WO2014061614A1 - Production method for glass having anti-reflective properties - Google Patents

Production method for glass having anti-reflective properties Download PDF

Info

Publication number
WO2014061614A1
WO2014061614A1 PCT/JP2013/077844 JP2013077844W WO2014061614A1 WO 2014061614 A1 WO2014061614 A1 WO 2014061614A1 JP 2013077844 W JP2013077844 W JP 2013077844W WO 2014061614 A1 WO2014061614 A1 WO 2014061614A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
producing
gas
substrate
Prior art date
Application number
PCT/JP2013/077844
Other languages
French (fr)
Japanese (ja)
Inventor
澁谷 崇
直樹 岡畑
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014061614A1 publication Critical patent/WO2014061614A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface

Definitions

  • the present invention relates to a method for producing an antireflective glass.
  • various glass products such as glass for building materials, glass for display panels, optical elements, glass for solar cell panels, show window glass, optical glass, and eyeglass lenses may require high light transmittance.
  • a glass substrate having antireflection properties is used.
  • Such an antireflection glass substrate is formed by, for example, coating the surface of the glass substrate with a low refractive index material by an immersion method, or a multilayer film on the surface of the glass substrate by a dry method such as vapor deposition or sputtering. Or the like can be formed.
  • a glass substrate having an antireflection film formed on the surface by various methods is used.
  • antiglare properties may be required for the above glass products in order to suppress glare due to reflection.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing glass having both antiglare property and antireflection property.
  • a method for producing an antireflective glass (A) providing a glass substrate having an anti-glare surface; (B) contacting a treatment gas containing a fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere; The manufacturing method of the glass which has antireflective property characterized by having is provided.
  • the fluorine compound may contain hydrogen fluoride and / or trifluoroacetic acid.
  • the concentration of the hydrogen fluoride gas in the processing gas may be in the range of 0.1 vol% to 10 vol%.
  • the processing gas may further contain nitrogen and / or argon.
  • the arithmetic average roughness Ra of the surface of the glass substrate after the step (b) is 10 nm or more, and the maximum height roughness Rz is 0.3 ⁇ m or more. May be.
  • the glass substrate in the step (b), may be brought into contact with the processing gas in a transported state.
  • an injector is disposed on the upper part of the glass substrate,
  • the processing gas may be emitted from the injector toward the glass substrate.
  • the injector is not limited to the upper part of the glass substrate but may be arranged in the lower part.
  • the time for the glass substrate to pass under the injector may be between 1 second and 120 seconds.
  • the difference ⁇ Tt may be 1% or more.
  • the step (a) includes performing at least one selected from the group consisting of blasting, wet processing, and embossing on the glass substrate. May be. A plurality of processes may be combined.
  • the glossiness on the surface of the glass substrate after the step (b) may be 70% or less.
  • the glass may be a solar cell panel or a display panel.
  • a solar cell panel or a display panel manufactured using the manufacturing method as described above may be provided.
  • a method for producing glass having both antiglare property and antireflection property can be provided.
  • This embodiment is a method for producing an antireflective glass, (A) providing a glass substrate having an anti-glare surface; (B) contacting a processing gas containing a gaseous fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere; The manufacturing method characterized by having is provided.
  • a glass substrate having an antireflection film formed on the surface by various methods is used.
  • antiglare properties may be required for the above glass products in order to suppress glare due to reflection.
  • the glass manufacturing method according to the present embodiment exhibits antireflection properties by etching using a gas. Therefore, precise refractive index control and film thickness control on the surface of the glass substrate, which are indispensable in a method of developing antireflection properties such as a conventional lamination method, are not necessary in this embodiment.
  • the method for producing glass according to this embodiment includes the step of (b) contacting a processing gas containing a gaseous fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere. It has the feature of having.
  • the surface of the glass substrate having irregularities can be etched, for example, on the order of 1 nm to 200 nm.
  • antireflection properties can be expressed with respect to the glass substrate even by such a fine etching process.
  • the antireflection property is exhibited in the glass substrate by the fine etching process.
  • the surface of the glass substrate is not affected by the unevenness formed in advance, and the surface of the glass substrate has a uniform thickness and is substantially perpendicular to the (depth) direction.
  • the unevenness can be further formed, and the treatment for imparting the antireflection property to the glass substrate can be appropriately performed. Therefore, in the manufacturing method according to this embodiment, it is possible to appropriately perform the treatment for imparting antireflection properties to a glass substrate having antiglare properties, for example, a glass substrate having irregularities on the order of ⁇ m.
  • this embodiment can provide a method for producing glass having both antiglare property and antireflection property.
  • FIG. 1 schematically shows a flow of a glass manufacturing method according to an embodiment of the present invention.
  • a method for producing glass includes: (A) preparing a glass substrate having a surface having antiglare properties (step S110); (B) contacting a treatment gas containing a fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere (step S120); Have
  • Step S110 First, a glass substrate is prepared.
  • the type of glass substrate is not particularly limited.
  • a transparent glass substrate made of soda lime glass, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, and other various glasses. Can be used.
  • the glass substrate preferably contains an alkali element, alkaline earth element rope, and / or aluminum such as soda lime silicate glass or aluminosilicate glass.
  • the fluorine compound tends to remain on the surface of the glass substrate during the subsequent etching process in step S120.
  • Such a residual fluorine compound contributes to the improvement of the light transmittance of the glass substrate. That is, the refractive index (n 1 ) of the residual fluorine compound usually has a refractive index between the refractive index (n 2 ) of the glass substrate and the refractive index of air (n 0 ). For this reason, when the glass substrate, the fluorine compound, and the air are arranged in this order, the reflectance as a whole is lowered, and as a result, the light transmittance of the glass substrate is improved.
  • the glass substrate preferably has a high transmittance in a wavelength region of 350 nm to 800 nm, for example, a transmittance of 80% or more. Further, it is desirable that the glass substrate has sufficient insulation and high chemical and physical durability.
  • the manufacturing method of the glass substrate is not particularly limited.
  • the glass substrate may be manufactured by a float method, for example.
  • the thickness of the glass substrate is not particularly limited, but may be in the range of 0.1 mm to 12 mm, for example.
  • the glass substrate does not necessarily have to be flat, and the glass substrate may have a curved surface shape or an irregular shape.
  • a surface pattern of a forming roller during glass forming is formed on the surface. Glass called “template” may be used.
  • antiglare process a process for imparting antiglare properties to the glass substrate.
  • Anti-glare treatment is performed, for example, by roughening the surface of the glass substrate and forming irregularities on the surface.
  • Such a process for forming irregularities on the surface may be performed by, for example, a blast process, a wet process, or an embossing process.
  • the blasting process is a general term for a process (for example, a sandblasting process, a water blasting process, a dry ice blasting process, etc.) that causes a surface of a glass substrate to collide with a medium such as alumina to roughen the surface.
  • wet processing means the general term for the process which makes a glass substrate rough by immersing a glass substrate in various solutions.
  • the die pressing process is a general term for a process of transferring a pattern to a glass substrate by pressing a mold having a concavo-convex pattern onto the surface of the glass substrate like a plate glass.
  • the process of roughening the surface of the glass substrate and imparting anti-glare property by non-uniformly “removing” the surface of the glass substrate has been described.
  • the “anti-glare process” is not limited to such a mode.
  • the surface of the glass substrate may be unevenly formed (eg, silica coating) by coating the surface of the glass substrate with a non-uniform “application” of the same type of material or another material that constitutes the glass substrate. It may be formed.
  • the “anti-glare property” of the glass substrate is JIS B 0601. It is represented by the maximum height roughness Rz of the glass substrate obtained by the measuring method based on 2001, and may be in the range of 0.3 ⁇ m to 10 ⁇ m, for example.
  • the glossiness of the glass substrate after the antiglare treatment is, for example, 70% or less, preferably 65% or less, and more preferably 60% or less.
  • the "glossiness" of a glass substrate means the value obtained by the measuring method based on JISZ8741.
  • the glossiness is a numerical value reflecting the reflectance, the glossiness is lowered by improving the antireflection performance even if the shape of the substrate surface is the same.
  • Step S120 Next, the glass substrate prepared in step S110 described above is exposed to a processing gas containing a fluorine compound, and an etching process for the glass substrate is performed. This process is performed on the surface of the glass substrate that has been antiglare treated in step S110. In addition, the etching process is performed in an atmospheric atmosphere at normal pressure.
  • This step is performed to form fine irregularities on the surface of the glass substrate, for example, on the order of 1 nm to 200 nm. Due to the presence of these fine irregularities, antireflection properties are imparted to the glass substrate.
  • the etching amount of the glass substrate etched by this treatment is on the order of nm and is extremely fine. Therefore, it should be noted that the etching process hardly affects the antiglare property developed in the glass substrate in step S110.
  • Etching is performed in the range of 250 ° C to 650 ° C.
  • the treatment temperature is preferably in the range of 275 ° C. to 600 ° C., more preferably in the range of 300 ° C. to 600 ° C.
  • the kind of the fluorine compound used for the etching treatment is not particularly limited as long as it is a gas containing hydrogen fluoride at the time of etching on the glass surface.
  • a raw material of the processing gas containing a fluorine compound for example, hydrogen fluoride and / or trifluoroacetic acid may be used.
  • Hydrogen fluoride and trifluoroacetic acid are preferable from the viewpoint of safety because they are non-explosive.
  • Trifluoroacetic acid is thermally decomposed by the temperature of the glass surface to generate hydrogen fluoride.
  • the treatment gas may contain a carrier gas in addition to the gaseous fluorine compound.
  • the carrier gas is not limited to this, but, for example, nitrogen and / or argon is used.
  • the concentration of the fluorine compound in the processing gas is not particularly limited as long as the surface of the glass substrate is appropriately etched.
  • the concentration of the fluorine compound in the processing gas is, for example, in the range of 0.1 vol% to 10 vol%, preferably in the range of 0.3 vol% to 8 vol%, and in the range of 0.5 vol% to 5 vol%. It is more preferable.
  • the etching treatment of the glass substrate may be performed in a state where the glass substrate is conveyed. In this case, faster processing is possible.
  • FIG. 2 shows a configuration example of a processing apparatus for performing an etching process on a glass substrate while the glass substrate 180 is conveyed.
  • the gaseous fluorine compound is hydrogen fluoride gas
  • the processing apparatus 100 includes an injector 110 and a transport unit 150.
  • the transport means 150 can transport the glass substrate 180 placed on the top in the horizontal direction (X direction) as indicated by an arrow F201.
  • the injector 110 is disposed above the conveying means 150 and the glass substrate 180.
  • the injector 110 has a plurality of slits 115, 120, and 125 that serve as a flow path for the processing gas. That is, the injector 110 is provided along the vertical direction (Z direction) so as to surround the first slit 115 provided in the central portion along the vertical direction (Z direction). A second slit 120 and a third slit 125 provided along the vertical direction (Z direction) so as to surround the second slit 120 are provided.
  • One end (upper part) of the first slit 115 is connected to a hydrogen fluoride gas source (not shown), and the other end (lower part) of the first slit 115 is oriented toward the glass substrate 180.
  • one end (upper part) of the second slit 120 is connected to a carrier gas source (not shown), and the other end (lower part) of the second slit 120 is oriented toward the glass substrate 180. Is done.
  • One end (upper part) of the third slit 125 is connected to an exhaust system (not shown), and the other end (lower part) of the third slit 125 is oriented toward the glass substrate 180.
  • a carrier gas may be simultaneously supplied to the first slit 115 in addition to the hydrogen fluoride gas.
  • the glass substrate 180 is conveyed by the conveying means 150 in the direction of arrow F201.
  • the glass substrate 180 passes below the injector 110, the glass substrate 180 comes into contact with the processing gas (hydrogen fluoride gas + carrier gas) supplied from the first slit 115 and the second slit 120. Thereby, the surface of the glass substrate 180 is etched.
  • the processing gas hydrogen fluoride gas + carrier gas
  • processing gas supplied to the surface of the glass substrate 180 moves as indicated by an arrow F215 and is used for an etching process, and then moves as indicated by an arrow F220 and is connected to an exhaust system. It is discharged to the outside of the processing apparatus 100 via 125.
  • the processing apparatus 100 By using the processing apparatus 100, it is possible to carry out the etching process of the surface with the processing gas while conveying the glass substrate. In this case, the processing efficiency can be improved as compared with a method of performing an etching process using a reaction vessel. In addition, when the processing apparatus 100 is used, the etching process can be applied to a large glass substrate.
  • the supply speed of the processing gas to the glass substrate 180 is not particularly limited.
  • the supply speed of the processing gas may be, for example, in the range of 5 SLM to 1000 SLM (volume per minute (liter) in a standard state gas).
  • the conveyance speed of the glass substrate 180 is, for example, 1 m / min to 20 m / min.
  • the passage time of the glass substrate 180 through the injector 110 is in the range of 1 second to 120 seconds, preferably in the range of 5 seconds to 60 seconds, and more preferably in the range of 5 seconds to 30 seconds. By setting the passage time of the glass substrate 180 through the injector 110 to 120 seconds or less, a rapid etching process can be performed.
  • the “passing time of the injector 110” means a time for a certain region of the glass substrate 180 to pass the distance S in FIG.
  • the distance S is a slit on the most upstream side of the slit on the most upstream side of the injector 110 (slit 125 in the example of FIG. 2) with respect to the conveyance direction of the glass substrate 180 (slit 125 in the example of FIG. 2). ) Is determined by the distance between the downstream ends.
  • the processing apparatus 100 it is possible to perform the etching process on the glass substrate in the transported state.
  • the processing apparatus 100 illustrated in FIG. 2 is merely an example, and the etching process of the glass substrate with the processing gas containing hydrogen fluoride gas may be performed using another apparatus.
  • the glass substrate 180 moves relative to the stationary injector 110.
  • the injector may be moved in the horizontal direction with respect to the stationary glass substrate.
  • both the glass substrate and the injector may be moved in directions opposite to each other.
  • the injector 110 has a total of three slits 115, 120, and 125.
  • the number of slits is not particularly limited.
  • the number of slits may be two.
  • one slit may be used for supplying a processing gas (a mixed gas of carrier gas and hydrogen fluoride gas), and another slit may be used for exhaust.
  • the second slit 120 of the injector 110 is disposed so as to surround the first slit 115, and the third slit 125 is the first slit 115 and the second slit 120. Is provided so as to surround.
  • the first slit, the second slit, and the third slit may be arranged in a line along the horizontal direction (X direction). In this case, the processing gas moves along the surface of the glass substrate along one direction, and then is exhausted through the third slit.
  • Example 1 Antireflection glass having antiglare properties was produced by the following method, and the characteristics thereof were evaluated.
  • Anti-glare treatment First, antiglare treatment was performed on one surface of a 3 mm thick glass substrate (soda lime glass).
  • Anti-glare treatment was performed by wet treatment. Specifically, the antiglare treatment was performed by immersing one surface of the glass substrate in a hydrofluoric acid solution at room temperature for 30 minutes. As a result, an “antiglare substrate according to Example 1” was obtained.
  • the glossiness of the surface of the antiglare substrate according to Example 1 was measured.
  • a gloss checker IG-331 manufactured by HORIBA, Ltd. was used to measure the glossiness, and the 60 ° glossiness was measured based on JIS Z8741.
  • the 60 ° glossiness of the antiglare substrate according to Example 1 was 56%, and it was confirmed that significant antiglare property was obtained.
  • a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second.
  • the supply amount of hydrogen fluoride gas is 1.0 SLM (volume per minute in standard state gas (liter))
  • the supply amount of nitrogen gas is 31.0 SLM (volume per minute in standard state gas). (Liter)).
  • the mixed gas was supplied in a state heated to 150 ° C.
  • nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second.
  • the temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
  • the concentration of hydrogen fluoride gas with respect to the total supply gas is 2.4 vol%.
  • the exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
  • the conveyance speed of the anti-glare substrate according to Example 1 was 2 m / min, and the anti-glare substrate according to Example 1 was conveyed while being heated to 580 ° C.
  • the temperature of the antiglare substrate according to Example 1 is a value measured using a radiation thermometer immediately before supplying the processing gas.
  • the etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
  • Example 1 After this treatment, a large number of irregularities on the order of nm were formed on the etched surface of the antiglare substrate according to Example 1.
  • the obtained anti-glare substrate according to Example 1 is referred to as “glass according to Example 1”.
  • the antireflection property of glass was evaluated by measuring the total light transmittance.
  • the total light transmittance was measured based on JIS K7361-1 using a haze meter HZ-2 (Suga Test Machine).
  • the light source was a C light source.
  • the total light transmittance Tt of the glass according to Example 1 was 94.9%.
  • the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 1, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Example 1 with respect to the untreated glass substrate is 3.2%. Further, the transmittance increase value ⁇ Tt of the glass according to Example 1 with respect to the antiglare substrate according to Example 1 is 2.5%.
  • the glass according to Example 1 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 1.
  • the 60 ° glossiness of the glass according to Example 1 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 1 was 30%.
  • the roughness of the treated surface of the glass according to Example 1 was measured based on JIS B0601: 2001.
  • the arithmetic average roughness Ra of the surface of the glass according to Example 1 was 70 nm.
  • the maximum height roughness Rz of the glass surface according to Example 1 was 0.486 ⁇ m. Note that these measurements were carried out with the number of acquired data being 1024 ⁇ 1024 in a 2 ⁇ m ⁇ 2 ⁇ m region of the sample.
  • the glass according to Example 1 has antiglare property and significant low reflectivity.
  • Example 2 Antireflection glass having antiglare properties was produced by the following method, and the characteristics thereof were evaluated.
  • Anti-glare treatment First, antiglare treatment was performed on one surface of a 3 mm thick glass substrate (soda lime glass).
  • Anti-glare treatment was performed by sandblasting one surface of the glass substrate. As a result, an “antiglare substrate according to Example 2” was obtained.
  • the surface gloss of the antiglare substrate according to Example 2 was measured by the method described above. As a result of the measurement, the 60 ° glossiness was 32%, and it was confirmed that significant antiglare property was obtained.
  • Example 2 (Etching process) Next, using the antiglare substrate according to Example 2, an etching process using HF gas was performed in the same manner as in Example 1 described above. However, in Example 2, the temperature of the antiglare substrate according to Example 2 was set to 530 ° C. Other conditions are the same as in the first embodiment.
  • glass according to Example 2 After this etching process, a large number of irregularities on the order of nm were formed on the processed surface of the antiglare substrate according to Example 2.
  • the obtained glass substrate is referred to as “glass according to Example 2”.
  • the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 2, the total light transmittance Tt was 91.5%. From this result, the transmittance increase value ⁇ Tt of the glass according to Example 2 with respect to the untreated glass substrate is 1.0%. Further, the transmittance increase value ⁇ Tt of the glass according to Example 2 with respect to the antiglare substrate according to Example 2 is 1.2%.
  • the glass according to Example 2 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 2.
  • the 60 ° glossiness of the glass according to Example 2 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 2 was 21%.
  • the roughness of the treated surface of the glass according to Example 2 was measured by the method described above.
  • the arithmetic average roughness Ra of the surface of the glass according to Example 2 was 99 nm.
  • the maximum height roughness Rz of the glass surface according to Example 2 was 0.679 ⁇ m.
  • the glass according to Example 2 has antiglare properties and significantly low reflectivity.
  • Example 3 By the same method as in Example 1, anti-glare glass having antiglare properties was produced, and its characteristics were evaluated.
  • Example 3 the etching process was performed under the following conditions.
  • Etching with HF gas was performed using a glass substrate that was anti-glare treated in the same manner as in Example 1 (hereinafter referred to as “anti-glare substrate according to Example 3”).
  • anti-glare substrate the processing apparatus 100 shown in FIG. 2 was used.
  • a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second.
  • the supply amount of hydrogen fluoride gas is 1.5 SLM (volume per minute in standard state gas (liter)), and the supply amount of nitrogen gas is 30.5 SLM (volume per minute in standard state gas). (Liter)).
  • the mixed gas was supplied in a state heated to 150 ° C.
  • nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second.
  • the temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
  • the concentration of hydrogen fluoride gas with respect to the total supply gas is 3.6 vol%.
  • the exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
  • the conveyance speed of the anti-glare substrate according to Example 3 was 2 m / min, and the anti-glare substrate according to Example 3 was conveyed while being heated to 350 ° C.
  • the etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
  • Example 3 After this treatment, a large number of nanometer-order irregularities were formed on the treated surface of the antiglare substrate according to Example 3.
  • the obtained anti-glare substrate according to Example 3 is referred to as “glass according to Example 3”.
  • the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 3, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Example 3 with respect to the untreated glass substrate is 2.5%. Further, the transmittance increase value ⁇ Tt of the glass according to Example 3 with respect to the antiglare substrate according to Example 3 is 1.8%.
  • the glass according to Example 3 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 3.
  • the 60 ° glossiness of the glass according to Example 3 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 3 was 49%.
  • the roughness of the treated surface of the glass according to Example 3 was measured by the method described above.
  • the arithmetic average roughness Ra of the surface of the glass according to Example 3 was 78 nm.
  • the maximum height roughness Rz of the glass surface according to Example 3 was 0.475 ⁇ m.
  • the glass according to Example 3 has antiglare property and significant low reflectivity.
  • Etching with HF gas was performed using a glass substrate that was anti-glare treated in the same manner as in Example 1 (hereinafter referred to as “anti-glare substrate according to Comparative Example 1”).
  • anti-glare substrate according to Comparative Example 1 the processing apparatus 100 shown in FIG. 2 was used.
  • a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second.
  • the supply amount of hydrogen fluoride gas is 1.5 SLM (volume per minute in standard state gas (liter)), and the supply amount of nitrogen gas is 30.5 SLM (volume per minute in standard state gas). (Liter)).
  • the mixed gas was supplied in a state heated to 150 ° C.
  • nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second.
  • the temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
  • the concentration of hydrogen fluoride gas with respect to the total supply gas is 3.6 vol%.
  • the exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
  • the conveyance speed of the anti-glare substrate according to Comparative Example 1 was 2 m / min, and the anti-glare substrate according to Comparative Example 1 was conveyed in a state heated to 200 ° C.
  • the etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
  • the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Comparative Example 1, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Comparative Example 1 with respect to the untreated glass substrate is 0.7%. The transmittance increase value ⁇ Tt of the glass according to Comparative Example 1 with respect to the antiglare substrate according to Comparative Example 1 is 0.0%.
  • the transmittance increase width was less than 1% as compared with the untreated glass substrate and the anti-glare substrate according to Comparative Example 1.
  • the 60 ° glossiness of the glass according to Comparative Example 1 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Comparative Example 1 was 54%.
  • the roughness of the treated surface of the glass according to Comparative Example 1 was measured by the method described above.
  • the arithmetic average roughness Ra of the surface of the glass according to Comparative Example 1 was 66 nm.
  • the maximum height roughness Rz of the surface of the glass which concerns on the comparative example 1 was 0.449 micrometer.
  • the glass according to Comparative Example 1 has antiglare property, but low reflectivity is insufficient.
  • the etching treatment was performed under the same conditions as in Example 3 using ordinary soda lime glass having no antireflection property, and the same measurement was performed before and after that, the total light transmittance Tt before the etching treatment was obtained.
  • the total light transmittance Tt after the etching treatment was 94.2%, and the transmittance increase value was 2.5%. Therefore, it was confirmed that the glass in the examples of the present application has antiglare properties and significantly low reflectivity.
  • the present invention is used for, for example, glass products having high light transmittance, such as glass for building materials, glass for automobiles, glass for displays, optical elements, glass for solar cells, show window glass, optical glass, and eyeglass lenses. can do.
  • glass products having high light transmittance such as glass for building materials, glass for automobiles, glass for displays, optical elements, glass for solar cells, show window glass, optical glass, and eyeglass lenses. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

This production method for a glass having anti-reflective properties is characterized by being provided with: (a) a step in which a glass substrate having a surface provided with anti-glare properties is prepared; and (b) a step in which a processing gas including a fluorine compound is brought into contact with the surface of the glass substrate, at normal pressure, under air atmosphere, at a temperature in the range of 250˚C to 650˚C.

Description

反射防止性を有するガラスの製造方法Method for producing glass having antireflection property
 本発明は、反射防止性を有するガラスの製造方法に関する。 The present invention relates to a method for producing an antireflective glass.
 例えば、建材用ガラス、ディスプレイパネル用ガラス、光学素子、太陽電池パネル用ガラス、ショーウィンドウガラス、光学ガラス、およびメガネレンズなど、各種ガラス製品において、高い光透過性が要求される場合がある。このような場合、反射防止性を有するガラス基板が使用される。 For example, various glass products such as glass for building materials, glass for display panels, optical elements, glass for solar cell panels, show window glass, optical glass, and eyeglass lenses may require high light transmittance. In such a case, a glass substrate having antireflection properties is used.
 そのような反射防止性を有するガラス基板は、例えば、浸漬法により、ガラス基板の表面に低屈折率材料をコーティングしたり、蒸着法またはスパッタ法等の乾式法により、ガラス基板の表面に多層膜を形成したりすることにより、構成することができる。 Such an antireflection glass substrate is formed by, for example, coating the surface of the glass substrate with a low refractive index material by an immersion method, or a multilayer film on the surface of the glass substrate by a dry method such as vapor deposition or sputtering. Or the like can be formed.
日本特表2009-529715号公報Japan Special Table 2009-529715
 前述のように、高い光透過性が要求されるガラス製品を製造する場合、各種方法で表面に反射防止膜を形成したガラス基板が使用される。 As described above, when manufacturing a glass product requiring high light transmittance, a glass substrate having an antireflection film formed on the surface by various methods is used.
 一方、例えば、前述のようなガラス製品に対して、反射によるぎらつきを抑制するため、アンチグレア性が要求される場合がある。この場合、ガラス基板の表面を意図的に粗くし、表面にμmオーダの凹凸を形成する処理を行うことが必要となる。 On the other hand, for example, antiglare properties may be required for the above glass products in order to suppress glare due to reflection. In this case, it is necessary to intentionally roughen the surface of the glass substrate and perform a process of forming irregularities on the order of μm on the surface.
 しかしながら、表面にそのような凹凸を有するガラス基板に対して、適正に反射防止膜を形成することは、極めて難しいという問題がある。また、形成された反射防止膜の膜厚が所定の範囲からずれていたり、膜厚の均一性が悪かったりすると、ガラス基板に対して、所望の反射防止性を発現させることができなくなってしまう。 However, there is a problem that it is extremely difficult to properly form an antireflection film on a glass substrate having such irregularities on the surface. In addition, if the thickness of the formed antireflection film is deviated from a predetermined range or the uniformity of the film thickness is poor, the glass substrate cannot exhibit desired antireflection properties. .
 本発明は、このような問題に鑑みなされたものであり、本発明では、アンチグレア性と反射防止性をともに有するガラスの製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing glass having both antiglare property and antireflection property.
 本発明では、反射防止性を有するガラスの製造方法であって、
 (a)アンチグレア性を有する表面を有するガラス基板を準備するステップと、
 (b)常圧、大気雰囲気下、250℃~650℃の温度範囲において、前記ガラス基板の前記表面に、フッ素化合物を含む処理ガスを接触させるステップと、
 を有することを特徴とする反射防止性を有するガラスの製造方法が提供される。
In the present invention, a method for producing an antireflective glass,
(A) providing a glass substrate having an anti-glare surface;
(B) contacting a treatment gas containing a fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere;
The manufacturing method of the glass which has antireflective property characterized by having is provided.
 ここで、本発明による製造方法において、前記フッ素化合物は、フッ化水素および/またはトリフロロ酢酸を含んでも良い。 Here, in the production method according to the present invention, the fluorine compound may contain hydrogen fluoride and / or trifluoroacetic acid.
 また、本発明による製造方法において、前記処理ガス中のフッ化水素ガスの濃度は、0.1vol%~10vol%の範囲であっても良い。 In the manufacturing method according to the present invention, the concentration of the hydrogen fluoride gas in the processing gas may be in the range of 0.1 vol% to 10 vol%.
 また、本発明による製造方法において、前記処理ガスは、さらに、窒素および/またはアルゴンを含んでも良い。 In the manufacturing method according to the present invention, the processing gas may further contain nitrogen and / or argon.
 また、本発明による製造方法において、前記(b)のステップの後のガラス基板の前記表面の算術平均粗さRaは、10nm以上であり、最大高さ粗さRzは、0.3μm以上であっても良い。 In the manufacturing method according to the present invention, the arithmetic average roughness Ra of the surface of the glass substrate after the step (b) is 10 nm or more, and the maximum height roughness Rz is 0.3 μm or more. May be.
 また、本発明による製造方法では、前記(b)のステップにおいて、前記ガラス基板は、搬送された状態で前記処理ガスに接触しても良い。 Moreover, in the manufacturing method according to the present invention, in the step (b), the glass substrate may be brought into contact with the processing gas in a transported state.
 また、本発明による製造方法において、前記ガラス基板の上部には、インジェクタが配置され、
 前記処理ガスは、前記インジェクタから、前記ガラス基板に向かって放出されても良い。
Further, in the manufacturing method according to the present invention, an injector is disposed on the upper part of the glass substrate,
The processing gas may be emitted from the injector toward the glass substrate.
 また、本発明による製造方法において、インジェクタの配置は、前記ガラス基板の上部に限定されず下部に配置されても良い。また、前記ガラス基板が前記インジェクタの下を通過する時間は、1秒~120秒の間であっても良い。 Moreover, in the manufacturing method according to the present invention, the injector is not limited to the upper part of the glass substrate but may be arranged in the lower part. The time for the glass substrate to pass under the injector may be between 1 second and 120 seconds.
 また、本発明による製造方法において、前記(b)のステップ後の前記ガラス基板の全光線透過率と、前記(a)のステップ後前記(b)のステップ前の前記ガラス基板の全光線透過率との差ΔTtは、1%以上であっても良い。 In the manufacturing method according to the present invention, the total light transmittance of the glass substrate after the step (b) and the total light transmittance of the glass substrate after the step (a) and before the step (b). The difference ΔTt may be 1% or more.
 また、本発明による製造方法において、前記(a)のステップは、ガラス基板に対して、ブラスト処理、湿式処理、および型押し処理からなる群から選定された少なくとも一つを実施するステップを有しても良い。複数の処理を組み合わせて良い。 In the manufacturing method according to the present invention, the step (a) includes performing at least one selected from the group consisting of blasting, wet processing, and embossing on the glass substrate. May be. A plurality of processes may be combined.
 また、本発明による製造方法において、前記(b)のステップ後の前記ガラス基板の前記表面における光沢度は、70%以下であっても良い。 In the manufacturing method according to the present invention, the glossiness on the surface of the glass substrate after the step (b) may be 70% or less.
 また、本発明による製造方法において、前記ガラスは、太陽電池用のパネルまたはディスプレイ用のパネルであっても良い。 Further, in the manufacturing method according to the present invention, the glass may be a solar cell panel or a display panel.
 また、本発明では、前述のような製造方法を用いて製造された太陽電池用のパネルまたはディスプレイ用のパネルが提供されても良い。 In the present invention, a solar cell panel or a display panel manufactured using the manufacturing method as described above may be provided.
 本発明では、アンチグレア性と反射防止性をともに有するガラスの製造方法を提供することができる。 In the present invention, a method for producing glass having both antiglare property and antireflection property can be provided.
本発明の一実施例によるガラスの製造方法のフローを概略的に示した図である。It is the figure which showed schematically the flow of the manufacturing method of the glass by one Example of this invention. ガラス基板を搬送させた状態で、ガラス基板のエッチング処理を実施するための処理装置の一構成例を示した図である。It is the figure which showed the example of 1 structure of the processing apparatus for implementing the etching process of a glass substrate in the state which conveyed the glass substrate.
 以下、図面を参照して、本発明の一態様について詳しく説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 本実施態様は、反射防止性を有するガラスの製造方法であって、
 (a)アンチグレア性を有する表面を有するガラス基板を準備するステップと、
 (b)常圧、大気雰囲気下、250℃~650℃の温度範囲において、前記ガラス基板の前記表面に、気体状フッ素化合物を含む処理ガスを接触させるステップと、
 を有することを特徴とする製造方法が提供される。
This embodiment is a method for producing an antireflective glass,
(A) providing a glass substrate having an anti-glare surface;
(B) contacting a processing gas containing a gaseous fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere;
The manufacturing method characterized by having is provided.
 前述のように、高い光透過性が要求されるガラス製品を製造する場合、各種方法で表面に反射防止膜を形成したガラス基板が使用される。 As described above, when manufacturing a glass product requiring high light transmittance, a glass substrate having an antireflection film formed on the surface by various methods is used.
 一方、例えば、前述のようなガラス製品に対して、反射によるぎらつきを抑制するため、アンチグレア性が要求される場合がある。この場合、ガラス基板の表面を意図的に粗くし、表面に凹凸を形成する処理を行うことが必要となる。 On the other hand, for example, antiglare properties may be required for the above glass products in order to suppress glare due to reflection. In this case, it is necessary to intentionally roughen the surface of the glass substrate and perform a process of forming irregularities on the surface.
 しかしながら、表面にそのような凹凸を有するガラス基板に対して、適正に反射防止膜を形成することは、極めて難しいという問題がある。また、形成された反射防止膜の膜厚が所定の範囲からずれていたり、膜厚の均一性が悪いと、ガラス基板に対して、所望の反射防止性を発現させることができなくなってしまう。 However, there is a problem that it is extremely difficult to properly form an antireflection film on a glass substrate having such irregularities on the surface. In addition, if the thickness of the formed antireflection film is deviated from a predetermined range or the uniformity of the film thickness is poor, the desired antireflection property cannot be exhibited on the glass substrate.
 これに対して、本実施態様によるガラスの製造方法は、ガスを用いたエッチングにより、反射防止性を発現させる。そのため、従来の積層法のような反射防止性を発現させる手法において必須となる、ガラス基板の表面における精密な屈折率制御、膜厚制御が本実施態様では必要ではない。 In contrast, the glass manufacturing method according to the present embodiment exhibits antireflection properties by etching using a gas. Therefore, precise refractive index control and film thickness control on the surface of the glass substrate, which are indispensable in a method of developing antireflection properties such as a conventional lamination method, are not necessary in this embodiment.
 本実施態様によるガラスの製造方法は、(b)常圧、大気雰囲気下、250℃~650℃の温度範囲において、前記ガラス基板の表面に、気体状フッ素化合物を含む処理ガスを接触させるステップを有するという特徴を有する。 The method for producing glass according to this embodiment includes the step of (b) contacting a processing gas containing a gaseous fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere. It has the feature of having.
 このステップでは、凹凸を有するガラス基板の表面を、例えば、1nm~200nmのオーダでエッチング処理することができる。なお、本願発明者らによれば、この程度の微細なエッチング処理によっても、ガラス基板に対して、反射防止性を発現させることができることが確認されている。 In this step, the surface of the glass substrate having irregularities can be etched, for example, on the order of 1 nm to 200 nm. In addition, according to the inventors of the present application, it has been confirmed that antireflection properties can be expressed with respect to the glass substrate even by such a fine etching process.
 このように、本実施態様による製造方法では、微細なエッチング処理により、ガラス基板に反射防止性を発現させる。このため、本実施態様による製造方法では、ガラス基板の表面に予め形成されている凹凸形状に左右されることなく、ガラス基板の表面に均一な厚さで略直交する(深さ)方向に微細な凹凸をさらに形成し、ガラス基板に対して、反射防止性を付与する処理を適正に実施することができる。従って、本実施態様による製造方法では、アンチグレア性を有するガラス基板、例えば表面にμmオーダの凹凸を有するガラス基板に対しても、反射防止性を付与する処理を適正に実施することができる。 As described above, in the manufacturing method according to this embodiment, the antireflection property is exhibited in the glass substrate by the fine etching process. For this reason, in the manufacturing method according to the present embodiment, the surface of the glass substrate is not affected by the unevenness formed in advance, and the surface of the glass substrate has a uniform thickness and is substantially perpendicular to the (depth) direction. The unevenness can be further formed, and the treatment for imparting the antireflection property to the glass substrate can be appropriately performed. Therefore, in the manufacturing method according to this embodiment, it is possible to appropriately perform the treatment for imparting antireflection properties to a glass substrate having antiglare properties, for example, a glass substrate having irregularities on the order of μm.
 このような効果により、本実施態様では、アンチグレア性と反射防止性をともに有するガラスの製造方法を提供することができる。 Due to such effects, this embodiment can provide a method for producing glass having both antiglare property and antireflection property.
 (本発明の一実施例による製造方法について)
 次に、図面を参照して、本発明の一実施例による反射防止性ガラスの製造方法について、詳しく説明する。
(About the manufacturing method by one Example of this invention)
Next, with reference to drawings, the manufacturing method of the antireflective glass by one Example of this invention is demonstrated in detail.
 図1には、本発明の一実施例によるガラスの製造方法のフローを概略的に示す。 FIG. 1 schematically shows a flow of a glass manufacturing method according to an embodiment of the present invention.
 図1に示すように、本発明の一実施例によるガラスの製造方法は、
 (a)アンチグレア性を有する表面を有するガラス基板を準備するステップ(ステップS110)と、
 (b)常圧、大気雰囲気下、250℃~650℃の温度範囲において、前記ガラス基板の前記表面に、フッ素化合物を含む処理ガスを接触させるステップ(ステップS120)と、
 を有する。
As shown in FIG. 1, a method for producing glass according to an embodiment of the present invention includes:
(A) preparing a glass substrate having a surface having antiglare properties (step S110);
(B) contacting a treatment gas containing a fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere (step S120);
Have
 以下、各ステップについて説明する。 Hereafter, each step will be described.
 (ステップS110)
 まず、ガラス基板が準備される。
(Step S110)
First, a glass substrate is prepared.
 ガラス基板の種類は、特に限られない。ガラス基板には、例えば、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウ珪酸ガラス、無アルカリガラス、およびその他の各種ガラスからなる透明ガラス基板を用いることができる。 The type of glass substrate is not particularly limited. As the glass substrate, for example, a transparent glass substrate made of soda lime glass, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, and other various glasses. Can be used.
 特に、ガラス基板は、ソーダライムシリケートガラスまたはアルミノシリケートガラスのような、アルカリ元素、アルカリ土類元索、および/またはアルミニウムが含まれることが好ましい。 In particular, the glass substrate preferably contains an alkali element, alkaline earth element rope, and / or aluminum such as soda lime silicate glass or aluminosilicate glass.
 ガラス基板に、アルカリ元素、アルカリ土類元素、および/またはアルミニウムが含まれる場合、以降のステップS120でのエッチング処理の際に、ガラス基板の表面にフッ素化合物が残留しやすくなる。 When the glass substrate contains an alkali element, alkaline earth element, and / or aluminum, the fluorine compound tends to remain on the surface of the glass substrate during the subsequent etching process in step S120.
 このような残留フッ素化合物は、ガラス基板の光透過率の向上に寄与する。すなわち、残留フッ素化合物の屈折率(n)は、通常、ガラス基板の屈折率(n)と、空気の屈折率(n)の間の屈折率を有する。このため、ガラス基板、フッ素化合物、および空気がこの順に配置されることにより、全体としての反射率が低下し、結果的に、ガラス基板の光透過率が向上する。 Such a residual fluorine compound contributes to the improvement of the light transmittance of the glass substrate. That is, the refractive index (n 1 ) of the residual fluorine compound usually has a refractive index between the refractive index (n 2 ) of the glass substrate and the refractive index of air (n 0 ). For this reason, when the glass substrate, the fluorine compound, and the air are arranged in this order, the reflectance as a whole is lowered, and as a result, the light transmittance of the glass substrate is improved.
 ガラス基板は、350nm~800nmの波長領城に高い透過率、例えぱ80%以上の透過率を有することが好ましい。また、ガラス基板は、十分な絶縁性を有し、化学的物理的耐久性が高いことが望ましい。 The glass substrate preferably has a high transmittance in a wavelength region of 350 nm to 800 nm, for example, a transmittance of 80% or more. Further, it is desirable that the glass substrate has sufficient insulation and high chemical and physical durability.
 ガラス基板の製造方法は、特に限られない。ガラス基板は、例えばフロート法で製造しても良い。 The manufacturing method of the glass substrate is not particularly limited. The glass substrate may be manufactured by a float method, for example.
 ガラス基板の厚さは、特に限られないが、例えば、0.1mm~12mmの範囲であっても良い。 The thickness of the glass substrate is not particularly limited, but may be in the range of 0.1 mm to 12 mm, for example.
 なお、ガラス基板は、必ずしも平面状である必要はなく、ガラス基板は、曲面状であっても、異型状であっても良く、例えば、表面にガラス成形時の成形ローラー表面模様が形成された、「型板」と呼ばれるガラスであっても良い。 Note that the glass substrate does not necessarily have to be flat, and the glass substrate may have a curved surface shape or an irregular shape. For example, a surface pattern of a forming roller during glass forming is formed on the surface. Glass called “template” may be used.
 次に、ガラス基板に対して、アンチグレア性を付与する処理(以下、「アンチグレア処理」と称する)が実施される。 Next, a process for imparting antiglare properties to the glass substrate (hereinafter referred to as “antiglare process”) is performed.
 アンチグレア処理は、例えば、ガラス基板の表面を粗くし、表面に凹凸を形成することにより実施される。 Anti-glare treatment is performed, for example, by roughening the surface of the glass substrate and forming irregularities on the surface.
 このような表面に凹凸を形成する処理は、例えば、ブラスト処理、湿式処理、または型押し処理によって実施されても良い。 Such a process for forming irregularities on the surface may be performed by, for example, a blast process, a wet process, or an embossing process.
 このうち、ブラスト処理は、ガラス基板の表面にアルミナ等のメディアを衝突させて表面を粗くする処理(例えば、サンドブラスト処理、ウオータブラスト処理、およびドライアイスブラスト処理等)の総称を意味する。また、湿式処理は、ガラス基板を各種溶液中に浸漬させて、表面を粗くする処理の総称を意味する。さらに、型押し処理は、型板ガラスのようにガラス基板の表面に凹凸パターンを有する型を押し付けて、ガラス基板にパターンを転写させる処理の総称を意味する。 Among these, the blasting process is a general term for a process (for example, a sandblasting process, a water blasting process, a dry ice blasting process, etc.) that causes a surface of a glass substrate to collide with a medium such as alumina to roughen the surface. Moreover, wet processing means the general term for the process which makes a glass substrate rough by immersing a glass substrate in various solutions. Furthermore, the die pressing process is a general term for a process of transferring a pattern to a glass substrate by pressing a mold having a concavo-convex pattern onto the surface of the glass substrate like a plate glass.
 なお、上記例では、ガラス基板の表面を不均一に「除去」することにより、ガラス基板の表面を粗くし、アンチグレア性を付与する処理について説明した。しかしながら、「アンチグレア処理」は、このような態様に限られない。例えば、ガラス基板の表面に、部分的にガラス基板を構成する材料と同種の材料または別の材料を不均一に「付与」するコーティング処理により、(例えば、シリカコーティング)ガラス基板の表面に凹凸を形成しても良い。 In the above example, the process of roughening the surface of the glass substrate and imparting anti-glare property by non-uniformly “removing” the surface of the glass substrate has been described. However, the “anti-glare process” is not limited to such a mode. For example, the surface of the glass substrate may be unevenly formed (eg, silica coating) by coating the surface of the glass substrate with a non-uniform “application” of the same type of material or another material that constitutes the glass substrate. It may be formed.
 以上のようなアンチグレア処理により、ガラス基板の表面には、例えば、μmオーダ以上のオーダの凹凸が形成される。ガラス基板の「アンチグレア性」は、JIS B 0601
2001に準拠する測定方法によって得られるガラス基板の最大高さ粗さRzで表され、例えば、0.3μm~10μmの範囲であっても良い。
By the anti-glare treatment as described above, irregularities having an order of μm or more are formed on the surface of the glass substrate, for example. The “anti-glare property” of the glass substrate is JIS B 0601.
It is represented by the maximum height roughness Rz of the glass substrate obtained by the measuring method based on 2001, and may be in the range of 0.3 μm to 10 μm, for example.
 アンチグレア処理後のガラス基板の光沢度は、例えば、70%以下であり、65%以下であることが好ましく、60%以下であることがさらに好ましい。 The glossiness of the glass substrate after the antiglare treatment is, for example, 70% or less, preferably 65% or less, and more preferably 60% or less.
 なお、本願において、ガラス基板の「光沢度」は、JIS Z 8741に準拠する測定方法によって得られた値を意味する。 In addition, in this application, the "glossiness" of a glass substrate means the value obtained by the measuring method based on JISZ8741.
 光沢度は、反射率を反映する数値であるため、基板表面の形状は同等であっても反射防止性能が向上することによって、光沢度は低下する。 Since the glossiness is a numerical value reflecting the reflectance, the glossiness is lowered by improving the antireflection performance even if the shape of the substrate surface is the same.
 以上の処理により、アンチグレア性を有するガラス基板を得ることができる。 Through the above treatment, a glass substrate having antiglare properties can be obtained.
 (ステップS120)
 次に、前述のステップS110で準備されたガラス基板がフッ素化合物を含む処理ガスに晒され、ガラス基板のエッチング処理が実施される。この処理は、ガラス基板のステップS110においてアンチグレア処理された表面に対して実施される。また、エッチング処理は、常圧の大気雰囲気下で実施される。
(Step S120)
Next, the glass substrate prepared in step S110 described above is exposed to a processing gas containing a fluorine compound, and an etching process for the glass substrate is performed. This process is performed on the surface of the glass substrate that has been antiglare treated in step S110. In addition, the etching process is performed in an atmospheric atmosphere at normal pressure.
 この工程は、ガラス基板の表面に、例えば1nm~200nmのオーダの微細な凹凸を形成するために実施される。これらの微細な凹凸の存在により、ガラス基板に対して、反射防止性が付与される。 This step is performed to form fine irregularities on the surface of the glass substrate, for example, on the order of 1 nm to 200 nm. Due to the presence of these fine irregularities, antireflection properties are imparted to the glass substrate.
 前述のように、この処理によってエッチングされるガラス基板のエッチング量は、nmオーダであり、極めて微細である。このため、エッチング処理は、ステップS110においてガラス基板に発現させたアンチグレア性に対しては、ほとんど影響を及ぼさないことに留意する必要がある。 As described above, the etching amount of the glass substrate etched by this treatment is on the order of nm and is extremely fine. Therefore, it should be noted that the etching process hardly affects the antiglare property developed in the glass substrate in step S110.
 エッチング処理は、250℃~650℃の範囲で実施される。処理温度は、275℃~600℃の範囲であることが好ましく、300℃~600℃の範囲であることがより好ましい。 Etching is performed in the range of 250 ° C to 650 ° C. The treatment temperature is preferably in the range of 275 ° C. to 600 ° C., more preferably in the range of 300 ° C. to 600 ° C.
 エッチング処理に使用されるフッ素化合物の種類は、ガラス表面でのエッチングの際にフッ化水素を含むガスであれば、特に限られない。フッ素化合物を含む処理ガスの原料としては、例えば、フッ化水素、および/またはトリフロロ酢酸であっても良い。フッ化水素およびトリフルオロ酢酸は、非爆発性のため、安全性の観点から好ましい。トリフルオロ酢酸は、ガラス表面の温度により熱分解しフッ化水素を発生する。 The kind of the fluorine compound used for the etching treatment is not particularly limited as long as it is a gas containing hydrogen fluoride at the time of etching on the glass surface. As a raw material of the processing gas containing a fluorine compound, for example, hydrogen fluoride and / or trifluoroacetic acid may be used. Hydrogen fluoride and trifluoroacetic acid are preferable from the viewpoint of safety because they are non-explosive. Trifluoroacetic acid is thermally decomposed by the temperature of the glass surface to generate hydrogen fluoride.
 処理ガスは、気体状フッ素化合物の他、キャリアガスを含んでも良い。キャリアガスとしては、これに限られるものではないが、例えば、窒素および/またはアルゴン等が使用される。 The treatment gas may contain a carrier gas in addition to the gaseous fluorine compound. The carrier gas is not limited to this, but, for example, nitrogen and / or argon is used.
 処理ガス中のフッ素化合物の濃度は、ガラス基板の表面が適正にエッチング処理される限り、特に限られない。処理ガス中のフッ素化合物の濃度は、例えば、0.1vol%~10vol%の範囲であり、0.3vol%~8vol%の範囲であることが好ましく、0.5vol%~5vol%の範囲であることがより好ましい。 The concentration of the fluorine compound in the processing gas is not particularly limited as long as the surface of the glass substrate is appropriately etched. The concentration of the fluorine compound in the processing gas is, for example, in the range of 0.1 vol% to 10 vol%, preferably in the range of 0.3 vol% to 8 vol%, and in the range of 0.5 vol% to 5 vol%. It is more preferable.
 ガラス基板のエッチング処理は、ガラス基板を搬送させた状態で実施しても良い。この場合、より迅速な処理が可能となる。 The etching treatment of the glass substrate may be performed in a state where the glass substrate is conveyed. In this case, faster processing is possible.
 図2には、ガラス基板180を搬送させた状態で、ガラス基板のエッチング処理を実施するための処理装置の一構成例を示す。なお、以下の記載では、一例として、気体状フッ素化合物がフッ化水素ガスである場合を例に説明する。 FIG. 2 shows a configuration example of a processing apparatus for performing an etching process on a glass substrate while the glass substrate 180 is conveyed. In the following description, the case where the gaseous fluorine compound is hydrogen fluoride gas will be described as an example.
 図2に示すように、この処理装置100は、インジェクタ110と、搬送手段150とを備える。 As shown in FIG. 2, the processing apparatus 100 includes an injector 110 and a transport unit 150.
 搬送手段150は、上部に置載されたガラス基板180を、矢印F201に示すように、水平方向(X方向)に搬送することができる。 The transport means 150 can transport the glass substrate 180 placed on the top in the horizontal direction (X direction) as indicated by an arrow F201.
 インジェクタ110は、搬送手段150およびガラス基板180の上方に配置される。 The injector 110 is disposed above the conveying means 150 and the glass substrate 180.
 インジェクタ110は、処理ガスの流通路となる複数のスリット115、120、および125を有する。すなわち、インジェクタ110は、中央部分に鉛直方向(Z方向)に沿って設けられた第1のスリット115と、該第1のスリットを取り囲むように、鉛直方向(Z方向)に沿って設けられた第2のスリット120と、該第2のスリット120を取り囲むように、鉛直方向(Z方向)に沿って設けられた第3のスリット125とを備える。 The injector 110 has a plurality of slits 115, 120, and 125 that serve as a flow path for the processing gas. That is, the injector 110 is provided along the vertical direction (Z direction) so as to surround the first slit 115 provided in the central portion along the vertical direction (Z direction). A second slit 120 and a third slit 125 provided along the vertical direction (Z direction) so as to surround the second slit 120 are provided.
 第1のスリット115の一端(上部)は、フッ化水素ガス源(図示されていない)に接続されており、第1のスリット115の他端(下部)は、ガラス基板180の方に配向される。同様に、第2のスリット120の一端(上部)は、キャリアガス源(図示されていない)に接続されており、第2のスリット120の他端(下部)は、ガラス基板180の方に配向される。第3のスリット125の一端(上部)は、排気系(図示されていない)に接続されており、第3のスリット125の他端(下部)は、ガラス基板180の方に配向される。 One end (upper part) of the first slit 115 is connected to a hydrogen fluoride gas source (not shown), and the other end (lower part) of the first slit 115 is oriented toward the glass substrate 180. The Similarly, one end (upper part) of the second slit 120 is connected to a carrier gas source (not shown), and the other end (lower part) of the second slit 120 is oriented toward the glass substrate 180. Is done. One end (upper part) of the third slit 125 is connected to an exhaust system (not shown), and the other end (lower part) of the third slit 125 is oriented toward the glass substrate 180.
 処理装置100を使用して、ガラス基板180のエッチング処理を実施する場合、まず、フッ化水素ガス源(図示されていない)から、第1のスリット115を介して、矢印F205の方向に、フッ化水素ガスが供給される。また、キャリアガス源(図示されていない)から、第2のスリット120を介して、矢印F210の方向に、窒素等のキャリアガスが供給される。これらのガスは、矢印F215に沿って水平方向(X方向)に移動した後、排気系により第3のスリット125を介して、処理装置100の外部に排出される。 When performing the etching process of the glass substrate 180 using the processing apparatus 100, first, from the hydrogen fluoride gas source (not shown), through the first slit 115, in the direction of the arrow F 205. Hydrogen fluoride gas is supplied. A carrier gas such as nitrogen is supplied from a carrier gas source (not shown) through the second slit 120 in the direction of arrow F210. These gases move in the horizontal direction (X direction) along the arrow F215, and are then discharged to the outside of the processing apparatus 100 through the third slit 125 by the exhaust system.
 なお、第1のスリット115には、フッ化水素ガスに加えて、キャリアガスを同時に供給しても良い。 Note that a carrier gas may be simultaneously supplied to the first slit 115 in addition to the hydrogen fluoride gas.
 ガラス基板180は、搬送手段150により、矢印F201の方向に搬送される。 The glass substrate 180 is conveyed by the conveying means 150 in the direction of arrow F201.
 ガラス基板180は、インジェクタ110の下側を通過する際に、第1のスリット115および第2のスリット120から供給された処理ガス(フッ化水素ガス+キャリアガス)に接触する。これにより、ガラス基板180の表面がエッチング処理される。 When the glass substrate 180 passes below the injector 110, the glass substrate 180 comes into contact with the processing gas (hydrogen fluoride gas + carrier gas) supplied from the first slit 115 and the second slit 120. Thereby, the surface of the glass substrate 180 is etched.
 なお、ガラス基板180の表面に供給された処理ガスは、矢印F215のように移動してエッチング処理に使用された後、矢印F220のように移動して、排気系に接続された第3のスリット125を介して、処理装置100の外部に排出される。 Note that the processing gas supplied to the surface of the glass substrate 180 moves as indicated by an arrow F215 and is used for an etching process, and then moves as indicated by an arrow F220 and is connected to an exhaust system. It is discharged to the outside of the processing apparatus 100 via 125.
 処理装置100を使用することにより、ガラス基板を搬送しながら、処理ガスによる表面のエッチング処理を実施することができる。この場合、反応容器を使用して、エッチング処理を実施する方法に比べて、処理効率を向上させることができる。また、処理装置100を使用した場合、大型のガラス基板に対してもエッチング処理を適用することができる。 By using the processing apparatus 100, it is possible to carry out the etching process of the surface with the processing gas while conveying the glass substrate. In this case, the processing efficiency can be improved as compared with a method of performing an etching process using a reaction vessel. In addition, when the processing apparatus 100 is used, the etching process can be applied to a large glass substrate.
 ここで、ガラス基板180への処理ガスの供給速度は、特に限られない。処理ガスの供給速度は、例えば、5SLM~1000SLM(標準状態の気体における毎分当たりの体積(リットル))の範囲であっても良い。 Here, the supply speed of the processing gas to the glass substrate 180 is not particularly limited. The supply speed of the processing gas may be, for example, in the range of 5 SLM to 1000 SLM (volume per minute (liter) in a standard state gas).
 また、ガラス基板180の搬送速度は、例えば、1m/分~20m/分である。 Further, the conveyance speed of the glass substrate 180 is, for example, 1 m / min to 20 m / min.
 また、ガラス基板180のインジェクタ110の通過時間は、1秒~120秒の範囲であり、5秒~60秒の範囲であることが好ましく、5秒~30秒の範囲であることがより好ましい。ガラス基板180のインジェクタ110の通過時間を120秒以下とすることにより、迅速なエッチング処理を実施することができる。 Further, the passage time of the glass substrate 180 through the injector 110 is in the range of 1 second to 120 seconds, preferably in the range of 5 seconds to 60 seconds, and more preferably in the range of 5 seconds to 30 seconds. By setting the passage time of the glass substrate 180 through the injector 110 to 120 seconds or less, a rapid etching process can be performed.
 ここで、「インジェクタ110の通過時間」とは、ガラス基板180のある決められた領域が図2の距離Sを通過する時間を意味するものとする。なお、距離Sは、ガラス基板180の搬送方向に対して、インジェクタ110の最上流側のスリット(図2の例ではスリット125)の上流端から最下流側のスリット(図2の例ではスリット125)の下流端の間の距離で定められる。 Here, the “passing time of the injector 110” means a time for a certain region of the glass substrate 180 to pass the distance S in FIG. Note that the distance S is a slit on the most upstream side of the slit on the most upstream side of the injector 110 (slit 125 in the example of FIG. 2) with respect to the conveyance direction of the glass substrate 180 (slit 125 in the example of FIG. 2). ) Is determined by the distance between the downstream ends.
 このように、処理装置100を使用することにより、搬送状態のガラス基板に対して、エッチング処理を実施することができる。 As described above, by using the processing apparatus 100, it is possible to perform the etching process on the glass substrate in the transported state.
 なお、図2に示した処理装置100は、単なる一例に過ぎず、その他の装置を使用して、フッ化水素ガスを含む処理ガスによるガラス基板のエッチング処理を実施しても良い。例えば、図2の処理装置100では、静止しているインジェクタ110に対して、ガラス基板180が相対的に移動する。しかしながら、これとは逆に、静止しているガラス基板に対して、インジェクタを水平方向に移動させても良い。あるいは、ガラス基板とインジェクタの両者を、相互に反対方向に移動させても良い。 Note that the processing apparatus 100 illustrated in FIG. 2 is merely an example, and the etching process of the glass substrate with the processing gas containing hydrogen fluoride gas may be performed using another apparatus. For example, in the processing apparatus 100 of FIG. 2, the glass substrate 180 moves relative to the stationary injector 110. However, on the contrary, the injector may be moved in the horizontal direction with respect to the stationary glass substrate. Alternatively, both the glass substrate and the injector may be moved in directions opposite to each other.
 また、図2の処理装置100では、インジェクタ110は、合計3つのスリット115、120、125を有する。しかしながら、スリットの数は、特に限られない。例えば、スリットの数は、2つであっても良い。この場合、一つのスリットが処理ガス(キャリアガスとフッ化水素ガスの混合ガス)供給用に利用され、別のスリットが排気用に利用されても良い。 Further, in the processing apparatus 100 of FIG. 2, the injector 110 has a total of three slits 115, 120, and 125. However, the number of slits is not particularly limited. For example, the number of slits may be two. In this case, one slit may be used for supplying a processing gas (a mixed gas of carrier gas and hydrogen fluoride gas), and another slit may be used for exhaust.
 さらに、図2の処理装置100では、インジェクタ110の第2のスリット120は、第1のスリット115を取り囲むように配置され、第3のスリット125は、第1のスリット115および第2のスリット120を取り囲むように設けられている。しかしながら、この代わりに、第1のスリット、第2のスリット、および第3のスリットを、水平方向(X方向)に沿って一列に配列しても良い。この場合、処理ガスは、ガラス基板の表面を、一方向に沿って移動し、その後、第3のスリットを介して排気される。 Further, in the processing apparatus 100 of FIG. 2, the second slit 120 of the injector 110 is disposed so as to surround the first slit 115, and the third slit 125 is the first slit 115 and the second slit 120. Is provided so as to surround. However, instead of this, the first slit, the second slit, and the third slit may be arranged in a line along the horizontal direction (X direction). In this case, the processing gas moves along the surface of the glass substrate along one direction, and then is exhausted through the third slit.
 以上の(ステップS110)および(ステップS120)の工程により、アンチグレア性と反射防止性をともに有するガラスを製造することができる。 Through the above steps (Step S110) and (Step S120), glass having both antiglare property and antireflection property can be produced.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
 (実施例1)
 以下の方法により、アンチグレア性を有する反射防止性ガラスを製造し、その特性を評価した。
(Example 1)
Antireflection glass having antiglare properties was produced by the following method, and the characteristics thereof were evaluated.
 (アンチグレア処理)
 まず、厚さ3mmのガラス基板(ソーダライムガラス)の一方の表面に対して、アンチグレア処理を実施した。
(Anti-glare treatment)
First, antiglare treatment was performed on one surface of a 3 mm thick glass substrate (soda lime glass).
 アンチグレア処理は、湿式処理により実施した。具体的には、アンチグレア処理は、ガラス基板の一方の表面を、室温のフッ酸溶液中に30分間浸漬することにより実施した。これにより、「実施例1に係るアンチグレア基板」が得られた。 Anti-glare treatment was performed by wet treatment. Specifically, the antiglare treatment was performed by immersing one surface of the glass substrate in a hydrofluoric acid solution at room temperature for 30 minutes. As a result, an “antiglare substrate according to Example 1” was obtained.
 実施例1に係るアンチグレア基板の表面の光沢度を測定した。光沢度の測定には、グロスチェッカーIG-331、堀場製作所製)を使用し、JIS Z8741に基づいて、60゜光沢度を測定した。測定の結果、実施例1に係るアンチグレア基板の60゜光沢度は、56%であり、有意なアンチグレア性が得られていることが確認された。 The glossiness of the surface of the antiglare substrate according to Example 1 was measured. A gloss checker IG-331 (manufactured by HORIBA, Ltd.) was used to measure the glossiness, and the 60 ° glossiness was measured based on JIS Z8741. As a result of the measurement, the 60 ° glossiness of the antiglare substrate according to Example 1 was 56%, and it was confirmed that significant antiglare property was obtained.
 (エッチング処理)
 次に、前述のように処理された実施例1に係るアンチグレア基板を用いて、HFガスによるエッチング処理を実施した。エッチング処理には、前述の図2に示した処理装置100を使用した。
(Etching process)
Next, etching using HF gas was performed using the antiglare substrate according to Example 1 processed as described above. For the etching process, the processing apparatus 100 shown in FIG. 2 was used.
 処理装置100において、第1のスリット115には、フッ化水素ガスと窒素ガスの混合ガスを、34cm/秒の流速で供給した。フッ化水素ガスの供給量は、1.0SLM(標準状態の気体における毎分当たりの体積(リットル))とし、窒素ガスの供給量は、31.0SLM(標準状態の気体における毎分当たりの体積(リットル))とした。なお、混合ガスは、150℃に加熱した状態で供給した。 In the processing apparatus 100, a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second. The supply amount of hydrogen fluoride gas is 1.0 SLM (volume per minute in standard state gas (liter)), and the supply amount of nitrogen gas is 31.0 SLM (volume per minute in standard state gas). (Liter)). The mixed gas was supplied in a state heated to 150 ° C.
 また、第2のスリット120には、34cm/秒の流速で窒素ガスを供給した。窒素ガスの温度は、150℃とし、窒素ガスの供給量は、10SLMとした。 Further, nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second. The temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
 全供給ガスに対するフッ化水素ガスの濃度は、2.4vol%である。 The concentration of hydrogen fluoride gas with respect to the total supply gas is 2.4 vol%.
 第3のスリット125からの排気量は、供給ガスの供給量の2倍とした。 The exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
 実施例1に係るアンチグレア基板の搬送速度は、2m/分とし、実施例1に係るアンチグレア基板は、580℃に加熱した状態で搬送した。なお、実施例1に係るアンチグレア基板の温度は、処理ガスを供給する直前に、放射温度計を用いて測定した値である。 The conveyance speed of the anti-glare substrate according to Example 1 was 2 m / min, and the anti-glare substrate according to Example 1 was conveyed while being heated to 580 ° C. The temperature of the antiglare substrate according to Example 1 is a value measured using a radiation thermometer immediately before supplying the processing gas.
 エッチング処理時間(図2において、ガラス基板が距離Sを通過する時間)は、約10秒とした。 The etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
 この処理後に、実施例1に係るアンチグレア基板のエッチング処理表面には、多数のnmオーダの凹凸が形成された。以下、得られた実施例1に係るアンチグレア基板を「実施例1に係るガラス」と称する。 After this treatment, a large number of irregularities on the order of nm were formed on the etched surface of the antiglare substrate according to Example 1. Hereinafter, the obtained anti-glare substrate according to Example 1 is referred to as “glass according to Example 1”.
 (評価)
 実施例1に係るガラスを用いて、反射防止性の評価を行った。
(Evaluation)
Using the glass according to Example 1, the antireflection property was evaluated.
 ガラスの反射防止性は、全光線透過率を測定することにより評価した。全光線透過率は、ヘーズメータHZ-2(スガ試験機)を使用して、JIS K7361-1に基づいて実施した。光源は、C光源とした。 The antireflection property of glass was evaluated by measuring the total light transmittance. The total light transmittance was measured based on JIS K7361-1 using a haze meter HZ-2 (Suga Test Machine). The light source was a C light source.
 測定の結果、実施例1に係るガラスの全光線透過率Ttは、94.9%であった。 As a result of the measurement, the total light transmittance Tt of the glass according to Example 1 was 94.9%.
 なお、アンチグレア処理およびエッチング処理のいずれも実施する前のガラス基板に対して、同様の測定を行ったところ、全光線透過率Ttは、91.7%であった。また、実施例1に係るアンチグレア基板に対して、同様の測定を行ったところ、全光線透過率Ttは、92.4%であった。この結果から、未処理ガラス基板に対する実施例1に係るガラスの透過率上昇値は、3.2%である。また、実施例1に係るアンチグレア基板に対する実施例1に係るガラスの透過率上昇値ΔTtは、2.5%である。 In addition, when the same measurement was performed with respect to the glass substrate before performing both an anti-glare process and an etching process, the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 1, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Example 1 with respect to the untreated glass substrate is 3.2%. Further, the transmittance increase value ΔTt of the glass according to Example 1 with respect to the antiglare substrate according to Example 1 is 2.5%.
 このように、実施例1に係るガラスでは、未処理ガラス基板および実施例1に係るアンチグレア基板に比べて、有意に高い反射防止性が得られることがわかった。 Thus, it was found that the glass according to Example 1 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 1.
 次に、前述の方法で、実施例1に係るガラスの60゜光沢度を測定した。測定の結果、実施例1に係るガラスの60゜光沢度は、30%であった。 Next, the 60 ° glossiness of the glass according to Example 1 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 1 was 30%.
 次に、実施例1に係るガラスの処理表面の粗さを、JIS B0601:2001に基づいて測定した。走査型プローブ顕微鏡(SPI3800N:エスアイアイ・ナノテクノロジー社製)を用いた測定の結果、実施例1に係るガラスの表面の算術平均粗さRaは、70nmであった。また、実施例1に係るガラスの表面の最大高さ粗さRzは、0.486μmであった。なお、これらの測定は、サンプルの2μm×2μmの領域で、取得データ数1024×1024として、実施した。 Next, the roughness of the treated surface of the glass according to Example 1 was measured based on JIS B0601: 2001. As a result of measurement using a scanning probe microscope (SPI3800N: manufactured by SII Nanotechnology), the arithmetic average roughness Ra of the surface of the glass according to Example 1 was 70 nm. Moreover, the maximum height roughness Rz of the glass surface according to Example 1 was 0.486 μm. Note that these measurements were carried out with the number of acquired data being 1024 × 1024 in a 2 μm × 2 μm region of the sample.
 このように、実施例1に係るガラスでは、アンチグレア性を有するとともに、有意な低反射性を有することが確認された。 Thus, it was confirmed that the glass according to Example 1 has antiglare property and significant low reflectivity.
 (実施例2)
 以下の方法により、アンチグレア性を有する反射防止性ガラスを製造し、その特性を評価した。
(Example 2)
Antireflection glass having antiglare properties was produced by the following method, and the characteristics thereof were evaluated.
 (アンチグレア処理)
 まず、厚さ3mmのガラス基板(ソーダライムガラス)の一方の表面に対して、アンチグレア処理を実施した。
(Anti-glare treatment)
First, antiglare treatment was performed on one surface of a 3 mm thick glass substrate (soda lime glass).
 アンチグレア処理は、ガラス基板の一方の表面をサンドブラスト処理することにより実施した。これにより、「実施例2に係るアンチグレア基板」が得られた。 Anti-glare treatment was performed by sandblasting one surface of the glass substrate. As a result, an “antiglare substrate according to Example 2” was obtained.
 前述の方法により、実施例2に係るアンチグレア基板の表面の光沢度を測定した。測定の結果、60゜光沢度は、32%であり、有意なアンチグレア性が得られていることが確認された。 The surface gloss of the antiglare substrate according to Example 2 was measured by the method described above. As a result of the measurement, the 60 ° glossiness was 32%, and it was confirmed that significant antiglare property was obtained.
 (エッチング処理)
 次に、実施例2に係るアンチグレア基板を用いて、前述の実施例1と同様の方法で、HFガスによるエッチング処理を実施した。ただし、この実施例2では、実施例2に係るアンチグレア基板の温度は、530℃とした。その他の条件は、実施例1の場合と同様である。
(Etching process)
Next, using the antiglare substrate according to Example 2, an etching process using HF gas was performed in the same manner as in Example 1 described above. However, in Example 2, the temperature of the antiglare substrate according to Example 2 was set to 530 ° C. Other conditions are the same as in the first embodiment.
 このエッチング処理後に、実施例2に係るアンチグレア基板の処理表面には、多数のnmオーダの凹凸が形成された。以下、得られたガラス基板を「実施例2に係るガラス」と称する。 After this etching process, a large number of irregularities on the order of nm were formed on the processed surface of the antiglare substrate according to Example 2. Hereinafter, the obtained glass substrate is referred to as “glass according to Example 2”.
 (評価)
 実施例2に係るガラスを用いて、前述の方法により、全光線透過率Ttの測定を行った。測定の結果、実施例2に係るガラスの全光線透過率Ttは、92.7%であった。
(Evaluation)
Using the glass according to Example 2, the total light transmittance Tt was measured by the method described above. As a result of the measurement, the total light transmittance Tt of the glass according to Example 2 was 92.7%.
 なお、アンチグレア処理およびエッチング処理のいずれも実施する前のガラス基板に対して、同様の測定を行ったところ、全光線透過率Ttは、91.7%であった。また、実施例2に係るアンチグレア基板に対して、同様の測定を行ったところ、全光線透過率Ttは、91.5%であった。この結果から、未処理ガラス基板に対する実施例2に係るガラスの透過率上昇値ΔTtは、1.0%である。また、実施例2に係るアンチグレア基板に対する実施例2に係るガラスの透過率上昇値ΔTtは、1.2%である。 In addition, when the same measurement was performed with respect to the glass substrate before implementing both an anti-glare process and an etching process, the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 2, the total light transmittance Tt was 91.5%. From this result, the transmittance increase value ΔTt of the glass according to Example 2 with respect to the untreated glass substrate is 1.0%. Further, the transmittance increase value ΔTt of the glass according to Example 2 with respect to the antiglare substrate according to Example 2 is 1.2%.
 このように、実施例2に係るガラスでは、未処理ガラス基板および実施例2に係るアンチグレア基板に比べて、有意に高い反射防止性が得られることがわかった。 Thus, it was found that the glass according to Example 2 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 2.
 次に、前述の方法で、実施例2に係るガラスの60゜光沢度を測定した。測定の結果、実施例2に係るガラスの60゜光沢度は、21%であった。 Next, the 60 ° glossiness of the glass according to Example 2 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 2 was 21%.
 次に、前述の方法により、実施例2に係るガラスの処理表面の粗さを測定した。測定の結果、実施例2に係るガラスの表面の算術平均粗さRaは、99nmであった。また、実施例2に係るガラスの表面の最大高さ粗さRzは、0.679μmであった。 Next, the roughness of the treated surface of the glass according to Example 2 was measured by the method described above. As a result of the measurement, the arithmetic average roughness Ra of the surface of the glass according to Example 2 was 99 nm. Further, the maximum height roughness Rz of the glass surface according to Example 2 was 0.679 μm.
 このように、実施例2に係るガラスでは、アンチグレア性を有するとともに、有意な低反射性を有することが確認された。 Thus, it was confirmed that the glass according to Example 2 has antiglare properties and significantly low reflectivity.
 (実施例3)
 実施例1と同様の方法により、アンチグレア性を有する反射防止性ガラスを製造し、その特性を評価した。
(Example 3)
By the same method as in Example 1, anti-glare glass having antiglare properties was produced, and its characteristics were evaluated.
 ただし、この実施例3では、以下の条件で、エッチング処理を実施した。 However, in Example 3, the etching process was performed under the following conditions.
 (エッチング処理)
 実施例1と同様の方法でアンチグレア処理されたガラス基板(以下、「実施例3に係るアンチグレア基板」と称する)を用いて、HFガスによるエッチング処理を実施した。エッチング処理には、前述の図2に示した処理装置100を使用した。
(Etching process)
Etching with HF gas was performed using a glass substrate that was anti-glare treated in the same manner as in Example 1 (hereinafter referred to as “anti-glare substrate according to Example 3”). For the etching process, the processing apparatus 100 shown in FIG. 2 was used.
 処理装置100において、第1のスリット115には、フッ化水素ガスと窒素ガスの混合ガスを、34cm/秒の流速で供給した。フッ化水素ガスの供給量は、1.5SLM(標準状態の気体における毎分当たりの体積(リットル))とし、窒素ガスの供給量は、30.5SLM(標準状態の気体における毎分当たりの体積(リットル))とした。なお、混合ガスは、150℃に加熱した状態で供給した。 In the processing apparatus 100, a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second. The supply amount of hydrogen fluoride gas is 1.5 SLM (volume per minute in standard state gas (liter)), and the supply amount of nitrogen gas is 30.5 SLM (volume per minute in standard state gas). (Liter)). The mixed gas was supplied in a state heated to 150 ° C.
 また、第2のスリット120には、34cm/秒の流速で窒素ガスを供給した。窒素ガスの温度は、150℃とし、窒素ガスの供給量は、10SLMとした。 Further, nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second. The temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
 全供給ガスに対するフッ化水素ガスの濃度は、3.6vol%である。 The concentration of hydrogen fluoride gas with respect to the total supply gas is 3.6 vol%.
 第3のスリット125からの排気量は、供給ガスの供給量の2倍とした。 The exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
 実施例3に係るアンチグレア基板の搬送速度は、2m/分とし、実施例3に係るアンチグレア基板は、350℃に加熱した状態で搬送した。 The conveyance speed of the anti-glare substrate according to Example 3 was 2 m / min, and the anti-glare substrate according to Example 3 was conveyed while being heated to 350 ° C.
 エッチング処理時間(図2において、ガラス基板が距離Sを通過する時間)は、約10秒とした。 The etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
 この処理後に、実施例3に係るアンチグレア基板の処理表面には、多数のnmオーダの凹凸が形成された。以下、得られた実施例3に係るアンチグレア基板を「実施例3に係るガラス」と称する。 After this treatment, a large number of nanometer-order irregularities were formed on the treated surface of the antiglare substrate according to Example 3. Hereinafter, the obtained anti-glare substrate according to Example 3 is referred to as “glass according to Example 3”.
 (評価)
 実施例3に係るガラスを用いて、前述の方法により、全光線透過率Ttの測定を行った。測定の結果、実施例3に係るガラスの全光線透過率Ttは、94.2%であった。
(Evaluation)
Using the glass according to Example 3, the total light transmittance Tt was measured by the method described above. As a result of the measurement, the total light transmittance Tt of the glass according to Example 3 was 94.2%.
 なお、アンチグレア処理およびエッチング処理のいずれも実施する前のガラス基板に対して、同様の測定を行ったところ、全光線透過率Ttは、91.7%であった。また、実施例3に係るアンチグレア基板に対して、同様の測定を行ったところ、全光線透過率Ttは、92.4%であった。この結果から、未処理ガラス基板に対する実施例3に係るガラスの透過率上昇値は、2.5%である。また、実施例3に係るアンチグレア基板に対する実施例3に係るガラスの透過率上昇値ΔTtは、1.8%である。 In addition, when the same measurement was performed with respect to the glass substrate before performing both an anti-glare process and an etching process, the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Example 3, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Example 3 with respect to the untreated glass substrate is 2.5%. Further, the transmittance increase value ΔTt of the glass according to Example 3 with respect to the antiglare substrate according to Example 3 is 1.8%.
 このように、実施例3に係るガラスでは、未処理ガラス基板および実施例3に係るアンチグレア基板に比べて、有意に高い反射防止性が得られることがわかった。 Thus, it was found that the glass according to Example 3 has significantly higher antireflection properties than the untreated glass substrate and the antiglare substrate according to Example 3.
 次に、前述の方法で、実施例3に係るガラスの60゜光沢度を測定した。測定の結果、実施例3に係るガラスの60゜光沢度は、49%であった。 Next, the 60 ° glossiness of the glass according to Example 3 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Example 3 was 49%.
 次に、前述の方法により、実施例3に係るガラスの処理表面の粗さを測定した。測定の結果、実施例3に係るガラスの表面の算術平均粗さRaは、78nmであった。また、実施例3に係るガラスの表面の最大高さ粗さRzは、0.475μmであった。 Next, the roughness of the treated surface of the glass according to Example 3 was measured by the method described above. As a result of the measurement, the arithmetic average roughness Ra of the surface of the glass according to Example 3 was 78 nm. Moreover, the maximum height roughness Rz of the glass surface according to Example 3 was 0.475 μm.
 このように、実施例3に係るガラスでは、アンチグレア性を有するとともに、有意な低反射性を有することが確認された。 Thus, it was confirmed that the glass according to Example 3 has antiglare property and significant low reflectivity.
 (比較例1)
 実施例1と同様の方法により、アンチグレア性を有する反射防止性ガラスを製造し、その特性を評価した。
(Comparative Example 1)
By the same method as in Example 1, anti-glare glass having antiglare properties was produced, and its characteristics were evaluated.
 ただし、この比較例1では、以下の条件で、エッチング処理を実施した。 However, in Comparative Example 1, the etching process was performed under the following conditions.
 (エッチング処理)
 実施例1と同様の方法でアンチグレア処理されたガラス基板(以下、「比較例1に係るアンチグレア基板」と称する)を用いて、HFガスによるエッチング処理を実施した。エッチング処理には、前述の図2に示した処理装置100を使用した。
(Etching process)
Etching with HF gas was performed using a glass substrate that was anti-glare treated in the same manner as in Example 1 (hereinafter referred to as “anti-glare substrate according to Comparative Example 1”). For the etching process, the processing apparatus 100 shown in FIG. 2 was used.
 処理装置100において、第1のスリット115には、フッ化水素ガスと窒素ガスの混合ガスを、34cm/秒の流速で供給した。フッ化水素ガスの供給量は、1.5SLM(標準状態の気体における毎分当たりの体積(リットル))とし、窒素ガスの供給量は、30.5SLM(標準状態の気体における毎分当たりの体積(リットル))とした。なお、混合ガスは、150℃に加熱した状態で供給した。 In the processing apparatus 100, a mixed gas of hydrogen fluoride gas and nitrogen gas was supplied to the first slit 115 at a flow rate of 34 cm / second. The supply amount of hydrogen fluoride gas is 1.5 SLM (volume per minute in standard state gas (liter)), and the supply amount of nitrogen gas is 30.5 SLM (volume per minute in standard state gas). (Liter)). The mixed gas was supplied in a state heated to 150 ° C.
 また、第2のスリット120には、34cm/秒の流速で窒素ガスを供給した。窒素ガスの温度は、150℃とし、窒素ガスの供給量は、10SLMとした。 Further, nitrogen gas was supplied to the second slit 120 at a flow rate of 34 cm / second. The temperature of nitrogen gas was 150 ° C., and the supply amount of nitrogen gas was 10 SLM.
 全供給ガスに対するフッ化水素ガスの濃度は、3.6vol%である。 The concentration of hydrogen fluoride gas with respect to the total supply gas is 3.6 vol%.
 第3のスリット125からの排気量は、供給ガスの供給量の2倍とした。 The exhaust amount from the third slit 125 was twice the supply amount of the supply gas.
 比較例1に係るアンチグレア基板の搬送速度は、2m/分とし、比較例1に係るアンチグレア基板は、200℃に加熱した状態で搬送した。 The conveyance speed of the anti-glare substrate according to Comparative Example 1 was 2 m / min, and the anti-glare substrate according to Comparative Example 1 was conveyed in a state heated to 200 ° C.
 エッチング処理時間(図2において、ガラス基板が距離Sを通過する時間)は、約10秒とした。 The etching treatment time (the time for the glass substrate to pass the distance S in FIG. 2) was about 10 seconds.
 以下、得られた比較例1に係るアンチグレア基板を「比較例1に係るガラス」と称する。 Hereinafter, the obtained anti-glare substrate according to Comparative Example 1 is referred to as “glass according to Comparative Example 1”.
 (評価)
 比較例1に係るガラスを用いて、前述の方法により、全光線透過率Ttの測定を行った。測定の結果、実施例3に係るガラスの全光線透過率Ttは、92.4%であった。
(Evaluation)
Using the glass according to Comparative Example 1, the total light transmittance Tt was measured by the method described above. As a result of the measurement, the total light transmittance Tt of the glass according to Example 3 was 92.4%.
 なお、アンチグレア処理およびエッチング処理のいずれも実施する前のガラス基板に対して、同様の測定を行ったところ、全光線透過率Ttは、91.7%であった。また、比較例1に係るアンチグレア基板に対して、同様の測定を行ったところ、全光線透過率Ttは、92.4%であった。この結果から、未処理ガラス基板に対する比較例1に係るガラスの透過率上昇値は、0.7%である。また、比較例1に係るアンチグレア基板に対する比較例1に係るガラスの透過率上昇値ΔTtは、0.0%である。 In addition, when the same measurement was performed with respect to the glass substrate before performing both an anti-glare process and an etching process, the total light transmittance Tt was 91.7%. Further, when the same measurement was performed on the antiglare substrate according to Comparative Example 1, the total light transmittance Tt was 92.4%. From this result, the transmittance increase value of the glass according to Comparative Example 1 with respect to the untreated glass substrate is 0.7%. The transmittance increase value ΔTt of the glass according to Comparative Example 1 with respect to the antiglare substrate according to Comparative Example 1 is 0.0%.
 このように、比較例1に係るガラスでは、未処理ガラス基板および比較例1に係るアンチグレア基板に比べて透過率上昇幅は1%未満と不十分であった。 Thus, in the glass according to Comparative Example 1, the transmittance increase width was less than 1% as compared with the untreated glass substrate and the anti-glare substrate according to Comparative Example 1.
 次に、前述の方法で、比較例1に係るガラスの60゜光沢度を測定した。測定の結果、比較例1に係るガラスの60゜光沢度は、54%であった。 Next, the 60 ° glossiness of the glass according to Comparative Example 1 was measured by the method described above. As a result of the measurement, the 60 ° glossiness of the glass according to Comparative Example 1 was 54%.
 次に、前述の方法により、比較例1に係るガラスの処理表面の粗さを測定した。測定の結果、比較例1に係るガラスの表面の算術平均粗さRaは、66nmであった。また、比較例1に係るガラスの表面の最大高さ粗さRzは0.449μmであった。 Next, the roughness of the treated surface of the glass according to Comparative Example 1 was measured by the method described above. As a result of the measurement, the arithmetic average roughness Ra of the surface of the glass according to Comparative Example 1 was 66 nm. Moreover, the maximum height roughness Rz of the surface of the glass which concerns on the comparative example 1 was 0.449 micrometer.
 このように、比較例1に係るガラスでは、アンチグレア性は有するが、低反射性は不十分であることが確認された。 As described above, it was confirmed that the glass according to Comparative Example 1 has antiglare property, but low reflectivity is insufficient.
 なお、反射防止性を有しない、通常のソーダライムガラスを用いて実施例3と同様の条件でエッチング処理を行い、その前後で同様の測定を行ったところ、エッチング処理前の全光線透過率Ttは、91.7%であり、エッチング処理後の全光線透過率Ttは、94.2%であり、透過率上昇値は、2.5%であった。よって、本願の実施例におけるガラスは、アンチグレア性を有するとともに、有意な低反射性を有することが確認された。 In addition, when the etching treatment was performed under the same conditions as in Example 3 using ordinary soda lime glass having no antireflection property, and the same measurement was performed before and after that, the total light transmittance Tt before the etching treatment was obtained. Was 91.7%, the total light transmittance Tt after the etching treatment was 94.2%, and the transmittance increase value was 2.5%. Therefore, it was confirmed that the glass in the examples of the present application has antiglare properties and significantly low reflectivity.
 以下の表1には、実施例1~実施例3および比較例1におけるガラスの製造条件、および評価結果をまとめて示した。 Table 1 below summarizes the glass manufacturing conditions and evaluation results in Examples 1 to 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、例えば、高い光透過性を有するガラス製品、例えば、建材用ガラス、自動車用ガラス、ディスプレイ用ガラス、光学素子、太陽電池用ガラス、ショーウィンドウガラス、光学ガラス、およびメガネレンズ等に利用することができる。 The present invention is used for, for example, glass products having high light transmittance, such as glass for building materials, glass for automobiles, glass for displays, optical elements, glass for solar cells, show window glass, optical glass, and eyeglass lenses. can do.
 本願は、2012年10月17日に出願した日本国特許出願2012-229517号に基づく優先権を主張するものであり、同日本国出願の全内容を本願の参照として援用する。 This application claims priority based on Japanese Patent Application No. 2012-229517 filed on October 17, 2012, the entire contents of which are incorporated herein by reference.
 100   処理装置
 110   インジェクタ
 115   第1のスリット
 120   第2のスリット
 125   第3のスリット
 150   搬送手段
 180   ガラス基板
DESCRIPTION OF SYMBOLS 100 Processing apparatus 110 Injector 115 1st slit 120 2nd slit 125 3rd slit 150 Conveying means 180 Glass substrate

Claims (13)

  1.  反射防止性を有するガラスの製造方法であって、
     (a)アンチグレア性を有する表面を有するガラス基板を準備するステップと、
     (b)常圧、大気雰囲気下、250℃~650℃の温度範囲において、前記ガラス基板の前記表面に、フッ素化合物を含む処理ガスを接触させるステップと、
     を有することを特徴とする反射防止性を有するガラスの製造方法。
    A method for producing glass having antireflection properties,
    (A) providing a glass substrate having an anti-glare surface;
    (B) contacting a treatment gas containing a fluorine compound with the surface of the glass substrate in a temperature range of 250 ° C. to 650 ° C. under normal pressure and atmospheric atmosphere;
    The manufacturing method of the glass which has antireflective property characterized by having.
  2.  前記処理ガスの原料として、フッ化水素および/またはトリフロロ酢酸を含むことを特徴とする請求項1に記載の反射防止性を有するガラスの製造方法。 The method for producing an antireflective glass according to claim 1, wherein hydrogen fluoride and / or trifluoroacetic acid are contained as a raw material of the processing gas.
  3.  前記処理ガス中のフッ化水素ガスの濃度は、0.1vol%~10vol%の範囲であることを特徴とする請求項1または2に記載の反射防止性を有するガラスの製造方法。 3. The method for producing an antireflective glass according to claim 1, wherein the concentration of the hydrogen fluoride gas in the processing gas is in the range of 0.1 vol% to 10 vol%.
  4.  前記処理ガスは、さらに、窒素および/またはアルゴンを含むことを特徴とする請求項1乃至3のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The method for producing an antireflective glass according to any one of claims 1 to 3, wherein the processing gas further contains nitrogen and / or argon.
  5.  前記(b)のステップの後のガラス基板の前記表面の算術平均粗さRaは、10nm以上であり、最大高さ粗さRzは、0.3μm以上であることを特徴とする請求項1乃至4のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The arithmetic average roughness Ra of the surface of the glass substrate after the step (b) is 10 nm or more, and the maximum height roughness Rz is 0.3 μm or more. 5. A method for producing an antireflective glass according to any one of 4 above.
  6.  前記(b)のステップにおいて、前記ガラス基板は、搬送された状態で前記処理ガスに接触することを特徴とする請求項1乃至5のいずれか一つに記載の反射防止性を有するガラスの製造方法。 In the step (b), the glass substrate is brought into contact with the processing gas in a transported state, and the glass having antireflection properties according to any one of claims 1 to 5, Method.
  7.  前記ガラス基板の上部または下部には、インジェクタが配置され、
     前記処理ガスは、前記インジェクタから、前記ガラス基板に向かって放出されることを特徴とする請求項1乃至6のいずれか一つに記載の反射防止性を有するガラスの製造方法。
    An injector is disposed on the upper or lower portion of the glass substrate,
    The method for producing an antireflective glass according to any one of claims 1 to 6, wherein the processing gas is discharged from the injector toward the glass substrate.
  8.  前記ガラス基板が、前記インジェクタの下を通過する時間は、1秒~120秒の間であることを特徴とする請求項7に記載の反射防止性を有するガラスの製造方法。 The method for producing an antireflective glass according to claim 7, wherein the glass substrate passes under the injector between 1 second and 120 seconds.
  9.  前記(b)のステップ後の前記ガラス基板の全光線透過率と、前記(a)のステップ後前記(b)のステップ前の前記ガラス基板の全光線透過率との差ΔTtは、1%以上であることを特徴とする請求項1乃至8のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The difference ΔTt between the total light transmittance of the glass substrate after the step (b) and the total light transmittance of the glass substrate before the step (b) after the step (a) is 1% or more. The method for producing an antireflective glass according to claim 1, wherein the glass has antireflection properties.
  10.  前記(a)のステップは、ガラス基板に対して、ブラスト処理、湿式処理、コーティング処理、および型押し処理からなる群から選定された少なくとも一つを実施するステップを有することを特徴とする請求項1乃至9のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The step (a) includes performing at least one selected from the group consisting of a blasting process, a wet process, a coating process, and an embossing process on a glass substrate. The manufacturing method of the glass which has antireflection property as described in any one of 1 thru | or 9.
  11.  前記(b)のステップ後の前記ガラス基板の前記表面における光沢度は、70%以下であることを特徴とする請求項1乃至10のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The glass having antireflection properties according to any one of claims 1 to 10, wherein the glossiness of the surface of the glass substrate after the step (b) is 70% or less. Method.
  12.  前記ガラスは、太陽電池用のパネルまたはディスプレイ用のパネルであることを特徴とする請求項1乃至11のいずれか一つに記載の反射防止性を有するガラスの製造方法。 The method for producing an antireflective glass according to any one of claims 1 to 11, wherein the glass is a panel for a solar cell or a panel for a display.
  13.  請求項12に記載の製造方法を用いて製造された太陽電池用のパネルまたはディスプレイ用のパネル。 A panel for a solar cell or a panel for a display manufactured using the manufacturing method according to claim 12.
PCT/JP2013/077844 2012-10-17 2013-10-11 Production method for glass having anti-reflective properties WO2014061614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012229517A JP2016001201A (en) 2012-10-17 2012-10-17 Method of producing glass having antireflection property
JP2012-229517 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061614A1 true WO2014061614A1 (en) 2014-04-24

Family

ID=50488178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077844 WO2014061614A1 (en) 2012-10-17 2013-10-11 Production method for glass having anti-reflective properties

Country Status (2)

Country Link
JP (1) JP2016001201A (en)
WO (1) WO2014061614A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010009A1 (en) * 2014-07-16 2016-01-21 旭硝子株式会社 Cover glass
JP2018024240A (en) * 2016-07-28 2018-02-15 旭硝子株式会社 Transparent substrate and production method thereof
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
JP2021515739A (en) * 2018-03-05 2021-06-24 エージーシー グラス ユーロップAgc Glass Europe Anti-glare glass plate
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517319A (en) * 1997-03-04 2001-10-02 フラウンホファー.ゲゼルシャフト.ツール.フォルデンウング.デール.アンゲヴァンドテン.フォルシュング.エー.ファウ. Anti-reflection coating and its manufacturing method
WO2008156177A1 (en) * 2007-06-20 2008-12-24 Asahi Glass Company, Limited Method for treatment of surface of oxide glass
JP2009128538A (en) * 2007-11-21 2009-06-11 Panasonic Corp Method for manufacturing antireflection structure
EP2371776A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517319A (en) * 1997-03-04 2001-10-02 フラウンホファー.ゲゼルシャフト.ツール.フォルデンウング.デール.アンゲヴァンドテン.フォルシュング.エー.ファウ. Anti-reflection coating and its manufacturing method
WO2008156177A1 (en) * 2007-06-20 2008-12-24 Asahi Glass Company, Limited Method for treatment of surface of oxide glass
JP2009128538A (en) * 2007-11-21 2009-06-11 Panasonic Corp Method for manufacturing antireflection structure
EP2371776A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536440B (en) * 2014-07-16 2020-09-01 Agc株式会社 Cover glass
WO2016010009A1 (en) * 2014-07-16 2016-01-21 旭硝子株式会社 Cover glass
CN106536440A (en) * 2014-07-16 2017-03-22 旭硝子株式会社 Cover glass
KR20170035890A (en) * 2014-07-16 2017-03-31 아사히 가라스 가부시키가이샤 Cover glass
US12054419B2 (en) 2014-07-16 2024-08-06 AGC Inc. Cover glass
KR101889667B1 (en) 2014-07-16 2018-08-17 에이지씨 가부시키가이샤 Cover glass
JP2016029474A (en) * 2014-07-16 2016-03-03 旭硝子株式会社 cover glass
JP2018024240A (en) * 2016-07-28 2018-02-15 旭硝子株式会社 Transparent substrate and production method thereof
US12019209B2 (en) 2018-01-09 2024-06-25 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
JP2021515739A (en) * 2018-03-05 2021-06-24 エージーシー グラス ユーロップAgc Glass Europe Anti-glare glass plate
US11971519B2 (en) 2020-07-09 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11977206B2 (en) 2020-07-09 2024-05-07 Corning Incorporated Display articles with diffractive, antiglare surfaces and thin, durable antireflection coatings

Also Published As

Publication number Publication date
JP2016001201A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6023791B2 (en) Chemically tempered glass plate and flat panel display device
JP5790872B2 (en) Glass plate that can reduce warping during chemical strengthening
JP5975023B2 (en) Method for producing surface-treated glass substrate
WO2014061614A1 (en) Production method for glass having anti-reflective properties
JP6210069B2 (en) Glass plate manufacturing method and glass plate capable of reducing warpage during chemical strengthening
EP3053888B1 (en) Method for producing glass sheet
WO2015046117A1 (en) Glass plate production method
WO2014061615A1 (en) Production method for glass having anti-reflective properties, and glass having anti-reflective properties
JP2014080332A (en) Method for producing glass having anti-reflective properties and glass having anti-reflective properties
JP2014080331A (en) Method for producing anti-reflective glass
WO2015046108A1 (en) Glass plate
TW201518222A (en) Glass plate
WO2014061613A1 (en) Multilayer glass
JP7305982B2 (en) Concavo-convex glass substrate and manufacturing method thereof
WO2018043253A1 (en) Method for producing anti-glare plate glass
WO2015046116A1 (en) Glass plate
WO2015046113A1 (en) Glass plate and chemically strengthened glass plate
WO2015046109A1 (en) Glass plate
WO2015046115A1 (en) Float glass manufacturing method
US20240294424A1 (en) Methods of etching glass-based sheets
TW201516006A (en) Glass plate
JP2014080333A (en) Method for producing surface-treated glass substrate
WO2015046111A1 (en) Glass plate
WO2015046112A1 (en) Glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP