WO2022124283A1 - Photoelectric conversion device, building, and mobile object - Google Patents

Photoelectric conversion device, building, and mobile object Download PDF

Info

Publication number
WO2022124283A1
WO2022124283A1 PCT/JP2021/044823 JP2021044823W WO2022124283A1 WO 2022124283 A1 WO2022124283 A1 WO 2022124283A1 JP 2021044823 W JP2021044823 W JP 2021044823W WO 2022124283 A1 WO2022124283 A1 WO 2022124283A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
photoelectric conversion
light
layer
conversion device
Prior art date
Application number
PCT/JP2021/044823
Other languages
French (fr)
Japanese (ja)
Inventor
晃 石橋
隆志 松岡
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2022124283A1 publication Critical patent/WO2022124283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to photoelectric conversion devices, buildings and moving objects, for example, windows, walls, roofs and displays of various electronic devices of various buildings such as buildings and houses, small unmanned machines moving in the air and automobiles, and the like.
  • the present invention relates to a photoelectric conversion device suitable for being installed on the outer surface of various moving bodies of the above and used as a solar cell, and a building and a moving body using this photoelectric conversion device.
  • Non-Patent Documents 1, 2 and 3 In this intermediate band type solar cell, although the effect of the existence of the intermediate band can be seen, the conversion efficiency in the region where the original band gap contributes to power generation is lowered (see Non-Patent Document 4). For this reason, effective results have not always been obtained in actual devices.
  • the level consumes the photocarriers generated in the wide-gap region and makes only a detrimental contribution, such as a mere non-luminous level.
  • the problem is to suppress recombination via a structure that causes an intermediate bandgap (for example, a quantum dot structure) (see Non-Patent Document 6).
  • Quantum dots are used as semiconductors that form intermediate bands, but they have a dot-like structure due to distortion, and the thickness of the intermediate bandgap layer must be extremely large due to constraints on growth time and crystal quality. Is not easy.
  • a waveguide-coupled photoelectric conversion device in which the light harvesting section (light receiving section) and the photoelectric conversion section are separated from each other and the two are coupled by a waveguide, and the light incident direction and the traveling direction of the photocarrier are perpendicular to each other.
  • the waveguide coupled photoelectric conversion device proposed in Patent Documents 1 and 2 is expected to enable highly efficient photovoltaic power generation, but the light traveling direction conversion for obliquely incident sunlight in the morning and evening is applied to the total incident angle. Therefore, no effective result has been obtained especially for an intermediate incident angle of 30 to 50 °.
  • the efficiency can be improved by converting the three-dimensional space propagating light (3D light) into a planar waveguide light (2D light), but the structure performs 3D-2D conversion. It was not easy to make the product at low cost.
  • the conventional intermediate band type solar cell has not been able to fully demonstrate its potential performance.
  • the problem to be solved by the present invention is that the potential of the intermediate band type solar cell capable of improving the efficiency of high photoelectric conversion can be fully exhibited, and the light receiving unit and the photoelectric conversion unit are separated from each other.
  • a photoelectric conversion device capable of realizing the high photoelectric conversion efficiency inherent in the waveguide coupled photoelectric conversion device and efficiently converting light from a light source having a wide spectrum into electric power, and a building having this photoelectric conversion device. And to provide a moving body.
  • the present invention Light receiving part and A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit, A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
  • the photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
  • This is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  • the intermediate band of the intermediate band type solar cell is formed of, for example, a semiconductor having a single or multiple quantum well structure, a semiconductor having a quantum dot structure, or the like.
  • the host semiconductor of the intermediate band type solar cell is a GaN-based semiconductor
  • a GaInN-based semiconductor is preferably used as the semiconductor forming such an intermediate band.
  • the light receiving portion has a light traveling direction conversion layer that converts the traveling direction of the light incident on the light receiving portion into a direction substantially perpendicular to the light receiving portion.
  • the light traveling direction changing layer is preferably a transparent base material having a first refractive index and a transparent base material having a first refractive index provided in a two-dimensional array on one main surface of the transparent base material. It has a plurality of rotating release object-like portions made of a material, and a surface made of a hemisphere provided so as to cover each rotating release object-like portion, and has a second refractive index smaller than the first refractive index. It has a hemispherical portion, and the focal point of the rotating object-shaped portion and the center of the hemispherical portion coincide with each other.
  • the above-mentioned waveguide is configured so that the direction of the light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  • the above-mentioned waveguide is provided between a two-dimensional waveguide having continuous parallel anisotropy with respect to the waveguide direction and the above-mentioned optical traveling direction conversion layer.
  • This waveguide structure contains, for example, a plurality of liquid crystal layers having different coordinating directions (directions of directors) from each other in at least a part thereof, or a plurality of isotropic structures separated by non-parallel interfaces. It includes, but is not limited to, at least a portion of the medium.
  • the overall shape of the waveguide is not particularly limited, and may be a planar shape or a curved surface shape, for example, a cylindrical shape, a semicircular spherical shape (dome shape), a corrugated plate shape, or the like.
  • the two-dimensional waveguide in a semicircular shape, it is possible to install the photoelectric conversion device on the top of the semicircular spherical shape of a cylinder, for example.
  • a two-dimensional waveguide may be formed in the shape of a corrugated sheet, and a photoelectric conversion device may be installed on the outer wall of the building.
  • a high-reflectance white paint is applied to the inner surface (the surface facing the installation surface of the photoelectric conversion device) to form a white high-reflectance layer.
  • the light receiving portion and the waveguide can be configured as follows, for example (see Patent Document 2). That is, the light receiving part and the waveguide are A waveguide core layer with continuous translational symmetry with respect to the waveguide direction, The waveguide core layer is discontinuously covered, and has a clad layer having discrete translational symmetry with respect to the waveguide direction. The clad layer is separated from the waveguide core layer at the end of the breaking portion that does not cover the waveguide core layer, on the side opposite to the waveguide direction of the waveguide core layer with respect to the cutting portion, and away from the waveguide core layer.
  • the waveguide core layer has a structure that is asymmetric with respect to the waveguide direction and the opposite direction of the light inside the waveguide core layer.
  • the waveguide core layer has continuous translational symmetry with respect to the waveguide direction, and the clad layer has discrete translational symmetry with respect to the waveguide direction.
  • a plurality of cutout portions of the clad layer are provided at equal intervals in the waveguide direction of the waveguide core layer, and a light introduction core layer is provided in each cutoff portion.
  • the spacing between the breaks is chosen as needed.
  • the light-introduced core layer and the clad layer covering the light-introduced core layer are a waveguide core in which the light introduced into the light-introduced core layer is repeatedly totally reflected at the interface between the light-introduced core layer and the clad layer. Provided to reach the layer.
  • the shape of the cross section of the clad layer extending from the end of the break that is perpendicular to the plane of the waveguide core layer and parallel to the waveguide direction of the waveguide core layer leads to the waveguide of the waveguide core layer. It has a concavely curved shape in the wave direction (more accurately, a part of the concavely curved shape in the waveguide direction of the waveguide core layer).
  • This shape is, for example, a combination curve containing at least a part of an arc or an ellipse, or a part of an ellipse (vertical ellipse) whose major axis is perpendicular to the waveguide direction of the waveguide core layer, and the major axis is derived.
  • this shape consists of an ellipse (horizontally oblong ellipse) parallel to the waveguide direction of the wave core layer or a combination curve with a part of an arc.
  • this shape can be, for example, the shape of a quarter circle arc, the shape of a quarter arc divided by the major and minor axes of an ellipse, or a curve created by combining these.
  • this shape may be as follows. That is, this shape is the first one consisting of a quarter divided by the major axis and the minor axis of an ellipse (longitudinal ellipse) whose major axis is perpendicular to the waveguide direction of the waveguide core layer on the light incident surface side.
  • the arc and the major axis from a quarter divided by the major axis and the minor axis of an ellipse (horizontally oblong ellipse) whose major axis is parallel to the waveguide direction of the waveguide core layer connected to this first arc. It may be composed of a second arc obtained by cutting a portion having a predetermined length from the intersection, and may be concavely curved in the waveguide direction of the waveguide core layer as a whole. Alternatively, this second arc may be a part cut from a quarter of a circle having a large radius in the same manner as the above ellipse.
  • the semimajor axis of the vertically elongated ellipse (1/2 of the length of the major axis) is about 6 to 100 ⁇ m
  • the semimajor axis of the horizontally elongated ellipse is about 100 ⁇ m to 3 mm, or a quarter of the above radius.
  • the radius of one circle is about 300 ⁇ m to 10 mm.
  • a relatively thick clad layer is periodically included in the repeating structure of the light-introduced core layer and the clad layer.
  • the period in which this relatively thick clad layer appears and the width (thickness in the cross section) of this relatively thick clad layer and the relatively thin clad layer are incident into the light introduction core layer while minimizing the loss as a whole. It is appropriately selected so that light can be propagated and guided to the waveguide core layer.
  • the light receiving portion and the waveguide can be configured as follows, for example. That is, the light receiving part and the waveguide are A flat-plate reflector array in which a plurality of reflectors are periodically arranged in one direction via a transparent layer, one main surface constitutes a light incident surface and the other main surface constitutes a light emitting surface. The incident light is guided in one direction by being provided on the other main surface of the reflector array and incident on the one main surface of the reflector array from the outside and reflected by the reflector. Asymmetric planar optical waveguides configured as Have. Then, the above-mentioned light traveling direction changing layer is provided on the light incident surface of the reflecting mirror array.
  • the reflector array for example, the one described in Patent Document 1 can be used.
  • the cross-sectional shape and arrangement of the reflectors in the reflector array is that the light whose traveling direction is changed in the direction perpendicular to the light traveling direction conversion layer directly hits the asymmetric planar optical waveguide through the light traveling direction conversion layer. It is set so that the light reflected by one reflector is not incident on the adjacent reflector and scattered.
  • the asymmetrical optical waveguide typically has a wedge-shaped (or tapered) shape in which the cross-sectional area gradually increases toward the end face on the light emitting side.
  • the light incident inside from the light incident surface of the asymmetrical planar optical waveguide is alternately reflected by the two main surfaces of the asymmetrical planar optical waveguide to have a cross-sectional area. It is waveguide in a larger direction and finally incident on a photoelectric conversion unit (power generation unit) provided at the end on the light emitting side of the asymmetric planar optical waveguide.
  • the asymmetric plane optical waveguide may be a planar optical waveguide or a curved optical waveguide.
  • the planar shape of the asymmetrical optical waveguide is selected as needed, but typically has a rectangular shape, for example, a rectangular shape or a square shape.
  • the end face of the asymmetric plane optical waveguide excluding the light emitting end face for example, the asymmetric plane optical waveguide has a quadrangular shape, and at least one of a pair of sides facing each other thereof.
  • the end face of the asymmetric planar optical waveguide corresponding to the side is the light emitting end face, it corresponds to at least one side of the pair of sides different from the above-mentioned pair of opposite sides of this quadrangle.
  • a light reflection mechanism is provided at the end of the asymmetric planar optical waveguide.
  • a light reflection mechanism for example, a light reflection film provided on the side surface of the asymmetric surface optical waveguide or the side surface of the asymmetric surface optical waveguide is configured as a mirror surface.
  • the semiconductor layer constituting the intermediate band type solar cell is made of an inorganic semiconductor or an organic semiconductor, and is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer, and the pn junction surface thereof is a waveguide. It is substantially parallel to the direction of the light emitted from the end of the light emitting side, and has an intermediate band forming layer between the p-type semiconductor layer and the n-type semiconductor layer.
  • the thickness of the semiconductor layer is appropriately selected in consideration of the function of the diffusion length of the carriers in the semiconductor layer, but is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • the semiconductor constituting the semiconductor layer may be in any form of amorphous (amorphous), polycrystal, or single crystal.
  • the inorganic semiconductor examples include II-VI group compound semiconductors such as CdSe, PbS, PbSe, and PbTe, III-V compound semiconductors such as GaSb, InAs, InN, AlInN, GaInN, GaN, AlGaN, GaAsN, and GaPN, and Si and SiGe.
  • Group IV semiconductors such as Si x Gey Sn 1-xy O , SiN x , SiO x , CIS (CuInSe), CIGS (CuInGaSe), CuInGaSeTe and the like can be used.
  • These semiconductors are characterized in that the bandgap can be controlled by, for example, controlling the composition ratio of Group III elements such as In and Ga and mixing sulfur (S).
  • the semiconductor layer can also be composed of fine particles made of these inorganic semiconductors.
  • polyacetylene such as pentacene, polyacetylene (preferably disubstituted polyacetylene), and poly (p.) -Phenylene vinylene), poly (2,5-thienylene vinylene), polypyrrole, poly (3-methylthiophene), polyaniline, poly (9,9-dialkylfluorene) (PDAF), poly (9,9-dioctylfluorene- co-Bithiophene) (F8T2), Poly (1-hexyl-2-phenylacetylene) (PH X PA) (light emitting material is blue), Poly (diphenylacetylene) derivative (PDPA-nBu) (Light emitting material) Poly (pyridine) (PPy), poly (pyridylbinylene) (PPyV), cyano-substituted poly (p-phenylene vinylene) (CNPPV),
  • polyacetylene such as pentacene, polyacetylene (
  • alkali metals Li, Na, K, Cs
  • halogens Br 2 , I 2 , CI 2
  • Lewis acids BF 3 , PF 5 , AsF 5 , SbF 5 , SO 3
  • transition metal halides FeCl 3 , MoCl 5 , WCl 5 , SnCl 4 ).
  • TCNE and TCNQ can be used as the organic acceptor molecule
  • the dopant ions used for electrochemical doping are tetraethylammonium ion (TEA + ), tetrabutylammonium ion (TBA + ), and Li + as cations.
  • TEA + tetraethylammonium ion
  • TAA + tetrabutylammonium ion
  • Li + as cations Na + , K + , ClO 4- , BF 4- , PF 6- , AsF 6- , SbF 6- , etc.
  • a polymer electrolyte can be used as the organic semiconductor.
  • this polymer electrolyte examples include polycations such as sulphonate polyaniline, poly (thiophene-3-acetic acid), sulphonate polystyrene, and poly (3-thiophene alkanthulfonate).
  • examples include polyallylamine, poly (p-phenylene-vinylene) precursor polymer, poly (p-methylpyridinium vinylene), and protonated poly (p-pyridylbinile).
  • Poloton (2-N-methylpyridinium acetylene) and the like can be used.
  • the organic semiconductor layer can have a heterojunction type or a bulk heterojunction type structure.
  • the p-type organic semiconductor film and the n-type organic semiconductor film are bonded so as to be in contact with the first electrode and the second electrode.
  • the organic semiconductor layer having a bulk heterojunction structure is composed of a mixture of a p-type organic semiconductor molecule and an n-type organic semiconductor molecule, and has a microstructure in which the p-type organic semiconductor and the n-type organic semiconductor are intertwined with each other and are in contact with each other.
  • an organic-inorganic hybrid semiconductor can be used in addition to the inorganic semiconductor and the organic semiconductor.
  • an organic-inorganic hybrid semiconductor for example, a perovskite-based semiconductor can be used.
  • This photoelectric conversion device can be basically installed in anything, but for example, it is installed in a building, an electronic device, a mobile body, or the like.
  • the building may be basically any building as long as it can be installed with a photoelectric conversion device, but specifically, for example, a building, a condominium, a detached house, or the like. Examples include condominiums, station buildings, school buildings, government buildings, stadiums, stadiums, hospitals, churches, factories, warehouses, huts, bridges, columns (telegraph columns, etc.), towers (advertising towers, etc.).
  • the location where the photoelectric conversion device is installed in these buildings is not particularly limited, and is selected as necessary. Examples of installation locations are glass windows and daylighting sections of these buildings.
  • the photoelectric conversion device is, for example, a solar cell used as a power source for electric appliances installed in these buildings and the inside thereof.
  • the semiconductor layer is arranged in a shadow portion of the building so that the light does not directly enter the semiconductor layer when the light is incident on the main surface of the planar optical waveguide.
  • the planar optical waveguide includes a portion having a gentle curvature, and this portion is arranged, for example, under a roof tile, under a central protruding ridge of a roof, a window frame, or a crosspiece.
  • the electronic device may be basically any kind, and includes both a portable device and a stationary device. Specific examples include mobile phones, mobile devices, robots, and the like.
  • the photoelectric conversion device is, for example, a solar cell used as a power source for these electronic devices.
  • the moving object may be basically any, but for example, a small unmanned aerial vehicle, an unmanned aerial vehicle, an aircraft, an artificial satellite, an unmanned ship, a ship, an underwater moving object, a rover, or an unmanned vehicle. , Cars, etc.
  • Small unmanned or unmanned aerial vehicles include, for example, drones, radio-controlled aircraft, pesticide spraying helicopters, and the like.
  • this invention has at least one photoelectric conversion device and has The above photoelectric conversion device Light receiving part and A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit, A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
  • the photoelectric conversion unit is provided at the end of the waveguide on the light emitting side. It is a building which is a photoelectric conversion device configured so that the direction of the light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  • this invention has at least one photoelectric conversion device and has The above photoelectric conversion device Light receiving part and A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit, A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
  • the photoelectric conversion unit is provided at the end of the waveguide on the light emitting side. It is a moving body that is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  • the entire light receiving unit separated from the photoelectric conversion unit can receive light, the amount of light received can be maximized, and the three-dimensional propagating light thus received can be transmitted in the asymmetric waveguide. Due to the asymmetry of this asymmetric waveguide, it is possible to irreversibly convert it into two-dimensional waveguide light by waveguideing it toward the photoelectric conversion unit (only when going from three-dimensional propagating light to two-dimensional waveguide light).
  • the waveguide light finally emitted from the end of the waveguide can be incidentally incident on the side surface of the semiconductor layer of the intermediate band type solar cell for photoelectric conversion.
  • the intermediate band type solar cell can widen the absorption wavelength band by having an intermediate band in the band gap of the host semiconductor, so that light from a light source having a wide spectrum such as a solar spectrum is extremely efficient. Can be converted into electrical energy. Then, by applying this photoelectric conversion device to a building such as a house, an energy-saving building can be realized, and by applying it to a moving body such as an automobile, an energy-saving moving body can be realized.
  • FIG. 3 is a schematic diagram showing a band gap with respect to a position from the center of the substrate when the inclined composition GaInN layer is grown on the sapphire substrate in order to form the intermediate band shown in FIG.
  • It is sectional drawing which shows the optical traveling direction conversion layer used in the photoelectric conversion apparatus by 1st Embodiment of this invention.
  • It is a top view which shows an example of the planar shape of the light traveling direction conversion layer used in the photoelectric conversion apparatus according to 1st Embodiment of this invention.
  • It is a top view which shows the other example of the plane shape of the light traveling direction conversion layer used in the photoelectric conversion apparatus by 1st Embodiment of this invention.
  • FIGS. 11 and 12 It is a schematic diagram which shows the result of the computer simulation of the light field performed on the light traveling direction conversion layer shown in FIGS. 11 and 12. It is a schematic diagram which shows the result of the computer simulation of the light field performed on the light traveling direction conversion layer shown in FIGS. 11 and 12. It is sectional drawing which shows the photoelectric conversion apparatus by the 2nd Embodiment of this invention. It is sectional drawing which shows the optical waveguide part of the photoelectric conversion apparatus by 2nd Embodiment of this invention. It is sectional drawing which enlarges and shows a part of the optical waveguide part of the photoelectric conversion apparatus by 2nd Embodiment of this invention.
  • FIG. 3 is a cross-sectional view of a cylinder in which a photoelectric conversion device is installed according to an eighth embodiment of the present invention. It is a partially enlarged cross-sectional view which shows the detail of the light introduction part of the photoelectric conversion device installation cylinder shown in FIG. 35.
  • FIG. 3 is a partially enlarged cross-sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof.
  • FIG. 3 is a partially enlarged side view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof.
  • FIG. 3 is a partially enlarged vertical sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof. It is a schematic diagram which shows the result (light field) of the simulation of the region shown by the alternate long and short dash line of FIG. 35 of the photoelectric conversion device of a cylindrical photoelectric conversion device installed according to the eighth embodiment of the present invention.
  • FIG. 9 is a partially enlarged cross-sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof.
  • FIG. 9 is a partially enlarged side view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof.
  • FIG. 9 is a partially enlarged vertical sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof. It is a front view which shows the photoelectric conversion device installation cylinder by the tenth embodiment of this invention.
  • FIG. 9 is a partially enlarged cross-sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof.
  • FIG. 5 is an enlarged vertical sectional view of a photoelectric conversion device installed on the top of a column for installing a photoelectric conversion device according to a tenth embodiment of the present invention. It is a perspective view which shows the building which installed the photoelectric conversion device by 11th Embodiment of this invention.
  • FIG. 3 is an enlarged cross-sectional view showing details of a photoelectric conversion device installed on an outer wall of a building in which a photoelectric conversion device is installed according to the eleventh embodiment of the present invention. It is a partial cross-sectional view of the photoelectric conversion device installation cylinder according to the twelfth embodiment of this invention.
  • FIG. 1 It is a schematic diagram which shows the result (optical field) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion device of the photoelectric conversion device installation column according to the twelfth embodiment of the present invention.
  • Photoelectric conversion device installation according to the twelfth embodiment of the present invention A state when the side surface of a cylindrical sample prepared for verifying the waveguide performance of the optical waveguide of a cylindrical photoelectric conversion device is irradiated with green light is shown. It is a drawing substitute photograph shown.
  • the columnar sample prepared for verifying the waveguide performance of the optical waveguide of the photoelectric conversion device installed in the photoelectric conversion device according to the twelfth embodiment of the present invention is curved and the side surface is irradiated with green light. It is a drawing substitute photograph showing the state of.
  • FIGS. 1 and 2 show a photoelectric conversion device according to the first embodiment, FIG. 1 is a cross-sectional view, and FIG. 2 is a plan view seen from the light incident surface side.
  • this photoelectric conversion device includes an optical waveguide section 10, an intermediate band type solar cell 20 constituting the photoelectric conversion section, and light provided on the light incident surface 10a of the optical waveguide section 10. It has a traveling direction changing layer 30 (not shown in FIG. 2).
  • the optical waveguide 10 and the intermediate band solar cell 20 are provided on the substrate 40.
  • the substrate 40 can be omitted if necessary.
  • the planar shape of the photoelectric conversion device is not particularly limited and is selected as needed, but FIG. 2 shows a case where the planar shape of the photoelectric conversion device has a rectangular shape as a typical example.
  • FIG. 3 The details of the optical waveguide 10 are shown in FIG. 3 (see Patent Document 2).
  • the upper and lower sides of the flat plate-shaped waveguide core layer 13 are sandwiched between the clad layer 11 and a plurality of clad layers 12 periodically arranged at intervals ⁇ in the waveguide direction.
  • the side surface of the semiconductor layer 21 of the intermediate band type solar cell 20 is bonded to the light emitting end surface 13a of the waveguide core layer 13.
  • the clad layer 11 continuously covers one main surface (upper surface) of the waveguide core layer 13, and the clad layer 12 discontinuously covers the other main surface (lower surface) of the waveguide core layer 13.
  • the clad layer 11 and the clad layer 12 together form a clad layer that discontinuously covers the waveguide core layer 13. That is, this clad layer has the end portion of the disconnection portion (for example, indicated by E in FIG. 3) that does not cover the waveguide core layer 13 and the waveguide direction of the waveguide core layer 13 with respect to the disconnection portion.
  • the waveguide core layer 13 extends in the direction opposite to the waveguide and away from the waveguide core layer 13 (for example, indicated by P in FIG. 3) and toward the waveguide direction of the waveguide core layer 13. A part of the structure is provided so that the tangent line at the end of the break portion is parallel to or substantially parallel to the waveguide core layer 13, as will be described later.
  • Both side surfaces of the waveguide core layer 13 may be covered with an extension portion of the clad layer 11 or may be configured with a reflective surface.
  • the details of the coupling portion between the clad layer 12 and the waveguide core layer 13 are shown in FIG. 4, and the details of the coupling portion over a wider area are shown in FIG.
  • the clad layer 12 is represented by clad layers 12-a, 12-b, 12-c, and 12-d.
  • a light introduction core layer 14 is provided between each clad layer 12 and the adjacent clad layer 12.
  • the light-introduced core layer 14 is represented by the light-introduced core layers 14-a, 14-b, 14-c, and 14-d.
  • the clad layer 12 and the light introduction core layer 14 extend in the vertical direction (depth direction) of FIG.
  • the clad layer 12 has a shape that is concavely curved in the waveguide direction of the waveguide core layer 13, and the shape is selected as necessary.
  • the clad layer 12 has a quarter circle as an example. The case with a shape is shown.
  • the tangent at the end of the clad layer 12 on the side of the waveguide core layer 13 coincides with the surface of the waveguide core layer 13, and thus coincides with the waveguide direction in the waveguide core layer 13. In other words, the end of the clad layer 12 on the waveguide core layer 13 side is tangentially connected to the waveguide core layer 13.
  • the refractive index of the clad layers 11 and 12 and the waveguide core layer 13 is clad with respect to the refractive index of the waveguide core layer 13 so that light can be confined in the waveguide core layer 11 by the clad layers 11 and 12.
  • the refractive indexes of the layers 11 and 12 are selected to be small.
  • the refractive index of the clad layer 12 and the light-introduced core layer 14 is such that the light can be confined in the light-introduced core layer 14 by the clad layer 12 with respect to the refractive index of the light-introduced core layer 14.
  • the refractive index of light is selected to be small.
  • the refractive index of the waveguide core layer 13 and the refractive index of the light introduction core layer 14 are preferably and equally selected, but are not limited thereto.
  • the planar shape of the optical waveguide 10 is not particularly limited and is selected as needed, but is, for example, a rectangle or a square, and FIG. 2 shows the case of a rectangle.
  • the clad layer 12 having the cross-sectional shape of the above-mentioned quarter circle has a light incident surface 10a (bottom surface of the optical waveguide portion 10) and has a vertical tangent line thereof.
  • the clad layer 12 breaks, where it has a horizontal tangent. Since the clad layer 12 is periodically arranged laterally with an interval ⁇ , the waveguide core layer 13 (the portion having a large refractive index) is formed at the upper end of the quarter circle, as shown in FIG. It is characterized by having a geometrically open structure without being completely closed by the clad layer 12. As a result, when the x-axis is taken in the waveguide direction as shown in FIG.
  • the clad layer 12 is taken.
  • There are four clad layers 12 (as a cross-sectional shape), that is, clad layers 12-a, 12-b, 12-c, and 12-d. That is, in the region (x ⁇ x i ) after the point where the clad layer 12-a shown in FIG.
  • the waveguide core is from the outside world other than the starting point (in FIG. 5, from the lower left side through the light introduction core layer 14a).
  • Light can penetrate the layer 13.
  • the light introduction core layer 14-b (tributary) joins the waveguide core layer 13 (main stream) (in FIG. 5, for the sake of simplicity, the optical introduction core layer and the optical introduction core layer existing below the optical introduction core layer 14-c).
  • the clad layer between the light-introduced core layer and the light-introduced core layer 14-c is not shown).
  • the tangents (indicated by the broken line in the figure) at the right end (discontinuity) of the clad layers 12-a, 12-b, and 12-c are parallel or substantially parallel to the waveguide light traveling direction. It has become. That is, a tangential connection is formed to the waveguide core layer 13 at the end of the clad layers 12-a, 12-b, and 12-c.
  • the waveguide core layer 13 is provided with continuous translational symmetry along the traveling method as shown by the thick arrow in FIG. 5, and the clad layer 12 is provided with discrete translational symmetry having a period ⁇ .
  • the waveguide core layer 13 has a quasi-open structure.
  • Another clad layer 12-b under one layer approaching the waveguide core layer 13 covers the disconnection of the closest clad layer and becomes the closest clad layer by itself, so that the inside of the waveguide core layer 13 is formed. Light is efficiently guided to the right in FIG. 3 without causing loss.
  • each clad layer 12 is geometrically at the upper end portion thereof (the tangent line thereof is parallel (horizontal) or substantially parallel to the waveguide core layer 13 as shown by a broken line in FIG. 5). Parallel or substantially parallel to the upper cladding layer 11. Since the waveguide direction is parallel to the cladding layer 11 (because it is of course horizontal), the cladding layer 12 is along the waveguide direction at its rearmost end with respect to the waveguide core layer 13 as described above. , Has a structure that merges with the tangential.
  • the above-mentioned "parallel or nearly parallel” is defined as being parallel to the extent that total reflection can occur by the above process. Due to this parallelism, the light in the waveguide core layer 13 is not dissipated as described above, and is guided almost 100% efficiently.
  • the material of the waveguide core layer 13 may be, for example, an inorganic substance having a refractive index of 1.42 or more and 2.0 or less, an inorganic glass, or a refractive index of 1, depending on the materials of the clad layers 11 and 12 (including air itself). Examples thereof include, but are not limited to, a resin having a high refractive index of .55 or more.
  • Examples of the material of the light introduction core layer 14 include, but are limited to, an inorganic substance having a refractive index of 1.48 or more and 2.0 or less, inorganic glass, or a high refractive index resin having a refractive index of 1.55 or more.
  • examples of the clad layers 11 and 12 include resins having a low refractive index such as 1.34, for example, CYTOP (in addition, an air layer or the like can also be used).
  • the refractive index of the waveguide core layer 13 and the light introduction core layer 14 is 2.0.
  • the refractive index of the clad layers 11 and 12 is 1.35.
  • the refractive index of the waveguide core layer 13 and the optical introduction core layer 14 By setting the refractive index of the waveguide core layer 13 and the optical introduction core layer 14 to, for example, around 1.6, an inexpensive material can be used, so that the area of the optical waveguide can be easily increased, so that the optical waveguide can be used. When it is necessary to increase the area, it is conceivable to set the refractive index of the waveguide core layer 13 and the light introduction core layer 14 to around 1.6 and the refractive index of the clad layers 11 and 12 to 1.35.
  • This photoelectric conversion device can be used, for example, by laminating it on a building window material with the clad layer 11 of the optical waveguide portion 10 facing down. In this case, photovoltaic power generation can be easily realized in the building window material.
  • the thickness of the clad layers 11 and 12 is, for example, 1 ⁇ m or more and several ⁇ m or less (for example, 2 ⁇ m or less), but is not limited thereto.
  • the thickness of the waveguide core layer 13 is preferably 2 ⁇ m or more and 300 ⁇ m or less, or 2 ⁇ m or more and 300 ⁇ m or less, but the clad layer 11 is used as a coating layer (or the air layer itself) and the glass window material itself is used as a waveguide core layer. It is also possible to set it to 13. Evaluating the area S of the portion having a large refractive index in the entire waveguide structure shown in FIG.
  • each part of the optical waveguide 10 is selected as needed.
  • the width in the x-axis direction of FIG. 3 is 5 cm or more and 100 cm or less
  • the thickness in the z-axis direction is 1 mm or more and 6 mm or less
  • the depth (y-axis) is 3 cm or more and 50 cm or less
  • the curved shape of the clad layer 12 is a quarter circle with a radius of 6 mm.
  • the semiconductor layer 21 constituting the intermediate band type solar cell 20 is parallel to the extending direction of the waveguide core layer 13.
  • the surface of the semiconductor layer 21 facing the light emitting end surface 13a of the waveguide core layer 13 has a low surface reflectance in order to prevent reflection of the two-dimensional propagating light emitted from the light emitting end surface 13a.
  • a functional structure, such as a moth-eye structure, is provided. By using a structure having such a surface low reflectance function, it is possible to make the reflectance of the side surface of the semiconductor layer 21 extremely small (for example, 1 to 3%).
  • the semiconductor layer 21 has a pn junction, and the pn junction surface thereof is parallel to the main surface of the waveguide core layer 13.
  • the semiconductor layer 21 generally has an elongated rectangular planar shape.
  • the first electrode 22 and the second electrode 23 are provided on a pair of surfaces (upper surface and lower surface) facing each other above and below the semiconductor layer 21 (with the light incident side facing up), respectively, and ohmic contact is made with the semiconductor layer 21, respectively. is doing.
  • One of these first electrode 22 and the second electrode 23 is used as an anode electrode, and the other is used as a cathode electrode.
  • the first electrode 22 is used as an anode electrode
  • the second electrode 23 is used as a cathode electrode.
  • the semiconductor layer 21 has a structure in which an intermediate band is formed in the band gap of the host semiconductor.
  • FIG. 6 shows an enlarged joint portion between the optical waveguide portion 10 and the semiconductor layer 21.
  • the semiconductor layer 21 has a structure in which an intermediate band forming layer 213 is provided between the semiconductor layer 211 forming the pn junction and the semiconductor layer 212.
  • the semiconductor layer 211 is p-type and the semiconductor layer 212 is n-type.
  • the intermediate band forming layer 213 is selected as needed, and is composed of, for example, a semiconductor layer having a single or single or multiple quantum well structure, a semiconductor layer having a quantum dot structure, and the like.
  • the spread width of the intermediate band forming layer 213 along the light traveling direction is set to be at least three times or more the reciprocal of the light absorption coefficient ⁇ of the semiconductor constituting the intermediate band forming layer 213. By doing so, it is possible to maximize the light absorption by the intermediate band forming layer 213.
  • incident light three-dimensional space propagating light
  • incident light incident from the outside on the light traveling direction conversion layer 30 provided on the light incident surface of the optical waveguide section 10 is guided through the light introduction core layer 14.
  • incident light incident from the outside on the light traveling direction conversion layer 30 provided on the light incident surface of the optical waveguide section 10 is guided through the light introduction core layer 14.
  • the light introduction core layer 14 After entering the inside of the wave core layer 13 and being waveguideed as two-dimensional space propagating light, it is emitted from the light emitting end surface 13a of the waveguide core layer 13 and is incident on the entire side surface of the semiconductor layer 21 of the intermediate band type solar cell 20. It is configured to do. Since the two-dimensional space propagating light emitted from the light emitting end surface 13a of the waveguide core layer 13 is incident on the entire side surface of the semiconductor layer 21, the photocarrier is photo-excited through the band gap of the host semiconductor of the semiconductor layer 21.
  • the angle ⁇ formed with the net traveling direction (moving direction) (direction connecting the first electrode 22 and the second electrode 23 at the shortest distance) is approximately a right angle.
  • the area (area of the light receiving portion) S of the light incident surface of the optical waveguide portion 10 is such that the length of the light incident surface is L and the width is W (see FIG. 2).
  • this photoelectric conversion device preferably, when light is incident from the outside, the light is not directly incident on the semiconductor layer 21.
  • the light when light is incident on the photoelectric conversion device, the light is incident on the light traveling direction conversion layer 30 provided on the light incident surface of the optical waveguide section 10, but the light is directly incident on the surface of the semiconductor layer 21. Try not to.
  • a light-shielding layer is provided above the semiconductor layer 21 so as to cover the first electrode 22.
  • a conventionally known light-shielding layer can be used and is selected as needed.
  • an aluminum laminated film having a plastic film formed on both sides of an aluminum foil is used.
  • this light-shielding layer it is possible to prevent light from directly incident on the semiconductor layer 21.
  • the substrate 40 constitutes a part of the outer surface of a building or an electronic device
  • sunlight is incident on the light traveling direction conversion layer 30, but sunlight is not incident on the semiconductor layer 21.
  • the semiconductor layer 21 is covered with a member or the like so as to be in the shadow.
  • this photoelectric conversion device is installed in a window of a building, the window glass becomes a substrate 40, and an optical traveling direction conversion layer 30 and an optical waveguide portion 10 are provided on the window glass exposed to the outside, and a semiconductor layer is provided. 21 is hidden inside a window frame made of Al, for example.
  • this photoelectric conversion device when this photoelectric conversion device is laid on the roof of a building, the ends of adjacent photoelectric conversion devices are overlapped vertically, and the semiconductor layer 21 at the end of the upper photoelectric conversion device is used to make the lower photoelectric conversion device. The semiconductor layer 21 at the end of the is covered.
  • the photoelectric conversion device when the photoelectric conversion device is installed in the display unit of an electronic device, for example, a smartphone, the transparent member on the surface of the display unit becomes the substrate 40, and the light traveling direction conversion layer 30 and the light traveling direction conversion layer 30 are placed on the transparent member exposed to the outside.
  • An optical waveguide 10 is provided, and the semiconductor layer 21 is hidden inside a member provided on the surface of the display.
  • the semiconductor layer 21 is selected as needed from, for example, those already listed.
  • the semiconductor layer 21 is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer, and has a structure forming an intermediate band, for example, a quantum dot layer.
  • the first electrode 22 and the second electrode 23 are in ohmic contact with the semiconductor layer 21.
  • the length of one side of the semiconductor layer 21 is typically chosen to be the same as the length of the side of the waveguide core layer 13 on which the semiconductor layer 21 is provided, but the length of the side perpendicular to this side is typical. It is 0.5 ⁇ m to 5 mm, preferably 2 ⁇ m to 1 mm.
  • the thickness of the semiconductor layer 21 is generally as small as several tens of ⁇ m or less, the volume of the semiconductor layer 21 is also extremely small. That is, the amount of the semiconductor layer 21 used can be extremely small. Therefore, it is possible to reduce the manufacturing cost of the photoelectric conversion device.
  • the band gap or HOMO-LUMO gap Eg of the host semiconductor or the intermediate band of the semiconductor layer 21 may be uniform along the traveling direction of the photoelectric conversion light, that is, the light waveguideed in the semiconductor layer 21, but is further photoelectric.
  • a measure is taken to reduce the light discretely and stepwise in N steps (N ⁇ 2) along the traveling direction of the light in the semiconductor layer 21, or to reduce the light continuously (continuously).
  • the host semiconductor of the semiconductor layer 21 is composed of the same semiconductor, and E g in the intermediate band is gradually reduced in N steps (N ⁇ 2) in the traveling direction of light in the semiconductor layer 21, or continuously.
  • E g of the host semiconductor and the intermediate band of the semiconductor layer 21 is gradually reduced in N steps (N ⁇ 2) in the traveling direction of light in the semiconductor layer 21, or is continuously reduced.
  • the intermediate band forming layer 213 of the semiconductor layer 21 forms an intermediate band in each band gap.
  • the semiconductor layer 21 includes regions 21a, 21b, 21c, and 21d in which E g is composed of host semiconductors of E g1 , E g2 , E g3 , and E g4 , respectively.
  • Each region 21a, 21b, 21c, 21d has an elongated striped shape extending in a direction parallel to the side of the waveguide core layer 13 provided with the semiconductor layer 21.
  • the width of each E gi region constituting the semiconductor layer 21 (the width in the traveling direction of light, the length in the lateral direction in FIG. 7) is the photoelectric conversion target photon of each E gi region (band gap E of each E gi region). If the absorption coefficient of this E gi region for the photon with the lowest energy among the photons having energy of gi or more is ⁇ i , it is 1 / ⁇ i or more.
  • E gi can be set as follows. For example, in the entire wavelength range of the AM1.5 solar spectrum or its main wavelength range (the range including the portion having high incident energy), the wavelength is divided into N sections. Then, these sections are numbered in order from the short wavelength side (high energy side) such as 1, 2, ..., N, and E gi is selected equal to the minimum photon energy of the i-th section. By doing so, when a photon having photon energy in the kth section is incident on the Egi region, an electron-hole pair is generated and photoelectric conversion is performed.
  • the E gi is obtained from the junction surface between the waveguide core layer 13 and the semiconductor layer 21 so that the photons having the photon energy in the kth section reach each E gi region and are sufficiently absorbed. Choose the distance to the area.
  • the sunlight that is waveguideed inside the waveguide core layer 13 and enters the semiconductor layer 21 first enters the E g1 region, and the photon energy of E g1 or higher in the spectrum is absorbed, and further.
  • those with smaller photon energies are also absorbed and photoelectrically converted, and then incident on the E g2 region, and the photon energy of E g2 or more and smaller than E g1 in the spectrum is absorbed.
  • those with smaller photon energies are also absorbed and photoelectrically converted by excitation via the intermediate band, and finally enter the E gN region, and the photon energy of the spectrum is E gN or more and smaller than E gN-1 .
  • Is absorbed, and even smaller photon energies are absorbed and photoelectrically converted by excitation via the intermediate band.
  • light in almost the entire range of the solar spectrum or in the main wavelength range can be used for photoelectric conversion.
  • Each E gi can be set by changing the composition of the host semiconductor constituting each E gi region, the form of the semiconductor (amorphous, polycrystal, single crystal), the intermediate band forming layer 213, or the like.
  • the host semiconductor constituting each Egi region is configured by another type of semiconductor.
  • the semiconductor has a wide range of choices because a semiconductor having a high carrier mobility ⁇ can be selected regardless of the magnitude of the absorption coefficient ⁇ .
  • the E g3 region. Is composed of Ge (E g 0.76 eV).
  • N 4
  • N 3
  • N 5 for example, the E g1 region is CdSe fine particles having a diameter of about 1.9 nm (absorption peak wavelength 445 nm), and the E g2 region is CdSe fine particles having a diameter of about 4.0 nm (absorption peak wavelength 585 nm).
  • the E g3 region is PbSe fine particles with a diameter of about 2 nm (absorption peak wavelength 800 nm), the E g4 region is PbSe fine particles with a diameter of about 4.5 nm (absorption peak wavelength 1100 nm), and the E g5 region is PbSe fine particles with a diameter of about 90 nm (absorption peak wavelength). 2300 nm).
  • the E gi region may be constructed using a II-VI group compound semiconductor, which is known to exhibit large bowing when Te is included.
  • an organic semiconductor and an inorganic semiconductor are used are as follows.
  • the E g3 region is used.
  • a CIGS (Cu, In, Ga, Se) system or a CZTSe (Cu 2 ZnSnSe 4 ) system may be used. Since bulk recombination in the CZTS is considered to be a factor of performance deterioration, the arrangement in which the light traveling direction and the photocarrier traveling direction are orthogonal to each other as shown in FIG. 6 allows the time for the photocarrier to arrive at the electrode to absorb light. It is extremely effective because it can be shortened without sacrifice.
  • CTGS containing copper, tin, germanium, and sulfur as constituent elements has a bandgap of 1.0 eV, has a high light absorption coefficient, and is attracting attention as a material for non-toxic and non-rare elements.
  • the band gap can be adjusted by controlling the Ge / Sn ratio.
  • each E gi region is selected as needed, and is, for example, several ⁇ m to several tens of ⁇ m.
  • the width of each E gi region (width in the traveling direction of light in the semiconductor layer 21) is also selected as needed, and is, for example, several tens of ⁇ m to several hundreds of ⁇ m.
  • the thickness d of each region 21a, 21b, 21c, 21d is several ⁇ m to several tens of ⁇ m
  • the widths w1 to w4 of each region 21a, 21b, 21c, 21d are several tens ⁇ m to several hundred ⁇ m, for example. Select 100 ⁇ m.
  • FIG. 8 shows an example of a case where the band gap or HOMO- LUMO gap Eg of the host semiconductor or the intermediate band of the semiconductor layer 21 is continuously reduced in the traveling direction of light in the semiconductor layer 21.
  • E c and E v are the energy at the lower end of the conduction band and the upper end energy of the valence band of the host semiconductor, respectively
  • E cIB and E vIB are the energy and the valence band at the lower end of the conduction band of the intermediate band, respectively. Indicates the energy at the top.
  • FIG. 8 shows an example of a case where the band gap or HOMO- LUMO gap Eg of the host semiconductor or the intermediate band of the semiconductor layer 21 is continuously reduced in the traveling direction of light in the semiconductor layer 21.
  • E c and E v are the energy at the lower end of the conduction band and the upper end energy of the valence band of the host semiconductor, respectively
  • E cIB and E vIB are the energy and the valence band at
  • the same semiconductor is used as the host semiconductor of the semiconductor layer 21, and an inclined composition quantum well layer whose composition is gradually inclined in the traveling direction of light in the semiconductor layer 21 is used as the intermediate band forming layer 213.
  • the band gap of the intermediate band can be gradually reduced in the traveling direction of the light.
  • the quantum well layer having such an inclined composition specifically, for example, a GaInN layer having an inclined In composition can be used.
  • FIG. 9 is an insertion view after the GaInN layer is epitaxially grown on a 3-inch sapphire substrate by the MOCVD method after having the temperature distribution of the substrate in the lateral direction so that the temperature decreases as the distance from the center of the substrate decreases.
  • FIG. 10 is a plot of the radial bandgap of the GaInN layer relative to the position from the center of the substrate from the results of the photoluminescence spectrum. As shown in FIG. 10, the band gap linearly decreases as the position from the center of the substrate increases. It can be seen that the bandgap of the GaInN layer is controlled over a distance of 10 mm over about 1 eV. This means that the In composition of the GaInN layer increases as the position from the center of the substrate increases, but the rate of In uptake into the growth layer corresponding to the temperature distribution of the substrate is the center of the substrate.
  • the substrate 40 can also play a role of mechanical support and mechanical protection of the optical waveguide portion 10 and the intermediate band type solar cell 20, and serves as a clad layer for efficiently confining light inside the waveguide core layer 13.
  • the clad layer 11 can also be used.
  • the substrate 40 is, for example, a glass plate, a transparent plastic plate, or the like.
  • the transparent plastic constituting the transparent plastic plate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetylcellulose, brominated phenoxy, aramids, polyimides, and polystyrene.
  • the substrate 40 may be flexible, and in this case, the photoelectric conversion device can be easily installed in a state of being bent along a convex or concave surface.
  • the substrate 40 preferably has a sufficiently low refractive index as compared with the waveguide core layer 13 so that the substrate 40 can serve as a clad layer for efficiently confining light inside the waveguide core layer 13. Formed by the material.
  • the substrate 40 may have a multi-layer structure of two or more layers.
  • the refractive index of the layer of the substrate 40 in contact with the waveguide core layer 13 must satisfy the above conditions and have a required thickness (typically 0.1 ⁇ m to several ⁇ m). As long as the conditions are satisfied, the physical property values of the remaining layers can be freely selected (for example, substances having light absorption are also acceptable).
  • FIG. 11 is a cross-sectional view
  • FIGS. 12 and 13 are plan views (bottom views) seen from the light incident surface side.
  • FIG. 12 is an arrangement example in which the arrangement of the rotating release object-shaped portion 32 and the hemispherical portion 33, which will be described later, has a four-fold symmetry
  • FIG. 13 is an arrangement example in which the arrangement has the same six-fold symmetry.
  • FIG. 11 is a cross-sectional view taken along the alternate long and short dash line of FIGS. 12 and 13.
  • the light traveling direction changing layer 30 makes the incident light travel in a direction perpendicular to the light incident surface of the light traveling direction changing layer 30 regardless of the incident angle of the incident light incident on the light traveling direction changing layer 30. It is for conversion.
  • a large number of optical traveling direction conversion layers 30 are provided vertically and horizontally in a two-dimensional array on one main surface of a flat plate-shaped transparent base material 31 and the transparent base material 31. It has a transparent rotating release object-shaped portion 32, and a transparent hemispherical portion 33 having a surface made of a hemisphere and provided so as to cover these rotating release object-shaped portions 32.
  • the hemispherical portion 33 acts as a hemispherical lens.
  • the focal point of the rotating release object-shaped portion 32 and the center of the hemispherical portion 33 covering the rotating release object-shaped portion 32 coincide with each other.
  • the curvature of the surface of the tip of the rotating object-shaped portion 32 is larger than the curvature of the hemisphere of the hemispherical portion 33, and is sharp.
  • the distance a between the focal point F and the tip of the rotating object-shaped portion 32 and the width D of the rotating object-shaped portion 32 are selected as necessary, but L is 0.5 ⁇ m or more and 0.8 ⁇ m or less, for example, 0. 625 ⁇ m and W are 1.5 ⁇ m or more and 2.5 ⁇ m or less.
  • the radius of the hemispherical portion 33 is W / 2.
  • the refractive index of the air outside the light traveling direction conversion layer 30 is n 1
  • the refractive index of the hemispherical portion 33 is n 2
  • the rotating object-shaped portion 32 excluding the overlapping portion with the hemispherical portion 33 and the transparent substrate.
  • the refractive index of 31 is n 3
  • n 3 > n 2 > n 1 is established.
  • n 1 1.0
  • n 2 1.35 to 1.5 (for example, 1.35)
  • n 3 1.9 to 2.1 (for example, 2.0).
  • the light incident on the focal point F of the rotating object-shaped portion 32 thus travels parallel to the axis of the rotating project-shaped portion 32, and thus travels in a direction perpendicular to the light incident surface of the light traveling direction conversion layer 30. That is, even if the incident light is incident on the light incident surface of the light traveling direction conversion layer 30 from various directions, the traveling direction of the light is converted to the direction perpendicular to the light incident surface, and as a result, the light is introduced. Light can be introduced into the waveguide core layer 13 while repeating total reflection in the core layer 14. As can be seen from the above, according to the light traveling direction changing layer 30, the traveling direction of the incident light is changed with respect to the angle of sunlight from morning to evening, and the light traveling direction changing layer 30 is used. It is possible to make the light incident substantially perpendicular to the light incident surface of the optical waveguide portion 10 behind.
  • W was set to 4 ⁇ m, and the radius of the hemispherical portion 33 was set to 2 ⁇ m.
  • 14 and 15 show the results of simulation when light is incident on the light traveling direction changing layer 30 at incident angles of 40 degrees and 20 degrees, respectively.
  • FIGS. 14 and 15 show the X-axis in the direction parallel to the plane of the optical traveling direction conversion layer 30, the Z-axis in the thickness direction of the optical traveling direction conversion layer 30, and the Y-axis in the directions perpendicular to these X-axis and Z-axis.
  • the distribution of the magnitude (intensity) of the amplitude E y in the Y-axis direction of the electric field of the light wave in the XZ plane is shown. From FIGS. 14 and 15, the light obliquely incident on the light traveling direction changing layer 30 passes through the light traveling direction changing layer 30 and then emits in a direction substantially perpendicular to the light traveling direction changing layer 30. You can see that it does.
  • the light traveling direction conversion layer 30 can convert the traveling direction of the obliquely incident light into a direction substantially perpendicular to the surface of the light traveling direction conversion layer 30.
  • FIG. 14 which shows the case of an incident angle of 40 degrees, even for light having an intermediate incident angle (30 to 50 degrees), which was difficult in the conventional example, the light traveling direction conversion layer 30 effectively changes the traveling direction. It was shown that light could be incident substantially perpendicular to the surface of the waveguide core layer 13 (flat waveguide (two-dimensional waveguide)) behind the light traveling direction conversion layer 30.
  • FIG. 1 Three-dimensional space propagating light, for example, sunlight is incident on the light incident surface of the optical traveling direction conversion layer 30 of the optical waveguide section 10 of this photoelectric conversion device.
  • sunlight is incident on the light incident surface of the light traveling direction conversion layer 30 from an oblique direction depending on the time, but especially in the 6-fold symmetrical arrangement example shown in FIG. 13, this oblique direction. It is effective to take the plane projection of the vector so that it is parallel to the direction of the broken line shown in FIG. At this time, mutual obstruction between the hemispherical portions 33 shown in FIG. 11 can be minimized.
  • the hemispherical portion 33 shown by A in FIG. 13 is minimized to be obstructed by the hemispherical portion 33 shown by B and C, and the solid angle ⁇ of the sun with respect to the hemispherical portion 33 shown by A is maximized.
  • the three-dimensional space propagating light incident on the light incident surface of the light traveling direction conversion layer 30 is converted in the traveling direction in the direction perpendicular to the light incident surface, and then passes through the light introduction core layer 14 to the waveguide core.
  • 90 ° can be set.
  • the inside of the waveguide core layer 13 is waveguideed from the direction perpendicular to the straight line connecting the first electrode 22 and the second electrode 23 at the shortest, and the light is emitted from the light emitting end surface 13a of the waveguide core layer 13. The light emitted can be incident on the side surface of the semiconductor layer 21.
  • the number of absorbed photons of the semiconductor layer 21 is the width in the incident direction of light (for example, when the semiconductor layer 21 is composed of the regions 21a, 21b, 21c, 21d, the widths w 1 to the regions 21a, 21b, 21c, 21d). It is dominated by w 4 ), and the photoelectric conversion efficiency is not dominated by the thickness d of the semiconductor layer 21 in the light absorption rate-determining region. That is, the extremely advantageous point of this photoelectric conversion device is the optimization of light absorption and the optimization of carrier collection efficiency by, for example, making the waveguide direction inside the waveguide core layer 13 and the carrier moving direction orthogonal to each other. It is possible to completely achieve both.
  • the small absorption coefficient ⁇ of the semiconductor layer 21 is the width of the semiconductor layer 21 in the incident direction of light (when the semiconductor layer 21 is composed of, for example, the regions 21a, 21b, 21c, 21d, the region regions 21a, 21b, 21c. , 21d can be compensated by increasing the widths w1 to w4 ). Therefore, as the material of the semiconductor layer 21, it is possible to use a material having a large ⁇ , which is the only dominant parameter, regardless of the size of ⁇ . can. By doing so, it becomes possible to obtain a high photoelectric conversion efficiency, and it is also possible to obtain a photoelectric conversion efficiency approaching the thermodynamic limit.
  • this photoelectric conversion device a three-dimensional space having a wide wavelength band that includes morning and evening sunlight or diffused light in rainy or cloudy weather and is incident on the light incident surface of the light traveling direction conversion layer 30 from various directions.
  • the traveling direction of the propagating light is converted to a direction perpendicular to the light incident surface and incident on the optical waveguide section 10, and the inside of the waveguide core layer 13 is efficiently waveguideed to obtain two-dimensional space propagating light. Since the two-dimensional space propagating light in a wide wavelength band can be incident on the semiconductor layer 21 to perform photoelectric conversion, extremely high photoelectric conversion efficiency can be obtained.
  • the photoelectric conversion unit is composed of the intermediate band type solar cell 20 and has an intermediate band in the band gap of the host semiconductor, the absorption wavelength band can be widened, so that it has a wide spectrum like a solar spectrum.
  • the light from the light source can be converted into electrical energy very efficiently.
  • the optical waveguide portion 10 and the optical traveling direction conversion layer 30 occupy most of the area, and the incident light can be received by the entire light incident surface of the optical traveling direction conversion layer 30. , There is virtually no insensitive area to incident light.
  • the semiconductor layer 21 is only a part.
  • the semiconductor layer 21 is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap gradually decreases in the traveling direction of light in the semiconductor layer 21, the high-energy ultraviolet component of sunlight is formed. For example, can be absorbed in the region of the first stage, so that the ultraviolet component can be prevented from incident on the region of the latter stage. Therefore, even if the latter region is made of amorphous silicon or an organic semiconductor, there is no problem of the Stebler-Wronskian effect or deterioration of the organic semiconductor. Therefore, it is possible to improve the photoelectric conversion efficiency and the reliability of the photoelectric conversion device.
  • this photoelectric conversion device can easily increase the area simply by increasing the area of the optical waveguide section 10.
  • the semiconductor layer 21 is provided on the light emitting end surface 13a of the waveguide core layer 13, and the light waveguideed in the waveguide core layer 13 is emitted from the light emitting end surface 13a of the waveguide core layer 13 to form the semiconductor layer 21. Since it is configured to be incident on the side surface, it does not require a lens for condensing light, it is extremely simple to configure, and it does not require optical axis alignment, so it is not only easy to manufacture. It is also possible to reduce the manufacturing cost and prevent aging and aging.
  • the light receiving unit and the intermediate band type solar cell 20 which is the photoelectric conversion unit are separated from each other, and the space between them is not three-dimensional but two-dimensional by the waveguide core layer 13.
  • FIG. 16 is a cross-sectional view showing a photoelectric conversion device according to the second embodiment.
  • the plan view (bottom view) of this photoelectric conversion device as seen from the light incident surface side is, for example, the same as in FIG.
  • This photoelectric conversion device differs from the photoelectric conversion device according to the first embodiment in the configuration of the optical waveguide section 10.
  • FIG. 17 shows the optical waveguide section 10 in this photoelectric conversion device.
  • FIG. 18 shows an enlarged part of the optical waveguide section 10.
  • the cross-sectional shapes of the clad layer 12 and the optical introduction core layer 14 are different from those of the photoelectric conversion device according to the first embodiment.
  • the cross-sectional shape of the clad layer 12 is continuously connected to the first arc-shaped portion 121 on the light incident surface side and the first arc-shaped portion 121. It is composed of an arc-shaped portion 122 of.
  • the end of the second arc-shaped portion 122 on the waveguide core layer 13 side is tangentially connected to the waveguide core layer 13.
  • the cross-sectional shape of the clad layer 12 including the first arc-shaped portion 121 and the second arc-shaped portion 122 will be described in detail with reference to FIG.
  • FIG. 19 shows the shape of the center line (indicated by a thick solid line) of the clad layer 12 including the first arc-shaped portion 121 and the second arc-shaped portion 122.
  • the first arcuate portion 121 corresponds to a quarter portion of a vertically elongated ellipse in the waveguide core layer 13 having a short axis in the waveguide direction and a long axis in the direction perpendicular to the waveguide direction.
  • the second arc-shaped portion 122 is defined from the intersection of a quarter portion of a horizontally long ellipse having a long axis in the waveguide direction and a short axis in the direction perpendicular to the waveguide direction in the waveguide core layer 13 with the long axis.
  • the semimajor axis of the vertically elongated ellipse (1/2 of the length of the major axis) is about 6 to 100 ⁇ m, and the semimajor axis of the horizontally elongated ellipse is about 100 to 500 ⁇ m. In the example shown in FIGS.
  • the short radius (1/2 of the length of the short axis) of the vertically long ellipse is 18 ⁇ m
  • the long radius is 36 ⁇ m
  • the short radius of the horizontally long ellipse is 30 ⁇ m
  • the long radius is 180 ⁇ m.
  • a relatively thick clad layer 12 is repeatedly present with a period ⁇ larger than the period ⁇ in the x direction (horizontal direction) of the clad layer 12.
  • it is 1.8 to 6.8 ⁇ m, preferably about 3.4 ⁇ m.
  • is typically 1.1 to 4.5 ⁇ m, preferably about 2.3 ⁇ m.
  • the width of the relatively thick clad layer 12 is, for example, 1 to 2 ⁇ m, and the width of the relatively thin clad layer 12 is on the order of the wavelength of the incident light in consideration of light penetration, typically 0.4. It is about 1 ⁇ m.
  • can be about 100 ⁇ m to a maximum of about 1000 ⁇ m.
  • FIGS. 20 and 21 A simulation of light propagation in this photoelectric conversion device was performed. The simulation results are shown in FIGS. 20 and 21.
  • FIG. 20 shows the whole image of the light field
  • FIG. 21 shows the conversion efficiency of the three-dimensional propagating light into the two-dimensional propagating light. 66.5% by tangentially coupling to the optical waveguide core layer 13 by the contribution of the small (large radius of curvature) end of the second arcuate part 122 of the quadrant of the oblong ellipse of the clad layer 12.
  • the relatively thick clad layer 12 supports the long-distance propagation of the waveguide light in the optical waveguide core layer 13, while the relatively thin clad layer 12 is the light introduction core of sunlight going upward from the lower part of FIG. It enables smooth propagation from the vertically elongated ellipse portion of the layer 14 to the horizontally elongated elliptical portion. Since the relatively thin clad layer 12 becomes extremely thin in the horizontally elongated elliptical portion, the role of the effective waveguide clad layer is played by the relatively thick clad layer 12. By coupling the first arcuate portion 121 and the second arcuate portion 122, the three-dimensional propagating light can be converted into two-dimensional waveguide light while reducing the loss.
  • this photoelectric conversion device is the same as the photoelectric conversion device according to the first embodiment.
  • FIG. 22 is a cross-sectional view showing a photoelectric conversion device according to the third embodiment.
  • the plan view (bottom view) of this photoelectric conversion device as seen from the light incident surface side is, for example, the same as in FIG.
  • This photoelectric conversion device differs from the photoelectric conversion device according to the first and second embodiments in the configuration of the optical waveguide section 10.
  • FIG. 23 shows the optical waveguide section 10 in this photoelectric conversion device.
  • FIG. 24 shows an enlarged part of the optical waveguide section 10. As shown in FIGS.
  • the oblong elliptical portion of the clad layer 12 and the optical introduction core layer 14 of the optical waveguide section 10 of the photoelectric conversion device according to the second embodiment is formed. It is different from the photoelectric conversion device according to the second embodiment that the occupied portion is composed of the refractive index anisotropic layer 50. However, only the relatively thick clad layer 12 of the optical waveguide portion 10 of the photoelectric conversion device according to the second embodiment is provided so as to intersect with the refractive index anisotropy layer 50.
  • the refractive index anisotropic layer 50 plays a role similar to that of the horizontally elongated elliptical portion of the clad layer 12 and the light introduction core layer 14.
  • the refractive index anisotropy layer 50 can be composed of, for example, a liquid crystal layer of N layers (N is an integer of N ⁇ 1) controlled so that the orientation of the director changes stepwise.
  • N is an integer of N ⁇ 1
  • a simulation of light propagation in this photoelectric conversion device was performed.
  • the directors of the 10 liquid crystal layers 501 to 510 are oriented at -22 degrees, -20 degrees, -18 degrees, -16 degrees, -14 degrees, -12 degrees, and -10, respectively. The ones changed to -8 degrees, -6 degrees, and -4 degrees were used.
  • 5CB 4-Cyano-4'-pentylbiphenyl
  • FIG. 25 shows the whole image of the light field. From FIG. 25, an optical field confined in the two-dimensional waveguide was confirmed, and it was shown that the two-dimensional waveguide light conversion of the three-dimensional propagating light is feasible by this structure as well.
  • this photoelectric conversion device is the same as the photoelectric conversion device according to the first embodiment.
  • the waveguide structure 100 having a refractive index anisotropy shown in FIG. 26 is used as the optical waveguide section 10. ..
  • the light incident surface of the waveguide structure 100 is provided with the light traveling direction conversion layer 30 as in the first embodiment.
  • the semiconductor layer 21 of the intermediate band type solar cell 20 is bonded to the light emitting end surface of the waveguide structure 100.
  • the waveguide structure 100 is incident on the light incident surface of the light traveling direction conversion layer 30 and has the traveling direction changed in the direction perpendicular to the light incident surface, and is finally directed.
  • the purpose is to convert the traveling direction of the light into a direction perpendicular to the traveling direction (horizontal direction in FIG. 26). Since the waveguide direction is one direction (right side in FIG. 26), the waveguide structure 100 is an asymmetric waveguide.
  • the waveguide structure 100 is composed of a plurality of layers 101 to 108 having different refractive indexes from each other (the layer 107 has a wedge-shaped shape).
  • the layers 101 to 108 are formed by, for example, a plurality of liquid crystal layers having different coordination directions from each other, or a plurality of isotropic media partitioned by a non-parallel interface (for example, an interface having a jagged cross section).
  • the refractive index distribution of layers 101 to 108 in the direction perpendicular to FIG. 26 has translational symmetry.
  • the layer 104 is composed of an anisotropic substance having anisotropy
  • the layer 104 is composed of the anisotropic substance rotated clockwise by 15 degrees in the xz plane
  • the layer 105 is composed of the anisotropic substance rotated clockwise in the xz plane.
  • the layer 106 is composed of the anisotropic substance rotated 32 degrees in the direction and rotated 45 degrees clockwise in the xz plane
  • the layer 107 is composed of the anisotropic substance rotated 45 degrees clockwise in the xz plane.
  • FIG. 27 The result of the simulation is shown in FIG. 27.
  • FIG. 27 shows the distribution of the magnitude (intensity) of the amplitude E y in the y-axis direction of the electric field of the light wave in the xz plane. From FIG. 27, the light incident on the waveguide structure 100 from the vertical direction is gradually bent in the traveling direction to the right side in the figure while passing through the waveguide structure 100, and finally emitted in the substantially horizontal direction. You can see that. That is, it can be seen that the waveguide structure 100 can convert the traveling direction of the light incident on the waveguide structure 100 in the vertical direction into a direction substantially perpendicular to the traveling direction.
  • the optical waveguide unit 300 shown in FIG. 28 is used instead of the optical waveguide unit 10.
  • the optical waveguide 300 includes a planar optical waveguide 310 and a layer having a transparent refractive index anisotropy provided on the main surface of the planar optical waveguide 310 (hereinafter, “refraction”). It has a (referred to as a rate anisotropic medium layer) 320 and a reflector array 330 provided on the refractive index anisotropic medium layer 320.
  • the substance constituting the planar optical waveguide 310 is for light having a wavelength in the range targeted by this photoelectric conversion device, for example, light in a main wavelength band of the solar spectrum (ultraviolet light, visible light, infrared light). It is desirable that the substance is as transparent as possible.
  • the substance constituting the planar optical waveguide 310 is generally transparent glass, high refractive index glass, transparent plastic or the like.
  • the transparent plastic examples include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetylcellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, etc. Examples thereof include polysulfones and polyolefins.
  • a fluorine-based material used for plastic optical fiber (POF) or the like is particularly suitable due to its low light loss property.
  • the thickness of the planar optical waveguide 310 is selected as needed, and is, for example, 1 to 1000 ⁇ m.
  • the size (length and width) of the planar optical waveguide 310 is appropriately selected depending on the location where the photoelectric conversion device is installed, but is generally (1 cm to 1 m) ⁇ (1 cm to 1 m). be.
  • planar shape of the planar optical waveguide 310 is not particularly limited and is appropriately selected depending on the application of the photoelectric conversion device and the like, but is, for example, a rectangle or a square.
  • the reflecting mirror array 330 has a structure in which the reflecting mirror 331 and the transparent layer 332 are alternately and repeatedly provided in one direction parallel to the refractive index anisotropic medium layer 320.
  • the details of the reflector array 330 are described in Patent Document 1, but the outline is as follows.
  • the reflector 331 is made of a metal such as silver (Ag), a silver alloy (Ag-Pd or the like), or aluminum (Al).
  • the transparent layer 332 is preferably made of a transparent substance (transparent glass, transparent resin, etc.) having a refractive index substantially equal to that of the transparent substance constituting the planar optical waveguide 310.
  • the thickness of the transparent layer 332 in one direction parallel to the refractive index anisotropic medium layer 320 is selected as necessary, and is, for example, several ⁇ m to several tens of ⁇ m. Further, the period of repetition of the reflecting mirror 331 and the transparent layer 332, that is, the total thickness of one reflecting mirror 331 and the transparent layer 332 adjacent thereto in one direction parallel to the refractive index anisotropic medium layer 320.
  • the ratio of the thickness of the reflector 331 to the sword is preferably small, and is selected to be at least 5% or less, preferably 1% or less, and 1 nm or more.
  • the reflector 331 is typically provided periodically so that the spacing of the reflectors 331 may be changed regularly or irregularly in some or all of the reflector array 330, but of incident light. In order to prevent omission (incident light is not reflected by the reflector 331 and directly hits the planar optical waveguide 310), and when two reflectors 331 adjacent to each other are focused on in FIG. 28, the left side is facing.
  • the structure and arrangement are set so that the light reflected by the reflector 331 is not reflected (scattered) by the back surface of the reflector 331 on the right side.
  • the spacing between the reflectors 331 and the number of iterations between the reflectors 331 and the transparent layer 332 are selected as needed.
  • the reflecting mirror 331 is configured to be able to reflect the three-dimensional space propagating light incident from the outside through the light traveling direction changing layer 30 and make it incident on the refractive index anisotropic medium layer 320.
  • the reflecting mirror 331 reflects the three-dimensional space propagating light transmitted through the light traveling direction conversion layer 30 and is incident on the refractive index anisotropic medium layer 320 at an incident angle within a certain range.
  • the cross-sectional shape is selected so that it can be done.
  • FIG. 28 shows, as a typical example, the case where the shape of the reflector 331 in the cross section perpendicular to the main surface of the planar optical waveguide 310 of the reflector array 330 forms a part of one side of the axis of the parabola.
  • the axis of this parabolic line is set so that as much light as possible is finally incident on the planar optical waveguide 310.
  • It is preferably set within ⁇ 10 ° with respect to the normal line erected on the main surface of the planar optical waveguide 310, and most preferably near 0 °, that is, set perpendicular to the main surface of the planar optical waveguide 310. Will be done.
  • the reflector 331 is preferably provided extending from end to end of the planar optical waveguide 310. However, it is not limited to this.
  • each reflecting mirror 331 is not particularly limited and is selected as necessary, but typically, it is reflected by the reflecting mirror 331 and passes through the refractive index anisotropic medium layer 320 to pass through the refractive index anisotropic medium layer 320, and the planar optical waveguide 310. At least most of the two-dimensional spatially propagating light incident on the interior of the is selected to be directed in a certain direction.
  • the incident light (three-dimensional space propagating light) from the outside is reflected by the reflector 331 of the reflector array 330 to reflect the refractive index anisotropic medium layer 320.
  • the refractive index in the direction toward (A direction) and the refractive index in the direction perpendicular to this direction (B direction) are different from each other, and the refractive index in the A direction is larger than the refractive index in the B direction.
  • the refractive index in the A direction is substantially the same as the refractive index of the planar optical waveguide 310 and the transparent layer 332, so that the light reflected by the reflector 331 is the planar optical waveguide 310 from the refractive index anisotropic medium layer 320. It is allowed to enter the inside of the planar optical waveguide 310.
  • the direction in which the light reflected on the back surface of the planar optical waveguide 310 after passing through the refractive index anisotropic medium layer 320 and entering the inside of the planar optical waveguide 310 is approximately the B direction, is B.
  • the refractive index in the direction is sufficiently smaller than the refractive index of the planar optical waveguide 310, so that the main surface of the planar optical waveguide 310 is reflected by the back surface of the planar optical waveguide 310 by satisfying the condition of total internal reflection.
  • the light obliquely crossing the planar optical waveguide 310 and incident on the main surface thereof is totally reflected at the interface between the planar optical waveguide 310 and the refractive index anisotropic medium layer 320.
  • the medium having the refractive index anisotropy constituting the refractive index anisotropy medium layer 320 is not particularly limited, but is most typically made of a liquid crystal display, for example.
  • the liquid crystal molecule is approximated to a uniaxial permittivity ellipse, and its permittivity in the major axis direction is described as ⁇ // and its permittivity in the minor axis direction is described as ⁇ , which is typical anisotropy.
  • n // the refractive index of the liquid crystal molecule in the major axis direction
  • n ⁇ the refractive index in the minor axis direction
  • n //> n ⁇ is established.
  • the orientation of the liquid crystal molecules is set so that the light incident on the planar optical waveguide 310 feels a relatively large refractive index.
  • the liquid crystal can be used by controlling the above.
  • the optical waveguide section 400 shown in FIG. 29 is used instead of the optical waveguide section 10.
  • the optical waveguide portion 400 is composed of an asymmetric planar optical waveguide 410 having a wedge-shaped shape provided on the other main surface of the above.
  • the reflector array 330 is the same as in the third embodiment.
  • the angle of inclination of the slope with respect to the bottom surface of the asymmetric surface optical waveguide 410 is selected as necessary, but is typically 10 ° or less, for example, 7 °.
  • the planar shape of the reflector array 330 and the asymmetrical optical waveguide 410 is not particularly limited and may be appropriately selected depending on the photoelectric conversion device or the like, and is, for example, a rectangle or a square.
  • An optical traveling direction conversion layer 30 is provided on the light incident surface of the optical waveguide portion 400, and an intermediate band type solar cell 20 is provided on the light emission end surface of the asymmetric planar optical waveguide 20.
  • the wedge-shaped asymmetric planar optical waveguide 410 has an elongated right-angled triangular cross-sectional shape, the long side (bottom side) sandwiching the right-angled corner coincides with the light emitting surface of the reflector array 330, and the short side is asymmetric. It coincides with the light emitting end face of the planar optical waveguide 410.
  • the substance constituting the asymmetric planar optical waveguide 410 is the same as that of the planar optical waveguide 310 of the third embodiment.
  • the configuration of the photoelectric conversion unit including the intermediate band type solar cell 20 may be as shown in FIG. That is, as shown in FIG. 30, the photoelectric conversion unit is composed of N intermediate band type solar cells 20 connected in series. By doing so, it is possible to bring about an increase in the output voltage of the photoelectric conversion device, which is very effective in practical use.
  • the light that has entered the inside of the asymmetrical planar optical waveguide 410 is repeatedly totally reflected at the interface between the bottom surface of the asymmetrical planar optical waveguide 410, the asymmetrical planar optical waveguide 410, and the air layer, and the asymmetrical planar optical waveguide 410 has a tapered shape. Since the cross-sectional area gradually increases toward the intermediate band type solar cell 20, the inside of the asymmetrical optical waveguide 410 is waveguideed in the direction of the arrow, and the light is emitted from the light emission end surface of the asymmetrical optical waveguide 410. Finally, it is incident on the side surface of the semiconductor layer 21 of the intermediate band type solar cell 20 to perform optical conversion.
  • Electron-hole pairs are generated in the semiconductor layer 21 in the process of the waveguide light traveling in the semiconductor layer 21. Then, the electrons and holes thus generated move in the semiconductor layer 21 by drift or diffusion, and are collected on one and the other of the first electrode 22 and the second electrode 23. In this way, photoelectric conversion is performed in the semiconductor layer 21, and a current (photocurrent) is taken out from the first electrode 22 and the second electrode 23 to the outside.
  • FIG. 32 is a cross-sectional view showing a part of the optical waveguide section 10 showing higher waveguide efficiency.
  • a plurality of optical introduction core layers 14 in the transverse direction (x-axis direction) are used as subunits (in FIG. 32, four optical introduction core layers 14 included in one subsystem (4 slots)).
  • the direction orthogonal to the light traveling direction in the second arcuate portion 122 (part of the oblong ellipse portion) of the clad layer 12 at the end of the subsystem (that is, substantially perpendicular to the tangential direction of the oblong ellipse).
  • the thickness of the second arcuate portion 122 in the direction) is expanded to 0.4 to 0.5 ⁇ m.
  • the thickness of the other portion of the second arcuate portion 122 is the same as that shown in FIG. That is, the thickness thereof is an effective clad layer width obtained from the average tangential angle of the second arc-shaped portion 122: about 0.4 ⁇ sin (5 °) to 0.035 ⁇ m.
  • both the second arc-shaped portion 122 (part of the horizontally elongated elliptical portion) and the first arc-shaped portion 121 (part of the vertically elongated elliptical portion) of the clad layer 12 are in the x-axis direction.
  • the width of the light introduction core layer 14 is constant.
  • the optical introduction core is divided into subunits composed of a plurality of optical introduction core layers 14 (four in FIG. 32) in the x-axis direction.
  • the thickness of the layer 14 is set large.
  • the width of the relatively thin clad layer 12 is 0.4 ⁇ m
  • the width of the light-introduced core layer 14 with the increased thickness is 3.4 ⁇ m
  • the width of the other light-introduced core layer 14 is 2. It is 26 ⁇ m.
  • FIG. 33 shows the whole image of the light field.
  • the 16th, 17th, 18th, and 19th are the 16th, 17th, 18th, and 19th optical introduction cores to the right, with the optical introduction core layer 14 at the left end of FIG. 32 as the 0th.
  • the layer 14 is shown. From FIG. 33, it can be seen that higher waveguide efficiency is obtained.
  • FIG. 34 shows a photoelectric conversion device installation cylinder according to the eighth embodiment.
  • the photoelectric conversion device installation cylinder is typically installed with its lower end embedded in the ground, but is not limited thereto.
  • a cylindrical photoelectric conversion device 600 is installed as a whole so as to surround the outer circumference of the cylinder 500.
  • the overall shape of the photoelectric conversion device 600 when developed in a plane in a direction perpendicular to the central axis of the cylinder 500 is a rectangle.
  • FIG. 35 shows a cross section of the portion including the photoelectric conversion device 600 of the cylinder in which the photoelectric conversion device is installed.
  • a cylindrical waveguide core layer 13 is provided so as to surround the outer periphery of the cylinder 500, and both sides of the intermediate band type solar cell 20 are sandwiched between the waveguide core layers 13.
  • An optical waveguide portion 10 and an optical traveling direction conversion layer 30 are provided on the waveguide core layer 13.
  • FIG. 36 shows an enlarged part of the optical waveguide portion 10 and the optical traveling direction conversion layer 30 shown in FIG. 35.
  • the optical waveguide section 10 one half on the left side in FIG. 36 is configured in the same manner as the optical waveguide section 10 shown in FIG.
  • one half on the right side in FIG. 36 is one half on the left side. It is configured symmetrically with. That is, the one-sided half on the right side and the one-sided half on the left side of FIG. 36 of the optical waveguide portion 10 are symmetrically configured.
  • FIG. 37A is an enlarged plan view of the intermediate band type solar cell 20 and the waveguide core layer 13 on both sides thereof
  • FIG. 37B is a side view of this portion
  • FIG. 37C is a cross-sectional view of this portion.
  • the intermediate band type solar cells 20 are M (M is an integer of 2 or more) intermediate band type solar cells 20-1 stacked in a direction parallel to the central axis of the cylinder. It consists of 20-2, ..., 20-k, ..., 20-M.
  • Each intermediate band type solar cell 20-k has the same configuration as the intermediate band type solar cell 20 of the first embodiment.
  • each intermediate band type solar cell 20-k The pn junction surface of the semiconductor layer constituting each intermediate band type solar cell 20-k is schematically shown by a broken line.
  • a first electrode 22 and a second electrode 23 are provided above and below each intermediate band type solar cell 20-k, but are not shown in FIGS. 37B and 37C.
  • the host semiconductor of each intermediate band type solar cell 20-k is selected as necessary as in the first embodiment, and may be, for example, a single composition of Si alone, as shown in FIG. 7. It may be composed of a plurality of host semiconductors whose band gap gradually decreases in the traveling direction of light.
  • the operation of the photoelectric conversion device 600 of the cylindrical photoelectric conversion device installation column will be described.
  • the photoelectric conversion device installation cylinder is installed on the ground, the optical waveguide portion 10 and the optical traveling direction conversion layer 30 are oriented toward the south side.
  • sunlight which is three-dimensional propagating light, is incident on the light traveling direction conversion layer 30 from the south surface.
  • the traveling direction of the sun incident on the south surface is converted into a direction perpendicular to the light incident surface 10a by the light traveling direction conversion layer 30, and the sunlight is incident on the optical waveguide section 10.
  • each intermediate band type solar cell 20-k is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the left side of FIG. It becomes light and is incident on one end surface of each intermediate band type solar cell 20-k parallel to the pn junction surface.
  • the light incident on one half of the right side of FIG. 36 of the optical waveguide 10 is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the right side of FIG. Then, it is incident on the other end surface of each intermediate band type solar cell 20-k in parallel with the pn junction surface. In this way, photoelectric conversion is performed by the light incident on both end faces of each intermediate band type solar cell 20-k.
  • FIG. 38 shows the result (light field) of the simulation.
  • the diameter of the cylinder 500 was 50 mm
  • the refractive index of the waveguide core layer 13 was the refractive index of polydimethylsiloxane (PDMS). From FIG. 38, it can be seen that light is efficiently guided in the cylindrical waveguide core layer 13.
  • PDMS polydimethylsiloxane
  • this eighth embodiment it is possible to realize a photoelectric conversion device installation cylinder capable of high-efficiency power generation by the photoelectric conversion device 600, and it is inexpensively configured by using the existing telegraph pole as the utility pole 500. can do.
  • the intermediate band type solar cell 20 of the photoelectric conversion device 600 is different from the photoelectric conversion device installation cylinder according to the eighth embodiment.
  • 39A is an enlarged plan view of the intermediate band type solar cell 20 of the photoelectric conversion device 600 and the waveguide core layer 13 of the portions on both sides thereof
  • FIG. 39B is a side view of this portion
  • FIG. 39C is a side view of this portion. It is a cross-sectional view and corresponds to FIGS. 37A, 37B and 37C, respectively. As shown in FIGS.
  • the operation of the photoelectric conversion device 600 of the cylindrical photoelectric conversion device installation column is the same as that of the eighth embodiment.
  • FIG. 40 shows a photoelectric conversion device installation cylinder according to the tenth embodiment. As shown in FIG. 40, in addition to the cylindrical photoelectric conversion device 600 being installed on the outer circumference of the cylinder 500 as in the eighth embodiment, the top of the cylinder 500 It is different from the photoelectric conversion device installation cylinder according to the eighth embodiment that the photoelectric conversion device 700 is installed in the.
  • FIG. 41 shows the top of the cylinder 500 and the vertical cross section of the photoelectric conversion device 700.
  • the waveguide core layer 13 is provided so as to cover the top of the cylinder 500.
  • FIG. 41 shows a case where the top of the cylinder 500 is hemispherical and the waveguide core layer 13 is hemispherical, but the present invention is not limited to this, and the shape of the top of the cylinder 500 is other than the hemisphere.
  • the waveguide core layer 13 may also have a shape other than the hemisphere.
  • An optical waveguide portion 10 and an optical traveling direction conversion layer 30 are provided on the waveguide core layer 13.
  • the clad layer 12 and the optical introduction core layer 14 of the optical waveguide 10 are configured rotationally symmetrically around the central axis of the photoelectric conversion device 700.
  • An intermediate band type solar cell 20 is provided at the lowermost end of the waveguide core layer 13 (a portion corresponding to the equator of the hemisphere).
  • the operation of the photoelectric conversion device 700 of the cylinder on which the photoelectric conversion device is installed will be described.
  • the operation of the photoelectric conversion device 600 is the same as that of the eighth embodiment.
  • This photoelectric conversion device installation cylinder is installed in the same manner as in the eighth embodiment.
  • the sunlight incident on the light traveling direction conversion layer 30 from above the photoelectric conversion device 700 is converted into a direction in which the traveling direction is perpendicular to the light incident surface 10a and is incident on the optical waveguide section 10.
  • the light incident on the optical waveguide portion 10 propagates radially downward in the waveguide core layer 13 and finally incidents on the intermediate band type solar cell 20 at the lowermost end of the waveguide core layer 13 to perform photoelectric conversion. Is done.
  • the photoelectric conversion device 600 and the photoelectric conversion device 700 have an advantage that the power generation capacity can be improved. Can be done.
  • FIG. 42 shows a building in which a photoelectric conversion device is installed according to the eleventh embodiment.
  • the surface of the photoelectric conversion device-installed portion of the outer wall 800a of the building 800 is configured in a corrugated sheet shape having unevenness in the horizontal direction.
  • a rectangular photoelectric conversion device 900 that is curved in a corrugated plate shape is installed on the surface of the shape.
  • the overall shape of the photoelectric conversion device 900 when unfolded on a plane is a rectangle as shown in FIG.
  • FIG. 43 shows a cross section of the outer wall 800a of the building 800 of the building where the photoelectric conversion device is installed.
  • the waveguide core layer 13 is provided on the corrugated surface of the outer wall 800a, and both sides of the intermediate band type solar cell 20 are sandwiched between the waveguide core layers 13.
  • the cross-sectional shape of the waveguide core layer 13 may be a continuous curved shape and may be selected as necessary, and the convex portions and the concave portions may have any shape, but in FIG. 43, the radii are mutual as an example. The case where it has a waveform in which the same upper semicircle and the lower semicircle are smoothly and alternately connected is shown.
  • the intermediate band type solar cell 20 is the same as that of the first embodiment.
  • the optical waveguide portion 10 and the optical traveling direction conversion layer 30 are provided on the waveguide core layer 13 curved in a corrugated shape.
  • the optical waveguide 10 of each convex portion of the waveguide core layer 13 has one two-dimensional propagating light in the waveguide core layer 13 toward the intermediate band type solar cell 20 as in the eighth embodiment. It is configured to travel in a direction.
  • the photoelectric conversion device 900 in the building where the photoelectric conversion device is installed will be described.
  • the photoelectric conversion device 900 is installed so as to face the south side.
  • sunlight which is three-dimensional propagating light
  • the traveling direction is converted to a direction perpendicular to the light incident surface 10a by the light traveling direction conversion layer 30, and the light is incident on the optical waveguide section 10. do.
  • the light incident on one half of the left side of FIG. 43 of the optical waveguide portion 10 of each convex portion of the waveguide core layer 13 is converted into two-dimensional propagating light, and the inside of the waveguide core layer 13 is the left side in FIG. 43.
  • the light incident on one half of the right side of FIG. 43 of the optical waveguide section 10 is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the right side of FIG. 43, and finally. It is collected in the intermediate band type solar cell 20 and incident on both end faces in parallel with the pn junction surface. In this way, photoelectric conversion is performed by the light incident on both end faces of the intermediate band type solar cell 20.
  • the eleventh embodiment it is possible to realize a building with a photoelectric conversion device capable of high-efficiency power generation by the photoelectric conversion device 900 installed on the outer wall 800a.
  • the photoelectric conversion device installation cylinder according to the twelfth embodiment has high white reflection between the clad layer 11 inside the cylindrical waveguide core layer 13 of the photoelectric conversion device 600 and the cylinder 500.
  • the reflectance layer 1000 is provided, the optical traveling direction conversion layer 30 and the optical waveguide portion 10 are not provided, and the clad layer 15 is provided on the surface of the waveguide core layer 13 opposite to the clad layer 11. It is different from the photoelectric conversion device installation cylinder according to the eighth embodiment. Other things are the same as those of the eighth embodiment.
  • the white high reflectance layer 1000 can be formed, for example, by using fine particles of barium sulfate as a main raw material and applying a white paint having an extremely high solar reflectance of 98.1% (see Non-Patent Document 9). ..
  • the white high reflectance layer 1000 is provided between the clad layer 11 of the waveguide core layer 13 and the cylinder 500, the incident angle ⁇ 2 of light on the inner clad layer 11 is set.
  • ⁇ 2 ⁇ 1 + ⁇ (4)
  • the angle ⁇ of the light incident on the outer clad layer 15 is larger than the angle ⁇ 1. Therefore, it becomes easier to satisfy the total reflection condition in the inner clad layer 11, and the white color existing under the clad layer 11 due to the shallow penetration of the two-dimensional propagating light that waveguides through the waveguide core layer 13.
  • Invasion into the high reflectance layer 1000 is also suppressed, and scattering by the white high reflectance layer 1000 is eliminated, so that the waveguide efficiency of the waveguide core layer 13, which is a two-dimensional waveguide on the side surface of the cylinder 500, is improved. You can get a big advantage.
  • FIG. 45 shows the results of measuring the waveguide efficiency and the reflected light intensity from the white high reflectance layer 1000 with respect to the reflection angle ⁇ by the white high reflectance layer 1000 of the south surface incident sunlight shown in FIG. 44.
  • the curve A shows the direction ( ⁇ ) dependence of the reflected light intensity from the white high reflectance layer 1000
  • the curve B shows the direction ( ⁇ ) dependence of the waveguide efficiency of the cylindrical waveguide core layer 13. ..
  • the curve C (after standardization), which is the product, is the amount of light reaching the intermediate band type solar cell 20 existing on the north surface (not shown in FIG. 44). From this result, it is expected that 10 to 20% of the total incident light will be guided.
  • FIG. 46A shows a sample in which a high-reflectivity blank paper is wound as a white high-reflection layer 1000 on the outer peripheral surface of a cylinder 500 having a diameter of 50 mm, and a cylindrical waveguide core layer 13 is provided through the high-reflection blank paper. It is a photograph (actual photograph of a light field) of the state when green light (corresponding to the south surface incident sunlight of FIG. 44) is incident from the direction perpendicular to the cylinder 500. From FIG. 46A, it is clear that the entire sample is green and green light is guided to the entire waveguide core layer 13.
  • FIG. 46A shows a sample in which a high-reflectivity blank paper is wound as a white high-reflection layer 1000 on the outer peripheral surface of a cylinder 500 having a diameter of 50 mm, and a cylindrical waveguide core layer 13 is provided through the high-reflection blank paper. It is a photograph (actual photograph of a light field) of the state when green light (corresponding to the south surface incident sunlight of FIG
  • 46B is a photograph (actual photograph of the light field) taken when the sample is curved in an arc shape in a state where green light is incident from a direction perpendicular to the cylinder 500. From FIG. 46B, it is clear that the entire sample exhibits green color even in the curved state, and green light is guided to the entire waveguide core layer 13. This result is consistent with the result shown in FIG.
  • the outer clad layer 15 and the inner clad layer 11 of the waveguide core layer 13 provided on the side surface of the cylinder 500 are provided concentrically, but they are centered. It is also effective to give the same effect as the case where the waveguide core layer 13 has a locally tapered structure by forming the shape including a part of the shifted circle. That is, the effect of the local taper angle is added to the ⁇ of the above equation (4), and a further effect can be obtained. Further, the intermediate band type solar cell 20 having an edge light incident arrangement installed at the end of the waveguide core layer 13 can also use a pn junction made of a single semiconductor.
  • Examples of such an element include, for example, a silicon-based Mountain Chip manufactured by MHGoPower of Taiwan. Furthermore, by incorporating an intermediate band type solar cell 20 or a general solar cell in an arrangement in which light is incident perpendicularly to the pn junction surface at the end of the waveguide core layer 13, the voltage that is a feature of the condensing system can be further incorporated. You can benefit from the improvement in conversion efficiency that accompanies the rise. Further, the photoelectric conversion device 900 having the corrugated plate-shaped waveguide core layer 13 used in the eleventh embodiment can be installed on the bonnet or the roof portion of various automobiles such as electric vehicles (EVs).
  • EVs electric vehicles
  • the photoelectric conversion device 900 having the corrugated board-shaped waveguide core layer 13 and the photoelectric conversion device 900 having the hemispherical waveguide core layer 13 used in the tenth embodiment for example, in the past years. Almost the entire surface of a car with a unique roundness, such as a famous car, can be covered with a photoelectric conversion device.

Abstract

This photoelectric conversion device comprises: a light receiving unit (10); a photoelectric conversion unit composed of an intermediate band-type solar cell (20), which is spatially separated from the light receiving unit (10); and a spatially asymmetric waveguide (13) which connects the light receiving unit (10) and the photoelectric conversion unit and has a function of converting the travel direction of light, wherein the photoelectric conversion unit is provided at the end of the waveguide (13) on the light emitting side, and the direction of light emitted from the end of the waveguide (13) on the light emitting side is substantially parallel to a semiconductor layer (21) constituting the intermediate band-type solar cell (20).

Description

光電変換装置、建築物および移動体Photoelectric converters, buildings and mobiles
 この発明は、光電変換装置、建築物および移動体に関し、例えば、ビルや家屋などの各種の建築物の窓、壁、屋根や各種の電子機器のディスプレイ、自動車や空中を移動する小型無人機などの各種の移動体の外面に設置して太陽電池として用いて好適な光電変換装置ならびにこの光電変換装置を用いた建築物および移動体に関する。 The present invention relates to photoelectric conversion devices, buildings and moving objects, for example, windows, walls, roofs and displays of various electronic devices of various buildings such as buildings and houses, small unmanned machines moving in the air and automobiles, and the like. The present invention relates to a photoelectric conversion device suitable for being installed on the outer surface of various moving bodies of the above and used as a solar cell, and a building and a moving body using this photoelectric conversion device.
 太陽光発電システムでは、広大な土地を必要とする。試算によると、メガワットあたり5エーカー(約20235m)分の土地が必要であり、場所によっては土地の劣化や動植物の生息地減少が懸念される。特に山間部の多い日本では、降雨量が多い時の山崩れ・土砂災害などの危険性が無視できないことは記憶に新しい。また、風力発電とは異なり、農業用の土地を同時に太陽光発電用に使用することはほぼできない。太陽光発電の事業用地の取得が大きな課題となっている。従来、ワイドスペクトルを有する光源からの光を電気エネルギーに変換するに際し、ホスト半導体のバンドギャップ中に中間バンドと呼ばれるもう一つのバンドを設けることにより吸収波長帯域を広げる中間バンド型太陽電池(Intermediate-band Solar Cell:IBSC)が知られている(非特許文献1、2、3参照)。この中間バンド型太陽電池では、中間バンドの存在の効果は見られるものの、本来のバンドギャップが発電に寄与する領域での変換効率が落ちている(非特許文献4参照)。このため、まだ必ずしも実デバイスにおいて有効な結果は得られていない。 Solar systems require vast amounts of land. According to estimates, 5 acres (about 20235 m 2 ) of land is required per megawatt, and there are concerns about land deterioration and habitat destruction of animals and plants depending on the location. Especially in Japan, where there are many mountainous areas, it is fresh in my memory that the danger of landslides and landslides when there is a lot of rainfall cannot be ignored. Also, unlike wind power, it is almost impossible to use agricultural land for solar power at the same time. Acquisition of business land for solar power generation has become a major issue. Conventionally, when converting light from a light source having a wide spectrum into electrical energy, an intermediate band type solar cell (Intermediate-) that expands the absorption wavelength band by providing another band called an intermediate band in the band gap of the host semiconductor. band Solar Cell (IBSC) is known (see Non-Patent Documents 1, 2 and 3). In this intermediate band type solar cell, although the effect of the existence of the intermediate band can be seen, the conversion efficiency in the region where the original band gap contributes to power generation is lowered (see Non-Patent Document 4). For this reason, effective results have not always been obtained in actual devices.
 従来の中間バンド型太陽電池においては、光入射の方向とフォトキャリアの進行方向とが互いに平行な配置となっている。中間バンド型太陽電池の変換効率はインターサブバンド吸収係数αIBに大きく依存することが知られており、αIB=1000cm-1の場合、理論変換効率は40%が可能で、αIB=10000cm-1の場合には、変換効率50%も可能とされている(非特許文献5参照)。 In the conventional intermediate band type solar cell, the direction of light incident and the traveling direction of the photocarrier are arranged parallel to each other. It is known that the conversion efficiency of an intermediate band type solar cell largely depends on the intersubband absorption coefficient α IB . When α IB = 1000 cm -1 , the theoretical conversion efficiency can be 40%, and α IB = 10000 cm. In the case of -1 , the conversion efficiency of 50% is also possible (see Non-Patent Document 5).
 中間バンド型太陽電池においては、中間ギャップ準位に留まる電子、ホールのライフタイムをある一定以上に保つ必要がある。そうでないと、同準位はワイドギャップ領域で生成したフォトキャリアを消費してしまい、単なる非発光準位のような有害な寄与しかしないためである。中間バンドギャップをもたらす構造(例えば量子ドット構造)を介した再結合を抑制することが課題となっている(非特許文献6参照)。 In the intermediate band type solar cell, it is necessary to keep the lifetime of electrons and holes remaining in the intermediate gap level above a certain level. Otherwise, the level consumes the photocarriers generated in the wide-gap region and makes only a detrimental contribution, such as a mere non-luminous level. The problem is to suppress recombination via a structure that causes an intermediate bandgap (for example, a quantum dot structure) (see Non-Patent Document 6).
 中間バンドを形成する半導体として量子ドットが用いられるが、歪みを以ってドット状の構造を得ており、成長時間や結晶品質上の拘束条件により中間バンドギャップ層の厚みを非常に大きくとることは容易ではない。 Quantum dots are used as semiconductors that form intermediate bands, but they have a dot-like structure due to distortion, and the thickness of the intermediate bandgap layer must be extremely large due to constraints on growth time and crystal quality. Is not easy.
 他方、量子井戸層が薄すぎると光吸収を大きくとれない。従って、光の進行方向とフォトキャリア進行方向とが互いに平行な配置では、上記の2つの要求が相反関係になってしまう。 On the other hand, if the quantum well layer is too thin, light absorption cannot be obtained significantly. Therefore, in an arrangement in which the traveling direction of light and the traveling direction of photocarriers are parallel to each other, the above two requirements become contradictory.
 光入射の方向とフォトキャリアの進行方向とが互いに平行な配置の中間バンド型太陽電池では、本来中間バンド型太陽電池が有する高光電変換効率の実現可能性を十分生かすことができていない。また在来型の中間バンド型太陽電池では、中間ギャップの値は結晶成長のラテラル方向に複数用意することができていない。 In the intermediate band type solar cell in which the direction of light incident and the traveling direction of the photocarrier are parallel to each other, the feasibility of high photoelectric conversion efficiency originally possessed by the intermediate band type solar cell cannot be fully utilized. Further, in the conventional intermediate band type solar cell, a plurality of intermediate gap values cannot be prepared in the lateral direction of crystal growth.
 光のハーベスティング部(受光部)と光電変換部とを互いに分離し、両者を導波路により結合した、光入射方向とフォトキャリアの進行方向とが互いに垂直な配置の導波路結合光電変換装置が本発明者により提案されている(特許文献1、2参照)が、各発電ユニットが別々の出力電圧を発生させるため、一定の出力電圧にするには、同様の構造を2つ作り、出力電圧の大なるものと小なるものとをたすき掛けに直列接続するなどの方策が必要であった。 A waveguide-coupled photoelectric conversion device in which the light harvesting section (light receiving section) and the photoelectric conversion section are separated from each other and the two are coupled by a waveguide, and the light incident direction and the traveling direction of the photocarrier are perpendicular to each other. Although proposed by the present inventor (see Patent Documents 1 and 2), since each power generation unit generates a different output voltage, in order to obtain a constant output voltage, two similar structures are formed and the output voltage is obtained. It was necessary to take measures such as connecting the large ones and the small ones in series.
 特許文献1、2に提案された導波路結合光電変換装置は、高効率の太陽光発電を可能とすると期待されているが、朝夕の斜め入射太陽光に対する光進行方向変換は全入射角に対して、特に30~50°の中間入射角に対しては有効な結果が得られていない。 The waveguide coupled photoelectric conversion device proposed in Patent Documents 1 and 2 is expected to enable highly efficient photovoltaic power generation, but the light traveling direction conversion for obliquely incident sunlight in the morning and evening is applied to the total incident angle. Therefore, no effective result has been obtained especially for an intermediate incident angle of 30 to 50 °.
 従来型の光進行方向変換層にはパラボラ断面のラインアンドスペース構造やパラボロイド構造が用いられているが、屈折光を当該パラボラ曲線の焦点に集めることは容易ではない(特許文献1参照)。従って、当該屈折光がパラボラ面で反射した後は、パラボラ軸に平行な光となることは非常に難しかった。そのため、光進行方向変換層の背後に控える2次元導波路への垂直入射もまた実現が難しかった。 Although a line-and-space structure or a parabolic structure with a parabolic cross section is used for the conventional light traveling direction conversion layer, it is not easy to collect the refracted light at the focal point of the parabolic curve (see Patent Document 1). Therefore, after the refracted light is reflected on the parabola surface, it is very difficult to make the light parallel to the parabolic axis. Therefore, it was also difficult to realize vertical incident on the two-dimensional waveguide behind the optical traveling direction conversion layer.
 特許文献1、2に提案された光電変換装置では、3次元空間伝搬光(3D光)を平面導波光(2D光)化することにより効率を高めることができるが、3D-2D変換を行う構造の作製を廉価に行うことは容易ではなかった。 In the photoelectric conversion device proposed in Patent Documents 1 and 2, the efficiency can be improved by converting the three-dimensional space propagating light (3D light) into a planar waveguide light (2D light), but the structure performs 3D-2D conversion. It was not easy to make the product at low cost.
 以上のように、在来型の太陽電池あるいは光電変換装置では、高光電変換効率であり且つ製造が容易で廉価な太陽光発電システムが実現できていない。 As described above, conventional solar cells or photoelectric conversion devices have not been able to realize a photovoltaic power generation system having high photoelectric conversion efficiency, easy to manufacture, and inexpensive.
国際公開第2017/061448号公報International Publication No. 2017/0614848 国際公開第2019/059342号公報International Publication No. 2019/059342
 上述のように、従来の中間バンド型太陽電池では、その潜在的な性能を十分に発揮することができていない。 As mentioned above, the conventional intermediate band type solar cell has not been able to fully demonstrate its potential performance.
 そこで、この発明が解決しようとする課題は、高光電変換効率化が可能な中間バンド型太陽電池の潜在的能力を十分に発揮させることができ、受光部と光電変換部とを互いに分離した導波路結合光電変換装置が本来有する高光電変換効率を実現することができ、ワイドスペクトルを有する光源からの光を効率的に電力に変換することができる光電変換装置ならびにこの光電変換装置を有する建築物および移動体を提供することである。 Therefore, the problem to be solved by the present invention is that the potential of the intermediate band type solar cell capable of improving the efficiency of high photoelectric conversion can be fully exhibited, and the light receiving unit and the photoelectric conversion unit are separated from each other. A photoelectric conversion device capable of realizing the high photoelectric conversion efficiency inherent in the waveguide coupled photoelectric conversion device and efficiently converting light from a light source having a wide spectrum into electric power, and a building having this photoelectric conversion device. And to provide a moving body.
 上記課題を解決するために、この発明は、
 受光部と、
 上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
 上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
を有し、
 上記光電変換部は上記導波路の光出射側の端部に設けられており、
 上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置である。
In order to solve the above problems, the present invention
Light receiving part and
A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
Have,
The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
This is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
 中間バンド型太陽電池の中間バンドは、例えば、単一または多重量子井戸構造を有する半導体や、量子ドット構造を有する半導体などにより形成される。特に、中間バンド型太陽電池のホスト半導体がGaN系半導体である場合には、このような中間バンドを形成する半導体としては、好適にはGaInN系半導体が用いられる。 The intermediate band of the intermediate band type solar cell is formed of, for example, a semiconductor having a single or multiple quantum well structure, a semiconductor having a quantum dot structure, or the like. In particular, when the host semiconductor of the intermediate band type solar cell is a GaN-based semiconductor, a GaInN-based semiconductor is preferably used as the semiconductor forming such an intermediate band.
 この光電変換装置においては、好適には、受光部に、この受光部に入射する光の進行方向をこの受光部にほぼ垂直な方向に変換する光進行方向変換層を有する。この光進行方向変換層は、好適には、第1の屈折率を有する透明基材と、透明基材の一方の主面に2次元アレイ状に設けられた、第1の屈折率を有する透明材料からなる複数の回転放物体状部と、それぞれの回転放物体状部を覆うように設けられた、半球面からなる表面を有し、第1の屈折率より小さい第2の屈折率を有する半球体状部とを有し、回転放物体状部の焦点と半球体状部の中心とが互いに一致している。 In this photoelectric conversion device, preferably, the light receiving portion has a light traveling direction conversion layer that converts the traveling direction of the light incident on the light receiving portion into a direction substantially perpendicular to the light receiving portion. The light traveling direction changing layer is preferably a transparent base material having a first refractive index and a transparent base material having a first refractive index provided in a two-dimensional array on one main surface of the transparent base material. It has a plurality of rotating release object-like portions made of a material, and a surface made of a hemisphere provided so as to cover each rotating release object-like portion, and has a second refractive index smaller than the first refractive index. It has a hemispherical portion, and the focal point of the rotating object-shaped portion and the center of the hemispherical portion coincide with each other.
 上記の導波路は、導波路の光出射側の端部から出射する光の方向が中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成される。例えば、上記の導波路は、導波方向に対して連続的併進対称性を有する2次元導波路と、この2次元導波路と上記の光進行方向変換層との間に設けられた、上記の光進行方向変換層により上記受光部の受光面にほぼ垂直な方向に進行方向が変換された光を、局所的に見て当該受光面に平行な一方向のみに非対称的に伝搬させる、屈折率異方性具有層を少なくともその一部に有する離散的併進対称性を有する導波構造体とからなる。この導波構造体は、例えば、互いに配位方向(配向子(Director) の方向)が異なる複数の液晶層を少なくとも一部に含み、あるいは、互いに非平行界面で仕切られた複数の等方性媒体を少なくとも一部に含むが、これに限定されるものではない。一般的に、導波路の全体形状は特に制限されず、平面状であっても曲面状、例えば円筒状、半円球状(ドーム状)、波板状などであってもよい。導波路として2次元導波路を用い円筒状に形成することにより、例えば円柱の側面に光電変換装置を設置することが可能となる。また、2次元導波路を半円球状に形成することにより、例えば円柱の半円球状の頂部に光電変換装置を設置することが可能となる。2次元導波路を波板状に形成し、建築物の外壁に光電変換装置を設置してもよい。これらの円筒状、半円球状または波板状の2次元導波路を用いる場合、その内面(光電変換装置の設置面を向く面)に高反射率の白色塗料を塗布して白色高反射率層を形成することにより、この2次元導波路に入射する光を2次元導波路内で効率良く導波させることができる。 The above-mentioned waveguide is configured so that the direction of the light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell. For example, the above-mentioned waveguide is provided between a two-dimensional waveguide having continuous parallel anisotropy with respect to the waveguide direction and the above-mentioned optical traveling direction conversion layer. Refractive index that asymmetrically propagates light whose traveling direction is changed in a direction substantially perpendicular to the light receiving surface of the light receiving portion by the light traveling direction changing layer in only one direction parallel to the light receiving surface when viewed locally. It is composed of a waveguide structure having discrete translational symmetry having an anisotropic layer having at least a part thereof. This waveguide structure contains, for example, a plurality of liquid crystal layers having different coordinating directions (directions of directors) from each other in at least a part thereof, or a plurality of isotropic structures separated by non-parallel interfaces. It includes, but is not limited to, at least a portion of the medium. In general, the overall shape of the waveguide is not particularly limited, and may be a planar shape or a curved surface shape, for example, a cylindrical shape, a semicircular spherical shape (dome shape), a corrugated plate shape, or the like. By forming a cylindrical shape using a two-dimensional waveguide as a waveguide, it is possible to install a photoelectric conversion device on the side surface of the cylinder, for example. Further, by forming the two-dimensional waveguide in a semicircular shape, it is possible to install the photoelectric conversion device on the top of the semicircular spherical shape of a cylinder, for example. A two-dimensional waveguide may be formed in the shape of a corrugated sheet, and a photoelectric conversion device may be installed on the outer wall of the building. When these cylindrical, hemispherical or corrugated two-dimensional waveguides are used, a high-reflectance white paint is applied to the inner surface (the surface facing the installation surface of the photoelectric conversion device) to form a white high-reflectance layer. By forming the above, the light incident on the two-dimensional waveguide can be efficiently waveguideed in the two-dimensional waveguide.
 この光電変換装置において、上記の受光部および導波路は、例えば次のように構成することができる(特許文献2参照)。即ち、受光部および導波路は、
 導波方向に対して連続的併進対称性を有する導波コア層と、
 上記導波コア層を不連続に被覆し、導波方向に対して離散的併進対称性を有するクラッド層とを有し、
 上記クラッド層は、上記導波コア層を被覆していない断絶部の端部と、上記断絶部に対して上記導波コア層の導波方向と反対側で且つ上記導波コア層から離れた位置との間に延在し、上記導波コア層の導波方向に向かって上記導波コア層に次第に近づき、且つ上記断絶部の上記端部における接線が上記導波コア層に平行またはほぼ平行になるように設けられた構造をその一部に有し、
 上記クラッド層の上記断絶部に上記クラッド層で被覆された光導入コア層が上記導波コア層と合流するように設けられている。このように構成することにより、導波コア層は、その内部での光の導波方向とその逆方向とに対して非対称な構造を有する。典型的には、導波コア層は導波方向に対して連続的並進対称性を有し、クラッド層は導波方向に対して離散的並進対称性を有する。典型的には、クラッド層の断絶部は、導波コア層の導波方向に等間隔に複数設けられ、それぞれの断絶部に光導入コア層が設けられる。断絶部の間隔は必要に応じて選ばれる。好適には、光導入コア層およびこの光導入コア層を被覆するクラッド層は、光導入コア層に導入される光が光導入コア層とクラッド層との界面で全反射を繰り返して導波コア層に到達するように設けられる。典型的には、断絶部の端部から延在するクラッド層の、導波コア層の面に垂直で且つ導波コア層の導波方向に平行な断面の形状は、導波コア層の導波方向に凹に湾曲した形状(より正確には導波コア層の導波方向に凹に湾曲した形状の一部)を有する。この形状は、例えば、円弧または楕円の一部を少なくともその一部に含む組み合わせ曲線あるいは長軸が導波コア層の導波方向に垂直な楕円(縦長楕円)の一部と、長軸が導波コア層の導波方向に平行な楕円(横長楕円)または円弧の一部との組み合わせ曲線からなる。より具体的には、この形状は、例えば、四分の一円の円弧の形状や、楕円の長軸および短軸で分割された四分の一部分の弧の形状や、これらの組み合わせによる曲線、例えば、次のようなものであってもよい。即ち、この形状は、光入射面側の、長軸が導波コア層の導波方向に垂直な楕円(縦長楕円)の長軸および短軸で分割された四分の一部分からなる第1の弧と、この第1の弧に連結した、長軸が導波コア層の導波方向に平行な楕円(横長楕円)の長軸および短軸で分割された四分の一部分から長軸との交点から所定の長さの部分を切除した第2の弧とからなり、全体として導波コア層の導波方向に凹に湾曲しているものであってもよい。あるいはまた、この第2の弧は、半径の大きい円の四分の一から、上記の楕円と同様に一部を切除したものでもよい。ここで、典型的には、縦長楕円の長半径(長軸の長さの1/2)は6~100μm程度、横長楕円の長半径は100μm~3mm程度、あるいはまた、上記の半径の四分の一円の半径は300μm~10mm程度である。この場合、好適には、光導入コア層とクラッド層との繰り返し構造の中に、相対的に厚いクラッド層が周期的に含まれるようにする。この相対的に厚いクラッド層が現れる周期や、この相対的に厚いクラッド層および相対的に薄いクラッド層の幅(断面における厚さ)は、全体としてロスを僅少にしつつ光導入コア層内に入射光を伝搬させて導波コア層に導くことができるように適宜選ばれる。
In this photoelectric conversion device, the light receiving portion and the waveguide can be configured as follows, for example (see Patent Document 2). That is, the light receiving part and the waveguide are
A waveguide core layer with continuous translational symmetry with respect to the waveguide direction,
The waveguide core layer is discontinuously covered, and has a clad layer having discrete translational symmetry with respect to the waveguide direction.
The clad layer is separated from the waveguide core layer at the end of the breaking portion that does not cover the waveguide core layer, on the side opposite to the waveguide direction of the waveguide core layer with respect to the cutting portion, and away from the waveguide core layer. It extends between the positions and gradually approaches the waveguide core layer toward the waveguide direction of the waveguide core layer, and the tangent line at the end of the disconnection portion is parallel to or substantially equal to the waveguide core layer. It has a structure provided in parallel as a part of it,
A light-introduced core layer coated with the clad layer is provided at the discontinuity of the clad layer so as to join the waveguide core layer. With this configuration, the waveguide core layer has a structure that is asymmetric with respect to the waveguide direction and the opposite direction of the light inside the waveguide core layer. Typically, the waveguide core layer has continuous translational symmetry with respect to the waveguide direction, and the clad layer has discrete translational symmetry with respect to the waveguide direction. Typically, a plurality of cutout portions of the clad layer are provided at equal intervals in the waveguide direction of the waveguide core layer, and a light introduction core layer is provided in each cutoff portion. The spacing between the breaks is chosen as needed. Preferably, the light-introduced core layer and the clad layer covering the light-introduced core layer are a waveguide core in which the light introduced into the light-introduced core layer is repeatedly totally reflected at the interface between the light-introduced core layer and the clad layer. Provided to reach the layer. Typically, the shape of the cross section of the clad layer extending from the end of the break that is perpendicular to the plane of the waveguide core layer and parallel to the waveguide direction of the waveguide core layer leads to the waveguide of the waveguide core layer. It has a concavely curved shape in the wave direction (more accurately, a part of the concavely curved shape in the waveguide direction of the waveguide core layer). This shape is, for example, a combination curve containing at least a part of an arc or an ellipse, or a part of an ellipse (vertical ellipse) whose major axis is perpendicular to the waveguide direction of the waveguide core layer, and the major axis is derived. It consists of an ellipse (horizontally oblong ellipse) parallel to the waveguide direction of the wave core layer or a combination curve with a part of an arc. More specifically, this shape can be, for example, the shape of a quarter circle arc, the shape of a quarter arc divided by the major and minor axes of an ellipse, or a curve created by combining these. For example, it may be as follows. That is, this shape is the first one consisting of a quarter divided by the major axis and the minor axis of an ellipse (longitudinal ellipse) whose major axis is perpendicular to the waveguide direction of the waveguide core layer on the light incident surface side. The arc and the major axis from a quarter divided by the major axis and the minor axis of an ellipse (horizontally oblong ellipse) whose major axis is parallel to the waveguide direction of the waveguide core layer connected to this first arc. It may be composed of a second arc obtained by cutting a portion having a predetermined length from the intersection, and may be concavely curved in the waveguide direction of the waveguide core layer as a whole. Alternatively, this second arc may be a part cut from a quarter of a circle having a large radius in the same manner as the above ellipse. Here, typically, the semimajor axis of the vertically elongated ellipse (1/2 of the length of the major axis) is about 6 to 100 μm, the semimajor axis of the horizontally elongated ellipse is about 100 μm to 3 mm, or a quarter of the above radius. The radius of one circle is about 300 μm to 10 mm. In this case, preferably, a relatively thick clad layer is periodically included in the repeating structure of the light-introduced core layer and the clad layer. The period in which this relatively thick clad layer appears and the width (thickness in the cross section) of this relatively thick clad layer and the relatively thin clad layer are incident into the light introduction core layer while minimizing the loss as a whole. It is appropriately selected so that light can be propagated and guided to the waveguide core layer.
 この光電変換装置において、上記の受光部および導波路は、例えば次のように構成することもできる。即ち、受光部および導波路は、
 複数の反射鏡が透明層を介して一方向に周期的に配置され、一方の主面が光入射面を構成し、他方の主面が光出射面を構成する平板状の反射鏡アレイと、
 上記反射鏡アレイの上記他方の主面に設けられ、外部より上記反射鏡アレイの上記一方の主面に入射して上記反射鏡で反射されることにより入射した光が一方向に導波されるように構成された非対称面状光導波路と、
を有する。そして、この反射鏡アレイの光入射面に、上記の光進行方向変換層が設けられる。反射鏡アレイとしては、例えば、特許文献1に記載のものを用いることができる。反射鏡アレイにおける反射鏡の断面形状および配置は、光進行方向変換層を通ってこの光進行方向変換層に垂直な方向に進行方向が変換された光が、非対称面状光導波路を直射することなく(即ち、まず必ず反射鏡に入射して反射されてから)、且つ、一つの反射鏡で反射された光が隣の反射鏡に入射して散乱されることのないように設定される。その他のことは特許文献1と同様である。非対称面状光導波路は、典型的には、光出射側の端面に向かって断面積が徐々に増加する楔状の形状(あるいはテーパー形状)を有する。このような楔状の非対称面状光導波路では、この非対称面状光導波路の光入射面から内部に入射した光は、この非対称面状光導波路の二つの主面で交互に反射されながら断面積が大きくなる向きに導波され、最終的に非対称面状光導波路の光出射側の端部に設けられた光電変換部(発電部)に入射する。非対称面状光導波路は、平面状光導波路であっても、曲面状光導波路であってもよい。また、非対称面状光導波路の平面形状は必要に応じて選ばれるが、典型的には、四角形、例えば長方形または正方形の形状を有する。この場合、必要に応じて、非対称面状光導波路の光出射端面を除いた端面、例えば、非対称面状光導波路が四角形の形状を有し、その互いに対向する一対の辺のうちの少なくとも一方の辺に相当する非対称面状光導波路の端面の全部または一部が光出射端面となる場合にはこの四角形の上記の互いに対向する一対の辺と異なる一対の辺のうちの少なくとも一方の辺に相当する非対称面状光導波路の端部に光反射機構が設けられる。この場合、非対称面状光導波路の主面に入射した光が非対称面状光導波路内を導波される際にこの光反射機構に入射すると反射され、光出射端面に向かう方向に光路が曲げられることにより、光出射端面から取り出すことができる光の量が多くなる。この光反射機構は、例えば、非対称面状光導波路の側面に設けられた光反射膜や非対称面状光導波路の側面が鏡面に構成されたものである。
In this photoelectric conversion device, the light receiving portion and the waveguide can be configured as follows, for example. That is, the light receiving part and the waveguide are
A flat-plate reflector array in which a plurality of reflectors are periodically arranged in one direction via a transparent layer, one main surface constitutes a light incident surface and the other main surface constitutes a light emitting surface.
The incident light is guided in one direction by being provided on the other main surface of the reflector array and incident on the one main surface of the reflector array from the outside and reflected by the reflector. Asymmetric planar optical waveguides configured as
Have. Then, the above-mentioned light traveling direction changing layer is provided on the light incident surface of the reflecting mirror array. As the reflector array, for example, the one described in Patent Document 1 can be used. The cross-sectional shape and arrangement of the reflectors in the reflector array is that the light whose traveling direction is changed in the direction perpendicular to the light traveling direction conversion layer directly hits the asymmetric planar optical waveguide through the light traveling direction conversion layer. It is set so that the light reflected by one reflector is not incident on the adjacent reflector and scattered. Other things are the same as in Patent Document 1. The asymmetrical optical waveguide typically has a wedge-shaped (or tapered) shape in which the cross-sectional area gradually increases toward the end face on the light emitting side. In such a wedge-shaped asymmetrical optical waveguide, the light incident inside from the light incident surface of the asymmetrical planar optical waveguide is alternately reflected by the two main surfaces of the asymmetrical planar optical waveguide to have a cross-sectional area. It is waveguide in a larger direction and finally incident on a photoelectric conversion unit (power generation unit) provided at the end on the light emitting side of the asymmetric planar optical waveguide. The asymmetric plane optical waveguide may be a planar optical waveguide or a curved optical waveguide. Further, the planar shape of the asymmetrical optical waveguide is selected as needed, but typically has a rectangular shape, for example, a rectangular shape or a square shape. In this case, if necessary, the end face of the asymmetric plane optical waveguide excluding the light emitting end face, for example, the asymmetric plane optical waveguide has a quadrangular shape, and at least one of a pair of sides facing each other thereof. When all or part of the end face of the asymmetric planar optical waveguide corresponding to the side is the light emitting end face, it corresponds to at least one side of the pair of sides different from the above-mentioned pair of opposite sides of this quadrangle. A light reflection mechanism is provided at the end of the asymmetric planar optical waveguide. In this case, when the light incident on the main surface of the asymmetric planar optical waveguide is incident on the light reflection mechanism when it is waveguideed in the asymmetric planar optical waveguide, it is reflected and the optical path is bent in the direction toward the light emitting end surface. This increases the amount of light that can be extracted from the light emitting end face. In this light reflection mechanism, for example, a light reflection film provided on the side surface of the asymmetric surface optical waveguide or the side surface of the asymmetric surface optical waveguide is configured as a mirror surface.
 中間バンド型太陽電池を構成する半導体層は、無機半導体または有機半導体からなり、典型的には、p型半導体層とn型半導体層とからなるpn接合であり、そのpn接合面は、導波路の光出射側の端部から出射する光の方向にほぼ平行であり、p型半導体層とn型半導体層との間に中間バンド形成層を有する。半導体層の厚さは、この半導体層内のキャリアの拡散長の関数を勘案して適宜選ばれるが、好適には1μm以上500μm以下である。半導体層を構成する半導体は、アモルファス(非晶質)、多結晶、単結晶のいずれの形態のものであってもよい。 The semiconductor layer constituting the intermediate band type solar cell is made of an inorganic semiconductor or an organic semiconductor, and is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer, and the pn junction surface thereof is a waveguide. It is substantially parallel to the direction of the light emitted from the end of the light emitting side, and has an intermediate band forming layer between the p-type semiconductor layer and the n-type semiconductor layer. The thickness of the semiconductor layer is appropriately selected in consideration of the function of the diffusion length of the carriers in the semiconductor layer, but is preferably 1 μm or more and 500 μm or less. The semiconductor constituting the semiconductor layer may be in any form of amorphous (amorphous), polycrystal, or single crystal.
 無機半導体としては、CdSe、PbS、PbSe、PbTeなどのII-VI族化合物半導体、GaSb、InAs、InN、AlInN、GaInN、GaN、AlGaN、GaAsN、GaPNなどのIII-V族化合物半導体、SiやSiGeなどのIV族半導体、SiGeSn1-x-y O、SiN、SiO、CIS(CuInSe)、CIGS(CuInGaSe)、CuInGaSeTeなどを用いることができる。これらの半導体は、例えば、In、GaなどのIII族元素の組成比の制御や硫黄(S)の混合などによってバンドギャップを制御することができるのが特徴である。半導体層は、これらの無機半導体からなる微粒子により構成することもできる。 Examples of the inorganic semiconductor include II-VI group compound semiconductors such as CdSe, PbS, PbSe, and PbTe, III-V compound semiconductors such as GaSb, InAs, InN, AlInN, GaInN, GaN, AlGaN, GaAsN, and GaPN, and Si and SiGe. Group IV semiconductors such as Si x Gey Sn 1-xy O , SiN x , SiO x , CIS (CuInSe), CIGS (CuInGaSe), CuInGaSeTe and the like can be used. These semiconductors are characterized in that the bandgap can be controlled by, for example, controlling the composition ratio of Group III elements such as In and Ga and mixing sulfur (S). The semiconductor layer can also be composed of fine particles made of these inorganic semiconductors.
 有機半導体としては、有機太陽電池の材料として一般的に報告されているものは全て用いることができるが、具体的には、ペンタセンなどのポリアセン、ポリアセチレン(好ましくは二置換型ポリアセチレン)、ポリ(p-フェニレンビニレン)、ポリ(2,5-チエニレンビニレン)、ポリピロール、ポリ(3-メチルチオフェン)、ポリアニリン、ポリ(9,9-ジアルキルフルオレン)(PDAF)、ポリ(9,9-ジオクチルフルオレン-co-ビチオフェン)(F8T2)、ポリ(1-ヘキシル-2-フェニルアセチレン)(PHPA)(発光材料としては青色の発光を示す)、ポリ(ジフェニルアセチレン)誘導体(PDPA-nBu)(発光材料としては緑色の発光を示す)、ポリ(ピリジン)(PPy)、ポリ(ピリジルビニレン)(PPyV)、シアノ置換型ポリ(p-フェニレンビニレン)(CNPPV)、ポリ(3,9-ジ-tert-ブチルインデノ[1,2-b]フルオレン(PIF)などを用いることができる。これらの有機半導体のドーパントについては、ドナーとしてはアルカリ金属(Li、Na、K、Cs)を用いることができ、アクセプタとしてはハロゲン類(Br、I、CI)、ルイス酸(BF、PF、AsF、SbF、SO)、遷移金属ハロゲン化物(FeCl、MoCl、WCl、SnCl)、有機アクセプタ分子としてはTCNE、TCNQを用いることができる。また、電気化学ドーピングに用いられるドーパントイオンは、陽イオンとしてはテトラエチルアンモニウムイオン(TEA)、テトラブチルアンモニウムイオン(TBA)、Li、Na、K、陰イオンとしてはClO 、BF 、PF 、AsF 、SbF などを用いることができる。有機半導体としてはさらに、高分子電解質を用いることもできる。この高分子電解質の具体例を挙げると、ポリアニオンとしては、サルフォネートポリアニリン、ポリ(チオフェン-3-酢酸)、サルフォネートポリスチレン、ポリ(3-チオフェンアルカンサルフォネート)など、ポリカチオンとしては、ポリアリルアミン、ポリ(p-フェニレン-ビニレン)前駆体高分子、ポリ(p-メチルピリジニウムビニレン)、プロトン化ポリ(p-ピリジルビニレン)、ポロトン(2-N-メチルピリジニウムアセチレン)などを用いることができる。半導体層として低不純物濃度にドープされた有機半導体層を用いる場合、この有機半導体層はヘテロジャンクション型あるいはバルクヘテロジャンクション型の構造とすることができる。ヘテロジャンクション型構造の有機半導体層においては、p型有機半導体膜およびn型有機半導体膜とを第1の電極および第2の電極と接触するように接合する。バルクヘテロジャンクション型構造の有機半導体層は、p型有機半導体分子とn型有機半導体分子との混合物からなり、p型有機半導体とn型有機半導体とが互いに入り組んで互いに接触した微細構造を有する。 As the organic semiconductor, all materials generally reported as materials for organic solar cells can be used, but specifically, polyacetylene such as pentacene, polyacetylene (preferably disubstituted polyacetylene), and poly (p.) -Phenylene vinylene), poly (2,5-thienylene vinylene), polypyrrole, poly (3-methylthiophene), polyaniline, poly (9,9-dialkylfluorene) (PDAF), poly (9,9-dioctylfluorene- co-Bithiophene) (F8T2), Poly (1-hexyl-2-phenylacetylene) (PH X PA) (light emitting material is blue), Poly (diphenylacetylene) derivative (PDPA-nBu) (Light emitting material) Poly (pyridine) (PPy), poly (pyridylbinylene) (PPyV), cyano-substituted poly (p-phenylene vinylene) (CNPPV), poly (3,9-di-tert- Butyl indeno [1,2-b] fluorene (PIF) and the like can be used. For the dopants of these organic semiconductors, alkali metals (Li, Na, K, Cs) can be used as donors, and as acceptors. Are halogens (Br 2 , I 2 , CI 2 ), Lewis acids (BF 3 , PF 5 , AsF 5 , SbF 5 , SO 3 ), transition metal halides (FeCl 3 , MoCl 5 , WCl 5 , SnCl 4 ). , TCNE and TCNQ can be used as the organic acceptor molecule, and the dopant ions used for electrochemical doping are tetraethylammonium ion (TEA + ), tetrabutylammonium ion (TBA + ), and Li + as cations. , Na + , K + , ClO 4- , BF 4- , PF 6- , AsF 6- , SbF 6- , etc. can be used as the anion. Further, a polymer electrolyte can be used as the organic semiconductor. Specific examples of this polymer electrolyte include polycations such as sulphonate polyaniline, poly (thiophene-3-acetic acid), sulphonate polystyrene, and poly (3-thiophene alkanthulfonate). Examples include polyallylamine, poly (p-phenylene-vinylene) precursor polymer, poly (p-methylpyridinium vinylene), and protonated poly (p-pyridylbinile). , Poloton (2-N-methylpyridinium acetylene) and the like can be used. When an organic semiconductor layer doped with a low impurity concentration is used as the semiconductor layer, the organic semiconductor layer can have a heterojunction type or a bulk heterojunction type structure. In the organic semiconductor layer having a heterojunction structure, the p-type organic semiconductor film and the n-type organic semiconductor film are bonded so as to be in contact with the first electrode and the second electrode. The organic semiconductor layer having a bulk heterojunction structure is composed of a mixture of a p-type organic semiconductor molecule and an n-type organic semiconductor molecule, and has a microstructure in which the p-type organic semiconductor and the n-type organic semiconductor are intertwined with each other and are in contact with each other.
 半導体層を構成する半導体としては、無機半導体および有機半導体のほかに、有機無機ハイブリッド半導体を用いることもできる。このような有機無機ハイブリッド半導体としては、例えば、ペロブスカイト系半導体を用いることができる。 As the semiconductor constituting the semiconductor layer, an organic-inorganic hybrid semiconductor can be used in addition to the inorganic semiconductor and the organic semiconductor. As such an organic-inorganic hybrid semiconductor, for example, a perovskite-based semiconductor can be used.
 この光電変換装置は、基本的にはどのようなものにも設置可能であるが、例えば、建築物、電子機器、移動体などに設置される。ここで、建築物は、光電変換装置を設置可能な建築物であれば、基本的にはどのようなものであってもよいが、具体的には、例えば、ビルディング、マンション、戸建住宅、アパート、駅舎、校舎、庁舎、競技場、球場、病院、教会、工場、倉庫、小屋、橋、円柱(電信柱など)、塔(広告塔など)などが挙げられる。これらの建築物への光電変換装置の設置箇所は特に限定されず、必要に応じて選ばれる。設置箇所の例を挙げると、これらの建築物のガラス窓や採光部などである。この場合、光電変換装置は、例えば、これらの建築物やその内部に設置される電気製品の電源として用いられる太陽電池である。好適には、面状光導波路の主面に光が入射する際に半導体層に光が直接入射しないように半導体層が建築物の陰の部分に配置される。例えば、面状光導波路が緩やかな曲率を有する部分を含むようにし、この部分を、例えば、瓦の下、屋根の中央部迫り出し稜線の下、窓の枠あるいは桟などに配置する。また、電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、車載機器、各種家庭電気製品などである。この場合、光電変換装置は、例えば、これらの電子機器の電源として用いられる太陽電池である。移動体は、基本的にはどのようなものであってもよいが、例えば、小型無人機、無人航空機、航空機、人工衛星、無人船舶、船舶、水中移動体、探査車(ローバー)、無人自動車、自動車などである。小型無人機あるいは無人航空機には、例えばドローン、ラジコン機、農薬散布ヘリコプターなどが含まれる。 This photoelectric conversion device can be basically installed in anything, but for example, it is installed in a building, an electronic device, a mobile body, or the like. Here, the building may be basically any building as long as it can be installed with a photoelectric conversion device, but specifically, for example, a building, a condominium, a detached house, or the like. Examples include condominiums, station buildings, school buildings, government buildings, stadiums, stadiums, hospitals, churches, factories, warehouses, huts, bridges, columns (telegraph columns, etc.), towers (advertising towers, etc.). The location where the photoelectric conversion device is installed in these buildings is not particularly limited, and is selected as necessary. Examples of installation locations are glass windows and daylighting sections of these buildings. In this case, the photoelectric conversion device is, for example, a solar cell used as a power source for electric appliances installed in these buildings and the inside thereof. Preferably, the semiconductor layer is arranged in a shadow portion of the building so that the light does not directly enter the semiconductor layer when the light is incident on the main surface of the planar optical waveguide. For example, the planar optical waveguide includes a portion having a gentle curvature, and this portion is arranged, for example, under a roof tile, under a central protruding ridge of a roof, a window frame, or a crosspiece. In addition, the electronic device may be basically any kind, and includes both a portable device and a stationary device. Specific examples include mobile phones, mobile devices, robots, and the like. Personal computers, in-vehicle devices, various home electric appliances, etc. In this case, the photoelectric conversion device is, for example, a solar cell used as a power source for these electronic devices. The moving object may be basically any, but for example, a small unmanned aerial vehicle, an unmanned aerial vehicle, an aircraft, an artificial satellite, an unmanned ship, a ship, an underwater moving object, a rover, or an unmanned vehicle. , Cars, etc. Small unmanned or unmanned aerial vehicles include, for example, drones, radio-controlled aircraft, pesticide spraying helicopters, and the like.
 また、この発明は、
 少なくとも一つの光電変換装置を有し、
 上記光電変換装置が、
 受光部と、
 上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
 上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
を有し、
 上記光電変換部は上記導波路の光出射側の端部に設けられており、
 上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置
である建築物である。
In addition, this invention
It has at least one photoelectric conversion device and has
The above photoelectric conversion device
Light receiving part and
A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
Have,
The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
It is a building which is a photoelectric conversion device configured so that the direction of the light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
 この建築物の発明においては、その性質に反しない限り、上記の光電変換装置の発明に関連して説明したことが成立する。 In the invention of this building, as long as it does not contradict its properties, the above-mentioned invention of the photoelectric conversion device is established.
 また、この発明は、
 少なくとも一つの光電変換装置を有し、
 上記光電変換装置が、
 受光部と、
 上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
 上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
を有し、
 上記光電変換部は上記導波路の光出射側の端部に設けられており、
 上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置
である移動体である。
In addition, this invention
It has at least one photoelectric conversion device and has
The above photoelectric conversion device
Light receiving part and
A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
Have,
The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
It is a moving body that is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
 この移動体の発明においては、その性質に反しない限り、上記の光電変換装置の発明に関連して説明したことが成立する。 In the invention of this moving body, as long as it does not contradict its properties, the above-mentioned invention of the photoelectric conversion device is established.
 この発明によれば、光電変換部から分離された受光部の全体で受光することができるため、受光量の最大化を図ることができ、こうして受光した3次元伝搬光を非対称な導波路内をこの非対称な導波路の非対称性により光電変換部に向かって導波させることにより2次元導波光へと非可逆的に変換(3次元伝搬光から2次元導波光に行ったきりに)することができ、最終的に導波路の端部から出射される導波光を中間バンド型太陽電池の半導体層の側面に入射させて光電変換することができる。この場合、中間バンド型太陽電池は、ホスト半導体のバンドギャップ中に中間バンドを有することにより吸収波長帯域を広げることができるため、太陽光スペクトルのようなワイドスペクトルを有する光源からの光を極めて効率的に電気エネルギーに変換することができる。そして、この光電変換装置を住宅などの建築物に適用することにより省エネルギー建築物を実現することができるとともに、自動車などの移動体に適用することにより省エネルギー移動体を実現することができる。 According to the present invention, since the entire light receiving unit separated from the photoelectric conversion unit can receive light, the amount of light received can be maximized, and the three-dimensional propagating light thus received can be transmitted in the asymmetric waveguide. Due to the asymmetry of this asymmetric waveguide, it is possible to irreversibly convert it into two-dimensional waveguide light by waveguideing it toward the photoelectric conversion unit (only when going from three-dimensional propagating light to two-dimensional waveguide light). The waveguide light finally emitted from the end of the waveguide can be incidentally incident on the side surface of the semiconductor layer of the intermediate band type solar cell for photoelectric conversion. In this case, the intermediate band type solar cell can widen the absorption wavelength band by having an intermediate band in the band gap of the host semiconductor, so that light from a light source having a wide spectrum such as a solar spectrum is extremely efficient. Can be converted into electrical energy. Then, by applying this photoelectric conversion device to a building such as a house, an energy-saving building can be realized, and by applying it to a moving body such as an automobile, an energy-saving moving body can be realized.
この発明の第1の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の光入射側から見た平面図である。It is a top view seen from the light incident side of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の光導波部を示す断面図である。It is sectional drawing which shows the optical waveguide part of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の光導波部のクラッド層の断絶部付近を拡大して示す断面図である。It is sectional drawing which enlarges and shows the vicinity of the cutoff part of the clad layer of the optical waveguide part of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の光導波部のクラッド層の断絶部付近を拡大して示す断面図である。It is sectional drawing which enlarges and shows the vicinity of the cutoff part of the clad layer of the optical waveguide part of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の一部を拡大して示す断面図である。It is sectional drawing which enlarge | shows a part of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の中間バンド型太陽電池の具体例を示す断面図である。It is sectional drawing which shows the specific example of the intermediate band type solar cell of the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置の中間バンド型太陽電池の中間バンドが傾斜組成量子井戸により形成される場合のエネルギーバンドの一例を示す略線図である。It is a schematic diagram which shows an example of the energy band when the intermediate band of the intermediate band type solar cell of the photoelectric conversion apparatus by 1st Embodiment of this invention is formed by the inclined composition quantum well. 図8に示す中間バンドを形成するために傾斜組成GaInN層をサファイア基板上に成長させたときの基板の測定位置におけるフォトルミネッセンススペクトルを示す略線図である。It is a schematic diagram which shows the photoluminescence spectrum at the measurement position of the substrate when the inclined composition GaInN layer is grown on the sapphire substrate in order to form the intermediate band shown in FIG. 図8に示す中間バンドを形成するために傾斜組成GaInN層をサファイア基板上に成長させたときの基板中心からの位置に対するバンドギャップを示す略線図である。FIG. 3 is a schematic diagram showing a band gap with respect to a position from the center of the substrate when the inclined composition GaInN layer is grown on the sapphire substrate in order to form the intermediate band shown in FIG. この発明の第1の実施の形態による光電変換装置において用いられる光進行方向変換層を示す断面図である。It is sectional drawing which shows the optical traveling direction conversion layer used in the photoelectric conversion apparatus by 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置において用いられる光進行方向変換層の平面形状の一例を示す平面図である。It is a top view which shows an example of the planar shape of the light traveling direction conversion layer used in the photoelectric conversion apparatus according to 1st Embodiment of this invention. この発明の第1の実施の形態による光電変換装置において用いられる光進行方向変換層の平面形状の他の例を示す平面図である。It is a top view which shows the other example of the plane shape of the light traveling direction conversion layer used in the photoelectric conversion apparatus by 1st Embodiment of this invention. 図11および図12に示す光進行方向変換層に対して行った光場のコンピュータシミュレーションの結果を示す略線図である。It is a schematic diagram which shows the result of the computer simulation of the light field performed on the light traveling direction conversion layer shown in FIGS. 11 and 12. 図11および図12に示す光進行方向変換層に対して行った光場のコンピュータシミュレーションの結果を示す略線図である。It is a schematic diagram which shows the result of the computer simulation of the light field performed on the light traveling direction conversion layer shown in FIGS. 11 and 12. この発明の第2の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by the 2nd Embodiment of this invention. この発明の第2の実施の形態による光電変換装置の光導波部を示す断面図である。It is sectional drawing which shows the optical waveguide part of the photoelectric conversion apparatus by 2nd Embodiment of this invention. この発明の第2の実施の形態による光電変換装置の光導波部の一部を拡大して示す断面図である。It is sectional drawing which enlarges and shows a part of the optical waveguide part of the photoelectric conversion apparatus by 2nd Embodiment of this invention. この発明の第2の実施の形態による光電変換装置の光導波部のクラッド層の断面形状を説明するための略線図である。It is a schematic diagram for demonstrating the cross-sectional shape of the clad layer of the optical waveguide part of the photoelectric conversion apparatus according to the 2nd Embodiment of this invention. この発明の第2の実施の形態による光電変換装置の光導波部の導波性能を検証するために行ったシミュレーションの結果(光場)を示す略線図である。It is a schematic diagram which shows the result (optical field) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion apparatus by the 2nd Embodiment of this invention. この発明の第2の実施の形態による光電変換装置の光導波部の導波性能を検証するために行ったシミュレーションの結果(導入効率)を示す略線図である。It is a schematic diagram which shows the result (introduction efficiency) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion apparatus according to the 2nd Embodiment of this invention. この発明の第3の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by the 3rd Embodiment of this invention. この発明の第3の実施の形態による光電変換装置の光導波部を示す断面図である。It is sectional drawing which shows the optical waveguide part of the photoelectric conversion apparatus by the 3rd Embodiment of this invention. この発明の第3の実施の形態による光電変換装置の光導波部の一部を示す断面図である。It is sectional drawing which shows the part of the optical waveguide part of the photoelectric conversion apparatus according to the 3rd Embodiment of this invention. この発明の第3の実施の形態による光電変換装置の光導波部の導波性能を検証するために行ったシミュレーションの結果(光場)を示す略線図である。It is a schematic diagram which shows the result (light field) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion apparatus according to the 3rd Embodiment of this invention. この発明の第4の実施の形態による光電変換装置において光導波部として用いられる導波構造体を示す断面図である。It is sectional drawing which shows the waveguide structure used as the optical waveguide part in the photoelectric conversion apparatus according to 4th Embodiment of this invention. 図26に示す導波構造体に対して行った光場のコンピュータシミュレーションの結果を示す略線図である。It is a schematic diagram which shows the result of the computer simulation of the optical field performed on the waveguide structure shown in FIG. 26. この発明の第5の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by the 5th Embodiment of this invention. この発明の第6の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by 6th Embodiment of this invention. この発明の第6の実施の形態による光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus by 6th Embodiment of this invention. この発明の第6の実施の形態による光電変換装置の動作を説明するための断面図である。It is sectional drawing for demonstrating the operation of the photoelectric conversion apparatus according to the 6th Embodiment of this invention. この発明の第7の実施の形態による光電変換装置の光導波部の一部を拡大して示す断面図である。It is sectional drawing which enlarge | shows a part of the optical waveguide part of the photoelectric conversion apparatus by 7th Embodiment of this invention. この発明の第7の実施の形態による光電変換装置の光導波部の導波性能を検証するために行ったシミュレーションの結果(光場)を示す略線図である。It is a schematic diagram which shows the result (light field) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion apparatus according to the 7th Embodiment of this invention. この発明の第8の実施の形態による光電変換装置設置円柱を示す正面図である。It is a front view which shows the photoelectric conversion device installation cylinder by the 8th Embodiment of this invention. この発明の第8の実施の形態による光電変換装置設置円柱の横断面図である。FIG. 3 is a cross-sectional view of a cylinder in which a photoelectric conversion device is installed according to an eighth embodiment of the present invention. 図35に示す光電変換装置設置円柱の光導入部の詳細を示す一部拡大横断面図である。It is a partially enlarged cross-sectional view which shows the detail of the light introduction part of the photoelectric conversion device installation cylinder shown in FIG. 35. この発明の第8の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大横断面図である。FIG. 3 is a partially enlarged cross-sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第8の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大側面図である。FIG. 3 is a partially enlarged side view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第8の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大縦断面図である。FIG. 3 is a partially enlarged vertical sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to an eighth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第8の実施の形態による光電変換装置設置円柱の光電変換装置の図35の一点鎖線で示す領域のシミュレーションの結果(光場)を示す略線図である。It is a schematic diagram which shows the result (light field) of the simulation of the region shown by the alternate long and short dash line of FIG. 35 of the photoelectric conversion device of a cylindrical photoelectric conversion device installed according to the eighth embodiment of the present invention. この発明の第9の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大横断面図である。FIG. 9 is a partially enlarged cross-sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第9の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大側面図である。FIG. 9 is a partially enlarged side view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第9の実施の形態による光電変換装置設置円柱の光電変換装置の中間バンド型太陽電池およびその近傍の導波コア層を拡大して示す一部拡大縦断面図である。FIG. 9 is a partially enlarged vertical sectional view showing an enlarged intermediate band type solar cell of a cylindrical photoelectric conversion device installed according to a ninth embodiment of the present invention and a waveguide core layer in the vicinity thereof. この発明の第10の実施の形態による光電変換装置設置円柱を示す正面図である。It is a front view which shows the photoelectric conversion device installation cylinder by the tenth embodiment of this invention. この発明の第10の実施の形態による光電変換装置設置円柱の頂部に設置された光電変換装置の拡大縦断面図である。FIG. 5 is an enlarged vertical sectional view of a photoelectric conversion device installed on the top of a column for installing a photoelectric conversion device according to a tenth embodiment of the present invention. この発明の第11の実施の形態による光電変換装置設置建築物を示す斜視図である。It is a perspective view which shows the building which installed the photoelectric conversion device by 11th Embodiment of this invention. この発明の第11の実施の形態による光電変換装置設置建築物の建築物の外壁に設置された光電変換装置の詳細を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing details of a photoelectric conversion device installed on an outer wall of a building in which a photoelectric conversion device is installed according to the eleventh embodiment of the present invention. この発明の第12の実施の形態による光電変換装置設置円柱の一部横断面図である。It is a partial cross-sectional view of the photoelectric conversion device installation cylinder according to the twelfth embodiment of this invention. この発明の第12の実施の形態による光電変換装置設置円柱の光電変換装置の光導波部の導波性能を検証するために行ったシミュレーションの結果(光場)を示す略線図である。It is a schematic diagram which shows the result (optical field) of the simulation performed for verifying the waveguide performance of the optical waveguide part of the photoelectric conversion device of the photoelectric conversion device installation column according to the twelfth embodiment of the present invention. この発明の第12の実施の形態による光電変換装置設置円柱の光電変換装置の光導波部の導波性能を検証するために作製した円柱状の試料の側面に緑色光を照射したときの様子を示す図面代用写真である。Photoelectric conversion device installation according to the twelfth embodiment of the present invention A state when the side surface of a cylindrical sample prepared for verifying the waveguide performance of the optical waveguide of a cylindrical photoelectric conversion device is irradiated with green light is shown. It is a drawing substitute photograph shown. この発明の第12の実施の形態による光電変換装置設置円柱の光電変換装置の光導波部の導波性能を検証するために作製した円柱状の試料を湾曲させて側面に緑色光を照射したときの様子を示す図面代用写真である。When the columnar sample prepared for verifying the waveguide performance of the optical waveguide of the photoelectric conversion device installed in the photoelectric conversion device according to the twelfth embodiment of the present invention is curved and the side surface is irradiated with green light. It is a drawing substitute photograph showing the state of.
 以下、発明を実施するための形態(以下、「実施の形態」という)について図面を参照しながら説明する。 Hereinafter, an embodiment for carrying out the invention (hereinafter referred to as “embodiment”) will be described with reference to the drawings.
〈第1の実施の形態〉
[光電変換装置]
 図1および図2は第1の実施の形態による光電変換装置を示し、図1は断面図、図2は光入射面側から見た平面図である。図1および図2に示すように、この光電変換装置は、光導波部10と、光電変換部を構成する中間バンド型太陽電池20と、光導波部10の光入射面10aに設けられた光進行方向変換層30(図2においては図示を省略している)とを有する。光導波部10および中間バンド型太陽電池20は基板40上に設けられている。ただし、基板40は必要に応じて省略することができる。この光電変換装置の平面形状は特に限定されず必要に応じて選ばれるが、図2においては、典型的な一例としてこの光電変換装置の平面形状が長方形の形状を有する場合が示されている。
<First Embodiment>
[Photoelectric converter]
1 and 2 show a photoelectric conversion device according to the first embodiment, FIG. 1 is a cross-sectional view, and FIG. 2 is a plan view seen from the light incident surface side. As shown in FIGS. 1 and 2, this photoelectric conversion device includes an optical waveguide section 10, an intermediate band type solar cell 20 constituting the photoelectric conversion section, and light provided on the light incident surface 10a of the optical waveguide section 10. It has a traveling direction changing layer 30 (not shown in FIG. 2). The optical waveguide 10 and the intermediate band solar cell 20 are provided on the substrate 40. However, the substrate 40 can be omitted if necessary. The planar shape of the photoelectric conversion device is not particularly limited and is selected as needed, but FIG. 2 shows a case where the planar shape of the photoelectric conversion device has a rectangular shape as a typical example.
 光導波部10の詳細を図3に示す(特許文献2参照)。図3に示すように、光導波部10は、クラッド層11と導波方向に間隔δで周期的に配置された複数のクラッド層12とにより平板状の導波コア層13の上下が挟まれた構造を有する。導波コア層13の光出射端面13aに中間バンド型太陽電池20の半導体層21の側面が接合している。クラッド層11は導波コア層13の一方の主面(上面)を連続に被覆し、クラッド層12は導波コア層13の他方の主面(下面)を不連続に被覆している。クラッド層11とクラッド層12とは全体として、導波コア層13を不連続に被覆するクラッド層を構成する。即ち、このクラッド層は、導波コア層13を被覆していない断絶部の端部(例えば、図3中、Eで示す)と、この断絶部に対して導波コア層13の導波方向と反対側で且つ導波コア層13から離れた位置(例えば、図3中、Pで示す)との間に延在し、導波コア層13の導波方向に向かって導波コア層13に次第に近づき、且つ後述のように断絶部の端部における接線が導波コア層13に平行またはほぼ平行になるように設けられた構造をその一部に有する。導波コア層13の両側面はクラッド層11の延長部により被覆してもよいし、反射面により構成してもよい。クラッド層12と導波コア層13との結合部分の詳細を図4に、より広域に亘るこの結合部分の詳細を図5に示す。図4および図5においては、クラッド層12をクラッド層12-a、12-b、12-c、12-dで示す。それぞれのクラッド層12と隣のクラッド層12との間には光導入コア層14が設けられている。図4および図5においては、光導入コア層14を光導入コア層14-a、14-b、14-c、14-dで示す。クラッド層12および光導入コア層14は図3の垂直方向(奥行き方向)に延びている。クラッド層12は導波コア層13の導波方向に凹に湾曲した形状を有し、その形状は必要に応じて選ばれるが、図3では、一例としてクラッド層12が四分の一円の形状を有する場合が示されている。クラッド層12の導波コア層13側の端部の接線は導波コア層13の面と一致しており、従って導波コア層13内の導波方向と一致している。言い換えると、クラッド層12の導波コア層13側の端部は導波コア層13にタンジェンシャルに接続している。クラッド層11、12および導波コア層13の屈折率は、クラッド層11、12により導波コア層11内に光を閉じ込めることができるように、導波コア層13の屈折率に対してクラッド層11、12の屈折率が小さく選ばれている。また、クラッド層12および光導入コア層14の屈折率は、クラッド層12により光導入コア層14内に光を閉じ込めることができるように、光導入コア層14の屈折率に対してクラッド層12の屈折率が小さく選ばれている。導波コア層13の屈折率と光導入コア層14の屈折率とは好適には等しく選ばれるが、これに限定されるものではない。光導波部10の平面形状は特に限定されず、必要に応じて選ばれるが、例えば、長方形または正方形であり、図2においては、長方形の場合が示されている。 The details of the optical waveguide 10 are shown in FIG. 3 (see Patent Document 2). As shown in FIG. 3, in the optical waveguide portion 10, the upper and lower sides of the flat plate-shaped waveguide core layer 13 are sandwiched between the clad layer 11 and a plurality of clad layers 12 periodically arranged at intervals δ in the waveguide direction. Has a structure. The side surface of the semiconductor layer 21 of the intermediate band type solar cell 20 is bonded to the light emitting end surface 13a of the waveguide core layer 13. The clad layer 11 continuously covers one main surface (upper surface) of the waveguide core layer 13, and the clad layer 12 discontinuously covers the other main surface (lower surface) of the waveguide core layer 13. The clad layer 11 and the clad layer 12 together form a clad layer that discontinuously covers the waveguide core layer 13. That is, this clad layer has the end portion of the disconnection portion (for example, indicated by E in FIG. 3) that does not cover the waveguide core layer 13 and the waveguide direction of the waveguide core layer 13 with respect to the disconnection portion. The waveguide core layer 13 extends in the direction opposite to the waveguide and away from the waveguide core layer 13 (for example, indicated by P in FIG. 3) and toward the waveguide direction of the waveguide core layer 13. A part of the structure is provided so that the tangent line at the end of the break portion is parallel to or substantially parallel to the waveguide core layer 13, as will be described later. Both side surfaces of the waveguide core layer 13 may be covered with an extension portion of the clad layer 11 or may be configured with a reflective surface. The details of the coupling portion between the clad layer 12 and the waveguide core layer 13 are shown in FIG. 4, and the details of the coupling portion over a wider area are shown in FIG. In FIGS. 4 and 5, the clad layer 12 is represented by clad layers 12-a, 12-b, 12-c, and 12-d. A light introduction core layer 14 is provided between each clad layer 12 and the adjacent clad layer 12. In FIGS. 4 and 5, the light-introduced core layer 14 is represented by the light-introduced core layers 14-a, 14-b, 14-c, and 14-d. The clad layer 12 and the light introduction core layer 14 extend in the vertical direction (depth direction) of FIG. The clad layer 12 has a shape that is concavely curved in the waveguide direction of the waveguide core layer 13, and the shape is selected as necessary. In FIG. 3, the clad layer 12 has a quarter circle as an example. The case with a shape is shown. The tangent at the end of the clad layer 12 on the side of the waveguide core layer 13 coincides with the surface of the waveguide core layer 13, and thus coincides with the waveguide direction in the waveguide core layer 13. In other words, the end of the clad layer 12 on the waveguide core layer 13 side is tangentially connected to the waveguide core layer 13. The refractive index of the clad layers 11 and 12 and the waveguide core layer 13 is clad with respect to the refractive index of the waveguide core layer 13 so that light can be confined in the waveguide core layer 11 by the clad layers 11 and 12. The refractive indexes of the layers 11 and 12 are selected to be small. Further, the refractive index of the clad layer 12 and the light-introduced core layer 14 is such that the light can be confined in the light-introduced core layer 14 by the clad layer 12 with respect to the refractive index of the light-introduced core layer 14. The refractive index of light is selected to be small. The refractive index of the waveguide core layer 13 and the refractive index of the light introduction core layer 14 are preferably and equally selected, but are not limited thereto. The planar shape of the optical waveguide 10 is not particularly limited and is selected as needed, but is, for example, a rectangle or a square, and FIG. 2 shows the case of a rectangle.
 上記の四分の一円の断面形状を有するクラッド層12は、光入射面10a(光導波部10の底面)で、その接線としては、垂直のものを持つ。対応して、四分の一円の反対の終端部では、クラッド層12は断絶し、そこで水平方向の接線を持つ。クラッド層12が間隔δをもって横方向に周期的に配置されるので、四分の一円の上部の終端部では、図3に示すように、導波コア層13(屈折率大の部分)がクラッド層12に閉じ切られておらず、幾何学的にオープンな構造を持つことが特徴である。これにより、図3に示すように導波方向にx軸を取る(光導波部10の厚さ方向にz軸を取り、図3の紙面に垂直方向にy軸を取る)と、クラッド層12が不連続となる地点を図4に示すようにx=xと記すと、x<xでは、導波コア層13およびその下部近傍において、図4に示すように、導波方向に沿って(断面形状として)クラッド層12が4本、即ちクラッド層12-a、12-b、12-c、12-dが存在する。即ち、図4に示すクラッド層12-aが断絶した地点以降の領域(x≧x)では、始点以外の外界より(図5では、左下側から光導入コア層14aを通じて)、導波コア層13へ光が侵入することができる。図4および図5に示すように、x=xよりδ(2δ)だけ右側にずれた地点、即ち、x=x+δ(x=x+2δ)では、光導入コア層14-b(光導入コア層14-c)(支流)が、導波コア層13(本流)に合流する(図5では、簡単のため、光導入コア層14-cの下方に存在する光導入コア層およびこの光導入コア層と光導入コア層14-cとの間のクラッド層は図示していない)。図5に示すように、クラッド層12-a 、12-b、12-cの右終端部(断絶部)での接線(図中、破線で示す)は、導波光進行方向に平行またはほぼ平行になっている。即ち、クラッド層12-a 、12-b、12-cの終端部の導波コア層13へのタンジェンシャル接続が形成されている。このようにして、導波コア層13には図5の太矢印で示すように進行方法に沿っての連続的併進対称性を持たせ、クラッド層12に関しては、周期δの離散的な併進対称性を持たせる。これにより、導波コア層13は、準解放構造を持つこととなる。x-δ<x<xにおいて導波コア層13に最近接するクラッド層12-aは、上記終端部x=xにおいて不連続構造を持つものの、下方より滑らかにほぼ平行性を持ちつつ導波コア層13に近づいてくる一層下の別のクラッド層12-bが、上記最近接クラッド層の断絶をカバーするとともに自らが最近接クラッド層となることで、導波コア層13内の光が、損失を生じることなく図3中、向かって右側へと効率良く導波される。また、この時、各クラッド層12は、その上部の終端部において(図5に破線で示すように、その接線が導波コア層13に平行(水平)またはほぼ平行であり)幾何学的に上部のクラッド層11に平行またはほぼ平行である。導波方向はクラッド層11に平行であることから(当然ながら水平方向であるので)、クラッド層12は、導波方向に沿って、その最後端において導波コア層13に対して上述の如く、タンジェンシャルに合流するような構造を持つ。x=xにおいて最近接クラッド層12-aが終端した地点から、ホイヘンスの原理に従って、微小球面波として導波コア層13を導波してきた光は拡がろうとするが、上記のタンジェンシャル性をもって下から近接してくる一段下の層のクラッド層12-bにより全反射される。上記の「平行またはほぼ平行であること」とは、上記過程によって全反射が生じ得る程度に平行であることにより定義される。この平行性により、上記のように導波コア層13内の光は散逸することなく、ほぼ100%効率良く導波される。x=x+δにおいてもクラッド層12-bとクラッド層12-cについて全く同様のことが生じる。以降のすべての本流・支流合流点でも同様である。 The clad layer 12 having the cross-sectional shape of the above-mentioned quarter circle has a light incident surface 10a (bottom surface of the optical waveguide portion 10) and has a vertical tangent line thereof. Correspondingly, at the opposite end of the quarter circle, the clad layer 12 breaks, where it has a horizontal tangent. Since the clad layer 12 is periodically arranged laterally with an interval δ, the waveguide core layer 13 (the portion having a large refractive index) is formed at the upper end of the quarter circle, as shown in FIG. It is characterized by having a geometrically open structure without being completely closed by the clad layer 12. As a result, when the x-axis is taken in the waveguide direction as shown in FIG. 3 (the z-axis is taken in the thickness direction of the optical waveguide 10 and the y-axis is taken in the direction perpendicular to the paper surface of FIG. 3), the clad layer 12 is taken. When x = x i is described as a point where is discontinuous as shown in FIG. 4, in x <x i , in the vicinity of the waveguide core layer 13 and its lower portion, as shown in FIG. 4, along the waveguide direction. There are four clad layers 12 (as a cross-sectional shape), that is, clad layers 12-a, 12-b, 12-c, and 12-d. That is, in the region (x ≧ x i ) after the point where the clad layer 12-a shown in FIG. 4 is cut off, the waveguide core is from the outside world other than the starting point (in FIG. 5, from the lower left side through the light introduction core layer 14a). Light can penetrate the layer 13. As shown in FIGS. 4 and 5, at a point shifted to the right by δ (2δ) from x = x i , that is, at x = x i + δ (x = x i + 2δ), the light introduction core layer 14-b ( The optical introduction core layer 14-c) (tributary) joins the waveguide core layer 13 (main stream) (in FIG. 5, for the sake of simplicity, the optical introduction core layer and the optical introduction core layer existing below the optical introduction core layer 14-c). The clad layer between the light-introduced core layer and the light-introduced core layer 14-c is not shown). As shown in FIG. 5, the tangents (indicated by the broken line in the figure) at the right end (discontinuity) of the clad layers 12-a, 12-b, and 12-c are parallel or substantially parallel to the waveguide light traveling direction. It has become. That is, a tangential connection is formed to the waveguide core layer 13 at the end of the clad layers 12-a, 12-b, and 12-c. In this way, the waveguide core layer 13 is provided with continuous translational symmetry along the traveling method as shown by the thick arrow in FIG. 5, and the clad layer 12 is provided with discrete translational symmetry having a period δ. Give sex. As a result, the waveguide core layer 13 has a quasi-open structure. The clad layer 12-a, which is in close contact with the waveguide core layer 13 at x i -δ <x <x i , has a discontinuous structure at the terminal portion x = x i , but has a smooth and substantially parallel structure from below. Another clad layer 12-b under one layer approaching the waveguide core layer 13 covers the disconnection of the closest clad layer and becomes the closest clad layer by itself, so that the inside of the waveguide core layer 13 is formed. Light is efficiently guided to the right in FIG. 3 without causing loss. Further, at this time, each clad layer 12 is geometrically at the upper end portion thereof (the tangent line thereof is parallel (horizontal) or substantially parallel to the waveguide core layer 13 as shown by a broken line in FIG. 5). Parallel or substantially parallel to the upper cladding layer 11. Since the waveguide direction is parallel to the cladding layer 11 (because it is of course horizontal), the cladding layer 12 is along the waveguide direction at its rearmost end with respect to the waveguide core layer 13 as described above. , Has a structure that merges with the tangential. According to the Huygens principle, the light that has been waveguideed through the waveguide core layer 13 as a minute spherical wave tries to spread from the point where the closest clad layer 12-a is terminated at x = x i , but the above-mentioned tangential property It is totally reflected by the clad layer 12-b, which is one step lower than the layer that comes close to the bottom. The above-mentioned "parallel or nearly parallel" is defined as being parallel to the extent that total reflection can occur by the above process. Due to this parallelism, the light in the waveguide core layer 13 is not dissipated as described above, and is guided almost 100% efficiently. At x = x i + δ, exactly the same thing occurs for the clad layer 12-b and the clad layer 12-c. The same applies to all subsequent mainstream and tributary confluences.
 導波コア層13の素材としては、クラッド層11、12の素材(空気そのものも含む)に応じて、例えば屈折率が1.42以上2.0以下程度の無機物質、無機ガラスあるいは屈折率1.55以上の高屈折率樹脂などが挙げられるが、これに限定されるものではない。光導入コア層14の素材としては、例えば屈折率が1.48以上2.0以下程度の無機物質、無機ガラスあるいは屈折率1.55以上の高屈折率樹脂などが挙げられるが、これに限られることはない(上述の通り、特に同層を挟むクラッド層として空気層などを用いる場合)。また、クラッド層11、12としては、例えば屈折率1.34等の低屈折率が得られる樹脂、例えばCYTOPが挙げられる(この他、空気層などを用いることも可能である)。導波コア層13および光導入コア層14の屈折率とクラッド層11、12の屈折率との組み合わせの一例を挙げると、導波コア層13および光導入コア層14の屈折率が2.0、クラッド層11、12の屈折率が1.35である。導波コア層13および光導入コア層14の屈折率を例えば1.6前後とすることにより安価な材料を用いることができることから光導波装置の大面積化が容易になるため、光導波装置の大面積化が必要な場合は、導波コア層13および光導入コア層14の屈折率を1.6前後、クラッド層11、12の屈折率を1.35とすることも考えられる。あるいは、光導入コア層14の作製時に犠牲スペーサ層を介在させて作製し、光導入コア層14完成後は、当該犠牲スペーサ層を例えば溶かすことで、上述のように空気層(屈折率=1)そのものをクラッド層として用いることも可能である。この場合、導波コア層13および光導入コア層14の屈折率を、例えば、通常の建材ガラスの屈折率であるn=1.5~1.7程度とすることができる。この光電変換装置は、例えば、光導波部10のクラッド層11を下にして建築用窓材に張り合わせて使用することができる。この場合、建築用窓材において太陽光発電を容易に実現することができる。 The material of the waveguide core layer 13 may be, for example, an inorganic substance having a refractive index of 1.42 or more and 2.0 or less, an inorganic glass, or a refractive index of 1, depending on the materials of the clad layers 11 and 12 (including air itself). Examples thereof include, but are not limited to, a resin having a high refractive index of .55 or more. Examples of the material of the light introduction core layer 14 include, but are limited to, an inorganic substance having a refractive index of 1.48 or more and 2.0 or less, inorganic glass, or a high refractive index resin having a refractive index of 1.55 or more. (As described above, especially when an air layer or the like is used as a clad layer sandwiching the same layer). Further, examples of the clad layers 11 and 12 include resins having a low refractive index such as 1.34, for example, CYTOP (in addition, an air layer or the like can also be used). To give an example of a combination of the refractive index of the waveguide core layer 13 and the light introduction core layer 14 and the refractive index of the cladding layers 11 and 12, the refractive index of the waveguide core layer 13 and the light introduction core layer 14 is 2.0. , The refractive index of the clad layers 11 and 12 is 1.35. By setting the refractive index of the waveguide core layer 13 and the optical introduction core layer 14 to, for example, around 1.6, an inexpensive material can be used, so that the area of the optical waveguide can be easily increased, so that the optical waveguide can be used. When it is necessary to increase the area, it is conceivable to set the refractive index of the waveguide core layer 13 and the light introduction core layer 14 to around 1.6 and the refractive index of the clad layers 11 and 12 to 1.35. Alternatively, the light-introduced core layer 14 is manufactured with a sacrificial spacer layer interposed therebetween, and after the light-introduced core layer 14 is completed, the sacrificial spacer layer is melted, for example, to form an air layer (refractive index = 1) as described above. ) Itself can also be used as a clad layer. In this case, the refractive index of the waveguide core layer 13 and the light introduction core layer 14 can be, for example, about n = 1.5 to 1.7, which is the refractive index of ordinary building material glass. This photoelectric conversion device can be used, for example, by laminating it on a building window material with the clad layer 11 of the optical waveguide portion 10 facing down. In this case, photovoltaic power generation can be easily realized in the building window material.
 クラッド層11、12の厚さは例えば1μm以上数μm以下(例えば、2μm以下)であるが、これに限定されるものではない。導波コア層13の厚さは、好適には2μm以上300μm以下あるいは2μm以上300μm程度以下であるが、クラッド層11をコーティング層(または空気層そのもの)として、ガラス窓材そのものを導波コア層13とすることも可能である。図1に示す導波路全体構造に置ける屈折率大の部分の面積Sとこれを包囲する縁の曲線の総延長(~クラッド層断面長さの総延長)Lを評価すると、S~cLで定義される係数cの逆数:1/c=200~10となり、百~万のオーダーの量である。一般に、在来型の同じサイズの導波路と比べると、この光導波部10の導波路に対しては、総じて1/cの値が一桁以上大きな値となる。これは、導波コア層13の始点と終端との間の至るところで外界から光を導入することが可能となるので、導波コア層13と同じ屈折率を持つ領域、即ち光導入コア層14が導波コア層13辺縁部まで連続しており、この領域の縁に存在して外部からの光導入に寄与するクラッド層12の(断面の線分)総延長がはるかに長くなることによる。 The thickness of the clad layers 11 and 12 is, for example, 1 μm or more and several μm or less (for example, 2 μm or less), but is not limited thereto. The thickness of the waveguide core layer 13 is preferably 2 μm or more and 300 μm or less, or 2 μm or more and 300 μm or less, but the clad layer 11 is used as a coating layer (or the air layer itself) and the glass window material itself is used as a waveguide core layer. It is also possible to set it to 13. Evaluating the area S of the portion having a large refractive index in the entire waveguide structure shown in FIG. 1 and the total extension (~ total extension of the cross-sectional length of the clad layer) L of the edge curve surrounding the area, S to cL 2 The reciprocal of the defined coefficient c: 1 / c = 200 to 104, which is an amount on the order of one million to ten thousand . Generally, the value of 1 / c is one digit or more larger than that of the conventional waveguide of the same size for the waveguide of the optical waveguide section 10. This makes it possible to introduce light from the outside world everywhere between the start point and the end point of the waveguide core layer 13, so that a region having the same refractive index as the waveguide core layer 13, that is, the light introduction core layer 14 Is continuous up to the edge of the waveguide core layer 13, and the total length (line segment of the cross section) of the clad layer 12 that exists at the edge of this region and contributes to the introduction of light from the outside is much longer. ..
 光導波部10の各部のサイズは、必要に応じて選ばれるが、例えば、図3のx軸方向の幅は5cm以上100cm以下、z軸方向の厚さは1mm以上6mm以下、奥行き(y軸方向の幅)は3cm以上50cm以下、クラッド層12の曲線の形状は半径6mmの四分の一円である。 The size of each part of the optical waveguide 10 is selected as needed. For example, the width in the x-axis direction of FIG. 3 is 5 cm or more and 100 cm or less, the thickness in the z-axis direction is 1 mm or more and 6 mm or less, and the depth (y-axis). The width in the direction) is 3 cm or more and 50 cm or less, and the curved shape of the clad layer 12 is a quarter circle with a radius of 6 mm.
 中間バンド型太陽電池20を構成する半導体層21は導波コア層13の延在方向と平行になっている。好適には、半導体層21の、導波コア層13の光出射端面13aに面する側面には、光出射端面13aから出射される2次元伝搬光の反射を防止するために、表面低反射率機能を備えた構造、例えばモスアイ構造などが設けられる。このような表面低反射率機能を備えた構造を用いることにより、半導体層21の側面の反射率を極めて小さく(例えば1~3%)することが可能である。半導体層21はpn接合を有し、そのpn接合面が導波コア層13の主面に平行になっている。半導体層21は一般的には細長い長方形の平面形状を有する。半導体層21の上下(光入射側を上とする)の互いに対向する一対の面(上面および下面)にそれぞれ第1の電極22および第2の電極23が設けられ、それぞれ半導体層21にオーミック接触している。これらの第1の電極22および第2の電極23の一方はアノード電極、他方はカソード電極として用いられる。例えば、第1の電極22がアノード電極、第2の電極23がカソード電極として用いられる。半導体層21はホスト半導体のバンドギャップ中に中間バンドが形成された構造を有する。図6に光導波部10と半導体層21との接合部を拡大して示す。図6に示すように、半導体層21は、pn接合を形成する半導体層211と半導体層212との間に中間バンド形成層213が設けられた構造を有する。例えば、第1の電極22がアノード電極、第2の電極23がカソード電極として用いられる場合は、半導体層211はp型、半導体層212はn型である。中間バンド形成層213は必要に応じて選ばれるが、例えば、一層または単一または多重量子井戸構造を有する半導体層や量子ドット構造を有する半導体層などからなる。光進行方向に沿った中間バンド形成層213の拡がり幅は、この中間バンド形成層213を構成する半導体の光吸収係数αの逆数の少なくとも3倍以上に設定される。こうすることで、中間バンド形成層213による光吸収の最大化を図ることができる。 The semiconductor layer 21 constituting the intermediate band type solar cell 20 is parallel to the extending direction of the waveguide core layer 13. Preferably, the surface of the semiconductor layer 21 facing the light emitting end surface 13a of the waveguide core layer 13 has a low surface reflectance in order to prevent reflection of the two-dimensional propagating light emitted from the light emitting end surface 13a. A functional structure, such as a moth-eye structure, is provided. By using a structure having such a surface low reflectance function, it is possible to make the reflectance of the side surface of the semiconductor layer 21 extremely small (for example, 1 to 3%). The semiconductor layer 21 has a pn junction, and the pn junction surface thereof is parallel to the main surface of the waveguide core layer 13. The semiconductor layer 21 generally has an elongated rectangular planar shape. The first electrode 22 and the second electrode 23 are provided on a pair of surfaces (upper surface and lower surface) facing each other above and below the semiconductor layer 21 (with the light incident side facing up), respectively, and ohmic contact is made with the semiconductor layer 21, respectively. is doing. One of these first electrode 22 and the second electrode 23 is used as an anode electrode, and the other is used as a cathode electrode. For example, the first electrode 22 is used as an anode electrode, and the second electrode 23 is used as a cathode electrode. The semiconductor layer 21 has a structure in which an intermediate band is formed in the band gap of the host semiconductor. FIG. 6 shows an enlarged joint portion between the optical waveguide portion 10 and the semiconductor layer 21. As shown in FIG. 6, the semiconductor layer 21 has a structure in which an intermediate band forming layer 213 is provided between the semiconductor layer 211 forming the pn junction and the semiconductor layer 212. For example, when the first electrode 22 is used as an anode electrode and the second electrode 23 is used as a cathode electrode, the semiconductor layer 211 is p-type and the semiconductor layer 212 is n-type. The intermediate band forming layer 213 is selected as needed, and is composed of, for example, a semiconductor layer having a single or single or multiple quantum well structure, a semiconductor layer having a quantum dot structure, and the like. The spread width of the intermediate band forming layer 213 along the light traveling direction is set to be at least three times or more the reciprocal of the light absorption coefficient α of the semiconductor constituting the intermediate band forming layer 213. By doing so, it is possible to maximize the light absorption by the intermediate band forming layer 213.
 この光電変換装置においては、光導波部10の光入射面に設けられた光進行方向変換層30に外部から入射した入射光(3次元空間伝搬光)は、光導入コア層14を介して導波コア層13の内部に入って2次元空間伝搬光として導波された後、導波コア層13の光出射端面13aから出射されて中間バンド型太陽電池20の半導体層21の側面全体に入射するように構成されている。このように導波コア層13の光出射端面13aから出射される2次元空間伝搬光は半導体層21の側面全体に入射するため、半導体層21のホスト半導体のバンドギャップを介した光励起によりフォトキャリアが発生するとともに、中間バンドを介した光励起によりフォトキャリアが発生する。この場合、導波コア層13の内部を導波される光の正味の進行方向と、導波コア層13の端面から半導体層21に入射した光によりこの半導体層21中に生成されるフォトキャリアの正味の進行方向(移動方向)(第1の電極22と第2の電極23とを最短で結ぶ方向)とのなす角度Θはほぼ直角である。光導波部10の光入射面の面積(受光部の面積)Sは、その光入射面の長さをL、幅をWとすると(図2参照)、
      S=L×W                   (1)
で与えられ、半導体層21の側面の面積sは、半導体層21の厚さをdとすると、
      s=L×d                   (2)
で与えられるので、集光比Rは
R=S/s=W/d~(10cm~100cm)/100μm=1000~10000
                              (3)
が容易に得られる。非特許文献7によれば、このような高倍率集光下では、中間バンドのフォトフィリングにより擬フェルミ準位が十分に分離し、電圧維持が示唆されていることから、集光時光密度および動作温度を含め、この光電変換装置は、中間バンド型太陽電池20を十分機能させることのできる初めての具体的且つ実用的な光電変換システムとなる。
In this photoelectric conversion device, incident light (three-dimensional space propagating light) incident from the outside on the light traveling direction conversion layer 30 provided on the light incident surface of the optical waveguide section 10 is guided through the light introduction core layer 14. After entering the inside of the wave core layer 13 and being waveguideed as two-dimensional space propagating light, it is emitted from the light emitting end surface 13a of the waveguide core layer 13 and is incident on the entire side surface of the semiconductor layer 21 of the intermediate band type solar cell 20. It is configured to do. Since the two-dimensional space propagating light emitted from the light emitting end surface 13a of the waveguide core layer 13 is incident on the entire side surface of the semiconductor layer 21, the photocarrier is photo-excited through the band gap of the host semiconductor of the semiconductor layer 21. Is generated, and photocarriers are generated by photoexcitation via the intermediate band. In this case, the photocarrier generated in the semiconductor layer 21 by the net traveling direction of the light waved inside the waveguide core layer 13 and the light incident on the semiconductor layer 21 from the end face of the waveguide core layer 13. The angle Θ formed with the net traveling direction (moving direction) (direction connecting the first electrode 22 and the second electrode 23 at the shortest distance) is approximately a right angle. The area (area of the light receiving portion) S of the light incident surface of the optical waveguide portion 10 is such that the length of the light incident surface is L and the width is W (see FIG. 2).
S = L × W (1)
The area s of the side surface of the semiconductor layer 21 is given by, assuming that the thickness of the semiconductor layer 21 is d.
s = L × d (2)
Since it is given by, the light collection ratio R is R = S / s = W / d ~ (10 cm ~ 100 cm) / 100 μm = 1000 ~ 10000.
(3)
Is easily obtained. According to Non-Patent Document 7, under such high-magnification focusing, the quasi-Fermi level is sufficiently separated by the photofilling of the intermediate band, and it is suggested that the voltage is maintained. Including the temperature, this photoelectric conversion device will be the first concrete and practical photoelectric conversion system capable of fully functioning the intermediate band type solar cell 20.
 この光電変換装置においては、好適には、外部から光が入射する際に半導体層21に光が直接入射しないように構成される。言い換えると、光電変換装置に光が入射する場合、光導波部10の光入射面に設けられた光進行方向変換層30には光が入射するが、半導体層21の面には光が直接入射しないようにする。このためには、具体的には、例えば次のようにする。例えば、第1の電極22を覆うように半導体層21の上方に遮光層を設ける。遮光層は従来公知のものを用いることができ、必要に応じて選ばれるが、例えば、アルミ箔の両面にプラスチックフィルムが形成されたアルミラミネートフィルムなどである。この遮光層により、半導体層21に光が直接入射しないようにすることができる。また、基板40が建築物や電子機器の外面の一部を構成する場合には、光進行方向変換層30には太陽光が入射するが、半導体層21には太陽光が入射しないように、言い換えれば半導体層21が陰になるように部材などにより覆うようにする。例えば、建築物の窓にこの光電変換装置を設置する場合には、窓ガラスが基板40となり、外部に露出した窓ガラス上に光進行方向変換層30および光導波部10が設けられ、半導体層21は例えばAl製の窓枠の内側に隠れるようにする。また、この光電変換装置を建築物の屋根に敷き詰める場合には、隣接する光電変換装置の端部が上下に重なり合うようにし、上の光電変換装置の端部の半導体層21により下の光電変換装置の端部の半導体層21が覆われるようにする。また、電子機器、例えばスマートフォンのディスプレイ部にこの光電変換装置を設置する場合には、このディスプレイ部の表面の透明部材が基板40となり、外部に露出した透明部材上に光進行方向変換層30および光導波部10が設けられ、半導体層21はこのディスプレイ部の表面に設けられた部材の内側に隠れるようにする。 In this photoelectric conversion device, preferably, when light is incident from the outside, the light is not directly incident on the semiconductor layer 21. In other words, when light is incident on the photoelectric conversion device, the light is incident on the light traveling direction conversion layer 30 provided on the light incident surface of the optical waveguide section 10, but the light is directly incident on the surface of the semiconductor layer 21. Try not to. For this purpose, specifically, for example, the following is performed. For example, a light-shielding layer is provided above the semiconductor layer 21 so as to cover the first electrode 22. A conventionally known light-shielding layer can be used and is selected as needed. For example, an aluminum laminated film having a plastic film formed on both sides of an aluminum foil is used. With this light-shielding layer, it is possible to prevent light from directly incident on the semiconductor layer 21. Further, when the substrate 40 constitutes a part of the outer surface of a building or an electronic device, sunlight is incident on the light traveling direction conversion layer 30, but sunlight is not incident on the semiconductor layer 21. In other words, the semiconductor layer 21 is covered with a member or the like so as to be in the shadow. For example, when this photoelectric conversion device is installed in a window of a building, the window glass becomes a substrate 40, and an optical traveling direction conversion layer 30 and an optical waveguide portion 10 are provided on the window glass exposed to the outside, and a semiconductor layer is provided. 21 is hidden inside a window frame made of Al, for example. Further, when this photoelectric conversion device is laid on the roof of a building, the ends of adjacent photoelectric conversion devices are overlapped vertically, and the semiconductor layer 21 at the end of the upper photoelectric conversion device is used to make the lower photoelectric conversion device. The semiconductor layer 21 at the end of the is covered. Further, when the photoelectric conversion device is installed in the display unit of an electronic device, for example, a smartphone, the transparent member on the surface of the display unit becomes the substrate 40, and the light traveling direction conversion layer 30 and the light traveling direction conversion layer 30 are placed on the transparent member exposed to the outside. An optical waveguide 10 is provided, and the semiconductor layer 21 is hidden inside a member provided on the surface of the display.
 半導体層21は、例えば、既に挙げたものの中から必要に応じて選ばれる。半導体層21は、典型的には、p型半導体層とn型半導体層とからなるpn接合であり、中間バンドを形成する構造、例えば量子ドット層をその中に有する。第1の電極22および第2の電極23は半導体層21とオーミック接触している。半導体層21の一辺の長さは、典型的には、この半導体層21が設けられる導波コア層13の辺の長さと同一に選ばれるが、この辺と直角な辺の長さは、典型的には0.5μm~5mmであり、好適には2μm~1mmである。光導波部10の大きさは上述のように例えば(5cm~100cm)×(3cm~50cm)であるので、この半導体層21の面積は一般的には光導波部10の面積よりはるかに小さくて済む。即ち、この光電変換装置は、光導波部10が大部分を占め、半導体層21は端のわずかな部分しか占めない。例えば、光導波部10の大きさが10cm×10cm、半導体層21の大きさが1mm×10cmとすると、光導波部10と半導体層21との全体の面積に占める半導体層21の面積の割合は、0.1×10/10.1×10=0.0099≒1%に過ぎない。これに加えて、半導体層21の厚さは、一般的には数十μm以下と小さいので、半導体層21の体積も極めて小さい。即ち、半導体層21の使用量が極めて少なくて済む。このため、光電変換装置の製造コストの低減を図ることができる。 The semiconductor layer 21 is selected as needed from, for example, those already listed. The semiconductor layer 21 is typically a pn junction composed of a p-type semiconductor layer and an n-type semiconductor layer, and has a structure forming an intermediate band, for example, a quantum dot layer. The first electrode 22 and the second electrode 23 are in ohmic contact with the semiconductor layer 21. The length of one side of the semiconductor layer 21 is typically chosen to be the same as the length of the side of the waveguide core layer 13 on which the semiconductor layer 21 is provided, but the length of the side perpendicular to this side is typical. It is 0.5 μm to 5 mm, preferably 2 μm to 1 mm. Since the size of the optical waveguide 10 is, for example, (5 cm to 100 cm) × (3 cm to 50 cm) as described above, the area of the semiconductor layer 21 is generally much smaller than the area of the optical waveguide 10. I'm done. That is, in this photoelectric conversion device, the optical waveguide portion 10 occupies a large part, and the semiconductor layer 21 occupies only a small part at the end. For example, assuming that the size of the optical waveguide 10 is 10 cm × 10 cm and the size of the semiconductor layer 21 is 1 mm × 10 cm, the ratio of the area of the semiconductor layer 21 to the total area of the optical waveguide 10 and the semiconductor layer 21 is , 0.1 × 10 / 10.1 × 10 = 0.0099 ≈ 1%. In addition to this, since the thickness of the semiconductor layer 21 is generally as small as several tens of μm or less, the volume of the semiconductor layer 21 is also extremely small. That is, the amount of the semiconductor layer 21 used can be extremely small. Therefore, it is possible to reduce the manufacturing cost of the photoelectric conversion device.
 半導体層21のホスト半導体あるいは中間バンドのバンドギャップあるいはHOMO-LUMOギャップEは、被光電変換光、即ち半導体層21内を導波される光の進行方向に沿って均一でもよいが、更に光電変換効率を高めるには、半導体層21内の上記光の進行方向に沿ってN段階(N≧2)に離散的且つ段階的に減少させたり、あるいは連続的に減少させるという方策を取る(連続的に減少させた場合を、後出の図8に示すので参照されたい。)。例えば、半導体層21のホスト半導体を同一の半導体により構成し、中間バンドのEを半導体層21内の光の進行方向にN段階(N≧2)に段階的に減少させ、あるいは連続的に減少させたり、半導体層21のホスト半導体および中間バンドのEを半導体層21内の光の進行方向にN段階(N≧2)に段階的に減少させ、あるいは連続的に減少させたりする。後者の場合は、半導体層21の中間バンド形成層213はそれぞれのバンドギャップ中に中間バンドを形成している。Eを光の進行方向にN段階に段階的に減少させる場合は、順にEg1、Eg2、…、EgN(Eg1>Eg2>…>EgN)とする。図7に一例としてN=4の場合を示す。図7に示すように、半導体層21は、EがそれぞれEg1、Eg2、Eg3、Eg4のホスト半導体からなる領域21a、21b、21c、21dからなる。各領域21a、21b、21c、21dは、導波コア層13の半導体層21が設けられた辺に平行な方向に延在する細長いストライプ状の形状を有する。半導体層21を構成する各Egi領域の幅(光の進行方向の幅で、図7の横方向の長さ)は、各Egi領域の光電変換対象光子(各Egi領域のバンドギャップEgi以上のエネルギーを有する光子)のうち、最低エネルギーのものに対するこのEgi領域の吸収係数をαとすると、1/α以上とする。 The band gap or HOMO-LUMO gap Eg of the host semiconductor or the intermediate band of the semiconductor layer 21 may be uniform along the traveling direction of the photoelectric conversion light, that is, the light waveguideed in the semiconductor layer 21, but is further photoelectric. In order to increase the conversion efficiency, a measure is taken to reduce the light discretely and stepwise in N steps (N ≧ 2) along the traveling direction of the light in the semiconductor layer 21, or to reduce the light continuously (continuously). Please refer to FIG. 8 below for the case of the reduction.) For example, the host semiconductor of the semiconductor layer 21 is composed of the same semiconductor, and E g in the intermediate band is gradually reduced in N steps (N ≧ 2) in the traveling direction of light in the semiconductor layer 21, or continuously. It is reduced, or E g of the host semiconductor and the intermediate band of the semiconductor layer 21 is gradually reduced in N steps (N ≧ 2) in the traveling direction of light in the semiconductor layer 21, or is continuously reduced. In the latter case, the intermediate band forming layer 213 of the semiconductor layer 21 forms an intermediate band in each band gap. When E g is gradually reduced in N steps in the traveling direction of light, E g1 , E g2 , ..., E gN (E g1 > E g2 >...> E gN ) are used in this order. FIG. 7 shows the case of N = 4 as an example. As shown in FIG. 7, the semiconductor layer 21 includes regions 21a, 21b, 21c, and 21d in which E g is composed of host semiconductors of E g1 , E g2 , E g3 , and E g4 , respectively. Each region 21a, 21b, 21c, 21d has an elongated striped shape extending in a direction parallel to the side of the waveguide core layer 13 provided with the semiconductor layer 21. The width of each E gi region constituting the semiconductor layer 21 (the width in the traveling direction of light, the length in the lateral direction in FIG. 7) is the photoelectric conversion target photon of each E gi region (band gap E of each E gi region). If the absorption coefficient of this E gi region for the photon with the lowest energy among the photons having energy of gi or more is α i , it is 1 / α i or more.
 Egiは次のように設定することができる。例えば、AM1.5太陽光スペクトルの全波長範囲またはその主要な波長範囲(入射エネルギーが高い部分を含む範囲)において、波長をN個の区間に分ける。そして、これらの区間に短波長側(高エネルギー側)から順に1、2、…、Nというように番号を付け、i番目の区間の最小光子エネルギーに等しくEgiを選ぶ。こうすることで、k番目の区間の光子エネルギーを有する光子がEgi領域に入射すると電子-正孔対が発生し、光電変換が行われる。また、この場合、このk番目の区間の光子エネルギーを有する光子が各Egi領域に到達して十分に吸収されるように、導波コア層13と半導体層21との接合面からこのEgi領域までの距離を選ぶ。これによって、導波コア層13の内部を導波されて半導体層21に入射する太陽光は、まずEg1領域に入射してそのスペクトルのうち光子エネルギーがEg1以上のものが吸収され、さらに中間バンドを介した励起によりより小さい光子エネルギーのものも吸収されて光電変換され、続いてEg2領域に入射してそのスペクトルのうち光子エネルギーがEg2以上でEg1より小さいものが吸収され、さらに中間バンドを介した励起によりより小さい光子エネルギーのものも吸収されて光電変換され、最終的にEgN領域に入射してそのスペクトルのうち光子エネルギーがEgN以上でEgN-1より小さいものが吸収され、、さらに中間バンドを介した励起によりより小さい光子エネルギーのものも吸収されて光電変換される。この結果、太陽光スペクトルのほぼ全範囲あるいは主要な波長範囲の光を光電変換に使用することができる。 E gi can be set as follows. For example, in the entire wavelength range of the AM1.5 solar spectrum or its main wavelength range (the range including the portion having high incident energy), the wavelength is divided into N sections. Then, these sections are numbered in order from the short wavelength side (high energy side) such as 1, 2, ..., N, and E gi is selected equal to the minimum photon energy of the i-th section. By doing so, when a photon having photon energy in the kth section is incident on the Egi region, an electron-hole pair is generated and photoelectric conversion is performed. Further, in this case, the E gi is obtained from the junction surface between the waveguide core layer 13 and the semiconductor layer 21 so that the photons having the photon energy in the kth section reach each E gi region and are sufficiently absorbed. Choose the distance to the area. As a result, the sunlight that is waveguideed inside the waveguide core layer 13 and enters the semiconductor layer 21 first enters the E g1 region, and the photon energy of E g1 or higher in the spectrum is absorbed, and further. By excitation via the intermediate band, those with smaller photon energies are also absorbed and photoelectrically converted, and then incident on the E g2 region, and the photon energy of E g2 or more and smaller than E g1 in the spectrum is absorbed. Furthermore, those with smaller photon energies are also absorbed and photoelectrically converted by excitation via the intermediate band, and finally enter the E gN region, and the photon energy of the spectrum is E gN or more and smaller than E gN-1 . Is absorbed, and even smaller photon energies are absorbed and photoelectrically converted by excitation via the intermediate band. As a result, light in almost the entire range of the solar spectrum or in the main wavelength range can be used for photoelectric conversion.
 各Egiの設定は、各Egi領域を構成するホスト半導体の組成や半導体の形態(アモルファス、多結晶、単結晶)あるいは中間バンド形成層213などを変えることにより行うことができる。具体的には、例えば、各Egi領域を構成するホスト半導体を別種の半導体により構成する。この場合、この半導体は、吸収係数αの大小は問わず、キャリア移動度μの高いものを選ぶことができるので、選択肢が広い。無機半導体を用いる場合について具体例をいくつか挙げると次の通りである。N=3の場合には、例えば、Eg1領域をSi1-x (E=1.8~2.9eV)、Eg2領域をSi(E=1.11eV)、Eg3領域をGe(E=0.76eV)により構成する。また、N=4の場合には、例えば、Eg1領域をSi1-x (E=1.8~2.9eV)、Eg2領域をアモルファスシリコン(a-Si)(E=1.4~1.8eV)、Eg3領域をSiGe1-y (E=1.11eV)、Eg4領域をSiGe1-y (E=~0.76eV)により構成する。あるいは、N=4の場合に、Eg1領域をIGZO(In、Ga、Znの酸化物)(E=~3eV)、Eg2領域をSi1-x (E=~1.8eV)、Eg3領域をSi(E=1.11eV)、Eg4領域をSiGe1-y (E=~0.76eV)により構成する。そのほかに、次のように構成することもできる。N=2の最も簡単な場合には、例えば、Eg1領域をa-Si(E=1.4~1.8eV)、Eg2領域をSiGe1-y (E=~0.76eV)により構成する。また、N=3の場合には、例えば、Eg1領域をGaP(E=2.25eV)、Eg2領域をGaAs(E=1.43eV)、Eg3領域をInN(E=0.7eV)により構成する。また、N=4の場合には、例えば、Eg1領域をGaIn1-x N(E=2.3eV)、Eg2領域をGaIn1-y N(E=1.4~1.8eV)、Eg3領域をGaIn1-z N(E=1.1eV)、Eg4領域をInN(E=0.7eV)により構成する。また、N=5の場合には、例えば、Eg1領域を直径1.9nm程度のCdSe微粒子(吸収ピーク波長445nm)、Eg2領域を直径4.0nm程度のCdSe微粒子(吸収ピーク波長585nm)、Eg3領域を直径2nm程度のPbSe微粒子(吸収ピーク波長800nm)、Eg4領域を直径4.5nm程度のPbSe微粒子(吸収ピーク波長1100nm)、Eg5領域を直径90nm程度のPbSe微粒子(吸収ピーク波長2300nm)により構成する。さらに、GaInNAs1-x やGaInN1-x を用いてxの制御だけでN~10の場合のEgi領域を構成することも可能である。加えて、Teを含ませると大きなボウイング(bowing)を示すことが知られているII-VI族化合物半導体を用いてEgi領域を構成してもよい。有機半導体と無機半導体とを用いる場合についての具体例を挙げると次のとおりである。例えば、N=4の場合には、Eg1領域をMDMO-PPV(E=2.2eV)、Eg2領域をa-Si(E=1.4~1.8eV)、Eg3領域をポリアセン系(ヘキサセン)半導体(E=1~1.2eV)、Eg4領域をポリアセン系(ヘプタセン)半導体(E=0.6~08eV)により構成する。また、N≧2の場合に、Eg1領域をIGZO(In、Ga、Znの酸化物)(E=~3eV)、AlInN(E=2.8~3eV)、またはGaInN(E=2.8~3eV)、あるいは同様のバンドギャップを有する酸化物半導体(ZnO、ZnMgO等)のうちのいずれか一つとし、それに続く領域、例えば、Eg2領域をa-Si(E=1.4~1.8eV)とすることで、450nm以下の波長の光によって生ずることが示されているステブラー・ロンスキー反応を起こす光子を、予め、a-Si層に侵入する前に、光電変換しておくことで同反応を抑えることができ、従って、a-Si層からなる光電変換領域の寿命を伸ばすことができる。また、導波コア層13の端に、ハライド系有機-無機ペロブスカイト半導体(CHNHPbI)太陽電池や、銅、亜鉛、スズ、硫黄を原料とするCZTSを用いることも有効である。CIGS(Cu、In、Ga、Se)系、CZTSe(CuZnSnSe)系を用いても良い。CZTS内のバルク再結合が性能低下の要因とされているので、図6のような光進行方向とフォトキャリア進行方向とが直交する配置は、フォトキャリアが電極に到着する時間を、光吸収を犠牲にすることなく短くすることができるので、極めて有効である。一方、銅、スズ、ゲルマニウム、硫黄を構成元素とするCTGSは、バンドギャップが1.0eVで、高い光吸収係数、非毒性・非希少元素の材料として注目されている。Ge/Sn比の制御でバンドギャップの調整が可能である。 Each E gi can be set by changing the composition of the host semiconductor constituting each E gi region, the form of the semiconductor (amorphous, polycrystal, single crystal), the intermediate band forming layer 213, or the like. Specifically, for example, the host semiconductor constituting each Egi region is configured by another type of semiconductor. In this case, the semiconductor has a wide range of choices because a semiconductor having a high carrier mobility μ can be selected regardless of the magnitude of the absorption coefficient α. Some specific examples of the case of using an inorganic semiconductor are as follows. In the case of N = 3, for example, the E g1 region is Si x C 1-x (E g = 1.8 to 2.9 eV), the E g2 region is Si (E g = 1.11 eV), and the E g3 region. Is composed of Ge (E g = 0.76 eV). When N = 4, for example, the E g1 region is Si x C 1-x (E g = 1.8 to 2.9 eV), and the E g2 region is amorphous silicon (a-Si) (E g =). 1.4 to 1.8 eV), the E g3 region is composed of Silicon Ge 1-y ( E g = 1.11 eV), and the E g4 region is composed of Silicon Ge 1-y ( E g = ~ 0.76 eV). .. Alternatively, when N = 4, the E g1 region is IGZO (oxide of In, Ga, Zn) (E g = ~ 3 eV), and the E g2 region is Si x C 1-x (E g = ~ 1.8 eV). ), The E g3 region is composed of Si (E g = 1.11 eV), and the E g4 region is composed of Si y Ge 1-y (E g = ~ 0.76 eV). In addition, it can be configured as follows. In the simplest case of N = 2, for example, the E g1 region is a-Si (E g = 1.4 to 1.8 eV), and the E g2 region is Si y Ge 1-y (E g = to 0. 76eV). When N = 3, for example, the E g1 region is GaP (E g = 2.25 eV), the E g2 region is GaAs (E g = 1.43 eV), and the E g3 region is InN (E g = 0). It is composed of .7eV). When N = 4, for example, the E g1 region is Ga x In 1-x N (E g = 2.3 eV), and the E g2 region is Gay In 1-y N (E g = 1.4). ~ 1.8 eV), the E g3 region is composed of Gaz In 1-z N (E g = 1.1 eV), and the E g4 region is composed of In N (E g = 0.7 eV). When N = 5, for example, the E g1 region is CdSe fine particles having a diameter of about 1.9 nm (absorption peak wavelength 445 nm), and the E g2 region is CdSe fine particles having a diameter of about 4.0 nm (absorption peak wavelength 585 nm). The E g3 region is PbSe fine particles with a diameter of about 2 nm (absorption peak wavelength 800 nm), the E g4 region is PbSe fine particles with a diameter of about 4.5 nm (absorption peak wavelength 1100 nm), and the E g5 region is PbSe fine particles with a diameter of about 90 nm (absorption peak wavelength). 2300 nm). Further, it is also possible to construct an Egi region in the case of N to 10 only by controlling x using GaInN x As 1-x or GaInN x P 1-x . In addition, the E gi region may be constructed using a II-VI group compound semiconductor, which is known to exhibit large bowing when Te is included. Specific examples of the case where an organic semiconductor and an inorganic semiconductor are used are as follows. For example, when N = 4, the E g1 region is MDMO-PPV (E g = 2.2 eV), the E g2 region is a-Si (E g = 1.4 to 1.8 eV), and the E g3 region is used. A polyacene-based (hexacene) semiconductor (E g = 1 to 1.2 eV) and an E g4 region are composed of a polyacene-based (heptacene) semiconductor (E g = 0.6 to 08 eV). Further, when N ≧ 2, the E g1 region is IGZO (oxide of In, Ga, Zn) (E g = ~ 3eV), AlInN (E g = 2.8 to 3eV), or GaInN (E g =). 2.8 to 3 eV) or one of oxide semiconductors (ZnO, ZnMgO, etc.) having a similar bandgap, and the region following it, for example, the E g2 region is a-Si (E g = 1). By setting it to .4 to 1.8 eV), photons that cause the Stebler-Lonsky reaction, which has been shown to be generated by light having a wavelength of 450 nm or less, are photoelectrically converted before entering the a—Si layer in advance. By keeping the reaction, the reaction can be suppressed, and therefore the life of the photoelectric conversion region made of the a—Si layer can be extended. It is also effective to use a halide-based organic-inorganic perovskite semiconductor (CH 3 NH 3 PbI 3 ) solar cell or CZTS made of copper, zinc, tin, or sulfur as raw materials at the end of the waveguide core layer 13. A CIGS (Cu, In, Ga, Se) system or a CZTSe (Cu 2 ZnSnSe 4 ) system may be used. Since bulk recombination in the CZTS is considered to be a factor of performance deterioration, the arrangement in which the light traveling direction and the photocarrier traveling direction are orthogonal to each other as shown in FIG. 6 allows the time for the photocarrier to arrive at the electrode to absorb light. It is extremely effective because it can be shortened without sacrifice. On the other hand, CTGS containing copper, tin, germanium, and sulfur as constituent elements has a bandgap of 1.0 eV, has a high light absorption coefficient, and is attracting attention as a material for non-toxic and non-rare elements. The band gap can be adjusted by controlling the Ge / Sn ratio.
 各Egi領域の厚さdは必要に応じて選ばれるが、例えば数μm~数十μmである。各Egi領域の幅(半導体層21内の光の進行方向の幅)も必要に応じて選ばれるが、例えば数十μm~数百μmである。例えば、各領域21a、21b、21c、21dの厚さdを数μm~数十μm、各領域21a、21b、21c、21dの幅w~wを数十μm~数百μm、例えば~100μmに選ぶ。 The thickness d of each E gi region is selected as needed, and is, for example, several μm to several tens of μm. The width of each E gi region (width in the traveling direction of light in the semiconductor layer 21) is also selected as needed, and is, for example, several tens of μm to several hundreds of μm. For example, the thickness d of each region 21a, 21b, 21c, 21d is several μm to several tens of μm, and the widths w1 to w4 of each region 21a, 21b, 21c, 21d are several tens μm to several hundred μm, for example. Select 100 μm.
 半導体層21のホスト半導体あるいは中間バンドのバンドギャップあるいはHOMO-LUMOギャップEを半導体層21内の光の進行方向に連続的に減少させる場合の一例を図8に示す。図8において、EおよびEはそれぞれホスト半導体の伝導帯の下端のエネルギーおよび価電子帯の上端のエネルギー、EcIB およびEvIB はそれぞれ中間バンドの伝導帯の下端のエネルギーおよび価電子帯の上端のエネルギーを示す。図8に示すように、半導体層21のホスト半導体としては同一の半導体を用い、中間バンド形成層213として半導体層21内の光の進行方向に組成が徐々に傾斜する傾斜組成量子井戸層を用いることにより、中間バンドのバンドギャップを光の進行方向に徐々に減少させることができる。このような傾斜組成量子井戸層としては、具体的には、例えば、In組成が傾斜したGaInN層を用いることができる。図9は、3インチのサファイア基板上に、基板の中心から離れるに従って温度が低くなるようにラテラル方向に基板の温度分布を持たせた上でMOCVD法によりGaInN層をエピタキシャル成長させた後、挿入図に示す直径方向の点0、1、2、3、4、5でGaInN層のフォトルミネッセンススペクトルの測定を行った結果を示す。図10は、フォトルミネッセンススペクトルの結果から、GaInN層の直径方向のバンドギャップを基板の中心からの位置に対してプロットしたものである。図10に示すように、基板の中心からの位置が大きくなるに従ってバンドギャップが直線的に減少している。10mmの距離に対し約1eVに亘ってGaInN層のバンドギャップを制御することが分かる。これは、GaInN層のIn組成が基板の中心からの位置が大きくなるに従って増加していることを意味するが、基板の温度分布に対応して成長層へのInの取り込まれ率が基板の中心からの位置が大きくなるに従って増加した結果である。このように、一回のエピタキシャル成長により、ラテラル方向にバンドギャップが傾斜した構造を容易に形成することができる。また、以上の結果から明らかなように、半導体層21のホスト半導体としてGaNを用いた場合にGaN中に中間バンド形成層213としてGaInN層を形成することができることが実証されている。 FIG. 8 shows an example of a case where the band gap or HOMO- LUMO gap Eg of the host semiconductor or the intermediate band of the semiconductor layer 21 is continuously reduced in the traveling direction of light in the semiconductor layer 21. In FIG. 8, E c and E v are the energy at the lower end of the conduction band and the upper end energy of the valence band of the host semiconductor, respectively, and E cIB and E vIB are the energy and the valence band at the lower end of the conduction band of the intermediate band, respectively. Indicates the energy at the top. As shown in FIG. 8, the same semiconductor is used as the host semiconductor of the semiconductor layer 21, and an inclined composition quantum well layer whose composition is gradually inclined in the traveling direction of light in the semiconductor layer 21 is used as the intermediate band forming layer 213. Thereby, the band gap of the intermediate band can be gradually reduced in the traveling direction of the light. As the quantum well layer having such an inclined composition, specifically, for example, a GaInN layer having an inclined In composition can be used. FIG. 9 is an insertion view after the GaInN layer is epitaxially grown on a 3-inch sapphire substrate by the MOCVD method after having the temperature distribution of the substrate in the lateral direction so that the temperature decreases as the distance from the center of the substrate decreases. The results of measuring the photoluminescence spectrum of the GaInN layer at points 0, 1, 2, 3, 4, and 5 in the radial direction shown in (1) are shown. FIG. 10 is a plot of the radial bandgap of the GaInN layer relative to the position from the center of the substrate from the results of the photoluminescence spectrum. As shown in FIG. 10, the band gap linearly decreases as the position from the center of the substrate increases. It can be seen that the bandgap of the GaInN layer is controlled over a distance of 10 mm over about 1 eV. This means that the In composition of the GaInN layer increases as the position from the center of the substrate increases, but the rate of In uptake into the growth layer corresponding to the temperature distribution of the substrate is the center of the substrate. This is the result of the increase as the position from is increased. As described above, a structure in which the bandgap is inclined in the lateral direction can be easily formed by one-time epitaxial growth. Further, as is clear from the above results, it has been demonstrated that when GaN is used as the host semiconductor of the semiconductor layer 21, the GaInN layer can be formed as the intermediate band forming layer 213 in the GaN.
 基板40は、光導波部10および中間バンド型太陽電池20の機械的支持や機械的保護の役割なども果たすことができ、導波コア層13の内部に光を効率良く閉じ込めるためのクラッド層としての役割を果たすことができるものであってもよく、この場合は、クラッド層11を兼用させることもできる。基板40は、例えば、ガラス板、透明プラスチック板などである。透明プラスチック板を構成する透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などを用いることができる。また、基板40はフレキシブルなものであってもよく、この場合は、凸面または凹面に沿って曲げた状態で光電変換装置を容易に設置することができる。基板40は、導波コア層13の内部に光を効率良く閉じ込めるためのクラッド層としての役割を果たすことができるように、好適には、導波コア層13に比べて十分に低屈折率の材料により形成される。また、基板40は2層以上の多層構造となっていてもよい。この場合、この基板40のうち、導波コア層13に接する層の屈折率は上記の条件を満たし、必要な厚み(典型的には0.1μm~数μm)を有する必要があるが、これを満たす限り、残りの層の物性値は自由に選定することができる(例えば、光吸収がある物質でも許容される)。 The substrate 40 can also play a role of mechanical support and mechanical protection of the optical waveguide portion 10 and the intermediate band type solar cell 20, and serves as a clad layer for efficiently confining light inside the waveguide core layer 13. In this case, the clad layer 11 can also be used. The substrate 40 is, for example, a glass plate, a transparent plastic plate, or the like. Examples of the transparent plastic constituting the transparent plastic plate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetylcellulose, brominated phenoxy, aramids, polyimides, and polystyrene. Classes, polyarylates, polysulfones, polyolefins and the like can be used. Further, the substrate 40 may be flexible, and in this case, the photoelectric conversion device can be easily installed in a state of being bent along a convex or concave surface. The substrate 40 preferably has a sufficiently low refractive index as compared with the waveguide core layer 13 so that the substrate 40 can serve as a clad layer for efficiently confining light inside the waveguide core layer 13. Formed by the material. Further, the substrate 40 may have a multi-layer structure of two or more layers. In this case, the refractive index of the layer of the substrate 40 in contact with the waveguide core layer 13 must satisfy the above conditions and have a required thickness (typically 0.1 μm to several μm). As long as the conditions are satisfied, the physical property values of the remaining layers can be freely selected (for example, substances having light absorption are also acceptable).
 図11、図12および図13に光進行方向変換層30の詳細を示し、図11は断面図、図12および図13は光入射面側から見た平面図(底面図)である。ここで、図12は後述の回転放物体状部32および半球体状部33の配置が4回対称性を有する配置例、図13は同じく6回対称性を有する配置例である。図11は図12および図13の一点鎖線に沿っての断面図である。光進行方向変換層30は、この光進行方向変換層30に入射する入射光の入射角度によらず、入射光をこの光進行方向変換層30の光入射面に垂直な方向に進行する光に変換するためのものである。図11および図12または図13に示すように、光進行方向変換層30は、平板状の透明基材31と、この透明基材31の一方の主面に二次元アレイ状に縦横に多数設けられた透明な回転放物体状部32と、これらの回転放物体状部32を覆うように設けられた、半球面からなる表面を有する透明な半球体状部33とを有する。半球体状部33は半球レンズとして働く。回転放物体状部32の焦点とこの回転放物体状部32を覆う半球体状部33の中心とは互いに一致している。回転放物体状部32の先端部の表面の曲率は半球体状部33の半球面の曲率よりも大きくなっており、尖っている。回転放物体状部32の焦点Fと先端との間の距離aおよび回転放物体状部32の幅Dは必要に応じて選ばれるが、Lは0.5μm以上0.8μm以下、例えば0.625μm、Wは1.5μm以上2.5μm以下である。半球体状部33の半径はW/2である。光進行方向変換層30の外部の空気の屈折率をn、半球体状部33の屈折率をn、半球体状部33との重なり部を除く回転放物体状部32および透明基材31の屈折率をnとすると、n>n>nが成立する。典型的には、n=1.0、n=1.35~1.5(例えば1.35)、n=1.9~2.1(例えば2.0)である。この場合、光進行方向変換層30の光入射面に0~80度の入射角で入射する光が半球体状部33に入射し、その内部を直進して半球体状部33の中心、従って回転放物体状部32の焦点Fに入射し、焦点Fを通過後に回転放物体状部32の回転放物面と交差するように、回転放物体状部32の高さ(長さ)あるいはaが設定される。こうして回転放物体状部32の焦点Fに入射した光は回転放物体状部32の軸に平行、従って光進行方向変換層30の光入射面に垂直な方向に進行する。即ち、様々な方向から入射光が光進行方向変換層30の光入射面に入射しても、光の進行方向が光入射面に対して垂直な方向に変換されることにより、結果として光導入コア層14内で全反射を繰り返しながら導波コア層13の内部に光を導入することができる。以上のことから分かるように、この光進行方向変換層30によれば、朝から夕方までの太陽光の角度に対して、入射光の進行方向変換を実行し、この光進行方向変換層30の背後の光導波部10の光入射面に対し、光がほぼ垂直に入射するようにすることができる。 11, 12 and 13 show the details of the light traveling direction conversion layer 30, FIG. 11 is a cross-sectional view, and FIGS. 12 and 13 are plan views (bottom views) seen from the light incident surface side. Here, FIG. 12 is an arrangement example in which the arrangement of the rotating release object-shaped portion 32 and the hemispherical portion 33, which will be described later, has a four-fold symmetry, and FIG. 13 is an arrangement example in which the arrangement has the same six-fold symmetry. FIG. 11 is a cross-sectional view taken along the alternate long and short dash line of FIGS. 12 and 13. The light traveling direction changing layer 30 makes the incident light travel in a direction perpendicular to the light incident surface of the light traveling direction changing layer 30 regardless of the incident angle of the incident light incident on the light traveling direction changing layer 30. It is for conversion. As shown in FIGS. 11 and 12 or 13, a large number of optical traveling direction conversion layers 30 are provided vertically and horizontally in a two-dimensional array on one main surface of a flat plate-shaped transparent base material 31 and the transparent base material 31. It has a transparent rotating release object-shaped portion 32, and a transparent hemispherical portion 33 having a surface made of a hemisphere and provided so as to cover these rotating release object-shaped portions 32. The hemispherical portion 33 acts as a hemispherical lens. The focal point of the rotating release object-shaped portion 32 and the center of the hemispherical portion 33 covering the rotating release object-shaped portion 32 coincide with each other. The curvature of the surface of the tip of the rotating object-shaped portion 32 is larger than the curvature of the hemisphere of the hemispherical portion 33, and is sharp. The distance a between the focal point F and the tip of the rotating object-shaped portion 32 and the width D of the rotating object-shaped portion 32 are selected as necessary, but L is 0.5 μm or more and 0.8 μm or less, for example, 0. 625 μm and W are 1.5 μm or more and 2.5 μm or less. The radius of the hemispherical portion 33 is W / 2. The refractive index of the air outside the light traveling direction conversion layer 30 is n 1 , the refractive index of the hemispherical portion 33 is n 2 , the rotating object-shaped portion 32 excluding the overlapping portion with the hemispherical portion 33, and the transparent substrate. Assuming that the refractive index of 31 is n 3 , n 3 > n 2 > n 1 is established. Typically, n 1 = 1.0, n 2 = 1.35 to 1.5 (for example, 1.35), and n 3 = 1.9 to 2.1 (for example, 2.0). In this case, light incident on the light incident surface of the light traveling direction conversion layer 30 at an incident angle of 0 to 80 degrees is incident on the hemispherical portion 33, travels straight inside the hemispherical portion 33, and is therefore the center of the hemispherical portion 33. The height (length) or a of the rotating release object-shaped portion 32 so as to be incident on the focal point F of the rotating release object-shaped portion 32 and to intersect the rotating release surface of the rotating release object-shaped portion 32 after passing through the focal point F. Is set. The light incident on the focal point F of the rotating object-shaped portion 32 thus travels parallel to the axis of the rotating project-shaped portion 32, and thus travels in a direction perpendicular to the light incident surface of the light traveling direction conversion layer 30. That is, even if the incident light is incident on the light incident surface of the light traveling direction conversion layer 30 from various directions, the traveling direction of the light is converted to the direction perpendicular to the light incident surface, and as a result, the light is introduced. Light can be introduced into the waveguide core layer 13 while repeating total reflection in the core layer 14. As can be seen from the above, according to the light traveling direction changing layer 30, the traveling direction of the incident light is changed with respect to the angle of sunlight from morning to evening, and the light traveling direction changing layer 30 is used. It is possible to make the light incident substantially perpendicular to the light incident surface of the optical waveguide portion 10 behind.
 光進行方向変換層30による効果を検証するためにシミュレーションを行った。光進行方向変換層30のn=1.0、n=1.35、n=2.0とし、回転放物体状部32の焦点Fと先端との間の距離Dを0.625μm、Wを4μmとし、半球体状部33の半径を2μmとした。図14および図15は、この光進行方向変換層30にそれぞれ入射角40度および20度で光を入射させた場合のシミュレーションの結果を示す。図14および図15は光進行方向変換層30の面に平行な方向をX軸、光進行方向変換層30の厚さ方向をZ軸、これらのX軸およびZ軸に垂直な方向をY軸とし、光波の電場のY軸方向の振幅Eの大きさ(強度)のXZ面内の分布を示したものである。図14および図15より、この光進行方向変換層30に斜めに入射する光は、この光進行方向変換層30を透過した後、この光進行方向変換層30に対してほぼ垂直な方向に出射することが分かる。即ち、この光進行方向変換層30により、斜め入射光の進行方向を光進行方向変換層30の面に対してほぼ垂直方向に変換することができることが分かる。特に、入射角40度の場合を示す図14より、従来例では難しかった、中間入射角(30~50度)の光に対しても、光進行方向変換層30により効果的に進行方向変換を実行して、この光進行方向変換層30の背後に控える導波コア層13(偏平導波路(2次元導波路))の面に対し、光をほぼ垂直に入射させ得ることが示された。 A simulation was performed to verify the effect of the light traveling direction changing layer 30. It is assumed that n 1 = 1.0, n 2 = 1.35, and n 3 = 2.0 of the optical traveling direction conversion layer 30, and the distance D between the focal point F and the tip of the rotating object-shaped portion 32 is 0.625 μm. , W was set to 4 μm, and the radius of the hemispherical portion 33 was set to 2 μm. 14 and 15 show the results of simulation when light is incident on the light traveling direction changing layer 30 at incident angles of 40 degrees and 20 degrees, respectively. 14 and 15 show the X-axis in the direction parallel to the plane of the optical traveling direction conversion layer 30, the Z-axis in the thickness direction of the optical traveling direction conversion layer 30, and the Y-axis in the directions perpendicular to these X-axis and Z-axis. The distribution of the magnitude (intensity) of the amplitude E y in the Y-axis direction of the electric field of the light wave in the XZ plane is shown. From FIGS. 14 and 15, the light obliquely incident on the light traveling direction changing layer 30 passes through the light traveling direction changing layer 30 and then emits in a direction substantially perpendicular to the light traveling direction changing layer 30. You can see that it does. That is, it can be seen that the light traveling direction conversion layer 30 can convert the traveling direction of the obliquely incident light into a direction substantially perpendicular to the surface of the light traveling direction conversion layer 30. In particular, from FIG. 14, which shows the case of an incident angle of 40 degrees, even for light having an intermediate incident angle (30 to 50 degrees), which was difficult in the conventional example, the light traveling direction conversion layer 30 effectively changes the traveling direction. It was shown that light could be incident substantially perpendicular to the surface of the waveguide core layer 13 (flat waveguide (two-dimensional waveguide)) behind the light traveling direction conversion layer 30.
[光電変換装置の動作]
 この光電変換装置の動作について説明する。図1に示すように、この光電変換装置の光導波部10の光進行方向変換層30の光入射面に3次元空間伝搬光、例えば太陽光が入射する。図1の下部に示すように、太陽光は、時刻に応じて光進行方向変換層30の光入射面に斜め方向から入射するが、特に図13に示す6回対称配置例では、この斜め方向ベクトルの平面射影が図13に示す破線方向に平行になるように取ることが有効である。この時、図11に示す半球体状部33間の相互遮りを最小にすることができる。即ち、図13のAで示す半球体状部33は、B、Cで示す半球体状部33に遮られることが最小となり、Aで示す半球体状部33に対する太陽の立体角Ωが最大になる。中間バンド型太陽電池20の半導体層21の主面には光は直接入射しない。光進行方向変換層30の光入射面に入射した3次元空間伝搬光は、この光入射面に対して垂直な方向に進行方向を変換された後、光導入コア層14を通って導波コア層13の内部に入り、導波コア層13の内部を効率的に導波され、導波コア層13の光出射端面13aから出て半導体層21の側面に入射した後に半導体層21内を進み、その過程で半導体層21中に電子-正孔対が生成される。そして、こうして生成された電子および正孔は半導体層21内をドリフトまたは拡散により移動し、第1の電極22および第2の電極23のうちの一方および他方に収集される。こうして半導体層21内で光電変換が行われ、第1の電極22と第2の電極23とから外部に電流(光電流)が取り出される。
[Operation of photoelectric conversion device]
The operation of this photoelectric conversion device will be described. As shown in FIG. 1, three-dimensional space propagating light, for example, sunlight is incident on the light incident surface of the optical traveling direction conversion layer 30 of the optical waveguide section 10 of this photoelectric conversion device. As shown in the lower part of FIG. 1, sunlight is incident on the light incident surface of the light traveling direction conversion layer 30 from an oblique direction depending on the time, but especially in the 6-fold symmetrical arrangement example shown in FIG. 13, this oblique direction. It is effective to take the plane projection of the vector so that it is parallel to the direction of the broken line shown in FIG. At this time, mutual obstruction between the hemispherical portions 33 shown in FIG. 11 can be minimized. That is, the hemispherical portion 33 shown by A in FIG. 13 is minimized to be obstructed by the hemispherical portion 33 shown by B and C, and the solid angle Ω of the sun with respect to the hemispherical portion 33 shown by A is maximized. Become. Light does not directly enter the main surface of the semiconductor layer 21 of the intermediate band type solar cell 20. The three-dimensional space propagating light incident on the light incident surface of the light traveling direction conversion layer 30 is converted in the traveling direction in the direction perpendicular to the light incident surface, and then passes through the light introduction core layer 14 to the waveguide core. It enters the inside of the layer 13, is efficiently waveguideed inside the waveguide core layer 13, exits from the light emitting end surface 13a of the waveguide core layer 13, is incident on the side surface of the semiconductor layer 21, and then advances in the semiconductor layer 21. In the process, electron-hole pairs are generated in the semiconductor layer 21. Then, the electrons and holes thus generated move in the semiconductor layer 21 by drift or diffusion, and are collected on one and the other of the first electrode 22 and the second electrode 23. In this way, photoelectric conversion is performed in the semiconductor layer 21, and a current (photocurrent) is taken out from the first electrode 22 and the second electrode 23 to the outside.
 この光電変換装置においては、上述のようにΘはほぼ直角であるため、従来の一般的な太陽電池と異なり、吸収光子数およびフォトキャリア収集効率はトレードオフの関係ではなくなる。最も好適には、Θ=90°とすることができる。言い換えると、第1の電極22と第2の電極23とを最短に結ぶ直線に垂直な方向から、導波コア層13の内部を導波されて導波コア層13の光出射端面13aから出射される光を半導体層21の側面に入射させることができる。この場合、半導体層21の吸収光子数は、光の入射方向の幅(半導体層21が例えば領域21a、21b、21c、21dからなる場合には領域21a、21b、21c、21dの幅w~w)で支配され、光電変換効率は光吸収律速領域では半導体層21の厚さdに支配されない。即ち、この光電変換装置の極めて有利な点は、導波コア層13の内部の導波方向とキャリアの移動方向とを例えば互いに直交させることにより、光吸収の最適化とキャリア収集効率の最適化とを完全に両立させることができることである。さらに、半導体層21の吸収係数αの小ささは、光の入射方向の半導体層21の幅(半導体層21が例えば領域21a、21b、21c、21dからなる場合には領域領域21a、21b、21c、21dの幅w~w)を大きくすることにより補うことができるので、半導体層21の材料として、αの大小にとらわれることなく、唯一の支配パラメータであるμの大きい材料を用いることができる。こうすることで、高い光電変換効率を得ることが可能となり、熱力学的限界に迫る光電変換効率を得ることも可能である。 In this photoelectric conversion device, since Θ is almost a right angle as described above, unlike a conventional general solar cell, the number of absorbed photons and the photocarrier acquisition efficiency are not in a trade-off relationship. Most preferably, Θ = 90 ° can be set. In other words, the inside of the waveguide core layer 13 is waveguideed from the direction perpendicular to the straight line connecting the first electrode 22 and the second electrode 23 at the shortest, and the light is emitted from the light emitting end surface 13a of the waveguide core layer 13. The light emitted can be incident on the side surface of the semiconductor layer 21. In this case, the number of absorbed photons of the semiconductor layer 21 is the width in the incident direction of light (for example, when the semiconductor layer 21 is composed of the regions 21a, 21b, 21c, 21d, the widths w 1 to the regions 21a, 21b, 21c, 21d). It is dominated by w 4 ), and the photoelectric conversion efficiency is not dominated by the thickness d of the semiconductor layer 21 in the light absorption rate-determining region. That is, the extremely advantageous point of this photoelectric conversion device is the optimization of light absorption and the optimization of carrier collection efficiency by, for example, making the waveguide direction inside the waveguide core layer 13 and the carrier moving direction orthogonal to each other. It is possible to completely achieve both. Further, the small absorption coefficient α of the semiconductor layer 21 is the width of the semiconductor layer 21 in the incident direction of light (when the semiconductor layer 21 is composed of, for example, the regions 21a, 21b, 21c, 21d, the region regions 21a, 21b, 21c. , 21d can be compensated by increasing the widths w1 to w4 ). Therefore, as the material of the semiconductor layer 21, it is possible to use a material having a large μ, which is the only dominant parameter, regardless of the size of α. can. By doing so, it becomes possible to obtain a high photoelectric conversion efficiency, and it is also possible to obtain a photoelectric conversion efficiency approaching the thermodynamic limit.
 この第1の実施の形態によれば、次のような種々の利点を得ることができる。即ち、この光電変換装置においては、朝夕の太陽光あるいは雨天や曇天時などの拡散光を含み、光進行方向変換層30の光入射面に様々な方向から入射する広範な波長帯の3次元空間伝搬光の進行方向をこの光入射面に対して垂直方向に変換して光導波部10に入射させ、導波コア層13の内部を効率的に導波させて2次元空間伝搬光とし、この広範な波長帯の2次元空間伝搬光を半導体層21に入射させて光電変換を行うことができるので、極めて高い光電変換効率を得ることができる。また、光電変換部が中間バンド型太陽電池20により構成されていてホスト半導体のバンドギャップ中に中間バンドを有することにより吸収波長帯域を広げることができるため、太陽光スペクトルのようなワイドスペクトルを有する光源からの光を極めて効率的に電気エネルギーに変換することができる。また、この光電変換装置においては、光導波部10および光進行方向変換層30が大部分の面積を占め、この光進行方向変換層30の光入射面全体で入射光を受光することができるため、入射光に対する不感領域が実質的にない。また、従来の太陽電池では、光入射面の全体に光電変換用の半導体を設ける必要があるため、半導体の使用量が多いのに対し、この光電変換装置においては、半導体層21はごく一部の面積を占めるに過ぎず、その体積も極めて小さくて済むため、半導体の使用量が少なくて済み、製造コストの低減を図ることができる。また、半導体層21が、この半導体層21内の光の進行方向にバンドギャップまたはHOMO-LUMOギャップが段階的に減少する複数の領域により構成される場合には、太陽光の高エネルギーの紫外成分を例えば1段目の領域で吸収することができるため、後段の領域に紫外成分が入射しないようにすることができる。このため、後段の領域をアモルファスシリコンや有機半導体により構成しても、ステブラー・ロンスキー効果や有機半導体の劣化の問題がない。このため、これによっても光電変換効率の向上を図ることができるとともに、光電変換装置の信頼性の向上を図ることができる。さらに、この光電変換装置は、光導波部10の面積を大きくするだけで容易に大面積化が可能である。また、導波コア層13の光出射端面13aに半導体層21が設けられ、導波コア層13内を導波される光が導波コア層13の光出射端面13aから出て半導体層21の側面に入射するように構成されているため、集光のためのレンズなどが不要であり、構成も極めて簡単であり、光軸合わせなども不要であるため、製造が容易であるだけでなく、製造コストの低減を図ることもでき、経時変化や経年変化を防止することもできる。また、この光電変換装置においては、受光部と光電変換部である中間バンド型太陽電池20とを互いに分離するとともに、それらの間を3次元的にではなく、導波コア層13により2次元的に接続していることにより、例えば自動車などの移動体はもとより、例えばメトロポリタンエリアのビル群の全側面にこの光電変換装置を設置することが景観を損なうことなく可能となるため、光電変換装置の設置に必要な事業用地不足などの問題を容易に解決することができる。 According to this first embodiment, various advantages such as the following can be obtained. That is, in this photoelectric conversion device, a three-dimensional space having a wide wavelength band that includes morning and evening sunlight or diffused light in rainy or cloudy weather and is incident on the light incident surface of the light traveling direction conversion layer 30 from various directions. The traveling direction of the propagating light is converted to a direction perpendicular to the light incident surface and incident on the optical waveguide section 10, and the inside of the waveguide core layer 13 is efficiently waveguideed to obtain two-dimensional space propagating light. Since the two-dimensional space propagating light in a wide wavelength band can be incident on the semiconductor layer 21 to perform photoelectric conversion, extremely high photoelectric conversion efficiency can be obtained. Further, since the photoelectric conversion unit is composed of the intermediate band type solar cell 20 and has an intermediate band in the band gap of the host semiconductor, the absorption wavelength band can be widened, so that it has a wide spectrum like a solar spectrum. The light from the light source can be converted into electrical energy very efficiently. Further, in this photoelectric conversion device, the optical waveguide portion 10 and the optical traveling direction conversion layer 30 occupy most of the area, and the incident light can be received by the entire light incident surface of the optical traveling direction conversion layer 30. , There is virtually no insensitive area to incident light. Further, in the conventional solar cell, since it is necessary to provide a semiconductor for photoelectric conversion on the entire light incident surface, the amount of semiconductor used is large, whereas in this photoelectric conversion device, the semiconductor layer 21 is only a part. Since it occupies only the area of the semiconductor and its volume is extremely small, the amount of semiconductor used can be small and the manufacturing cost can be reduced. Further, when the semiconductor layer 21 is composed of a plurality of regions in which the band gap or the HOMO-LUMO gap gradually decreases in the traveling direction of light in the semiconductor layer 21, the high-energy ultraviolet component of sunlight is formed. For example, can be absorbed in the region of the first stage, so that the ultraviolet component can be prevented from incident on the region of the latter stage. Therefore, even if the latter region is made of amorphous silicon or an organic semiconductor, there is no problem of the Stebler-Wronskian effect or deterioration of the organic semiconductor. Therefore, it is possible to improve the photoelectric conversion efficiency and the reliability of the photoelectric conversion device. Further, this photoelectric conversion device can easily increase the area simply by increasing the area of the optical waveguide section 10. Further, the semiconductor layer 21 is provided on the light emitting end surface 13a of the waveguide core layer 13, and the light waveguideed in the waveguide core layer 13 is emitted from the light emitting end surface 13a of the waveguide core layer 13 to form the semiconductor layer 21. Since it is configured to be incident on the side surface, it does not require a lens for condensing light, it is extremely simple to configure, and it does not require optical axis alignment, so it is not only easy to manufacture. It is also possible to reduce the manufacturing cost and prevent aging and aging. Further, in this photoelectric conversion device, the light receiving unit and the intermediate band type solar cell 20 which is the photoelectric conversion unit are separated from each other, and the space between them is not three-dimensional but two-dimensional by the waveguide core layer 13. By connecting to, it is possible to install this photoelectric conversion device not only on moving objects such as automobiles but also on all sides of buildings in the metropolitan area, for example, without spoiling the landscape. Problems such as lack of business land required for installation can be easily solved.
〈第2の実施の形態〉
[光電変換装置]
 図16は第2の実施の形態による光電変換装置を示す断面図である。この光電変換装置の光入射面側から見た平面図(底面図)は、例えば図2と同様である。この光電変換装置は、光導波部10の構成が第1の実施の形態による光電変換装置と異なる。図17にこの光電変換装置における光導波部10を示す。また、図18にこの光導波部10の一部を拡大して示す。図16~図18に示すように、この光導波部10においては、クラッド層12および光導入コア層14の断面形状が第1の実施の形態による光電変換装置と異なる。具体的には、この光導波部10においては、クラッド層12の断面形状は、光入射面側の第1の弧状部121とこの第1の弧状部121に連続的に連結されている第2の弧状部122とからなる。第2の弧状部122の導波コア層13側の端部は導波コア層13にタンジェンシャルに接続している。図19を参照して第1の弧状部121と第2の弧状部122とからなるクラッド層12の断面形状について詳細に説明する。図19は第1の弧状部121と第2の弧状部122とからなるクラッド層12の中心線(太い実線で示す)の形状を示したものである。図19に示すように、第1の弧状部121は、導波コア層13内の導波方向に短軸、この導波方向に垂直方向に長軸を有する縦長楕円の四分の一部分に相当する形状を有する。第2の弧状部122は、導波コア層13内の導波方向に長軸、この導波方向に垂直方向に短軸を有する横長楕円の四分の一部分から長軸との交点から所定の長さの部分を切除した形状を有し、その切除部の端点が第1の弧状部121の長軸との交点に一致している。縦長楕円の長半径(長軸の長さの1/2)は6~100μm程度、横長楕円の長半径は100~500μm程度である。図16~図18に示す一例では、縦長楕円の短半径(短軸の長さの1/2)は18μm、長半径は36μm、横長楕円の短半径は30μm、長半径は180μmである。この場合、導波コア層13内の導波方向にx軸を取ると、クラッド層12のx軸方向の幅は、縦長楕円部の幅が18μm、横長楕円部の幅が122μmであるから、18+122=140μmとなる。図16~図18に示すように、クラッド層12は、クラッド層12のx方向(横方向)の周期δより大きい周期Δで、相対的に厚いクラッド層12が繰り返し存在する。相対的に厚いクラッド層12同士のその端点でのz方向(縦方向)の距離、即ち、メインの2次元導波路である導波コア層13に接続する地点でのz方向の開口部幅は、典型的には1.8~6.8μm、好適には3.4μm程度である。δは、典型的には1.1~4.5μm、好適には2.3μm程度である。この場合、相対的に厚いクラッド層12の幅は例えば1~2μm、相対的に薄いクラッド層12の幅は光のしみ込みを考慮して入射光の波長のオーダー、典型的には0.4~1μm程度である。相対的に薄いクラッド層12と隣接する光導入コア層14とを1ユニットとすると、相対的に厚いクラッド層12の周期Δの中に含まれるユニットの数はΔ/δで決定される。図16~図18に示す例では、Δ=85μm、ユニットの数32個、δ=2.66μmである。この場合、相対的に薄いクラッド層12の幅を0.4μmとすると、光導入コア層14の幅は2.66-0.4=2.26μmである。採用する縦長楕円、横長楕円(あるいは、相対的に半径の大きい円)の構造に応じてΔは、100μm程度から、最大~1000μm程度になりうる。
<Second embodiment>
[Photoelectric converter]
FIG. 16 is a cross-sectional view showing a photoelectric conversion device according to the second embodiment. The plan view (bottom view) of this photoelectric conversion device as seen from the light incident surface side is, for example, the same as in FIG. This photoelectric conversion device differs from the photoelectric conversion device according to the first embodiment in the configuration of the optical waveguide section 10. FIG. 17 shows the optical waveguide section 10 in this photoelectric conversion device. Further, FIG. 18 shows an enlarged part of the optical waveguide section 10. As shown in FIGS. 16 to 18, in the optical waveguide section 10, the cross-sectional shapes of the clad layer 12 and the optical introduction core layer 14 are different from those of the photoelectric conversion device according to the first embodiment. Specifically, in the optical waveguide portion 10, the cross-sectional shape of the clad layer 12 is continuously connected to the first arc-shaped portion 121 on the light incident surface side and the first arc-shaped portion 121. It is composed of an arc-shaped portion 122 of. The end of the second arc-shaped portion 122 on the waveguide core layer 13 side is tangentially connected to the waveguide core layer 13. The cross-sectional shape of the clad layer 12 including the first arc-shaped portion 121 and the second arc-shaped portion 122 will be described in detail with reference to FIG. FIG. 19 shows the shape of the center line (indicated by a thick solid line) of the clad layer 12 including the first arc-shaped portion 121 and the second arc-shaped portion 122. As shown in FIG. 19, the first arcuate portion 121 corresponds to a quarter portion of a vertically elongated ellipse in the waveguide core layer 13 having a short axis in the waveguide direction and a long axis in the direction perpendicular to the waveguide direction. Has a shape to be The second arc-shaped portion 122 is defined from the intersection of a quarter portion of a horizontally long ellipse having a long axis in the waveguide direction and a short axis in the direction perpendicular to the waveguide direction in the waveguide core layer 13 with the long axis. It has a shape in which a length portion is cut off, and the end point of the cut portion coincides with the intersection with the long axis of the first arcuate portion 121. The semimajor axis of the vertically elongated ellipse (1/2 of the length of the major axis) is about 6 to 100 μm, and the semimajor axis of the horizontally elongated ellipse is about 100 to 500 μm. In the example shown in FIGS. 16 to 18, the short radius (1/2 of the length of the short axis) of the vertically long ellipse is 18 μm, the long radius is 36 μm, the short radius of the horizontally long ellipse is 30 μm, and the long radius is 180 μm. In this case, when the x-axis is taken in the waveguide direction in the waveguide core layer 13, the width of the clad layer 12 in the x-axis direction is 18 μm in the vertically elongated elliptical portion and 122 μm in the horizontally elongated elliptical portion. 18 + 122 = 140 μm. As shown in FIGS. 16 to 18, in the clad layer 12, a relatively thick clad layer 12 is repeatedly present with a period Δ larger than the period δ in the x direction (horizontal direction) of the clad layer 12. The z-direction (longitudinal) distance between the relatively thick clad layers 12 at their endpoints, that is, the z-direction opening width at the point of connection to the waveguide core layer 13, which is the main two-dimensional waveguide. Typically, it is 1.8 to 6.8 μm, preferably about 3.4 μm. δ is typically 1.1 to 4.5 μm, preferably about 2.3 μm. In this case, the width of the relatively thick clad layer 12 is, for example, 1 to 2 μm, and the width of the relatively thin clad layer 12 is on the order of the wavelength of the incident light in consideration of light penetration, typically 0.4. It is about 1 μm. Assuming that the relatively thin clad layer 12 and the adjacent light introduction core layer 14 are one unit, the number of units included in the period Δ of the relatively thick clad layer 12 is determined by Δ / δ. In the examples shown in FIGS. 16 to 18, Δ = 85 μm, the number of units is 32, and δ = 2.66 μm. In this case, assuming that the width of the relatively thin clad layer 12 is 0.4 μm, the width of the light introduction core layer 14 is 2.66-0.4 = 2.26 μm. Depending on the structure of the vertically elongated ellipse and the horizontally elongated ellipse (or a circle having a relatively large radius), Δ can be about 100 μm to a maximum of about 1000 μm.
 この光電変換装置における光伝搬のシミュレーションを行った。シミュレーション結果を図20および図21に示す。図20は光場の全体象、図21は3次元伝搬光の2次元伝搬光への変換効率を示す。クラッド層12の横長楕円の四分の一部分の第2の弧状部122の曲率の小さい(曲率半径の大きい)末端の寄与によりタンジェンシャルに光導波コア層13に結合することで、66.5%という高い3次元伝搬光→2次元伝搬光の変換効率を実現することができた。また、相対的に厚いクラッド層12が光導波コア層13内の導波光の長距離伝搬を支える一方、相対的に薄いクラッド層12が、図16の下部より上方へ向かう太陽光の光導入コア層14の縦長楕円部から横長楕円部への滑らかな伝搬を可能としている。この相対的に薄いクラッド層12は、横長楕円部では極めて薄くなるため、実効的な導波クラッド層の役目は、相対的に厚いクラッド層12が担っている。第1の弧状部121と第2の弧状部122との結合により、3次元伝搬光をロスを僅少にしつつ2次元導波光化することができる。 A simulation of light propagation in this photoelectric conversion device was performed. The simulation results are shown in FIGS. 20 and 21. FIG. 20 shows the whole image of the light field, and FIG. 21 shows the conversion efficiency of the three-dimensional propagating light into the two-dimensional propagating light. 66.5% by tangentially coupling to the optical waveguide core layer 13 by the contribution of the small (large radius of curvature) end of the second arcuate part 122 of the quadrant of the oblong ellipse of the clad layer 12. We were able to achieve a high conversion efficiency of 3D propagating light → 2D propagating light. Further, the relatively thick clad layer 12 supports the long-distance propagation of the waveguide light in the optical waveguide core layer 13, while the relatively thin clad layer 12 is the light introduction core of sunlight going upward from the lower part of FIG. It enables smooth propagation from the vertically elongated ellipse portion of the layer 14 to the horizontally elongated elliptical portion. Since the relatively thin clad layer 12 becomes extremely thin in the horizontally elongated elliptical portion, the role of the effective waveguide clad layer is played by the relatively thick clad layer 12. By coupling the first arcuate portion 121 and the second arcuate portion 122, the three-dimensional propagating light can be converted into two-dimensional waveguide light while reducing the loss.
 この光電変換装置の上記以外のことは第1の実施の形態による光電変換装置と同様である。 Other than the above, this photoelectric conversion device is the same as the photoelectric conversion device according to the first embodiment.
 この第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 According to this second embodiment, the same advantages as those of the first embodiment can be obtained.
〈第3の実施の形態〉
[光電変換装置]
 図22は第3の実施の形態による光電変換装置を示す断面図である。この光電変換装置の光入射面側から見た平面図(底面図)は、例えば図2と同様である。この光電変換装置は、光導波部10の構成が第1および第2の実施の形態による光電変換装置と異なる。図23にこの光電変換装置における光導波部10を示す。また、図24にこの光導波部10の一部を拡大して示す。図22~図24に示すように、この光導波部10においては、第2の実施の形態による光電変換装置の光導波部10のクラッド層12および光導入コア層14のうちの横長楕円部が占めていた部分が屈折率異方性具有層50により構成されていることが第2の実施の形態による光電変換装置と異なる。ただし、第2の実施の形態による光電変換装置の光導波部10の相対的に厚いクラッド層12だけは屈折率異方性具有層50と交差して設けられている。この屈折率異方性具有層50はクラッド層12および光導入コア層14のうちの横長楕円部と同様な役割を果たす。即ち、光導波部10のクラッド層12および光導入コア層14のうちの第1の弧状部121の末端から出た光が第2の弧状部122と同様な経路を辿って導波コア層13にタンジェンシャルに入射するように構成される。屈折率異方性具有層50は、例えば、ディレクターの向きが段階的に変化するように制御したN層(NはN≧1の整数)の液晶層により構成することができる。図22~図24においては、一例として、N=10の場合の10層の液晶層501~510が示されている。
<Third embodiment>
[Photoelectric converter]
FIG. 22 is a cross-sectional view showing a photoelectric conversion device according to the third embodiment. The plan view (bottom view) of this photoelectric conversion device as seen from the light incident surface side is, for example, the same as in FIG. This photoelectric conversion device differs from the photoelectric conversion device according to the first and second embodiments in the configuration of the optical waveguide section 10. FIG. 23 shows the optical waveguide section 10 in this photoelectric conversion device. Further, FIG. 24 shows an enlarged part of the optical waveguide section 10. As shown in FIGS. 22 to 24, in the optical waveguide section 10, the oblong elliptical portion of the clad layer 12 and the optical introduction core layer 14 of the optical waveguide section 10 of the photoelectric conversion device according to the second embodiment is formed. It is different from the photoelectric conversion device according to the second embodiment that the occupied portion is composed of the refractive index anisotropic layer 50. However, only the relatively thick clad layer 12 of the optical waveguide portion 10 of the photoelectric conversion device according to the second embodiment is provided so as to intersect with the refractive index anisotropy layer 50. The refractive index anisotropic layer 50 plays a role similar to that of the horizontally elongated elliptical portion of the clad layer 12 and the light introduction core layer 14. That is, the light emitted from the end of the first arcuate portion 121 of the clad layer 12 and the optical introduction core layer 14 of the optical waveguide portion 10 follows the same path as the second arcuate portion 122, and the waveguide core layer 13 It is configured to be tangentially incident. The refractive index anisotropy layer 50 can be composed of, for example, a liquid crystal layer of N layers (N is an integer of N ≧ 1) controlled so that the orientation of the director changes stepwise. In FIGS. 22 to 24, as an example, 10 liquid crystal layers 501 to 510 when N = 10 are shown.
 この光電変換装置における光伝搬のシミュレーションを行った。屈折率異方性具有層50として、10層の液晶層501~510のディレクターの向きをそれぞれ-22度、-20度、-18度、-16度、-14度、-12度、-10度、-8度、-6度、-4度と変化させたものを用いた。液晶層501~510としては、(1.71,1.53,1.53)という屈折率異方性を有する液晶である5CB(4-Cyano-4'-pentylbiphenyl)を用いた。ディレクターの向きが0度の時が5CBが横倒しの状態であり、これが時計回りに-22度から-4度まで段階的に傾斜している。シミュレーション結果を図25に示す。図25は光場の全体象を示す。図25より、2次元導波路に閉じ込められた光場が確認されており、この構造によっても、3次元伝搬光の2次元導波光化が実現可能であることが示された。 A simulation of light propagation in this photoelectric conversion device was performed. As the refractive index anisotropy layer 50, the directors of the 10 liquid crystal layers 501 to 510 are oriented at -22 degrees, -20 degrees, -18 degrees, -16 degrees, -14 degrees, -12 degrees, and -10, respectively. The ones changed to -8 degrees, -6 degrees, and -4 degrees were used. As the liquid crystal layers 501 to 510, 5CB (4-Cyano-4'-pentylbiphenyl), which is a liquid crystal having a refractive index anisotropy of (1.71, 1.53, 1.53), was used. When the director's orientation is 0 degrees, 5CB is in a state of lying down, which is tilted clockwise in stages from -22 degrees to -4 degrees. The simulation results are shown in FIG. FIG. 25 shows the whole image of the light field. From FIG. 25, an optical field confined in the two-dimensional waveguide was confirmed, and it was shown that the two-dimensional waveguide light conversion of the three-dimensional propagating light is feasible by this structure as well.
 この光電変換装置の上記以外のことは第1の実施の形態による光電変換装置と同様である。 Other than the above, this photoelectric conversion device is the same as the photoelectric conversion device according to the first embodiment.
 この第3の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 According to this third embodiment, the same advantages as those of the first embodiment can be obtained.
〈第4の実施の形態〉
[光電変換装置]
 第4の実施の形態による光電変換装置においては、第1の実施の形態による光電変換装置と異なり、光導波部10として図26に示す、屈折率異方性を有する導波構造体100を用いる。図示は省略するが、この導波構造体100の光入射面には第1の実施の形態と同様に光進行方向変換層30が設けられる。この導波構造体100の光出射端面に中間バンド型太陽電池20の半導体層21が接合している。
<Fourth Embodiment>
[Photoelectric converter]
In the photoelectric conversion device according to the fourth embodiment, unlike the photoelectric conversion device according to the first embodiment, the waveguide structure 100 having a refractive index anisotropy shown in FIG. 26 is used as the optical waveguide section 10. .. Although not shown, the light incident surface of the waveguide structure 100 is provided with the light traveling direction conversion layer 30 as in the first embodiment. The semiconductor layer 21 of the intermediate band type solar cell 20 is bonded to the light emitting end surface of the waveguide structure 100.
 図26に示すように、導波構造体100は、光進行方向変換層30の光入射面に入射してこの光入射面に垂直な方向に進行方向が変換された光を導波させ、最終的にこの光の進行方向をこの進行方向に対して垂直な方向(図26の水平方向)に変換するためのものである。この導波方向が一方向(図26中、右側)であるため、この導波構造体100は非対称導波路である。導波構造体100は、互いに屈折率が異なる複数の層101~108(層107は楔状の形状を有する)により構成されている。層101~108は、例えば、互いに配位方向が異なる複数の液晶層や、互いに非平行界面(例えば、ギザギザ断面の界面)で仕切られた複数の等方性媒体などにより形成される。層101~108の図26に垂直な方向の屈折率分布は併進対称性を有する。 As shown in FIG. 26, the waveguide structure 100 is incident on the light incident surface of the light traveling direction conversion layer 30 and has the traveling direction changed in the direction perpendicular to the light incident surface, and is finally directed. The purpose is to convert the traveling direction of the light into a direction perpendicular to the traveling direction (horizontal direction in FIG. 26). Since the waveguide direction is one direction (right side in FIG. 26), the waveguide structure 100 is an asymmetric waveguide. The waveguide structure 100 is composed of a plurality of layers 101 to 108 having different refractive indexes from each other (the layer 107 has a wedge-shaped shape). The layers 101 to 108 are formed by, for example, a plurality of liquid crystal layers having different coordination directions from each other, or a plurality of isotropic media partitioned by a non-parallel interface (for example, an interface having a jagged cross section). The refractive index distribution of layers 101 to 108 in the direction perpendicular to FIG. 26 has translational symmetry.
 導波構造体100による効果を検証するためにシミュレーションを行った。図26において、横軸をx軸、縦軸をz軸、紙面奥行き方向をy軸と座標系をとる。導波構造体100の層101~108は次のように設定した。即ち、層101、102は屈折率n=1.01の等方性物質により構成し、層103は(x,y,z)方向に進行する光の屈折率が(2,2,1)という異方性を持つ異方性物質により構成し、層104は上記異方性物質がxz平面で時計方向に15度回転したものにより構成し、層105は上記異方性物質がxz平面で時計方向に32度回転したものにより構成し、層106は上記異方性物質がxz平面で時計方向に45度回転したものにより構成し、層107は上記異方性物質がxz平面で時計方向に60度回転したものにより構成し、層108は屈折率n=1.01の等方性物質により構成した。シミュレーションの結果を図27に示す。図27は光波の電場のy軸方向の振幅Eの大きさ(強度)のxz面内の分布を示したものである。図27より、導波構造体100に垂直方向から入射する光は、この導波構造体100を透過する間に徐々に進行方向が図中右側に曲げられ、最終的にほぼ水平方向に出射することが分かる。即ち、この導波構造体100により、この導波構造体100に垂直方向に入射する光の進行方向をこれにほぼ垂直方向に変換することができることが分かる。 A simulation was performed to verify the effect of the waveguide structure 100. In FIG. 26, the horizontal axis is the x-axis, the vertical axis is the z-axis, and the paper depth direction is the y-axis. The layers 101 to 108 of the waveguide structure 100 were set as follows. That is, the layers 101 and 102 are composed of an isotropic substance having a refractive index n = 1.01, and the layer 103 has a refractive index of light traveling in the (x, y, z) direction of (2,2,1). The layer 104 is composed of an anisotropic substance having anisotropy, the layer 104 is composed of the anisotropic substance rotated clockwise by 15 degrees in the xz plane, and the layer 105 is composed of the anisotropic substance rotated clockwise in the xz plane. The layer 106 is composed of the anisotropic substance rotated 32 degrees in the direction and rotated 45 degrees clockwise in the xz plane, and the layer 107 is composed of the anisotropic substance rotated 45 degrees clockwise in the xz plane. The layer 108 was composed of an isotropic material having a refractive index of n = 1.01. The result of the simulation is shown in FIG. 27. FIG. 27 shows the distribution of the magnitude (intensity) of the amplitude E y in the y-axis direction of the electric field of the light wave in the xz plane. From FIG. 27, the light incident on the waveguide structure 100 from the vertical direction is gradually bent in the traveling direction to the right side in the figure while passing through the waveguide structure 100, and finally emitted in the substantially horizontal direction. You can see that. That is, it can be seen that the waveguide structure 100 can convert the traveling direction of the light incident on the waveguide structure 100 in the vertical direction into a direction substantially perpendicular to the traveling direction.
 上記以外のことは、第1の実施の形態と同様である。 Other than the above, it is the same as the first embodiment.
 第4の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 According to the fourth embodiment, the same advantages as those of the first embodiment can be obtained.
〈第5の実施の形態〉
[光電変換装置]
 第5の実施の形態による光電変換装置においては、第1の実施の形態による光電変換装置と異なり、光導波部10の代わりに図28に示す光導波部300を用いる。図28に示すように、この光導波部300は、面状光導波路310と、この面状光導波路310の主面上に設けられた、透明な屈折率異方性を有する層(以下「屈折率異方性媒質層」と言う)320と、この屈折率異方性媒質層320上に設けられた反射鏡アレイ330とを有する。
<Fifth Embodiment>
[Photoelectric converter]
In the photoelectric conversion device according to the fifth embodiment, unlike the photoelectric conversion device according to the first embodiment, the optical waveguide unit 300 shown in FIG. 28 is used instead of the optical waveguide unit 10. As shown in FIG. 28, the optical waveguide 300 includes a planar optical waveguide 310 and a layer having a transparent refractive index anisotropy provided on the main surface of the planar optical waveguide 310 (hereinafter, “refraction”). It has a (referred to as a rate anisotropic medium layer) 320 and a reflector array 330 provided on the refractive index anisotropic medium layer 320.
 面状光導波路310を構成する物質は、この光電変換装置が対象とする範囲の波長の光、例えば、太陽光スペクトルの主要な波長帯の光(紫外光、可視光、赤外光)に対しできるだけ透明な物質であることが望ましい。面状光導波路310を構成する物質は、一般には透明ガラス、高屈折率ガラス、透明プラスチックなどである。透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などが挙げられる。面状光導波路10を構成する物質としては、特に、プラスティックオプティカルファイバー(POF)などに用いられるフッ素系の素材が、その低光損失性により好適である。面状光導波路310の厚さは必要に応じて選ばれるが、例えば1~1000μmである。面状光導波路310の大きさ(縦横の長さ)は、この光電変換装置を設置する箇所に応じて適宜選ばれるが、一般的には、例えば(1cm~1m)×(1cm~1m)である。 The substance constituting the planar optical waveguide 310 is for light having a wavelength in the range targeted by this photoelectric conversion device, for example, light in a main wavelength band of the solar spectrum (ultraviolet light, visible light, infrared light). It is desirable that the substance is as transparent as possible. The substance constituting the planar optical waveguide 310 is generally transparent glass, high refractive index glass, transparent plastic or the like. Examples of the transparent plastic include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetylcellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, etc. Examples thereof include polysulfones and polyolefins. As the substance constituting the planar optical waveguide 10, a fluorine-based material used for plastic optical fiber (POF) or the like is particularly suitable due to its low light loss property. The thickness of the planar optical waveguide 310 is selected as needed, and is, for example, 1 to 1000 μm. The size (length and width) of the planar optical waveguide 310 is appropriately selected depending on the location where the photoelectric conversion device is installed, but is generally (1 cm to 1 m) × (1 cm to 1 m). be.
 面状光導波路310の平面形状は特に限定されず、光電変換装置の用途などに応じて適宜選ばれるが、例えば、長方形または正方形である。 The planar shape of the planar optical waveguide 310 is not particularly limited and is appropriately selected depending on the application of the photoelectric conversion device and the like, but is, for example, a rectangle or a square.
 反射鏡アレイ330は、反射鏡331と透明層332とが、屈折率異方性媒質層320に平行な一方向に交互に繰り返し設けられた構造を有する。反射鏡アレイ330の詳細については特許文献1に記載されているが、概要を説明すると次の通りである。反射鏡331は、例えば、銀(Ag)、銀合金(Ag-Pdなど)、アルミニウム(Al)などの金属により構成される。透明層332は、好適には、面状光導波路310を構成する透明物質とほぼ等しい屈折率を有する透明物質(透明ガラスや透明樹脂など)により構成される。屈折率異方性媒質層320に平行な一方向の透明層332の厚さは必要に応じて選ばれるが、例えば数μm~数十μmである。また、反射鏡331と透明層332との繰り返しの周期、即ち、一つの反射鏡331とこれに隣接する透明層332との、屈折率異方性媒質層320に平行な一方向の合計の厚さに対する反射鏡331の厚さの比は、小さい方が望ましく、少なくとも5%以下、好適には1%以下で1nm以上に選ばれる。反射鏡331は、典型的には、周期的に設けられ、反射鏡アレイ330の一部または全部において規則的または不規則に反射鏡331の間隔を変化させるようにしてもよいが、入射光の抜け(入射光が反射鏡331で反射せず、面状光導波路310を直射すること)が無いよう、また、図28中、互いに隣接する二つの反射鏡331に着目した場合、向かって左側の反射鏡331で反射した光が右隣の反射鏡331の裏面で反射(散乱)されないように構造ならびに配列の設定をする。反射鏡331の間隔および反射鏡331と透明層332との繰り返し数は、必要に応じて選ばれる。反射鏡331は、光進行方向変換層30を介して外部から入射する3次元空間伝搬光を反射して屈折率異方性媒質層320に入射させることができるように構成されている。好適には、反射鏡331は、光進行方向変換層30を透過して入射する3次元空間伝搬光を反射して屈折率異方性媒質層320に一定範囲内の入射角で入射させることができるように断面形状が選ばれる。図28においては、典型的な一例として、反射鏡アレイ330の、面状光導波路310の主面に垂直な断面における反射鏡331の形状が、放物線の軸の片側の一部をなす場合が示されている。反射鏡アレイ330に対してほぼ垂直方向から3次元空間伝搬光が入射する場合には、最終的に面状光導波路310にできるだけ多くの光が入射するようにするために、この放物線の軸は、面状光導波路310の主面に立てた法線に対して好適には±10°以内に設定され、最も好適には0°付近、つまり、面状光導波路310の主面に垂直に設定される。放物線の軸に平行に入射する光は放物線の焦点に集まる性質があるため、放物線の軸を面状光導波路310の主面に垂直に設定することで、反射鏡アレイ330に対してほぼ垂直に3次元空間伝播光が入射する場合、反射鏡331で反射される光の方向はほぼ同じになる。光導波装置に入射する入射光をできるだけ多く面状光導波路310に入射させるようにするために、好適には、反射鏡331は、面状光導波路310の端から端まで延在して設けられるが、これに限定されるものではない。各反射鏡331の平面形状は特に限定されず、必要に応じて選ばれるが、典型的には、反射鏡331で反射され、屈折率異方性媒質層320を透過して面状光導波路310の内部に入射して導波される2次元空間伝搬光の少なくとも大部分が一定方向に向かうように選ばれる。 The reflecting mirror array 330 has a structure in which the reflecting mirror 331 and the transparent layer 332 are alternately and repeatedly provided in one direction parallel to the refractive index anisotropic medium layer 320. The details of the reflector array 330 are described in Patent Document 1, but the outline is as follows. The reflector 331 is made of a metal such as silver (Ag), a silver alloy (Ag-Pd or the like), or aluminum (Al). The transparent layer 332 is preferably made of a transparent substance (transparent glass, transparent resin, etc.) having a refractive index substantially equal to that of the transparent substance constituting the planar optical waveguide 310. The thickness of the transparent layer 332 in one direction parallel to the refractive index anisotropic medium layer 320 is selected as necessary, and is, for example, several μm to several tens of μm. Further, the period of repetition of the reflecting mirror 331 and the transparent layer 332, that is, the total thickness of one reflecting mirror 331 and the transparent layer 332 adjacent thereto in one direction parallel to the refractive index anisotropic medium layer 320. The ratio of the thickness of the reflector 331 to the sword is preferably small, and is selected to be at least 5% or less, preferably 1% or less, and 1 nm or more. The reflector 331 is typically provided periodically so that the spacing of the reflectors 331 may be changed regularly or irregularly in some or all of the reflector array 330, but of incident light. In order to prevent omission (incident light is not reflected by the reflector 331 and directly hits the planar optical waveguide 310), and when two reflectors 331 adjacent to each other are focused on in FIG. 28, the left side is facing. The structure and arrangement are set so that the light reflected by the reflector 331 is not reflected (scattered) by the back surface of the reflector 331 on the right side. The spacing between the reflectors 331 and the number of iterations between the reflectors 331 and the transparent layer 332 are selected as needed. The reflecting mirror 331 is configured to be able to reflect the three-dimensional space propagating light incident from the outside through the light traveling direction changing layer 30 and make it incident on the refractive index anisotropic medium layer 320. Preferably, the reflecting mirror 331 reflects the three-dimensional space propagating light transmitted through the light traveling direction conversion layer 30 and is incident on the refractive index anisotropic medium layer 320 at an incident angle within a certain range. The cross-sectional shape is selected so that it can be done. FIG. 28 shows, as a typical example, the case where the shape of the reflector 331 in the cross section perpendicular to the main surface of the planar optical waveguide 310 of the reflector array 330 forms a part of one side of the axis of the parabola. Has been done. When three-dimensional space propagating light is incident on the reflector array 330 from almost perpendicular direction, the axis of this parabolic line is set so that as much light as possible is finally incident on the planar optical waveguide 310. , It is preferably set within ± 10 ° with respect to the normal line erected on the main surface of the planar optical waveguide 310, and most preferably near 0 °, that is, set perpendicular to the main surface of the planar optical waveguide 310. Will be done. Since light incident parallel to the axis of the parabola has the property of concentrating at the focal point of the parabola, by setting the axis of the parabola perpendicular to the main surface of the planar optical waveguide 310, it is almost perpendicular to the reflector array 330. When the three-dimensional space propagating light is incident, the directions of the light reflected by the reflector 331 are almost the same. In order to allow as much incident light incident on the optical waveguide 310 to enter the planar optical waveguide 310 as much as possible, the reflector 331 is preferably provided extending from end to end of the planar optical waveguide 310. However, it is not limited to this. The planar shape of each reflecting mirror 331 is not particularly limited and is selected as necessary, but typically, it is reflected by the reflecting mirror 331 and passes through the refractive index anisotropic medium layer 320 to pass through the refractive index anisotropic medium layer 320, and the planar optical waveguide 310. At least most of the two-dimensional spatially propagating light incident on the interior of the is selected to be directed in a certain direction.
 図28に示すように、屈折率異方性媒質層320は、外部からの入射光(3次元空間伝播光)が反射鏡アレイ330の反射鏡331で反射して屈折率異方性媒質層320に向かう方向(A方向)の屈折率と、この方向に垂直な方向(B方向)の屈折率とが互いに異なり、A方向の屈折率の方がB方向の屈折率より大きくなっている。A方向の屈折率は、面状光導波路310および透明層332の屈折率とほぼ同等であり、そのため、反射鏡331で反射された光は屈折率異方性媒質層320から面状光導波路310への入射が許容され、面状光導波路310の内部に入る。一方、屈折率異方性媒質層320を透過して面状光導波路310の内部に入った後、面状光導波路310の裏面で反射された光が進む方向はほぼB方向であるが、B方向の屈折率は、面状光導波路310の屈折率より十分に小さく、そのため、面状光導波路310の主面では全反射の条件が満たされることにより、面状光導波路310の裏面で反射されて面状光導波路310を斜めに横断してその主面に入射する光は面状光導波路310と屈折率異方性媒質層320との界面で全反射される。屈折率異方性媒質層320を構成する屈折率異方性を有する媒質は特に限定されないが、例えば、最も典型的には、液晶からなる。今、簡単のため、液晶分子を一軸性の誘電率楕円体と近似し、その長軸方向の誘電率をε//、短軸方向の誘電率をε⊥と記し、典型的な異方性を有する場合としてε//-ε⊥>0の場合を例にとって考える。この場合、液晶の分子の長軸方向の屈折率をn//、短軸方向の屈折率をn⊥とすると、n//>n⊥が成立する。ただし、(n//)~ε//、(n⊥)~ε⊥である。この逆の場合、即ちε//-ε⊥<0の場合も、液晶分子の配向方向を、面状光導波路310に入射する光が、相対的に大きい屈折率を感じるように液晶分子の配向を制御することで当該液晶を使用することができる。 As shown in FIG. 28, in the refractive index anisotropic medium layer 320, the incident light (three-dimensional space propagating light) from the outside is reflected by the reflector 331 of the reflector array 330 to reflect the refractive index anisotropic medium layer 320. The refractive index in the direction toward (A direction) and the refractive index in the direction perpendicular to this direction (B direction) are different from each other, and the refractive index in the A direction is larger than the refractive index in the B direction. The refractive index in the A direction is substantially the same as the refractive index of the planar optical waveguide 310 and the transparent layer 332, so that the light reflected by the reflector 331 is the planar optical waveguide 310 from the refractive index anisotropic medium layer 320. It is allowed to enter the inside of the planar optical waveguide 310. On the other hand, the direction in which the light reflected on the back surface of the planar optical waveguide 310 after passing through the refractive index anisotropic medium layer 320 and entering the inside of the planar optical waveguide 310 is approximately the B direction, is B. The refractive index in the direction is sufficiently smaller than the refractive index of the planar optical waveguide 310, so that the main surface of the planar optical waveguide 310 is reflected by the back surface of the planar optical waveguide 310 by satisfying the condition of total internal reflection. The light obliquely crossing the planar optical waveguide 310 and incident on the main surface thereof is totally reflected at the interface between the planar optical waveguide 310 and the refractive index anisotropic medium layer 320. The medium having the refractive index anisotropy constituting the refractive index anisotropy medium layer 320 is not particularly limited, but is most typically made of a liquid crystal display, for example. Now, for the sake of simplicity, the liquid crystal molecule is approximated to a uniaxial permittivity ellipse, and its permittivity in the major axis direction is described as ε // and its permittivity in the minor axis direction is described as ε⊥, which is typical anisotropy. As an example, consider the case where ε // −ε⊥> 0. In this case, if the refractive index of the liquid crystal molecule in the major axis direction is n // and the refractive index in the minor axis direction is n⊥, then n //> n⊥ is established. However, (n //) 2 to ε // and (n⊥) 2 to ε⊥. In the opposite case, that is, when ε // −ε⊥ <0, the orientation of the liquid crystal molecules is set so that the light incident on the planar optical waveguide 310 feels a relatively large refractive index. The liquid crystal can be used by controlling the above.
 この第5の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 According to this fifth embodiment, the same advantages as those of the first embodiment can be obtained.
〈第6の実施の形態〉
[光電変換装置]
 第6の実施の形態による光電変換装置においては、第1の実施の形態による光電変換装置と異なり、光導波部10の代わりに図29に示す光導波部400を用いる。図29に示すように、この光電変換装置においては、一方の主面が光入射面を構成し、他方の主面が光出射面を構成する平板状の反射鏡アレイ330と、反射鏡アレイ330の他方の主面上に設けられた楔状の形状を有する非対称面状光導波路410とにより光導波部400が構成されている。反射鏡アレイ330については第3の実施の形態と同様である。非対称面状光導波路410の底面に対する斜面の傾斜角は必要に応じて選ばれるが、典型的には10°以下、例えば7°である。反射鏡アレイ330および非対称面状光導波路410の平面形状は特に限定されず、光電変換装置などに応じて適宜選ばれるが、例えば、長方形または正方形である。光導波部400の光入射面には光進行方向変換層30が設けられ、非対称面状光導波路20の光出射端面には中間バンド型太陽電池20が設けられている。
<Sixth Embodiment>
[Photoelectric converter]
In the photoelectric conversion device according to the sixth embodiment, unlike the photoelectric conversion device according to the first embodiment, the optical waveguide section 400 shown in FIG. 29 is used instead of the optical waveguide section 10. As shown in FIG. 29, in this photoelectric conversion device, a flat plate-shaped reflector array 330 and a reflector array 330 in which one main surface constitutes an optical incident surface and the other main surface constitutes a light emitting surface. The optical waveguide portion 400 is composed of an asymmetric planar optical waveguide 410 having a wedge-shaped shape provided on the other main surface of the above. The reflector array 330 is the same as in the third embodiment. The angle of inclination of the slope with respect to the bottom surface of the asymmetric surface optical waveguide 410 is selected as necessary, but is typically 10 ° or less, for example, 7 °. The planar shape of the reflector array 330 and the asymmetrical optical waveguide 410 is not particularly limited and may be appropriately selected depending on the photoelectric conversion device or the like, and is, for example, a rectangle or a square. An optical traveling direction conversion layer 30 is provided on the light incident surface of the optical waveguide portion 400, and an intermediate band type solar cell 20 is provided on the light emission end surface of the asymmetric planar optical waveguide 20.
 楔状の非対称面状光導波路410は細長い直角三角形の断面形状を有し、直角の角を挟む長い方の辺(底辺)が反射鏡アレイ330の光出射面と一致し、短い方の辺が非対称面状光導波路410の光出射端面と一致する。 The wedge-shaped asymmetric planar optical waveguide 410 has an elongated right-angled triangular cross-sectional shape, the long side (bottom side) sandwiching the right-angled corner coincides with the light emitting surface of the reflector array 330, and the short side is asymmetric. It coincides with the light emitting end face of the planar optical waveguide 410.
 非対称面状光導波路410を構成する物質は、第3の実施の形態の面状光導波路310と同様である。 The substance constituting the asymmetric planar optical waveguide 410 is the same as that of the planar optical waveguide 310 of the third embodiment.
 中間バンド型太陽電池20からなる光電変換部の構成は図30に示すものであってもよい。即ち、図30に示すように、光電変換部が、中間バンド型太陽電池20をN個直列接続したものにより構成されている。こうすることで、光電変換装置の出力電圧の上昇をもたらすことができ、実用上非常に有効である。 The configuration of the photoelectric conversion unit including the intermediate band type solar cell 20 may be as shown in FIG. That is, as shown in FIG. 30, the photoelectric conversion unit is composed of N intermediate band type solar cells 20 connected in series. By doing so, it is possible to bring about an increase in the output voltage of the photoelectric conversion device, which is very effective in practical use.
 上記以外のことは、第1の実施の形態と同様である。 Other than the above, it is the same as the first embodiment.
[光電変換装置の動作]
 光電変換装置の動作について説明する。図31に示すように、外部から光進行方向変換層30に入射する光はこの光進行方向変換層30に垂直な方向に進行方向が変換された後、反射鏡アレイ330に入射する。こうして垂直方向から反射鏡アレイ330に入射した光は反射鏡アレイ330の各反射鏡331で反射された後、非対称面状光導波路410の内部に入る。非対称面状光導波路410の内部に入った光は、非対称面状光導波路410の底面と非対称面状光導波路410と空気層との界面で全反射を繰り返し、非対称面状光導波路410がテーパー形状であり断面積が中間バンド型太陽電池20に向かって徐々に増加しているため、非対称面状光導波路410の内部を矢印方向に導波され、非対称面状光導波路410の光出射端面から出射され、最終的に中間バンド型太陽電池20の半導体層21の側面に入射して光電変換が行われる。導波光が半導体層21内を進む過程で半導体層21中に電子-正孔対が生成される。そして、こうして生成された電子および正孔は半導体層21内をドリフトまたは拡散により移動し、第1の電極22および第2の電極23のうちの一方および他方に収集される。こうして半導体層21内で光電変換が行われ、第1の電極22と第2の電極23とから外部に電流(光電流)が取り出される。
[Operation of photoelectric conversion device]
The operation of the photoelectric conversion device will be described. As shown in FIG. 31, the light incident on the light traveling direction conversion layer 30 from the outside is incident on the reflector array 330 after the traveling direction is changed in the direction perpendicular to the light traveling direction conversion layer 30. The light thus incident on the reflector array 330 from the vertical direction is reflected by each reflector 331 of the reflector array 330 and then enters the inside of the asymmetrical optical waveguide 410. The light that has entered the inside of the asymmetrical planar optical waveguide 410 is repeatedly totally reflected at the interface between the bottom surface of the asymmetrical planar optical waveguide 410, the asymmetrical planar optical waveguide 410, and the air layer, and the asymmetrical planar optical waveguide 410 has a tapered shape. Since the cross-sectional area gradually increases toward the intermediate band type solar cell 20, the inside of the asymmetrical optical waveguide 410 is waveguideed in the direction of the arrow, and the light is emitted from the light emission end surface of the asymmetrical optical waveguide 410. Finally, it is incident on the side surface of the semiconductor layer 21 of the intermediate band type solar cell 20 to perform optical conversion. Electron-hole pairs are generated in the semiconductor layer 21 in the process of the waveguide light traveling in the semiconductor layer 21. Then, the electrons and holes thus generated move in the semiconductor layer 21 by drift or diffusion, and are collected on one and the other of the first electrode 22 and the second electrode 23. In this way, photoelectric conversion is performed in the semiconductor layer 21, and a current (photocurrent) is taken out from the first electrode 22 and the second electrode 23 to the outside.
 この第6の実施の形態によれば、第1の実施の形態と同様な利点を得ることができる。 According to this sixth embodiment, the same advantages as those of the first embodiment can be obtained.
〈第7の実施の形態〉
[光電変換装置]
 第7の実施の形態による光電変換装置は、第2の実施の形態による光電変換装置において、図17に示す光導波部10の代わりに図32に示す光導波部10を用いることが異なり、その他の構成は同一である。図32は、より高い導波効率を示す光導波部10の一部を示す断面図である。この光導波部10においては、横方向(x軸方向)の複数の光導入コア層14をサブユニットとし(図32には1サブユニットに含まれる光導入コア層14が4つ(4スロット)の例が示されている)、サブユニット端のクラッド層12の第2の弧状部122(横長楕円部の一部)における光進行方向に直交する方向(即ち横長楕円の接線方向にほぼ垂直な方向)の第2の弧状部122の厚さを0.4~0.5μmへと拡張したものである。第2の弧状部122のこれ以外の部分の厚さは図17に示すものと同一である。即ち、その厚さは、第2の弧状部122の平均接線角度から求まるところの有効クラッド層幅:0.4×sin(5°)~0.035μm程度である。図17に示す光導波部10においては、クラッド層12の第2の弧状部122(横長楕円部の一部)も第1の弧状部121(縦長楕円部の一部)も、x軸方向の光導入コア層14の幅は一定である。これに対し、図32に示すように、この光導波部10においては、x軸方向の複数(図32では4つ)の光導入コア層14からなるサブユニットに1つの割合で、光導入コア層14の厚さを大きく設定している。例えば、相対的に薄いクラッド層12の幅を0.4μmとすると、この厚さが増加した光導入コア層14の幅は3.4μmであり、その他の光導入コア層14の幅は2.26μmである。
<7th embodiment>
[Photoelectric converter]
The photoelectric conversion device according to the seventh embodiment is different from the photoelectric conversion device according to the second embodiment in that the optical waveguide 10 shown in FIG. 32 is used instead of the optical waveguide 10 shown in FIG. The composition of is the same. FIG. 32 is a cross-sectional view showing a part of the optical waveguide section 10 showing higher waveguide efficiency. In the optical waveguide section 10, a plurality of optical introduction core layers 14 in the transverse direction (x-axis direction) are used as subunits (in FIG. 32, four optical introduction core layers 14 included in one subsystem (4 slots)). (Is shown an example of), the direction orthogonal to the light traveling direction in the second arcuate portion 122 (part of the oblong ellipse portion) of the clad layer 12 at the end of the subsystem (that is, substantially perpendicular to the tangential direction of the oblong ellipse). The thickness of the second arcuate portion 122 in the direction) is expanded to 0.4 to 0.5 μm. The thickness of the other portion of the second arcuate portion 122 is the same as that shown in FIG. That is, the thickness thereof is an effective clad layer width obtained from the average tangential angle of the second arc-shaped portion 122: about 0.4 × sin (5 °) to 0.035 μm. In the optical waveguide portion 10 shown in FIG. 17, both the second arc-shaped portion 122 (part of the horizontally elongated elliptical portion) and the first arc-shaped portion 121 (part of the vertically elongated elliptical portion) of the clad layer 12 are in the x-axis direction. The width of the light introduction core layer 14 is constant. On the other hand, as shown in FIG. 32, in the optical waveguide section 10, the optical introduction core is divided into subunits composed of a plurality of optical introduction core layers 14 (four in FIG. 32) in the x-axis direction. The thickness of the layer 14 is set large. For example, assuming that the width of the relatively thin clad layer 12 is 0.4 μm, the width of the light-introduced core layer 14 with the increased thickness is 3.4 μm, and the width of the other light-introduced core layer 14 is 2. It is 26 μm.
 この光電変換装置における光伝搬のシミュレーションを行った。シミュレーション結果を図33に示す。図33は光場の全体象を示す。図33中、16th、17th、18th、19thとあるのは、図32の左端の光導入コア層14を0番目として、そこから右へ16番目、17番目、18番目および19番目の光導入コア層14を示す。図33より、より高い導波効率が得られていることが分かる。 A simulation of light propagation in this photoelectric conversion device was performed. The simulation result is shown in FIG. 33. FIG. 33 shows the whole image of the light field. In FIG. 33, the 16th, 17th, 18th, and 19th are the 16th, 17th, 18th, and 19th optical introduction cores to the right, with the optical introduction core layer 14 at the left end of FIG. 32 as the 0th. The layer 14 is shown. From FIG. 33, it can be seen that higher waveguide efficiency is obtained.
 この第7の実施の形態によれば、第2の実施の形態と同様な利点を得ることができる。 According to this seventh embodiment, the same advantages as those of the second embodiment can be obtained.
〈第8の実施の形態〉
[光電変換装置設置円柱]
 図34は第8の実施の形態による光電変換装置設置円柱を示す。この光電変換装置設置円柱は、典型的には下端部が地面に埋設されて設置されるが、これに限定されるものではない。
<8th embodiment>
[Cylinder installed with photoelectric conversion device]
FIG. 34 shows a photoelectric conversion device installation cylinder according to the eighth embodiment. The photoelectric conversion device installation cylinder is typically installed with its lower end embedded in the ground, but is not limited thereto.
 図34に示すように、この光電変換装置設置円柱においては、円柱500の外周を取り囲むように全体として円筒状の光電変換装置600が設置されている。この光電変換装置600を円柱500の中心軸に垂直な方向に平面に展開したときの全体形状は図2に示すように長方形となっている。 As shown in FIG. 34, in this photoelectric conversion device installation cylinder, a cylindrical photoelectric conversion device 600 is installed as a whole so as to surround the outer circumference of the cylinder 500. As shown in FIG. 2, the overall shape of the photoelectric conversion device 600 when developed in a plane in a direction perpendicular to the central axis of the cylinder 500 is a rectangle.
 図35はこの光電変換装置設置円柱の光電変換装置600を含む部分の横断面を示す。図35に示すように、円筒状の導波コア層13が円柱500の外周を取り囲むように設けられ、中間バンド型太陽電池20の両側が導波コア層13に挟まれている。導波コア層13上に光導波部10および光進行方向変換層30が設けられている。図36に、図35に示す光導波部10および光進行方向変換層30の一部分を拡大して示す。図36に示すように、この場合、光導波部10は、図36中左側の片側半分は図1に示す光導波部10と同様に構成され、図36中右側の片側半分は左側の片側半分と対称に構成されている。即ち、光導波部10の図36中右側の片側半分と左側の片側半分とは左右対称に構成されている。 FIG. 35 shows a cross section of the portion including the photoelectric conversion device 600 of the cylinder in which the photoelectric conversion device is installed. As shown in FIG. 35, a cylindrical waveguide core layer 13 is provided so as to surround the outer periphery of the cylinder 500, and both sides of the intermediate band type solar cell 20 are sandwiched between the waveguide core layers 13. An optical waveguide portion 10 and an optical traveling direction conversion layer 30 are provided on the waveguide core layer 13. FIG. 36 shows an enlarged part of the optical waveguide portion 10 and the optical traveling direction conversion layer 30 shown in FIG. 35. As shown in FIG. 36, in this case, in the optical waveguide section 10, one half on the left side in FIG. 36 is configured in the same manner as the optical waveguide section 10 shown in FIG. 1, and one half on the right side in FIG. 36 is one half on the left side. It is configured symmetrically with. That is, the one-sided half on the right side and the one-sided half on the left side of FIG. 36 of the optical waveguide portion 10 are symmetrically configured.
 図37Aは中間バンド型太陽電池20およびその両側の部分の導波コア層13を拡大して示す平面図、図37Bはこの部分の側面図、図37Cはこの部分の横断面図である。図37Bおよび図37Cに示すように、中間バンド型太陽電池20は、円筒の中心軸に平行な方向に積層されたM個(Mは2以上の整数)の中間バンド型太陽電池20-1、20-2、…、20-k、…、20-Mからなる。各中間バンド型太陽電池20-kは第1の実施の形態の中間バンド型太陽電池20と同様な構成を有する。各中間バンド型太陽電池20-kを構成する半導体層のpn接合面を破線で模式的に示す。各中間バンド型太陽電池20-kの上下には第1の電極22および第2の電極23が設けられているが、図37Bおよび図37Cにおいては図示が省略されている。各中間バンド型太陽電池20-kのホスト半導体は第1の実施の形態と同様に必要に応じて選択され、例えばSi単体の単一組成のものであってもよいし、図7に示すように光の進行方向に段階的にバンドギャップが減少する複数のホスト半導体により構成してもよい。 FIG. 37A is an enlarged plan view of the intermediate band type solar cell 20 and the waveguide core layer 13 on both sides thereof, FIG. 37B is a side view of this portion, and FIG. 37C is a cross-sectional view of this portion. As shown in FIGS. 37B and 37C, the intermediate band type solar cells 20 are M (M is an integer of 2 or more) intermediate band type solar cells 20-1 stacked in a direction parallel to the central axis of the cylinder. It consists of 20-2, ..., 20-k, ..., 20-M. Each intermediate band type solar cell 20-k has the same configuration as the intermediate band type solar cell 20 of the first embodiment. The pn junction surface of the semiconductor layer constituting each intermediate band type solar cell 20-k is schematically shown by a broken line. A first electrode 22 and a second electrode 23 are provided above and below each intermediate band type solar cell 20-k, but are not shown in FIGS. 37B and 37C. The host semiconductor of each intermediate band type solar cell 20-k is selected as necessary as in the first embodiment, and may be, for example, a single composition of Si alone, as shown in FIG. 7. It may be composed of a plurality of host semiconductors whose band gap gradually decreases in the traveling direction of light.
 この光電変換装置設置円柱の光電変換装置600の動作について説明する。図35に示すように、この光電変換装置設置円柱を地面に設置する際には、光導波部10および光進行方向変換層30が南側を向くようにする。このとき、3次元伝搬光である太陽光が南面から光進行方向変換層30に入射する。この南面入射太陽光は光進行方向変換層30により進行方向が光入射面10aに垂直な方向に変換され、光導波部10に入射する。この場合、光導波部10の図36中左側の片側半分に入射した光は2次元伝搬光に変換されて導波コア層13内を図35中左側一方向に進行し、東回り導波太陽光となって各中間バンド型太陽電池20-kの片側の端面にpn接合面に平行に入射する。一方、光導波部10の図36中右側の片側半分に入射した光は2次元伝搬光に変換されて導波コア層13内を図35中右側一方向に進行し、西回り導波太陽光となって各中間バンド型太陽電池20-kのもう一方の端面にpn接合面に平行に入射する。こうして各中間バンド型太陽電池20-kの両端面に入射した光により光電変換が行われる。 The operation of the photoelectric conversion device 600 of the cylindrical photoelectric conversion device installation column will be described. As shown in FIG. 35, when the photoelectric conversion device installation cylinder is installed on the ground, the optical waveguide portion 10 and the optical traveling direction conversion layer 30 are oriented toward the south side. At this time, sunlight, which is three-dimensional propagating light, is incident on the light traveling direction conversion layer 30 from the south surface. The traveling direction of the sun incident on the south surface is converted into a direction perpendicular to the light incident surface 10a by the light traveling direction conversion layer 30, and the sunlight is incident on the optical waveguide section 10. In this case, the light incident on one half of the left side of FIG. 36 of the optical waveguide portion 10 is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the left side of FIG. It becomes light and is incident on one end surface of each intermediate band type solar cell 20-k parallel to the pn junction surface. On the other hand, the light incident on one half of the right side of FIG. 36 of the optical waveguide 10 is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the right side of FIG. Then, it is incident on the other end surface of each intermediate band type solar cell 20-k in parallel with the pn junction surface. In this way, photoelectric conversion is performed by the light incident on both end faces of each intermediate band type solar cell 20-k.
 この光電変換装置設置円柱の光電変換装置600の光導波部の導波性能を検証するために図37Aの一点鎖線で示す領域のシミュレーションを行った。図38にそのシミュレーションの結果(光場)を示す。ただし、円柱500の直径は50mmとし、導波コア層13の屈折率はポリジメチルシロキサン(PDMS)の屈折率とした。図38より、円筒状の導波コア層13内を効率良く光が導波されていることが分かる。 In order to verify the waveguide performance of the optical waveguide of the photoelectric conversion device 600 of the cylindrical photoelectric conversion device installed, the region shown by the alternate long and short dash line in FIG. 37A was simulated. FIG. 38 shows the result (light field) of the simulation. However, the diameter of the cylinder 500 was 50 mm, and the refractive index of the waveguide core layer 13 was the refractive index of polydimethylsiloxane (PDMS). From FIG. 38, it can be seen that light is efficiently guided in the cylindrical waveguide core layer 13.
 この第8の実施の形態によれば、光電変換装置600により高効率の発電が可能な光電変換装置設置円柱を実現することができ、既設の電信柱を電柱500として利用することにより安価に構成することができる。 According to this eighth embodiment, it is possible to realize a photoelectric conversion device installation cylinder capable of high-efficiency power generation by the photoelectric conversion device 600, and it is inexpensively configured by using the existing telegraph pole as the utility pole 500. can do.
〈第9の実施の形態〉
[光電変換装置設置円柱]
 第9の実施の形態による光電変換装置設置円柱は、光電変換装置600の中間バンド型太陽電池20が第8の実施の形態による光電変換装置設置円柱と異なっている。図39Aは、この光電変換装置600の中間バンド型太陽電池20およびその両側の部分の導波コア層13を拡大して示す平面図、図39Bはこの部分の側面図、図39Cはこの部分の横断面図であり、それぞれ、図37A、図37Bおよび図37Cに対応する。図39A、図39Bおよび図39Cに示すように、この光電変換装置600においては、円柱500の中心軸方向に細長い縦長の中間バンド型太陽電池20が円柱500の直径方向に2つ積層され、これらの2つの中間バンド型太陽電池20の両端面が導波コア層13に挟まれている。中間バンド型太陽電池20のpn接合面を破線で模式的に示す。中間バンド型太陽電池20のpn接合面は導波コア層13に平行となっている。
<9th embodiment>
[Cylinder installed with photoelectric conversion device]
In the photoelectric conversion device installation cylinder according to the ninth embodiment, the intermediate band type solar cell 20 of the photoelectric conversion device 600 is different from the photoelectric conversion device installation cylinder according to the eighth embodiment. 39A is an enlarged plan view of the intermediate band type solar cell 20 of the photoelectric conversion device 600 and the waveguide core layer 13 of the portions on both sides thereof, FIG. 39B is a side view of this portion, and FIG. 39C is a side view of this portion. It is a cross-sectional view and corresponds to FIGS. 37A, 37B and 37C, respectively. As shown in FIGS. 39A, 39B and 39C, in this photoelectric conversion device 600, two vertically long intermediate band type solar cells 20 elongated in the central axis direction of the cylinder 500 are stacked in the diameter direction of the cylinder 500, and these are laminated. Both ends of the two intermediate band type solar cells 20 are sandwiched between the waveguide core layer 13. The pn junction surface of the intermediate band type solar cell 20 is schematically shown by a broken line. The pn junction surface of the intermediate band type solar cell 20 is parallel to the waveguide core layer 13.
 この光電変換装置設置円柱の光電変換装置600の動作は第8の実施の形態と同様である。 The operation of the photoelectric conversion device 600 of the cylindrical photoelectric conversion device installation column is the same as that of the eighth embodiment.
 この第9の実施の形態によれば、第8の実施の形態と同様の利点を得ることができる。 According to this ninth embodiment, the same advantages as those of the eighth embodiment can be obtained.
〈第10の実施の形態〉
[光電変換装置設置円柱]
 図40は第10の実施の形態による光電変換装置設置円柱を示す。図40に示すように、この光電変換装置設置円柱は、第8の実施の形態と同様に円柱500の外周に円筒状の光電変換装置600が設置されていることに加えて、円柱500の頂部に光電変換装置700が設置されていることが第8の実施の形態による光電変換装置設置円柱と異なる。
<10th embodiment>
[Cylinder installed with photoelectric conversion device]
FIG. 40 shows a photoelectric conversion device installation cylinder according to the tenth embodiment. As shown in FIG. 40, in this photoelectric conversion device installation cylinder, in addition to the cylindrical photoelectric conversion device 600 being installed on the outer circumference of the cylinder 500 as in the eighth embodiment, the top of the cylinder 500 It is different from the photoelectric conversion device installation cylinder according to the eighth embodiment that the photoelectric conversion device 700 is installed in the.
 図41は円柱500の頂部および光電変換装置700の縦断面を示す。図41に示すように、光電変換装置700においては、円柱500の頂部を覆うように導波コア層13が設けられている。図41においては、円柱500の頂部が半球状で導波コア層13が半球面状である場合が示されているが、これに限定されるものではなく、円柱500の頂部の形状は半球以外の形状であってもよく、導波コア層13も半球面以外の形状であってもよい。この導波コア層13上に光導波部10および光進行方向変換層30が設けられている。この場合、光導波部10のクラッド層12および光導入コア層14は光電変換装置700の中心軸の周りに回転対称に構成されている。導波コア層13の最下端(半球の赤道に相当する部分)に中間バンド型太陽電池20が設けられている。 FIG. 41 shows the top of the cylinder 500 and the vertical cross section of the photoelectric conversion device 700. As shown in FIG. 41, in the photoelectric conversion device 700, the waveguide core layer 13 is provided so as to cover the top of the cylinder 500. FIG. 41 shows a case where the top of the cylinder 500 is hemispherical and the waveguide core layer 13 is hemispherical, but the present invention is not limited to this, and the shape of the top of the cylinder 500 is other than the hemisphere. The waveguide core layer 13 may also have a shape other than the hemisphere. An optical waveguide portion 10 and an optical traveling direction conversion layer 30 are provided on the waveguide core layer 13. In this case, the clad layer 12 and the optical introduction core layer 14 of the optical waveguide 10 are configured rotationally symmetrically around the central axis of the photoelectric conversion device 700. An intermediate band type solar cell 20 is provided at the lowermost end of the waveguide core layer 13 (a portion corresponding to the equator of the hemisphere).
 この光電変換装置設置円柱の光電変換装置700の動作について説明する。光電変換装置600の動作は第8の実施の形態と同様である。この光電変換装置設置円柱は第8の実施の形態と同様に設置する。図41に示すように、光電変換装置700の上方から光進行方向変換層30に入射する太陽光は進行方向が光入射面10aに垂直な方向に変換され、光導波部10に入射する。こうして光導波部10に入射した光は導波コア層13内を下方に向けて放射状に伝搬し、最終的に導波コア層13の最下端の中間バンド型太陽電池20に入射し、光電変換が行われる。 The operation of the photoelectric conversion device 700 of the cylinder on which the photoelectric conversion device is installed will be described. The operation of the photoelectric conversion device 600 is the same as that of the eighth embodiment. This photoelectric conversion device installation cylinder is installed in the same manner as in the eighth embodiment. As shown in FIG. 41, the sunlight incident on the light traveling direction conversion layer 30 from above the photoelectric conversion device 700 is converted into a direction in which the traveling direction is perpendicular to the light incident surface 10a and is incident on the optical waveguide section 10. The light incident on the optical waveguide portion 10 propagates radially downward in the waveguide core layer 13 and finally incidents on the intermediate band type solar cell 20 at the lowermost end of the waveguide core layer 13 to perform photoelectric conversion. Is done.
 この第10の実施の形態によれば、第8の実施の形態と同様な利点に加えて、光電変換装置600と光電変換装置700とにより発電能力の向上を図ることができるという利点を得ることができる。 According to the tenth embodiment, in addition to the same advantages as those of the eighth embodiment, the photoelectric conversion device 600 and the photoelectric conversion device 700 have an advantage that the power generation capacity can be improved. Can be done.
〈第11の実施の形態〉
[光電変換装置設置建築物]
 図42は第11の実施の形態による光電変換装置設置建築物を示す。
<11th embodiment>
[Building with photoelectric conversion device]
FIG. 42 shows a building in which a photoelectric conversion device is installed according to the eleventh embodiment.
 図42に示すように、この光電変換装置設置建築物においては、建築物800の外壁800aの光電変換装置設置部の表面が水平方向に凹凸を有する波板状に構成されており、この波板状の表面にこの表面に倣って波板状に湾曲した長方形状の光電変換装置900が設置されている。この光電変換装置900を平面に展開したときの全体形状は図2に示すように長方形となっている。 As shown in FIG. 42, in this photoelectric conversion device-installed building, the surface of the photoelectric conversion device-installed portion of the outer wall 800a of the building 800 is configured in a corrugated sheet shape having unevenness in the horizontal direction. A rectangular photoelectric conversion device 900 that is curved in a corrugated plate shape is installed on the surface of the shape. The overall shape of the photoelectric conversion device 900 when unfolded on a plane is a rectangle as shown in FIG.
 図43はこの光電変換装置設置建築物の建築物800の外壁800aの横断面を示す。図43に示すように、導波コア層13が外壁800aの波板状の表面に設けられ、中間バンド型太陽電池20の両側が導波コア層13に挟まれている。導波コア層13の断面形状は連続な曲線状であればよく、必要に応じて選ばれ、凸部および凹部はどのような形状であってもよいが、図43においては一例として半径が互いに同一の上側の半円と下側の半円とを滑らかに交互に結合した波形を有する場合が示されている。中間バンド型太陽電池20は第1の実施の形態と同様である。波板状に湾曲した導波コア層13上に光導波部10および光進行方向変換層30が設けられている。この場合、導波コア層13の各凸部の光導波部10は第8の実施の形態と同様に、中間バンド型太陽電池20に向かって導波コア層13内を2次元伝搬光が一方向に進行するように構成される。 FIG. 43 shows a cross section of the outer wall 800a of the building 800 of the building where the photoelectric conversion device is installed. As shown in FIG. 43, the waveguide core layer 13 is provided on the corrugated surface of the outer wall 800a, and both sides of the intermediate band type solar cell 20 are sandwiched between the waveguide core layers 13. The cross-sectional shape of the waveguide core layer 13 may be a continuous curved shape and may be selected as necessary, and the convex portions and the concave portions may have any shape, but in FIG. 43, the radii are mutual as an example. The case where it has a waveform in which the same upper semicircle and the lower semicircle are smoothly and alternately connected is shown. The intermediate band type solar cell 20 is the same as that of the first embodiment. The optical waveguide portion 10 and the optical traveling direction conversion layer 30 are provided on the waveguide core layer 13 curved in a corrugated shape. In this case, the optical waveguide 10 of each convex portion of the waveguide core layer 13 has one two-dimensional propagating light in the waveguide core layer 13 toward the intermediate band type solar cell 20 as in the eighth embodiment. It is configured to travel in a direction.
 この光電変換装置設置建築物の光電変換装置900の動作について説明する。図43に示すように、この光電変換装置設置建築物においては、光電変換装置900が南側を向くように設置される。このとき、3次元伝搬光である太陽光が光進行方向変換層30に入射し、光進行方向変換層30により進行方向が光入射面10aに垂直な方向に変換され、光導波部10に入射する。この場合、導波コア層13の各凸部の光導波部10の図43中左側の片側半分に入射した光は2次元伝搬光に変換されて導波コア層13内を図43中左側一方向に進行するとともに、光導波部10の図43中右側の片側半分に入射した光は2次元伝搬光に変換されて導波コア層13内を図43中右側一方向に進行し、最終的に中間バンド型太陽電池20に集められ、その両端面にpn接合面に平行に入射する。こうして中間バンド型太陽電池20の両端面に入射した光により光電変換が行われる。 The operation of the photoelectric conversion device 900 in the building where the photoelectric conversion device is installed will be described. As shown in FIG. 43, in this photoelectric conversion device installation building, the photoelectric conversion device 900 is installed so as to face the south side. At this time, sunlight, which is three-dimensional propagating light, is incident on the light traveling direction conversion layer 30, the traveling direction is converted to a direction perpendicular to the light incident surface 10a by the light traveling direction conversion layer 30, and the light is incident on the optical waveguide section 10. do. In this case, the light incident on one half of the left side of FIG. 43 of the optical waveguide portion 10 of each convex portion of the waveguide core layer 13 is converted into two-dimensional propagating light, and the inside of the waveguide core layer 13 is the left side in FIG. 43. As it travels in the direction, the light incident on one half of the right side of FIG. 43 of the optical waveguide section 10 is converted into two-dimensional propagating light and travels in the waveguide core layer 13 in one direction on the right side of FIG. 43, and finally. It is collected in the intermediate band type solar cell 20 and incident on both end faces in parallel with the pn junction surface. In this way, photoelectric conversion is performed by the light incident on both end faces of the intermediate band type solar cell 20.
 この第11の実施の形態によれば、外壁800aに設置された光電変換装置900により高効率の発電が可能な光電変換装置設置建築物を実現することができる。 According to the eleventh embodiment, it is possible to realize a building with a photoelectric conversion device capable of high-efficiency power generation by the photoelectric conversion device 900 installed on the outer wall 800a.
〈第12の実施の形態〉
[光電変換装置設置円柱]
 第12の実施の形態による光電変換装置設置円柱は、図44に示すように、光電変換装置600の円筒状の導波コア層13の内側のクラッド層11と円柱500との間に白色高反射率層1000が設けられていること、光進行方向変換層30および光導波部10が設けられていないこと、導波コア層13のクラッド層11と反対側の表面にクラッド層15が設けられていることが第8の実施の形態による光電変換装置設置円柱と異なる。その他のことは第8の実施の形態と同様である。白色高反射率層1000は、例えば、硫酸バリウムの微粒子を主原料とし、太陽光反射率が98.1%と極めて高い白い塗料を塗布することにより形成することができる(非特許文献9参照)。
<12th embodiment>
[Cylinder installed with photoelectric conversion device]
As shown in FIG. 44, the photoelectric conversion device installation cylinder according to the twelfth embodiment has high white reflection between the clad layer 11 inside the cylindrical waveguide core layer 13 of the photoelectric conversion device 600 and the cylinder 500. The reflectance layer 1000 is provided, the optical traveling direction conversion layer 30 and the optical waveguide portion 10 are not provided, and the clad layer 15 is provided on the surface of the waveguide core layer 13 opposite to the clad layer 11. It is different from the photoelectric conversion device installation cylinder according to the eighth embodiment. Other things are the same as those of the eighth embodiment. The white high reflectance layer 1000 can be formed, for example, by using fine particles of barium sulfate as a main raw material and applying a white paint having an extremely high solar reflectance of 98.1% (see Non-Patent Document 9). ..
 この場合、導波コア層13のクラッド層11と円柱500との間に白色高反射率層1000が設けられていることにより、内側のクラッド層11への光の入射角φは、
      φ= φ+ ξ                 (4)
の成立により、外側のクラッド層15への光の入射角φに比べ角度ξだけ大きくなる。このため、内側のクラッド層11での全反射条件を満たしやすくなるとともに、導波コア層13を導波する2次元伝搬光のクラッド層11への侵入が浅くなることによりその下に存在する白色高反射率層1000への侵入も抑えられて、この白色高反射率層1000による散乱が無くなることにより、円柱500の側面の2次元導波路である導波コア層13の導波効率の向上という大きな優位性を獲得することができる。
In this case, since the white high reflectance layer 1000 is provided between the clad layer 11 of the waveguide core layer 13 and the cylinder 500, the incident angle φ 2 of light on the inner clad layer 11 is set.
φ 2 = φ 1 + ξ (4)
With the establishment of, the angle ξ of the light incident on the outer clad layer 15 is larger than the angle φ1. Therefore, it becomes easier to satisfy the total reflection condition in the inner clad layer 11, and the white color existing under the clad layer 11 due to the shallow penetration of the two-dimensional propagating light that waveguides through the waveguide core layer 13. Invasion into the high reflectance layer 1000 is also suppressed, and scattering by the white high reflectance layer 1000 is eliminated, so that the waveguide efficiency of the waveguide core layer 13, which is a two-dimensional waveguide on the side surface of the cylinder 500, is improved. You can get a big advantage.
 図45は図44に示す南面入射太陽光の白色高反射率層1000による反射角度θに対して導波効率および白色高反射率層1000からの反射光強度を測定した結果を示す。図45中、曲線Aは白色高反射率層1000からの反射光強度の方向(θ)依存性、曲線Bは円筒状の導波コア層13の導波効率の方向(θ)依存性を示す。図45に示すように、白色高反射率層1000により様々な方向に散乱された光(曲線Aで示される)のうち、ある一定方向の光(曲線Bで示される)が導波され、その積である曲線C(規格化後)が、図44では図示省略した北面に存在する中間バンド型太陽電池20へ到達する光量である。この結果から、全入射光のうち10~20%の光が導波されると期待される。 FIG. 45 shows the results of measuring the waveguide efficiency and the reflected light intensity from the white high reflectance layer 1000 with respect to the reflection angle θ by the white high reflectance layer 1000 of the south surface incident sunlight shown in FIG. 44. In FIG. 45, the curve A shows the direction (θ) dependence of the reflected light intensity from the white high reflectance layer 1000, and the curve B shows the direction (θ) dependence of the waveguide efficiency of the cylindrical waveguide core layer 13. .. As shown in FIG. 45, among the light scattered in various directions (indicated by the curve A) by the white high-reflectivity layer 1000, the light in a certain direction (indicated by the curve B) is waveguideed. The curve C (after standardization), which is the product, is the amount of light reaching the intermediate band type solar cell 20 existing on the north surface (not shown in FIG. 44). From this result, it is expected that 10 to 20% of the total incident light will be guided.
 図46Aは、直径50mmの円柱500の外周面に白色高反射率層1000として高反射率白紙を巻き付け、この高反射率白紙を介して円筒状の導波コア層13を設けた試料に対し、円柱500に対して垂直な方向から緑色光(図44の南面入射太陽光に相当する)を入射させたときの様子を撮影した写真(光場の実写)である。図46Aより、試料全体が緑色を呈し、導波コア層13の全体に緑色光が導波されていることが明らかである。図46Bは、円柱500に対して垂直な方向から緑色光を入射させた状態でこの試料を円弧状に湾曲させたときの様子を撮影した写真(光場の実写)である。図46Bより、湾曲した状態でも、試料全体が緑色を呈し、導波コア層13の全体に緑色光が導波されていることが明らかである。この結果は図45により示される結果と整合する。 FIG. 46A shows a sample in which a high-reflectivity blank paper is wound as a white high-reflection layer 1000 on the outer peripheral surface of a cylinder 500 having a diameter of 50 mm, and a cylindrical waveguide core layer 13 is provided through the high-reflection blank paper. It is a photograph (actual photograph of a light field) of the state when green light (corresponding to the south surface incident sunlight of FIG. 44) is incident from the direction perpendicular to the cylinder 500. From FIG. 46A, it is clear that the entire sample is green and green light is guided to the entire waveguide core layer 13. FIG. 46B is a photograph (actual photograph of the light field) taken when the sample is curved in an arc shape in a state where green light is incident from a direction perpendicular to the cylinder 500. From FIG. 46B, it is clear that the entire sample exhibits green color even in the curved state, and green light is guided to the entire waveguide core layer 13. This result is consistent with the result shown in FIG.
 この第12の実施の形態によれば、第8の実施の形態と同様な利点を得ることができる。 According to the twelfth embodiment, the same advantages as those of the eighth embodiment can be obtained.
 以上、この発明の実施の形態について具体的に説明したが、この発明は、上述の実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
 例えば、第12の実施の形態においては、円柱500の側面に設けられた導波コア層13の外側のクラッド層15と内側のクラッド層11とは同心円状に設けられているが、それらを中心をずらした円の一部からなる形状とすることで、導波コア層13を局所的にテーパー構造とした場合と同等の効果を与えることも有効である。即ち、上述の式(4)のξに局所的テーパー角の効果が加わり、更なる効果が得られる。さらに、導波コア層13端に設置するエッジ光入射配置の中間バンド型太陽電池20は単一半導体より成るpn接合を用いることもできる。このような素子の例としては、例えば、台湾のMHGoPower社のシリコンベースのMounted Chipが挙げられる。更には、当該導波コア層13端に、pn接合面に垂直に光が入射する配置にて中間バンド型太陽電池20あるいは一般的な太陽電池を組み込むことでも、集光系の特徴である電圧上昇に伴う変換効率向上の恩恵を得うる。また、第11の実施の形態で用いた波板状の導波コア層13を有する光電変換装置900は、電気自動車(EV)などの各種自動車のボンネットや屋根の部分に設置することができる。また、この波板状の導波コア層13を有する光電変換装置900と第10の実施の形態で用いた半球状の導波コア層13を有する光電変換装置900とを組み合わせることにより、例えば往年の名車のような独特の丸みのある自動車のほぼ全面を光電変換装置で覆うことができる。 For example, in the twelfth embodiment, the outer clad layer 15 and the inner clad layer 11 of the waveguide core layer 13 provided on the side surface of the cylinder 500 are provided concentrically, but they are centered. It is also effective to give the same effect as the case where the waveguide core layer 13 has a locally tapered structure by forming the shape including a part of the shifted circle. That is, the effect of the local taper angle is added to the ξ of the above equation (4), and a further effect can be obtained. Further, the intermediate band type solar cell 20 having an edge light incident arrangement installed at the end of the waveguide core layer 13 can also use a pn junction made of a single semiconductor. Examples of such an element include, for example, a silicon-based Mountain Chip manufactured by MHGoPower of Taiwan. Furthermore, by incorporating an intermediate band type solar cell 20 or a general solar cell in an arrangement in which light is incident perpendicularly to the pn junction surface at the end of the waveguide core layer 13, the voltage that is a feature of the condensing system can be further incorporated. You can benefit from the improvement in conversion efficiency that accompanies the rise. Further, the photoelectric conversion device 900 having the corrugated plate-shaped waveguide core layer 13 used in the eleventh embodiment can be installed on the bonnet or the roof portion of various automobiles such as electric vehicles (EVs). Further, by combining the photoelectric conversion device 900 having the corrugated board-shaped waveguide core layer 13 and the photoelectric conversion device 900 having the hemispherical waveguide core layer 13 used in the tenth embodiment, for example, in the past years. Almost the entire surface of a car with a unique roundness, such as a famous car, can be covered with a photoelectric conversion device.
 また、上述の実施の形態において挙げた数値、材料、形状、配置などはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、形状、配置などを用いてもよい。 Further, the numerical values, materials, shapes, arrangements, etc. given in the above-described embodiment are merely examples, and different numerical values, materials, shapes, arrangements, etc. may be used as necessary.
 10、300、400 光導波部
 11、12 クラッド層
 13 導波コア層
 14 光導入コア層
 20 中間バンド型太陽電池
 21 半導体層
 22 第1の電極
 23 第2の電極
 30 光進行方向変換層
 31 透明基板
 32 回転放物体状部
 33 半球体状部
 40 基板
 213 中間バンド形成層
 213 中間バンド形成層
 500 円柱
 600、700、900 光電変換装置
 800 建築物
10, 300, 400 Optical waveguide 11, 12 Clad layer 13 waveguide core layer 14 Optical introduction core layer 20 Intermediate band type solar cell 21 Semiconductor layer 22 First electrode 23 Second electrode 30 Optical traveling direction conversion layer 31 Transparent Substrate 32 Rotating release object-like part 33 Hemispherical part 40 Substrate 213 Intermediate band forming layer 213 Intermediate band forming layer 500 Cylindrical 600, 700, 900 Photoelectric converter 800 Building

Claims (19)

  1.  受光部と、
     上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
     上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
    を有し、
     上記光電変換部は上記導波路の光出射側の端部に設けられており、
     上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置。
    Light receiving part and
    A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
    A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
    Have,
    The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
    A photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  2.  上記中間バンド型太陽電池の中間バンドが単一または多重量子井戸構造を有する半導体により形成されている請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the intermediate band of the intermediate band type solar cell is formed of a semiconductor having a single or multiple quantum well structure.
  3.  上記中間バンド型太陽電池の中間バンドが量子ドット構造を有する半導体により形成されている請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the intermediate band of the intermediate band type solar cell is formed of a semiconductor having a quantum dot structure.
  4.  上記中間バンド型太陽電池の中間バンドを形成する半導体がGaInN系半導体である請求項2記載の光電変換装置。 The photoelectric conversion device according to claim 2, wherein the semiconductor forming the intermediate band of the intermediate band type solar cell is a GaInN-based semiconductor.
  5.  上記受光部に上記受光部に入射する光の進行方向を上記受光部にほぼ垂直な方向に変換する光進行方向変換層を有する請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the light receiving portion has a light traveling direction conversion layer that converts the traveling direction of light incident on the light receiving portion into a direction substantially perpendicular to the light receiving portion.
  6.  上記光進行方向変換層が、
     第1の屈折率を有する透明基材と、
     上記透明基材の一方の主面に2次元アレイ状に設けられた、上記第1の屈折率を有する透明材料からなる複数の回転放物体状部と、
     それぞれの上記回転放物体を覆うように設けられた、半球面からなる表面を有し、上記第1の屈折率より小さい第2の屈折率を有する半球体状部とを有し、
     上記回転放物体状部の焦点と上記半球体状部の中心とが互いに一致している請求項5記載の光電変換装置。
    The light traveling direction changing layer is
    A transparent substrate having a first refractive index and
    A plurality of rotating object-like portions made of the transparent material having the first refractive index provided in a two-dimensional array on one main surface of the transparent substrate, and
    It has a surface made of a hemisphere provided so as to cover each of the rotating release objects, and has a hemispherical portion having a second refractive index smaller than that of the first refractive index.
    The photoelectric conversion device according to claim 5, wherein the focal point of the rotating object-shaped portion and the center of the hemispherical portion coincide with each other.
  7.  上記導波路が、
     導波方向に対して連続的併進対称性を有する2次元導波路と、
     上記2次元導波路と上記光進行方向変換層との間に設けられた、上記光進行方向変換層により上記受光部の受光面にほぼ垂直な方向に進行方向が変換された光を、当該受光面に平行な一方向のみに非対称的に伝搬させる、屈折率異方性具有層を少なくともその一部に有する離散的併進対称性を有する導波構造体とからなる請求項5記載の光電変換装置。
    The above waveguide
    A two-dimensional waveguide with continuous translational symmetry with respect to the waveguide direction,
    Light whose traveling direction is converted in a direction substantially perpendicular to the light receiving surface of the light receiving portion by the light traveling direction conversion layer provided between the two-dimensional waveguide and the light traveling direction conversion layer is received. The photoelectric conversion device according to claim 5, wherein the photoelectric conversion device comprises a waveguide structure having discrete translational symmetry having a refractive index anisotropy layer at least a part thereof, which propagates asymmetrically in only one direction parallel to a plane. ..
  8.  上記導波構造体が、互いにディレクター方向が異なる複数の液晶層を少なくとも一部に含む請求項7記載の光電変換装置。 The photoelectric conversion device according to claim 7, wherein the waveguide structure includes at least a plurality of liquid crystal layers having different director directions from each other.
  9.  上記導波構造体が、互いに非平行界面で仕切られた複数の等方性媒体を少なくとも一部に含む請求項7記載の光電変換装置。 The photoelectric conversion device according to claim 7, wherein the waveguide structure includes a plurality of isotropic media partitioned by non-parallel interfaces from each other at least in a part thereof.
  10.  上記受光部および上記導波路が、
     導波方向に対して連続的併進対称性を有する導波コア層と、
     上記導波コア層を不連続に被覆し、導波方向に対して離散的併進対称性を有するクラッド層を有し、
     上記クラッド層は、上記導波コア層を被覆していない断絶部の端部と、上記断絶部に対して上記導波コア層の導波方向と反対側で且つ上記導波コア層から離れた位置との間に延在し、上記導波コア層の導波方向に向かって上記導波コア層に次第に近づき、且つ上記断絶部の上記端部における接線が上記導波コア層に平行またはほぼ平行になるように設けられた構造をその一部に有し、
     上記クラッド層の上記断絶部に上記クラッド層で被覆された光導入コア層が上記導波コア層と合流するように設けられている請求項1記載の光電変換装置。
    The light receiving part and the waveguide
    A waveguide core layer with continuous translational symmetry with respect to the waveguide direction,
    The waveguide core layer is discontinuously covered, and a clad layer having discrete translational symmetry with respect to the waveguide direction is provided.
    The clad layer is separated from the waveguide core layer at the end of the breaking portion that does not cover the waveguide core layer, on the side opposite to the waveguide direction of the waveguide core layer with respect to the cutting portion, and away from the waveguide core layer. It extends between the positions and gradually approaches the waveguide core layer toward the waveguide direction of the waveguide core layer, and the tangent line at the end of the disconnection portion is parallel to or substantially equal to the waveguide core layer. It has a structure provided in parallel as a part of it,
    The photoelectric conversion device according to claim 1, wherein a light-introducing core layer coated with the cladding layer is provided at the disconnection portion of the cladding layer so as to merge with the waveguide core layer.
  11.  上記クラッド層の、上記導波コア層の面に垂直で且つ上記導波コア層の導波方向に平行な断面の形状が、円弧または楕円の一部を少なくともその一部に含む組み合わせ曲線からなる請求項10記載の光電変換装置。 The shape of the cross section of the clad layer perpendicular to the plane of the waveguide core layer and parallel to the waveguide direction of the waveguide core layer consists of a combination curve including a part of an arc or an ellipse in at least a part thereof. The photoelectric conversion device according to claim 10.
  12.  上記クラッド層の、上記導波コア層の面に垂直で且つ上記導波コア層の導波方向に平行な断面の形状が、長軸が上記導波コア層の導波方向に垂直な楕円の一部と、長軸が上記導波コア層の導波方向に平行な楕円または円弧の一部との組み合わせ曲線からなる請求項10記載の光電変換装置。 The shape of the cross section of the clad layer perpendicular to the surface of the waveguide core layer and parallel to the waveguide direction of the waveguide core layer is an ellipse whose long axis is perpendicular to the waveguide direction of the waveguide core layer. The photoelectric conversion device according to claim 10, further comprising a combination curve of a part and a part of an ellipse or an arc whose major axis is parallel to the waveguide direction of the waveguide core layer.
  13.  上記導波路が、上記光出射側の端面に向かって断面積が徐々に増加する楔状の形状を有する請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the waveguide has a wedge-shaped shape in which the cross-sectional area gradually increases toward the end face on the light emitting side.
  14.  上記導波路が全体形状が平面状または曲面状の2次元導波路である請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the waveguide is a two-dimensional waveguide having a planar or curved overall shape.
  15.  上記2次元導波路が円筒状、半円球状または波板状の形状を有する請求項14記載の光電変換装置。 The photoelectric conversion device according to claim 14, wherein the two-dimensional waveguide has a cylindrical, semicircular, or corrugated shape.
  16.  上記円筒状、半円球状または波板状の形状を有する2次元導波路の内面に白色高反射率層を有する請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, which has a white high reflectance layer on the inner surface of the two-dimensional waveguide having a cylindrical, semicircular or corrugated shape.
  17.  上記光電変換装置が光無線給電装置である請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is an optical wireless power supply device.
  18.  少なくとも一つの光電変換装置を有し、
     上記光電変換装置が、
     受光部と、
     上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
     上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
    を有し、
     上記光電変換部は上記導波路の光出射側の端部に設けられており、
     上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置
    である建築物。
    It has at least one photoelectric conversion device and has
    The above photoelectric conversion device
    Light receiving part and
    A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
    A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
    Have,
    The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
    A building that is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
  19.  少なくとも一つの光電変換装置を有し、
     上記光電変換装置が、
     受光部と、
     上記受光部と空間的に分離して設けられた、中間バンド型太陽電池からなる光電変換部と、
     上記受光部と上記光電変換部とを結び且つ光の進行方向を変換する機能を有する空間的に非対称な導波路と、
    を有し、
     上記光電変換部は上記導波路の光出射側の端部に設けられており、
     上記導波路の光出射側の端部から出射する光の方向が上記中間バンド型太陽電池を構成する半導体層にほぼ平行になるように構成されている光電変換装置
    である移動体。
    It has at least one photoelectric conversion device and has
    The above photoelectric conversion device
    Light receiving part and
    A photoelectric conversion unit composed of an intermediate band type solar cell, which is spatially separated from the light receiving unit,
    A spatially asymmetric waveguide that connects the light receiving unit and the photoelectric conversion unit and has a function of converting the traveling direction of light.
    Have,
    The photoelectric conversion unit is provided at the end of the waveguide on the light emitting side.
    A moving body that is a photoelectric conversion device configured so that the direction of light emitted from the end of the waveguide on the light emitting side is substantially parallel to the semiconductor layer constituting the intermediate band type solar cell.
PCT/JP2021/044823 2020-12-10 2021-12-07 Photoelectric conversion device, building, and mobile object WO2022124283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204678 2020-12-10
JP2020-204678 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022124283A1 true WO2022124283A1 (en) 2022-06-16

Family

ID=81974417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044823 WO2022124283A1 (en) 2020-12-10 2021-12-07 Photoelectric conversion device, building, and mobile object

Country Status (1)

Country Link
WO (1) WO2022124283A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224721A1 (en) * 2004-09-27 2007-09-27 Chuang Shun L Interband cascade detectors
WO2010126162A1 (en) * 2009-04-28 2010-11-04 国立大学法人北海道大学 Solar cell and photoelectric conversion element
JP2015228413A (en) * 2014-05-30 2015-12-17 国立大学法人神戸大学 Solar battery of high conversion efficiency and preparation method thereof
WO2017061448A1 (en) * 2015-10-09 2017-04-13 国立大学法人北海道大学 Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device
JP2017519370A (en) * 2014-06-19 2017-07-13 レイセオン カンパニー Photovoltaic devices that generate power using nonlinear multiphoton absorption of incoherent radiation
JP2018006363A (en) * 2016-06-27 2018-01-11 シャープ株式会社 Photoelectric conversion element and photoelectric converter including the same
WO2019059342A1 (en) * 2017-09-22 2019-03-28 国立大学法人北海道大学 Optical waveguide device, photoelectric conversion device, building, electronic device, moving body, and electromagnetic waveguide device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224721A1 (en) * 2004-09-27 2007-09-27 Chuang Shun L Interband cascade detectors
WO2010126162A1 (en) * 2009-04-28 2010-11-04 国立大学法人北海道大学 Solar cell and photoelectric conversion element
JP2015228413A (en) * 2014-05-30 2015-12-17 国立大学法人神戸大学 Solar battery of high conversion efficiency and preparation method thereof
JP2017519370A (en) * 2014-06-19 2017-07-13 レイセオン カンパニー Photovoltaic devices that generate power using nonlinear multiphoton absorption of incoherent radiation
WO2017061448A1 (en) * 2015-10-09 2017-04-13 国立大学法人北海道大学 Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device
JP2018006363A (en) * 2016-06-27 2018-01-11 シャープ株式会社 Photoelectric conversion element and photoelectric converter including the same
WO2019059342A1 (en) * 2017-09-22 2019-03-28 国立大学法人北海道大学 Optical waveguide device, photoelectric conversion device, building, electronic device, moving body, and electromagnetic waveguide device

Similar Documents

Publication Publication Date Title
CN101454904B (en) Assemblies of nonplanar solar units with internal spacing
KR102322321B1 (en) Radial p-n junction nanowire solar cells
US20110247676A1 (en) Photonic Crystal Solar Cell
US8664523B2 (en) Fiber optic solar nanogenerator cells
US9406819B2 (en) Photovoltaic component with a high conversion efficiency
CN104106145A (en) A vertical junction solar cell structure and method
US11955576B1 (en) Perpetual energy harvester and method of fabrication thereof
WO2007002110A2 (en) Bifacial elonagated solar cell devices
US9076908B2 (en) Three-dimensional metamaterial device with photovoltaic bristles
CN102544153A (en) Photovoltaic device and method for making
WO2017061448A1 (en) Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device
WO2022124283A1 (en) Photoelectric conversion device, building, and mobile object
JP6261088B2 (en) Photoelectric conversion device, building and electronic equipment
JP2021027683A (en) Optical wireless power supply device and optical wireless power supply mobile object
JP7270252B2 (en) Optical waveguide devices, photoelectric conversion devices, buildings, electronic devices, moving bodies, and electromagnetic wave waveguide devices
CN101363267A (en) Solar roof and solar house
JP2005217357A (en) Three-dimensional configuration solar cell and three-dimensional configuration solar cell module
JP2015201563A (en) Photoelectric conversion device, architectural structure and electronic apparatus
RU2689144C2 (en) Full-spectrum electromagnetic energy capturing device
GB2451108A (en) Photovoltaic Device
US20170200751A1 (en) Energy Harvesting Devices and Method of Fabrication Thereof
KR101856212B1 (en) Solar cell apparatus and mentod of fabricating the same
Proise Study and realisation of micro/nano photovoltaic cells and their concentration systems
CN106920881B (en) A kind of heterogeneous integrated solar cell of semiconductor nano line style
US20180069142A1 (en) Photovoltaic solar cell with backside resonant waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP