor layer 30 first enters the E g1 region, and in the spectrum, the photon energy of E g1 or higher is absorbed and photoelectric conversion is performed. Then, it enters the E g2 region and the spectrum whose photon energy is greater than or equal to E g2 and smaller than E g1 is absorbed and photoelectrically converted, and finally enters the E gN region and enters the photon of the spectrum. Those whose energy is greater than or equal to E gN and less than E gN-1 are absorbed and photoelectrically converted. As a result, light in almost the entire solar spectrum or in the main wavelength range can be used for photoelectric conversion.
Egiの理想的な設定例について説明する。図3にAM1.5太陽光スペクトルの光子エネルギーhνと光子数n(hν)との関係を示す。ここでは、AM1.5太陽光スペクトルの光子エネルギーをエネルギー幅Δの10個の区間に等分するものとする。この場合の理論最大光電変換効率は約70%にもなり、これは例えばEg =1.35eVの従来の太陽電池の理論最高光電変換効率31%の倍以上である。
An ideal setting example of E gi will be described. FIG. 3 shows the relationship between the photon energy hν of the AM1.5 sunlight spectrum and the number of photons n (hν). Here, it is assumed that the photon energy of the AM1.5 sunlight spectrum is equally divided into 10 sections of energy width Δ. In this case, the theoretical maximum photoelectric conversion efficiency is about 70%, which is more than double the theoretical maximum photoelectric conversion efficiency of 31% of a conventional solar cell with E g = 1.35 eV, for example.
ただし、光子数n(hν)は
で表される。また、光電変換効率ηは
で表される。
However, the photon number n (hν) is
It is represented by The photoelectric conversion efficiency η is
It is represented by
各Egiの設定は、各Egi領域を構成する半導体の組成や半導体の形態(アモルファス、多結晶、単結晶)などを変えることにより行うことができる。具体的には、各Egi領域を別種の半導体により構成する。この場合、この半導体は、吸収係数αの大小は問わず、キャリア移動度μの高いものを選ぶことができるので、選択肢が広い。無機半導体を用いる場合について具体例をいくつか挙げると次の通りである。N=3の場合には、例えば、Eg1領域をSix C1-x (Eg =1.8~2.9eV)、Eg2領域をSi(Eg =1.11eV)、Eg3領域をGe(Eg =0.76eV)により構成する。また、N=4の場合には、例えば、Eg1領域をSix C1-x (Eg =1.8~2.9eV)、Eg2領域をアモルファスシリコン(a-Si)(Eg =1.4~1.8eV)、Eg3領域をSiy Ge1-y (Eg =1.11eV)、Eg4領域をSiy Ge1-y (Eg =~0.76eV)により構成する。あるいは、N=4の場合に、Eg1領域をIGZO(In、Ga、Znの酸化物)(Eg =~3eV)、Eg2領域をSix C1-x (Eg =~1.8eV)、Eg3領域をSi(Eg =1.11eV)、Eg4領域をSiy Ge1-y (Eg =~0.76eV)により構成する。そのほかに、次のように構成することもできる。N=2の最も簡単な場合には、例えば、Eg1領域をa-Si(Eg =1.4~1.8eV)、Eg2領域をSiy Ge1-y (Eg =~0.76eV)により構成する。また、N=3の場合には、例えば、Eg1領域をGaP(Eg =2.25eV)、Eg2領域をGaAs(Eg =1.43eV)、Eg3領域をInN(Eg =0.7eV)により構成する。また、N=4の場合には、例えば、Eg1領域をGax In1-x N(Eg =2.3eV)、Eg2領域をGay In1-y N(Eg =1.4~1.8eV)、Eg3領域をGaz In1-z N(Eg =1.1eV)、Eg4領域をInN(Eg =0.7eV)により構成する。また、N=5の場合には、例えば、Eg1領域を直径1.9nm程度のCdSe微粒子(吸収ピーク波長445nm)、Eg2領域を直径4.0nm程度のCdSe微粒子(吸収ピーク波長585nm)、Eg3領域を直径2nm程度のPbSe微粒子(吸収ピーク波長800nm)、Eg4領域を直径4.5nm程度のPbSe微粒子(吸収ピーク波長1100nm)、Eg5領域を直径90nm程度のPbSe微粒子(吸収ピーク波長2300nm)により構成する。さらに、GaInNx As1-x やGaInNx P1-x を用いてxの制御だけでN~10の場合のEgi領域を構成することも可能である。加えて、Teを含ませると大きなボウイング(bowing)を示すことが知られているII-VI族化合物半導体を用いてEgi領域を構成してもよい。有機半導体と無機半導体とを用いる場合についての具体例を挙げると次のとおりである。例えば、N=4の場合には、Eg1領域をMDMO-PPV(Eg =2.2eV)、Eg2領域をa-Si(Eg =1.4~1.8eV)、Eg3領域をポリアセン系(ヘキサセン)半導体(Eg =1~1.2eV)、Eg4領域をポリアセン系(ヘプタセン)半導体(Eg =0.6~0.8eV)により構成する。また、N≧2の場合に、Eg1領域をIGZO(In、Ga、Znの酸化物)(Eg =~3eV)、AlInN(Eg =2.8~3eV)、またはGaInN(Eg =2.8~3eV)、あるいは同様のバンドギャップを有する酸化物半導体(ZnO、ZnMgO等)のうちのいずれか一つとし、それに続く領域、例えば、Eg2領域をa-Si(Eg =1.4~1.8eV)とすることで、450nm以下の波長の光によって生ずることが示されているステブラー・ロンスキー反応を起こす光子を、予め、a-Si層に侵入する前に、光電変換しておくことで同反応を抑えることができ、従って、a-Si層からなる光電変換領域の寿命を伸ばすことができる。この単なるパッシベーションでなく、有効に光電変換しつつコヒーシブエネルギーを抑える高エネルギー光子除去機能は、同じく戸外での使用には弱いとされている有機半導体光電変換部の信頼性の向上や長寿命化にも有効である。
Each E gi can be set by changing the composition of the semiconductor constituting each E gi region, the form of the semiconductor (amorphous, polycrystalline, single crystal), or the like. Specifically, each E gi region is formed of a different type of semiconductor. In this case, the semiconductor has a wide range of choices because it can be selected to have a high carrier mobility μ regardless of the absorption coefficient α. Some specific examples of using an inorganic semiconductor are as follows. In the case of N = 3, for example, the E g1 region is Si x C 1-x (E g = 1.8 to 2.9 eV), the E g2 region is Si (E g = 1.11 eV), and the E g3 region Is made of Ge (E g = 0.76 eV). When N = 4, for example, the E g1 region is Si x C 1-x (E g = 1.8 to 2.9 eV), and the E g2 region is amorphous silicon (a-Si) (E g = 1.4 to 1.8 eV), the E g3 region is composed of Si y Ge 1-y (E g = 1.11 eV), and the E g4 region is composed of Si y Ge 1-y (E g = ˜0.76 eV). . Alternatively, when N = 4, the E g1 region is IGZO (In, Ga, Zn oxide) (E g = ˜3 eV), and the E g2 region is Si x C 1-x (E g = ˜1.8 eV). ), The E g3 region is composed of Si (E g = 1.11 eV), and the E g4 region is composed of Si y Ge 1-y (E g = ˜0.76 eV). In addition, it can also be configured as follows. In the simplest case of N = 2, for example, the E g1 region is a-Si (E g = 1.4 to 1.8 eV), and the E g2 region is Si y Ge 1-y (E g = ˜0. 76 eV). When N = 3, for example, the E g1 region is GaP (E g = 2.25 eV), the E g2 region is GaAs (E g = 1.43 eV), and the E g3 region is InN (E g = 0). .7 eV). When N = 4, for example, the E g1 region is Ga x In 1-x N (E g = 2.3 eV), and the E g2 region is Ga y In 1-y N (E g = 1.4). ~ 1.8eV), E g3 area Ga z In 1-z N ( E g = 1.1eV), is composed of InN (E g = 0.7eV) the E g4 region. In the case of N = 5, for example, the CdSe fine particles (absorption peak wavelength 445 nm) having a diameter of about 1.9 nm in the E g1 region, the CdSe fine particles (absorption peak wavelength 585 nm) having a diameter of about 4.0 nm in the E g2 region, The Eg3 region has a PbSe fine particle (absorption peak wavelength 800 nm) with a diameter of about 2 nm, the Eg4 region has a PbSe fine particle with a diameter of about 4.5 nm (absorption peak wavelength 1100 nm), and the Eg5 region has a PbSe fine particle with a diameter of about 90 nm (absorption peak wavelength). 2300 nm). Furthermore, it is also possible to configure the E gi region in the case of N to 10 by controlling x only using GaInN x As 1-x or GaInN x P 1-x . In addition, it may be configured E gi region using the group II-VI compound semiconductor to exhibit significant bowing the inclusion of Te (bowing) is known. Specific examples of the case where an organic semiconductor and an inorganic semiconductor are used are as follows. For example, when N = 4, the E g1 region is MDMO-PPV (E g = 2.2 eV), the E g2 region is a-Si (E g = 1.4 to 1.8 eV), and the E g3 region is The polyacene-based (hexacene) semiconductor (E g = 1 to 1.2 eV) and the E g4 region are composed of a polyacene-based (heptacene) semiconductor (E g = 0.6 to 0.8 eV). In the case of N ≧ 2, the E g1 region is converted into IGZO (In, Ga, Zn oxide) (E g = ˜3 eV), AlInN (E g = 2.8 to 3 eV), or GaInN (E g = 2.8 to 3 eV), or an oxide semiconductor (ZnO, ZnMgO, etc.) having a similar band gap, and a subsequent region, for example, an E g2 region is defined as a-Si (E g = 1). .4 to 1.8 eV), photons that cause the Stebler-Lonsky reaction, which has been shown to be generated by light having a wavelength of 450 nm or less, are photoelectrically converted in advance before entering the a-Si layer. Therefore, the reaction can be suppressed, and therefore the lifetime of the photoelectric conversion region composed of the a-Si layer can be extended. This high-energy photon removal function that suppresses coherent energy while performing effective photoelectric conversion is not just passivation, but also improves the reliability and extends the life of organic semiconductor photoelectric conversion units, which are also considered to be weak for outdoor use. Is also effective.
各Egi領域の厚さdは必要に応じて選ばれるが、例えば数μm~数十μmである。各Egi領域の幅(半導体層30内の光の進行方向の幅)も必要に応じて選ばれるが、例えば数十μm~数百μmである。例えば、図8は図7の領域31~34の拡大図であるが、各領域31~34の厚さdを数μm~数十μm、各領域31~34の幅w1 ~w4 を数十μm~数百μm、例えば~100μmに選ぶ。
The thickness d of each E gi region is selected as necessary, and is several μm to several tens μm, for example. The width of each E gi region (the width of the light traveling direction in the semiconductor layer 30) is also selected as necessary, and is, for example, several tens μm to several hundreds μm. For example, FIG. 8 is an enlarged view of the regions 31 to 34 in FIG. 7. The thickness d of each region 31 to 34 is several μm to several tens of μm, and the widths w 1 to w 4 of each region 31 to 34 are several. Select from 10 μm to several hundred μm, for example, to 100 μm.
図9に示すように、典型的な場合、各領域31~34はp型半導体層とn型半導体層とからなるpn接合により構成される。図9には、各領域31~34を構成するpn接合の接合面を破線で示す。
As shown in FIG. 9, in a typical case, each of the regions 31 to 34 is composed of a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer. In FIG. 9, the junction surfaces of the pn junctions constituting the regions 31 to 34 are indicated by broken lines.
ところで、面状光導波路20の光入射面20aに入射する3次元空間伝播光が太陽光である場合、太陽光は、地球の自転のため、時間と共に入射角を変化させる。この場合には、図10に示すように、面状光導波路20の、3次元空間伝播光を2次元空間伝播光に変換する構造体80上に光波進行方向変換シート85(例えば、非特許文献4)を設けることが望ましい。面状光導波路20に反射防止膜(無反射コート)を施す場合は、この光波進行方向変換シート85上に形成するが、この光波進行方向変換シート85自体がその表面に持つナノ構造による実効屈折率の(自由空間から光波進行方向変換シート85内部に入っていく間における)漸近的変化、あるいは光波進行方向変換シート85自体がその表面に持つマイクロ構造に起因する屈折・反射等の幾何光学効果のみで、反射率を下げることも可能である。なお、光波進行方向変換シート85の代わりに、例えばピラミッド状構造、あるいはまた、断面が3角形の集合体であって、これが断面と垂直方向(図5Aの縦方向)に併進対称性を持つ構造を用いることも可能である。図11A、図11Bおよび図11Cは光波進行方向変換シート85の入射光に対する光配向特性の写真であり、レーザ光を光波進行方向変換シート85に照射し空気を介した裏面平面に放射された光を写真に撮ったものである。図11A、図11Bおよび図11Cより、レーザ光の照射角度を水平方向に傾けていった場合でも、出射光は面に直角に出ていることが分かる。従って、この光波進行方向変換シート85を用いることで、任意の方向からの太陽光は、(面を黄道に正対するように季節により仰角を変えるのが最も好適であるが)日の出から日の入りまで、時間によらず、図9の垂直入射配置に持ってくることができ、従って、上記の3次元空間伝播光を2次元空間伝播光に上述の通り効率的に変換することができる。さらには、この光波進行方向変換シート85を用いることで、曇天や壁反射光などの拡散光もすべて、図9の光入射配置に持ってくることができる。これにより、レンズ式集光システムの難点を解決し、拡散光に対する光電変換効率向上を実現することができる。この光波進行方向変換シート85は、回転放物面集合体のほか、プリズム状構造の集合体とすることもできる。
By the way, when the three-dimensional spatial propagation light incident on the light incident surface 20a of the planar optical waveguide 20 is sunlight, the sunlight changes its incident angle with time because of the rotation of the earth. In this case, as shown in FIG. 10, a light wave traveling direction conversion sheet 85 (for example, non-patent document) is formed on the structure 80 of the planar optical waveguide 20 that converts the three-dimensional space propagation light into the two-dimensional space propagation light. It is desirable to provide 4). When the antireflection film (non-reflective coating) is applied to the planar optical waveguide 20, it is formed on the light wave traveling direction changing sheet 85, and the effective refraction due to the nanostructure that the light wave traveling direction changing sheet 85 itself has on its surface. Asymptotic change in the rate (while entering the interior of the light wave traveling direction changing sheet 85 from free space), or geometric optical effects such as refraction and reflection caused by the microstructure of the light wave traveling direction changing sheet 85 itself on its surface However, it is possible to reduce the reflectance. Instead of the light wave traveling direction conversion sheet 85, for example, a pyramid structure, or an aggregate having a triangular cross section, which has translational symmetry in the direction perpendicular to the cross section (the vertical direction in FIG. 5A). It is also possible to use. FIG. 11A, FIG. 11B, and FIG. 11C are photographs of the light orientation characteristics with respect to the incident light of the light wave traveling direction conversion sheet 85. Was taken in a photo. From FIG. 11A, FIG. 11B, and FIG. 11C, it can be seen that even when the irradiation angle of the laser beam is inclined in the horizontal direction, the emitted light is emitted at a right angle to the surface. Therefore, by using this light wave traveling direction conversion sheet 85, sunlight from an arbitrary direction can be changed from sunrise to sunset (although it is most preferable to change the elevation angle depending on the season so that the surface faces the ecliptic). Regardless of the time, it can be brought to the normal incidence arrangement of FIG. 9, and therefore the above-described three-dimensional spatially propagated light can be efficiently converted into two-dimensional spatially propagated light as described above. Furthermore, by using this light wave traveling direction changing sheet 85, all diffused light such as cloudy sky and wall reflected light can be brought to the light incident arrangement of FIG. Thereby, the difficulty of a lens-type condensing system can be solved, and the photoelectric conversion efficiency improvement with respect to diffused light can be implement | achieved. The light wave traveling direction changing sheet 85 can be a parabolic aggregate or a prismatic aggregate.
支持基板40は、基本的にはどのようなものであってもよいが、典型的には、少なくとも可視光に対して透明な透明基板である。透明基板は、具体的には、例えば、ガラス板、透明プラスチック板などである。透明プラスチック板を構成する透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などを用いることができる。支持基板40は、具体的には、例えば、各種建築物(公共施設、ビルディイグ、マンション、戸建て住宅など)の窓ガラス、各種電子機器(携帯電話、スマートフォン、ノート型パーソナルコンピュータ、デスクトップ型パーソナルコンピュータ、テレビ、液晶ディスプレイ、有機ELディスプレイ)などの外面の透明部材などであるが、これに限定されるものではない。
The support substrate 40 may be basically any type, but is typically a transparent substrate that is at least transparent to visible light. Specifically, the transparent substrate is, for example, a glass plate or a transparent plastic plate. Examples of the transparent plastic constituting the transparent plastic plate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, and polystyrene. , Polyarylates, polysulfones, polyolefins and the like can be used. Specifically, the support substrate 40 is, for example, a window glass of various buildings (public facilities, building diggs, condominiums, detached houses, etc.), various electronic devices (cell phones, smartphones, notebook personal computers, desktop personal computers, TV, liquid crystal display, organic EL display) and the like, but not limited thereto.
[光電変換装置の動作]
この光電変換装置の動作について説明する。半導体層30はpn接合とする。図5Aおよび図5Bに示すように、この光電変換装置の面状光導波路20の、2次元空間伝播光に変換する構造体80が形成された光入射面20aに3次元空間伝播光、例えば太陽光が入射する。半導体層30の面には光は直接入射しない。面状光導波路20の光入射面20aに入射した3次元空間伝播光は、3次元空間伝播光を2次元空間伝播光に変換する構造体80により2次元空間伝播光に変換される。この2次元空間伝播光は面状光導波路20内をその上面および下面で反射を繰り返したりしながら効率的に導波され(後述の図24参照。)、面状光導波路20の端面から出て半導体層30に入射した後に半導体層30内を進み、その過程で半導体層30中に電子-正孔対が生成される。そして、こうして生成された電子および正孔は半導体層30内をドリフトまたは拡散により移動し、第1の電極50および第2の電極60のうちの一方および他方に収集される。こうして半導体層30内で光電変換が行われ、第1の電極50と第2の電極60とから外部に電流(光電流)が取り出される。 [Operation of photoelectric conversion device]
The operation of this photoelectric conversion device will be described. Thesemiconductor layer 30 is a pn junction. As shown in FIGS. 5A and 5B, three-dimensional spatial propagation light, for example, the sun, is formed on the light incident surface 20a of the planar optical waveguide 20 of the photoelectric conversion device on which the structure 80 that converts to two-dimensional spatial propagation light is formed. Light enters. Light does not directly enter the surface of the semiconductor layer 30. The three-dimensional spatial propagation light incident on the light incident surface 20a of the planar optical waveguide 20 is converted into two-dimensional spatial propagation light by the structure 80 that converts the three-dimensional spatial propagation light into the two-dimensional spatial propagation light. The two-dimensional spatially propagated light is efficiently guided through the planar optical waveguide 20 while being repeatedly reflected on its upper and lower surfaces (see FIG. 24 described later), and exits from the end surface of the planar optical waveguide 20. After entering the semiconductor layer 30, it proceeds through the semiconductor layer 30, and in the process, electron-hole pairs are generated in the semiconductor layer 30. The electrons and holes thus generated move in the semiconductor layer 30 by drift or diffusion, and are collected by one and the other of the first electrode 50 and the second electrode 60. In this way, photoelectric conversion is performed in the semiconductor layer 30, and current (photocurrent) is extracted from the first electrode 50 and the second electrode 60 to the outside.
この光電変換装置の動作について説明する。半導体層30はpn接合とする。図5Aおよび図5Bに示すように、この光電変換装置の面状光導波路20の、2次元空間伝播光に変換する構造体80が形成された光入射面20aに3次元空間伝播光、例えば太陽光が入射する。半導体層30の面には光は直接入射しない。面状光導波路20の光入射面20aに入射した3次元空間伝播光は、3次元空間伝播光を2次元空間伝播光に変換する構造体80により2次元空間伝播光に変換される。この2次元空間伝播光は面状光導波路20内をその上面および下面で反射を繰り返したりしながら効率的に導波され(後述の図24参照。)、面状光導波路20の端面から出て半導体層30に入射した後に半導体層30内を進み、その過程で半導体層30中に電子-正孔対が生成される。そして、こうして生成された電子および正孔は半導体層30内をドリフトまたは拡散により移動し、第1の電極50および第2の電極60のうちの一方および他方に収集される。こうして半導体層30内で光電変換が行われ、第1の電極50と第2の電極60とから外部に電流(光電流)が取り出される。 [Operation of photoelectric conversion device]
The operation of this photoelectric conversion device will be described. The
この光電変換装置においては、上述のようにθはほぼ直角であるため、図1に示す従来の太陽電池と異なり、吸収光子数およびフォトキャリア収集効率はトレードオフの関係ではなくなる。最も好適には、θ=90°とすることができる。言い換えると、第1の電極50と第2の電極60とを最短に結ぶ直線に垂直な方向から、面状光導波路20内を導波されて面状光導波路20の端面から出射される光を半導体層30に入射させることができる。この場合、半導体層30の吸収光子数は、光の入射方向の幅(半導体層30が例えば領域31~34からなる場合には領域31~34の幅w1 ~w4 )で支配され、光電変換効率ηは光吸収律速領域では半導体層30の厚さdに支配されない(図2の太い一点鎖線) 。即ち、この光電変換装置の極めて有利な点は、面状光導波路20に対する光の入射方向とキャリアの移動方向とを例えば互いに直交させることにより、光吸収の最適化とキャリア収集効率の最適化とを完全に両立させることができることである。さらに、半導体層30の吸収係数αの小ささは、光の入射方向の半導体層30の幅(半導体層30が例えば領域31~34からなる場合には領域31~34の幅w1 ~w4 )を大きくすることにより補うことができるので、半導体層30の材料として、αの大小にとらわれることなく、唯一の支配パラメータであるμの大きい材料を用いることができる。こうすることで、図2の太い一点鎖線で示すような高い光電変換効率ηを得ることが可能となる。これにより、熱力学的限界に迫る光電変換効率を得ることが可能である。
In this photoelectric conversion device, θ is almost a right angle as described above. Therefore, unlike the conventional solar cell shown in FIG. 1, the number of absorbed photons and the photocarrier collection efficiency are not in a trade-off relationship. Most preferably, θ = 90 °. In other words, light that is guided through the planar optical waveguide 20 and emitted from the end surface of the planar optical waveguide 20 from the direction perpendicular to the straight line that connects the first electrode 50 and the second electrode 60 in the shortest direction. The light can enter the semiconductor layer 30. In this case, the number of absorbed photons of the semiconductor layer 30 is governed by the width in the incident direction of light (in the case where the semiconductor layer 30 is composed of regions 31 to 34, for example, the widths w 1 to w 4 of the regions 31 to 34). The conversion efficiency η is not controlled by the thickness d of the semiconductor layer 30 in the light absorption rate limiting region (thick dashed line in FIG. 2). That is, the photoelectric conversion device is extremely advantageous in that it optimizes light absorption and carrier collection efficiency by making the incident direction of light with respect to the planar optical waveguide 20 and the moving direction of carriers orthogonal to each other, for example. Is completely compatible with each other. Further, the small absorption coefficient α of the semiconductor layer 30 is determined by the width of the semiconductor layer 30 in the light incident direction (in the case where the semiconductor layer 30 is composed of the regions 31 to 34, for example, the widths w 1 to w 4 ) Can be compensated for, so that the material of the semiconductor layer 30 can be a material having a large μ that is the only dominant parameter, regardless of the size of α. By doing so, it is possible to obtain a high photoelectric conversion efficiency η as shown by a thick dashed line in FIG. Thereby, it is possible to obtain the photoelectric conversion efficiency approaching the thermodynamic limit.
図12および図13に、この光電変換装置においては光電変換効率ηがαによる束縛から解放されることを実証するために行った実験の結果を示す。図12の上の挿入図に示すように、PEN(ポリエチレンナフタレート)フィルム上にIZO(インジウム亜鉛酸化物)膜、PEDOT:PSS膜およびP3HT:PCBM膜を順次形成し、P3HT:PCBM膜上にAl膜を形成した。P3HT:PCBM膜の厚さをdとする。IZO膜とAl膜との間に電圧を印加して電圧-電流特性を測定した結果を図12の下の挿入図に示す。図12の黒い菱形のプロットはP3HT:PCBM膜に対して垂直方向から光を入射させた場合のη、白い楕円のプロットはP3HT:PCBM膜の端面から光を入射させた場合のηの測定結果を示す。図12の点線の直線はη∝dを示す。図13はさらに他のロット(試料)での結果であり、ISCVOC(ISCは飽和電流、VOCは開放端電圧)のP3HT:PCBM膜の厚さdに対する依存性をP3HT:PCBM膜に対して垂直方向から光を入射させた場合とP3HT:PCBM膜の端面から光を入射させた場合とについて測定した結果を示す。図12および図13より、P3HT:PCBM膜に対して垂直方向から光を入射させた場合にはdが大きくなるにつれてηが大きくなるのに対して、P3HT:PCBM膜の端面から光を入射させた場合の光電変換効率はdが小さくなるにつれてηが大きくなるという逆の傾向を示す。また、P3HT:PCBM膜の厚さが同じとき(例えば、150nm)、P3HT:PCBM膜に対して垂直方向から光を入射させた場合に比べて、P3HT:PCBM膜の端面から光を入射させた場合の方がηが大きいことが分かる。これは、ηがP3HT:PCBM膜、より一般的には半導体層の吸収係数αに束縛されないことを意味する。
12 and 13 show the results of experiments conducted to verify that the photoelectric conversion efficiency η is released from the constraint due to α in this photoelectric conversion device. 12, an IZO (indium zinc oxide) film, a PEDOT: PSS film, and a P3HT: PCBM film are sequentially formed on a PEN (polyethylene naphthalate) film, and the P3HT: PCBM film is formed. An Al film was formed. The thickness of the P3HT: PCBM film is d. The result of measuring the voltage-current characteristics by applying a voltage between the IZO film and the Al film is shown in the lower inset of FIG. The black rhombus plot in FIG. 12 is η when light is incident on the P3HT: PCBM film from the vertical direction, and the white ellipse plot is η measurement results when light is incident from the end face of the P3HT: PCBM film. Indicates. The dotted straight line in FIG. 12 indicates η∝d. FIG. 13 shows the results of another lot (sample). The dependence of I SC V OC (I SC is the saturation current, V OC is the open circuit voltage) on the thickness d of the P3HT: PCBM film is shown as P3HT: PCBM. The measurement result about the case where light is incident on the film from the vertical direction and the case where light is incident from the end face of the P3HT: PCBM film is shown. 12 and 13, when light is incident on the P3HT: PCBM film from the vertical direction, η increases as d increases, whereas light is incident from the end face of the P3HT: PCBM film. In this case, the photoelectric conversion efficiency shows the opposite tendency that η increases as d decreases. Further, when the thickness of the P3HT: PCBM film is the same (for example, 150 nm), the light is incident from the end face of the P3HT: PCBM film as compared with the case where the light is incident on the P3HT: PCBM film from the vertical direction. It can be seen that η is larger in the case. This means that η is not bound to the absorption coefficient α of the P3HT: PCBM film, more generally the semiconductor layer.
次に、特に、図7に示すように半導体層30が四つの領域31~34からなる場合のEg1、Eg2、Eg3、Eg4の最適な設定例について説明する。図14はAM1.5太陽光スペクトルの光子エネルギーhνと光子数nphとの関係を示す。図14においては、Eg1、Eg2、Eg3、Eg4をEg (1) 、Eg (2) 、Eg (3) 、Eg (4) と記載している。図14に示すように、AM1.5太陽光スペクトルの光子エネルギーを四つの区間に分割する。この場合の理論最大光電変換効率は図14の挿入図に示すように約50%にもなり、これは例えばEg =1.35eVの従来の太陽電池の理論最高光電変換効率31%の約1.6倍である。
Next, an optimum setting example of E g1 , E g2 , E g3 , E g4 when the semiconductor layer 30 is composed of four regions 31 to 34 as shown in FIG. 7 will be described. FIG. 14 shows the relationship between the photon energy hν of the AM1.5 sunlight spectrum and the number of photons n ph . In FIG. 14, E g1 , E g2 , E g3 , and E g4 are described as E g (1), E g (2), E g (3), and E g (4). As shown in FIG. 14, the photon energy of the AM1.5 sunlight spectrum is divided into four sections. The theoretical maximum photoelectric conversion efficiency in this case is about 50% as shown in the inset of FIG. 14, which is about 1 of the theoretical maximum photoelectric conversion efficiency of 31% of a conventional solar cell with E g = 1.35 eV, for example. .6 times.
また、この光電変換装置は、集光システムであり、この集光効果により、図3の挿入図に示すように、さらに光電変換効率が向上し、N=4で60%を達成可能となる。N=10では、図3の挿入図から分かるように、75%の光電変換効率も可能となる。特に、後述の傾斜パラメータ配置を用いて容易に実現することができる、半導体層30の組成がこの半導体層30内を進行する光の方向に傾斜した傾斜組成構造を利用することにより、Nを大きくすることが可能であり、しかも、電極50、60のうちの少なくとも一方は、N個の領域(セグメント)に対して一括して形成することが許される(即ち、並列接続のタンデム構造である)この光電変換装置の利点を生かすと、熱力学的限界の85%にも肉薄することのできる理想的な集光システムを実現することができる。
Further, this photoelectric conversion device is a condensing system, and this condensing effect further improves the photoelectric conversion efficiency as shown in the inset of FIG. 3, and 60% can be achieved when N = 4. At N = 10, as can be seen from the inset of FIG. 3, a photoelectric conversion efficiency of 75% is also possible. In particular, N can be increased by using a gradient composition structure in which the composition of the semiconductor layer 30 can be easily realized by using the gradient parameter arrangement described later, and the composition of the semiconductor layer 30 is inclined in the direction of light traveling in the semiconductor layer 30. In addition, at least one of the electrodes 50 and 60 is allowed to be formed in batch with respect to N regions (segments) (that is, a tandem structure connected in parallel). Taking advantage of this photoelectric conversion device, it is possible to realize an ideal condensing system that can be as thin as 85% of the thermodynamic limit.
半導体層30としてSi層を用い、これにSi以外の元素を導入することによりSi層を部分的に改質して他の半導体に変換する場合について考える。図15は種々の元素のSi中における拡散係数の温度依存性を示す。図15より、例えば、Si層にCを拡散させることによりSix C1-x を作製することができ、Geを拡散させることによりSiy Ge1-y を作製することができる。
Consider a case where a Si layer is used as the semiconductor layer 30 and an element other than Si is introduced into the Si layer to partially modify the Si layer and convert it to another semiconductor. FIG. 15 shows the temperature dependence of the diffusion coefficients of various elements in Si. From FIG. 15, for example, Si x C 1-x can be produced by diffusing C in the Si layer, and Si y Ge 1-y can be produced by diffusing Ge.
また、図16は、半導体層30としてリン(P)がドープされたa-Si層を用い、このa-Si層をレーザアニールにより結晶化した試料のラマン散乱測定を行った結果を示す。レーザアニールはアルゴン(Ar)レーザを用いて得られた波長514nmのレーザ光を用いて行った。照射エネルギー密度は6.1mW、照射時間は10分とした。レーザ光の照射回数を1、2、3、4と変えた。この結果から、a-Si層を、光照射した部分だけ選択的に結晶性のSiに変換することができることが分かる。a-Siと結晶性のSiとは互いにバンドギャップが異なるため、互いにバンドギャップが異なる二つの領域を形成することができることが分かる。しかも、ストライプ幅をレーザ光の照射幅によって制御することができる。
FIG. 16 shows the result of Raman scattering measurement of a sample obtained by using an a-Si layer doped with phosphorus (P) as the semiconductor layer 30 and crystallizing the a-Si layer by laser annealing. Laser annealing was performed using laser light having a wavelength of 514 nm obtained using an argon (Ar) laser. The irradiation energy density was 6.1 mW and the irradiation time was 10 minutes. The number of times of laser light irradiation was changed to 1, 2, 3, and 4. From this result, it can be seen that the a-Si layer can be selectively converted into crystalline Si only at the portion irradiated with light. Since a-Si and crystalline Si have different band gaps, it can be seen that two regions having different band gaps can be formed. In addition, the stripe width can be controlled by the irradiation width of the laser beam.
図17Aは、Si基板の表面に部分的にGeを拡散させてストライプ状のSiGe領域を形成するとともに、Si基板の表面の別の部分にCを拡散させてストライプ状のSiC領域を形成した試料の表面を光学顕微鏡により撮影した写真である。図17Bにこの試料の断面形状を示す。
FIG. 17A shows a sample in which Ge is partially diffused on the surface of the Si substrate to form a striped SiGe region, and C is diffused to another portion of the surface of the Si substrate to form a striped SiC region. It is the photograph which image | photographed the surface of this with the optical microscope. FIG. 17B shows the cross-sectional shape of this sample.
図18~図20はそれぞれこの試料のSiGe素子部分の電流密度(J)-電圧(V)特性、Si素子部分のJ-V特性、SiC素子部分のI-V特性の測定結果を示す。図18~図20より、SiGe素子とSi素子とSiC素子とでビルトイン電圧が異なっていることが分かり、開放端電圧Vocはそれぞれ、0.22~0.24V、~0.42V、0.45~0.6Vであることから、Si基板へのSi以外の元素の拡散による組成制御により、pn接合面のバンドギャップを変化させることができていることが分かる。これは、太陽光スペクトルの異なるエネルギー範囲の光子を光電変換することができることの証左である。
18 to 20 show measurement results of current density (J) -voltage (V) characteristics of the SiGe element portion, JV characteristics of the Si element portion, and IV characteristics of the SiC element portion, respectively. 18 to 20, it can be seen that the SiGe element, the Si element, and the SiC element have different built-in voltages, and the open-circuit voltages V oc are 0.22 to 0.24 V, .about.0.42 V,. Since it is 45 to 0.6 V, it can be seen that the band gap of the pn junction surface can be changed by controlling the composition by diffusing elements other than Si into the Si substrate. This is evidence that photons in different energy ranges of the sunlight spectrum can be photoelectrically converted.
ここで、半導体層30の具体的な成長方法の好適な一例を説明する。ここでは、一例として、半導体層30が、半導体層30内の光の進行方向に傾斜組成を有し、バンドギャップがこの光の進行方向に減少する三種類の半導体からなる場合について説明するが、この成長方法はこれに限定されるものではなく、一般にはN種類の半導体からなる場合にも適用することができる。また、ここでは、この三種類の半導体が元素A、BおよびCからなるAp B1-p C、Aq B1-q CおよびAr B1-r C(p>q>rまたはp<q<r)である場合について説明するが、これに限定されるものではなく、一般には二元系または四元系以上の半導体であってもよい。C={φ}(空集合)とすることで、この三種類の半導体は二元物質(例えば、Six Ge1-x など)となる。
Here, a preferred example of a specific method for growing the semiconductor layer 30 will be described. Here, as an example, the case where the semiconductor layer 30 is composed of three types of semiconductors having a gradient composition in the light traveling direction in the semiconductor layer 30 and the band gap decreasing in the light traveling direction will be described. This growth method is not limited to this, and can generally be applied to the case of N kinds of semiconductors. In addition, here, these three types of semiconductors are A p B 1-p C, A q B 1-q C, and A r B 1-r C (p>q> r or p The case where <q <r) will be described. However, the present invention is not limited to this, and in general, a binary or quaternary or higher semiconductor may be used. By setting C = {φ} (empty set), these three types of semiconductors become binary materials (for example, Si x Ge 1-x ).
図21Aおよび図21Bに示すように、基板101上にx軸方向に順にAp B1-p C層102、Aq B1-q C層103およびAr B1-r C層104を成長させる。これらのAp B1-p C層102、Aq B1-q C層103およびAr B1-r C層104はy軸方向に延在する細長いストライプ状の形状を有する。図21Aに示すように、これらのAp B1-p C層102、Aq B1-q C層103およびAr B1-r C層104の成長は、基板101上にx軸方向に原料フラックスを供給することにより行うことができるが、この際に傾斜パラメーター配置を行う。即ち、図21Aおよび図21Bのx軸方向に沿って、パラメーターの値が単調に変化(増加または減少)する。ここで、その単調性(モノトナスに変化すること)が重要である。即ち、例えば、成長物質Ax B1-x C(x=p、q、r)において、p>q>r(あるいはp<q<r)であり、x軸方向に沿って、Aの組成が単調減少(あるいは単調増加)となる。パラメーターとしては、成長温度、基板101の格子定数、基板101のオフアングル数、成長時に光を用いる場合には光照射時の光強度などが挙げられる。これらを複数組み合わせることも有効である。基板101の格子定数を変化させる手法としては、イオン注入や拡散が挙げられる。イオン注入や拡散に用いる原子種としては、基板101の構成元素、あるいは目的とする成長層の構成元素を用いることが親和性が高いが、これに限らない。光照射は、結晶成長反応そのものを促進させるケースや基板温度の上昇をもたらす場合など、目的に応じて選択する。原料フラックスとしては、原料含有ガス、分子ビーム、原料含有溶液などが挙げられる。基板101を図21Aのy軸方向に一定速度で移動させることで、事実上無限に長いテープ状基板上にマルチストライプ半導体層を成長させることができる。成長と同時にドーピングを行うこともできるので、pn接合も形成することができ、半導体層30を容易に形成することができ、ひいては光電変換装置を容易に製造することができる。なお、半導体層30の成長後に基板101をそのまま残す場合には基板101として導電性基板が用いられ、半導体層30の成長後に基板101を剥離して半導体層30だけを用いる場合には基板101として導電性基板および非導電性基板のいずれを用いてもよい。
As shown in FIGS. 21A and 21B, an A p B 1-p C layer 102, an A q B 1-q C layer 103, and an A r B 1-r C layer 104 are grown in this order on the substrate 101 in the x-axis direction. Let The A p B 1-p C layer 102, the A q B 1-q C layer 103, and the A r B 1-r C layer 104 have an elongated stripe shape extending in the y-axis direction. As shown in FIG. 21A, the growth of these A p B 1-p C layer 102, A q B 1-q C layer 103, and A r B 1-r C layer 104 occurs on the substrate 101 in the x-axis direction. Although it can be performed by supplying a raw material flux, an inclination parameter arrangement is performed at this time. That is, the parameter value monotonously changes (increases or decreases) along the x-axis direction of FIGS. 21A and 21B. Here, the monotonicity (changing to monotonus) is important. That is, for example, in the growth material A x B 1-x C (x = p, q, r), p>q> r (or p <q <r), and the composition of A along the x-axis direction Is monotonically decreasing (or monotonically increasing). The parameters include the growth temperature, the lattice constant of the substrate 101, the number of off-angles of the substrate 101, and the light intensity at the time of light irradiation when using light during growth. It is also effective to combine a plurality of these. Examples of a method for changing the lattice constant of the substrate 101 include ion implantation and diffusion. As an atomic species used for ion implantation or diffusion, use of a constituent element of the substrate 101 or a constituent element of a target growth layer has high affinity, but is not limited thereto. The light irradiation is selected according to the purpose, such as a case where the crystal growth reaction itself is promoted or a case where the substrate temperature rises. Examples of the raw material flux include a raw material-containing gas, a molecular beam, and a raw material-containing solution. By moving the substrate 101 at a constant speed in the y-axis direction of FIG. 21A, a multi-stripe semiconductor layer can be grown on a virtually infinitely long tape-like substrate. Since doping can be performed simultaneously with growth, a pn junction can also be formed, the semiconductor layer 30 can be easily formed, and a photoelectric conversion device can be easily manufactured. Note that when the substrate 101 is left as it is after the growth of the semiconductor layer 30, a conductive substrate is used as the substrate 101. Either a conductive substrate or a non-conductive substrate may be used.
半導体層30の具体的な成長方法の好適な他の例を説明する。図22に示すように、基板101を紙面の向かって奥側(図21Aのy軸方向)に移動させながら、基板101の主面に対して一定角度傾斜した方向から、左右方向の一方の側から原料フラックス供給装置105により例えばAおよびC供給用の原料フラックス106を供給するとともに、左右方向の他方の側から原料フラックス供給装置107により例えばBおよびC供給用の原料フラックス108を供給する。原料フラックス106、108は、例えば、原料ガス、分子ビーム、ミスト噴霧(例えば、非特許文献12~13参照。)などである。この方法によっても、半導体層30内の光の進行方向に傾斜組成を有し、バンドギャップがこの光の進行方向に減少する三種類の半導体からなる半導体層30を成長させることができる。なお、四元系以上の多元系の半導体を成長させる場合には、必要な個数の原料フラックス供給装置を用意する。また、図21Aおよび図21Bに示す成長方法と図22に示す成長方法との併用も有効である。
Another example of a specific method for growing the semiconductor layer 30 will be described. As shown in FIG. 22, one side in the left-right direction from the direction inclined by a certain angle with respect to the main surface of the substrate 101 while moving the substrate 101 toward the back side (the y-axis direction in FIG. 21A). For example, the raw material flux supply device 105 supplies the raw material flux 106 for supplying A and C, and the raw material flux supply device 107 supplies the raw material flux 108 for supplying B and C, for example, from the other side in the left-right direction. The raw material fluxes 106 and 108 are, for example, a raw material gas, a molecular beam, a mist spray (for example, see Non-Patent Documents 12 to 13), and the like. Also by this method, it is possible to grow the semiconductor layer 30 made of three kinds of semiconductors having a gradient composition in the light traveling direction in the semiconductor layer 30 and having a band gap decreasing in the light traveling direction. When growing a quaternary or higher multi-element semiconductor, a necessary number of raw material flux supply devices are prepared. Further, the combined use of the growth method shown in FIGS. 21A and 21B and the growth method shown in FIG. 22 is also effective.
この第1の実施の形態によれば、次のような種々の利点を得ることができる。即ち、この光電変換装置においては、面状光導波路20が大部分の面積を占め、この面状光導波路20の全体で入射光を受光することができるため、入射光に対する不感領域が実質的にない。また、この光電変換装置においては、面状光導波路20の光入射面20aに入射し、面状光導波路20内を導波されて集光された光が半導体層30に入射するため、例えば図3の挿入図に示すように、極めて高い光電変換効率を得ることができる。例えば、面状光導波路20の大きさが10cm×10cm、半導体層30の厚さdが50μm=50×10-4cm、半導体層30の幅が10cmとすると、集光率は(面状光導波路20の面積)/(半導体層30の光が入射する端面の面積)=(10×10)/2×(10cm×50×10-4)=1000倍となる。このときの光電変換効率は図3の挿入図より60%を超える。また、従来の太陽電池では、光入射面の全体に光電変換用の半導体を設ける必要があるため、半導体の使用量が多いのに対し、この光電変換装置においては、半導体層30はごく一部の面積を占めるに過ぎず、その体積も極めて小さくて済むため、半導体の使用量が少なくて済み、製造コストの低減を図ることができる。また、半導体層30が、この半導体層30内の光の進行方向にバンドギャップまたはHOMO-LUMOギャップが段階的に減少する複数の領域により構成される場合には、太陽光の高エネルギーの紫外成分を例えば1段目の領域で吸収することができるため、後段の領域に紫外成分が入射しないようにすることができる。このため、後段の領域をアモルファスシリコンや有機半導体により構成しても、ステブラー・ロンスキー効果や有機半導体の劣化の問題がない。このため、これによっても光電変換効率の向上を図ることができるとともに、光電変換装置の信頼性の向上を図ることができる。さらに、この光電変換装置は、面状光導波路20の面積を大きくするだけで容易に大面積化が可能である。また、面状光導波路20の端部に半導体層30が設けられ、面状光導波路20内を導波される光が面状光導波路20の端面から出て半導体層30に入射するように構成されているため、集光のためのレンズなどが不要であり、構成も極めて簡単であり、光軸合わせなども不要であるため、製造が容易であるだけでなく、製造コストの低減を図ることもでき、経時変化や経年変化を防止することもできる。また、レンズ式集光システムの欠点であった拡散光に対し光電変換効率が下がる点も、互いに面状構造であり貼り合わせができるという意味で、光波進行方向変換シート85との相性が極めてよい面状光導波路20の構造をとることで、拡散光であっても、直射光に対する光電変換効率に比し(光波進行方向変換シート85の効率である)約95%まで、回復させることができる。加えて、この光電変換装置では、アモルファスシリコン太陽電池で問題になっている空間電荷効果を抑制することができる。即ち、アモルファスシリコン太陽電池では、アモルファスシリコンの厚さを大きくして光吸収を増やそうとしても、内部電界が空間電荷でキャンセルされて特性の向上につながらないという問題がある。これに対し、この光電変換装置では、半導体層30の一部の領域をアモルファスシリコンにより構成する場合、半導体層30の上下に設けられた第1の電極50と第2の電極60との間の距離を小さくすることができ、同時に、半導体層30内の光の進行方向のアモルファスシリコン領域の長さは大きく取ることができるので、空間電荷効果を抑制することができる。
According to the first embodiment, the following various advantages can be obtained. That is, in this photoelectric conversion device, the planar optical waveguide 20 occupies most of the area, and the entire planar optical waveguide 20 can receive incident light. Absent. Further, in this photoelectric conversion device, the light incident on the light incident surface 20a of the planar optical waveguide 20 and guided by being condensed in the planar optical waveguide 20 is incident on the semiconductor layer 30. As shown in the inset of FIG. 3, extremely high photoelectric conversion efficiency can be obtained. For example, when the size of the planar optical waveguide 20 is 10 cm × 10 cm, the thickness d of the semiconductor layer 30 is 50 μm = 50 × 10 −4 cm, and the width of the semiconductor layer 30 is 10 cm, the light collection rate is (planar optical waveguide). The area of the waveguide 20 / (the area of the end face on which light of the semiconductor layer 30 is incident) = (10 × 10) / 2 × (10 cm × 50 × 10 −4 ) = 1000 times. The photoelectric conversion efficiency at this time exceeds 60% from the inset of FIG. Further, in the conventional solar cell, since it is necessary to provide a semiconductor for photoelectric conversion on the entire light incident surface, a large amount of semiconductor is used, whereas in this photoelectric conversion device, only a part of the semiconductor layer 30 is provided. Therefore, the volume of the semiconductor can be very small, so that the amount of semiconductor used can be reduced and the manufacturing cost can be reduced. Further, when the semiconductor layer 30 is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap decreases stepwise in the light traveling direction in the semiconductor layer 30, a high-energy ultraviolet component of sunlight Can be absorbed in the region of the first stage, for example, so that the ultraviolet component can be prevented from entering the region of the subsequent stage. For this reason, even if the latter region is made of amorphous silicon or an organic semiconductor, there is no problem of the Stebbler-Lonsky effect or the deterioration of the organic semiconductor. For this reason, it is possible to improve the photoelectric conversion efficiency and improve the reliability of the photoelectric conversion device. Furthermore, this photoelectric conversion device can be easily increased in area simply by increasing the area of the planar optical waveguide 20. Further, the semiconductor layer 30 is provided at the end of the planar optical waveguide 20, and the light guided in the planar optical waveguide 20 exits from the end surface of the planar optical waveguide 20 and enters the semiconductor layer 30. Therefore, a lens for condensing light is not necessary, the configuration is extremely simple, and optical axis alignment is not necessary, so that not only manufacturing is easy, but also manufacturing cost is reduced. It is also possible to prevent changes over time and changes over time. In addition, the point that the photoelectric conversion efficiency decreases with respect to the diffused light, which was a drawback of the lens-type condensing system, is extremely compatible with the light wave traveling direction changing sheet 85 in the sense that they are mutually planar and can be bonded together. By adopting the structure of the planar optical waveguide 20, even diffused light can be recovered to about 95% (which is the efficiency of the light wave traveling direction changing sheet 85) compared to the photoelectric conversion efficiency for direct light. . In addition, in this photoelectric conversion device, the space charge effect that is a problem in the amorphous silicon solar cell can be suppressed. That is, the amorphous silicon solar cell has a problem that even if the thickness of the amorphous silicon is increased to increase the light absorption, the internal electric field is canceled by the space charge and the characteristics are not improved. On the other hand, in this photoelectric conversion device, when a partial region of the semiconductor layer 30 is composed of amorphous silicon, the region between the first electrode 50 and the second electrode 60 provided above and below the semiconductor layer 30 is used. The distance can be reduced, and at the same time, the length of the amorphous silicon region in the light traveling direction in the semiconductor layer 30 can be increased, so that the space charge effect can be suppressed.
また、この光電変換装置においては、3次元空間伝播光を2次元空間伝播光に変換し、2次元空間伝播光の伝播を効率的に行うことができる面、即ち受光面(面状光導波路20の面)と光電変換領域である半導体層30とを空間的に分離することができるので、太陽光の直射による半導体層30の温度上昇を抑えることができる。例えば、面状光導波路30が緩やかな曲率を持つ部分を含み、当外部分を瓦の下、屋根の中央部迫り出し稜線の下、窓の桟の下等に配置し、面状光導波路20の光入射面20aに光が入射する際に半導体層30は陰の部分に配置することができる。これにより直射光による温度上昇と、直射光の中の紫外(UV)光成分による半導体層30の結合に対する悪影響との双方を抑制することができる。特に、太陽光の入射する一層目のバンドギャップEg1を、用いる半導体材料のコヒーシブエネルギー以上に設定することで、後段の半導体の結合を守り、素子寿命を延ばすことができ、長期信頼性が得られる。温度上昇に関しては、この光電変換装置の高効率性は、とりもなおさず、熱としてのロスを極小化できることを意味しているので、導波される光に対しては、そのエネルギーを高効率で電気エネルギーに変え、熱に転化する成分を低減することによって、やはり温度上昇を抑えることができる。
Further, in this photoelectric conversion device, the surface that can convert the three-dimensional spatially propagated light into the two-dimensional spatially propagated light and efficiently propagate the two-dimensional spatially propagated light, that is, the light receiving surface (planar optical waveguide 20). ) And the semiconductor layer 30 which is a photoelectric conversion region can be spatially separated, so that an increase in the temperature of the semiconductor layer 30 due to direct sunlight can be suppressed. For example, the planar optical waveguide 30 includes a portion having a gentle curvature, and the other portion is disposed under the tile, under the protruding central portion of the roof, under the window rail, etc. When light is incident on the light incident surface 20a, the semiconductor layer 30 can be disposed in a shaded portion. Thereby, both the temperature rise by direct light and the bad influence with respect to the coupling | bonding of the semiconductor layer 30 by the ultraviolet (UV) light component in direct light can be suppressed. In particular, by setting the band gap E g1 of the first layer on which sunlight is incident to be equal to or greater than the coherent energy of the semiconductor material used, it is possible to protect the bonding of the subsequent semiconductors, extend the device life, and obtain long-term reliability. It is done. Regarding the temperature rise, the high efficiency of this photoelectric conversion device means that the loss as heat can be minimized, so the energy is highly efficient for the guided light. By reducing the component that is converted into electric energy and converted into heat, the temperature rise can be suppressed.
このように、この光電変換装置によれば、高効率化による(熱として失うエネルギー減少を通じての)温度上昇の抑制のベースの上に、更に、集光システムの悪いところ(高強度光の入射による温度上昇)をなくし、良いところ(変換効率が非集光系に比べ、図3内の挿入図に示すように、約2割も上昇する点)のみを生かすことができる。
As described above, according to this photoelectric conversion device, on the basis of the suppression of the temperature rise (through the reduction of energy lost as heat) due to the high efficiency, further, the bad place of the condensing system (due to the incidence of high intensity light) Temperature rise) can be eliminated, and only a good point (a point where the conversion efficiency increases by about 20% as shown in the inset in FIG. 3 as compared with the non-condensing system) can be utilized.
この光電変換装置の利点を改めてまとめると次の通りである。
(1)フォトンの進行方向とフォトキャリアの移動方向との直交性により、光吸収とキャリア捕集効率を独立に、同時最適化できる。
(2)傾斜組成による多段のマルチストライプ性が可能となり、太陽光スペクトルの全幅光電変換が可能となる。
(3)集光系であることにより、非集光系に比べ、約20%の効率上昇が見込まれる。
(4)多段のマルチギャップ半導体による光電変換を行うことができることから、熱として散逸してしまうエネルギーを極小化できるため、集光太陽光発電系の弱点であった温度上昇を抑制することができる。
(5)回折格子を用いた面状光導波路による集光系であるため、曇天時等の拡散光に対する集光特性の劣化が抑制される。
(6)物質の結合に害を与える高エネルギーフォトンをマルチストライプの最初の層で、光電変換することで(エネルギーを無駄にすることなく)、それに続く中間ギャップ半導体層、ナローギャップ半導体層を形成する物質の劣化を未然に防ぐことができ、結果として高い信頼性が得られる。特に、従来は戸外で使えなかったような材料もこの光電変換装置中に用いれば、高い信頼性を以て戸外でも使うことができる。 The advantages of this photoelectric conversion device can be summarized as follows.
(1) The optical absorption and carrier collection efficiency can be independently and simultaneously optimized by the orthogonality between the photon traveling direction and the photocarrier moving direction.
(2) Multi-stage multi-striping with a gradient composition is possible, and full-width photoelectric conversion of the sunlight spectrum is possible.
(3) Due to the light condensing system, an efficiency increase of about 20% is expected compared to the non-light condensing system.
(4) Since it is possible to perform photoelectric conversion using multi-stage multi-gap semiconductors, energy dissipated as heat can be minimized, so that temperature rise, which was a weak point of a concentrated solar power generation system, can be suppressed. .
(5) Since it is a condensing system using a planar optical waveguide using a diffraction grating, deterioration of condensing characteristics with respect to diffused light during cloudy weather is suppressed.
(6) High energy photons that harm the bonding of materials are photoelectrically converted in the first layer of the multi-strip (without wasting energy) to form the subsequent intermediate gap semiconductor layer and narrow gap semiconductor layer It is possible to prevent deterioration of the substances to be obtained, and as a result, high reliability can be obtained. In particular, if a material that could not be used outdoors is used in the photoelectric conversion device, it can be used outdoors with high reliability.
(1)フォトンの進行方向とフォトキャリアの移動方向との直交性により、光吸収とキャリア捕集効率を独立に、同時最適化できる。
(2)傾斜組成による多段のマルチストライプ性が可能となり、太陽光スペクトルの全幅光電変換が可能となる。
(3)集光系であることにより、非集光系に比べ、約20%の効率上昇が見込まれる。
(4)多段のマルチギャップ半導体による光電変換を行うことができることから、熱として散逸してしまうエネルギーを極小化できるため、集光太陽光発電系の弱点であった温度上昇を抑制することができる。
(5)回折格子を用いた面状光導波路による集光系であるため、曇天時等の拡散光に対する集光特性の劣化が抑制される。
(6)物質の結合に害を与える高エネルギーフォトンをマルチストライプの最初の層で、光電変換することで(エネルギーを無駄にすることなく)、それに続く中間ギャップ半導体層、ナローギャップ半導体層を形成する物質の劣化を未然に防ぐことができ、結果として高い信頼性が得られる。特に、従来は戸外で使えなかったような材料もこの光電変換装置中に用いれば、高い信頼性を以て戸外でも使うことができる。 The advantages of this photoelectric conversion device can be summarized as follows.
(1) The optical absorption and carrier collection efficiency can be independently and simultaneously optimized by the orthogonality between the photon traveling direction and the photocarrier moving direction.
(2) Multi-stage multi-striping with a gradient composition is possible, and full-width photoelectric conversion of the sunlight spectrum is possible.
(3) Due to the light condensing system, an efficiency increase of about 20% is expected compared to the non-light condensing system.
(4) Since it is possible to perform photoelectric conversion using multi-stage multi-gap semiconductors, energy dissipated as heat can be minimized, so that temperature rise, which was a weak point of a concentrated solar power generation system, can be suppressed. .
(5) Since it is a condensing system using a planar optical waveguide using a diffraction grating, deterioration of condensing characteristics with respect to diffused light during cloudy weather is suppressed.
(6) High energy photons that harm the bonding of materials are photoelectrically converted in the first layer of the multi-strip (without wasting energy) to form the subsequent intermediate gap semiconductor layer and narrow gap semiconductor layer It is possible to prevent deterioration of the substances to be obtained, and as a result, high reliability can be obtained. In particular, if a material that could not be used outdoors is used in the photoelectric conversion device, it can be used outdoors with high reliability.
このように、この光電変換装置は数多くの特性を備えた究極の光電変換システムということができる。
Thus, it can be said that this photoelectric conversion device is the ultimate photoelectric conversion system having many characteristics.
〈第2の実施の形態〉
[光電変換装置]
第1の実施の形態においては、面状光導波路20の主面からなる光入射面20aに埋め込み層70を設けることにより、面状光導波路20の光入射面20aに入射する3次元空間伝播光を2次元空間伝播光に変換する構造体80を形成しているのに対し、第2の実施の形態においては、スタンピングやナノ・マイクロインプリンティングにより光入射面20aに周期的凹凸構造が設けられることにより、3次元空間伝播光を2次元空間伝播光に変換する構造体80が形成される。周期的凹凸構造は、例えば、くしの歯状、鋸歯状、正弦波状などの形状を有する。その他のことは、第1の実施の形態と同様である。 <Second Embodiment>
[Photoelectric conversion device]
In the first embodiment, three-dimensional spatial propagation light incident on thelight incident surface 20 a of the planar optical waveguide 20 is provided by providing the buried layer 70 on the light incident surface 20 a that is the main surface of the planar optical waveguide 20. In the second embodiment, a periodic concavo-convex structure is provided on the light incident surface 20a by stamping or nano-microimprinting. Thus, the structure 80 that converts the three-dimensional space propagation light into the two-dimensional space propagation light is formed. The periodic concavo-convex structure has, for example, a comb tooth shape, a sawtooth shape, a sinusoidal shape, or the like. Others are the same as in the first embodiment.
[光電変換装置]
第1の実施の形態においては、面状光導波路20の主面からなる光入射面20aに埋め込み層70を設けることにより、面状光導波路20の光入射面20aに入射する3次元空間伝播光を2次元空間伝播光に変換する構造体80を形成しているのに対し、第2の実施の形態においては、スタンピングやナノ・マイクロインプリンティングにより光入射面20aに周期的凹凸構造が設けられることにより、3次元空間伝播光を2次元空間伝播光に変換する構造体80が形成される。周期的凹凸構造は、例えば、くしの歯状、鋸歯状、正弦波状などの形状を有する。その他のことは、第1の実施の形態と同様である。 <Second Embodiment>
[Photoelectric conversion device]
In the first embodiment, three-dimensional spatial propagation light incident on the
この光電変換装置における、光入射面20aに3次元空間伝播光を2次元空間伝播光に変換する構造体80が形成された面状光導波路20の光導波性能を検証するためにシミュレーションを行った。シミュレーションに使用したモデルを図23に示す。図23に示すように、面状光導波路111の一方の主面(光入射面)の一部にくし歯状に長方形断面の凸部112aが周期的に形成され、周期的凹凸構造112が形成されている。面状光導波路111が面状光導波路20に対応し、周期的凹凸構造92が3次元空間伝播光を2次元空間伝播光に変換する構造体80に対応する。面状光導波路111の他方の主面には、周期的凹凸構造112よりも広い面積に亘って反射膜として機能するAlからなるバックメタル113が形成されている。バックメタル113と面状光導波路111との界面は鋸歯状に形成されており、この鋸歯状の界面のバックメタル113の微小な傾斜面に当たった光が種々の方向に反射されるようになっている。シミュレーションの諸条件は下記の通りである。面状光導波路111の屈折率はn=1.65とした(面状光導波路111の材質として樹脂、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などを想定)。図23に示すように(x,y,z)座標系を取った。面状光導波路111のx軸方向の幅は80μm、z軸方向の厚さは4μmとした。凸部112aが配列している方向がx軸方向、面状光導波路111の面内のx軸方向に直交する方向がy軸方向、面状光導波路111の面に垂直な方向がz軸方向である。凸部112aの個数は5個、凸部112aのx軸方向のピッチは2.0μm、凸部112aのx軸方向の幅は1.0μm、凸部112aと凸部112aとの間の溝の幅は1.0μm、凸部112aのz軸方向の高さは1.5384μm、凸部112aのy軸方向の幅は3.9μmである。周期的凹凸構造112に対してz軸方向に波長2.1μmの光(平面波)を入射させた。これらの条件でマックスウェル方程式を用いて面状光導波路111内の電場のy成分Ey を計算した。こうして計算したEy の振幅の分布を図24の上の図に示す。この結果から分かるように、周期的凹凸構造112に対して垂直に入射した光は、その多くがこの周期的凹凸構造112により回折されて進行方向を90°変えられて面状光導波路111内を導波する。即ち、リディレクション ウエイブガイドが実現可能であることが示され、その構造パラメーターも明らかになった。他の波長の光に対しても、凸部112a(あるいは埋め込み層70)の寸法および周期を適宜変化させることで対応することが可能である。図24の下の図は、凸部112aのz軸方向の高さを1.0μmに設定して同様な計算を行った結果を示す。この場合は回折条件が成立しなくなるため、回折がほとんど起きず、周期的凹凸構造112に対して垂直に入射した光は、ほとんど面状光導波路111内を導波していない。以上の結果より、この光電変換装置の、周期的凹凸構造が光入射面20aに設けられた面状光導波路20の光導波性能が高いことが検証された。なお、以上の結果は、第1の実施の形態のように、埋め込み層70を設けることにより3次元空間伝播光を2次元空間伝播光に変換する構造体80を形成する場合も同様に成立する。
この第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 In this photoelectric conversion device, a simulation was performed to verify the optical waveguide performance of the planaroptical waveguide 20 in which the structure 80 that converts the three-dimensional spatially propagated light into the two-dimensional spatially propagated light is formed on the light incident surface 20a. . The model used for the simulation is shown in FIG. As shown in FIG. 23, convex portions 112 a having a rectangular cross section are periodically formed in a part of one main surface (light incident surface) of the planar optical waveguide 111 to form a periodic concavo-convex structure 112. Has been. The planar optical waveguide 111 corresponds to the planar optical waveguide 20, and the periodic uneven structure 92 corresponds to the structure 80 that converts the three-dimensional spatial propagation light into the two-dimensional spatial propagation light. On the other main surface of the planar optical waveguide 111, a back metal 113 made of Al that functions as a reflection film is formed over a larger area than the periodic uneven structure 112. The interface between the back metal 113 and the planar optical waveguide 111 is formed in a sawtooth shape, and light hitting a minute inclined surface of the back metal 113 on the sawtooth interface is reflected in various directions. ing. The simulation conditions are as follows. The refractive index of the planar optical waveguide 111 was n = 1.65 (assuming resin, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), etc. as the material of the planar optical waveguide 111). The (x, y, z) coordinate system was taken as shown in FIG. The width of the planar optical waveguide 111 in the x-axis direction was 80 μm, and the thickness in the z-axis direction was 4 μm. The direction in which the convex portions 112 a are arranged is the x-axis direction, the direction orthogonal to the x-axis direction in the plane of the planar optical waveguide 111 is the y-axis direction, and the direction perpendicular to the plane of the planar optical waveguide 111 is the z-axis direction. It is. The number of protrusions 112a is 5, the pitch of protrusions 112a in the x-axis direction is 2.0 μm, the width of protrusions 112a in the x-axis direction is 1.0 μm, and the groove between the protrusions 112a and 112a The width is 1.0 μm, the height in the z-axis direction of the projection 112a is 1.5384 μm, and the width in the y-axis direction of the projection 112a is 3.9 μm. Light having a wavelength of 2.1 μm (plane wave) was incident on the periodic uneven structure 112 in the z-axis direction. Under these conditions, the y component E y of the electric field in the planar optical waveguide 111 was calculated using the Maxwell equation. The distribution of the amplitude of Ey thus calculated is shown in the upper diagram of FIG. As can be seen from this result, most of the light incident perpendicularly to the periodic concavo-convex structure 112 is diffracted by the periodic concavo-convex structure 112 and the traveling direction thereof is changed by 90 °, and the light travels in the planar optical waveguide 111. Waveguide. In other words, the redirection wave guide was shown to be feasible, and the structural parameters were also clarified. It is possible to cope with light of other wavelengths by appropriately changing the size and period of the convex portion 112a (or the embedded layer 70). The lower part of FIG. 24 shows the result of the same calculation performed by setting the height of the projection 112a in the z-axis direction to 1.0 μm. In this case, since the diffraction condition is not satisfied, the diffraction hardly occurs, and the light incident perpendicularly to the periodic concavo-convex structure 112 hardly guides the planar optical waveguide 111. From the above results, it was verified that the optical waveguide performance of the planar optical waveguide 20 in which the periodic concavo-convex structure of the photoelectric conversion device is provided on the light incident surface 20a is high. In addition, the above result is similarly established when the structure 80 for converting the three-dimensional spatial propagation light into the two-dimensional spatial propagation light is formed by providing the embedded layer 70 as in the first embodiment. .
According to the second embodiment, advantages similar to those of the first embodiment can be obtained.
この第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 In this photoelectric conversion device, a simulation was performed to verify the optical waveguide performance of the planar
According to the second embodiment, advantages similar to those of the first embodiment can be obtained.
〈第3の実施の形態〉
[光電変換装置]
第3の実施の形態においては、第1の実施の形態による光電変換装置において、面状光導波路20の端面に接する半導体層30の側面に微小な凹凸構造(ギザギザ構造)が設けられている。その他のことは、第1の実施の形態と同様である。 <Third Embodiment>
[Photoelectric conversion device]
In the third embodiment, in the photoelectric conversion device according to the first embodiment, a minute uneven structure (a jagged structure) is provided on the side surface of thesemiconductor layer 30 in contact with the end face of the planar optical waveguide 20. Others are the same as in the first embodiment.
[光電変換装置]
第3の実施の形態においては、第1の実施の形態による光電変換装置において、面状光導波路20の端面に接する半導体層30の側面に微小な凹凸構造(ギザギザ構造)が設けられている。その他のことは、第1の実施の形態と同様である。 <Third Embodiment>
[Photoelectric conversion device]
In the third embodiment, in the photoelectric conversion device according to the first embodiment, a minute uneven structure (a jagged structure) is provided on the side surface of the
半導体層30の側面にこのような微小な凹凸構造を設けることにより、入射光の波長によらず、低反射率を持たせることができる(例えば、非特許文献14参照。)。非特許文献14では、ホウ素がドープされたp型多結晶シリコンウェハーを15重量%H2 O2 と25重量%HFとを含む水溶液中に室温で浸漬し、p型多結晶シリコンウェハーの表面にローラーに取り付けられた白金メッシュを接触させ、ローラーを回転させながら白金メッシュの開口部からp型多結晶シリコンウェハーの表面をエッチングすることにより微小な凹凸構造を形成している。このように半導体層30の側面をエッチングすることにより微小な凹凸構造を形成する場合には、半導体層30の側面に露出する半導体の種類に応じて使用するエッチング液やエッチング方法を適宜決める。非特許文献14によれば、300nm~800nmの波長範囲でp型多結晶シリコンウェハーの反射率を1~3%に抑えることができる。また、非特許文献14の図1(b)および図2(a)から分かるように、0~10μmまでの範囲で構造に周期性がない以上、波長800nm~2.4μmの範囲でもほぼ同様の低反射率を得ることができる。このような微小な凹凸構造を従来の面状の太陽電池に用いた場合は、太陽電池は戸外で使用されることもあり、表面に塵埃等が堆積するとその効果が薄れがちとなるが、この光電変換装置では、この微小な凹凸構造は、半導体層30の側面に形成されるものであるため横向きであるだけでなく、面状光導波路20の端面と直接結合することにより、凸凹内に塵埃等の堆積する余地がないため、恒常的に高特性を維持することができ、長期安定性がある。
By providing such a minute uneven structure on the side surface of the semiconductor layer 30, a low reflectance can be provided regardless of the wavelength of incident light (see, for example, Non-Patent Document 14). In Non-Patent Document 14, a p-type polycrystalline silicon wafer doped with boron is immersed in an aqueous solution containing 15 wt% H 2 O 2 and 25 wt% HF at room temperature, and is applied to the surface of the p-type polycrystalline silicon wafer. A fine concavo-convex structure is formed by contacting the platinum mesh attached to the roller and etching the surface of the p-type polycrystalline silicon wafer from the opening of the platinum mesh while rotating the roller. As described above, when a minute uneven structure is formed by etching the side surface of the semiconductor layer 30, an etching solution and an etching method to be used are appropriately determined according to the type of semiconductor exposed on the side surface of the semiconductor layer 30. According to Non-Patent Document 14, the reflectance of the p-type polycrystalline silicon wafer can be suppressed to 1 to 3% in the wavelength range of 300 nm to 800 nm. Further, as can be seen from FIGS. 1 (b) and 2 (a) of Non-Patent Document 14, since the structure has no periodicity in the range of 0 to 10 μm, it is almost the same in the wavelength range of 800 nm to 2.4 μm. Low reflectance can be obtained. When such a micro uneven structure is used in a conventional planar solar cell, the solar cell may be used outdoors, and if dust or the like accumulates on the surface, the effect tends to be reduced. In the photoelectric conversion device, since this minute uneven structure is formed on the side surface of the semiconductor layer 30, it is not only horizontally oriented, but also directly coupled to the end surface of the planar optical waveguide 20, so that dust can be contained in the unevenness. Since there is no room for such deposition, high characteristics can be constantly maintained and long-term stability is achieved.
以上のように、この第3の実施の形態によれば、第1の実施の形態と同様な利点に加えて、光電変換装置の長期安定性を実現することができるという利点を得ることができる。
As described above, according to the third embodiment, in addition to the same advantages as those of the first embodiment, it is possible to obtain the advantage that the long-term stability of the photoelectric conversion device can be realized. .
〈第4の実施の形態〉
[複合光電変換装置]
第4の実施の形態においては、第1の実施の形態による光電変換装置を二つ結合した複合光電変換装置について説明する。 <Fourth embodiment>
[Composite photoelectric conversion device]
In the fourth embodiment, a composite photoelectric conversion device in which two photoelectric conversion devices according to the first embodiment are combined will be described.
[複合光電変換装置]
第4の実施の形態においては、第1の実施の形態による光電変換装置を二つ結合した複合光電変換装置について説明する。 <Fourth embodiment>
[Composite photoelectric conversion device]
In the fourth embodiment, a composite photoelectric conversion device in which two photoelectric conversion devices according to the first embodiment are combined will be described.
図25の左の図に示すように、第4の実施の形態による光電変換装置においては、半導体層30が互いにバンドギャップが異なる四つの領域からなるものを二つ、即ち光電変換装置121、122を用意する。これらの光電変換装置121、122は、例えば図9に示す構成を有する。Eg (1) 、Eg (2) 、Eg (3) 、Eg (4) はEg1領域、Eg2領域、Eg3領域、Eg4領域に対応する。図25の右の図に示すように、これらの光電変換装置121、122をたすき掛け接続する。即ち、光電変換装置121の第1の電極51、第1の電極52、第1の電極53および第1の電極54をそれぞれ、光電変換装置122の第1の電極54、第1の電極53、第1の電極52および第1の電極51と接続する。
As shown in the left diagram of FIG. 25, in the photoelectric conversion device according to the fourth embodiment, the semiconductor layer 30 includes two semiconductor layers 30 having four band gaps, that is, photoelectric conversion devices 121 and 122. Prepare. These photoelectric conversion devices 121 and 122 have, for example, the configuration shown in FIG. E g (1), E g (2), E g (3), and E g (4) correspond to the E g1 region, the E g2 region, the E g3 region, and the E g4 region. As shown in the diagram on the right side of FIG. 25, these photoelectric conversion devices 121 and 122 are connected to each other. That is, the first electrode 51, the first electrode 52, the first electrode 53, and the first electrode 54 of the photoelectric conversion device 121 are respectively connected to the first electrode 54, the first electrode 53, and the photoelectric conversion device 122. Connected to the first electrode 52 and the first electrode 51.
この第4の実施の形態によれば、第1の実施の形態と同様な利点を得ることができるほか、単一出力電圧を維持しつつ、光電変換効率ηが高い複合光電変換装置を実現することができる。
According to the fourth embodiment, the same advantages as those of the first embodiment can be obtained, and a composite photoelectric conversion device having a high photoelectric conversion efficiency η can be realized while maintaining a single output voltage. be able to.
以上、この発明の実施の形態について具体的に説明したが、この発明は、上述の実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
例えば、上記の面状光導波路20の端部において、例えば、イオン交換法によりガラス導波路の屈折率を変えることで、背面側から屈折率の小さな層を形成し、2次元導波されてきた光が、半導体層30に近づくにつれ、面に垂直方向にもコンデンスされて、面状光導波路20と半導体層30との接触部においてこの半導体層30の厚さと同一の厚さにまで集合する(漸近的に光を集中させる)ようにすることもできる。
For example, at the end of the above-mentioned planar optical waveguide 20, a layer having a small refractive index has been formed from the back side by changing the refractive index of the glass waveguide, for example, by ion exchange, and has been guided two-dimensionally. As light approaches the semiconductor layer 30, the light is condensed also in the direction perpendicular to the surface, and gathers to the same thickness as the semiconductor layer 30 at the contact portion between the planar optical waveguide 20 and the semiconductor layer 30 ( Asymptotically concentrate the light).
また、例えば、太陽光スペクトルのうちのUV光成分は、図3から分かるようにその比率は高くないので、最初から2次元空間伝播光に変換せず、従って面状光導波路20内を導波させず、これより低エネルギー成分の光のみを2次元空間伝播光に変換して面状光導波路20内を導波させて半導体層30に入射させることにより光電変換することで、半導体層30にa-Siや有機半導体を含む場合の光電変換装置の長寿命化および信頼性の向上を図ることもできる。
Further, for example, the UV light component in the sunlight spectrum does not have a high ratio, as can be seen from FIG. 3, so that it is not converted into two-dimensional spatially propagated light from the beginning, and therefore is guided in the planar optical waveguide 20. Instead, only the light having a lower energy component than this is converted into two-dimensional spatially propagated light, guided in the planar optical waveguide 20 and incident on the semiconductor layer 30 to be photoelectrically converted. When a-Si or an organic semiconductor is included, the lifetime of the photoelectric conversion device can be improved and the reliability can be improved.
また、例えば、図5Aの両端の半導体層30を図の縦方向(y軸方向)に所定の長さ(例えば、10cm程度)毎にセグメント化することで、図25に示したような接続を行った際に生じる、タンデム構造の要素ユニットに生じた欠陥により光電変換装置が機能不全になる確率/リスクを下げることができる。これは、従来の直列接続タンデム構造においては、面積を大きくすればするほど、上記の不具合の確率が増すのに対し、この発明による光電変換装置では、タンデム構造の要素ユニットがライン状で面積が極めて小さくて済むのみならず、この要素ユニットを、そのストライプ方向において、上述のようにセグメント化することで、上記のように、局所的欠陥が光電変換装置全体を不具合にしてしまう確率を格段に下げることができる。
Further, for example, by segmenting the semiconductor layers 30 at both ends of FIG. 5A at predetermined lengths (for example, about 10 cm) in the vertical direction (y-axis direction) in the drawing, the connection as shown in FIG. 25 is achieved. The probability / risk of the malfunction of the photoelectric conversion device due to the defect generated in the element unit of the tandem structure that occurs when the operation is performed can be reduced. This is because in the conventional series-connected tandem structure, the larger the area, the higher the probability of the above-mentioned problem, whereas in the photoelectric conversion device according to the present invention, the element unit of the tandem structure is in a line shape and the area is small. In addition to being extremely small, this element unit is segmented in the stripe direction as described above, and as described above, the probability that a local defect will cause the entire photoelectric conversion device to be defective is markedly increased. Can be lowered.
また、例えば、上述の実施の形態において挙げた数値、材料、形状、配置などはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、形状、配置などを用いてもよい。
In addition, for example, the numerical values, materials, shapes, arrangements, and the like given in the above-described embodiments are merely examples, and different numerical values, materials, shapes, arrangements, and the like may be used as necessary.
また、第1~第4の実施の形態による光電変換装置を複数敷き詰めて光電変換装置システム(あるいは太陽電池システム)を構成してもよい。
Alternatively, a photoelectric conversion device system (or a solar cell system) may be configured by laying a plurality of photoelectric conversion devices according to the first to fourth embodiments.
また、上記のリディレクション ウエイブガイドで、例えばビルの側面全面を鉢巻状にぐるりと取り巻き、これと結合する光電変換素子部(半導体層30)は、例えば当該ビルの北側面の一箇所(即ち、例えば、鉛直方向数m、横方向数mm~1cmの領域)に集約して配置してもよい。なお、この鉢巻状のリディレクション ウエイブガイド自体は、当該ビルの日陰の部分に存在するその一部分に、いわば逆リディレクション(即ち、2次元空間伝播光を3次元空間伝播光に戻す)構造を設けることで、当該ビルにより形成される日陰を実質的に解消する用途に用いることもできる。
Further, with the above-mentioned redirection wave guide, for example, the entire side surface of the building is wrapped around in a headband shape, and the photoelectric conversion element portion (semiconductor layer 30) coupled thereto is, for example, one place on the north side surface of the building (that is, For example, they may be arranged collectively in a region of several meters in the vertical direction and several millimeters to 1 cm in the lateral direction. In addition, this headband-shaped redirection wave guide itself has a so-called reverse redirection (that is, two-dimensional spatial propagation light is returned to three-dimensional spatial propagation light) in a part of the shade that exists in the building. Therefore, it can also be used for applications that substantially eliminate the shade formed by the building.
なお、場合によっては、この発明において、3次元空間伝播光を2次元空間伝播光に変換する構造体を省略することも可能である。即ち、2次元空間伝播光を導波する面状光導波路と、上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする光電変換装置も有効である。この場合、3次元空間伝播光が面状光導波路の主面に入射し、その光がこの面状光導波路の内部に入ってこの面状光導波路の内部を2次元空間伝播光が導波される。
In some cases, in the present invention, a structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light can be omitted. That is, it has a planar optical waveguide that guides two-dimensional spatially propagated light, and a photoelectric conversion semiconductor layer provided at an end of the planar optical waveguide, and is incident on the main surface of the planar optical waveguide. Light is guided in the planar optical waveguide and incident on the semiconductor layer, and the net traveling direction of the light guided in the planar optical waveguide and the planar optical waveguide A photoelectric conversion device is also effective in that the angle θ formed with the net movement direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from the end face is substantially a right angle. In this case, the three-dimensional spatial propagation light is incident on the main surface of the planar optical waveguide, the light enters the planar optical waveguide, and the two-dimensional spatial propagation light is guided through the planar optical waveguide. The
20 面状光導波路
20a 光入射面
30 半導体層
40 支持基板
50~54 第1の電極
60 第2の電極
70 埋め込み層
80 3次元空間伝播光を2次元空間伝播光に変換する構造体
85 光波進行方向変換シート DESCRIPTION OFSYMBOLS 20 Planar optical waveguide 20a Light incident surface 30 Semiconductor layer 40 Support substrate 50-54 1st electrode 60 2nd electrode 70 Embedded layer 80 Structure which converts 3D spatially propagated light into 2D spatially propagated light 85 Light wave travel Direction change sheet
20a 光入射面
30 半導体層
40 支持基板
50~54 第1の電極
60 第2の電極
70 埋め込み層
80 3次元空間伝播光を2次元空間伝播光に変換する構造体
85 光波進行方向変換シート DESCRIPTION OF
Claims (25)
- 3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする光電変換装置。 A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The photoelectric conversion device is characterized in that the angle θ formed by is substantially a right angle. - 上記3次元空間伝播光を2次元空間伝播光に変換する構造体が、互いに屈折率が異なる帯状の第1の部分および帯状の第2の部分が交互に周期的に、または一定間隔で、配列された構造を有することを特徴とする請求項1記載の光電変換装置。 The structure for converting the three-dimensional spatially propagated light into the two-dimensional spatially propagated light is arranged such that the first and second strips having different refractive indexes are alternately arranged periodically or at regular intervals. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device has a structured structure.
- 上記間隔が互いに異なる複数の値に設定されたことを特徴とする請求項2記載の光電変換装置。 The photoelectric conversion device according to claim 2, wherein the interval is set to a plurality of different values.
- 上記3次元空間伝播光を2次元空間伝播光に変換する構造体が、上記面状光導波路の主面または上記面状光導波路内に設けられていることを特徴とする請求項1~3のいずれか一項記載の光電変換装置。 The structure for converting the three-dimensional spatially propagated light into the two-dimensional spatially propagated light is provided on the main surface of the planar optical waveguide or in the planar optical waveguide. The photoelectric conversion apparatus as described in any one of Claims.
- 上記3次元空間伝播光を2次元空間伝播光に変換する構造体が、上記面状光導波路の主面または上記面状光導波路内に設けられた回折格子であることを特徴とする請求項1~4のいずれか一項記載の光電変換装置。 2. The structure for converting the three-dimensional spatially propagated light into two-dimensional spatially propagated light is a main surface of the planar optical waveguide or a diffraction grating provided in the planar optical waveguide. 5. The photoelectric conversion device according to any one of items 1 to 4.
- 上記面状光導波路と上記半導体層とが互いに一体に設けられていることを特徴とする請求項1~5のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 5, wherein the planar optical waveguide and the semiconductor layer are provided integrally with each other.
- 上記半導体層の互いに対向する第1の面および第2の面にそれぞれ第1の電極および第2の電極が設けられていることを特徴とする請求項1~6のいずれか一項記載の光電変換装置。 7. The photoelectric device according to claim 1, wherein a first electrode and a second electrode are respectively provided on the first surface and the second surface of the semiconductor layer facing each other. Conversion device.
- 上記半導体層は無機半導体または有機半導体からなることを特徴とする請求項1~7のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 7, wherein the semiconductor layer is made of an inorganic semiconductor or an organic semiconductor.
- 上記半導体層はp型半導体層とn型半導体層とからなるpn接合であることを特徴とする請求項1~8のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 8, wherein the semiconductor layer is a pn junction including a p-type semiconductor layer and an n-type semiconductor layer.
- 上記半導体層のバンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的および/または連続的に減少するように構成されていることを特徴とする請求項1~9のいずれか一項記載の光電変換装置。 10. The band gap or HOMO-LUMO gap of the semiconductor layer is configured to decrease stepwise and / or continuously in the light traveling direction. Photoelectric conversion device.
- 上記半導体層はバンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的に減少した複数の領域からなり、上記第1の電極および上記第2の電極のうちの少なくとも一方は各領域間で互いに分離して設けられていることを特徴とする請求項1~10のいずれか一項記載の光電変換装置。 The semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap gradually decreases in the light traveling direction, and at least one of the first electrode and the second electrode is between the regions. The photoelectric conversion device according to any one of claims 1 to 10, wherein the photoelectric conversion devices are provided separately from each other.
- 上記面状光導波路は四角形の形状を有し、上記面状光導波路の互いに対向する一対の辺のうちの少なくとも一方の辺に相当する上記面状光導波路の端部に上記半導体層が設けられ、上記面状光導波路の上記互いに対向する一対の辺と異なる一対の辺のうちの少なくとも一方の辺に相当する上記面状光導波路の端部に光反射機構が設けられていることを特徴とする請求項1~11のいずれか一項記載の光電変換装置。 The planar optical waveguide has a rectangular shape, and the semiconductor layer is provided at an end of the planar optical waveguide corresponding to at least one of a pair of opposing sides of the planar optical waveguide. A light reflection mechanism is provided at an end portion of the planar optical waveguide corresponding to at least one of the pair of sides different from the pair of opposite sides of the planar optical waveguide. The photoelectric conversion device according to any one of claims 1 to 11.
- 上記面状光導波路は、上記面状光導波路内を導波される光が上記面状光導波路のうちの上記半導体層と接触する部分に集光される屈折率分布を有することを特徴とする請求項1~12のいずれか一項記載の光電変換装置。 The planar optical waveguide has a refractive index distribution in which light guided in the planar optical waveguide is condensed on a portion of the planar optical waveguide that contacts the semiconductor layer. The photoelectric conversion device according to any one of claims 1 to 12.
- 上記3次元空間伝播光を2次元空間伝播光に変換する構造体上に光波進行方向変換シートが設けられていることを特徴とする請求項1~13のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 13, wherein a light wave traveling direction conversion sheet is provided on a structure that converts the three-dimensional space propagation light into two-dimensional space propagation light.
- 上記面状光導波路の主面に光が入射する際に上記半導体層に光が直接入射しないように構成されていることを特徴とする請求項1~14のいずれか一項記載の光電変換装置。 15. The photoelectric conversion device according to claim 1, wherein light is not directly incident on the semiconductor layer when light is incident on a main surface of the planar optical waveguide. .
- 上記半導体層はバンドギャップまたはHOMO-LUMOギャップが光の進行方向に順に段階的に減少した複数の領域からなり、各領域の光の進行方向の幅が、各領域のバンドギャップまたはHOMO-LUMOギャップと等しいエネルギーを有する光の各領域における吸収係数の逆数以上であることを特徴とする請求項1~15のいずれか一項記載の光電変換装置。 The semiconductor layer includes a plurality of regions in which a band gap or a HOMO-LUMO gap is gradually reduced in the light traveling direction, and the width in the light traveling direction of each region is the band gap or the HOMO-LUMO gap of each region. The photoelectric conversion device according to any one of claims 1 to 15, wherein the photoelectric conversion device is equal to or greater than an inverse number of an absorption coefficient in each region of light having energy equal to.
- 上記半導体層はアモルファス半導体、多結晶半導体または単結晶半導体からなることを特徴とする請求項1~16のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 16, wherein the semiconductor layer is made of an amorphous semiconductor, a polycrystalline semiconductor, or a single crystal semiconductor.
- 上記半導体層は、光の進行方向に順に、Six C1-x (0<x<1)からなる領域、Siからなる領域およびSiy Ge1-y (0<y<1)からなる領域を有することを特徴とする請求項1~17のいずれか一項記載の光電変換装置。 The semiconductor layer includes, in order in the light traveling direction, a region composed of Si x C 1-x (0 <x <1), a region composed of Si, and a region composed of Si y Ge 1-y (0 <y <1). The photoelectric conversion device according to any one of claims 1 to 17, characterized by comprising:
- 上記半導体層は、光の進行方向に順に、Six C1-x (0<x<1)からなる領域、Siからなる領域およびマイクロクリスタルSiy Ge1-y (0<y<1)からなる領域を有することを特徴とする請求項1~17のいずれか一項記載の光電変換装置。 The semiconductor layer includes, in order in the light traveling direction, a region composed of Si x C 1-x (0 <x <1), a region composed of Si, and a microcrystal Si y Ge 1-y (0 <y <1). The photoelectric conversion device according to any one of claims 1 to 17, characterized in that:
- 上記半導体層は、光の進行方向に順に、AlGaN、GaNおよびIGZOからなる群より選ばれた少なくとも一つの半導体を含む領域、Six C1-x (0<x<1)からなる領域、Siからなる領域およびSiy Ge1-y (0<y<1)からなる領域を有することを特徴とする請求項1~17のいずれか一項記載の光電変換装置。 The semiconductor layer includes a region containing at least one semiconductor selected from the group consisting of AlGaN, GaN, and IGZO in the order of light travel, a region consisting of Si x C 1-x (0 <x <1), Si The photoelectric conversion device according to any one of claims 1 to 17, wherein the photoelectric conversion device has a region made of Si y Ge 1-y (0 <y <1).
- 上記半導体層は、光の進行方向に順に、Six C1-x (0<x<1)からなる領域、Siからなる領域、Siy Ge1-y (0<y<1)からなる領域およびGeからなる領域を有することを特徴とする請求項1~17のいずれか一項記載の光電変換装置。 The semiconductor layer includes, in order in the light traveling direction, a region composed of Si x C 1-x (0 <x <1), a region composed of Si, and a region composed of Si y Ge 1-y (0 <y <1). The photoelectric conversion device according to any one of claims 1 to 17, wherein the photoelectric conversion device has a region made of Si and Ge.
- 上記光電変換装置は太陽電池であることを特徴とする請求項1~21のいずれか一項記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 21, wherein the photoelectric conversion device is a solar cell.
- 少なくとも一つの光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする建築物。 Having at least one photoelectric conversion device;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; The building is characterized in that the angle θ formed by is substantially a right angle. - 上記面状光導波路の主面に光が入射する際に上記半導体層に光が直接入射しないように上記半導体層が上記建築物の陰の部分に配置されていることを特徴とする請求項23記載の建築物。 24. The semiconductor layer is arranged in a shaded part of the building so that light does not directly enter the semiconductor layer when light enters the main surface of the planar optical waveguide. The listed building.
- 外面に取り付けられた少なくとも一つの光電変換装置を有し、
上記光電変換装置が、
3次元空間伝播光を2次元空間伝播光に変換する構造体と、
上記2次元空間伝播光を導波する面状光導波路と、
上記面状光導波路の端部に設けられた光電変換用の半導体層とを有し、
上記面状光導波路の主面に入射した光が上記面状光導波路内を導波されて上記半導体層に入射するように構成され、
上記面状光導波路内を導波される光の正味の進行方向と、上記面状光導波路の端面から上記半導体層に入射した光により上記半導体層中に生成されるキャリアの正味の移動方向とのなす角度θがほぼ直角であることを特徴とする電子機器。 Having at least one photoelectric conversion device attached to the outer surface;
The photoelectric conversion device is
A structure that converts three-dimensional spatially propagated light into two-dimensional spatially propagated light;
A planar optical waveguide for guiding the two-dimensional spatial propagation light;
Having a semiconductor layer for photoelectric conversion provided at an end of the planar optical waveguide,
The light incident on the main surface of the planar optical waveguide is configured to be guided in the planar optical waveguide and incident on the semiconductor layer,
A net traveling direction of light guided in the planar optical waveguide, and a net moving direction of carriers generated in the semiconductor layer by light incident on the semiconductor layer from an end surface of the planar optical waveguide; An electronic device characterized in that the angle θ formed by is substantially a right angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014542164A JP6261088B2 (en) | 2012-10-19 | 2013-10-17 | Photoelectric conversion device, building and electronic equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012231508 | 2012-10-19 | ||
JP2012-231508 | 2012-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061719A1 true WO2014061719A1 (en) | 2014-04-24 |
Family
ID=50488279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078139 WO2014061719A1 (en) | 2012-10-19 | 2013-10-17 | Photoelectric conversion device, built structure, and electronic instrument |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6261088B2 (en) |
WO (1) | WO2014061719A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061448A1 (en) * | 2015-10-09 | 2017-04-13 | 国立大学法人北海道大学 | Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device |
KR20190052981A (en) * | 2017-11-09 | 2019-05-17 | 엘지전자 주식회사 | Solar cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9498157B2 (en) | 2012-05-03 | 2016-11-22 | Vioptix, Inc. | Robust calibration and self-correction for tissue oximetry probe |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11281833A (en) * | 1998-03-31 | 1999-10-15 | Minolta Co Ltd | Grating coupler |
JP4022631B2 (en) * | 2004-09-09 | 2007-12-19 | 国立大学法人 北海道大学 | Solar cell and photoelectric conversion element |
JP2009139418A (en) * | 2007-12-03 | 2009-06-25 | Hikari Energy Kenkyusho:Kk | Light condensing device and light condensing method |
JP2009229581A (en) * | 2008-03-19 | 2009-10-08 | Hikari Energy Kenkyusho:Kk | Light collecting device |
WO2010126162A1 (en) * | 2009-04-28 | 2010-11-04 | 国立大学法人北海道大学 | Solar cell and photoelectric conversion element |
JP2012079749A (en) * | 2010-09-30 | 2012-04-19 | Dainippon Screen Mfg Co Ltd | Light condensing sheet for photovoltaic device and photovoltaic device |
JP2012099681A (en) * | 2010-11-04 | 2012-05-24 | Toyota Industries Corp | Light condensing structure and photovoltaics generator |
WO2012111768A1 (en) * | 2011-02-18 | 2012-08-23 | 国立大学法人北海道大学 | Solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009102671A2 (en) * | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Thin film holographic solar concentrator/collector |
-
2013
- 2013-10-17 WO PCT/JP2013/078139 patent/WO2014061719A1/en active Application Filing
- 2013-10-17 JP JP2014542164A patent/JP6261088B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11281833A (en) * | 1998-03-31 | 1999-10-15 | Minolta Co Ltd | Grating coupler |
JP4022631B2 (en) * | 2004-09-09 | 2007-12-19 | 国立大学法人 北海道大学 | Solar cell and photoelectric conversion element |
JP2009139418A (en) * | 2007-12-03 | 2009-06-25 | Hikari Energy Kenkyusho:Kk | Light condensing device and light condensing method |
JP2009229581A (en) * | 2008-03-19 | 2009-10-08 | Hikari Energy Kenkyusho:Kk | Light collecting device |
WO2010126162A1 (en) * | 2009-04-28 | 2010-11-04 | 国立大学法人北海道大学 | Solar cell and photoelectric conversion element |
JP2012079749A (en) * | 2010-09-30 | 2012-04-19 | Dainippon Screen Mfg Co Ltd | Light condensing sheet for photovoltaic device and photovoltaic device |
JP2012099681A (en) * | 2010-11-04 | 2012-05-24 | Toyota Industries Corp | Light condensing structure and photovoltaics generator |
WO2012111768A1 (en) * | 2011-02-18 | 2012-08-23 | 国立大学法人北海道大学 | Solar cell |
Non-Patent Citations (1)
Title |
---|
IKUO SUEMUNE: "Conversion of Light Propagation Direction for Highly Efficient Solar Cells", APPLIED PHYSICS EXPRESS, vol. 4, 2011, pages 102301-1 - 102301-3 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061448A1 (en) * | 2015-10-09 | 2017-04-13 | 国立大学法人北海道大学 | Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device |
KR20190052981A (en) * | 2017-11-09 | 2019-05-17 | 엘지전자 주식회사 | Solar cell |
KR102591913B1 (en) * | 2017-11-09 | 2023-10-20 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | Solar cell |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014061719A1 (en) | 2016-09-05 |
JP6261088B2 (en) | 2018-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hossain et al. | Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management | |
Chen et al. | A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror | |
Khattak et al. | Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell | |
Karimi et al. | Simulation of perovskite solar cell with P3HT hole-transporting materials | |
Jeong et al. | Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots | |
CN104106145A (en) | A vertical junction solar cell structure and method | |
Yan et al. | A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers | |
Um et al. | Flexible crystalline-silicon photovoltaics: light management with surface structures | |
Zhu et al. | Three-dimensional nanopillar arrays-based efficient and flexible perovskite solar cells with enhanced stability | |
Chen et al. | Three-dimensional radial junction solar cell based on ordered silicon nanowires | |
JP6261088B2 (en) | Photoelectric conversion device, building and electronic equipment | |
Yang et al. | Broadband quantum efficiency enhancement in high index nanowire resonators | |
Bhattarai et al. | Performance enhancement by an embedded microlens array in perovskite solar cells | |
JP6763614B2 (en) | Optical fiber, photoelectric conversion, buildings, electronic devices and light emitting devices | |
JP2015201563A (en) | Photoelectric conversion device, architectural structure and electronic apparatus | |
Kathalingam et al. | Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film | |
Banerjee et al. | Tailored interfaces of the bulk silicon nanowire/TiO2 heterojunction promoting enhanced photovoltaic performances | |
GB2451108A (en) | Photovoltaic Device | |
JP7270252B2 (en) | Optical waveguide devices, photoelectric conversion devices, buildings, electronic devices, moving bodies, and electromagnetic wave waveguide devices | |
Akhtar et al. | Photovoltaic-based nanomaterials: synthesis and characterization | |
Cansizoglu et al. | Efficient Si photovoltaic devices with integrated micro/nano holes | |
Guo et al. | High-efficiency core–shell solar cell array from Si wafer | |
Zhu et al. | High-efficiency ultra-thin GaAs solar cells based on ITO/Ag/ITO transparent electrodes and photonic crystals | |
US20110155215A1 (en) | Solar cell having a two dimensional photonic crystal | |
WO2022124283A1 (en) | Photoelectric conversion device, building, and mobile object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13847018 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014542164 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13847018 Country of ref document: EP Kind code of ref document: A1 |