WO2014061617A1 - Modification method - Google Patents

Modification method Download PDF

Info

Publication number
WO2014061617A1
WO2014061617A1 PCT/JP2013/077858 JP2013077858W WO2014061617A1 WO 2014061617 A1 WO2014061617 A1 WO 2014061617A1 JP 2013077858 W JP2013077858 W JP 2013077858W WO 2014061617 A1 WO2014061617 A1 WO 2014061617A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
gas
plasma
gas barrier
Prior art date
Application number
PCT/JP2013/077858
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 達也
浩了 有田
河村 朋紀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014542124A priority Critical patent/JPWO2014061617A1/en
Publication of WO2014061617A1 publication Critical patent/WO2014061617A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the present invention relates to a method for modifying a laminate. More specifically, the present invention relates to a method for modifying a laminate that can increase the degree of modification by irradiation with vacuum ultraviolet light generated by plasma of a specific introduced gas.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is to prevent deterioration due to various gases such as water vapor and oxygen. It is widely used in packaging applications that require the blocking of various gases. In addition to the packaging applications described above, in order to prevent alteration due to various gases, it is used for sealing electronic devices such as solar cells, liquid crystal display elements, organic electroluminescence elements (hereinafter abbreviated as organic EL elements). Has also been used. In these applications, a very high gas barrier property is required.
  • the gas barrier film is superior in flexibility to the glass substrate, and is superior in terms of roll-type production suitability, weight reduction of electronic devices, and handleability.
  • a gas barrier layer is formed on a substrate such as a film mainly by a plasma CVD method (chemical vapor deposition method) as a dry method.
  • a plasma CVD method chemical vapor deposition method
  • a wet method there is known a method in which a coating liquid containing polysilazane as a main component is applied onto a substrate, and then a surface treatment (modification treatment) is applied to the coating film to form a gas barrier layer.
  • the wet method does not require large-scale equipment, is not affected by the surface roughness of the base material, and cannot be pinholed. Therefore, it has attracted attention as a method for obtaining a uniform gas barrier film with good reproducibility. Yes.
  • Patent Literatures 1 and 2 Conventionally known methods for modifying polysilazane include a method of irradiating with vacuum ultraviolet light using an excimer lamp (peak wavelength near 172 nm) or the like (see Patent Literatures 1 and 2 below), or a method of plasma irradiation (Patent Literature below) 3).
  • a film having a gas barrier property can be formed by irradiation with vacuum ultraviolet light, but in order to obtain a sufficient barrier property, it is necessary to increase the irradiation amount of vacuum ultraviolet light, and productivity is increased. Cannot be secured. Although it is conceivable to arrange a plurality of vacuum ultraviolet light sources to supplement the irradiation amount, the running cost becomes enormous.
  • the processing time can be shortened by irradiating with vacuum ultraviolet light having a peak at 150 nm or less in a plasma generator.
  • the wavelength used for modification is too short, the film is cut to Si—O in the film, leaving a defect in the film, and sufficient barrier properties cannot be obtained.
  • the wavelength is too short, only the resurface of the film is modified, and the film is insufficiently modified. The insufficient part deteriorates when the substrate is exposed to high temperatures, resulting in a decrease in barrier performance. I found out.
  • Patent Document 3 in the case of modification by plasma irradiation, only the very surface is exposed to plasma, and the outermost surface is a film having a high barrier property, but the inner film has insufficient energy. A sufficient barrier property cannot be obtained. Therefore, when it is going to obtain sufficient modification
  • the present invention has been made to solve the above-described problems of the prior art, and its purpose is to provide at least one of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti.
  • An object of the present invention is to provide a reforming method capable of reforming a laminated body having a single layer film to the inside, having high productivity and short processing time. Furthermore, when a laminated body is a gas barrier film, it is providing the modification method which can improve gas barrier property with high productivity, short processing time.
  • a base material and at least one layer of an oxide film, a nitride film, a nitrogen oxide film, and a carbonized film containing at least one of Si, Al, and Ti formed on the base material A modification method for modifying at least a part of a laminate comprising: a reforming step of modifying at least a part of the laminate by exposing the at least one layer of film to vacuum ultraviolet light.
  • a reforming method characterized in that the vacuum ultraviolet light is generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • the present invention is a laminate comprising a base material and at least one film of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti formed on the base material.
  • the method of the present invention includes a reforming step of modifying at least a part of the laminate by exposing the at least one layer of film to vacuum ultraviolet light.
  • the vacuum ultraviolet light is converted into CO, CO 2 and CH. It is characterized in that it is generated by a plasma of a gas containing at least one of 4 .
  • the method of the present invention can further include a step of forming a laminate, and hereinafter, (1) a step of forming a laminate, (2) a reforming step, and (3) other steps. Will be described in detail.
  • Laminate formation step In the laminate formation step, a base material to which the modification method of the present invention is applied, and an oxide film formed on the base material and containing at least one of Si, Al, and Ti. Then, a laminate including at least one layer of a nitride film, a oxynitride film, and a carbonation film is formed.
  • the laminate forming process can be (1-1) a film forming process by solution coating or (1-2) a film forming process by sputtering. Each will be described below.
  • a coating solution is first prepared.
  • a polysilazane solution can be preferably used, and film formation by applying the polysilazane solution is particularly suitable for the production of a gas barrier film.
  • the resulting gas barrier layer has few defects such as cracks, and few residual organic substances.
  • a preferred embodiment of the present invention is a reforming method in which at least one layer of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti contains polysilazane.
  • the concentration of the polysilazane compound in the coating solution varies depending on the film thickness of the target gas barrier layer and the pot life of the coating solution, and can be appropriately selected. However, it is preferably 0.5 to 20% by mass, more preferably 1 to 8% by mass. %.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and is a ceramic precursor such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, NH or the like, and an intermediate solid solution SiO x N y of both. It is an inorganic polymer. Particularly preferred are polysilazanes such as perhydropolysilazane and organopolysilazane.
  • a compound that is ceramicized at a relatively low temperature and modified to silica is preferable, for example, the following general formula described in JP-A-8-112879
  • a compound having a main skeleton composed of the unit represented by (1) is preferred.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms).
  • An alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 10 carbon atoms
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms
  • a silyl group preferably a silyl group having 3 to 20 carbon atoms
  • an alkylamino group preferably an alkylamino group having 1 to 40 carbon atoms, more preferably an alkylamino group having 1 to 20 carbon atoms
  • an alkoxy group preferably Represents an alkoxy group having 1 to 30 carbon atoms.
  • the alkyl group in R 1 , R 2 and R 3 is a linear or branched alkyl group.
  • Specific examples of the alkyl group having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • N-pentyl group isopentyl group, tert-pentyl group, neopentyl group, 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2 -Dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group, 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2- Ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methylpropylene Group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, isodecyl group, n-
  • alkenyl group having 2 to 20 carbon atoms examples include vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group and 2-pentenyl group. .
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • the aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, and a heptaenyl group.
  • biphenylenyl group fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group,
  • Examples thereof include condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group.
  • Examples of the silyl group having 3 to 20 carbon atoms include alkyl / arylsilyl groups, and specifically include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, methyldiphenylsilyl group, t -Butyldiphenylsilyl group and the like.
  • the alkylamino group having 1 to 40 carbon atoms is not particularly limited, and examples thereof include dimethylamino group, diethylamino group, diisopropylamino group, methyl-tert-butylamino group, dioctylamino group, didecylamino group, dihexadecyl group.
  • An amino group, a di-2-ethylhexylamino group, a di2-hexyldecylamino group and the like can be mentioned.
  • alkoxy group having 1 to 30 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, an octyloxy group, and a nonyloxy group.
  • the compound having a main skeleton composed of the unit represented by the general formula (1) preferably has a number average molecular weight of 100 to 50,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • perhydropolysilazane in which all of R 1, R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as the gas barrier layer to be obtained.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Mn number average molecular weight
  • These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • Examples of commercially available products include Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd., TutProm Series manufactured by Clariant Japan Co., Ltd., and the like.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased.
  • These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No.
  • glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (eg, JP-A-6-240208)
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex
  • Additional polysilazanes eg, Unexamined see JP 6-306329
  • fine metal particles added polysilazane obtained by adding metal particles (e.g., Japanese Unexamined see JP 7-196986), and the like.
  • a commercially available polysilazane may be used.
  • an amine or a metal catalyst can be added in order to promote the conversion to a silicon oxide compound.
  • Commercially available coating liquids of polysilazane compounds to which such a catalyst is added include AQUAMICA NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140, etc. manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.
  • Ethers such as aromatic ethers and alicyclic ethers can be used.
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to characteristics such as the solubility of the polysilazane compound material and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed. However, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane.
  • the coating liquid of the polysilazane compound prepared as described above is applied onto a substrate to form a coating film.
  • a conventionally known thin film forming method using a coating solution can be used as a simple method.
  • a wet coating method such as a die coating method, a spin coating method, a spray coating method, a plate coating method, a bar coating method, or a dip coating method can be given.
  • the die coating method is particularly preferable because the production efficiency is high and the coating film can be formed stably.
  • the coating thickness of the coating film is not particularly limited, but can be applied so that the film thickness after drying becomes a desired thickness.
  • the film thickness of the gas barrier layer containing the polysilazane compound is not particularly limited, but the film thickness after drying is preferably 1 to 600 nm, and more preferably 30 to 300 nm. If it is such a range, it will be excellent in high gas barrier performance, bending resistance, and cutting processability.
  • the base material used in the laminate according to the present invention is particularly limited as long as it can hold the above-described polysilazane solution coating film or a film formed by sputtering or CVD described later.
  • a resin base material is preferable from the viewpoint of excellent flexibility.
  • polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, polypropylene and butene
  • APO non-quality polyolefin resins
  • PET polyethylene terephthalate
  • PET polyethylene 2,6 naphthalate
  • Polyester resins such as (PEN), polyamide (PA) resins such as nylon 6, nylon 12 and copolymer nylon, polyvinyl alcohol resins such as polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol copolymer (EVOH) , Polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, polycarbonate (PC) resin, polyvinyl butyrate ( VB) resin, polyarylate (PAR) resin, ethylene tetrafluoride ethylene copolymer (ETFE), ethylene trifluoride chloride (PFA), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FEP), fluoride Fluorine resins such as vinylidene (PVDF), vinyl fluoride (PVF), and perfluoroethylene-perfluoropropylene-perfluorovinyl
  • a resin composition comprising an acrylate compound having a radical reactive unsaturated compound, a resin composition comprising the acrylate compound and a mercapto compound having a thiol group, epoxy acrylate
  • a photocurable resin such as a resin composition in which an oligomer such as urethane acrylate, polyester acrylate, or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
  • an oligomer such as urethane acrylate, polyester acrylate, or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
  • a laminate coating such as a resin base material.
  • ZEONEX and ZEONOR manufactured by ZEON Corporation
  • ARTON of non-quality cyclopolyolefin resin film manufactured by JSR Corporation
  • Pure Ace of polycarbonate film manufactured by Teijin Limited
  • Konica Katak KC4UX of cellulose triacetate film Commercially available products such as KC8UX (manufactured by Konica Minolta Opto), polyethylene terephthalate film with a clear hard coat layer (manufactured by Kimoto), polyester film PET Q83 (manufactured by Teijin DuPont Films) can be preferably used.
  • the resin base material is preferably transparent. Since the resin base material is transparent and the coating film made of the polysilazane compound formed on the resin base material is also transparent, it becomes a transparent gas barrier film, so that it can be used as a transparent substrate such as an organic EL element. It is.
  • the resin base material listed above may be an unstretched film or a stretched film.
  • the resin substrate according to the present invention can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the substrate on which the polysilazane compound is applied may be a substrate having gas barrier properties.
  • the method for imparting gas barrier properties include a base material in which an inorganic oxide, an inorganic nitride, or an inorganic oxynitride is formed on the base material.
  • metal oxides such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, indium tin oxide (ITO), metal nitrides such as silicon nitride and silicon oxynitride, metal oxynitrides Etc.
  • money, silver, nickel, chromium, can also be mentioned.
  • These formation methods include vacuum deposition, molecular beam epitaxial growth, ion cluster beam, low energy ion beam, ion plating, plasma CVD, vapor deposition, ALD (Atomic Layer Deposition), sputtering, Examples include dry processes such as atmospheric pressure plasma, spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, and die coating. Can be selected as appropriate.
  • the atmospheric pressure plasma method is preferable because a roll-to-roll process under atmospheric pressure is possible.
  • the coating process is more preferable because it is highly safe, can be formed easily and at a lower cost.
  • a preferred embodiment of the present invention is a modification method in which the laminate is a gas barrier film.
  • the gas barrier property referred to in the present invention is a condition of 40 ° C. ⁇ 90% RH using a water vapor permeability measuring apparatus manufactured by MOCON in accordance with the measuring method shown in JIS K7129 B method and ASTM F1249-90. It means that the water vapor transmission rate when measured by is less than 0.1 g / m 2 ⁇ day.
  • surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. may be performed before forming the polysilazane compound coating film. Good.
  • the resin substrate is conveniently a long product wound up in a roll. Since the thickness of the resin base material varies depending on the use of the obtained gas barrier film, it cannot be specified unconditionally, but when the gas barrier film is used for packaging, there is no particular limitation, and from the suitability as a packaging material, It is preferably in the range of 3 to 400 ⁇ m, especially 6 to 150 ⁇ m.
  • (1-2) Film Forming Step by Sputtering Method in order to form a laminated body, at least one oxide film, nitride film, oxynitride film or carbonated film of Si, Al and Ti is formed by a sputtering method. May be.
  • a gas barrier film is preferable because it can easily obtain a dense film having high adhesion and high gas barrier properties.
  • Film formation by sputtering of at least one oxide film of Si, Al and Ti, nitride film, oxynitride film or carbonation film is a combination of DC (direct current) sputtering method, RF (high frequency) sputtering method, and magnetron sputtering.
  • a thin film of oxide, nitride, nitride oxide, or carbonate of Si, Al, or Ti can be formed.
  • a ceramic target such as SiO 2 or Si 3 N 4 can also be used.
  • an inert gas such as He, Ne, Ar, Kr, or Xe, or at least one process gas selected from oxygen, nitrogen, carbon dioxide, and carbon monoxide can be used.
  • film forming conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected according to the sputtering apparatus, the material of the film, the film thickness, and the like.
  • the laminate may be a vapor deposition method, a physical vapor deposition method (PVD) method such as an ion plating method, a plasma CVD (chemical vapor deposition) method, a chemical vapor deposition method such as ALD (Atomic Layer Deposition), or It can be produced by a sol-gel method or the like.
  • PVD physical vapor deposition method
  • ALD Atomic Layer Deposition
  • the oxide film, nitride film, oxynitride film, and carbonation film containing at least one of Si, Al, and Ti of the laminate formed as described above are converted into a plasma containing a carbon-containing gas.
  • the modification treatment is performed by exposing to the vacuum ultraviolet light generated by.
  • the modification treatment means that a film such as vacuum ultraviolet light irradiation is subjected to some change to obtain a dense film as a whole.
  • a film such as vacuum ultraviolet light irradiation
  • the conversion reaction of polysilazane to silicon oxide or silicon oxynitride is applicable, and the modification treatment is applied to the physical properties such as film composition change and gas barrier performance derived therefrom. It can be confirmed from the improvement.
  • whether or not the modification treatment has been performed can be confirmed by checking whether the gas barrier performance or the insulation performance has improved from before the treatment. .
  • the reforming method of the present invention by using vacuum ultraviolet rays generated by plasma of a specific gas, at least one of an oxide film containing at least one of Si, Al, and Ti, a nitride film, a nitrided oxide film, and a carbonated film is used.
  • a laminate including one layer can be modified to the inside, and a denser film can be produced in a short time.
  • the productivity of the modified laminate can be improved.
  • the obtained film is denser and the degree of modification is high, in the case of a gas barrier film, a film having improved heat and moisture resistance can be obtained.
  • the vacuum ultraviolet light that exposes the laminate is characterized by being generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • a gas type used for generating vacuum ultraviolet light, a power supply frequency for generating vacuum ultraviolet light, and a plasma generation method will be described.
  • a preferred embodiment of the present invention is a modification method in which the peak wavelength of the vacuum ultraviolet light at a wavelength of 100 nm or more and less than 200 nm exceeds 150 nm.
  • Such vacuum ultraviolet light is generated near the surface of the laminated body, and the laminated body can be exposed to this, compared with the case of using a vacuum ultraviolet light lamp. It can reach more inside. Therefore, the degree of modification of the entire film of the laminate can be increased, and a denser film can be produced in a short time.
  • the peak wavelength of the light emission is in the region exceeding 150 nm, the vacuum ultraviolet light reaches the inside of the film, and the chemical bonds constituting the film on the surface of the laminate are unnecessarily cut to cause defects in the film. Can be avoided.
  • CO CO 2 and CH 4
  • CO or a combination of CO and CO 2 is more preferable in order to achieve the intended effect of the present invention more reliably.
  • the laminate is modified by exposing it to vacuum ultraviolet light from plasma, but it is more preferable to expose the laminate simultaneously to the plasma itself generating vacuum ultraviolet light. That is, a preferred embodiment of the present invention is a method in which at least one layer of the above-described oxide film, nitride film, oxynitride film, and carbonation film containing at least one of Si, Al, and Ti is further formed into plasma simultaneously with vacuum ultraviolet light. It is a modification method that is exposed to water. In this case, since the surface of the laminate is modified by plasma, the time required for the modification can be further shortened.
  • the amount of oxidation of the film can be controlled by intentionally exposing the film surface to O radicals and ions, so that the film quality can be easily adjusted, and in the case of a gas barrier film, the heat and moisture resistance can be improved.
  • the distance between the gas generating the plasma and the surface of the laminate may be adjusted.
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. That is, a preferred embodiment of the present invention is a reforming method in which the gas further contains a rare gas or H 2 . This is because when the rare gas or H 2 is used as the main gas, the excitation efficiency of the carbon-containing gas added due to the Penning effect is improved and strong emission intensity is obtained, rather than using the carbon-containing gas alone. In particular, when CO and / or CO 2 is used as the carbon-containing gas, it is preferable because stronger emission intensity can be obtained than when the carbon-containing gas is used alone.
  • Concentration of adding a carbon-containing gas to the rare gas or H 2 is preferably added 0.1 ⁇ 20 vol% of a rare gas or H 2, and more preferably from 0.1 ⁇ 5 vol%. If the concentration of the carbon-containing gas is higher than the above range, the carbon-containing gas to which the emitted vacuum ultraviolet light is added may be self-absorbed, and the vacuum ultraviolet light reaching the film is reduced, preferably Absent. On the other hand, if the amount is too small, the amount of carbon-containing gas that is a light-emitting source is reduced, so that the amount of generated vacuum ultraviolet light exceeding 150 nm is reduced, and strong emission intensity may not be obtained.
  • the rare gas is preferably Ar, Ne, Xe, or Kr in view of availability and ease of handling.
  • a preferred embodiment of the present invention is a reforming method in which the rare gas is at least one of Ar, Ne, Xe and Kr.
  • the carbon-containing gas preferably further contains a gas that generates ultraviolet light having a wavelength of 200 nm to 300 nm by plasma. That is, a preferred embodiment of the present invention is a reforming method that further includes a gas that generates ultraviolet light having a wavelength of 200 nm to 300 nm by plasma.
  • the laminate is irradiated with ultraviolet light together with vacuum ultraviolet light. Therefore, vacuum ultraviolet light reaches the surface from the outermost surface of the film, and ultraviolet light reaches the inside of the film more inside. Can be modified. As a result, the time required for the reforming process can be further shortened.
  • a nitrogen-containing gas is preferable, and at least one of NO, N 2 O, NO 2, and NH 3 is preferable. That is, a preferred embodiment of the present invention is a reforming method in which the gas that generates ultraviolet light having a wavelength of 200 nm or more and 300 nm or less is a nitrogen-containing gas. Furthermore, a preferred embodiment of the present invention is a reforming method in which the nitrogen-containing gas is at least one of NO, N 2 O, NO 2 and NH 3 . Among these, NO is conventionally known to obtain an emission spectrum called a ⁇ spectrum from 150 nm to 230 nm.
  • NO is more preferable.
  • NO When NO is turned into plasma, it generates ultraviolet light having a wavelength of 200 to 250 nm.
  • the SiO 2 film has a high absorption rate at a wavelength of 200 nm or less, and most of the vacuum ultraviolet light is absorbed in the vicinity of the surface (up to 50 nm depth), so that the light does not reach the inside of the film and reaches the inside of the film. The reform does not progress. Therefore, it can be modified into the film by combining ultraviolet irradiation with a wavelength longer than that of light outside the vacuum.
  • ultraviolet light simultaneously with vacuum ultraviolet light not only the surface but also the inside of the film can be modified at the same time, which is preferable because the processing time can be shortened.
  • the nitrogen-containing gas is preferably 0.01 to 50 vol%, more preferably 0.05 to 10 vol% with respect to the carbon-containing gas. Even when a nitrogen-containing gas is used, it is more preferable to expose the laminate to the plasma itself as described above.
  • an oxidizing gas such as CO 2 , O 2, H 2 O, or H 2 gas
  • CO generates a carbon compound by plasma, and there is a possibility that the carbon compound adheres to the surface of the laminate to be treated. Therefore, in order to remove the carbon compound, it is preferable to add a small amount of oxidizing gas or H 2 gas.
  • H 2 O or H 2 gas because H atoms and H radicals are also generated by the plasma to promote the dehydration condensation reaction on the film surface.
  • a preferable amount of H 2 O or H 2 gas added is 0.01 to 1 vol% with respect to a rare gas when a rare gas is used, and 0.01 to 1% with respect to a carbon-containing gas when a rare gas is not used. It is 50 vol%. Further, H 2 O or H 2 gas may be added together with the nitrogen-containing gas. In addition, when a rare gas such as Ar, Xe, Ne, or Kr is used as the main gas, vacuum ultraviolet light of 150 nm or less due to the rare gas may be generated. There is a possibility of modification to a film that impairs the properties.
  • O 2 and CO 2 absorb vacuum ultraviolet light of 150 nm or less, they also serve to block vacuum ultraviolet light having a wavelength of 150 nm or less that reaches the laminate.
  • CO 2 is preferable as an oxidizing gas because it generates ultraviolet light of 200 nm or more and 250 nm or less in plasma, and also generates vacuum ultraviolet light because it generates CO when decomposed by plasma.
  • a preferable amount of O 2 is 1 to 100 vol%, more preferably 1 to 30 vol%, with respect to the carbon-containing gas.
  • the purity of the gas used is preferably 99.9 or higher, more preferably 99.99% or higher.
  • the pressure of the whole gas introduced for the reforming treatment varies depending on the plasma generation method, it is preferably 1 to 1000 Pa, more preferably 5 to 400 Pa in the case of CCP and ICP.
  • microwave plasma it is preferably 1 to 100 kPa, more preferably 100 to 20 kPa.
  • the time for irradiation with vacuum ultraviolet light and / or plasma depends on the plasma generation method, but the shorter the time from the viewpoint of productivity, the higher the production capacity, and thus the more preferable.
  • a plasma processing apparatus that forms plasma at or near the atmospheric pressure as described in Japanese Patent No. 4000830 and Japanese Patent No. 4433680 can also be used.
  • the atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
  • the frequency of the power source required for generating low-pressure plasma that emits vacuum ultraviolet light (hereinafter also referred to as VUV) having peak illuminance in the wavelength range exceeding 150 nm used in the present invention is preferably 10 kHz to 100 GHz.
  • VUV vacuum ultraviolet light
  • ions cannot follow the change in the electric field, so that energy can be efficiently given to the electrons, and the electron density, that is, the plasma density increases.
  • the intensity of VUV generated by plasma also increases.
  • it exceeds 100 GHz it becomes difficult for electrons to follow changes in the electric field, and in order to ensure energy transfer efficiency, 100 GHz or less is suitable.
  • it is in the range of 50 kHz to 10 GHz.
  • a method for generating plasma that emits VUV having a wavelength exceeding 150 nm used in the present invention a conventionally known method can be used.
  • a method that can deal with the treatment of a film formed on a wide substrate is good, and examples thereof include the following methods (A) to (E).
  • A Capacitively coupled plasma (CCP)
  • CCP Capacitively coupled plasma
  • the opposed plate electrodes are a typical electrode structure.
  • the electrode on the side to which the high-frequency power is applied is not limited to a flat plate shape, and for example, an electrode having a concavo-convex shape as disclosed in JP-A-2-113521 can be used.
  • the plasma density can be increased due to the electric field concentration at the protrusion and the effect of the hollow cathode, and the intensity of VUV having a peak illuminance in the range exceeding 150 nm generated by the plasma is also increased. Become stronger.
  • FIG. 1 A schematic diagram of such a magnetron combined capacitively coupled plasma generator is shown in FIG.
  • the magnetic field forming member 11 is provided inside the reforming roll, on the side of the electrode 7 disposed facing the reforming roll, in a range corresponding to at least the size of the electrode 7.
  • the short-circuit member 3 is attached so as to generate a uniform magnetic flux.
  • the electrons trapped in the magnetic flux generated from the magnetic field forming member through the non-magnetic reforming roll 4 occur near the surface of the film on which the plasma travels and are reformed.
  • a high frequency potential is applied from the plasma forming power source 5, it is configured to be applied only to the reforming roll 4.
  • the magnetic field generating member 11 includes a central magnetic field 1, an outer peripheral magnetic field 2 having a polarity different from that of the central magnetic field, and a magnetic field short-circuit member 3 that supports them.
  • the reforming roll 4 is provided with a magnetic field generating member 11 so that the positional relationship is maintained even when the roll rotates.
  • the electrode 7 is disposed along a part of the surface of the reforming roll 4 so as to face the surface, and includes a plurality of gas introduction holes. A discharge gas is introduced from the introduction hole into the surface of the film S by the gas supply pipe 6. Thus, plasma is generated where the plasma forming power source 5 is maintained and the magnetic field forming member 3 has a magnetic flux outside the reforming roll 4.
  • the capacitively coupled plasma apparatus combined with the magnetron described in Japanese Patent Application Laid-Open No. 2008-196001 can also be used.
  • a schematic diagram is shown in FIG.
  • a base material S having a strip-like film that is wound in a roll shape passes over a pair of reforming rolls 4 and 4 'that are arranged to face each other so that the roll axes are parallel to each other. It is configured.
  • magnetic field generating members 11 and 11 ′ are provided inside the respective reforming rolls 4 and 4 ′, and a plasma forming power source 5 for supplying plasma power to the reforming rolls 4 and 4 ′ is provided. .
  • the reforming rolls 4 and 4 ' are provided with magnetic field generating members 11 and 11' so that the positional relationship is maintained even when the rolls rotate.
  • a plurality of gas ejection nozzles directed to the roll space 8 between the reforming rolls 4 and 4 ′ are provided with a gas supply pipe 6 in the length direction, and the vacuum exhaust port 9 is directly below the roll space 8. Is arranged.
  • a gas forming plasma is supplied from the gas supply pipe 6 to the roll space 8.
  • the plasma forming power source 5 one electrode is connected to one reforming roll 4 and the other electrode is connected to the other film forming roll 4 ′.
  • the plasma forming power source 5 outputs a voltage whose polarity is alternately inverted. Thereby, plasma with high plasma density can be formed on the roll surfaces of the modified rolls 4 and 4 ′.
  • ICP Inductively coupled plasma
  • a plasma generation method using a microwave can also be used in the present invention.
  • a line type microwave plasma generation method can be preferably used.
  • a type of microwave plasma generator one described in Japanese Patent Application Laid-Open No. 2006-269151 or Japanese Patent Application Laid-Open No. 2007-317499 can be used.
  • it is a plasma formation method that does not require an electrode on the substrate side, it is possible to perform modification only with vacuum ultraviolet light without exposing to plasma by sufficiently separating the substrate and the microwave plasma source. .
  • the plasma density is higher than that of the capacitive coupling type, and the intensity of vacuum ultraviolet light having a peak illuminance in the generated wavelength range exceeding 150 nm is increased. As a result, the time required for reforming can be shortened.
  • FIG. 3 is a diagram showing a schematic configuration of a microwave line plasma generation apparatus that introduces microwaves from both sides of a rectangular TE mode waveguide 24.
  • Microwaves supplied from the first and second microwave generation sources 21a and 21b from both ends of the waveguide 24 are supplied via the waveguides 22a and 22b and the tapered waveguides 23a and 23b.
  • the waveguides 22a and 22b are configured by combining a straight waveguide, a waveguide bend, and the like.
  • an opening (not shown) on the slit is provided below the waveguide 24.
  • the gas processing chamber 26 vacuum
  • the gas supply pipe 25 By supplying gas to the gas processing chamber 26 (vacuum) through the gas supply pipe 25 in the vicinity of the slit portion, the gas is made into plasma by touching the microwave in the waveguide 24.
  • the base material 32 provided with the film to be modified is unwound from the unwinding portion 34 and modified by the microwave plasma generator 31 as shown in FIG. Quality. After the modification, the base material 32 is wound up by the winding unit 35 through the guide roller 33.
  • Pulse drive When generating plasma by the plasma generation method as described above, electric power may be applied in pulses. It is known that application by pulses makes it difficult to shift from glow discharge to arc discharge as compared to the case of continuous application, and uniform glow plasma can be formed with higher power or higher pressure. Therefore, vacuum ultraviolet light can be emitted more strongly by the discharge applied with electric power in a pulse. In particular, when the pressure is high, the number of molecules of the carbon-containing gas that is the source of vacuum ultraviolet light can be increased, which is effective in increasing the emission intensity.
  • a preferable pulse frequency is 100 Hz to 500 kHz, more preferably 1 to 200 kHz.
  • a preferred DUTY ratio is 10 to 80, more preferably 20 to 70.
  • the reforming treatment of the present invention can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be used.
  • the resin base material can be processed in a vacuum chamber equipped with the plasma generator as described above.
  • a resin base material when a resin base material is a elongate film form, it can be ceramicized by exposing to a vacuum ultraviolet light continuously, conveying this.
  • the laminated body manufactured in the present invention includes the above-described oxide film, nitride film, oxynitride film, and carbonated film containing at least one of Si, Al, and Ti. It is preferable to have an intermediate layer between the substrate and these films, and the method of the present invention may further include a step for that purpose.
  • the intermediate layer according to the present invention is not particularly limited as long as it has a layer structure, and includes, for example, an anchor coat layer, a smooth layer, a bleed-out layer, and the like. It is more preferable that the laminated body manufactured by this invention is equipped with these intermediate
  • a gas barrier film it is more preferable to provide an anchor coat layer on the substrate surface for the purpose of improving the adhesion with the gas barrier layer. It is more preferable to provide a smooth layer between the base material and the gas barrier layer in order to flatten the rough surface of the base material surface and fill unevenness and pinholes.
  • a smooth layer the surface of the resin base material having a smooth layer for the purpose of suppressing the phenomenon that unreacted oligomers migrate to the surface from the resin base material and contaminate the contact surface. It is more preferable to provide a bleed-out layer on the opposite side of the surface.
  • a solution of the following materials can be applied to form a coating film, dried, and completed by ultraviolet light curing or the like as necessary.
  • anchor coat layer examples include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. These may be used alone or in combination of one or more.
  • Examples of the photopolymerizable monomer forming the smooth layer include a photopolymerizable monomer composition containing an acrylate compound having a radical reactive unsaturated compound, and a photopolymerizable monomer containing an acrylate compound and a mercapto compound having a thiol group.
  • Examples thereof include a photopolymerizable monomer composition in which a polyfunctional acrylate monomer such as a composition, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate is dissolved.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer.
  • the modification method of the present invention is particularly suitable for the production of a gas barrier film.
  • it is suitable not only for the gas barrier film but also for the surface treatment of the substrate, the production of a passivation film or an insulating film. That is, the present invention also provides a laminate modified by the above-described modification method.
  • the wettability can be improved in a short time as compared with the corona discharge treatment and the excimer lamp treatment.
  • the passivation film a film containing at least one of Si, Al, and Ti is often used in the same manner as the gas barrier film, and plays a role of blocking the movement of the metal in the upper and lower layers of the passivation film.
  • the wet heat resistance of the gas barrier film is improved by the method of the present invention, i.e., the film can further block the permeation of oxygen and water vapor.
  • the movement of metal ions larger than oxygen and water vapor can be further blocked.
  • the insulating film is manufactured by modifying an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti, similarly to the gas barrier film. Therefore, according to the modification method of the present invention, it can be modified to the inside of the film, and the degree of modification of the whole film can be increased. Therefore, even when an insulating film is manufactured, the degree of modification is further increased. A dense film having excellent insulating properties can be obtained.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the base material, and is applied with a die coater so that the film thickness after drying is 4 ⁇ m, followed by drying conditions; After drying at 80 ° C. for 3 minutes, curing was performed in an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a smooth layer.
  • the maximum cross-sectional height Rt (p) at this time was 16 nm.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured with an AFM (Atomic Force Microscope) and a detector having a stylus with a minimum tip radius, and the measurement direction is 30 ⁇ m with a stylus with a minimum tip radius. This is the average roughness for the amplitude of fine irregularities, measured many times in the section.
  • AFM Anatomic Force Microscope
  • Example 1 [Production of Gas Barrier Film 1] (Formation of polysilazane layer) A polysilazane layer was applied and dried on the smooth layer surface of the film provided with the smooth layer and the bleed-out prevention layer to form a coating film.
  • the coating solution containing a polysilazane compound contains 5% by mass of a non-catalytic perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) and an amine catalyst.
  • Perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was mixed and used to adjust the amine catalyst to 1% by mass with respect to perhydropolysilazane. By diluting, it was prepared as a 5% by weight dibutyl ether solution of perhydropolysilazane. This solution was applied using a die coater at a line speed of 1.0 m / min, dried for 1 minute at a drying temperature of 50 ° C. and a drying atmosphere dew point of 10 ° C., and then dried at a drying temperature of 80 ° C. and a drying atmosphere dew point of 5 ° C. After partial drying, a polysilazane layer having a thickness of 150 nm was formed after drying.
  • ⁇ Reforming treatment> The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
  • the surface energy before a process was 55 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: CO Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 1.0 second.
  • Example 2 [Preparation of gas barrier film 2] A gas barrier film 2 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m. ⁇ Reforming treatment> The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: CO 2 (CO is 1 vol%) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 3 seconds.
  • a gas barrier film 3 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO (CO is 1 vol%) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.5 seconds.
  • a gas barrier film 4 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m. ⁇ Reforming treatment> The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO + CO 2 (CO is 1 vol% with respect to Ar, CO 2 is 10 vol% with respect to CO) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.3 seconds.
  • a gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ne + CO (CO is 1 vol% with respect to Ne) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.5 seconds.
  • a gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Xe + CO (CO is 1 vol% with respect to Xe) Pressure: 10Pa
  • Substrate heating temperature Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.3 seconds.
  • Example 7 [Preparation of gas barrier film 7] A gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO + NO (CO, NO is 1 vol% with respect to Ar) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.2 seconds.
  • Example 8> [Preparation of gas barrier film 8] A gas barrier film 7 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • the gas barrier film 1 was produced by performing plasma irradiation treatment using the apparatus shown in FIG. 4 in which the microwave plasma generator shown in FIG. 3 was introduced to the produced polysilazane film under the following conditions. Note that the distance between the substrate and the plasma source was set to 150 mm so that the gas barrier film was not directly exposed to plasma.
  • Example 9 [Preparation of gas barrier film 9] A gas barrier film 7 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
  • the gas barrier film 1 was produced by performing plasma irradiation treatment using the apparatus shown in FIG. 4 in which the microwave plasma generator shown in FIG. 3 was introduced to the produced polysilazane film under the following conditions. Note that the distance between the substrate and the plasma source was set at 30 mm so that the gas barrier film was directly exposed to plasma.
  • a plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced.
  • discharge was started, plasma was generated on the Si target, and a sputtering process was started.
  • the shutter was opened and the formation of a silicon oxide layer on the film was started.
  • the shutter was closed and the film formation was completed.
  • reformation process described below was implemented and the gas barrier film 8 was produced.
  • the gas barrier property of the substrate on which the SiO 2 film before the modification treatment was formed was 0.01 g / m 2 / day.
  • the surface energy before the treatment was 58 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO (CO is 1 vol%) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.5 seconds.
  • a plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced.
  • discharge was started to generate plasma on the Al target, and the sputtering process was started.
  • the shutter was opened and the formation of a silicon oxide layer on the film was started.
  • the gas barrier property of the base material on which Al 2 O 3 before reforming was formed was 0.1 g / m 2 / day.
  • the surface energy before the treatment was 60 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO (CO is 1 vol%) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.5 seconds.
  • a plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced.
  • discharge was started to generate plasma on the Ti target, and the sputtering process was started.
  • the shutter was opened and the formation of a silicon oxide layer on the film was started.
  • reformation process described below was implemented and the gas barrier film 8 was produced.
  • the gas barrier property of the base material on which the TiO 2 film before the modification treatment was formed was 0.08 g / m 2 / day.
  • the surface energy before the treatment was 62 mN / m.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar + CO (CO is 1 vol%) Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 0.5 seconds.
  • a gas barrier film 10 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. The surface energy before the treatment was 55 mN / m. ⁇ Reforming treatment> The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 10.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.) Gas: Ar Pressure: 10Pa Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2 Frequency: 13.56MHz Processing time: 30 seconds.
  • a gas barrier film 11 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows.
  • ⁇ Reforming treatment> (Modification equipment) Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200 Wavelength: 172nm Lamp filled gas: Xe (Reforming treatment conditions) The sample fixed on the operation stage was subjected to a modification treatment under the following conditions to form a second barrier layer.
  • Excimer light intensity 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Stage heating temperature 70 ° C
  • Oxygen concentration in the irradiation device 0.1%
  • Film transport speed 0.6m / min
  • Excimer irradiation time 5 seconds
  • a gas barrier film was prepared as described above.
  • Gas barrier film 10 was produced in the same manner as gas barrier film 9 except that gas barrier film 9 was modified as described below.
  • Plasma processing equipment Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
  • ⁇ Comparative Example 5> [Preparation of gas barrier film 17]
  • a gas barrier film 14 was produced in the same manner as the gas barrier film 9 except that the modification treatment was performed as follows.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM Anamic Force Microscope
  • surface free energy (hereinafter also referred to as surface energy) was evaluated.
  • the surface energy does not indicate the degree of modification of the entire film, but is used as an index for indicating how much processing time is required to modify the film on the outermost surface.
  • the method described in “Nasakiaki Kitasaki et al., Journal of Japan Adhesion Society, Vol. 8, No. 3, 1972, pp. 131-141” is used. Using.
  • the surface energy is composed of a dispersion component ⁇ d, a polar component ⁇ p, and a hydrogen bonding component ⁇ h.
  • the contact angle was measured using water, diiodomethane, and nitromethane with known ⁇ L, and the surface energy was determined. As the surface energy increases, the surface modification progresses.
  • the contact angle was measured using a contact angle meter (CA-DT, manufactured by Kyowa Interface Science Co., Ltd.) to measure the static contact angle with a 2 mg mass droplet, and the surface energy was calculated using the equation (1).
  • ⁇ Method of measuring the wavelength and illuminance of the generated vacuum ultraviolet light The wavelength and intensity of the vacuum ultraviolet light were measured using a vacuum ultraviolet spectrometer vacuum apparatus (VM-504 manufactured by Acton, VTM300 manufactured by HORIBA Jobin Yvon).
  • Example 3 using a carbon-containing gas in addition to Ar is more excellent in that the peak wavelength of vacuum ultraviolet light is longer and the processing time is shortened. It exhibited gas barrier properties and heat and humidity resistance.
  • Example 3 in which Ar was added to CO further shortened the processing time. This is presumably because the emission of vacuum ultraviolet light was further enhanced by using the rare gas as the main gas.
  • Example 7 in which NO, which is a nitrogen-containing gas, was further added to Ar and CO showed further superior gas barrier properties compared to Example 3 in which only Ar and CO were used. This is probably because the use of NO that emits ultraviolet light by plasma modified the polysilazane film to the inside in a short time and improved the gas barrier properties.
  • Example 9 which irradiated the plasma in addition to the vacuum ultraviolet irradiation further shortened processing time.
  • the values are the same in Examples 1 to 12 and Comparative Examples 1 to 4. From this, it can be seen that according to the method of the present invention, in order to perform the surface modification equivalent to that according to the prior art, a very shortened processing time is required. Therefore, the modification method of the present invention is effective as a film surface treatment method because the treatment time is short and the productivity is high.

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The purpose of the present invention is to provide a high-productivity, fast modification method that makes it possible to modify a laminate all the way to the interior thereof, said laminate being provided with one or more film layers selected from among oxide films, nitride films, oxynitride films, and oxycarbide films, containing at least one element selected from among silicon, aluminum, and titanium. The present invention is a modification method for modifying at least part of a laminate provided with the following: a substrate; and, formed on top of said substrate, one or more film layers selected from among oxide films, nitride films, oxynitride films, and oxycarbide films, containing at least one element selected from among silicon, aluminum, and titanium. Said modification method is characterized by including a modification step in which the aforementioned one or more film layers are exposed to vacuum ultraviolet light so as to modify at least part of the laminate. The modification method is further characterized in that said vacuum ultraviolet light is generated via a plasma formed from a gas containing at least one compound selected from among CO, CO2, and CH4.

Description

改質方法Modification method
 本発明は、積層体の改質方法に関する。より詳細には、特定の導入ガスのプラズマにより発生する真空紫外光照射により、改質の度合いを高めうる積層体の改質方法に関する。 The present invention relates to a method for modifying a laminate. More specifically, the present invention relates to a method for modifying a laminate that can increase the degree of modification by irradiation with vacuum ultraviolet light generated by plasma of a specific introduced gas.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリアフィルムは、水蒸気や酸素等の各種ガスによる変質を防止するため、各種ガスの遮断を必要とする物品を包装する用途で広く用いられている。また、上記包装用途以外にも、各種ガスによる変質を防止するため、太陽電池、液晶表示素子、有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する。)等の電子デバイスを封止する用途にも使用されている。これらの用途においては、非常に高いガスバリア性が求められている。また、ガスバリア性能保証の観点から、湿熱試験(例えば、85℃、相対湿度85%、200時間放置)後もガスバリア性が低下しないという、耐湿熱性が求められている。ガスバリアフィルムは、ガラス基材と比べてフレキシブル性に優れており、ロール式での生産適性や、電子デバイスの軽量化及び取り扱い性の点において優位である。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is to prevent deterioration due to various gases such as water vapor and oxygen. It is widely used in packaging applications that require the blocking of various gases. In addition to the packaging applications described above, in order to prevent alteration due to various gases, it is used for sealing electronic devices such as solar cells, liquid crystal display elements, organic electroluminescence elements (hereinafter abbreviated as organic EL elements). Has also been used. In these applications, a very high gas barrier property is required. In addition, from the viewpoint of guaranteeing gas barrier performance, moisture and heat resistance is required such that the gas barrier property does not deteriorate even after a wet heat test (for example, 85 ° C., relative humidity 85%, left for 200 hours). The gas barrier film is superior in flexibility to the glass substrate, and is superior in terms of roll-type production suitability, weight reduction of electronic devices, and handleability.
 このようなガスバリアフィルムを製造する方法としては、主に、ドライ法として、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってフィルムなどの基材上にガスバリア層を形成する方法や、ウエット法として、ポリシラザンを主成分とする塗布液を基材上に塗布した後、塗膜に表面処理(改質処理)を施してガスバリア層を形成する方法が知られている。ドライ法とは異なり、ウェット法は大型の設備は必要とせず、さらに基材の表面粗さに影響されず、ピンホールもできないので、再現性良く均一なガスバリア膜を得る手法して注目されている。 As a method for producing such a gas barrier film, a gas barrier layer is formed on a substrate such as a film mainly by a plasma CVD method (chemical vapor deposition method) as a dry method. As a method or a wet method, there is known a method in which a coating liquid containing polysilazane as a main component is applied onto a substrate, and then a surface treatment (modification treatment) is applied to the coating film to form a gas barrier layer. Unlike the dry method, the wet method does not require large-scale equipment, is not affected by the surface roughness of the base material, and cannot be pinholed. Therefore, it has attracted attention as a method for obtaining a uniform gas barrier film with good reproducibility. Yes.
 従来知られているポリシラザンの改質方法としては、エキシマランプ(ピーク波長172nm近傍)などを用いて真空紫外光照射する方法(下記特許文献1、2参照)や、プラズマ照射する方法(下記特許文献3参照)がある。 Conventionally known methods for modifying polysilazane include a method of irradiating with vacuum ultraviolet light using an excimer lamp (peak wavelength near 172 nm) or the like (see Patent Literatures 1 and 2 below), or a method of plasma irradiation (Patent Literature below) 3).
 特許文献1に記載の方法では、真空紫外光照射によりガスバリア性を持った膜を形成することができるが、十分なバリア性を得るには真空紫外光照射量を多くする必要があり、生産性を確保できない。照射量を補うために真空紫外光源を複数本並べることも考えられるが、ランニングコストが膨大になる。 In the method described in Patent Document 1, a film having a gas barrier property can be formed by irradiation with vacuum ultraviolet light, but in order to obtain a sufficient barrier property, it is necessary to increase the irradiation amount of vacuum ultraviolet light, and productivity is increased. Cannot be secured. Although it is conceivable to arrange a plurality of vacuum ultraviolet light sources to supplement the irradiation amount, the running cost becomes enormous.
 特許文献2に記載の従来技術では、プラズマ発生装置にて150nm以下にピークを持つ真空紫外光で照射することで、処理時間を短くすることができる。しかし、改質に用いる波長が短すぎることにより、膜中のSi-Oまで切断し、膜中に欠陥を残す膜となってしまい、十分なバリア性が得られない。また、波長が短すぎるため、膜の再表面しか改質されず、膜の中は改質不十分であり、その不十分部分が、基材が高温に曝されて劣化し、バリア性能の低下を引き越すことが分かった。 In the prior art described in Patent Document 2, the processing time can be shortened by irradiating with vacuum ultraviolet light having a peak at 150 nm or less in a plasma generator. However, if the wavelength used for modification is too short, the film is cut to Si—O in the film, leaving a defect in the film, and sufficient barrier properties cannot be obtained. In addition, because the wavelength is too short, only the resurface of the film is modified, and the film is insufficiently modified. The insufficient part deteriorates when the substrate is exposed to high temperatures, resulting in a decrease in barrier performance. I found out.
 特許文献3に記載されているように、プラズマ照射による改質の場合は、プラズマに晒されるのはごく表面であり、最表面はバリア性の高い膜となるが中の膜はエネルギーが足りず、十分なバリア性を得られない。したがって、膜の内部までの十分な改質を得ようとすると、数分以上の長い処理時間が必要で生産性に劣る。 As described in Patent Document 3, in the case of modification by plasma irradiation, only the very surface is exposed to plasma, and the outermost surface is a film having a high barrier property, but the inner film has insufficient energy. A sufficient barrier property cannot be obtained. Therefore, when it is going to obtain sufficient modification | reformation to the inside of a film | membrane, the long processing time of several minutes or more is required and it is inferior to productivity.
特開2009-255040号公報JP 2009-255040 A 特開2012-143996号公報JP 2012-143996 A 特開2007-237588号公報JP 2007-237588 A
 本発明は、上記の従来技術の問題点を解決するためになされたもので、その目的は、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜を備える積層体を内部まで改質することができ、生産性が高く、処理時間が短い改質方法を提供することを目的とする。さらに、積層体がガスバリアフィルムである場合には、生産性が高く、処理時間が短く、ガスバリア性を向上させ得る改質方法を提供することにある。 The present invention has been made to solve the above-described problems of the prior art, and its purpose is to provide at least one of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti. An object of the present invention is to provide a reforming method capable of reforming a laminated body having a single layer film to the inside, having high productivity and short processing time. Furthermore, when a laminated body is a gas barrier film, it is providing the modification method which can improve gas barrier property with high productivity, short processing time.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 すなわち、本発明によれば、基材と、前記基材上に形成された、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜と、を備える積層体の少なくとも一部を改質する改質方法であって、前記少なくとも一層の膜を真空紫外光に晒すことにより、前記積層体の少なくとも一部を改質する改質工程を含み、前記真空紫外光を、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させることを特徴とする改質方法が提供される。 That is, according to the present invention, a base material and at least one layer of an oxide film, a nitride film, a nitrogen oxide film, and a carbonized film containing at least one of Si, Al, and Ti formed on the base material A modification method for modifying at least a part of a laminate comprising: a reforming step of modifying at least a part of the laminate by exposing the at least one layer of film to vacuum ultraviolet light. There is provided a reforming method characterized in that the vacuum ultraviolet light is generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
マグネトロン併用容量結合プラズマ発生装置を説明するための模式図である。It is a schematic diagram for demonstrating a magnetron combined capacitive coupling plasma generator. マグネトロン併用容量結合プラズマ発生装置を説明するための別の模式図である。It is another schematic diagram for demonstrating a magnetron combined capacitive coupling plasma generator. マイクロ波ラインプラズマ発生装置の説明をするための模式図である。It is a schematic diagram for demonstrating a microwave line plasma generator. マイクロ波ラインプラズマ発生装置を用いた例を説明をするための模式図である。It is a schematic diagram for demonstrating the example using a microwave line plasma generator.
 以下、本発明を実施するための好ましい形態について説明する。本発明は、基材と、前記基材上に形成された、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜と、を備える積層体の少なくとも一部を改質する改質方法である。本発明の方法は、前記少なくとも一層の膜を真空紫外光に晒すことにより、前記積層体の少なくとも一部を改質する改質工程を含むが、前記真空紫外光を、CO、COおよびCHの少なくとも一種を含むガスのプラズマにより発生させることが特徴である。好ましい実施形態としては、本発明の方法はさらに積層体の形成工程を含むことができ、以下(1)積層体の形成工程、(2)改質工程、(3)その他の工程について、各工程を具体的に説明する。 Hereinafter, preferred embodiments for carrying out the present invention will be described. The present invention is a laminate comprising a base material and at least one film of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti formed on the base material. A modification method for modifying at least a part of a body. The method of the present invention includes a reforming step of modifying at least a part of the laminate by exposing the at least one layer of film to vacuum ultraviolet light. The vacuum ultraviolet light is converted into CO, CO 2 and CH. It is characterized in that it is generated by a plasma of a gas containing at least one of 4 . As a preferred embodiment, the method of the present invention can further include a step of forming a laminate, and hereinafter, (1) a step of forming a laminate, (2) a reforming step, and (3) other steps. Will be described in detail.
 (1)積層体の形成工程
 積層体の形成工程では、本発明の改質方法を適用する、基材と、前記基材上に形成された、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜と、を備える積層体を形成する。典型的には、積層体の形成工程は(1-1)溶液塗布による膜形成工程、または、(1-2)スパッタ法による膜形成工程を用いることができる。以下、それぞれについて説明する。
(1) Laminate formation step In the laminate formation step, a base material to which the modification method of the present invention is applied, and an oxide film formed on the base material and containing at least one of Si, Al, and Ti. Then, a laminate including at least one layer of a nitride film, a oxynitride film, and a carbonation film is formed. Typically, the laminate forming process can be (1-1) a film forming process by solution coating or (1-2) a film forming process by sputtering. Each will be described below.
 (1-1)溶液塗布による膜形成工程
 (塗布液)
 溶液塗布による膜形成においては、まず塗布液を調製する。塗布液としては、好ましくはポリシラザン溶液を用いることができ、ポリシラザン溶液の塗布による膜形成は、ガスバリアフィルムの製造に特に好適である。ポリシラザンは、成膜性、得られるガスバリア層にクラック等の欠陥が少ないことや、残留有機物の少なさの点で好ましいためである。すわち、本発明の好ましい実施形態は、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜がポリシラザンを含む、改質方法である。
(1-1) Film formation process by solution application (Coating solution)
In film formation by solution coating, a coating solution is first prepared. As the coating solution, a polysilazane solution can be preferably used, and film formation by applying the polysilazane solution is particularly suitable for the production of a gas barrier film. This is because polysilazane is preferable from the viewpoints of film formability, the resulting gas barrier layer has few defects such as cracks, and few residual organic substances. In other words, a preferred embodiment of the present invention is a reforming method in which at least one layer of an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti contains polysilazane.
 塗布液を調製するには、特に制限はなく、下記のポリシラザン化合物等の材料を有機溶媒に投入し、溶解するまで撹拌すればよい。塗布液中におけるポリシラザン化合物濃度は、目的とするガスバリア層の膜厚や塗布液のポットライフによって異なり、適宜選択できるが、好ましくは0.5~20質量%であり、より好ましくは1~8質量%である。 There are no particular limitations on the preparation of the coating solution, and the following materials such as the polysilazane compound may be added to an organic solvent and stirred until dissolved. The concentration of the polysilazane compound in the coating solution varies depending on the film thickness of the target gas barrier layer and the pot life of the coating solution, and can be appropriately selected. However, it is preferably 0.5 to 20% by mass, more preferably 1 to 8% by mass. %.
 「ポリシラザン」とは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。特にパーヒドロポリシラザン、オルガノポリシラザン等のポリシラザンが好ましい。樹脂基材を損なわないように塗布するためには、比較的低温でセラミック化してシリカに変性する化合物(低温セラミックス化ポリシラザン)がよく、例えば、特開平8-112879号公報に記載の下記一般式(1)で表される単位からなる主骨格を有する化合物が好ましい。 “Polysilazane” is a polymer having a silicon-nitrogen bond, and is a ceramic precursor such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, NH or the like, and an intermediate solid solution SiO x N y of both. It is an inorganic polymer. Particularly preferred are polysilazanes such as perhydropolysilazane and organopolysilazane. In order not to damage the resin base material, a compound that is ceramicized at a relatively low temperature and modified to silica (low-temperature ceramicized polysilazane) is preferable, for example, the following general formula described in JP-A-8-112879 A compound having a main skeleton composed of the unit represented by (1) is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基(好ましくは炭素原子数1~30、より好ましくは炭素原子数1~20のアルキル基)、アルケニル基(好ましくは、炭素原子数2~20のアルケニル基)、シクロアルキル基(好ましくは炭素原子数3~10のシクロアルキル基)、アリール基(好ましくは炭素原子数6~30のアリール基)、シリル基(好ましくは炭素原子数3~20のシリル基)、アルキルアミノ基(好ましくは炭素原子数1~40、より好ましくは炭素原子数1~20のアルキルアミノ基)またはアルコキシ基(好ましくは炭素原子数1~30のアルコキシ基)を表す。ただし、R、R及びRの少なくとも1つは水素原子であることが好ましい。 In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms). An alkenyl group (preferably an alkenyl group having 2 to 20 carbon atoms), a cycloalkyl group (preferably a cycloalkyl group having 3 to 10 carbon atoms), an aryl group (preferably an aryl group having 6 to 30 carbon atoms) ), A silyl group (preferably a silyl group having 3 to 20 carbon atoms), an alkylamino group (preferably an alkylamino group having 1 to 40 carbon atoms, more preferably an alkylamino group having 1 to 20 carbon atoms) or an alkoxy group (preferably Represents an alkoxy group having 1 to 30 carbon atoms. However, it is preferable that at least one of R 1 , R 2 and R 3 is a hydrogen atom.
 上記R、R及びRにおけるアルキル基は、直鎖または分岐鎖のアルキル基である。炭素原子数1~30のアルキル基としては、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、n-ヘンエイコシル基、n-ドコシル基、n-トリコシル基、n-テトラコシル基、n-ペンタコシル基、n-ヘキサコシル基、n-ヘプタコシル基、n-オクタコシル基、n-トリアコンチル基などが挙げられる。 The alkyl group in R 1 , R 2 and R 3 is a linear or branched alkyl group. Specific examples of the alkyl group having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. N-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2 -Dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group, 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2- Ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methylpropylene Group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, isodecyl group, n-undecyl group, 1-methyldecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, n-heneicosyl group, n-docosyl group, n-tricosyl group, n-tetracosyl group, Examples thereof include an n-pentacosyl group, an n-hexacosyl group, an n-heptacosyl group, an n-octacosyl group, and an n-triacontyl group.
 炭素原子数2~20のアルケニル基としては、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基などが挙げられる。 Examples of the alkenyl group having 2 to 20 carbon atoms include vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group and 2-pentenyl group. .
 炭素原子数3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などが挙げられる。 Examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
 炭素原子数6~30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。 The aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, and a heptaenyl group. Group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group, Examples thereof include condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group.
 炭素原子数3~20のシリル基としては、アルキル/アリールシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基等が挙げられる。 Examples of the silyl group having 3 to 20 carbon atoms include alkyl / arylsilyl groups, and specifically include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, methyldiphenylsilyl group, t -Butyldiphenylsilyl group and the like.
 炭素原子数1~40のアルキルアミノ基としては、特に制限はないが、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、メチル-tert-ブチルアミノ基、ジオクチルアミノ基、ジデシルアミノ基、ジヘキサデシルアミノ基、ジ2-エチルヘキシルアミノ基、ジ2-ヘキシルデシルアミノ基などが挙げられる。 The alkylamino group having 1 to 40 carbon atoms is not particularly limited, and examples thereof include dimethylamino group, diethylamino group, diisopropylamino group, methyl-tert-butylamino group, dioctylamino group, didecylamino group, dihexadecyl group. An amino group, a di-2-ethylhexylamino group, a di2-hexyldecylamino group and the like can be mentioned.
 炭素原子数1~30のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、エイコシルオキシ基、ヘンエイコシルオキシ基、ドコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ペンタコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、オクタコシルオキシ基、トリアコンチルオキシ基などが挙げられる。 Examples of the alkoxy group having 1 to 30 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, an octyloxy group, and a nonyloxy group. Decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group, nonadecyloxy group, eicosyloxy group, Henecosyloxy group, docosyloxy group, tricosyloxy group, tetracosyloxy group, pentacosyloxy group, hexacosyloxy group, heptacosyloxy group, octacosyloxy group, triacontyloxy group, etc. Is mentioned.
 上記一般式(1)で表される単位からなる主骨格を有する化合物は、数平均分子量は100~5万であることが好ましい。数平均分子量はゲル浸透クロマトグラフ(GPC)によって測定することができる。 The compound having a main skeleton composed of the unit represented by the general formula (1) preferably has a number average molecular weight of 100 to 50,000. The number average molecular weight can be measured by gel permeation chromatography (GPC).
 本発明では、得られるガスバリア層としての緻密性の観点からは、R1、、及びRの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。市販品としては、AZエレクトロニックマテリアルズ(株)製のアクアミカ NN120-20、クラリアントジャパン(株)製のトゥットプロムシリーズなどが挙げられる。 In the present invention, perhydropolysilazane in which all of R 1, R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as the gas barrier layer to be obtained. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution. Examples of commercially available products include Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd., TutProm Series manufactured by Clariant Japan Co., Ltd., and the like.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによる膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照)等が挙げられる。または、ポリシラザンは、市販品を使用してもよい。 As another example of polysilazane which becomes ceramic at low temperature, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No. 5-238827), glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (eg, JP-A-6-240208) A metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex Additional polysilazanes (eg, Unexamined see JP 6-306329), fine metal particles added polysilazane obtained by adding metal particles (e.g., Japanese Unexamined see JP 7-196986), and the like. Alternatively, a commercially available polysilazane may be used.
 ポリシラザン含有の塗布液中には、酸化ケイ素化合物への転化を促進するため、アミンや金属の触媒を添加することもできる。このような触媒を添加したポリシラザン化合物の塗布液の市販品としては、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。 In the polysilazane-containing coating solution, an amine or a metal catalyst can be added in order to promote the conversion to a silicon oxide compound. Commercially available coating liquids of polysilazane compounds to which such a catalyst is added include AQUAMICA NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140, etc. manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.
 塗布液を調製するのに用いることのできる有機溶媒としては、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒や、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。詳しくは、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザン化合物の材料の溶解度や有機溶媒の蒸発速度等の特性にあわせて選択し、複数の有機溶媒を混合してもよい。しかし、ポリシラザンと容易に反応するようなアルコール系や水分を含有するものを用いることは好ましくない。 Specific examples of the organic solvent that can be used to prepare the coating solution include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, and fatty acids. Ethers such as aromatic ethers and alicyclic ethers can be used. Specifically, there are hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to characteristics such as the solubility of the polysilazane compound material and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed. However, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane.
 (塗布方法)
 上記のように調製したポリシラザン化合物の塗布液を、基材上に塗布して、塗膜を形成する。塗膜を形成するには、簡便な方法として、塗布液を用いた従来公知の薄膜形成方法が使用できる。典型的には、ダイコート法、スピンコート法、スプレーコート法、プレートコート法、バーコート法、ディップコート法等のウェットコート法が挙げられる。このうち、生産効率が高く、安定して塗膜形成ができることから、特にダイコート法が好ましい。
(Application method)
The coating liquid of the polysilazane compound prepared as described above is applied onto a substrate to form a coating film. In order to form a coating film, a conventionally known thin film forming method using a coating solution can be used as a simple method. Typically, a wet coating method such as a die coating method, a spin coating method, a spray coating method, a plate coating method, a bar coating method, or a dip coating method can be given. Among these, the die coating method is particularly preferable because the production efficiency is high and the coating film can be formed stably.
 塗膜の塗布厚さは、特に制限はないが、乾燥後の膜厚が所望の厚さになるように塗布することができる。ポリシラザン化合物を含むガスバリア層の膜厚は、特に制限されないが、乾燥後の膜厚が1~600nmであることが好ましく、30~300nmであることがより好ましい。このような範囲であれば、高いガスバリア性能、折り曲げ耐性、断裁加工適性に優れる。 The coating thickness of the coating film is not particularly limited, but can be applied so that the film thickness after drying becomes a desired thickness. The film thickness of the gas barrier layer containing the polysilazane compound is not particularly limited, but the film thickness after drying is preferably 1 to 600 nm, and more preferably 30 to 300 nm. If it is such a range, it will be excellent in high gas barrier performance, bending resistance, and cutting processability.
 (基材)
 本発明に係る積層体に用いられる基材は、上述したポリシラザン溶液の塗膜、または、後述するスパッタ法やCVDなどで形成した膜を保持することができる基材であれば特に限定されるものではないが、柔軟性に優れる点から樹脂基材が好ましい。
(Base material)
The base material used in the laminate according to the present invention is particularly limited as long as it can hold the above-described polysilazane solution coating film or a film formed by sputtering or CVD described later. However, a resin base material is preferable from the viewpoint of excellent flexibility.
 具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非品質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2,6ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン-パーフロロプロピレン-パーフロロビニルエーテル共重合体(EPA)等のフッ素系樹脂等を用いることができる。 Specific examples include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, polypropylene and butene, non-quality polyolefin resins (APO) such as cyclic polyolefins, polyethylene terephthalate (PET), polyethylene 2,6 naphthalate. Polyester resins such as (PEN), polyamide (PA) resins such as nylon 6, nylon 12 and copolymer nylon, polyvinyl alcohol resins such as polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol copolymer (EVOH) , Polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, polycarbonate (PC) resin, polyvinyl butyrate ( VB) resin, polyarylate (PAR) resin, ethylene tetrafluoride ethylene copolymer (ETFE), ethylene trifluoride chloride (PFA), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FEP), fluoride Fluorine resins such as vinylidene (PVDF), vinyl fluoride (PVF), and perfluoroethylene-perfluoropropylene-perfluorovinyl ether copolymer (EPA) can be used.
 また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレ一ト化合物よりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂および、これらの混合物等を用いることも可能である。さらに、これらの樹脂の1または2種以上をラミネートコーティング等の手段によって積層させたものを樹脂基材として用いることも可能である。 In addition to the resins listed above, a resin composition comprising an acrylate compound having a radical reactive unsaturated compound, a resin composition comprising the acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, It is also possible to use a photocurable resin such as a resin composition in which an oligomer such as urethane acrylate, polyester acrylate, or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof. Furthermore, it is also possible to use what laminated | stacked 1 or 2 or more types of these resin by means, such as a laminate coating, as a resin base material.
 これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非品質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)、クリアーハードコート層付ポリエチレンテレフタレートフィルム(きもと社製)、ポリエステルフィルム PET Q83(帝人デュポンフィルム社製)などの市販品を好ましく使用することができる。 These materials can be used alone or in combination as appropriate. Among them, ZEONEX and ZEONOR (manufactured by ZEON Corporation), ARTON of non-quality cyclopolyolefin resin film (manufactured by JSR Corporation), Pure Ace of polycarbonate film (manufactured by Teijin Limited), Konica Katak KC4UX of cellulose triacetate film Commercially available products such as KC8UX (manufactured by Konica Minolta Opto), polyethylene terephthalate film with a clear hard coat layer (manufactured by Kimoto), polyester film PET Q83 (manufactured by Teijin DuPont Films) can be preferably used.
 また、樹脂基材は透明であることが好ましい。樹脂基材が透明であり、樹脂基材上に形成するポリシラザン化合物による塗膜も透明であることにより、透明なガスバリアフィルムとなるため、有機EL素子等の透明基板とすることも可能となるからである。 Also, the resin base material is preferably transparent. Since the resin base material is transparent and the coating film made of the polysilazane compound formed on the resin base material is also transparent, it becomes a transparent gas barrier film, so that it can be used as a transparent substrate such as an organic EL element. It is.
 また、上記に挙げた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 Further, the resin base material listed above may be an unstretched film or a stretched film.
 本発明に係る樹脂基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The resin substrate according to the present invention can be manufactured by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 また、ポリシラザン化合物を塗布する基材は、ガスバリア性を持つ基材であってもよい。ガスバリア性を持たせる具体的な方法としては、前記基材上に、無機酸化物、無機窒化物、あるいは、無機酸窒化物を形成した基材が挙げられる。例えば、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、酸化インジウム・スズ(ITO)などの金属酸化物や、窒化ケイ素、酸窒化ケイ素などの金属窒化物、金属酸窒化物などが挙げられる。また、アルミニウム、白金、金、銀、ニッケル、クロムなどの金属も挙げることができる。これらの形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、プラズマCVD法、蒸着法、ALD法(Atomic Layer Deposition)、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布プロセスが挙げられ、材料に応じて適宜選択可能である。 Further, the substrate on which the polysilazane compound is applied may be a substrate having gas barrier properties. Specific examples of the method for imparting gas barrier properties include a base material in which an inorganic oxide, an inorganic nitride, or an inorganic oxynitride is formed on the base material. For example, metal oxides such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, indium tin oxide (ITO), metal nitrides such as silicon nitride and silicon oxynitride, metal oxynitrides Etc. Moreover, metals, such as aluminum, platinum, gold | metal | money, silver, nickel, chromium, can also be mentioned. These formation methods include vacuum deposition, molecular beam epitaxial growth, ion cluster beam, low energy ion beam, ion plating, plasma CVD, vapor deposition, ALD (Atomic Layer Deposition), sputtering, Examples include dry processes such as atmospheric pressure plasma, spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, and die coating. Can be selected as appropriate.
 これらのうち、ドライプロセスとしては、大気圧下でのロール・トゥ・ロールプロセスが可能である点で大気圧プラズマ法が好ましい。 Among these, as the dry process, the atmospheric pressure plasma method is preferable because a roll-to-roll process under atmospheric pressure is possible.
 また、安全性が高く、簡便でより低コストでの膜形成が可能である点で、塗布プロセスがより好ましい。 Also, the coating process is more preferable because it is highly safe, can be formed easily and at a lower cost.
 前記ガスバリア性を持つ基材を用いることで、ポリシラザン化合物から形成される膜と合わせて、ガスバリア性能が大きく向上するため好ましい。すなわち、本発明の好ましい実施形態は、積層体がガスバリアフィルムである、改質方法である。 It is preferable to use the base material having the gas barrier property because the gas barrier performance is greatly improved together with the film formed from the polysilazane compound. That is, a preferred embodiment of the present invention is a modification method in which the laminate is a gas barrier film.
 尚、本発明でいうガスバリア性とは、JIS K7129 B法、及びASTM F1249-90に示された測定方法に準じた、MOCON社の水蒸気透過度測定装置を用い、40℃×90%RHの条件で測定した場合の水蒸気透過率が、0.1g/m・日未満であることをいう。 The gas barrier property referred to in the present invention is a condition of 40 ° C. × 90% RH using a water vapor permeability measuring apparatus manufactured by MOCON in accordance with the measuring method shown in JIS K7129 B method and ASTM F1249-90. It means that the water vapor transmission rate when measured by is less than 0.1 g / m 2 · day.
 また、本発明に係る樹脂基材においては、ポリシラザン化合物の塗膜を形成する前にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理などの表面処理を行ってもよい。 Further, in the resin base material according to the present invention, surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. may be performed before forming the polysilazane compound coating film. Good.
 樹脂基材は、ロール状に巻き上げられた長尺品が便利である。樹脂基材の厚さは、得られるガスバリアフィルムの用途によって異なるので一概には規定できないが、ガスバリアフィルムを包装用途とする場合には、特に制限を受けるものではなく、包装材料としての適性から、3~400μm、中でも6~150μmの範囲内とすることが好ましい。 The resin substrate is conveniently a long product wound up in a roll. Since the thickness of the resin base material varies depending on the use of the obtained gas barrier film, it cannot be specified unconditionally, but when the gas barrier film is used for packaging, there is no particular limitation, and from the suitability as a packaging material, It is preferably in the range of 3 to 400 μm, especially 6 to 150 μm.
 (1-2)スパッタ法による膜形成工程
 本発明では、積層体を形成するためにスパッタ法によるSi、AlおよびTiの少なくとも一種の酸化膜、窒化膜、窒酸化膜または炭酸化膜形成を行ってもよい。スパッタ法で膜を作製すると、ガスバリアフィルムの場合には、密着力が高く、緻密でガスバリア性の高い膜が得られやすく好ましい。Si、AlおよびTiの少なくとも一種の酸化膜、窒化膜、窒酸化膜または炭酸化膜のスパッタ法による成膜は、DC(直流)スパッタ法、RF(高周波)スパッタ法、これらマグネトロンスパッタリングを組み合わせた方法、さらに中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタ法などの従来技術を、単独でまたは組み合わせて用いることができる。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで酸化物を成膜することが可能となるため、好ましい。DCスパッタリングやDMSスパッタリングで、Si、AlまたはTiの酸化膜、窒化膜、窒酸化膜または炭酸化膜のスパッタリングを行なう際には、そのターゲットにSi、AlまたはTiを用いることができる。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、Si、AlまたはTiの酸化物、窒化物、窒酸化物、炭酸化物の薄膜を作ることができる。RF(高周波)スパッタ法で成膜する場合は、SiOやSiなどのセラミックターゲットを用いることもできる。プロセスガスとしては、He、Ne、Ar、Kr、Xe等の不活性ガス、酸素、窒素、二酸化炭素、一酸化炭素のうち少なくとも1種等のプロセスガスを用いることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択できる。
(1-2) Film Forming Step by Sputtering Method In the present invention, in order to form a laminated body, at least one oxide film, nitride film, oxynitride film or carbonated film of Si, Al and Ti is formed by a sputtering method. May be. When a film is formed by sputtering, a gas barrier film is preferable because it can easily obtain a dense film having high adhesion and high gas barrier properties. Film formation by sputtering of at least one oxide film of Si, Al and Ti, nitride film, oxynitride film or carbonation film is a combination of DC (direct current) sputtering method, RF (high frequency) sputtering method, and magnetron sputtering. Conventional techniques such as the method and dual magnetron (DMS) sputtering using an intermediate frequency region can be used alone or in combination. In addition, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, an oxide can be deposited at a high deposition rate, which is preferable. When sputtering a Si, Al or Ti oxide film, nitride film, oxynitride film or carbonation film by DC sputtering or DMS sputtering, Si, Al or Ti can be used as the target. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film of oxide, nitride, nitride oxide, or carbonate of Si, Al, or Ti can be formed. When the film is formed by RF (high frequency) sputtering, a ceramic target such as SiO 2 or Si 3 N 4 can also be used. As the process gas, an inert gas such as He, Ne, Ar, Kr, or Xe, or at least one process gas selected from oxygen, nitrogen, carbon dioxide, and carbon monoxide can be used. Examples of film forming conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected according to the sputtering apparatus, the material of the film, the film thickness, and the like.
 また、積層体は、スパッタ法のほか、蒸着法、イオンプレーティング法等の物理蒸着法(PVD)法、プラズマCVD(chemical vapor deposition)法、ALD(Atomic Layer Deposition)などの化学蒸着法、またはゾルゲル法などで作製することができる。 In addition to the sputtering method, the laminate may be a vapor deposition method, a physical vapor deposition method (PVD) method such as an ion plating method, a plasma CVD (chemical vapor deposition) method, a chemical vapor deposition method such as ALD (Atomic Layer Deposition), or It can be produced by a sol-gel method or the like.
 (2)改質工程
 改質工程では、上記のように形成した積層体のSi、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜を、炭素含有ガスのプラズマによって発生した真空紫外光に晒すことにより、改質処理する。
(2) Modification process In the modification process, the oxide film, nitride film, oxynitride film, and carbonation film containing at least one of Si, Al, and Ti of the laminate formed as described above are converted into a plasma containing a carbon-containing gas. The modification treatment is performed by exposing to the vacuum ultraviolet light generated by.
 なお、本発明において改質処理とは、真空紫外光照射などの工程を施すことにより、これらの膜に何らかの変化を引き起こし、全体として緻密な膜を得ることをいう。例えば、ポリシラザン溶液塗布による塗膜であれば、ポリシラザンの酸化ケイ素または酸化窒化ケイ素への転化反応が該当し、改質処理が施されたことは膜の組成変化やそれに由来するガスバリア性能等の物性の向上から確認できる。スパッタ法、蒸着法、プラズマCVD法、ゾルゲル法で形成した膜であれば、改質処理が施されたかどうかは、ガスバリア性能や絶縁性能が処理前よりも向上したかどうかで確認することができる。 In the present invention, the modification treatment means that a film such as vacuum ultraviolet light irradiation is subjected to some change to obtain a dense film as a whole. For example, in the case of a coating film by applying a polysilazane solution, the conversion reaction of polysilazane to silicon oxide or silicon oxynitride is applicable, and the modification treatment is applied to the physical properties such as film composition change and gas barrier performance derived therefrom. It can be confirmed from the improvement. In the case of a film formed by sputtering, vapor deposition, plasma CVD, or sol-gel method, whether or not the modification treatment has been performed can be confirmed by checking whether the gas barrier performance or the insulation performance has improved from before the treatment. .
 本発明の改質方法によれば、特定のガスのプラズマにより発生する真空紫外線を用いることにより、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜を備える積層体を内部まで改質することができ、より緻密な膜を短時間で作製することができる。その結果、改質した積層体の生産性を向上させることができる。また、得られる膜がより緻密で改質の度合いが高いため、ガスバリアフィルムの場合は、耐湿熱性の向上したフィルムが得られる。 According to the reforming method of the present invention, by using vacuum ultraviolet rays generated by plasma of a specific gas, at least one of an oxide film containing at least one of Si, Al, and Ti, a nitride film, a nitrided oxide film, and a carbonated film is used. A laminate including one layer can be modified to the inside, and a denser film can be produced in a short time. As a result, the productivity of the modified laminate can be improved. Moreover, since the obtained film is denser and the degree of modification is high, in the case of a gas barrier film, a film having improved heat and moisture resistance can be obtained.
 本発明の改質工程においては、積層体を晒す真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させることが特徴である。以下、真空紫外光発生に用いるガス種、真空紫外光発生のための電源周波数、プラズマ発生方式について説明する。 In the modification step of the present invention, the vacuum ultraviolet light that exposes the laminate is characterized by being generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 . Hereinafter, a gas type used for generating vacuum ultraviolet light, a power supply frequency for generating vacuum ultraviolet light, and a plasma generation method will be described.
 [ガス種]
 プラズマ発生に、CO、COおよびCHの少なくとも一種を含むガスを用いることにより、ピーク波長が150nmを超える真空紫外光の発光が得られる。本発明の好ましい実施形態は、前記真空紫外光の波長100nm以上200nm未満におけるピーク波長が150nmを超えている改質方法である。このような真空紫外光は、真空紫外光ランプを用いる場合に比較して、積層体の表面近くで発生させ、これに積層体を晒すことができるため、真空紫外光がより強く、かつ膜のより内部まで到達しうる。そのために、積層体の膜全体の改質の度合いを高め、より緻密な膜を短時間で作製することができる。さらに、発光のピーク波長が150nmを超える領域にあることにより、真空紫外光が膜のより内部まで到達すると共に、積層体の表面の膜を構成する化学結合を不必要に切断して膜に欠陥を生じる事態を避けることができる。CO、COおよびCHのうち、本発明の所期の効果をより確実に達成するためには、CO、または、COおよびCOの組み合わせがより好ましい。
[Gas type]
By using a gas containing at least one of CO, CO 2 and CH 4 for plasma generation, emission of vacuum ultraviolet light having a peak wavelength exceeding 150 nm can be obtained. A preferred embodiment of the present invention is a modification method in which the peak wavelength of the vacuum ultraviolet light at a wavelength of 100 nm or more and less than 200 nm exceeds 150 nm. Such vacuum ultraviolet light is generated near the surface of the laminated body, and the laminated body can be exposed to this, compared with the case of using a vacuum ultraviolet light lamp. It can reach more inside. Therefore, the degree of modification of the entire film of the laminate can be increased, and a denser film can be produced in a short time. Furthermore, since the peak wavelength of the light emission is in the region exceeding 150 nm, the vacuum ultraviolet light reaches the inside of the film, and the chemical bonds constituting the film on the surface of the laminate are unnecessarily cut to cause defects in the film. Can be avoided. Of CO, CO 2 and CH 4 , CO or a combination of CO and CO 2 is more preferable in order to achieve the intended effect of the present invention more reliably.
 本発明の改質方法は、積層体をプラズマからの真空紫外光に晒すことにより改質を行うが、真空紫外光を発生させているプラズマ自体に積層体を同時に晒すことがより好ましい。すなわち、本発明の好ましい実施形態は、上記したSi、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜を、真空紫外光と同時に、更にプラズマに晒す改質方法である。この場合には、プラズマによっても積層体の表面が改質されるため、改質に必要とする時間をさらに短縮できる。また、Oラジカルやイオンに膜表面を意図的に晒すことで、膜の酸化量をコントロールすることが可能であるため、膜質の調整がしやすくなり、ガスバリアフィルムの場合は耐湿熱性の向上が図れる。プラズマに積層体を晒すには、プラズマを発生しているガスと積層体表面との距離を調整すればよい。 In the modification method of the present invention, the laminate is modified by exposing it to vacuum ultraviolet light from plasma, but it is more preferable to expose the laminate simultaneously to the plasma itself generating vacuum ultraviolet light. That is, a preferred embodiment of the present invention is a method in which at least one layer of the above-described oxide film, nitride film, oxynitride film, and carbonation film containing at least one of Si, Al, and Ti is further formed into plasma simultaneously with vacuum ultraviolet light. It is a modification method that is exposed to water. In this case, since the surface of the laminate is modified by plasma, the time required for the modification can be further shortened. In addition, the amount of oxidation of the film can be controlled by intentionally exposing the film surface to O radicals and ions, so that the film quality can be easily adjusted, and in the case of a gas barrier film, the heat and moisture resistance can be improved. . In order to expose the laminate to the plasma, the distance between the gas generating the plasma and the surface of the laminate may be adjusted.
 さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。すなわち、本発明の好ましい実施形態は、前記ガスがさらに希ガス又はHを含む改質方法である。希ガスまたはHを主ガスとする場合には、炭素含有ガスを単独で用いるよりも、ペニング効果により添加した炭素含有ガスの励起効率が向上し、強い発光強度が得られるためである。特に炭素含有ガスとしてCOおよび/またはCOを用いる場合には、炭素含有ガスを単独で用いるよりも強い発光強度が得られるため、好ましい。 Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. That is, a preferred embodiment of the present invention is a reforming method in which the gas further contains a rare gas or H 2 . This is because when the rare gas or H 2 is used as the main gas, the excitation efficiency of the carbon-containing gas added due to the Penning effect is improved and strong emission intensity is obtained, rather than using the carbon-containing gas alone. In particular, when CO and / or CO 2 is used as the carbon-containing gas, it is preferable because stronger emission intensity can be obtained than when the carbon-containing gas is used alone.
 希ガスまたはHに炭素含有ガスを添加する濃度は、希ガスまたはHに対して0.1~20vol%添加することが好ましく、更に好ましくは、0.1~5vol%である。上記の範囲よりも炭素含有ガスの濃度が高すぎると、発光した真空紫外光を添加した炭素含有ガスが自己吸収してしまう可能性があり、膜に到達する真空紫外光が少なくってしまい、好ましくない。逆に少なすぎると、発光源である炭素含有ガスが少なくなるため、発生する150nmを超える真空紫外光量が少なくなってしまい、強い発光強度が得られない可能性がある。また、希ガスは、入手しやすさや取扱いのしやすさ等を考慮すると、Ar、Ne、XeまたはKrが好ましい。本発明の好ましい実施形態は、前記の希ガスが、Ar、Ne、XeおよびKrの少なくとも一種である改質方法である。 Concentration of adding a carbon-containing gas to the rare gas or H 2 is preferably added 0.1 ~ 20 vol% of a rare gas or H 2, and more preferably from 0.1 ~ 5 vol%. If the concentration of the carbon-containing gas is higher than the above range, the carbon-containing gas to which the emitted vacuum ultraviolet light is added may be self-absorbed, and the vacuum ultraviolet light reaching the film is reduced, preferably Absent. On the other hand, if the amount is too small, the amount of carbon-containing gas that is a light-emitting source is reduced, so that the amount of generated vacuum ultraviolet light exceeding 150 nm is reduced, and strong emission intensity may not be obtained. The rare gas is preferably Ar, Ne, Xe, or Kr in view of availability and ease of handling. A preferred embodiment of the present invention is a reforming method in which the rare gas is at least one of Ar, Ne, Xe and Kr.
 炭素含有ガスには、さらに、波長200nm以上300nm以下の紫外光をプラズマによって発生するガスを含有させることが好ましい。すなわち、本発明の好ましい実施形態は、前記ガスに、プラズマによって波長200nm以上300nm以下の紫外光を発生するガスをさらに含む改質方法である。このようなガスを含有させることにより、真空紫外光と共に紫外光が積層体に照射されるので、膜の最表面から表面近傍を真空紫外光で、膜の内部をより内部に到達する紫外光で改質できる。その結果、さらに改質処理に要する時間を短縮できる。波長200nm以上300nm以下の紫外光をプラズマによって発生するガスとしては、窒素含有ガスが好適であり、NO、NO、NOおよびNHの少なくとも一種が好ましい。すなわち、本発明の好ましい実施形態は、波長200nm以上300nm以下の紫外光を発生するガスが窒素含有ガスである、改質方法である。さらに、本発明の好ましい実施形態は、窒素含有ガスがNO、NO、NOおよびNHの少なくとも一種である改質方法である。このうち、NOは、150nmから230nmにおいてγスペクトルと呼ばれる発光スペクトルが得られることが従来より知られている。そのため、紫外光も強く発生できることを考慮すると、NOがより好ましい。NOはプラズマ化すると200~250nmの波長の紫外光を発生する。例えばSiO膜は、200nm以下の波長の吸収率が高く、真空紫外光の大半は表面(~50nm深さ)近傍で吸収されてしまうため、膜の中まで光が届かず、膜の内部まで改質が進まない。したがって、真空外光よりも長い波長の紫外線照射を組み合わせることで、膜の中まで改質できる。真空紫外光と同時に紫外光も発生させることで、表面のみならず膜の内部まで同時に改質でき、処理時間を短時間化でき好ましい。 The carbon-containing gas preferably further contains a gas that generates ultraviolet light having a wavelength of 200 nm to 300 nm by plasma. That is, a preferred embodiment of the present invention is a reforming method that further includes a gas that generates ultraviolet light having a wavelength of 200 nm to 300 nm by plasma. By including such a gas, the laminate is irradiated with ultraviolet light together with vacuum ultraviolet light. Therefore, vacuum ultraviolet light reaches the surface from the outermost surface of the film, and ultraviolet light reaches the inside of the film more inside. Can be modified. As a result, the time required for the reforming process can be further shortened. As a gas that generates ultraviolet light having a wavelength of 200 nm or more and 300 nm or less by plasma, a nitrogen-containing gas is preferable, and at least one of NO, N 2 O, NO 2, and NH 3 is preferable. That is, a preferred embodiment of the present invention is a reforming method in which the gas that generates ultraviolet light having a wavelength of 200 nm or more and 300 nm or less is a nitrogen-containing gas. Furthermore, a preferred embodiment of the present invention is a reforming method in which the nitrogen-containing gas is at least one of NO, N 2 O, NO 2 and NH 3 . Among these, NO is conventionally known to obtain an emission spectrum called a γ spectrum from 150 nm to 230 nm. Therefore, considering that ultraviolet light can be generated strongly, NO is more preferable. When NO is turned into plasma, it generates ultraviolet light having a wavelength of 200 to 250 nm. For example, the SiO 2 film has a high absorption rate at a wavelength of 200 nm or less, and most of the vacuum ultraviolet light is absorbed in the vicinity of the surface (up to 50 nm depth), so that the light does not reach the inside of the film and reaches the inside of the film. The reform does not progress. Therefore, it can be modified into the film by combining ultraviolet irradiation with a wavelength longer than that of light outside the vacuum. By generating ultraviolet light simultaneously with vacuum ultraviolet light, not only the surface but also the inside of the film can be modified at the same time, which is preferable because the processing time can be shortened.
 窒素含有ガスは、炭素含有ガスに対して、0.01~50vol%が好ましく、より好ましくは0.05~10vol%である。窒素含有ガスを用いる場合にも、上記のようにプラズマ自体に積層体を晒すことはより好ましい。 The nitrogen-containing gas is preferably 0.01 to 50 vol%, more preferably 0.05 to 10 vol% with respect to the carbon-containing gas. Even when a nitrogen-containing gas is used, it is more preferable to expose the laminate to the plasma itself as described above.
 さらに、炭素含有ガスには、微量のCOやO2、Oなどの酸化ガスや、Hガスを添加するのが好ましい。COはプラズマにより炭素化合物を生成し、その炭素化合物が処理対象の積層体表面に付着する問題が発生する可能性がある。そのため、その炭素化合物を除去するために、酸化ガス又はHガスを少量添加することが好ましいためである。また、HOやHガスを添加するとプラズマによってH原子、Hラジカルも発生し、膜表面の脱水縮合反応を促進するため、好ましい。好ましいHOやHガスの添加量は、希ガスを用いる場合は希ガスに対して、0.01~1vol%、希ガスを用いない場合は炭素含有ガスに対して、0.01~50vol%である。更にHOやHガスは窒素含有ガスと一緒に添加しても良い。また、Ar、Xe、Ne、Krなどの希ガスを主ガスとする場合は、希ガス起因の150nm以下の真空紫外光が発生する場合があり、積層体を構成する化学結合を切断し、緻密性を損なう膜に改質する可能性がある。しかし、OやCOは150nm以下の真空紫外光を吸収するため、積層体に届く150nm以下の波長の真空紫外光を遮断する役目も担う。特にCOは、プラズマ中では200nm以上、250nm以下の紫外光を発生する、また、プラズマで分解される際にCOを生成するため、真空紫外光も発生するためより酸化ガスとしては好ましい。Oの好ましい量は炭素含有ガスに対して、1~100vol%、更に好ましくは1~30vol%である。 Furthermore, it is preferable to add a trace amount of an oxidizing gas such as CO 2 , O 2, H 2 O, or H 2 gas to the carbon-containing gas. CO generates a carbon compound by plasma, and there is a possibility that the carbon compound adheres to the surface of the laminate to be treated. Therefore, in order to remove the carbon compound, it is preferable to add a small amount of oxidizing gas or H 2 gas. Further, it is preferable to add H 2 O or H 2 gas because H atoms and H radicals are also generated by the plasma to promote the dehydration condensation reaction on the film surface. A preferable amount of H 2 O or H 2 gas added is 0.01 to 1 vol% with respect to a rare gas when a rare gas is used, and 0.01 to 1% with respect to a carbon-containing gas when a rare gas is not used. It is 50 vol%. Further, H 2 O or H 2 gas may be added together with the nitrogen-containing gas. In addition, when a rare gas such as Ar, Xe, Ne, or Kr is used as the main gas, vacuum ultraviolet light of 150 nm or less due to the rare gas may be generated. There is a possibility of modification to a film that impairs the properties. However, since O 2 and CO 2 absorb vacuum ultraviolet light of 150 nm or less, they also serve to block vacuum ultraviolet light having a wavelength of 150 nm or less that reaches the laminate. In particular, CO 2 is preferable as an oxidizing gas because it generates ultraviolet light of 200 nm or more and 250 nm or less in plasma, and also generates vacuum ultraviolet light because it generates CO when decomposed by plasma. A preferable amount of O 2 is 1 to 100 vol%, more preferably 1 to 30 vol%, with respect to the carbon-containing gas.
 また、用いるガスの純度は、いずれも、好ましくは99.9以上、更に好ましくは99.99%以上である。 In addition, the purity of the gas used is preferably 99.9 or higher, more preferably 99.99% or higher.
 改質処理のために導入するガス全体の圧力は、プラズマ発生方式によって異なるが、CCP、ICPの場合は1~1000Paが好ましく、より好ましくは5~400Paである。マイクロ波プラズマの場合は、1~100kPaが好ましく、より好ましくは100~20kPaである。また、真空紫外光および/またはプラズマを照射する時間は、プラズマ発生方式にもよるが、生産性の観点から短ければ短いほど、生産能力が高いため、好ましい。 Although the pressure of the whole gas introduced for the reforming treatment varies depending on the plasma generation method, it is preferably 1 to 1000 Pa, more preferably 5 to 400 Pa in the case of CCP and ICP. In the case of microwave plasma, it is preferably 1 to 100 kPa, more preferably 100 to 20 kPa. In addition, the time for irradiation with vacuum ultraviolet light and / or plasma depends on the plasma generation method, but the shorter the time from the viewpoint of productivity, the higher the production capacity, and thus the more preferable.
 また、本発明には、特許第4000830号公報、特許第4433680号公報に記載されたような大気圧もしくはその近傍でプラズマを形成するプラズマ処理装置を用いることもできる。大気圧もしくはその近傍の圧力とは20kPa~110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa~104kPaが好ましい。 In the present invention, a plasma processing apparatus that forms plasma at or near the atmospheric pressure as described in Japanese Patent No. 4000830 and Japanese Patent No. 4433680 can also be used. The atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
 [電源周波数]
 本発明で用いる波長150nmを超える範囲でピーク照度をもつ真空紫外光(以下VUVとも称する)を発する低圧プラズマの生成に必要な電源の周波数は、10kHz~100GHzが好ましい。1MHz以上の周波数では、電界の変化にイオンは追従できなくなるため、電子に効率よくエネルギーを与える事ができ、電子密度、すなわちプラズマ密度は高くなる。これに伴い、プラズマで発生するVUVの強度も強くなる。しかし、100GHzを超えると電子が電界の変化に追従しにくくなり、エネルギーの伝達効率を確保するためには、100GHz以下が好適である。好ましくは、50kHz~10GHzの範囲である。
[Power frequency]
The frequency of the power source required for generating low-pressure plasma that emits vacuum ultraviolet light (hereinafter also referred to as VUV) having peak illuminance in the wavelength range exceeding 150 nm used in the present invention is preferably 10 kHz to 100 GHz. At a frequency of 1 MHz or higher, ions cannot follow the change in the electric field, so that energy can be efficiently given to the electrons, and the electron density, that is, the plasma density increases. Along with this, the intensity of VUV generated by plasma also increases. However, if it exceeds 100 GHz, it becomes difficult for electrons to follow changes in the electric field, and in order to ensure energy transfer efficiency, 100 GHz or less is suitable. Preferably, it is in the range of 50 kHz to 10 GHz.
 [プラズマ生成方式]
 本発明で用いる波長150nmを超えるVUVを発するプラズマの生成方式は、従来から知られた方式を用いる事ができる。好ましくは、幅広の基材に形成した膜の処理に対応できる方式が良く、例えば、次に示す(A)~(E)の方式が挙げられる。
[Plasma generation method]
As a method for generating plasma that emits VUV having a wavelength exceeding 150 nm used in the present invention, a conventionally known method can be used. Preferably, a method that can deal with the treatment of a film formed on a wide substrate is good, and examples thereof include the following methods (A) to (E).
 (A)容量結合プラズマ(CCP)
 高周波電力を印加した側の電極と接地側の電極との間にプラズマを生成する方式である。対向した平板電極が代表的な電極構造である。高周波電力を印加した側の電極は、平板状だけでなく、例えば特開平2-113521号公報に開示されているような凹凸形状を備えているものも使用できる。平板電極上に凹凸形状を備えることで、突起部での電界集中やホローカソードの効果により、プラズマ密度を増加させる事ができ、プラズマで発生する150nmを超える範囲でピーク照度をもつVUVの強度も強くなる。
(A) Capacitively coupled plasma (CCP)
In this method, plasma is generated between the electrode to which high-frequency power is applied and the ground electrode. The opposed plate electrodes are a typical electrode structure. The electrode on the side to which the high-frequency power is applied is not limited to a flat plate shape, and for example, an electrode having a concavo-convex shape as disclosed in JP-A-2-113521 can be used. By providing a concavo-convex shape on the plate electrode, the plasma density can be increased due to the electric field concentration at the protrusion and the effect of the hollow cathode, and the intensity of VUV having a peak illuminance in the range exceeding 150 nm generated by the plasma is also increased. Become stronger.
 (B)マグネトロン併用容量結合プラズマ
 本発明では、下記に説明するような、マグネトロンを併用した容量結合プラズマも用いることができる。マグネトロンを設置することによりプラズマが収束され易くなり、プラズマ密度を増加させることができ、プラズマで発生する150nm以上でピーク照度をもつVUVの強度も強くなる。また、プラズマで生成したイオンが磁場により加速され、ボンバーメント効果が上記(A)より強くなるため、更なる改質向上が期待できる。またロール電極を用いることで、連続的に処理でき、かつ、1つの放電で2回照射できるため、好ましい。以下にマグネトロン併用容量結合プラズマについて説明する。
(B) Capacitively coupled plasma combined with magnetron In the present invention, capacitively coupled plasma using magnetron as described below can also be used. By installing the magnetron, the plasma can be easily converged, the plasma density can be increased, and the intensity of VUV having a peak illuminance at 150 nm or more generated in the plasma is also increased. Further, since the ions generated in the plasma are accelerated by the magnetic field and the bombardment effect becomes stronger than the above (A), further improvement in modification can be expected. Further, it is preferable to use a roll electrode because it can be continuously processed and irradiated twice with one discharge. The magnetron combined capacitively coupled plasma will be described below.
 マグネトロン併用の容量結合プラズマ装置の構成例としては、特開平11-61416号公報に記載されているものを使用することができる。このようなマグネトロン併用容量結合プラズマ発生装置の模式図を図1に示す。 As a configuration example of a capacitively coupled plasma apparatus used in combination with a magnetron, one described in JP-A-11-61416 can be used. A schematic diagram of such a magnetron combined capacitively coupled plasma generator is shown in FIG.
 図1中、磁場形成部材11は改質ロールの内部であって、改質ロールに対向して配置された電極7の側に、少なくとも前記電極7の大きさに対応する範囲で設けられ、磁界短絡部材3に均一の磁束を発生するように取付られている。かくして、前記磁場形成部材から非磁性体の改質ロール4を通して発生している磁束に捕捉された電子により、プラズマが走行するフィルムの表面近傍で起こり、改質される。プラズマ形成電源5より高周波電位を印加した際に、改質ロール4のみに印加されるように構成されている。磁界発生部材11は、中央磁場1と中央磁場と極性の異なる外周磁場2と、それらを支える磁場短絡部材3から構成される。尚、改質ロール4には、ロールが回転しても位置関係を保つように磁場発生部材11が設けられている。また、電極7は、改質ロール4の表面の一部に沿ってそれに対向するように配置されており、複数のガス導入孔を備えている。この導入孔からフィルムSの表面にガス供給管6により放電ガスが導入される。かくして、プラズマ形成電源5が持続され、かつ、磁場形成部材3により、改質ロール4の外部の磁束が存在するところでプラズマが起こる。 In FIG. 1, the magnetic field forming member 11 is provided inside the reforming roll, on the side of the electrode 7 disposed facing the reforming roll, in a range corresponding to at least the size of the electrode 7. The short-circuit member 3 is attached so as to generate a uniform magnetic flux. Thus, the electrons trapped in the magnetic flux generated from the magnetic field forming member through the non-magnetic reforming roll 4 occur near the surface of the film on which the plasma travels and are reformed. When a high frequency potential is applied from the plasma forming power source 5, it is configured to be applied only to the reforming roll 4. The magnetic field generating member 11 includes a central magnetic field 1, an outer peripheral magnetic field 2 having a polarity different from that of the central magnetic field, and a magnetic field short-circuit member 3 that supports them. The reforming roll 4 is provided with a magnetic field generating member 11 so that the positional relationship is maintained even when the roll rotates. The electrode 7 is disposed along a part of the surface of the reforming roll 4 so as to face the surface, and includes a plurality of gas introduction holes. A discharge gas is introduced from the introduction hole into the surface of the film S by the gas supply pipe 6. Thus, plasma is generated where the plasma forming power source 5 is maintained and the magnetic field forming member 3 has a magnetic flux outside the reforming roll 4.
 また、本発明には、特開2008-196001号公報に記載された方のマグネトロン併用の容量結合プラズマ装置も使用し得る。このような装置の構成例として、図2に模式図を示した。図2中、ロール軸が平行となるように対向して配置された一対の改質ロール4、4’上をロール状に巻かれた帯状の改質する膜を備えた基材Sが通過する構成になっている。また、それぞれの改質ロール4、4’の内部には磁場発生部材11、11’が設けられ、また前記改質ロール4、4’にプラズマ電力を供給するプラズマ形成電源5が設けられている。尚、改質ロール4、4’には、ロールが回転しても位置関係を保つように磁場発生部材11、11’が設けられている。また、改質ロール4、4’の間にあるロール空間8に指向する複数のガス噴出ノズルが長さ方向にガス供給管6が設けられており、真空排気口9は前記ロール空間8の真下に配置されている。 In the present invention, the capacitively coupled plasma apparatus combined with the magnetron described in Japanese Patent Application Laid-Open No. 2008-196001 can also be used. As a configuration example of such an apparatus, a schematic diagram is shown in FIG. In FIG. 2, a base material S having a strip-like film that is wound in a roll shape passes over a pair of reforming rolls 4 and 4 'that are arranged to face each other so that the roll axes are parallel to each other. It is configured. Further, magnetic field generating members 11 and 11 ′ are provided inside the respective reforming rolls 4 and 4 ′, and a plasma forming power source 5 for supplying plasma power to the reforming rolls 4 and 4 ′ is provided. . The reforming rolls 4 and 4 'are provided with magnetic field generating members 11 and 11' so that the positional relationship is maintained even when the rolls rotate. A plurality of gas ejection nozzles directed to the roll space 8 between the reforming rolls 4 and 4 ′ are provided with a gas supply pipe 6 in the length direction, and the vacuum exhaust port 9 is directly below the roll space 8. Is arranged.
 前記ガス供給管6からプラズマを形成するガスが前記ロール空間8に供給される。プラズマ形成電源5は、一方の電極が一方の改質ロール4に、他方の電極が他方の成膜ロール4’に接続されている。前記プラズマ形成電源5は、極性が交互に反転する電圧を出力させる。それにより、改質ロール4、4’のロール表面にプラズマ密度の高いプラズマを形成することができる。 A gas forming plasma is supplied from the gas supply pipe 6 to the roll space 8. In the plasma forming power source 5, one electrode is connected to one reforming roll 4 and the other electrode is connected to the other film forming roll 4 ′. The plasma forming power source 5 outputs a voltage whose polarity is alternately inverted. Thereby, plasma with high plasma density can be formed on the roll surfaces of the modified rolls 4 and 4 ′.
 (C)誘導結合プラズマ(ICP)
 アンテナコイルに高周波電流を流し、コイルが作る磁場による誘導電界でプラズマを生成する方式で、一般に容量結合プラズマに比べ高い電子密度(プラズマ密度)が得られるとされる。誘電体窓を介してアンテナコイルをチャンバの外に置く外部アンテナ型、アンテナコイルをチャンバ内に設置する内部アンテナ型のどちらを採用してもよい。また、幅広の基材に対応するため、アンテナコイルをアレイ状に配置する等の工夫をしても良い。
(C) Inductively coupled plasma (ICP)
A high frequency current is passed through the antenna coil, and plasma is generated by an induced electric field generated by a magnetic field generated by the coil. Generally, a higher electron density (plasma density) is obtained than capacitively coupled plasma. Either an external antenna type in which the antenna coil is placed outside the chamber through a dielectric window or an internal antenna type in which the antenna coil is installed in the chamber may be adopted. Moreover, in order to correspond to a wide base material, you may devise, such as arrange | positioning an antenna coil in an array form.
 (D)マイクロ波プラズマ 
 マイクロ波を用いたプラズマ発生方式も本発明に用いることができる。広幅な基材を処理するという点からは、ライン型のマイクロ波プラズマ発生方式を好ましく使用できる。このようなタイプのマイクロ波プラズマ発生装置は、特開2006-269151号公報または特開2007-317499号公報に記載されたものを使用し得る。また、基材側に電極を必要としないプラズマ形成方式であるため、基板とマイクロ波プラズマ源との距離を十分に離すことでプラズマに晒さずに真空紫外光のみで改質を行うこともできる。マイクロ波帯の周波数を用いることで、プラズマ密度が容量結合型よりも高くなり、発生する波長150nmを超える範囲にピーク照度を持つ真空紫外光の強度が強くなる。その結果、改質に要する時間を短くすることができる。
(D) Microwave plasma
A plasma generation method using a microwave can also be used in the present invention. From the viewpoint of treating a wide substrate, a line type microwave plasma generation method can be preferably used. As such a type of microwave plasma generator, one described in Japanese Patent Application Laid-Open No. 2006-269151 or Japanese Patent Application Laid-Open No. 2007-317499 can be used. In addition, since it is a plasma formation method that does not require an electrode on the substrate side, it is possible to perform modification only with vacuum ultraviolet light without exposing to plasma by sufficiently separating the substrate and the microwave plasma source. . By using a frequency in the microwave band, the plasma density is higher than that of the capacitive coupling type, and the intensity of vacuum ultraviolet light having a peak illuminance in the generated wavelength range exceeding 150 nm is increased. As a result, the time required for reforming can be shortened.
 ライン型マイクロ波プラズマ発生装置の一例を図3に、そのような発生装置を用いて膜を改質処理する場合の例を図4に示した。図3は、矩形状のTEモードの導波管24の両側からマイクロ波を導入するマイクロ波ラインプラズマ発生装置の概略構成を示す図である。導波管24の両端から第1および第2のマイクロ波発生源21a、21bから供給されるマイクロ波が導波管22a、22b及びテーパ導波管23a、23bを介しては供給される。導波管22a、22bは、直状導波管、導波管ベンド等を組み合わせて構成されている。 An example of a line-type microwave plasma generator is shown in FIG. 3, and an example of a case where a film is reformed using such a generator is shown in FIG. FIG. 3 is a diagram showing a schematic configuration of a microwave line plasma generation apparatus that introduces microwaves from both sides of a rectangular TE mode waveguide 24. Microwaves supplied from the first and second microwave generation sources 21a and 21b from both ends of the waveguide 24 are supplied via the waveguides 22a and 22b and the tapered waveguides 23a and 23b. The waveguides 22a and 22b are configured by combining a straight waveguide, a waveguide bend, and the like.
 また、導波管24の下側にはスリット上の開口部(不図示)が設けられている。このスリット部近傍に、ガス供給管25を通してガス処理室26(真空)にガスを供給することで、導波管24内のマイクロ波に触れてガスがプラズマ化される。 Also, an opening (not shown) on the slit is provided below the waveguide 24. By supplying gas to the gas processing chamber 26 (vacuum) through the gas supply pipe 25 in the vicinity of the slit portion, the gas is made into plasma by touching the microwave in the waveguide 24.
 図4に示すように、好ましい実施形態としては、改質しようとする膜を備えた基材32を巻出し部34から繰り出し、上記図3に示したようなマイクロ波プラズマ発生装置31にて改質する。改質後、基材32は、ガイドローラ33を経て、巻き取り部35で巻き取る。 As shown in FIG. 4, in a preferred embodiment, the base material 32 provided with the film to be modified is unwound from the unwinding portion 34 and modified by the microwave plasma generator 31 as shown in FIG. Quality. After the modification, the base material 32 is wound up by the winding unit 35 through the guide roller 33.
 [パルス駆動]
 上記のようなプラズマ発生方式でプラズマを生成する際には、パルスで電力を印加しても良い。パルスで印加することにより、連続的に印加する場合と比べ、グロー放電からアーク放電へ移行しにくくなり、より高い電力で、又はより高い圧力で均一なグロープラズマが形成できることが知られている。よって、パルスで電力を印加した放電で真空紫外光をより強く発光させることができる。特に圧力が高い場合は、真空紫外光の発生源となる炭素含有ガスの分子数が多くできるため、発光強度を上げるには有効である。好ましいパルス周波数は100Hz~500kHz、更に好ましくは1~200kHzである。好ましいDUTY比は10~80、更に好ましくは20~70である。
[Pulse drive]
When generating plasma by the plasma generation method as described above, electric power may be applied in pulses. It is known that application by pulses makes it difficult to shift from glow discharge to arc discharge as compared to the case of continuous application, and uniform glow plasma can be formed with higher power or higher pressure. Therefore, vacuum ultraviolet light can be emitted more strongly by the discharge applied with electric power in a pulse. In particular, when the pressure is high, the number of molecules of the carbon-containing gas that is the source of vacuum ultraviolet light can be increased, which is effective in increasing the emission intensity. A preferable pulse frequency is 100 Hz to 500 kHz, more preferably 1 to 200 kHz. A preferred DUTY ratio is 10 to 80, more preferably 20 to 70.
 [その他の条件]
 一般に、真空紫外光照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。そのため、好ましくは室温(25℃)付近で改質処理を行うことが好ましい。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合には、より高温での改質処理が可能である。
[Other conditions]
In general, when the substrate temperature during vacuum ultraviolet light irradiation treatment is 150 ° C. or more, in the case of a plastic film or the like, the properties of the substrate are impaired, for example, the substrate is deformed or its strength is deteriorated. It will be. Therefore, it is preferable to perform the reforming treatment around room temperature (25 ° C.). However, in the case of a film having high heat resistance such as polyimide or a substrate such as metal, a modification treatment at a higher temperature is possible.
 本発明の改質処理は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、樹脂基材を上記のようなプラズマ発生装置を具備した真空チャンバー内で処理することができる。また、樹脂基材が長尺フィルム状である場合には、これを搬送させながら連続的に真空紫外光に晒すことによりセラミックス化することができる。 The reforming treatment of the present invention can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be used. For example, in the case of batch processing, the resin base material can be processed in a vacuum chamber equipped with the plasma generator as described above. Moreover, when a resin base material is a elongate film form, it can be ceramicized by exposing to a vacuum ultraviolet light continuously, conveying this.
 (3)その他の工程
 本発明で製造される積層体には、上述したSi、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜を改質した膜以外にも、基材とこれらの膜の間に中間層を有していることが好ましく、本発明の方法はそのための工程をさらに含んでいてもよい。本発明に係る中間層とは、層構成になっていれば特に限定されないが、例えば、アンカーコート層、平滑層、ブリードアウト層等を指す。本発明により製造する積層体は、実使用上は、用途に応じてこれらの中間層を備えていることがより好ましい。例えば、ガスバリアフィルムの場合には、基材表面には、ガスバリア層との密着性の向上を目的としてアンカーコート層を設けることがより好ましい。また、基材表面の粗面を平坦化し、凹凸やピンホールを埋めるために、基材とガスバリア層との間に平滑層を設けることがより好ましい。平滑層を設けた場合には、樹脂基材中から未反応のオリゴマーなどが表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、平滑層を有する樹脂基材の面とは反対側の面にブリードアウト層を設けることがより好ましい。
(3) Other Steps The laminated body manufactured in the present invention includes the above-described oxide film, nitride film, oxynitride film, and carbonated film containing at least one of Si, Al, and Ti. It is preferable to have an intermediate layer between the substrate and these films, and the method of the present invention may further include a step for that purpose. The intermediate layer according to the present invention is not particularly limited as long as it has a layer structure, and includes, for example, an anchor coat layer, a smooth layer, a bleed-out layer, and the like. It is more preferable that the laminated body manufactured by this invention is equipped with these intermediate | middle layers according to a use on practical use. For example, in the case of a gas barrier film, it is more preferable to provide an anchor coat layer on the substrate surface for the purpose of improving the adhesion with the gas barrier layer. It is more preferable to provide a smooth layer between the base material and the gas barrier layer in order to flatten the rough surface of the base material surface and fill unevenness and pinholes. When a smooth layer is provided, the surface of the resin base material having a smooth layer for the purpose of suppressing the phenomenon that unreacted oligomers migrate to the surface from the resin base material and contaminate the contact surface. It is more preferable to provide a bleed-out layer on the opposite side of the surface.
 これらの中間層を形成するには、それぞれ、下記の材料の溶液を塗布して塗膜を形成し、乾燥し、必要に応じて紫外光硬化等で完成させることができる。 In order to form these intermediate layers, a solution of the following materials can be applied to form a coating film, dried, and completed by ultraviolet light curing or the like as necessary.
 アンカーコート層としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等が挙げられる。これらは単独でも、1又は2種以上併せて使用してもよい。 Examples of the anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. These may be used alone or in combination of one or more.
 平滑層を形成する光重合性モノマーとしては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する光重合性モノマー組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する光重合性モノマー組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた光重合性モノマー組成物等が挙げられる。ブリードアウト防止層は、基本的に平滑層と同じ構成をとっても構わない。 Examples of the photopolymerizable monomer forming the smooth layer include a photopolymerizable monomer composition containing an acrylate compound having a radical reactive unsaturated compound, and a photopolymerizable monomer containing an acrylate compound and a mercapto compound having a thiol group. Examples thereof include a photopolymerizable monomer composition in which a polyfunctional acrylate monomer such as a composition, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate is dissolved. The bleed-out prevention layer may basically have the same configuration as the smooth layer.
 本発明の改質方法は、特にガスバリアフィルムの製造に好適である。しかしながら、ガスバリアフィルムに限らず、基材の表面処理、パッシベーション膜または絶縁膜の製造にも好適である。すなわち、本発明は、上述した改質方法で改質された積層体も提供する。基材の表面処理の場合、コロナ放電処理、エキシマランプ処理と比較し、短時間で、濡れ性を改善することができる。パッシベーション膜は、ガスバリアフィルムと同様にSi、AlおよびTiの少なくとも一種を含む膜を用いることが多く、また、パッシベーション膜上下の層の金属の移動を遮断する役割を担っている。したがって、本発明の方法によってガスバリアフィルムの耐湿熱性が向上する、すなわちフィルムが酸素や水蒸気の透過をより遮断し得るのと同様に、パッシベーション膜においても、本発明の改質方法を適用すれば、酸素や水蒸気よりも大きい金属イオンの移動をより遮断しうる。また、絶縁膜も、ガスバリアフィルムと同様に、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜を改質して製造されることが知られている。したがって、本発明の改質方法によれば、膜の内部まで改質でき、膜全体の改質の度合いを高め得ることから、絶縁膜を製造する場合においても、より改質の度合いを高め、緻密で絶縁特性に優れた膜が得られる。 The modification method of the present invention is particularly suitable for the production of a gas barrier film. However, it is suitable not only for the gas barrier film but also for the surface treatment of the substrate, the production of a passivation film or an insulating film. That is, the present invention also provides a laminate modified by the above-described modification method. In the case of the surface treatment of the substrate, the wettability can be improved in a short time as compared with the corona discharge treatment and the excimer lamp treatment. As the passivation film, a film containing at least one of Si, Al, and Ti is often used in the same manner as the gas barrier film, and plays a role of blocking the movement of the metal in the upper and lower layers of the passivation film. Therefore, the wet heat resistance of the gas barrier film is improved by the method of the present invention, i.e., the film can further block the permeation of oxygen and water vapor. The movement of metal ions larger than oxygen and water vapor can be further blocked. It is also known that the insulating film is manufactured by modifying an oxide film, a nitride film, a nitrogen oxide film, and a carbonated film containing at least one of Si, Al, and Ti, similarly to the gas barrier film. Therefore, according to the modification method of the present invention, it can be modified to the inside of the film, and the degree of modification of the whole film can be increased. Therefore, even when an insulating film is manufactured, the degree of modification is further increased. A dense film having excellent insulating properties can be obtained.
 以下、実施例および比較例を用いて本発明を具体的に説明するが、本発明は以下の実施例には限定されない。 Hereinafter, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to the following examples.
 <試料の調製>
 (基材)
 熱可塑性樹脂である、両面に易接着加工された125μm厚みのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)を基材として用いた。
<Preparation of sample>
(Base material)
A 125 μm thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83), which is a thermoplastic resin and is easily bonded on both sides, was used as a base material.
 〔ガスバリアフィルムの作製〕
 (ブリードアウト防止層の形成)
 上記基材の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気下、高圧水銀ランプ使用、硬化条件;1.0J/cmで硬化を行い、ブリードアウト防止層を形成した。
[Production of gas barrier film]
(Formation of bleed-out prevention layer)
A UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied to one side of the substrate, and after applying with a die coater so that the film thickness after drying was 4 μm, drying conditions: 80 ° C., After drying for 3 minutes, curing was performed in air using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a bleed-out prevention layer.
 (平滑層の形成)
 続けて上記基材の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cmで硬化を行い、平滑層を形成した。
(Formation of smooth layer)
Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the base material, and is applied with a die coater so that the film thickness after drying is 4 μm, followed by drying conditions; After drying at 80 ° C. for 3 minutes, curing was performed in an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a smooth layer.
 このときの最大断面高さRt(p)は16nmであった。 The maximum cross-sectional height Rt (p) at this time was 16 nm.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured with an AFM (Atomic Force Microscope) and a detector having a stylus with a minimum tip radius, and the measurement direction is 30 μm with a stylus with a minimum tip radius. This is the average roughness for the amplitude of fine irregularities, measured many times in the section.
 <実施例1>
 [ガスバリアフィルム1の作製]
 (ポリシラザン層の形成)
 上記平滑層、ブリードアウト防止層を設けたフィルムの平滑層面の上にポリシラザン層を塗布乾燥して塗膜を形成した。ポリシラザン化合物を含有する塗布液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120-20)とアミン触媒をパーヒドロポリシラザンに対して5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NAX120-20)を混合して用い、アミン触媒をパーヒドロポリシラザンに対して1質量%に調整した後、さらにジブチルエーテルで希釈することによりパーヒドロポリシラザン5質量%ジブチルエーテル溶液として調製した。この溶液をダイコーターを用いてラインスピード1.0m/minで塗布したのち、乾燥温度50℃、乾燥雰囲気の露点10℃で1分乾燥後、乾燥温度80℃、乾燥雰囲気の露点5℃で2分乾燥して、乾燥後膜厚150nmのポリシラザン層を形成した。
<Example 1>
[Production of Gas Barrier Film 1]
(Formation of polysilazane layer)
A polysilazane layer was applied and dried on the smooth layer surface of the film provided with the smooth layer and the bleed-out prevention layer to form a coating film. The coating solution containing a polysilazane compound contains 5% by mass of a non-catalytic perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) and an amine catalyst. Perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was mixed and used to adjust the amine catalyst to 1% by mass with respect to perhydropolysilazane. By diluting, it was prepared as a 5% by weight dibutyl ether solution of perhydropolysilazane. This solution was applied using a die coater at a line speed of 1.0 m / min, dried for 1 minute at a drying temperature of 50 ° C. and a drying atmosphere dew point of 10 ° C., and then dried at a drying temperature of 80 ° C. and a drying atmosphere dew point of 5 ° C. After partial drying, a polysilazane layer having a thickness of 150 nm was formed after drying.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:CO
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 1.0秒。
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1. In addition, the surface energy before a process was 55 mN / m.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: CO
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 1.0 second.
 <実施例2>
 [ガスバリアフィルム2の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム2を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:CO (COは1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 3秒。
<Example 2>
[Preparation of gas barrier film 2]
A gas barrier film 2 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: CO 2 (CO is 1 vol%)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 3 seconds.
 <実施例3>
 [ガスバリアフィルム3の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム3を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO (COは1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 0.5秒。
<Example 3>
[Preparation of gas barrier film 3]
A gas barrier film 3 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO (CO is 1 vol%)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.5 seconds.
 <実施例4>
 [ガスバリアフィルム4の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム4を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO+CO (COはArに対して1vol%、COはCOに対して10vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 0.3秒。
<Example 4>
[Production of Gas Barrier Film 4]
A gas barrier film 4 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO + CO 2 (CO is 1 vol% with respect to Ar, CO 2 is 10 vol% with respect to CO)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.3 seconds.
 <実施例5>
 [ガスバリアフィルム5の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム5を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ne+CO  (COはNeに対して1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 0.5秒。
<Example 5>
[Preparation of gas barrier film 5]
A gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ne + CO (CO is 1 vol% with respect to Ne)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.5 seconds.
 <実施例6>
 [ガスバリアフィルム6の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム5を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Xe+CO (COはXeに対して1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 0.3秒。
<Example 6>
[Production of Gas Barrier Film 6]
A gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Xe + CO (CO is 1 vol% with respect to Xe)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.3 seconds.
 <実施例7>
 [ガスバリアフィルム7の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム5を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
<Example 7>
[Preparation of gas barrier film 7]
A gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO+NO (CO,NOはArに対して1vol%,)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 0.2秒。
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO + NO (CO, NO is 1 vol% with respect to Ar)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.2 seconds.
 <実施例8>
 [ガスバリアフィルム8の作製]
ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム7を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
<Example 8>
[Preparation of gas barrier film 8]
A gas barrier film 7 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて図3に示したマイクロ波プラズマ発生装置を導入した、図4に示す装置を用いてプラズマ照射処理を施しガスバリアフィルム1を作製した。尚、ガスバリアフィルムが、直接プラズマに晒されないように、基材とプラズマ源の距離を150mmと離した。
<Reforming treatment>
The gas barrier film 1 was produced by performing plasma irradiation treatment using the apparatus shown in FIG. 4 in which the microwave plasma generator shown in FIG. 3 was introduced to the produced polysilazane film under the following conditions. Note that the distance between the substrate and the plasma source was set to 150 mm so that the gas barrier film was not directly exposed to plasma.
 プラズマ処理装置:マイクロ波プラズマ装置
  基材とマイクロ波プラズマ源の距離: 150mm
 ガス:Ar+CO (COは1vol%)
 圧力:300Pa
 基材加熱温度:室温
 投入電力密度:2.5kW/500mm幅
 周波数:2.45GHz
 処理時間:2.4秒
 フィルムの搬送速度:10m/min
 尚、処理時間は、基材の搬送方向の放電長が約50mmであるため、1回放電空間を通過すると50/166.6(mm/sec)=処理されると計算している。10回、搬送速度10m/minで放電空間を通過させたため、約2.4sec処理されている。
Plasma processing apparatus: microwave plasma apparatus Distance between substrate and microwave plasma source: 150 mm
Gas: Ar + CO (CO is 1 vol%)
Pressure: 300Pa
Substrate heating temperature: room temperature Input power density: 2.5 kW / 500 mm width Frequency: 2.45 GHz
Processing time: 2.4 seconds Film transport speed: 10 m / min
In addition, since the discharge length in the conveyance direction of the base material is about 50 mm, the processing time is calculated as 50 / 166.6 (mm / sec) = processing when passing through the discharge space once. Since the discharge space is passed 10 times at a conveyance speed of 10 m / min, the process is performed for about 2.4 sec.
 <実施例9>
 [ガスバリアフィルム9の作製]
ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム7を作製した。尚、処理前の表面エネルギーは、55mN/mであった。
<Example 9>
[Preparation of gas barrier film 9]
A gas barrier film 7 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. In addition, the surface energy before a process was 55 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて図3に示したマイクロ波プラズマ発生装置を導入した、図4に示す装置を用いてプラズマ照射処理を施しガスバリアフィルム1を作製した。尚、ガスバリアフィルムが、直接プラズマに晒されるように、基材とプラズマ源の距離を30mmと離した。
<Reforming treatment>
The gas barrier film 1 was produced by performing plasma irradiation treatment using the apparatus shown in FIG. 4 in which the microwave plasma generator shown in FIG. 3 was introduced to the produced polysilazane film under the following conditions. Note that the distance between the substrate and the plasma source was set at 30 mm so that the gas barrier film was directly exposed to plasma.
 プラズマ処理装置:マイクロ波プラズマ装置
  基材とマイクロ波プラズマ源の距離: 30mm
 ガス:Ar+CO (COは1vol%)
 圧力:300Pa
 基材加熱温度:室温
 投入電力密度:2.5kW/500mm幅
 周波数:2.45GHz
 処理時間: 0.24秒
 フィルムの搬送速度 10m/min
尚、処理時間は、基材の搬送方向の放電長が約50mmであるため、1回放電空間を通過すると50/166.6(mm/sec)=処理されると計算している。1回、搬送速度10m/minで放電空間を通過させたため、約0.24sec処理されている。
Plasma processing device: microwave plasma device Distance between substrate and microwave plasma source: 30 mm
Gas: Ar + CO (CO is 1 vol%)
Pressure: 300Pa
Substrate heating temperature: room temperature Input power density: 2.5 kW / 500 mm width Frequency: 2.45 GHz
Processing time: 0.24 seconds Film transport speed 10 m / min
In addition, since the discharge length in the conveyance direction of the base material is about 50 mm, the processing time is calculated as 50 / 166.6 (mm / sec) = processing when passing through the discharge space once. Since the discharge space is passed once at a conveyance speed of 10 m / min, the processing is performed for about 0.24 sec.
 <実施例10>
 [ガスバリアフィルム10の作製]
 ガスバリアフィルム1で用いたものと同じ平滑層まで形成したプラスチックフィルム基材を、スパッタ装置の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンと酸素を分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化珪素層の形成を開始し、60nmの膜が堆積したところでシャッターを閉じて成膜を終了した。その後、下記に記載する改質処理を実施してガスバリアフィルム8を作製した。このとき、改質処理前のSiOを成膜した基材のガスバリア性は0.01g/m/dayであった。処理前の表面エネルギーは、58mN/mであった。
<Example 10>
[Production of Gas Barrier Film 10]
A plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of a silicon oxide layer on the film was started. When the 60 nm film was deposited, the shutter was closed and the film formation was completed. Then, the modification | reformation process described below was implemented and the gas barrier film 8 was produced. At this time, the gas barrier property of the substrate on which the SiO 2 film before the modification treatment was formed was 0.01 g / m 2 / day. The surface energy before the treatment was 58 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO (COは1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間:0.5秒。
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO (CO is 1 vol%)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.5 seconds.
 <実施例11>
 [ガスバリアフィルム11の作製]
 ガスバリアフィルム1で用いたものと同じ平滑層まで形成したプラスチックフィルム基材を、スパッタ装置の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンと酸素を分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始しAlターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化珪素層の形成を開始し、60nmの膜が堆積したところでシャッターを閉じて成膜を終了した。その後、下記に記載する改質処理を実施してガスバリアフィルム8を作製した。このとき、改質処理前のAlを成膜した基材のガスバリア性は0.1g/m/dayであった。処理前の表面エネルギーは、60mN/mであった。
<Example 11>
[Production of Gas Barrier Film 11]
A plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced. When the atmospheric pressure was stabilized, discharge was started to generate plasma on the Al target, and the sputtering process was started. When the process was stabilized, the shutter was opened and the formation of a silicon oxide layer on the film was started. When the 60 nm film was deposited, the shutter was closed and the film formation was completed. Then, the modification | reformation process described below was implemented and the gas barrier film 8 was produced. At this time, the gas barrier property of the base material on which Al 2 O 3 before reforming was formed was 0.1 g / m 2 / day. The surface energy before the treatment was 60 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO (COは1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間:0.5秒。
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO (CO is 1 vol%)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.5 seconds.
 <実施例12>
 [ガスバリアフィルム12の作製]
 ガスバリアフィルム1で用いたものと同じ平滑層まで形成したプラスチックフィルム基材を、スパッタ装置の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンと酸素を分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始しTiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化珪素層の形成を開始し、60nmの膜が堆積したところでシャッターを閉じて成膜を終了した。その後、下記に記載する改質処理を実施してガスバリアフィルム8を作製した。このとき、改質処理前のTiOを成膜した基材のガスバリア性は0.08g/m/dayであった。処理前の表面エネルギーは、62mN/mであった。
<Example 12>
[Production of Gas Barrier Film 12]
A plastic film base material formed to the same smooth layer as that used in the gas barrier film 1 is set in a vacuum chamber of a sputtering apparatus, evacuated to 10-4 Pa level, and argon and oxygen are discharged at a partial pressure of 0 to a discharge gas. .5 Pa was introduced. When the atmospheric pressure was stabilized, discharge was started to generate plasma on the Ti target, and the sputtering process was started. When the process was stabilized, the shutter was opened and the formation of a silicon oxide layer on the film was started. When the 60 nm film was deposited, the shutter was closed and the film formation was completed. Then, the modification | reformation process described below was implemented and the gas barrier film 8 was produced. At this time, the gas barrier property of the base material on which the TiO 2 film before the modification treatment was formed was 0.08 g / m 2 / day. The surface energy before the treatment was 62 mN / m.
 〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO (COは1vol%)
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間:0.5秒。
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO (CO is 1 vol%)
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 0.5 seconds.
 <比較例1>
 [ガスバリアフィルム13の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム10を作製した。処理前の表面エネルギーは、55mN/mであった。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム10を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間:30秒。
<Comparative Example 1>
[Preparation of gas barrier film 13]
A gas barrier film 10 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows. The surface energy before the treatment was 55 mN / m.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 10.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 30 seconds.
 <比較例2>
 [ガスバリアフィルム14の作製]
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム1と同様にしてガスバリアフィルム11を作製した。
〈改質処理〉
(改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
(改質処理条件)
 稼動ステージ上に固定した試料を、以下の条件で改質処理を行って、第2のバリア層を形成した。
エキシマ光強度   :130mW/cm(172nm)
試料と光源の距離  :1mm
ステージ加熱温度  :70℃
照射装置内の酸素濃度:0.1%
フィルムの搬送速度   0.6m/min
エキシマ照射時間  :5秒
 以上により、ガスバリア性フィルムを作製した。
<Comparative Example 2>
[Production of Gas Barrier Film 14]
A gas barrier film 11 was produced in the same manner as the gas barrier film 1 except that the modification treatment was performed as follows.
<Reforming treatment>
(Modification equipment)
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Wavelength: 172nm
Lamp filled gas: Xe
(Reforming treatment conditions)
The sample fixed on the operation stage was subjected to a modification treatment under the following conditions to form a second barrier layer.
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.1%
Film transport speed 0.6m / min
Excimer irradiation time: 5 seconds A gas barrier film was prepared as described above.
 <比較例3>
 [ガスバリアフィルム15の作製] SiO処理
 ガスバリアフィルム9において、改質処理を下記の通りにした以外はガスバリアフィルム9と同様にしてガスバリアフィルム10を作製した。
〈改質処理〉
 作製したポリシラザン膜に下記条件にて低圧プラズマ処理を施しガスバリアフィルム1を作製した。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar
圧力:10Pa
基材加熱温度:室温
投入電力密度:2.0W/cm
周波数:13.56MHz
処理時間: 20秒。
<Comparative Example 3>
[Production of Gas Barrier Film 15] SiO 2 Treatment Gas barrier film 10 was produced in the same manner as gas barrier film 9 except that gas barrier film 9 was modified as described below.
<Reforming treatment>
The produced polysilazane film was subjected to low-pressure plasma treatment under the following conditions to produce a gas barrier film 1.
Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar
Pressure: 10Pa
Substrate heating temperature: Room temperature Input power density: 2.0 W / cm 2
Frequency: 13.56MHz
Processing time: 20 seconds.
 <比較例4>
 [ガスバリアフィルム16の作製] SiO処理
 ガスバリアフィルム9において、改質処理を下記の通りにした以外はガスバリアフィルム9と同様にしてガスバリアフィルム10を作製した。
〈改質処理〉
(改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 (改質処理条件)
 稼動ステージ上に固定した試料を、以下の条件で改質処理を行って、第2のバリア層を形成した。
エキシマ光強度   :130mW/cm(172nm)
試料と光源の距離  :1mm
ステージ加熱温度  :70℃
照射装置内の酸素濃度:0.1%
フィルムの搬送速度   0.6m/min
エキシマ照射時間  :4秒
 以上により、ガスバリア性フィルムを作製した。
<Comparative example 4>
[Production of Gas Barrier Film 16] SiO 2 Treatment Gas barrier film 10 was produced in the same manner as gas barrier film 9 except that gas barrier film 9 was modified as described below.
<Reforming treatment>
(Modification equipment)
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Wavelength: 172nm
Lamp filled gas: Xe
(Reforming treatment conditions)
The sample fixed on the operation stage was subjected to a modification treatment under the following conditions to form a second barrier layer.
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.1%
Film transport speed 0.6m / min
Excimer irradiation time: 4 seconds A gas barrier film was produced in the manner described above.
 <比較例5>
 [ガスバリアフィルム17の作製] 
 ガスバリアフィルム1において、改質処理を下記の通りにした以外はガスバリアフィルム9と同様にしてガスバリアフィルム14を作製した。
〈改質処理〉
 改質装置:ホットプレート 100℃
 雰囲気: 酸素濃度 0.1%
 処理時間:60秒。
<Comparative Example 5>
[Preparation of gas barrier film 17]
In the gas barrier film 1, a gas barrier film 14 was produced in the same manner as the gas barrier film 9 except that the modification treatment was performed as follows.
<Reforming treatment>
Reformer: Hot plate 100 ° C
Atmosphere: Oxygen concentration 0.1%
Processing time: 60 seconds.
 <評価>
 上記のようにして得られたバリアフィルムNo.1~17について、以下のように評価をした。評価結果は、併せて下記表1に示し、評価基準は表2-1および表2-2に示す。
<Evaluation>
The barrier film No. obtained as described above. 1 to 17 were evaluated as follows. The evaluation results are also shown in Table 1 below, and the evaluation criteria are shown in Table 2-1 and Table 2-2.
 <水蒸気透過率測定>
 40℃90%RH雰囲気下で、等圧法-赤外線センサー法を用いた水蒸気透過度測定装置(「AQUATRAN」、MOCON社製)を用いて測定した。本装置の検出下限値は、0.0005g/m/dayである。
<Measurement of water vapor transmission rate>
The measurement was carried out using a water vapor permeability measuring apparatus (“AQUATRAN”, manufactured by MOCON) using an isobaric method-infrared sensor method in an atmosphere of 40 ° C. and 90% RH. The lower limit of detection of this device is 0.0005 g / m 2 / day.
 <湿熱耐性の評価方法>
 [耐湿熱性試験]
 恒温恒湿機を用い、温度・湿度が85℃、85%RHの条件下において、100時間放置、乃至300時間放置した後、前記の方法にて水蒸気透過率を測定し、試験前後で水蒸気バリア性が維持されているかどうか評価した。尚、湿熱耐性は下記のようにRankを付けた。
○:耐湿熱性試験前後で、下記式でAが50未満の変化がある
△:耐湿熱性試験前後で下記式でAが50以上200以下の変化がある
×:耐湿熱性試験前後で下記式でAが200以上の変化がある
A=(湿熱試験前の水蒸気透過率÷湿熱耐性後の水蒸気透過率×100)
                -100 (%)。
<Method for evaluating wet heat resistance>
[Moisture and heat resistance test]
Using a thermo-hygrostat, left for 100 hours to 300 hours under conditions of 85 ° C. and 85% RH, and then measured the water vapor transmission rate by the method described above. It was evaluated whether sex was maintained. In addition, the wet heat resistance was given Rank as follows.
○: Before and after the moist heat resistance test, A is less than 50 in the following formula. Δ: Before and after the moist heat resistance test, A is from 50 to 200. ×: Before and after the moist heat resistance test, A Has a change of 200 or more A = (water vapor transmission rate before wet heat test ÷ water vapor transmission rate after wet heat resistance × 100)
-100 (%).
 <表面粗さ> 
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
<Surface roughness>
The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 <表面自由エネルギーのγ測定>
 改質の指標として、表面自由エネルギー(以下表面エネルギーとも称する)を評価した。本実施例において、表面エネルギーは、膜全体の改質度合いを示すものではなく、最表面の膜の改質にどれだけの処理時間が必要であったかを示すための指標として用いている。改質処理前後の処理面の表面エネルギーを定量的に求める方法として、「北崎寧昭他,日本接着協会誌,Vol.8,No.3,1972,pp.131-141」に記載の方法を用いた。
<Γ measurement of surface free energy>
As an index of modification, surface free energy (hereinafter also referred to as surface energy) was evaluated. In this embodiment, the surface energy does not indicate the degree of modification of the entire film, but is used as an index for indicating how much processing time is required to modify the film on the outermost surface. As a method for quantitatively obtaining the surface energy of the treated surface before and after the modification treatment, the method described in “Nasakiaki Kitasaki et al., Journal of Japan Adhesion Society, Vol. 8, No. 3, 1972, pp. 131-141” is used. Using.
 表面エネルギーが分散成分γd、極性成分γp、水素結合性の成分γhからなると仮定
する。表面エネルギーγは、
  γ=γd+γp+γh 
と表される。
It is assumed that the surface energy is composed of a dispersion component γd, a polar component γp, and a hydrogen bonding component γh. The surface energy γ is
γ = γd + γp + γh
It is expressed.
 液体の表面エネルギーγl、固体の表面エネルギーγs、接触角θの関係は、 The relationship between the liquid surface energy γl, the solid surface energy γs, and the contact angle θ is
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 で与えられる。γLが既知の水、ジヨードメタン、ニトロメタンを用いて接触角を測定し、表面エネルギーを求めた。表面エネルギーが大きいほど、表面改質が進んでいる。
接触角の測定は、接触角計(CA-DT、協和界面科学(株)製)により、2mgの質量の液滴による静的接触角を測定し、数1の式で表面エネルギーを算出した。
Given in. The contact angle was measured using water, diiodomethane, and nitromethane with known γL, and the surface energy was determined. As the surface energy increases, the surface modification progresses.
The contact angle was measured using a contact angle meter (CA-DT, manufactured by Kyowa Interface Science Co., Ltd.) to measure the static contact angle with a 2 mg mass droplet, and the surface energy was calculated using the equation (1).
 <発生する真空紫外光の波長と照度測定方法>
真空紫外光の波長、及び強度は真空紫外分光器真空装置(Acton社製VM-504、HORIBA Jobin Yvon製VTM300)、を用いて測定を行った。
<Method of measuring the wavelength and illuminance of the generated vacuum ultraviolet light>
The wavelength and intensity of the vacuum ultraviolet light were measured using a vacuum ultraviolet spectrometer vacuum apparatus (VM-504 manufactured by Acton, VTM300 manufactured by HORIBA Jobin Yvon).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表1に示されるように、本発明の改質方法を適用した実施例は、比較例に対比していずれも優れたガスバリア性(低い水蒸気透過率)および耐湿熱性を示し、かつ、処理時間は短時間であった。導入ガス種がArのみの比較例1に対比して、Arに加えて炭素含有ガスを使用した実施例3は、真空紫外光のピーク波長がより長く、かつ、処理時間も短縮され、より優れたガスバリア性および耐湿熱性を示した。また、導入ガスがCOのみの実施例1に比較して、COにArを加えた実施例3は、より処理時間が短縮された。これは、希ガスを主ガスとしたことにより、真空紫外光の発光がより強められたためと考えられる。また、ArおよびCOに、さらに窒素含有ガスのNOを添加した実施例7は、ArおよびCOのみを使用した実施例3に対比して、さらに優れたガスバリア性を示した。これは、プラズマにより紫外光を発光するNOを用いたことにより、ポリシラザン膜が短時間でより内部まで改質され、ガスバリア性が向上したものと考えられる。また、真空紫外線照射のみの実施例8と比較して、真空紫外線に加えてプラズマを照射した実施例9は、より処理時間が短縮された。 As shown in Table 1 above, the examples to which the reforming method of the present invention was applied showed excellent gas barrier properties (low water vapor transmission rate) and wet heat resistance as compared with the comparative examples, and the treatment time. Was a short time. In contrast to Comparative Example 1 in which the introduced gas type is only Ar, Example 3 using a carbon-containing gas in addition to Ar is more excellent in that the peak wavelength of vacuum ultraviolet light is longer and the processing time is shortened. It exhibited gas barrier properties and heat and humidity resistance. In addition, compared to Example 1 in which the introduced gas was only CO, Example 3 in which Ar was added to CO further shortened the processing time. This is presumably because the emission of vacuum ultraviolet light was further enhanced by using the rare gas as the main gas. In addition, Example 7 in which NO, which is a nitrogen-containing gas, was further added to Ar and CO showed further superior gas barrier properties compared to Example 3 in which only Ar and CO were used. This is probably because the use of NO that emits ultraviolet light by plasma modified the polysilazane film to the inside in a short time and improved the gas barrier properties. Moreover, compared with Example 8 only with vacuum ultraviolet irradiation, Example 9 which irradiated the plasma in addition to the vacuum ultraviolet irradiation further shortened processing time.
 また、表面エネルギーに注目すると、実施例1~12と比較例1~4とで同等の値となっている。このことから、本発明の方法によれば、従来技術によるものと同等の表面改質を行うために、非常に短縮された処理時間ですむことが分かる。したがって、本発明の改質方法は、膜の表面処理方法としても、処理時間が短く生産性が高くなり、有効である。 Further, when attention is paid to the surface energy, the values are the same in Examples 1 to 12 and Comparative Examples 1 to 4. From this, it can be seen that according to the method of the present invention, in order to perform the surface modification equivalent to that according to the prior art, a very shortened processing time is required. Therefore, the modification method of the present invention is effective as a film surface treatment method because the treatment time is short and the productivity is high.
 なお、本出願は、2012年10月19日に出願された日本国特許出願第2012-231497号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2012-231497 filed on October 19, 2012, the disclosure of which is incorporated by reference in its entirety.
1  外周磁場(S極)
2  中央磁場(N)
3  磁界短絡部材
4、4’  改質ロール
5  プラズマ形成電源
6、25  ガス供給管
7  電極
8  ロール空間
9  真空排気口
11、11’  磁場発生部材
21a、21b  マイクロ波電源
22a、22b  導波管
23a、23b  テーパー導波管
24  短形導波管
26  ガス処理室
31  マイクロ波プラズマ発生装置
32  基材
33  ガイドローラ
34  巻出し部
35  巻き取り部
S  基材
1 Peripheral magnetic field (S pole)
2 Central magnetic field (N)
3 Magnetic field short- circuit member 4, 4 ′ reforming roll 5 Plasma forming power source 6, 25 Gas supply pipe 7 Electrode 8 Roll space 9 Vacuum exhaust port 11, 11 ′ Magnetic field generating members 21a, 21b Microwave power sources 22a, 22b Waveguide 23a 23b Tapered waveguide 24 Short waveguide 26 Gas processing chamber 31 Microwave plasma generator 32 Base material 33 Guide roller 34 Unwinding portion 35 Winding portion S Base material

Claims (11)

  1.  基材と、前記基材上に形成された、Si、AlおよびTiの少なくとも一種を含む酸化膜、窒化膜、窒酸化膜および炭酸化膜の少なくとも一層の膜と、を備える積層体の少なくとも一部を改質する改質方法であって、
     前記少なくとも一層の膜を真空紫外光に晒すことにより、前記積層体の少なくとも一部を改質する改質工程を含み、
     前記真空紫外光を、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させることを特徴とする改質方法。
    At least one of a laminate comprising a base material and an oxide film, nitride film, oxynitride film, and carbonation film containing at least one of Si, Al, and Ti formed on the base material. A reforming method for reforming a part,
    A modification step of modifying at least a part of the laminate by exposing the at least one layer of film to vacuum ultraviolet light;
    A reforming method, wherein the vacuum ultraviolet light is generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  2.  前記少なくとも一層の膜を、前記真空紫外光と同時に、更に前記プラズマに晒す請求項1に記載の改質方法。 The reforming method according to claim 1, wherein the at least one film is further exposed to the plasma simultaneously with the vacuum ultraviolet light.
  3.  前記真空紫外光の波長100nm以上200nm未満におけるピーク波長が150nmを超えている請求項1または2に記載の改質方法。 The reforming method according to claim 1 or 2, wherein a peak wavelength of the vacuum ultraviolet light at a wavelength of 100 nm or more and less than 200 nm exceeds 150 nm.
  4.  前記少なくとも一層の膜がポリシラザンを含む請求項1~3のいずれか一項に記載の改質方法。 The reforming method according to any one of claims 1 to 3, wherein the at least one film contains polysilazane.
  5.  前記ガスが、さらに希ガス又はHを含む請求項1~4のいずれか一項に記載の改質方法。 The reforming method according to any one of claims 1 to 4, wherein the gas further contains a rare gas or H 2 .
  6.  前記希ガスが、Ar、Ne、XeおよびKrの少なくとも一種である請求項5に記載の改質方法。 The reforming method according to claim 5, wherein the rare gas is at least one of Ar, Ne, Xe and Kr.
  7.  前記ガスに、プラズマによって波長200nm以上300nm以下の紫外光を発生するガスをさらに含む請求項1~6のいずれか一項に記載の改質方法。 The reforming method according to any one of claims 1 to 6, wherein the gas further includes a gas that generates ultraviolet light having a wavelength of 200 nm to 300 nm by plasma.
  8.  前記波長200nm以上300nm以下の紫外光を発生するガスが窒素含有ガスである請求項7に記載の改質方法。 The reforming method according to claim 7, wherein the gas generating ultraviolet light having a wavelength of 200 nm to 300 nm is a nitrogen-containing gas.
  9.  前記窒素含有ガスがNO、NO、NO2およびNHの少なくとも一種である請求項8に記載の改質方法。 The reforming method according to claim 8, wherein the nitrogen-containing gas is at least one of NO, N 2 O, NO 2, and NH 3 .
  10.  前記積層体がガスバリアフィルムである請求項1~9のいずれか一項に記載の改質方法。 The reforming method according to any one of claims 1 to 9, wherein the laminate is a gas barrier film.
  11.  請求項1~10のいずれか一項に記載の改質方法で改質された積層体。 A laminate modified by the modification method according to any one of claims 1 to 10.
PCT/JP2013/077858 2012-10-19 2013-10-11 Modification method WO2014061617A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014542124A JPWO2014061617A1 (en) 2012-10-19 2013-10-11 Modification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231497 2012-10-19
JP2012-231497 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061617A1 true WO2014061617A1 (en) 2014-04-24

Family

ID=50488181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077858 WO2014061617A1 (en) 2012-10-19 2013-10-11 Modification method

Country Status (2)

Country Link
JP (1) JPWO2014061617A1 (en)
WO (1) WO2014061617A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113698A (en) * 2014-12-12 2016-06-23 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Deposition method of transparent multilayer system having scratch resistance properties
JP2019145787A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Magnetoresistive effect element and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890745A (en) * 1994-07-28 1996-04-09 Sekisui Chem Co Ltd Production of laminate and production of protective material for pen input panel
WO2011007543A1 (en) * 2009-07-17 2011-01-20 三井化学株式会社 Laminate and process for production thereof
WO2012002150A1 (en) * 2010-07-01 2012-01-05 コニカミノルタホールディングス株式会社 Gas barrier film and gas barrier film formation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798747B2 (en) * 2011-01-14 2015-10-21 三井化学株式会社 Manufacturing method of laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890745A (en) * 1994-07-28 1996-04-09 Sekisui Chem Co Ltd Production of laminate and production of protective material for pen input panel
WO2011007543A1 (en) * 2009-07-17 2011-01-20 三井化学株式会社 Laminate and process for production thereof
WO2012002150A1 (en) * 2010-07-01 2012-01-05 コニカミノルタホールディングス株式会社 Gas barrier film and gas barrier film formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113698A (en) * 2014-12-12 2016-06-23 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Deposition method of transparent multilayer system having scratch resistance properties
JP2019145787A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Magnetoresistive effect element and manufacturing method of the same
JP7226710B2 (en) 2018-02-16 2023-02-21 Tdk株式会社 Magnetoresistive element and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2014061617A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5136114B2 (en) Method and apparatus for producing gas barrier film
JP5786940B2 (en) Gas barrier film and method for producing the same
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
US20100261017A1 (en) Method of producing gas barrier laminate and gas barrier laminate obtained
WO2014163062A1 (en) Method for manufacturing gas barrier film, gas barrier film, and electronic device
WO2016052369A1 (en) Laminated film and flexible electronic device
US20100098955A1 (en) Gas barrier sheet
JP6398986B2 (en) Gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
JP5798747B2 (en) Manufacturing method of laminate
WO2015053405A1 (en) Method for manufacturing gas barrier film
WO2014061617A1 (en) Modification method
JPWO2016039237A1 (en) Functional element and method for manufacturing functional element
JP2014141055A (en) Gas barrier film
JP4946049B2 (en) Method for producing amorphous boron nitride thin film
WO2015083706A1 (en) Gas barrier film and method for producing same
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP6582842B2 (en) Method for producing gas barrier film
WO2015053055A1 (en) Functional film
KR20160141211A (en) Apparatus for producing gas barrier film by vacuum deposition
WO2018101084A1 (en) Gas barrier film and flexible electronic device
JP2016022589A (en) Gas barrier film
JP5811959B2 (en) Gas barrier film manufacturing method and manufacturing apparatus
WO2015025783A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP2005076099A (en) Method of producing thin film, thin film produced thereby, stacked thin film, transparent plastic film, and organic el element with stacked thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847708

Country of ref document: EP

Kind code of ref document: A1