WO2014061408A1 - Method for measuring optical film thickness, system for measuring optical film thickness, and program for measuring optical film thickness - Google Patents

Method for measuring optical film thickness, system for measuring optical film thickness, and program for measuring optical film thickness Download PDF

Info

Publication number
WO2014061408A1
WO2014061408A1 PCT/JP2013/075821 JP2013075821W WO2014061408A1 WO 2014061408 A1 WO2014061408 A1 WO 2014061408A1 JP 2013075821 W JP2013075821 W JP 2013075821W WO 2014061408 A1 WO2014061408 A1 WO 2014061408A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
optical film
interference
laminate
optical
Prior art date
Application number
PCT/JP2013/075821
Other languages
French (fr)
Japanese (ja)
Inventor
泉谷 直幹
治 柏崎
新 勇一
忠宣 関矢
由佳 吉原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014542008A priority Critical patent/JPWO2014061408A1/en
Publication of WO2014061408A1 publication Critical patent/WO2014061408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection

Definitions

  • the present invention relates to an optical film thickness measurement method, an optical film thickness measurement system, and an optical film thickness measurement program using reflection interference spectroscopy.
  • a substrate 102 provided with an optical thin film 104 is used.
  • the spectral intensity of the white light itself is represented by a solid line 106 as shown in a typical example of FIG. Is represented by a solid line 108.
  • a reflection spectrum 110 having a bottom peak (minimum portion in the spectrum curve) represented by a solid line is obtained as shown in FIG.
  • a ligand 120 is provided on the optical thin film 104 as shown in FIG. 12b.
  • the optical thickness 112 at the site where the ligand 120 is provided changes, the optical path length changes, and the interference wavelength also changes due to the reflection interference effect. That is, the peak position of the spectral intensity distribution of the reflected light is shifted, and as a result, the reflected spectrum 110 is shifted to the reflected spectrum 122 (see the dotted line portion) as shown in FIG.
  • the ligand 120 and the analyte 130 in the sample solution are bonded as shown in FIG. 12c.
  • the optical thickness 112 at the site where the analyte 130 is bonded further changes.
  • the analyte 130 partially adheres to the ligand 120 to generate a heterogeneous layer.
  • This macroscopic layer is macroscopically determined to have a predetermined optical thickness corresponding to the amount of the analyte 130 deposited. It is replaced with a homogeneous layer having a thickness. Accordingly, the optical thickness of the homogeneous layer through which incident light passes changes depending on the amount of the analyte 130 attached. As a result, as shown in FIG. 14, the reflection spectrum 122 is shifted to the reflection spectrum 132 (see the chain line).
  • the presence or absence of the intermolecular interaction can be detected. Further, by detecting the amount of change in the bottom peak wavelength of the reflection spectrum 132 with respect to the bottom peak wavelength of the reflection spectrum 122, the progress of the intermolecular interaction can be detected.
  • the change in the bottom peak wavelength due to the ligand 120 can be confirmed at the time point 140, which is the first shoulder portion on the curve, as shown in FIG.
  • the time 142 which is the second shoulder portion above, a change in the bottom peak wavelength due to the binding between the ligand 120 and the analyte 130 can be confirmed.
  • the method of observing the transition of the bottom peak wavelength over time has a limit in measurement accuracy due to the measurement principle, and the progress of intermolecular interaction is more accurately determined.
  • the overall rate of binding Increases uniformly, that is, the progress of intermolecular interaction increases with time as shown in FIG. 16A.
  • the data that is actually output by the detection device that detects the spectral intensity of the reflected light repeats minute fluctuations, such as reflectance data 151 shown in FIG. 17, for example.
  • An operation such as fitting the approximate curve 152 to the reflectance data 151 to calculate the approximate curve 152 and obtaining the minimum value of the approximate curve as the above-described bottom peak position is required.
  • the change in reflectance is small near the bottom peak, the method of determining the bottom peak position using the approximate curve as described above tends to cause the bottom peak position to be inaccurate in principle. This is disadvantageous when it is required to calculate the progress of the interaction with higher accuracy.
  • the change amount ⁇ of the bottom peak wavelength may change differently from the progress of the intermolecular interaction, as shown in FIG. 16B. In such a case, the change amount ⁇ of the bottom peak wavelength. Is not suitable as a value for accurately determining the progress of intermolecular interaction.
  • the method of tracking the change amount ⁇ of the bottom peak wavelength tracks only one point on the graph of the spectral characteristic of reflected light, does not capture the overall shift of the graph, and accurately changes There is a limit to catching it.
  • a high-performance calculation device or a complicated calculation is required, or the calculation cannot catch up in a case where the intermolecular interaction proceeds rapidly. There is also a concern.
  • the present inventors have determined that the entire curve is constant according to the thickness of the interference film and is not limited to the extreme value. The present inventors have found that it is possible to measure thickness and the like, and that there is a possibility that measurement can be performed even if the extreme value is out of the measurement range.
  • the present invention is to measure the optical film thickness of the interference film by reflection interference spectroscopy using a predetermined feature value different from the wavelength giving the extreme value, if there is a change in the optical film thickness of the interference film, It is an object of the present invention to provide an optical film thickness measurement method, an optical film thickness measurement system, and an optical film thickness measurement program capable of measuring the changed optical film thickness.
  • the invention according to claim 1 for solving the above-described problems is an optical film thickness in which an optical film thickness of an interference film in a laminate in which one or two or more interference films are laminated on a substrate is measured by reflection interference spectroscopy. Measuring method, In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined.
  • the optical film thickness of the molecules adsorbed on the interference film is reduced by the intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate.
  • An optical film thickness measuring method for measuring by reflection interference spectroscopy In advance, Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated; Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted.
  • the relationship with the film thickness is created in advance for the optical film thickness of the different second interference film, Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy By applying the predetermined feature value related to the curve of the change amount before the start to the relationship and identifying the optical film thickness of the second interference film that approximates the feature value, This is an optical film thickness measurement method for obtaining an optical film thickness of molecules adsorbed on an interference film by intermolecular interaction in the laminate.
  • the relationship is created for the plurality of feature values, and the measurement object is measured from the laminate to be measured by reflection interference spectroscopy.
  • the invention according to claim 4 is the optical film thickness measuring method according to any one of claims 1 to 3, wherein the predetermined characteristic value is a wavelength value.
  • the invention according to claim 5 is characterized in that the predetermined characteristic value is a wavelength value of a point on the curve having a spectral reflectance separated from the extreme value of the curve by a predetermined amount.
  • 3 is an optical film thickness measuring method according to any one of 3 above.
  • the invention according to claim 6 is the optical film thickness measurement according to any one of claims 1 to 3, wherein the predetermined feature value is a wavelength value of an inflection point of the curve. Is the method.
  • the invention according to claim 7 is characterized in that the predetermined feature value is a wavelength value of a point on the curve having a spectral reflectance separated from the inflection point of the curve by a predetermined amount.
  • Item 4 The optical film thickness measurement method according to any one of Items 3 above.
  • the invention according to claim 8 is the optical film thickness measuring method according to any one of claims 1 to 7, wherein the relation is created by a function.
  • the invention according to claim 9 is the optical film thickness measuring method according to claim 8, wherein the function is a quadratic function, and the quadratic function is created for each feature value.
  • the identification is performed by specifying an optical film thickness that approximates the feature value most closely, and an optical film thickness to be obtained is estimated from the optical film thickness that is most approximated.
  • Item 10 The optical film thickness measurement method according to any one of Items 9 above.
  • Claim 11 irradiates the said laminated body of a measuring object with a white light by reflection interference spectroscopy, and obtains the said spectral reflectance of the reflected light from the said laminated body among Claim 1-10 It is an optical film thickness measuring method as described in any one.
  • the invention according to claim 12 is the optical film thickness measuring method according to any one of claims 1 to 11, wherein the interference film is measured with a liquid layer covering the interference film.
  • the invention according to claim 13, by dividing the optical film thickness of the molecule obtained by the optical film thickness measurement method according to claim 2 by the refractive index of the molecule, for a molecule having a known refractive index. This is a film thickness measurement method for obtaining a film thickness.
  • the optical film thickness of the molecule obtained by the film thickness measuring method according to claim 2 and the optical size in the specific direction are calculated.
  • This is a molecular direction estimation method for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparison.
  • the invention according to claim 15 compares the film thickness of the molecule determined by the film thickness measurement method according to claim 13 and the size in the specific direction for molecules whose size in the specific direction is known. This is a molecular direction estimation method for estimating the direction of molecules adsorbed on an interference film by intermolecular interaction with respect to the interference film.
  • the invention according to claim 16 is obtained by the optical film thickness measurement method according to claim 2 for each different time point when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed.
  • This is an optical film thickness measurement method that records the environmental variable in association with the optical film thickness of the molecule.
  • the invention according to claim 17 is a molecule obtained by the film thickness measurement method according to claim 13 at each of different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed are changed.
  • the film thickness measurement method records the environmental variable in association with the film thickness.
  • the invention according to claim 18 is an optical film thickness measurement system for measuring an optical film thickness of an interference film in a laminate in which one or more interference films are stacked on a substrate by reflection interference spectroscopy.
  • a light source Irradiating means for irradiating the laminate with light from the light source;
  • a light receiving means for receiving reflected light from the laminate;
  • Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means;
  • a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined.
  • Storage means for storing data configured by creating different optical film thicknesses; Based on the spectral characteristics detected by the spectral detection means, for the spectral reflectance in the laminate to be measured, the predetermined feature value relating to the spectral reflectance curve is specified, and the data stored in the storage means And calculating means for determining the optical film thickness in the laminate to be measured by identifying the optical film thickness that approximates the feature value, and Is an optical film thickness measurement system.
  • the optical film thickness of the molecules adsorbed on the interference film is reduced by the intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate.
  • An optical film thickness measurement system for measuring by reflection interference spectroscopy, A light source; Irradiating means for irradiating the laminate with light from the light source; A light receiving means for receiving reflected light from the laminate; Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means; The spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is laminated in advance, and the second interference film in which the second optical film having a known optical film thickness is laminated on the interference film of the first laminated body.
  • the spectral reflectance of the two laminated body is obtained, and a predetermined feature value different from the wavelength that gives the extreme value relating to the curve of the amount of change in the spectral reflectance of the second laminated body with respect to the spectral reflectance of the first laminated body is extracted.
  • Storage means for storing data constituted by creating in advance the relationship between the characteristic value and the optical film thickness of the second interference film with respect to the optical film thickness of the different second interference film; Spectral reflection after the start of the intermolecular interaction of the laminate of the measurement object with respect to the spectral reflectance before the start of the intermolecular interaction of the laminate of the measurement object based on the spectral characteristics detected by the spectroscopic detection means By specifying the predetermined feature value relating to the curve of the rate change amount, applying it to the data stored in the storage means, and identifying the optical film thickness of the second interference film that approximates the feature value, An arithmetic means for obtaining an optical film thickness of molecules adsorbed on the interference film by intermolecular interaction in the laminate to be measured; Is an optical film thickness measurement system.
  • the relationship is created for the plurality of feature values, and the calculation means calculates each of these extreme values.
  • the invention according to claim 21 is the optical film thickness measurement system according to any one of claims 18 to 20, wherein the predetermined feature value is a wavelength value.
  • the predetermined feature value is a wavelength value of a point on the curve having a spectral reflectance separated from the extreme value of the curve by a predetermined amount.
  • the optical film thickness measurement system according to any one of 20.
  • the predetermined characteristic value is a wavelength value of a point on the curve having a spectral reflectance separated from the inflection point of the curve by a predetermined amount.
  • Item 21 The optical film thickness measurement system according to any one of Items 20 above.
  • the invention according to claim 25 is the optical film thickness measurement system according to any one of claims 18 to 24, wherein the light source is a light source that emits white light.
  • a member that forms a flow path on the interference film and a liquid that contains molecules that are connected to the flow path and interact with molecules provided on the interference film are supplied to the flow path. It is an optical film thickness measuring system as described in any one of Claims 18-25 provided with the liquid feeding means to flow.
  • the invention according to claim 27 comprises the optical film thickness measurement system according to claim 19, and the molecular film thickness obtained by the optical film thickness measurement system according to claim 19 is calculated for a molecule having a known refractive index. It is a film thickness measuring system further comprising a film thickness calculating means for obtaining the film thickness of the molecule by dividing by the refractive index of the molecule.
  • the invention according to claim 28 comprises the optical film thickness measurement system according to claim 19, and the molecule obtained by the film thickness measurement system according to claim 19 is obtained for a molecule whose optical magnitude in a specific direction is known.
  • Molecular direction estimation further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing the optical film thickness with the optical size in the specific direction. System.
  • the invention according to claim 29 is provided with the film thickness measurement system according to claim 27, and the molecular film thickness obtained by the film thickness measurement system according to claim 27 is determined for a molecule whose size in a specific direction is known.
  • the molecular direction estimation system further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing with the size of the specific direction.
  • the invention according to claim 30 includes the optical film thickness of the molecule determined by the calculation means at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment in which the molecule is placed are changed.
  • the invention according to claim 31 includes the thickness of the molecule determined by the thickness calculation means at each different time when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed are changed. 28.
  • an optical film thickness for causing a computer to execute a process of measuring an optical film thickness of an interference film in a laminate in which one or two or more interference films are stacked on a substrate by reflection interference spectroscopy.
  • a measurement program In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined.
  • a process of reading out data configured by creating different optical film thicknesses; Identifying the predetermined feature value relating to a spectral reflectance curve in the laminate to be measured obtained by reflection interference spectroscopy, and applying it to the data to identify an optical film thickness that approximates the feature value
  • an optical film thickness of molecules adsorbed on the interference film by intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate is provided.
  • An optical film thickness measurement program for causing a computer to execute processing to be measured by reflection interference spectroscopy, In advance, Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated; Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted.
  • a process of reading out data configured by preparing in advance the relationship between the film thickness and the optical film thickness of different second interference films; Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy The measurement is performed by identifying the predetermined feature value related to the curve of the change amount before the start, and applying the data to identify the optical film thickness of the second interference film that approximates the feature value.
  • the invention according to claim 34 is provided with the optical film thickness measurement program according to claim 33, and for molecules having a known refractive index, the molecules obtained by the computer based on the optical film thickness measurement program according to claim 33. It is a film thickness measurement program for causing the computer to further execute a film thickness calculation process for obtaining the film thickness of the molecule by dividing the optical film thickness by the refractive index of the molecule.
  • the invention according to claim 35 is provided with the optical film thickness measurement program according to claim 33, and the molecule having a known optical size in a specific direction is based on the optical film thickness measurement program according to claim 33.
  • Molecular direction estimation processing for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction by comparing the optical film thickness of the molecule obtained by the computer and the optical size in the specific direction. Is a molecular direction estimation program for causing the computer to execute.
  • a thirty-sixth aspect of the invention includes the film thickness measurement program according to the thirty-fourth aspect, and the computer obtains a molecule whose size in a specific direction is known based on the thickness measurement program according to the thirty-fourth aspect.
  • the computer further executes a molecular direction estimation process for estimating the direction of the molecule adsorbed on the interference film by the intermolecular interaction with respect to the interference film. Is a molecular orientation estimation program.
  • the invention according to claim 37 is the optical film thickness of the molecule obtained by the computer by the arithmetic processing at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed.
  • the optical film thickness measurement program according to claim 33 further causing the computer to execute a recording process in which the environment variable is associated and recorded.
  • the invention according to claim 38 is the molecular film obtained by the computer by the film thickness calculation process at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed. 35.
  • the film thickness measurement program according to claim 34 further causing the computer to execute a recording process for recording the environmental variable in association with the thickness.
  • the optical film thickness of the interference film can be measured.
  • the optical film thickness corresponding to the change can be measured.
  • standard film thickness It is a graph which shows the relationship between the sample film thickness d obtained by simulation, and the extreme value position wavelength of the spectral reflectance R.
  • FIG. 9 is a graph created from the graph of FIG. 8 by converting the horizontal axis to optical path length (optical film thickness) nd and the vertical axis to 1000 / ⁇ . It is a graph which shows the relationship between the sample film thickness d obtained by simulation, and the extreme position wavelength of spectral reflectance change amount (DELTA) R.
  • 11 is a graph created from the graph of FIG.
  • intermolecular interaction measurement system 1 which is an embodiment for carrying out the optical film thickness measurement system of the present invention.
  • the intermolecular interaction measurement system 1 executes the optical film thickness measurement method of the present invention, and the computer included in the system configuration executes a program reflecting the optical film thickness measurement program of the present invention. It is remembered as possible.
  • the case of measuring the intermolecular interaction will be described as an example, but the application of the present invention is not limited to the measurement of the intermolecular interaction.
  • the intermolecular interaction measurement system 1 is usually configured to output various measurement values, but only the measurement of the optical film thickness of the interference film according to the implementation of the present invention will be described below.
  • the intermolecular interaction measurement system 1 includes a measurement device 80 that includes a measurement member 10 that holds a sample to be measured, a measurement mechanism including a light source and a spectroscope, which will be described later,
  • the control arithmetic device 50 is a computer connected to the device 80, and a display 91 and an input / output device 92 connected to the control arithmetic device 50.
  • the control arithmetic device 50 includes a control unit for a measurement mechanism such as a light source and a spectroscope built in the measurement device 80, a calculation unit for detection information, and an input / output unit for inputting / outputting control commands and detection information. Functions as (interface).
  • the measuring device 80 includes a lower housing 82 and an upper housing 81 that is rotatably attached to the lower housing 82.
  • the lower housing 82 is provided with a table 83 for holding the measuring member 10.
  • a connection portion 84 having an injection port 85 and a suction port 87 for connecting the measurement member 10 and circulating the sample and a detection window 86 is provided inside the upper housing 81.
  • a white light source 20, a spectroscope 30, and optical fibers 40 and 41 are provided in the upper housing 81, and light is emitted from the detection window 86 and from the detection window 86. It is configured to receive incident light.
  • the upper casing 81 When performing measurement, first, the upper casing 81 is rotated upward to open the table 83 on the lower casing 82, and the measuring member 10 is set on the table 83. Thereafter, the upper casing 81 is rotated downward and closed, whereby the injection port 85 and the suction port 87 are connected to the measurement member 10, and the detection window 86 faces the measurement member 10 to complete the measurement preparation.
  • the measurement member 10 includes a sensor chip 12 provided with an optical thin film and a flow cell 14 that forms a flow path together with the sensor chip 12.
  • the sensor chip 12 has a silicon substrate 12a.
  • a SiN film 12b (silicon nitride) is deposited on the silicon substrate 12a.
  • the SiN film 12b is an example of an optical thin film.
  • the flow cell 14 is a transparent member made of silicone rubber.
  • a groove 14 a is formed in the flow cell 14. When the flow cell 14 is brought into close contact with the sensor chip 12, a sealed flow path 14b is formed as shown in FIG. Both ends of the groove 14a are exposed from the surface of the flow cell 14, and one end functions as a sample solution inlet 14c and the other end functions as an outlet 14d.
  • a ligand 16 is previously bonded to the bottom of the groove 14a (see FIG. 3).
  • the flow cell 14 can be replaced with the sensor chip 12, and the flow cell 14 can be used in a disposable manner.
  • the surface of the sensor chip 12 may be modified with a silane coupling agent or the like. In this case, the flow cell 14 can be easily replaced.
  • the upper casing 81 is rotated downward and closed, so that the detection window 86 faces the flow cell 14 as shown in FIG.
  • the optical fiber 40 is installed above the path 14b.
  • the white light source 20 is connected to one end of the optical fiber 40.
  • a halogen light source is used as the white light source 20.
  • a pseudo white light source having a plurality of spectral intensity peaks in the visible light wavelength region, such as an LED light source, may be used.
  • the other end of the optical fiber 40 faces the detection window 86.
  • the spectroscope 30 is connected to one end of the optical fiber 41, and the other end faces the detection window 86.
  • the white light source 20 When the white light source 20 is turned on, the light is applied to the sealed flow path 14 b through the optical fiber 40, and the reflected light is detected by the spectrometer 30 through the optical fiber 41.
  • the white light source 20 and the spectroscope 30 are connected to a control arithmetic device 50, and the control arithmetic device 50 controls the operation of these modules.
  • the control arithmetic device 50 executes data stored in a storage device 503 (see FIG. 4) described later, and stores data representing the spectral characteristics of reflected light through the interface at a predetermined timing linked to detection operation control. While obtaining an input, it functions as a calculation means for calculating the value of the optical film thickness based on the input data.
  • FIG. 4 is a schematic circuit block diagram of the measurement system 1.
  • the control arithmetic device 50 includes a CPU 500, a ROM 501, a RAM 502, a storage device 503 such as a hard disk, a communication device 504, a reader / writer 505 of a storage medium such as a memory card, and each part and display of the measurement device 80.
  • An interface 506 is provided for exchanging signals with the input device.
  • a program for measuring the optical film thickness in the intermolecular interaction and other programs for measurement are stored in the storage device 503, and the CPU 500 is controlled by this program to execute various operations.
  • the sample solution 60 containing the analyte 62 is circulated from the inlet 14c to the outlet 14d through the sealed channel 14b.
  • the control arithmetic device 50 controls the liquid feeding device 35 (see FIG. 4) for feeding the sample solution 60.
  • the analyte 62 is a substance that specifically binds to the ligand 16 and is a target molecule to be detected.
  • biomolecules such as proteins, nucleic acids, lipids, and sugars, and foreign substances that bind to biomolecules such as drug substances and endocrine confusion chemical substances are used.
  • the control arithmetic device 50 turns on the white light source 20 at a timing before the sample solution 60 flows into the measurement member 10, and the reflected light of the optical thin film (SiN film 12 b) before the start of the intermolecular interaction from the spectroscope 30.
  • An input of spectral characteristic data including data indicating the intensity of light is obtained.
  • the control arithmetic device 50 turns on the white light source 20 while the sample solution 60 is circulating in the closed flow path 14b.
  • the white light passes through the flow cell 14 and is irradiated to the sensor chip 12, and the reflected light is detected by the spectroscope 30.
  • the spectral characteristic of the reflected light detected by the spectroscope 30 is transmitted to the control arithmetic device 50.
  • the control arithmetic device 50 obtains from the spectroscope 30 input of spectral characteristic data including data indicating the intensity of reflected light during or after the progress of the intermolecular interaction.
  • spectral characteristic data necessary for measuring the optical film thickness of the interference film is input to the control arithmetic unit 50.
  • the sensor chip 12 is a laminate in which one or more interference films (SiN film 12b) are laminated on a substrate (silicon substrate 12a).
  • the measurement system 1 can measure the optical film thickness (such as the optical film thickness 70) of the interference film in the laminate by reflection interference spectroscopy.
  • the optical fiber 40 receives irradiation light that irradiates light from the light source (white light source 20) to the laminate (sensor chip 12), and the optical fiber 41 receives reflected light from the laminate (sensor chip 12).
  • the spectroscope 30 corresponds to a spectroscopic detector that detects the spectral characteristics of the reflected light.
  • the RAM 502 functions as a data storage unit that is referred to when the control arithmetic device 50 calculates the optical film thickness.
  • the data can be read from any of a storage device 503, a server connected via the communication device 504, an external storage device connected via the interface 506, a memory card read by the reader / writer 505, and the like. Good.
  • a hardware configuration in which another computer that has received spectral characteristic data necessary for measuring the optical film thickness of the interference film via the communication device 504 performs calculations for measuring the optical film thickness of the interference film. Does not matter.
  • the other computer is a computer in which the optical film thickness measurement system of the present invention is incorporated and the optical film thickness measurement program of the present invention is installed.
  • the flow cell 14 corresponds to a member that forms a flow path on the interference film. As described above, the flow cell 14 is connected to the flow path formed by the flow cell 14 in the measuring device 80 and is provided on the interference film.
  • a liquid feeding means is configured to flow a liquid containing molecules that interact with the molecules through the flow path.
  • the measurement principle 1 will be described as follows. (Create reference data) When performing measurement based on this measurement principle, the data to be referred to when calculating the optical film thickness is obtained by extracting in advance the predetermined characteristic value related to the spectral reflectance curve in the laminate with the known optical film thickness of the interference film. This is data configured by creating a relationship between the characteristic value and the optical film thickness for different optical film thicknesses. This will be described in detail below.
  • FIG. 6 is a schematic model diagram for explaining the principle of reflection interference spectroscopy.
  • the laminated body is composed of a substrate a1 and an interference film a2 having a film thickness d laminated thereon, and the liquid layer a3 covers the interference film a2.
  • the liquid layer a3, the interference film a2, and the substrate a1 have refractive indexes n1, n2, and n3, respectively.
  • light a4 having a wavelength ⁇ 0 as shown in FIG. 6 is incident thereon, reflected light a5 reflected from the surface of the interference film a2 and reflected light a6 passing through the interference film a2 and reflected from the interface with the substrate a1. Interfere as shown by part a7.
  • the optical path of the reflected light a6 is longer than the reflected light a5 by 2n2d.
  • the optical path difference 2n2d causes a half-wavelength shift between the reflected light a5 and the reflected light a6, it interferes so as to weaken the reflection intensity most, as shown by a7.
  • the reflection intensity varies depending on the wavelength of the light to be irradiated.
  • the optical film thickness n2d of the interference film a2 can be specified by analyzing the spectral characteristics of the reflected light. This is the basic principle of the present invention using reflection interference spectroscopy. The following description will clarify how the reflected light is analyzed to determine the optical film thickness.
  • the silicon substrate 12a described above corresponds to the substrate a1
  • the SiN film 12b corresponds to the interference film a2. As shown in FIG.
  • the portion corresponding to the optical film thickness 70 added to the SiN film 12b is the interference film. It corresponds to a2.
  • the curve of the spectral reflectance and the amount of change due to reflection interference changes as if it moves in the longer wavelength direction as the thickness of the interference film increases.
  • An example is shown in FIG.
  • the spectral reflectance change amount curves b1, b2, b3, and b4 shown in FIG. 7 are obtained from the curve b2, the curve b2, the curve b3, and the curve b4 having a thicker interference film than the curve b1. It is.
  • the spectral reflectance change amount ⁇ R is a change amount based on the spectral reflectance in an interference film having a certain film thickness. As shown in FIG. 7, the peak position moves to the long wavelength side in the order of curve b1, curve b2, curve b3, and curve b4.
  • This change characteristic depends on the optical film thickness of the interference film. Therefore, the physical properties of the interference film are extracted by focusing on the wavelength that gives the extreme value from the spectral reflectance curve and the change amount curve, and instead extracting the feature by paying attention to a predetermined feature value that is different from the wavelength that gives the extreme value. Regardless, it is possible to extract the optical properties depending on the optical film thickness of the interference film. And it can expand
  • the feature here is to characterize a curve corresponding to a certain optical film thickness from a curve corresponding to another optical film thickness. For example, as shown in FIG. 7, extreme values (maximum value P, minimum value B), inflection point E of the curve, and points G1, G2 on the curve where the spectral reflectance is separated from the maximum value P by a predetermined amount F.
  • the points J1 and J2 on the curve where the spectral reflectance is separated by a predetermined amount H from the minimum value B, and the points M1 and M2 on the curve where the spectral reflectance is separated by a predetermined amount K from the inflection point E appear.
  • the characteristic values include the wavelength value of the inflection point E, the value of the slope of the curve at the inflection point E, the point Wavelength value of G1, wavelength value of point G2, wavelength value of point J1, wavelength value of point J2, wavelength value of point M1, wavelength value of point M2, difference between wavelength value of point G1 and wavelength value of point G2, point
  • the difference between the wavelength value of J1 and the wavelength value of the point J2 and the difference of the wavelength value of the point M1 and the wavelength value of the point M2 can be mentioned, and these can be used alone or in combination.
  • a wavelength that gives an extreme value as a feature value is taken as an example.
  • Curves of spectral reflectance R are calculated for samples having different film thicknesses by simulation, the wavelength ⁇ at the extreme position is obtained from the curve, and the relationship between the sample film thickness d and the extreme position wavelength ⁇ is shown in the graph of FIG. .
  • This is obtained by examining the substrate a1 as a silicon substrate and changing the SiN film as the interference film a2 thereon in the range of 66.5 nm to 2000 nm.
  • the solid line indicates the wavelength at the maximum value position with respect to the sample film thickness
  • the broken line indicates the wavelength at the minimum value position with respect to the sample film thickness.
  • the sample film thickness d on the horizontal axis of the graph of FIG. 8 is converted to the optical path length (optical film thickness) nd by multiplying the refractive index n of the interference film, and the wavelength ⁇ on the vertical axis is converted to 1000 / ⁇ .
  • the resulting graph is shown in FIG.
  • a curve indicating the wavelength at the minimum value position appears on the far left. This is a curve B1.
  • a curve indicating the wavelength at the local maximum position appears.
  • This is a curve P1.
  • a curve indicating the wavelength at the minimum value position and a curve indicating the wavelength at the maximum value position alternately appear.
  • curves B2, P2, B3, P3,... B24, P24 in this order.
  • Each of the curves B1 to P24 is approximated by a quadratic function, and the approximate quadratic function is expressed by a mathematical expression.
  • the coefficients a and b and the constant c corresponding to each of the curve B1 to the curve P24 are shown in Table 1 below.
  • the above function data refers to data that is referred to when calculating the optical film thickness according to the present measurement principle, that is, the wavelength ⁇ that gives the extreme value of the spectral reflectance in a laminate in which the optical film thickness of the interference film is known in advance. It is data configured by creating a relationship with the optical film thickness for different optical film thicknesses. Such function data is stored so that it can be used by a computer (control arithmetic unit 50) for calculating the optical film thickness.
  • Optical film thickness identification calculation In the measurement system 1, based on the spectral characteristic data input from the spectroscope 30 by the control arithmetic device 50, first, for the spectral reflectance in the laminate to be measured, the wavelength that gives the extreme value of the spectral reflectance is determined. Identify. The extreme value is specified including the maximum value and the minimum value. In the graph of FIG. 9, when a line parallel to the vertical axis y is drawn at an arbitrary value of the optical film thickness (horizontal axis x), it intersects one of the curves B1 to P24. The y coordinate of the intersection is a value of 1000 / ⁇ giving an extreme value to the spectral reflectance curve at the optical film thickness.
  • the control arithmetic unit 50 converts the wavelength ⁇ giving the extreme value of the spectral reflectance obtained from the object to be measured into 1000 / ⁇ to obtain the y value, and distinguishes between the maximum value and the minimum value.
  • the common solution x that is, the optical film thickness nd value is identified.
  • the control arithmetic unit 50 estimates and outputs the optical film thickness of the interference film in the measurement target laminate from the identified optical film thickness nd value.
  • the identification is performed by specifying those that approximate each other in the narrowest range. Then, for example, the average value of the distributed solution x is output as an estimated measurement value.
  • the reliability of the measurement is ensured to be constant by providing a threshold value of the approximation that may be output as a measurement value and the approximation that is output as a measurement error. The degree of approximation may also be output. Possible fitting patterns are SP1, SP2,...
  • the measurement system 1 measures the optical film thickness of the interference film a2 according to the measurement principle 1.
  • the measurement system 1 is based on the measurement principle 1, regardless of whether the interference film a2 includes a layer formed by intermolecular interaction or not, by using reflection interference spectroscopy. Can be measured.
  • the measurement principle 2 will be described as follows.
  • the data to be referred to when calculating the optical film thickness includes the spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is previously laminated, and the first Spectral reflectance in the second laminate in which a second interference film having a known optical film thickness is laminated on the interference film of the laminate, and spectral reflection in the second laminate relative to the spectral reflectance in the first laminate.
  • This measurement principle also presupposes the matters with reference to FIGS. 6 and 7 in the above measurement principle 1.
  • the curve of the change amount ⁇ R of the spectral reflectance with respect to the wavelength shows the change in peak movement and increase as the interference film becomes thicker as described above.
  • the substrate a1 is a silicon substrate
  • the first interference film laminated thereon is a 66.5 nm SiN film.
  • the second interference film laminated on the first interference film is BK7, and the second interference film (BK7) is examined by changing in the range of 0 nm to 1000 nm.
  • the sample film thickness d on the horizontal axis in the graph of FIG. 10 is for the second interference film (BK7).
  • BK7 is a virtual sample for simulation in which properties such as a refractive index are specified, corresponds to a typical kind of glass, and has a refractive index close to that of a biomaterial or a polymer material.
  • the solid line indicates the wavelength at the maximum value position with respect to the sample film thickness
  • the broken line indicates the wavelength at the minimum value position with respect to the sample film thickness.
  • FIG. 10 is a graph created by converting the sample film thickness d on the horizontal axis to the optical path length (optical film thickness) nd by multiplying by the refractive index n, and converting the wavelength ⁇ on the vertical axis to 1000 / ⁇ . It is shown in FIG. In the graph of FIG. 11, a curve indicating the wavelength at the local maximum position appears on the leftmost side. This is a curve P1. When going to the right from the curve P1, a curve showing the wavelength of the minimum value position appears. This is a curve B1. When going further to the right from the curve B1, a curve indicating the wavelength at the maximum value position and a curve indicating the wavelength at the minimum value position appear alternately. These are sequentially designated as curves P2, B2, P3, B3...
  • the above function data refers to data that is referred to when calculating the optical film thickness according to the present measurement principle, that is, the spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is previously laminated, Spectral reflectance in the second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and in the second laminate relative to the spectral reflectance in the first laminate
  • This is data configured by creating in advance the relationship between the wavelength that gives the extreme value of the change amount of the spectral reflectance and the optical film thickness of the second interference film for the different optical film thicknesses of the second interference film.
  • Such function data is stored so that it can be used by a computer (control arithmetic unit 50) for calculating the optical film thickness.
  • the control arithmetic device 50 receives the input from the spectroscope 30 before the start of the intermolecular interaction. Spectral reflectance is obtained. After the start of the intermolecular interaction, the control arithmetic unit 50 obtains the spectral reflectance after the start of the intermolecular interaction in the measurement target laminate based on the spectral characteristic data input from the spectroscope 30.
  • the control arithmetic device 50 compares the spectral reflectance before the start of the intermolecular interaction of the laminate to be measured with respect to the spectral reflectance after the start of the intermolecular interaction of the laminate to be measured.
  • the wavelength giving the extreme value of the change amount ⁇ R of the spectral reflectance is specified.
  • the extreme value is specified including the maximum value and the minimum value. In the graph of FIG. 11, when a line parallel to the vertical axis y is drawn at an arbitrary value of the optical film thickness (horizontal axis x), it intersects one of the curves P1, B1,.
  • the y coordinate of the intersection is a value of 1000 / ⁇ that gives an extreme value to the spectral reflectance change amount curve at the optical film thickness. If the intersection intersects the curves P1-P8, the extreme value is the maximum value, and the curve B1- If it crosses B7, the extreme value is a minimum value. Using this in a reverse calculation, the control arithmetic device 50 obtains the y value by converting the wavelength ⁇ giving the extreme value of the change amount of the spectral reflectance obtained from the measurement object into 1000 / ⁇ , and the maximum value and the minimum value.
  • common X that is, the optical film thickness nd value is identified.
  • the control arithmetic device 50 estimates and outputs the optical film thickness of the interference film in the laminate to be measured from the identified optical film thickness nd value.
  • the measurement system 1 can measure the optical film thickness increased by the intermolecular interaction of the interference film a2 according to the measurement principle 2. That is, the measurement system 1 can measure the optical film thickness corresponding to the analyte 62 bound to the ligand 16 as shown in FIG. Due to the progress of the intermolecular interaction, the ligand 16 to which the analyte 62 is bound gradually increases. Even if the analyte 62 is combined even partly, there is a change in the wavelength of reflection interference, so that a curve of the spectral reflectance change amount can be obtained even in the initial stage of the intermolecular interaction.
  • the wavelength that gives the extreme value of the spectral reflectance change amount even at the initial stage of the intermolecular interaction is set. Can be identified. That is, the extreme value of the change amount of the spectral reflectance specified at the initial stage of the intermolecular interaction is not different from that specified thereafter. Therefore, the measurement system 1 can calculate and output the measured value of the optical film thickness from the stage where the wavelength that gives the extreme value of the spectral reflectance change amount can be specified first, and can notify the user at an early stage.
  • the sample solution 60 includes a plurality of types of molecules, each molecule has a unique size.
  • the present invention is applied and the optical film thickness that changes due to the intermolecular interaction of the target molecule (analyte 62) is known, the known optical film thickness Compare the measured value with the measured optical film thickness value. If they match, it can be determined that there was an intermolecular interaction of the target molecule, and if it does not match, it can be determined that there was no intermolecular interaction of the target molecule. The presence or absence of intermolecular interaction of the target molecule can be detected.
  • the optical film thickness corresponding to the analyte 62 bound to the ligand 16 is measured, but the film thickness can be obtained for molecules having a known refractive index.
  • the control arithmetic device 50 stores the refractive index of the molecule (analyte 62) in advance in the RAM 502 and obtains it as described above.
  • the film thickness of the molecule is determined by dividing the optical film thickness of the molecule by the refractive index of the molecule.
  • Molecular direction estimation Furthermore, if the size or optical size of a specific direction of a molecule is known, the direction of the molecule relative to the interference film can be estimated. As shown in FIG. 18A, a molecule having a size d1 in one direction and a size d2 in a different direction may be adsorbed on the interference film with the size d1 as the stacking direction as shown in FIG. 18B. As shown in 18C, when there is a possibility that the size d2 is adsorbed to the interference film as the stacking direction, the control arithmetic unit 50 functions as a molecular direction estimation unit and constitutes a molecular direction estimation system.
  • the size d1 and the size d2 are optical sizes, that is, values obtained by multiplying the actual size by the refractive index
  • the control arithmetic unit 50 stores and holds these optical sizes in the RAM 502 in advance.
  • the direction of the molecules adsorbed on the interference film by the intermolecular interaction with respect to the interference film is estimated by comparing the optical film thicknesses of the molecules obtained as described above with these optical sizes. Even when the size or optical size in only one direction is known and stored in the RAM 502, it can be estimated whether or not the suction is performed in that direction.
  • the measurement environment control device includes a device that controls one or more of environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment.
  • the detection unit of the measurement environment control device detects the value of the controlled environment variable.
  • the control arithmetic unit 50 gives an instruction to the measurement environment control device based on the program to change the environment variable, and calculates the optical film thickness or film thickness of the molecule obtained as described above for each different time point when the environment variable changes. It is stored in the RAM 502 in association with the environment variable at the same time. Further, when there is no need to provide the environmental change cause from the measurement system 1 such as when the cause of the environmental change is on the measurement target side, for example, as the measurement environment detection device, the environment such as the temperature, pressure, pH, salt concentration, etc. of the measurement environment One that detects any one or more of the variables is provided.
  • the control arithmetic unit 50 stores in the RAM 502 the optical film thickness or film thickness of the molecules obtained as described above for each different time point when the environmental variable changes in association with the environmental variable detected by the measurement environment detection device at the same time. To do. In either case, the measurement system 1 further draws a graph based on the recorded information and displays it on the display 91.
  • the above program can be updated to the latest one through the communication device 504 connected to a public line such as the Internet through a LAN or the like.
  • a public line such as the Internet through a LAN or the like.
  • This invention can be utilized for measuring the optical thickness of the film
  • Measurement System 10 Measurement Member 12 Sensor Chip (Laminate) 12a Silicon substrate 12b SiN film 14 Flow cell 14a Groove 14b Sealed flow path 14c Inlet 14d Outlet 16 Ligand 20
  • White light source 30 Spectroscope 40, 41 Optical fiber 50 Control arithmetic device 60 Sample solution 62 Analyte 80 Measuring device R Spectral reflectance ⁇ R Amount of change in spectral reflectance a1 Substrate a2 Interference film a3 Liquid layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The purpose of the present invention is to measure the optical film thickness of an interference film through reflectometric interference spectroscopy, and in the event that there is variation in the optical film thickness of an interference film, to measure the optical film thickness of the portion where there is a variation in the optical film thickness. The optical film thickness of an interference film in a laminate obtained by laminating an interference film on a substrate is measured through reflectometric interference spectroscopy, doing so while taking note of the tendency of the spectral distribution of spectral reflectivity (or the amount of variation thereof) to shift towards the long-wavelength end in the order curve b1->curve b2->curve b3->curve b4, and for the number of peaks thereof to increase in association with an increase in the optical film thickness of the interference film. For a number of different optical film thicknesses, the relationship between a predetermined characteristic value of the curve of spectral reflectivity (the amount of variation) for a laminate in which the optical film thickness of the interference film is known and the optical film thickness in question is created in advance; a predetermined characteristic value of the curve of spectral reflectivity (the amount of variation) in a laminated to be measured through reflectometric interference spectroscopy is plugged into the relationship; and the optical film thickness of the interference film to be measured is derived by identifying the optical film thickness that most closely approximates the characteristic value.

Description

光学膜厚測定方法、光学膜厚測定システム及び光学膜厚測定プログラム他Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, etc.
 本発明は、反射干渉分光法を利用した光学膜厚測定方法、光学膜厚測定システム及び光学膜厚測定プログラムに関する。 The present invention relates to an optical film thickness measurement method, an optical film thickness measurement system, and an optical film thickness measurement program using reflection interference spectroscopy.
 従来、抗原抗体反応などの生体分子同士の分子間相互作用や、有機高分子同士の分子間相互作用などの結合の測定は、一般的に、放射性物質や蛍光体などの標識を用いることで行われてきた。この標識には手間がかかり、特にタンパク質への標識は方法が煩雑な場合や標識によりタンパク質の性質が変化する場合があった。そこで、近年、生体分子や有機高分子間の結合を、簡便に標識を用いることなく直接的に検出する手段として、光学薄膜の干渉色変化を利用したRIfS方式(Reflectometric interference spectroscopy:反射干渉分光法)が提案され、既に実用化もされている。RIfS方式の基本原理は特許文献1や非特許文献1などに言及されている。 Conventionally, the measurement of bonds such as intermolecular interactions between biomolecules such as antigen-antibody reactions and intermolecular interactions between organic macromolecules is generally performed by using labels such as radioactive substances and phosphors. I have been. This labeling takes time, and in particular, labeling a protein may involve complicated methods or the property of the protein may change depending on the labeling. Therefore, in recent years, as a means for directly detecting a bond between a biomolecule and an organic polymer without using a label, an RIfS method (Reflectometric interference spectroscopy: reflection interference spectroscopy using an interference color change of an optical thin film). ) Has been proposed and already put into practical use. The basic principle of the RIfS method is mentioned in Patent Document 1, Non-Patent Document 1, and the like.
 RIfS方式について簡単に説明すると、この方式では、図12に示すように、光学薄膜104が設けられた基板102が用いられる。図12aに示すように、基板102上の光学薄膜104に対し白色光を照射した場合、図13の典型的な一例に示すとおり、白色光そのものの分光強度は実線106で表され、その反射光の分光強度は実線108で表される。照射した白色光とその反射光との各分光強度から反射率を求めると、図14に示すとおり、実線で表されたボトムピーク(スペクトル曲線における極小部)を有する反射スペクトル110が得られる。 The RIfS method will be briefly described. In this method, as shown in FIG. 12, a substrate 102 provided with an optical thin film 104 is used. As shown in FIG. 12A, when the optical thin film 104 on the substrate 102 is irradiated with white light, the spectral intensity of the white light itself is represented by a solid line 106 as shown in a typical example of FIG. Is represented by a solid line 108. When the reflectance is obtained from each spectral intensity of the irradiated white light and the reflected light, a reflection spectrum 110 having a bottom peak (minimum portion in the spectrum curve) represented by a solid line is obtained as shown in FIG.
 分子間相互作用を検出するにあたっては、図12bに示すとおり、光学薄膜104上にリガンド120が設けられる。光学薄膜104上にリガンド120を設けると、リガンド120が設けられた部位における光学的厚さ112が変化して光路長が変化し、反射干渉効果により干渉波長も変化する。すなわち、反射光の分光強度分布のピーク位置がシフトし、その結果図14に示すとおり、反射スペクトル110が反射スペクトル122(点線部参照)にシフトする。この状態において、光学薄膜104上にサンプル溶液を流すと、図12cに示すとおり、リガンド120とサンプル溶液中のアナライト130とが結合する。リガンド120とアナライト130とが結合すると、アナライト130が結合した部位における光学的厚さ112がさらに変化する。リガンド120に対してアナライト130が部分的に付着することによって不均質な層が生成されるが、この不均質層は巨視的にみればアナライト130の付着量に応じた所定の光学的厚さを有する均質層に置き換えられる。従って、入射光の通過する均質層の光学的厚さがアナライト130の付着量に応じて変化することとなる。これによって、図14に示すとおり、反射スペクトル122が反射スペクトル132(1点鎖線部参照)にシフトする。そして、反射スペクトル122のボトムピーク波長(反射率が極小値となる波長)に対する反射スペクトル132のボトムピーク波長の変化を検出することにより、分子間相互作用の有無を検出することができる。また、反射スペクトル122のボトムピーク波長に対する反射スペクトル132のボトムピーク波長の変化量を検出することにより、分子間相互作用の進捗度を検出することができるようになっている。 In detecting intermolecular interactions, a ligand 120 is provided on the optical thin film 104 as shown in FIG. 12b. When the ligand 120 is provided on the optical thin film 104, the optical thickness 112 at the site where the ligand 120 is provided changes, the optical path length changes, and the interference wavelength also changes due to the reflection interference effect. That is, the peak position of the spectral intensity distribution of the reflected light is shifted, and as a result, the reflected spectrum 110 is shifted to the reflected spectrum 122 (see the dotted line portion) as shown in FIG. In this state, when the sample solution is caused to flow on the optical thin film 104, the ligand 120 and the analyte 130 in the sample solution are bonded as shown in FIG. 12c. When the ligand 120 and the analyte 130 are bonded, the optical thickness 112 at the site where the analyte 130 is bonded further changes. The analyte 130 partially adheres to the ligand 120 to generate a heterogeneous layer. This macroscopic layer is macroscopically determined to have a predetermined optical thickness corresponding to the amount of the analyte 130 deposited. It is replaced with a homogeneous layer having a thickness. Accordingly, the optical thickness of the homogeneous layer through which incident light passes changes depending on the amount of the analyte 130 attached. As a result, as shown in FIG. 14, the reflection spectrum 122 is shifted to the reflection spectrum 132 (see the chain line). Then, by detecting the change in the bottom peak wavelength of the reflection spectrum 132 with respect to the bottom peak wavelength of the reflection spectrum 122 (the wavelength at which the reflectance becomes a minimum value), the presence or absence of the intermolecular interaction can be detected. Further, by detecting the amount of change in the bottom peak wavelength of the reflection spectrum 132 with respect to the bottom peak wavelength of the reflection spectrum 122, the progress of the intermolecular interaction can be detected.
 ボトムピーク波長の変化の推移を経時的に観測すると、図15に示すとおり、曲線上の第1のショルダー部である時点140において、リガンド120によるボトムピーク波長の変化を確認することができ、曲線上の第2のショルダー部である時点142において、リガンド120とアナライト130との結合によるボトムピーク波長の変化を確認することができる。 When the transition of the change in the bottom peak wavelength is observed with time, the change in the bottom peak wavelength due to the ligand 120 can be confirmed at the time point 140, which is the first shoulder portion on the curve, as shown in FIG. At the time 142, which is the second shoulder portion above, a change in the bottom peak wavelength due to the binding between the ligand 120 and the analyte 130 can be confirmed.
特許第3786073号公報Japanese Patent No. 3778673 特願2011-141348号公報Japanese Patent Application No. 2011-141348 特願2012-001095号公報Japanese Patent Application No. 2012-001095
 しかし、本発明者らの検討によれば、ボトムピーク波長の変化の推移を経時的に観測する方式では、測定原理上、測定精度に限界があり、分子間相互作用の進捗度をより正確に捉えようとした場合に、十分に改善できないという問題があることが判明した。これは以下のような理由による。
 すなわち、抗原抗体反応などの生体分子同士の分子間相互作用や、有機高分子同士の分子間相互作用などの結合は、微視的には結合と離脱を繰り返しながらも、全体としては結合の割合が一様に増加する、すなわち、図16Aに示すように時間の経過に従って分子間相互作用の進捗度が増加する。
 しかしながら、反射光の分光強度を検出する検出装置によって実際に出力されるデータは、例えば図17に示す反射率データ151のように微小な変動を繰り返しており、ボトムピーク位置を定めるには、この反射率データ151に近似曲線152をフィッティングして、近似曲線152を算出し、その近似曲線の極小値を上述のボトムピーク位置として求めるなどの演算が必要となる。また、ボトムピーク付近は反射率の変化が小さいため、上述のような近似曲線を用いてボトムピーク位置を決定する方法では、原理上、ボトムピークの位置が不正確になりやすく、特に、分子間相互作用の進捗度をより高い精度で算出することが求められる場合は不利になる。結果として、ボトムピーク波長の変化量Δλは、図16Bに示すように、分子間相互作用の進捗度とは異なった変化をすることがあり、このような場合は、ボトムピーク波長の変化量Δλは、分子間相互作用の進捗度を正確に判断するための値として適当ではなくなってしまう。
However, according to the study by the present inventors, the method of observing the transition of the bottom peak wavelength over time has a limit in measurement accuracy due to the measurement principle, and the progress of intermolecular interaction is more accurately determined. When trying to catch it, it turned out that there was a problem that it could not be improved sufficiently. This is due to the following reasons.
In other words, intermolecular interactions between biomolecules such as antigen-antibody reactions, and intermolecular interactions between organic macromolecules, while microscopically repeating binding and detachment, the overall rate of binding Increases uniformly, that is, the progress of intermolecular interaction increases with time as shown in FIG. 16A.
However, the data that is actually output by the detection device that detects the spectral intensity of the reflected light repeats minute fluctuations, such as reflectance data 151 shown in FIG. 17, for example. An operation such as fitting the approximate curve 152 to the reflectance data 151 to calculate the approximate curve 152 and obtaining the minimum value of the approximate curve as the above-described bottom peak position is required. In addition, since the change in reflectance is small near the bottom peak, the method of determining the bottom peak position using the approximate curve as described above tends to cause the bottom peak position to be inaccurate in principle. This is disadvantageous when it is required to calculate the progress of the interaction with higher accuracy. As a result, the change amount Δλ of the bottom peak wavelength may change differently from the progress of the intermolecular interaction, as shown in FIG. 16B. In such a case, the change amount Δλ of the bottom peak wavelength. Is not suitable as a value for accurately determining the progress of intermolecular interaction.
 また、ボトムピーク波長の変化量Δλを追跡する方法は、反射光の分光特性のグラフ上の1点だけを追跡し、グラフの全体的なシフトを捉えることをしておらず、変化を正確に捉えることに自ずと限界がある。
 加えて、上述した近似曲線算出のための演算を行うために、高性能な演算装置や複雑な演算が必要になったり、分子間相互作用が速く進行するようなケースでは演算が追いつかなくなったりするという懸念もある。
In addition, the method of tracking the change amount Δλ of the bottom peak wavelength tracks only one point on the graph of the spectral characteristic of reflected light, does not capture the overall shift of the graph, and accurately changes There is a limit to catching it.
In addition, in order to perform the above-mentioned calculation for calculating the approximate curve, a high-performance calculation device or a complicated calculation is required, or the calculation cannot catch up in a case where the intermolecular interaction proceeds rapidly. There is also a concern.
 以上の事情を背景に研究し本発明者らは、検出される光の分光特性の極値に着目し、この極値が干渉膜の厚みに応じて一定の変化傾向を見せることを見出し、その関係を予め特定しておくことによって、干渉膜の光路長、すなわち、干渉膜の光学膜厚を測定する方法を見出し特許文献2及び3の特許出願をおこなった。本方法によれば、分子間相互作用によって形成される膜に限らず光学膜厚を測定することができるとともに、分子間相互作用のように時間経過によって光学膜厚に変化があれば、これを検出し、その変化した分の光学膜厚を測定することもできる。すなわち、分子間相互作用の測定においては、リガンドとアナライトとが結合すると、アナライトが結合した部位における光学膜厚の変化量を測定することができる。
 それとともに本発明者らは、干渉膜の厚みに応じて一定であるのは曲線全体であり極値に限らないことから、極値を与える波長以外の特徴値を抽出しても同様に光学膜厚等の測定が可能であり、また測定レンジから極値が外れても測定できる可能性があることを見出し、本発明に至った。
Researching the background of the above circumstances, the present inventors have focused on the extreme value of the spectral characteristics of the detected light, and found that this extreme value shows a certain change tendency according to the thickness of the interference film. By specifying the relationship in advance, a method for measuring the optical path length of the interference film, that is, the optical film thickness of the interference film was found, and patent applications of Patent Documents 2 and 3 were filed. According to this method, it is possible to measure the optical film thickness as well as the film formed by the intermolecular interaction, and if there is a change in the optical film thickness over time like the intermolecular interaction, It is also possible to detect and measure the changed optical film thickness. That is, in the measurement of the intermolecular interaction, when the ligand and the analyte are bonded, the amount of change in the optical film thickness at the site where the analyte is bonded can be measured.
At the same time, the present inventors have determined that the entire curve is constant according to the thickness of the interference film and is not limited to the extreme value. The present inventors have found that it is possible to measure thickness and the like, and that there is a possibility that measurement can be performed even if the extreme value is out of the measurement range.
 すなわち、本発明は、極値を与える波長とは異なる所定の特徴値を用いて、反射干渉分光法により干渉膜の光学膜厚を測定すること、干渉膜の光学膜厚に変化があれば、その変化した分の光学膜厚を測定することができる光学膜厚測定方法、光学膜厚測定システム及び光学膜厚測定プログラムを提供することを課題とする。 That is, the present invention is to measure the optical film thickness of the interference film by reflection interference spectroscopy using a predetermined feature value different from the wavelength giving the extreme value, if there is a change in the optical film thickness of the interference film, It is an object of the present invention to provide an optical film thickness measurement method, an optical film thickness measurement system, and an optical film thickness measurement program capable of measuring the changed optical film thickness.
 以上の課題を解決するための請求項1記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する光学膜厚測定方法であって、
予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておき、
反射干渉分光法により得られた測定対象の前記積層体における分光反射率の曲線に係る前記所定の特徴値を、前記関係に当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める光学膜厚測定方法である。
The invention according to claim 1 for solving the above-described problems is an optical film thickness in which an optical film thickness of an interference film in a laminate in which one or two or more interference films are laminated on a substrate is measured by reflection interference spectroscopy. Measuring method,
In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. Create different optical film thicknesses,
By applying the predetermined feature value relating to the spectral reflectance curve in the laminate to be measured obtained by reflection interference spectroscopy to the relationship, by identifying the optical film thickness that approximates the feature value, It is an optical film thickness measuring method for obtaining an optical film thickness in the laminate to be measured.
 請求項2記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する光学膜厚測定方法であって、
予め、
光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、
前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、
第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておき、
反射干渉分光法により測定対象の前記積層体の分子間相互作用の開始前における分光反射率を得、反射干渉分光法により同測定対象の前記積層体の分子間相互作用の開始後における分光反射率を得て、開始前に対する変化量の曲線に係る前記所定の特徴値を、前記関係に当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める光学膜厚測定方法である。
According to the second aspect of the present invention, the optical film thickness of the molecules adsorbed on the interference film is reduced by the intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate. An optical film thickness measuring method for measuring by reflection interference spectroscopy,
In advance,
Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated;
Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and
A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted. The relationship with the film thickness is created in advance for the optical film thickness of the different second interference film,
Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy By applying the predetermined feature value related to the curve of the change amount before the start to the relationship and identifying the optical film thickness of the second interference film that approximates the feature value, This is an optical film thickness measurement method for obtaining an optical film thickness of molecules adsorbed on an interference film by intermolecular interaction in the laminate.
 請求項3記載の発明は、所定の波長帯域において、前記所定の特徴値が複数ある場合には当該複数の特徴値について、前記関係を作成し、反射干渉分光法により測定対象の前記積層体からこれら各特徴値を得て前記同定を行う請求項1又は請求項2に記載の光学膜厚測定方法である。 According to a third aspect of the present invention, when there are a plurality of the predetermined feature values in a predetermined wavelength band, the relationship is created for the plurality of feature values, and the measurement object is measured from the laminate to be measured by reflection interference spectroscopy. The optical film thickness measuring method according to claim 1 or 2, wherein the identification is performed by obtaining each feature value.
 請求項4記載の発明は、前記所定の特徴値は、波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 4 is the optical film thickness measuring method according to any one of claims 1 to 3, wherein the predetermined characteristic value is a wavelength value.
 請求項5記載の発明は、前記所定の特徴値は、前記曲線の極値から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 5 is characterized in that the predetermined characteristic value is a wavelength value of a point on the curve having a spectral reflectance separated from the extreme value of the curve by a predetermined amount. 3 is an optical film thickness measuring method according to any one of 3 above.
 請求項6記載の発明は、前記所定の特徴値は、前記曲線の変曲点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 6 is the optical film thickness measurement according to any one of claims 1 to 3, wherein the predetermined feature value is a wavelength value of an inflection point of the curve. Is the method.
 請求項7記載の発明は、前記所定の特徴値は、前記曲線の変曲点から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 7 is characterized in that the predetermined feature value is a wavelength value of a point on the curve having a spectral reflectance separated from the inflection point of the curve by a predetermined amount. Item 4. The optical film thickness measurement method according to any one of Items 3 above.
 請求項8記載の発明は、前記関係を関数で作成する請求項1から請求項7のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 8 is the optical film thickness measuring method according to any one of claims 1 to 7, wherein the relation is created by a function.
 請求項9記載の発明は、前記関数が2次関数であり、当該2次関数を前記特徴値ごとに作成する請求項8に記載の光学膜厚測定方法である。 The invention according to claim 9 is the optical film thickness measuring method according to claim 8, wherein the function is a quadratic function, and the quadratic function is created for each feature value.
 請求項10記載の発明は、前記同定は、前記特徴値が最も近似する光学膜厚を特定することより行い、当該最も近似する光学膜厚から、求める光学膜厚を推定する請求項1から請求項9のうちいずれか一に記載の光学膜厚測定方法である。 According to a tenth aspect of the present invention, the identification is performed by specifying an optical film thickness that approximates the feature value most closely, and an optical film thickness to be obtained is estimated from the optical film thickness that is most approximated. Item 10. The optical film thickness measurement method according to any one of Items 9 above.
 請求項11記載の発明は、反射干渉分光法により測定対象の前記積層体に白色光を照射して、当該積層体からの反射光の前記分光反射率を得る請求項1から請求項10のうちいずれか一に記載の光学膜厚測定方法である。 Invention of Claim 11 irradiates the said laminated body of a measuring object with a white light by reflection interference spectroscopy, and obtains the said spectral reflectance of the reflected light from the said laminated body among Claim 1-10 It is an optical film thickness measuring method as described in any one.
 請求項12記載の発明は、前記干渉膜上を液体層が覆う状態で測定する請求項1から請求項11のうちいずれか一に記載の光学膜厚測定方法である。 The invention according to claim 12 is the optical film thickness measuring method according to any one of claims 1 to 11, wherein the interference film is measured with a liquid layer covering the interference film.
 請求項13記載の発明は、屈折率が既知の分子について、請求項2に記載の光学膜厚測定方法により求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚測定方法である。 The invention according to claim 13, by dividing the optical film thickness of the molecule obtained by the optical film thickness measurement method according to claim 2 by the refractive index of the molecule, for a molecule having a known refractive index. This is a film thickness measurement method for obtaining a film thickness.
 請求項14記載の発明は、特定方向の光学的大きさが既知の分子について、請求項2に記載の膜厚測定方法により求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定方法である。 In the invention described in claim 14, for a molecule whose optical size in a specific direction is known, the optical film thickness of the molecule obtained by the film thickness measuring method according to claim 2 and the optical size in the specific direction are calculated. This is a molecular direction estimation method for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparison.
 請求項15記載の発明は、特定方向の大きさが既知の分子について、請求項13に記載の膜厚測定方法により求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定方法である。 The invention according to claim 15 compares the film thickness of the molecule determined by the film thickness measurement method according to claim 13 and the size in the specific direction for molecules whose size in the specific direction is known. This is a molecular direction estimation method for estimating the direction of molecules adsorbed on an interference film by intermolecular interaction with respect to the interference film.
 請求項16記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、請求項2に記載の光学膜厚測定方法により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する光学膜厚測定方法である。 The invention according to claim 16 is obtained by the optical film thickness measurement method according to claim 2 for each different time point when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed. This is an optical film thickness measurement method that records the environmental variable in association with the optical film thickness of the molecule.
 請求項17記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、請求項13に記載の膜厚測定方法により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する膜厚測定方法である。 The invention according to claim 17 is a molecule obtained by the film thickness measurement method according to claim 13 at each of different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed are changed. The film thickness measurement method records the environmental variable in association with the film thickness.
 請求項18記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する光学膜厚測定システムであって、
光源と、
前記光源からの光を前記積層体に照射する照射手段と、
前記積層体からの反射光を受光する受光手段と、
前記受光手段が受光した反射光の分光特性を検出する分光検出手段と、
予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されるデータを記憶する記憶手段と、
前記分光検出手段により検出した分光特性に基づき、測定対象の前記積層体における分光反射率について、当該分光反射率の曲線に係る前記所定の特徴値を特定し、前記記憶手段に記憶された前記データに当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める演算手段と、
を備える光学膜厚測定システムである。
The invention according to claim 18 is an optical film thickness measurement system for measuring an optical film thickness of an interference film in a laminate in which one or more interference films are stacked on a substrate by reflection interference spectroscopy.
A light source;
Irradiating means for irradiating the laminate with light from the light source;
A light receiving means for receiving reflected light from the laminate;
Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means;
In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. Storage means for storing data configured by creating different optical film thicknesses;
Based on the spectral characteristics detected by the spectral detection means, for the spectral reflectance in the laminate to be measured, the predetermined feature value relating to the spectral reflectance curve is specified, and the data stored in the storage means And calculating means for determining the optical film thickness in the laminate to be measured by identifying the optical film thickness that approximates the feature value, and
Is an optical film thickness measurement system.
 請求項19記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する光学膜厚測定システムであって、
光源と、
前記光源からの光を前記積層体に照射する照射手段と、
前記積層体からの反射光を受光する受光手段と、
前記受光手段が受光した反射光の分光特性を検出する分光検出手段と、
予め、光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されるデータを記憶する記憶手段と、
前記分光検出手段により検出した分光特性に基づき、測定対象の前記積層体の分子間相互作用の開始前における分光反射率に対する、同測定対象の前記積層体の分子間相互作用の開始後における分光反射率の変化量の曲線に係る前記所定の特徴値を特定し、前記記憶手段に記憶された前記データに当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める演算手段と、
を備える光学膜厚測定システムである。
According to the nineteenth aspect of the present invention, the optical film thickness of the molecules adsorbed on the interference film is reduced by the intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate. An optical film thickness measurement system for measuring by reflection interference spectroscopy,
A light source;
Irradiating means for irradiating the laminate with light from the light source;
A light receiving means for receiving reflected light from the laminate;
Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means;
The spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is laminated in advance, and the second interference film in which the second optical film having a known optical film thickness is laminated on the interference film of the first laminated body. The spectral reflectance of the two laminated body is obtained, and a predetermined feature value different from the wavelength that gives the extreme value relating to the curve of the amount of change in the spectral reflectance of the second laminated body with respect to the spectral reflectance of the first laminated body is extracted. Storage means for storing data constituted by creating in advance the relationship between the characteristic value and the optical film thickness of the second interference film with respect to the optical film thickness of the different second interference film;
Spectral reflection after the start of the intermolecular interaction of the laminate of the measurement object with respect to the spectral reflectance before the start of the intermolecular interaction of the laminate of the measurement object based on the spectral characteristics detected by the spectroscopic detection means By specifying the predetermined feature value relating to the curve of the rate change amount, applying it to the data stored in the storage means, and identifying the optical film thickness of the second interference film that approximates the feature value, An arithmetic means for obtaining an optical film thickness of molecules adsorbed on the interference film by intermolecular interaction in the laminate to be measured;
Is an optical film thickness measurement system.
 請求項20記載の発明は、所定の波長帯域において、前記所定の特徴値が複数ある場合には当該複数の特徴値について、前記関係が作成されており、前記演算手段は、これら各極値を得て前記同定を行う請求項18又は19に記載の光学膜厚測定システムである。 In the invention according to claim 20, when there are a plurality of the predetermined feature values in a predetermined wavelength band, the relationship is created for the plurality of feature values, and the calculation means calculates each of these extreme values. The optical film thickness measurement system according to claim 18 or 19, wherein the identification is performed.
 請求項21記載の発明は、前記所定の特徴値は、波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システムである。 The invention according to claim 21 is the optical film thickness measurement system according to any one of claims 18 to 20, wherein the predetermined feature value is a wavelength value.
 請求項22記載の発明は、前記所定の特徴値は、前記曲線の極値から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システムである。 According to a twenty-second aspect of the present invention, the predetermined feature value is a wavelength value of a point on the curve having a spectral reflectance separated from the extreme value of the curve by a predetermined amount. The optical film thickness measurement system according to any one of 20.
 請求項23記載の発明は、前記所定の特徴値は、前記曲線の変曲点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システムである。 23. The optical film thickness measurement according to claim 18, wherein the predetermined characteristic value is a wavelength value of an inflection point of the curve. System.
 請求項24記載の発明は、前記所定の特徴値は、前記曲線の変曲点から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システムである。 According to a twenty-fourth aspect of the present invention, the predetermined characteristic value is a wavelength value of a point on the curve having a spectral reflectance separated from the inflection point of the curve by a predetermined amount. Item 21. The optical film thickness measurement system according to any one of Items 20 above.
 請求項25記載の発明は、前記光源は、白色光を発光する光源である請求項18から24のうちいずれか一に記載の光学膜厚測定システムである。 The invention according to claim 25 is the optical film thickness measurement system according to any one of claims 18 to 24, wherein the light source is a light source that emits white light.
 請求項26記載の発明は、前記干渉膜上に流路を形成する部材と、前記流路に接続し前記干渉膜上に設けられた分子と相互作用する分子を含んだ液体を当該流路に流す送液手段を備える請求項18から25のうちいずれか一に記載の光学膜厚測定システムである。 According to a twenty-sixth aspect of the present invention, a member that forms a flow path on the interference film and a liquid that contains molecules that are connected to the flow path and interact with molecules provided on the interference film are supplied to the flow path. It is an optical film thickness measuring system as described in any one of Claims 18-25 provided with the liquid feeding means to flow.
 請求項27記載の発明は、請求項19に記載の光学膜厚測定システムを備え、屈折率が既知の分子について、請求項19に記載の光学膜厚測定システムにより求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚算出手段をさらに備える膜厚測定システムである。 The invention according to claim 27 comprises the optical film thickness measurement system according to claim 19, and the molecular film thickness obtained by the optical film thickness measurement system according to claim 19 is calculated for a molecule having a known refractive index. It is a film thickness measuring system further comprising a film thickness calculating means for obtaining the film thickness of the molecule by dividing by the refractive index of the molecule.
 請求項28記載の発明は、請求項19に記載の光学膜厚測定システムを備え、特定方向の光学的大きさが既知の分子について、請求項19に記載の膜厚測定システムにより求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定手段をさらに備える分子方向推定システムである。 The invention according to claim 28 comprises the optical film thickness measurement system according to claim 19, and the molecule obtained by the film thickness measurement system according to claim 19 is obtained for a molecule whose optical magnitude in a specific direction is known. Molecular direction estimation further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing the optical film thickness with the optical size in the specific direction. System.
 請求項29記載の発明は、請求項27に記載の膜厚測定システムを備え、特定方向の大きさが既知の分子について、請求項27に記載の膜厚測定システムにより求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定手段をさらに備える分子方向推定システムである。 The invention according to claim 29 is provided with the film thickness measurement system according to claim 27, and the molecular film thickness obtained by the film thickness measurement system according to claim 27 is determined for a molecule whose size in a specific direction is known. The molecular direction estimation system further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing with the size of the specific direction.
 請求項30記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、前記演算手段により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する記録手段をさらに備える請求項19に記載の光学膜厚測定システムである。 The invention according to claim 30 includes the optical film thickness of the molecule determined by the calculation means at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment in which the molecule is placed are changed. The optical film thickness measurement system according to claim 19, further comprising recording means for recording environmental variables in association with each other.
 請求項31記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点において、前記膜厚算出手段により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する記録手段をさらに備える請求項27に記載の膜厚測定システムである。 The invention according to claim 31 includes the thickness of the molecule determined by the thickness calculation means at each different time when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed are changed. 28. The film thickness measurement system according to claim 27, further comprising recording means for recording the environment variable in association with each other.
 請求項32記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する処理をコンピュータに実行させるための光学膜厚測定プログラムであって、
予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されたデータを読み出す処理と、
反射干渉分光法により得られた測定対象の前記積層体における分光反射率の曲線に係る前記所定の特徴値を特定し、前記データに当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める演算処理と、
を前記コンピュータに行わせる光学膜厚測定プログラムである。
According to a thirty-second aspect of the present invention, there is provided an optical film thickness for causing a computer to execute a process of measuring an optical film thickness of an interference film in a laminate in which one or two or more interference films are stacked on a substrate by reflection interference spectroscopy. A measurement program,
In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. A process of reading out data configured by creating different optical film thicknesses;
Identifying the predetermined feature value relating to a spectral reflectance curve in the laminate to be measured obtained by reflection interference spectroscopy, and applying it to the data to identify an optical film thickness that approximates the feature value By the arithmetic processing to obtain the optical film thickness in the laminate to be measured,
Is an optical film thickness measurement program that causes the computer to perform
 請求項33記載の発明は、基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する処理をコンピュータに実行させるための光学膜厚測定プログラムであって、
予め、
光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、
前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、
第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されたデータを読み出す処理と、
反射干渉分光法により測定対象の前記積層体の分子間相互作用の開始前における分光反射率を得、反射干渉分光法により同測定対象の前記積層体の分子間相互作用の開始後における分光反射率を得て、開始前に対する変化量の曲線に係る前記所定の特徴値を特定し、前記データに当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める演算処理と、
を前記コンピュータに行わせる光学膜厚測定プログラムである。
According to a thirty-third aspect of the present invention, there is provided an optical film thickness of molecules adsorbed on the interference film by intermolecular interaction performed on the interference film of the laminate in which one or more interference films are laminated on the substrate. An optical film thickness measurement program for causing a computer to execute processing to be measured by reflection interference spectroscopy,
In advance,
Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated;
Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and
A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted. A process of reading out data configured by preparing in advance the relationship between the film thickness and the optical film thickness of different second interference films;
Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy The measurement is performed by identifying the predetermined feature value related to the curve of the change amount before the start, and applying the data to identify the optical film thickness of the second interference film that approximates the feature value. A calculation process for obtaining the optical film thickness of the molecules adsorbed on the interference film by the intermolecular interaction in the target laminate;
Is an optical film thickness measurement program that causes the computer to perform
 請求項34記載の発明は、請求項33に記載の光学膜厚測定プログラムを備え、屈折率が既知の分子について、請求項33に記載の光学膜厚測定プログラムに基づき前記コンピュータが求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚算出処理をさらに前記コンピュータに実行させるための膜厚測定プログラムである。 The invention according to claim 34 is provided with the optical film thickness measurement program according to claim 33, and for molecules having a known refractive index, the molecules obtained by the computer based on the optical film thickness measurement program according to claim 33. It is a film thickness measurement program for causing the computer to further execute a film thickness calculation process for obtaining the film thickness of the molecule by dividing the optical film thickness by the refractive index of the molecule.
 請求項35記載の発明は、請求項33に記載の光学膜厚測定プログラムを備え、特定方向の光学的大きさが既知の分子について、請求項33に記載の光学膜厚測定プログラムによりに基づき前記コンピュータが求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定処理をさらに前記コンピュータに実行させるための分子方向推定プログラムである。 The invention according to claim 35 is provided with the optical film thickness measurement program according to claim 33, and the molecule having a known optical size in a specific direction is based on the optical film thickness measurement program according to claim 33. Molecular direction estimation processing for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction by comparing the optical film thickness of the molecule obtained by the computer and the optical size in the specific direction. Is a molecular direction estimation program for causing the computer to execute.
 請求項36記載の発明は、請求項34に記載の膜厚測定プログラムを備え、特定方向の大きさが既知の分子について、請求項34に記載の膜厚測定プログラムによりに基づき前記コンピュータが求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定処理をさらに前記コンピュータに実行させるための分子方向推定プログラムである。 A thirty-sixth aspect of the invention includes the film thickness measurement program according to the thirty-fourth aspect, and the computer obtains a molecule whose size in a specific direction is known based on the thickness measurement program according to the thirty-fourth aspect. By comparing the film thickness of the molecule and the size of the specific direction, the computer further executes a molecular direction estimation process for estimating the direction of the molecule adsorbed on the interference film by the intermolecular interaction with respect to the interference film. Is a molecular orientation estimation program.
 請求項37記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、前記コンピュータが前記演算処理により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する記録処理をさらに前記コンピュータに実行させるための請求項33に記載の光学膜厚測定プログラムである。 The invention according to claim 37 is the optical film thickness of the molecule obtained by the computer by the arithmetic processing at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed. In addition, the optical film thickness measurement program according to claim 33, further causing the computer to execute a recording process in which the environment variable is associated and recorded.
 請求項38記載の発明は、前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点において、前記コンピュータが前記膜厚算出処理により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する記録処理をさらに前記コンピュータに実行させるための請求項34に記載の膜厚測定プログラムである。 The invention according to claim 38 is the molecular film obtained by the computer by the film thickness calculation process at different time points when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed have changed. 35. The film thickness measurement program according to claim 34, further causing the computer to execute a recording process for recording the environmental variable in association with the thickness.
 本発明によれば、干渉膜の光学膜厚を測定することができる、特に本件請求項2、19、33に係る発明によれば、分子間相互作用により干渉膜の光学膜厚に変化があれば、その変化した分の光学膜厚を測定することができるという効果がある。 According to the present invention, the optical film thickness of the interference film can be measured. In particular, according to the inventions according to claims 2, 19 and 33, there is a change in the optical film thickness of the interference film due to intermolecular interaction. For example, the optical film thickness corresponding to the change can be measured.
本発明の一実施形態に係る分子間相互作用の測定システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the measurement system of the intermolecular interaction which concerns on one Embodiment of this invention. 本発明の一実施形態に係る測定部材の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a measuring member concerning one embodiment of the present invention. 分子間相互作用の測定システムの測定の様子を示す模式図である。It is a schematic diagram which shows the mode of a measurement of the measuring system of intermolecular interaction. 分子間相互作用の測定システムの回路ブロック図である。It is a circuit block diagram of the measurement system of intermolecular interaction. 本発明の一実施形態に係るリガンドとアナライトとの結合の様子を模式的に表した断面図である。ここから新規図面It is sectional drawing which represented typically the mode of the coupling | bonding of the ligand and analyte which concern on one Embodiment of this invention. New drawing from here 反射干渉分光法の原理を説明するための模式的モデル図である。。It is a typical model figure for demonstrating the principle of a reflection interference spectroscopy. . 干渉膜をある基準膜厚から増加させた場合における分光反射率の変化量を示す各曲線である。It is each curve which shows the variation | change_quantity of the spectral reflectance at the time of making an interference film increase from a certain reference | standard film thickness. シミュレーションによって得られた試料膜厚dと分光反射率Rの極値位置波長の関係を示すグラフである。It is a graph which shows the relationship between the sample film thickness d obtained by simulation, and the extreme value position wavelength of the spectral reflectance R. 図8のグラフから、横軸を光路長(光学膜厚)ndに換算し、縦軸を1000/λに換算して作成したグラフである。FIG. 9 is a graph created from the graph of FIG. 8 by converting the horizontal axis to optical path length (optical film thickness) nd and the vertical axis to 1000 / λ. シミュレーションによって得られた試料膜厚dと分光反射率変化量ΔRの極値位置波長との関係を示すグラフである。It is a graph which shows the relationship between the sample film thickness d obtained by simulation, and the extreme position wavelength of spectral reflectance change amount (DELTA) R. 図10のグラフから、横軸を光路長(光学膜厚)ndに換算し、縦軸を1000/λに換算して作成したグラフである。11 is a graph created from the graph of FIG. 10 by converting the horizontal axis to optical path length (optical film thickness) nd and the vertical axis to 1000 / λ. RIfS方式の概略を説明するための模式図である。It is a schematic diagram for demonstrating the outline of a RIfS system. 波長と分光強度との概略的な関係を示す一例のグラフである。It is a graph of an example which shows the rough relationship between a wavelength and spectral intensity. 波長と反射率との概略的な関係を示す一例のグラフである。It is a graph of an example which shows the rough relationship between a wavelength and a reflectance. ボトムピーク波長の変化の概略的な推移を示す一例のグラフである。It is a graph of an example which shows the rough transition of the change of a bottom peak wavelength. 分子間相互作用の進捗度の時間変化を示すグラフである。It is a graph which shows the time change of the progress degree of intermolecular interaction. 分子間相互作用におけるボトムピーク波長の変化量Δλの時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of variation | change_quantity (DELTA) (lambda) of the bottom peak wavelength in intermolecular interaction. 分光反射率の検出データとその近似曲線の一例を示すグラフである。It is a graph which shows an example of the detection data of a spectral reflectance, and its approximated curve. 分子方向の推定を説明するための模式図で、単体の分子を示す。In the schematic diagram for explaining the estimation of the molecular direction, a single molecule is shown. 分子方向の推定を説明するための模式図で、干渉膜に吸着した分子を示す。It is a schematic diagram for explaining the estimation of the molecular direction, and shows molecules adsorbed on the interference film. 分子方向の推定を説明するための模式図で、図18Bとは異なる方向を向いて干渉膜に吸着した分子を示す。It is a schematic diagram for explaining estimation of the molecular direction, and shows molecules adsorbed on the interference film in a different direction from FIG. 18B.
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
 まず、図1から図5を参照して、本発明の光学膜厚測定システムを実施する一実施形態である分子間相互作用の測定システム1の概要につき説明する。分子間相互作用の測定システム1は、本発明の光学膜厚測定方法を実行するものであるとともに、システム構成に含まれるコンピュータには、本発明の光学膜厚測定プログラムが反映されたプログラムが実行可能に記憶されている。なお、以下では適宜に分子間相互作用の測定の場合を例として説明するが、本発明の用途は分子間相互作用の測定に限定されるものではない。また、分子間相互作用の測定システム1は、通常、各種の測定値を出力するよう構成されるが、以下では専ら本発明の実施に係る干渉膜の光学膜厚の測定につき説明する。 First, with reference to FIG. 1 to FIG. 5, an outline of the intermolecular interaction measurement system 1 which is an embodiment for carrying out the optical film thickness measurement system of the present invention will be described. The intermolecular interaction measurement system 1 executes the optical film thickness measurement method of the present invention, and the computer included in the system configuration executes a program reflecting the optical film thickness measurement program of the present invention. It is remembered as possible. In the following, the case of measuring the intermolecular interaction will be described as an example, but the application of the present invention is not limited to the measurement of the intermolecular interaction. In addition, the intermolecular interaction measurement system 1 is usually configured to output various measurement values, but only the measurement of the optical film thickness of the interference film according to the implementation of the present invention will be described below.
 図1に示すとおり、分子間相互作用の測定システム1は、測定対象となる試料を保持する測定部材10と後述する光源や分光器から構成される測定機構とを備えた測定装置80と、測定装置80に接続されたコンピュータである制御演算装置50と、制御演算装置50に接続されたディスプレイ91及び入出力装置92とによって構成されている。
 測定システム1において制御演算装置50は、測定装置80に内蔵される光源や分光器などの測定機構の制御手段、検出情報の演算手段、及び、制御指令や検出情報の出入力を行う出入力手段(インターフェース)として機能する。
As shown in FIG. 1, the intermolecular interaction measurement system 1 includes a measurement device 80 that includes a measurement member 10 that holds a sample to be measured, a measurement mechanism including a light source and a spectroscope, which will be described later, The control arithmetic device 50 is a computer connected to the device 80, and a display 91 and an input / output device 92 connected to the control arithmetic device 50.
In the measurement system 1, the control arithmetic device 50 includes a control unit for a measurement mechanism such as a light source and a spectroscope built in the measurement device 80, a calculation unit for detection information, and an input / output unit for inputting / outputting control commands and detection information. Functions as (interface).
 測定装置80は、下側筺体82と、下側筺体82に回動自在に取り付けられた上側筺体81とを備える。下側筺体82には測定部材10を保持するためのテーブル83が設けられている。上側筺体81内側には、測定部材10に接続して試料を流通させるための射出口85及び吸引口87と、検出窓86とを有する接続部84が設けられている。上側筺体81内には、後述するように、白色光源20,分光器30,光ファイバ40、41(図3参照)が設けられており、検出窓86から光を照射するとともに、検出窓86から入射する光を受光するように構成されている。測定を行う際は、まず、上側筺体81を上方に回動させて下側筺体82上のテーブル83を開放し、テーブル83に測定部材10をセットする。その後、上側筺体81を下方に回動させて閉じることにより、射出口85及び吸引口87が測定部材10に接続し、また、検出窓86が測定部材10に対向し、測定準備を完了する。 The measuring device 80 includes a lower housing 82 and an upper housing 81 that is rotatably attached to the lower housing 82. The lower housing 82 is provided with a table 83 for holding the measuring member 10. Inside the upper housing 81, a connection portion 84 having an injection port 85 and a suction port 87 for connecting the measurement member 10 and circulating the sample and a detection window 86 is provided. As will be described later, a white light source 20, a spectroscope 30, and optical fibers 40 and 41 (see FIG. 3) are provided in the upper housing 81, and light is emitted from the detection window 86 and from the detection window 86. It is configured to receive incident light. When performing measurement, first, the upper casing 81 is rotated upward to open the table 83 on the lower casing 82, and the measuring member 10 is set on the table 83. Thereafter, the upper casing 81 is rotated downward and closed, whereby the injection port 85 and the suction port 87 are connected to the measurement member 10, and the detection window 86 faces the measurement member 10 to complete the measurement preparation.
 図2に示すとおり、測定部材10は、光学薄膜の設けられたセンサーチップ12と、センサーチップ12とともに流路を形成するフローセル14とによって構成されている。センサーチップ12はシリコン基板12aを有している。シリコン基板12a上にはSiN膜12b(窒化シリコン)が蒸着されている。SiN膜12bは光学薄膜の一例である。
 フローセル14はシリコーンゴム製の透明な部材である。フローセル14には溝14aが形成されている。フローセル14をセンサーチップ12に密着させると、図3に示すように密閉流路14bが形成される。溝14aの両端部はフローセル14の表面から露出しており、一方の端部がサンプル溶液の流入口14cとして、他方の端部がその流出口14dとしてそれぞれ機能する。溝14aの底部には予めリガンド16が結合されている(図3参照)。
As shown in FIG. 2, the measurement member 10 includes a sensor chip 12 provided with an optical thin film and a flow cell 14 that forms a flow path together with the sensor chip 12. The sensor chip 12 has a silicon substrate 12a. A SiN film 12b (silicon nitride) is deposited on the silicon substrate 12a. The SiN film 12b is an example of an optical thin film.
The flow cell 14 is a transparent member made of silicone rubber. A groove 14 a is formed in the flow cell 14. When the flow cell 14 is brought into close contact with the sensor chip 12, a sealed flow path 14b is formed as shown in FIG. Both ends of the groove 14a are exposed from the surface of the flow cell 14, and one end functions as a sample solution inlet 14c and the other end functions as an outlet 14d. A ligand 16 is previously bonded to the bottom of the groove 14a (see FIG. 3).
 測定部材10では、センサーチップ12に対しフローセル14を貼り替え可能となっており、フローセル14はディスポーザブル(使い捨て)使用が可能となっている。センサーチップ12の表面には、シランカップリング剤などにより、表面修飾をおこなってもよく、この場合フローセル14の貼り替えが容易となる。 In the measurement member 10, the flow cell 14 can be replaced with the sensor chip 12, and the flow cell 14 can be used in a disposable manner. The surface of the sensor chip 12 may be modified with a silane coupling agent or the like. In this case, the flow cell 14 can be easily replaced.
 先に説明したように、測定部材10をセットした後、上側筺体81を下方に回動させて閉じることにより、図3に示すとおり、検出窓86がフローセル14に対向し、フローセル14の密閉流路14bの上方には光ファイバ40が設置された状態となる。ここで、光ファイバ40の一方の端部には白色光源20が接続されている。白色光源20としては例えばハロゲン光源が使用される。また、例えばLED光源のような、可視光波長領域に複数の分光強度ピークを有する疑似白色光源を使用してもよい。光ファイバ40の他方の端部は検出窓86に面している。光ファイバ41の一方の端部には分光器30が接続され、他方の端部は検出窓86に面している。白色光源20が点灯すると、その光が光ファイバ40を介して密閉流路14bに照射され、その反射光が光ファイバ41を介して分光器30で検出される。白色光源20や分光器30は制御演算装置50に接続され、制御演算装置50はこれらモジュールの動作を制御する。
 また、制御演算装置50は、後述する記憶装置503(図4参照)に記憶されたプログラムの実行により、検出動作制御に連動した所定のタイミングでインターフェースを介して反射光の分光特性を表すデータの入力を得るとともに、入力されたデータに基づき光学膜厚の値を算出する演算手段として機能する。
As described above, after the measurement member 10 is set, the upper casing 81 is rotated downward and closed, so that the detection window 86 faces the flow cell 14 as shown in FIG. The optical fiber 40 is installed above the path 14b. Here, the white light source 20 is connected to one end of the optical fiber 40. For example, a halogen light source is used as the white light source 20. Further, a pseudo white light source having a plurality of spectral intensity peaks in the visible light wavelength region, such as an LED light source, may be used. The other end of the optical fiber 40 faces the detection window 86. The spectroscope 30 is connected to one end of the optical fiber 41, and the other end faces the detection window 86. When the white light source 20 is turned on, the light is applied to the sealed flow path 14 b through the optical fiber 40, and the reflected light is detected by the spectrometer 30 through the optical fiber 41. The white light source 20 and the spectroscope 30 are connected to a control arithmetic device 50, and the control arithmetic device 50 controls the operation of these modules.
In addition, the control arithmetic device 50 executes data stored in a storage device 503 (see FIG. 4) described later, and stores data representing the spectral characteristics of reflected light through the interface at a predetermined timing linked to detection operation control. While obtaining an input, it functions as a calculation means for calculating the value of the optical film thickness based on the input data.
 図4は、本測定システム1の模式的な回路ブロック図である。図4に示すように、制御演算装置50は、CPU500、ROM501、RAM502、ハードディスクなどの記憶装置503、通信装置504、メモリカード等の記憶媒体のリーダー・ライター505、測定装置80の各部やディスプレイ及び入力装置との間で信号のやりとりを行うためのインターフェース506を備える。分子間相互作用における光学膜厚を測定するためのプログラム、その他の測定等のためのプログラムは記憶装置503に記憶されており、このプログラムによってCPU500が各種の動作を実行するように制御される。 FIG. 4 is a schematic circuit block diagram of the measurement system 1. As shown in FIG. 4, the control arithmetic device 50 includes a CPU 500, a ROM 501, a RAM 502, a storage device 503 such as a hard disk, a communication device 504, a reader / writer 505 of a storage medium such as a memory card, and each part and display of the measurement device 80. An interface 506 is provided for exchanging signals with the input device. A program for measuring the optical film thickness in the intermolecular interaction and other programs for measurement are stored in the storage device 503, and the CPU 500 is controlled by this program to execute various operations.
 続いて、制御演算装置50に分光特性が入力されるまでの測定システム1の動作及び測定方法について説明する。 Subsequently, the operation and measurement method of the measurement system 1 until spectral characteristics are input to the control arithmetic device 50 will be described.
 図3に示すとおり、アナライト62を含むサンプル溶液60を、流入口14cから密閉流路14bを経て流出口14dに流通させる。このとき制御演算装置50は、サンプル溶液60を送液するための送液装置35(図4参照)の制御を行う。アナライト62とは、リガンド16と特異的に結合する物質であり、検出しようとする目的の分子である。アナライト62としては、例えばタンパク質,核酸,脂質,糖などの生体分子や、薬剤物質,内分泌錯乱化学物質などの生体分子と結合する外来物質などが使用される。
 制御演算装置50は、サンプル溶液60を測定部材10に流入させる前のタイミングにおいて、白色光源20を点灯させ、分光器30から分子間相互作用の開始前の光学薄膜(SiN膜12b)の反射光の強度を示すデータを含む分光特性データの入力を得る。
As shown in FIG. 3, the sample solution 60 containing the analyte 62 is circulated from the inlet 14c to the outlet 14d through the sealed channel 14b. At this time, the control arithmetic device 50 controls the liquid feeding device 35 (see FIG. 4) for feeding the sample solution 60. The analyte 62 is a substance that specifically binds to the ligand 16 and is a target molecule to be detected. As the analyte 62, for example, biomolecules such as proteins, nucleic acids, lipids, and sugars, and foreign substances that bind to biomolecules such as drug substances and endocrine confusion chemical substances are used.
The control arithmetic device 50 turns on the white light source 20 at a timing before the sample solution 60 flows into the measurement member 10, and the reflected light of the optical thin film (SiN film 12 b) before the start of the intermolecular interaction from the spectroscope 30. An input of spectral characteristic data including data indicating the intensity of light is obtained.
 制御演算装置50は、サンプル溶液60が密閉流路14bを流通している間も、白色光源20を点灯させる。白色光はフローセル14を透過してセンサーチップ12に照射され、その反射光が分光器30で検出される。分光器30により検出された反射光の分光特性は制御演算装置50に送信される。 The control arithmetic device 50 turns on the white light source 20 while the sample solution 60 is circulating in the closed flow path 14b. The white light passes through the flow cell 14 and is irradiated to the sensor chip 12, and the reflected light is detected by the spectroscope 30. The spectral characteristic of the reflected light detected by the spectroscope 30 is transmitted to the control arithmetic device 50.
 この場合に、図5に示すとおり、サンプル溶液60中のアナライト62がリガンド16と結合すると、光学的厚さ、すなわち光学膜厚70が変化し、反射光の特性(例えば、分光器30による検出強度が最も小さくなる波長)が変化する。制御演算装置50は、分光器30から、分子間相互作用の進捗中又は終了後の反射光の強度を示すデータを含む分光特性データの入力を得る。 In this case, as shown in FIG. 5, when the analyte 62 in the sample solution 60 binds to the ligand 16, the optical thickness, that is, the optical film thickness 70 changes, and the reflected light characteristics (for example, by the spectroscope 30). The wavelength at which the detected intensity is the smallest) changes. The control arithmetic device 50 obtains from the spectroscope 30 input of spectral characteristic data including data indicating the intensity of reflected light during or after the progress of the intermolecular interaction.
 以上説明するようにして、干渉膜の光学膜厚の測定のために必要な分光特性データが制御演算装置50に入力される。 As described above, spectral characteristic data necessary for measuring the optical film thickness of the interference film is input to the control arithmetic unit 50.
 さて、以上説明した本測定システム1の構成、機能、動作からわかるように、センサーチップ12は、基板(シリコン基板12a)上に1又は2以上の干渉膜(SiN膜12b)が積層した積層体に相当するものであり、本測定システム1は、積層体における該干渉膜の光学膜厚(光学膜厚70など)を反射干渉分光法により測定することができる。
 また、光ファイバ40は、光源(白色光源20)からの光を積層体(センサーチップ12)に照射する照射手段に、光ファイバ41は、積層体(センサーチップ12)からの反射光を受光する受光手段に、分光器30は、反射光の分光特性を検出する分光検出手段に相当する。
 また、RAM502は、制御演算装置50が光学膜厚を演算する際に参照するデータの記憶手段として機能する。そのデータの読み出し元は、記憶装置503、通信装置504を介して接続されるサーバ、インターフェース506を介して接続される外部記憶装置、リーダー・ライター505によって読み取られるメモリカード等のいずれであってもよい。また、通信装置504を介して干渉膜の光学膜厚の測定のために必要な分光特性データを受け取った他のコンピュータが干渉膜の光学膜厚の測定のため演算を行う場合など、ハードウエア構成は問わない。その場合、当該他のコンピュータは、本発明の光学膜厚測定システムの組み込まれるとともに、本発明の光学膜厚測定プログラムがインストールされたコンピュータである。
 また、フローセル14は、干渉膜上に流路を形成する部材に相当し、上で説明したように測定装置80に、このフローセル14により形成される流路に接続し干渉膜上に設けられた分子と相互作用する分子を含んだ液体を当該流路に流す送液手段が構成される。
As can be seen from the configuration, function, and operation of the measurement system 1 described above, the sensor chip 12 is a laminate in which one or more interference films (SiN film 12b) are laminated on a substrate (silicon substrate 12a). The measurement system 1 can measure the optical film thickness (such as the optical film thickness 70) of the interference film in the laminate by reflection interference spectroscopy.
The optical fiber 40 receives irradiation light that irradiates light from the light source (white light source 20) to the laminate (sensor chip 12), and the optical fiber 41 receives reflected light from the laminate (sensor chip 12). The spectroscope 30 corresponds to a spectroscopic detector that detects the spectral characteristics of the reflected light.
The RAM 502 functions as a data storage unit that is referred to when the control arithmetic device 50 calculates the optical film thickness. The data can be read from any of a storage device 503, a server connected via the communication device 504, an external storage device connected via the interface 506, a memory card read by the reader / writer 505, and the like. Good. In addition, a hardware configuration in which another computer that has received spectral characteristic data necessary for measuring the optical film thickness of the interference film via the communication device 504 performs calculations for measuring the optical film thickness of the interference film. Does not matter. In this case, the other computer is a computer in which the optical film thickness measurement system of the present invention is incorporated and the optical film thickness measurement program of the present invention is installed.
The flow cell 14 corresponds to a member that forms a flow path on the interference film. As described above, the flow cell 14 is connected to the flow path formed by the flow cell 14 in the measuring device 80 and is provided on the interference film. A liquid feeding means is configured to flow a liquid containing molecules that interact with the molecules through the flow path.
 次に、光学膜厚の2つの測定原理1,2につき説明する。
〔測定原理1〕
 まず、測定原理1として以下のとおり説明する。
(参照データの作成)
 本測定原理で測定を行う場合、光学膜厚を演算する際に参照するデータは、予め、干渉膜の光学膜厚が既知の積層体における分光反射率の曲線に係る所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されるデータである。以下これにつき詳細に説明する。
Next, two measurement principles 1 and 2 of the optical film thickness will be described.
[Measurement principle 1]
First, the measurement principle 1 will be described as follows.
(Create reference data)
When performing measurement based on this measurement principle, the data to be referred to when calculating the optical film thickness is obtained by extracting in advance the predetermined characteristic value related to the spectral reflectance curve in the laminate with the known optical film thickness of the interference film. This is data configured by creating a relationship between the characteristic value and the optical film thickness for different optical film thicknesses. This will be described in detail below.
 図6は、反射干渉分光法の原理を説明するための模式的モデル図である。図6に示すように積層体は、基板a1と、その上に積層された膜厚dの干渉膜a2で構成され、干渉膜a2上を液体層a3が覆う。液体層a3、干渉膜a2、基板a1はそれぞれ順に屈折率n1、n2,n3を有する。これに図6に示すようにある波長λ0の光a4が入射すると、そのうち干渉膜a2の表面で反射する反射光a5と、干渉膜a2を通過して基板a1との界面で反射する反射光a6がa7部で示すように干渉する。このとき、反射光a6は反射光a5より2n2dだけ光路が長くなる。その光路差2n2dが、反射光a5と反射光a6とに2分の1波長のずれを生じさせるとき、a7部に示すように最も反射強度を弱めるように干渉する。これによって照射する光の波長によって反射強度が異なり、白色光等の広波長帯域の光を照射することによって、波長により反射強度が変化する分光分布を得ることができる。
 したがって、干渉膜a2の光学膜厚n2dに依存して、反射光の分光分布が異なるから、反射光の分光特性を分析することで、干渉膜a2の光学膜厚n2dと特定することができる。これが、反射干渉分光法を利用した本発明の基本原理である。反射光をどのように分析して光学膜厚を特定するかを以下の説明で明らかにする。
 なお、上述のシリコン基板12aは基板a1に相当し、SiN膜12bは干渉膜a2に相当する。図5に示すようにSiN膜12b上にリガンド16が設置されたとき、さらにアナライト62がリガンド16と結合したときは、その光学膜厚70相当部分をSiN膜12bに加えたものが干渉膜a2に相当する。
FIG. 6 is a schematic model diagram for explaining the principle of reflection interference spectroscopy. As shown in FIG. 6, the laminated body is composed of a substrate a1 and an interference film a2 having a film thickness d laminated thereon, and the liquid layer a3 covers the interference film a2. The liquid layer a3, the interference film a2, and the substrate a1 have refractive indexes n1, n2, and n3, respectively. When light a4 having a wavelength λ0 as shown in FIG. 6 is incident thereon, reflected light a5 reflected from the surface of the interference film a2 and reflected light a6 passing through the interference film a2 and reflected from the interface with the substrate a1. Interfere as shown by part a7. At this time, the optical path of the reflected light a6 is longer than the reflected light a5 by 2n2d. When the optical path difference 2n2d causes a half-wavelength shift between the reflected light a5 and the reflected light a6, it interferes so as to weaken the reflection intensity most, as shown by a7. As a result, the reflection intensity varies depending on the wavelength of the light to be irradiated. By irradiating light in a wide wavelength band such as white light, a spectral distribution in which the reflection intensity changes depending on the wavelength can be obtained.
Therefore, since the spectral distribution of the reflected light is different depending on the optical film thickness n2d of the interference film a2, the optical film thickness n2d of the interference film a2 can be specified by analyzing the spectral characteristics of the reflected light. This is the basic principle of the present invention using reflection interference spectroscopy. The following description will clarify how the reflected light is analyzed to determine the optical film thickness.
The silicon substrate 12a described above corresponds to the substrate a1, and the SiN film 12b corresponds to the interference film a2. As shown in FIG. 5, when the ligand 16 is placed on the SiN film 12b and when the analyte 62 is further bonded to the ligand 16, the portion corresponding to the optical film thickness 70 added to the SiN film 12b is the interference film. It corresponds to a2.
 反射干渉による分光反射率やその変化量の曲線は、干渉膜の膜厚が厚いほど、あたかも長波長方向に移動していくように変化する。
 図7にその一例が示される。図7に示す分光反射率変化量の曲線b1,b2,b3,b4は、曲線b1より曲線b2,曲線b2より曲線b3,曲線b3より曲線b4の方が、干渉膜が厚いものから得たものである。分光反射率変化量ΔRは、ある膜厚の干渉膜における分光反射率を基準にした変化量である。図7に示すように、曲線b1→曲線b2→曲線b3→曲線b4の順でピーク位置が長波長側に移動していく。
 また、ピークが移動するだけでなく、ピークの数が増加するように変化する。
 これらのグラフから膜厚が厚くなるに従って分光反射率変化量曲線のピークが長波長側への移動とともに、ピークの数が増加することがわかる。膜厚増に従って、極大値を与える一つのピーク(トップピーク)が長波長側へ移動する。さらに膜厚増に従って、はじめのピークがさらに長波長側へ移動するとともに、その短波長側に極小値を与えるピーク(ボトムピーク)が出現し、かつ、はじめのトップピークとともに長波長側へ移動する。さらに長波長側への移動及びピーク数の増加が進行する。
 なお、分光反射率Rに対し、図7の縦軸は分光反射率の変化量ΔRとしているが、RでもΔRでも、以上のように観察されるピークの移動と増加の変化は同じように現れる。
The curve of the spectral reflectance and the amount of change due to reflection interference changes as if it moves in the longer wavelength direction as the thickness of the interference film increases.
An example is shown in FIG. The spectral reflectance change amount curves b1, b2, b3, and b4 shown in FIG. 7 are obtained from the curve b2, the curve b2, the curve b3, and the curve b4 having a thicker interference film than the curve b1. It is. The spectral reflectance change amount ΔR is a change amount based on the spectral reflectance in an interference film having a certain film thickness. As shown in FIG. 7, the peak position moves to the long wavelength side in the order of curve b1, curve b2, curve b3, and curve b4.
Moreover, not only the peak moves, but also changes so that the number of peaks increases.
From these graphs, it can be seen that as the film thickness increases, the peak of the spectral reflectance change amount curve increases with the shift toward the longer wavelength side. As the film thickness increases, one peak (top peak) giving the maximum value moves to the long wavelength side. Further, as the film thickness increases, the first peak moves further to the longer wavelength side, and a peak (bottom peak) giving a minimum value appears on the shorter wavelength side, and also moves to the longer wavelength side together with the first top peak. . Furthermore, the movement toward the longer wavelength side and the increase in the number of peaks proceed.
Note that the vertical axis in FIG. 7 represents the spectral reflectance change amount ΔR with respect to the spectral reflectance R, but the observed peak shift and increase change appear in the same way for both R and ΔR. .
 この変化特性は、干渉膜の光学膜厚に依存した特性である。したがって、分光反射率曲線やその変化量曲線からその極値を与える波長やこれに代え、極値を与える波長とは異なる所定の特徴値に着目して特徴を抽出することにより、干渉膜の物性によらず、干渉膜の光学膜厚による光学的性質を抽出することができる。そして、異なる物性の干渉膜の光学膜厚の測定に展開することができる。
 すなわち、分光反射率(または分光反射率変化量)の動きは特異的であるから、この曲線の特徴を抽出すればよい。換言すれば、曲線を特徴付ける要素であればどのようなものでも良い。ここでいう特徴は、ある光学膜厚に対応する曲線を、他の光学膜厚に対応する曲線から特徴付けるものである。
 この特徴は、例えば図7に示すように極値(極大値P、極小値B)、曲線の変曲点E、極大値Pから分光反射率が所定量F隔たった曲線上の点G1,G2、極小値Bから分光反射率が所定量H隔たった曲線上の点J1,J2、変曲点Eから分光反射率が所定量K隔たった曲線上の点M1,M2の動きにあらわれる。
 そして、極値を与える波長(極大値Pの波長値、極小値Bの波長値)のほか、特徴値としては、変曲点Eの波長値、変曲点Eにおける曲線の傾きの値、点G1の波長値、点G2の波長値、点J1の波長値、点J2の波長値、点M1の波長値、点M2の波長値、点G1の波長値と点G2の波長値の差分、点J1の波長値と点J2の波長値の差分、点M1の波長値と点M2の波長値の差分を挙げることができ、これらを単独又は組み合わせて採用することができる。
 膜厚の変化に伴ってこれらの特徴値を追いかけることで、参照データのセットを作成することができる。
This change characteristic depends on the optical film thickness of the interference film. Therefore, the physical properties of the interference film are extracted by focusing on the wavelength that gives the extreme value from the spectral reflectance curve and the change amount curve, and instead extracting the feature by paying attention to a predetermined feature value that is different from the wavelength that gives the extreme value. Regardless, it is possible to extract the optical properties depending on the optical film thickness of the interference film. And it can expand | deploy to the measurement of the optical film thickness of the interference film | membrane of a different physical property.
That is, since the movement of the spectral reflectance (or the spectral reflectance change amount) is unique, the characteristic of this curve may be extracted. In other words, any element that characterizes a curve may be used. The feature here is to characterize a curve corresponding to a certain optical film thickness from a curve corresponding to another optical film thickness.
For example, as shown in FIG. 7, extreme values (maximum value P, minimum value B), inflection point E of the curve, and points G1, G2 on the curve where the spectral reflectance is separated from the maximum value P by a predetermined amount F. The points J1 and J2 on the curve where the spectral reflectance is separated by a predetermined amount H from the minimum value B, and the points M1 and M2 on the curve where the spectral reflectance is separated by a predetermined amount K from the inflection point E appear.
In addition to the wavelength that gives the extreme value (the wavelength value of the maximum value P, the wavelength value of the minimum value B), the characteristic values include the wavelength value of the inflection point E, the value of the slope of the curve at the inflection point E, the point Wavelength value of G1, wavelength value of point G2, wavelength value of point J1, wavelength value of point J2, wavelength value of point M1, wavelength value of point M2, difference between wavelength value of point G1 and wavelength value of point G2, point The difference between the wavelength value of J1 and the wavelength value of the point J2 and the difference of the wavelength value of the point M1 and the wavelength value of the point M2 can be mentioned, and these can be used alone or in combination.
By tracking these feature values as the film thickness changes, a reference data set can be created.
 ここでは特徴値として極値を与える波長を例とする。
 シミュレーションにより異なる膜厚の試料について分光反射率Rの曲線を計算し、その曲線において極値位置の波長λを求め、試料膜厚dと極値位置波長λの関係を図8のグラフに記載した。これは、基板a1をシリコン基板とし、その上の干渉膜a2としてのSiN膜を66.5nmから2000nmの範囲で変化させて調べたものである。図8のグラフにおいて実線は、試料膜厚に対する極大値位置の波長を、破線は試料膜厚に対する極小値位置の波長を示す。
 図8のグラフの横軸の試料膜厚dを、干渉膜の屈折率nを乗じて光路長(光学膜厚)ndに換算し、縦軸の波長λを、1000/λに換算して作成したグラフが図9に示される。
 図9のグラフにあっては、最も左に極小値位置の波長を示す曲線が現れる。これを曲線B1とする。曲線B1から右へ行くと、極大値位置の波長を示す曲線が現れる。これを曲線P1とする。さらに曲線P1から右へ行くと、極小値位置の波長を示す曲線、極大値位置の波長を示す曲線が交互に現れる。これを順に曲線B2,P2,B3,P3,・・・B24,P24とする。曲線B1から曲線P24までをそれぞれ2次関数で近似してその近似2次関数を数式で示す。表現形式をy=ax2+bx+cとして、曲線B1から曲線P24のそれぞれに対応する係数a,b及び定数cを示すと次の表1のとおりとなる。
Here, a wavelength that gives an extreme value as a feature value is taken as an example.
Curves of spectral reflectance R are calculated for samples having different film thicknesses by simulation, the wavelength λ at the extreme position is obtained from the curve, and the relationship between the sample film thickness d and the extreme position wavelength λ is shown in the graph of FIG. . This is obtained by examining the substrate a1 as a silicon substrate and changing the SiN film as the interference film a2 thereon in the range of 66.5 nm to 2000 nm. In the graph of FIG. 8, the solid line indicates the wavelength at the maximum value position with respect to the sample film thickness, and the broken line indicates the wavelength at the minimum value position with respect to the sample film thickness.
The sample film thickness d on the horizontal axis of the graph of FIG. 8 is converted to the optical path length (optical film thickness) nd by multiplying the refractive index n of the interference film, and the wavelength λ on the vertical axis is converted to 1000 / λ. The resulting graph is shown in FIG.
In the graph of FIG. 9, a curve indicating the wavelength at the minimum value position appears on the far left. This is a curve B1. When going to the right from the curve B1, a curve indicating the wavelength at the local maximum position appears. This is a curve P1. When going further to the right from the curve P1, a curve indicating the wavelength at the minimum value position and a curve indicating the wavelength at the maximum value position alternately appear. These are designated as curves B2, P2, B3, P3,... B24, P24 in this order. Each of the curves B1 to P24 is approximated by a quadratic function, and the approximate quadratic function is expressed by a mathematical expression. When the expression form is y = ax2 + bx + c, the coefficients a and b and the constant c corresponding to each of the curve B1 to the curve P24 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 以上の関数データが、本測定原理によって光学膜厚を演算する際に参照するデータ、すなわち、予め、干渉膜の光学膜厚が既知の積層体における分光反射率の極値を与える波長λと当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されるデータである。
 かかる関数データを、光学膜厚を演算する演算するコンピュータ(制御演算装置50)で利用できるように記憶しておく。
The above function data refers to data that is referred to when calculating the optical film thickness according to the present measurement principle, that is, the wavelength λ that gives the extreme value of the spectral reflectance in a laminate in which the optical film thickness of the interference film is known in advance. It is data configured by creating a relationship with the optical film thickness for different optical film thicknesses.
Such function data is stored so that it can be used by a computer (control arithmetic unit 50) for calculating the optical film thickness.
(光学膜厚の同定演算)
 測定システム1にあっては制御演算装置50が分光器30から入力を受けた分光特性データに基づき、まず、測定対象の積層体における分光反射率について、当該分光反射率の極値を与える波長を特定する。極値は、極大値と極小値の別も含めて特定する。
 図9のグラフにおいて、光学膜厚(横軸x)の任意の値において縦軸yに平行な線を引くと、曲線B1から曲線P24のいずれかに交わる。その交点のy座標がその光学膜厚において分光反射率曲線に極値を与える1000/λの値であり、曲線B1-24に交わる交点であればその極値は極小値、曲線P1-24に交わればその極値は極大値である。
 これを逆算的に利用し、制御演算装置50は、測定対象から得られた分光反射率の極値を与える波長λを1000/λに換算してy値を求め、極大値と極小値の別を含めたy値の数、極値を与える波長の大小関係等を考慮し、さらには誤差を考慮して、可能性のある当てはめパターンに絞込みながら、上記2次関数に入力し、共通の解x、すなわち、光学膜厚nd値を同定する。制御演算装置50は、同定された光学膜厚nd値から、測定対象の積層体における干渉膜の光学膜厚を推定して出力する。
 実際の測定にあたっては、解xが完全一致する場合はほとんど無いから、同定は、最も解xがより狭い範囲で互いに近似するものを特定することで行う。そして、例えば、分散している解xの平均値を推定した測定値として出力する。また、測定値として出力してよい近似度と、測定エラーとして出力する近似度との閾値を設けて測定の信頼性を一定に確保する。また、近似度も併せて出力してもよい。
 可能性のある当てはめパターンとは、測定対象から得られた分光反射率曲線の極大値を短波長側から長波長方向へSP1,SP2・・・とし、極小値のそれをSB1、SB2・・・としたとき、SP1,SP2・・・を順にP1,P2・・・の式に当てはめるパターン、SP1,SP2・・・を順にP2,P3・・・の式に当てはめるパターン・・・や、SB1,SB2・・・を順にB1,B2・・・の式に当てはめるパターン、SB1,SB2・・・を順にB2,B3・・・の式に当てはめるパターン・・・などである。
 これに対し、SP1をB1の式に当てはめるパターンは極大値と極小値の別が誤っているため、SP1をP2の式にSP2をP1の式に当てはめるパターンは、極値を与える波長の大小関係が誤っているため、可能性のある当てはめパターンに含めないことが適当である。
 SP1とSP2の間にSB2が特定された場合において、SP1,SP2・・・を順にP2,P3・・・の式に当てはめて計算しているときに、SB2をB2の式に当てはめるパターンなども、極値を与える波長の大小関係が誤っているため、可能性のある当てはめパターンに含めないことが適当である。
(Optical film thickness identification calculation)
In the measurement system 1, based on the spectral characteristic data input from the spectroscope 30 by the control arithmetic device 50, first, for the spectral reflectance in the laminate to be measured, the wavelength that gives the extreme value of the spectral reflectance is determined. Identify. The extreme value is specified including the maximum value and the minimum value.
In the graph of FIG. 9, when a line parallel to the vertical axis y is drawn at an arbitrary value of the optical film thickness (horizontal axis x), it intersects one of the curves B1 to P24. The y coordinate of the intersection is a value of 1000 / λ giving an extreme value to the spectral reflectance curve at the optical film thickness. If the intersection intersects the curve B1-24, the extreme value is a minimum value, and the curve P1-24 If they intersect, the extreme value is a local maximum.
Using this in a reverse calculation, the control arithmetic unit 50 converts the wavelength λ giving the extreme value of the spectral reflectance obtained from the object to be measured into 1000 / λ to obtain the y value, and distinguishes between the maximum value and the minimum value. In consideration of the number of y values including, the magnitude relationship of wavelengths giving extreme values, etc., and further considering errors, while narrowing down to possible fitting patterns, input to the above quadratic function, the common solution x, that is, the optical film thickness nd value is identified. The control arithmetic unit 50 estimates and outputs the optical film thickness of the interference film in the measurement target laminate from the identified optical film thickness nd value.
In actual measurement, there is almost no case where the solutions x completely coincide with each other. Therefore, the identification is performed by specifying those that approximate each other in the narrowest range. Then, for example, the average value of the distributed solution x is output as an estimated measurement value. In addition, the reliability of the measurement is ensured to be constant by providing a threshold value of the approximation that may be output as a measurement value and the approximation that is output as a measurement error. The degree of approximation may also be output.
Possible fitting patterns are SP1, SP2,... Of the maximum value of the spectral reflectance curve obtained from the measurement object from the short wavelength side to the long wavelength direction, and the minimum values are SB1, SB2,. , SP1, SP2... Are sequentially applied to the expressions P1, P2..., SP1, SP2... Are sequentially applied to the expressions P2, P3. A pattern in which SB2... Is sequentially applied to the expressions B1, B2,..., A pattern in which SB1, SB2.
On the other hand, since the pattern in which SP1 is applied to the formula of B1 is erroneously distinguished from the maximum value and the minimum value, the pattern in which SP1 is applied to the formula of P2 and SP2 is applied to the formula of P1 is related to the magnitude of the wavelength giving the extreme value. Is incorrect and should not be included in possible fitting patterns.
When SB2 is specified between SP1 and SP2, when calculating by applying SP1, SP2... To the expressions P2, P3... In order, there is a pattern for applying SB2 to the expression B2. Since the magnitude relationship between the wavelengths giving the extreme values is incorrect, it is appropriate that they are not included in the possible fitting patterns.
 以上説明したようにして、測定システム1は測定原理1により、干渉膜a2の光学膜厚を測定する。測定システム1は測定原理1により、干渉膜a2に分子間相互作用により形成された層が含まれているか否かの別を問わず、あらゆる膜の光学膜厚を反射干渉分光法を利用して測定することができる。 As described above, the measurement system 1 measures the optical film thickness of the interference film a2 according to the measurement principle 1. The measurement system 1 is based on the measurement principle 1, regardless of whether the interference film a2 includes a layer formed by intermolecular interaction or not, by using reflection interference spectroscopy. Can be measured.
〔測定原理2〕
 次に、測定原理2として以下のとおり説明する。
(参照データの作成)
 本測定原理で測定を行う場合、光学膜厚を演算する際に参照するデータは、予め、光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されるデータである。以下これにつき詳細に説明する。
[Measurement principle 2]
Next, the measurement principle 2 will be described as follows.
(Create reference data)
When measurement is performed based on this measurement principle, the data to be referred to when calculating the optical film thickness includes the spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is previously laminated, and the first Spectral reflectance in the second laminate in which a second interference film having a known optical film thickness is laminated on the interference film of the laminate, and spectral reflection in the second laminate relative to the spectral reflectance in the first laminate By extracting a predetermined feature value related to the curve of the rate change amount and creating a relationship between the feature value and the optical film thickness of the second interference film in advance for different optical film thicknesses of the second interference film It is data that is composed. This will be described in detail below.
 本測定原理においても、上記測定原理1の項において図6及び図7を参照した事項を前提とする。図7に示すように、波長に対する分光反射率の変化量ΔRの曲線は、上述したように干渉膜が厚くなることに伴ったピークの移動と増加の変化を示す。 This measurement principle also presupposes the matters with reference to FIGS. 6 and 7 in the above measurement principle 1. As shown in FIG. 7, the curve of the change amount ΔR of the spectral reflectance with respect to the wavelength shows the change in peak movement and increase as the interference film becomes thicker as described above.
 ここでは特徴値として極値を与える波長を例とする。
 シミュレーションにより異なる膜厚の試料について分光反射率の変化量ΔRの曲線を計算し、その曲線において極値位置の波長λを求め、試料膜厚dと極値位置波長の関係を図10のグラフに記載した。これは、基板a1をシリコン基板とし、その上に積層する第1干渉膜を66.5nmのSiN膜とする。第1干渉膜の上に積層する第2干渉膜をBK7として、第2干渉膜(BK7)を0nmから1000nmの範囲で変化させて調べたものであり、分光反射率の変化量ΔRは、基板a1と第1干渉膜とからなる第1積層体における分光反射率に対する第2干渉膜が付いた第2積層体における分光反射率の変化量である。図10のグラフにおける横軸の試料膜厚dは、第2干渉膜(BK7)についてのものである。なお、BK7は、屈折率等の性質が特定されたシミュレーション上の仮想試料で、ガラスの代表的な一種に相当し、生体材料や高分子材料と屈折率が近いものである。
 図10のグラフにおいて実線は、試料膜厚に対する極大値位置の波長を、破線は試料膜厚に対する極小値位置の波長を示す。
 図10のグラフの横軸の試料膜厚dを、屈折率nを乗じて光路長(光学膜厚)ndに換算し、縦軸の波長λを、1000/λに換算して作成したグラフが図11に示される。
 図11のグラフにあっては、最も左に極大値位置の波長を示す曲線が現れる。これを曲線P1とする。曲線P1から右へ行くと、極小値位置の波長を示す曲線が現れる。これを曲線B1とする。さらに曲線B1から右へ行くと、極大値位置の波長を示す曲線、極小値位置の波長を示す曲線が交互に現れる。これを順に曲線P2,B2,P3,B3・・・B7,P8とする。曲線P1から曲線P8までをそれぞれ2次関数で近似してその近似2次関数を数式で示す。表現形式をy=ax2+bx+cとして、曲線P1から曲線P8のそれぞれに対応する係数a,b及び定数cを示すと次の表2のとおりとなる。
Here, a wavelength that gives an extreme value as a feature value is taken as an example.
The curve of the spectral reflectance change amount ΔR is calculated for samples having different film thicknesses by simulation, the wavelength λ at the extreme position is obtained in the curve, and the relationship between the sample film thickness d and the extreme position wavelength is shown in the graph of FIG. Described. In this method, the substrate a1 is a silicon substrate, and the first interference film laminated thereon is a 66.5 nm SiN film. The second interference film laminated on the first interference film is BK7, and the second interference film (BK7) is examined by changing in the range of 0 nm to 1000 nm. It is a change amount of the spectral reflectance in the second laminated body with the second interference film with respect to the spectral reflectance in the first laminated body composed of a1 and the first interference film. The sample film thickness d on the horizontal axis in the graph of FIG. 10 is for the second interference film (BK7). Note that BK7 is a virtual sample for simulation in which properties such as a refractive index are specified, corresponds to a typical kind of glass, and has a refractive index close to that of a biomaterial or a polymer material.
In the graph of FIG. 10, the solid line indicates the wavelength at the maximum value position with respect to the sample film thickness, and the broken line indicates the wavelength at the minimum value position with respect to the sample film thickness.
FIG. 10 is a graph created by converting the sample film thickness d on the horizontal axis to the optical path length (optical film thickness) nd by multiplying by the refractive index n, and converting the wavelength λ on the vertical axis to 1000 / λ. It is shown in FIG.
In the graph of FIG. 11, a curve indicating the wavelength at the local maximum position appears on the leftmost side. This is a curve P1. When going to the right from the curve P1, a curve showing the wavelength of the minimum value position appears. This is a curve B1. When going further to the right from the curve B1, a curve indicating the wavelength at the maximum value position and a curve indicating the wavelength at the minimum value position appear alternately. These are sequentially designated as curves P2, B2, P3, B3... B7, P8. Each of the curves P1 to P8 is approximated by a quadratic function, and the approximate quadratic function is expressed by a mathematical expression. When the expression form is y = ax2 + bx + c, the coefficients a and b and the constant c corresponding to each of the curves P1 to P8 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 以上の関数データが、本測定原理によって光学膜厚を演算する際に参照するデータ、すなわち、予め、光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の極値を与える波長と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されるデータである。
 かかる関数データを、光学膜厚を演算する演算するコンピュータ(制御演算装置50)で利用できるように記憶しておく。
The above function data refers to data that is referred to when calculating the optical film thickness according to the present measurement principle, that is, the spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is previously laminated, Spectral reflectance in the second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and in the second laminate relative to the spectral reflectance in the first laminate This is data configured by creating in advance the relationship between the wavelength that gives the extreme value of the change amount of the spectral reflectance and the optical film thickness of the second interference film for the different optical film thicknesses of the second interference film.
Such function data is stored so that it can be used by a computer (control arithmetic unit 50) for calculating the optical film thickness.
(光学膜厚の同定演算)
 測定システム1にあっては、まず分子間相互作用の開始前において制御演算装置50が分光器30から入力を受けた分光特性データに基づき、測定対象の積層体における分子間相互作用の開始前の分光反射率を得る。
 分子間相互作用の開始後、制御演算装置50が分光器30から入力を受けた分光特性データに基づき、測定対象の積層体における分子間相互作用の開始後の分光反射率を得る。
 開始後の分光反射率を得たら、制御演算装置50は、測定対象の積層体の分子間相互作用の開始前における分光反射率に対する、同測定対象の積層体の分子間相互作用の開始後における分光反射率の変化量ΔRの極値を与える波長を特定する。極値は、極大値と極小値の別も含めて特定する。
 図11のグラフにおいて、光学膜厚(横軸x)の任意の値において縦軸yに平行な線を引くと、曲線P1,B1・・・曲線P8のいずれかに交わる。その交点のy座標がその光学膜厚において分光反射率変化量曲線に極値を与える1000/λの値であり、曲線P1-P8に交わる交点であればその極値は極大値、曲線B1-B7に交わればその極値は極小値である。
 これを逆算的に利用し、制御演算装置50は、測定対象から得られた分光反射率変化量の極値を与える波長λを1000/λに換算してy値を求め、極大値と極小値の別を含めたy値の数、極値を与える波長の大小関係等を考慮し、さらには誤差を考慮して、可能性のある当てはめパターンに絞込みながら、上記2次関数に入力し、共通の解x、すなわち、光学膜厚nd値を同定する。後は測定原理1と同様にして制御演算装置50は、同定された光学膜厚nd値から、測定対象の積層体における干渉膜の光学膜厚を推定して出力する。
(Optical film thickness identification calculation)
In the measurement system 1, first, before the start of the intermolecular interaction, the control arithmetic device 50 receives the input from the spectroscope 30 before the start of the intermolecular interaction. Spectral reflectance is obtained.
After the start of the intermolecular interaction, the control arithmetic unit 50 obtains the spectral reflectance after the start of the intermolecular interaction in the measurement target laminate based on the spectral characteristic data input from the spectroscope 30.
When the spectral reflectance after the start is obtained, the control arithmetic device 50 compares the spectral reflectance before the start of the intermolecular interaction of the laminate to be measured with respect to the spectral reflectance after the start of the intermolecular interaction of the laminate to be measured. The wavelength giving the extreme value of the change amount ΔR of the spectral reflectance is specified. The extreme value is specified including the maximum value and the minimum value.
In the graph of FIG. 11, when a line parallel to the vertical axis y is drawn at an arbitrary value of the optical film thickness (horizontal axis x), it intersects one of the curves P1, B1,. The y coordinate of the intersection is a value of 1000 / λ that gives an extreme value to the spectral reflectance change amount curve at the optical film thickness. If the intersection intersects the curves P1-P8, the extreme value is the maximum value, and the curve B1- If it crosses B7, the extreme value is a minimum value.
Using this in a reverse calculation, the control arithmetic device 50 obtains the y value by converting the wavelength λ giving the extreme value of the change amount of the spectral reflectance obtained from the measurement object into 1000 / λ, and the maximum value and the minimum value. In consideration of the number of y values, including the difference in wavelength, the magnitude relationship of wavelengths giving extreme values, etc., and further considering errors, input to the above quadratic function while narrowing down to possible fitting patterns, common X, that is, the optical film thickness nd value is identified. Thereafter, similarly to the measurement principle 1, the control arithmetic device 50 estimates and outputs the optical film thickness of the interference film in the laminate to be measured from the identified optical film thickness nd value.
 以上説明したようにして、測定システム1は測定原理2により、干渉膜a2の分子間相互作用により増加した光学膜厚を測定することができる。すなわち、測定システム1は測定原理2により、図5に示したようにリガンド16に結合したアナライト62相当分の光学膜厚を測定することができる。
 分子間相互作用の進捗により、アナライト62が結合したリガンド16が次第に増加していく。一部でもアナライト62が結合すれば反射干渉する波長に変化があるため、分子間相互作用の初期においても分光反射率変化量の曲線が得られる。このとき、アナライト62が結合した部分の光学膜厚は分子間相互作用の進捗度によらず一定であるから、分子間相互作用の初期においても分光反射率変化量の極値を与える波長を特定することができる。すなわち、分子間相互作用の初期において特定した分光反射率変化量の極値は、その後に特定されるそれと変わらない。したがって、測定システム1は、はじめに分光反射率変化量の極値を与える波長を特定できた段階から光学膜厚の測定値を演算出力することができ、早期にユーザーに知らせることができる。
 サンプル溶液60に複数種の分子が含まれる場合、各分子は固有の大きさを有することとなる。異なる大きさの分子が含まれていても、本発明を適用すれば、目的の分子(アナライト62)の分子間相互作用により変化する光学膜厚が既知である場合、当該既知の光学膜厚の値と、測定された光学膜厚の値とを照合し、一致すれば目的の分子の分子間相互作用があったと、一致しなければ目的の分子の分子間相互作用が無かったと判別できるので、目的の分子の分子間相互作用の有無を検出することができる。
As described above, the measurement system 1 can measure the optical film thickness increased by the intermolecular interaction of the interference film a2 according to the measurement principle 2. That is, the measurement system 1 can measure the optical film thickness corresponding to the analyte 62 bound to the ligand 16 as shown in FIG.
Due to the progress of the intermolecular interaction, the ligand 16 to which the analyte 62 is bound gradually increases. Even if the analyte 62 is combined even partly, there is a change in the wavelength of reflection interference, so that a curve of the spectral reflectance change amount can be obtained even in the initial stage of the intermolecular interaction. At this time, since the optical film thickness of the portion where the analyte 62 is bonded is constant regardless of the progress of the intermolecular interaction, the wavelength that gives the extreme value of the spectral reflectance change amount even at the initial stage of the intermolecular interaction is set. Can be identified. That is, the extreme value of the change amount of the spectral reflectance specified at the initial stage of the intermolecular interaction is not different from that specified thereafter. Therefore, the measurement system 1 can calculate and output the measured value of the optical film thickness from the stage where the wavelength that gives the extreme value of the spectral reflectance change amount can be specified first, and can notify the user at an early stage.
When the sample solution 60 includes a plurality of types of molecules, each molecule has a unique size. Even if molecules of different sizes are included, if the present invention is applied and the optical film thickness that changes due to the intermolecular interaction of the target molecule (analyte 62) is known, the known optical film thickness Compare the measured value with the measured optical film thickness value. If they match, it can be determined that there was an intermolecular interaction of the target molecule, and if it does not match, it can be determined that there was no intermolecular interaction of the target molecule. The presence or absence of intermolecular interaction of the target molecule can be detected.
(膜厚測定)
 以上の実施形態においては、リガンド16に結合したアナライト62相当分の光学膜厚を測定したが、屈折率が既知の分子については膜厚を求めることができる。膜厚を測定する膜厚算出手段として機能し膜厚測定システムを構成する場合、制御演算装置50は、当該分子(アナライト62)の屈折率を予めRAM502に記憶保持し、上述した通りに求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める。
(Film thickness measurement)
In the above embodiment, the optical film thickness corresponding to the analyte 62 bound to the ligand 16 is measured, but the film thickness can be obtained for molecules having a known refractive index. When the film thickness measurement system is configured to function as a film thickness calculation unit that measures the film thickness, the control arithmetic device 50 stores the refractive index of the molecule (analyte 62) in advance in the RAM 502 and obtains it as described above. The film thickness of the molecule is determined by dividing the optical film thickness of the molecule by the refractive index of the molecule.
(分子方向推定)
 さらに分子の特定方向の大きさ又は光学的大きさが既知であれば、分子の干渉膜に対する方向を推定することができる。
 図18Aに示すように、ある方向の大きさd1とこれと異なる方向の大きさd2を有する分子が、図18Bに示すように大きさd1を積層方向として干渉膜に吸着する可能性と、図18Cに示すように大きさd2を積層方向として干渉膜に吸着する可能性とがある場合において、分子方向推定手段として機能し分子方向推定システムを構成するために制御演算装置50は、大きさd1及び大きさd2を予めRAM502に記憶保持し、上述した通りに求めた分子の膜厚を、大きさd1及び大きさd2とそれぞれ比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する。
 大きさd1及び大きさd2が光学的大きさ、すなわち、実際の大きさに屈折率を乗じた値である場合には、制御演算装置50は、これらの光学的大きさを予めRAM502に記憶保持し、上述した通りに求めた分子の光学膜厚を、これらの光学的大きさとそれぞれ比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する。
 一方向のみ大きさ又は光学的大きさが既知でRAM502に記憶保持している場合にも、その方向で吸着したか否かを推定することができる。
(Molecular direction estimation)
Furthermore, if the size or optical size of a specific direction of a molecule is known, the direction of the molecule relative to the interference film can be estimated.
As shown in FIG. 18A, a molecule having a size d1 in one direction and a size d2 in a different direction may be adsorbed on the interference film with the size d1 as the stacking direction as shown in FIG. 18B. As shown in 18C, when there is a possibility that the size d2 is adsorbed to the interference film as the stacking direction, the control arithmetic unit 50 functions as a molecular direction estimation unit and constitutes a molecular direction estimation system. And the size d2 stored in the RAM 502 in advance, and the molecules adsorbed on the interference film by the intermolecular interaction by comparing the film thicknesses of the molecules obtained as described above with the sizes d1 and d2, respectively. Is estimated with respect to the interference film.
When the size d1 and the size d2 are optical sizes, that is, values obtained by multiplying the actual size by the refractive index, the control arithmetic unit 50 stores and holds these optical sizes in the RAM 502 in advance. Then, the direction of the molecules adsorbed on the interference film by the intermolecular interaction with respect to the interference film is estimated by comparing the optical film thicknesses of the molecules obtained as described above with these optical sizes.
Even when the size or optical size in only one direction is known and stored in the RAM 502, it can be estimated whether or not the suction is performed in that direction.
(環境変化特性の記録)
 分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数の変化により、当該分子が伸縮することがあり、分子によってその変化特性が異なる。
 測定システム1に測定環境制御装置又は測定環境検知装置を備えることで、環境変化による分子の大きさの変化特性を記録することができる。
 例えば、測定環境制御装置として、測定環境の温度、圧力、pH、塩濃度等の環境変数のうちいずれか一又は二以上を制御するものを備える。測定環境制御装置の検知部は、制御される環境変数の値を検知する。
 制御演算装置50はプログラムに基づき測定環境制御装置に指令を与えて環境変数に変化を与えつつ、環境変数が変化した異なる各時点について上述した通りに求めた分子の光学膜厚又は膜厚を、同時点における当該環境変数と対応付けてRAM502に記憶する。
 また環境変化原因が測定対象側にある場合など、環境変化原因を測定システム1から与える必要がない場合は、例えば、測定環境検知装置として、測定環境の温度、圧力、pH、塩濃度等の環境変数のうちいずれか一又は二以上を検知するものを備える。
 制御演算装置50は、環境変数が変化した異なる各時点について上述した通りに求めた分子の光学膜厚又は膜厚を、同時点において測定環境検知装置が検知した環境変数と対応付けてRAM502に記憶する。
 いずれの場合もさらに測定システム1は、以上の記録した情報に基づき、グラフを描画しディスプレイ91に表示出力する。
(Record of environmental change characteristics)
Changes in environmental variables such as temperature, pressure, pH, and salt concentration in the measurement environment where the molecules are placed may cause the molecules to expand and contract, and the change characteristics differ depending on the molecule.
By providing the measurement system 1 with the measurement environment control device or the measurement environment detection device, it is possible to record the change characteristic of the molecular size due to the environmental change.
For example, the measurement environment control device includes a device that controls one or more of environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment. The detection unit of the measurement environment control device detects the value of the controlled environment variable.
The control arithmetic unit 50 gives an instruction to the measurement environment control device based on the program to change the environment variable, and calculates the optical film thickness or film thickness of the molecule obtained as described above for each different time point when the environment variable changes. It is stored in the RAM 502 in association with the environment variable at the same time.
Further, when there is no need to provide the environmental change cause from the measurement system 1 such as when the cause of the environmental change is on the measurement target side, for example, as the measurement environment detection device, the environment such as the temperature, pressure, pH, salt concentration, etc. of the measurement environment One that detects any one or more of the variables is provided.
The control arithmetic unit 50 stores in the RAM 502 the optical film thickness or film thickness of the molecules obtained as described above for each different time point when the environmental variable changes in association with the environmental variable detected by the measurement environment detection device at the same time. To do.
In either case, the measurement system 1 further draws a graph based on the recorded information and displays it on the display 91.
 なお、上記プログラムは、LANなどを通じてインターネットなどの公衆回線に接続された通信装置504を通じて、適宜、最新のものに更新することができる。
 また、上述の参照データとしては、(1)異なる性質(屈折率など)の干渉膜のそれぞれについて作成する、(2)異なる波長帯域の光源を適用した場合のそれぞれについて作成する、(3)分子間相互作用により形成される干渉膜を対象に作成する場合に異なるリガンドやアナライトのそれぞれについて作成する、(4)前記(1)(2)(3)の組合せによる異なる条件のそれぞれについて作成するなどの観点で、複数種類の参照データを作成することが好ましい。測定精度を向上するためである。
Note that the above program can be updated to the latest one through the communication device 504 connected to a public line such as the Internet through a LAN or the like.
Further, as the above reference data, (1) created for each of interference films having different properties (refractive index, etc.), (2) created for each of cases where light sources of different wavelength bands are applied, (3) molecules Created for each of different ligands and analytes when creating an interference film formed by the intermolecular interaction, (4) Created for each of the different conditions depending on the combination of (1), (2) and (3) In view of the above, it is preferable to create a plurality of types of reference data. This is to improve the measurement accuracy.
 本発明は、抗原抗体反応などの生体分子同士の分子間相互作用や、有機高分子同士の分子間相互作用などの結合によって成長する膜の光学的厚さを測定することに利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for measuring the optical thickness of the film | membrane which grows by the coupling | bonding of the intermolecular interaction of biomolecules, such as an antigen antibody reaction, and the intermolecular interaction of organic polymers. .
1 測定システム
10 測定部材
12 センサーチップ(積層体)
12a シリコン基板
12b SiN膜
14 フローセル
14a 溝
14b 密閉流路
14c 流入口
14d 流出口
16 リガンド
20 白色光源
30 分光器
40、41 光ファイバ
50 制御演算装置
60 サンプル溶液
62 アナライト
80 測定装置
R 分光反射率
ΔR 分光反射率の変化量
a1 基板
a2 干渉膜
a3 液体層
1 Measurement System 10 Measurement Member 12 Sensor Chip (Laminate)
12a Silicon substrate 12b SiN film 14 Flow cell 14a Groove 14b Sealed flow path 14c Inlet 14d Outlet 16 Ligand 20 White light source 30 Spectroscope 40, 41 Optical fiber 50 Control arithmetic device 60 Sample solution 62 Analyte 80 Measuring device R Spectral reflectance ΔR Amount of change in spectral reflectance a1 Substrate a2 Interference film a3 Liquid layer

Claims (38)

  1. 基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する光学膜厚測定方法であって、
    予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておき、
    反射干渉分光法により得られた測定対象の前記積層体における分光反射率の曲線に係る前記所定の特徴値を、前記関係に当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める光学膜厚測定方法。
    An optical film thickness measuring method for measuring an optical film thickness of an interference film in a laminate in which one or more interference films are laminated on a substrate by reflection interference spectroscopy,
    In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. Create different optical film thicknesses,
    By applying the predetermined feature value relating to the spectral reflectance curve in the laminate to be measured obtained by reflection interference spectroscopy to the relationship, by identifying the optical film thickness that approximates the feature value, An optical film thickness measurement method for obtaining an optical film thickness in the laminate to be measured.
  2. 基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する光学膜厚測定方法であって、
    予め、
    光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、
    前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、
    第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておき、
    反射干渉分光法により測定対象の前記積層体の分子間相互作用の開始前における分光反射率を得、反射干渉分光法により同測定対象の前記積層体の分子間相互作用の開始後における分光反射率を得て、開始前に対する変化量の曲線に係る前記所定の特徴値を、前記関係に当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める光学膜厚測定方法。
    An optical system for measuring the optical film thickness of molecules adsorbed on an interference film by reflection interference spectroscopy by intermolecular interaction performed on the interference film of a laminate in which one or more interference films are laminated on a substrate. A film thickness measuring method,
    In advance,
    Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated;
    Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and
    A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted. The relationship with the film thickness is created in advance for the optical film thickness of the different second interference film,
    Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy By applying the predetermined feature value related to the curve of the change amount before the start to the relationship and identifying the optical film thickness of the second interference film that approximates the feature value, An optical film thickness measurement method for obtaining an optical film thickness of molecules adsorbed on an interference film by intermolecular interaction in the laminate.
  3. 所定の波長帯域において、前記所定の特徴値が複数ある場合には当該複数の特徴値について、前記関係を作成し、反射干渉分光法により測定対象の前記積層体からこれら各特徴値を得て前記同定を行う請求項1又は請求項2に記載の光学膜厚測定方法。 When there are a plurality of the predetermined feature values in a predetermined wavelength band, the relationship is created for the plurality of feature values, and each of the feature values is obtained from the laminate to be measured by reflection interference spectroscopy. The optical film thickness measuring method according to claim 1 or 2, wherein identification is performed.
  4. 前記所定の特徴値は、波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法。 The optical film thickness measuring method according to claim 1, wherein the predetermined characteristic value is a wavelength value.
  5. 前記所定の特徴値は、前記曲線の極値から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法。 The predetermined characteristic value is a wavelength value of a point on the curve having a spectral reflectance separated from the extreme value of the curve by a predetermined amount. The optical film thickness measuring method.
  6. 前記所定の特徴値は、前記曲線の変曲点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法。 The optical film thickness measuring method according to any one of claims 1 to 3, wherein the predetermined characteristic value is a wavelength value at an inflection point of the curve.
  7. 前記所定の特徴値は、前記曲線の変曲点から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項1から請求項3のうちいずれか一に記載の光学膜厚測定方法。 The predetermined characteristic value is a wavelength value of a point on the curve whose spectral reflectance is separated from the inflection point of the curve by a predetermined amount. The optical film thickness measuring method as described.
  8. 前記関係を関数で作成する請求項1から請求項7のうちいずれか一に記載の光学膜厚測定方法。 The optical film thickness measuring method according to claim 1, wherein the relationship is created as a function.
  9. 前記関数が2次関数であり、当該2次関数を前記特徴値ごとに作成する請求項8に記載の光学膜厚測定方法。 The optical film thickness measuring method according to claim 8, wherein the function is a quadratic function, and the quadratic function is created for each feature value.
  10. 前記同定は、前記特徴値が最も近似する光学膜厚を特定することより行い、当該最も近似する光学膜厚から、求める光学膜厚を推定する請求項1から請求項9のうちいずれか一に記載の光学膜厚測定方法。 The identification is performed by specifying an optical film thickness that approximates the feature value most closely, and the optical film thickness to be obtained is estimated from the optical film thickness that is most approximated. The optical film thickness measuring method as described.
  11. 反射干渉分光法により測定対象の前記積層体に白色光を照射して、当該積層体からの反射光の前記分光反射率を得る請求項1から請求項10のうちいずれか一に記載の光学膜厚測定方法。 The optical film according to any one of claims 1 to 10, wherein the spectral reflectance of reflected light from the laminate is obtained by irradiating the laminate to be measured with white light by reflection interference spectroscopy. Thickness measurement method.
  12. 前記干渉膜上を液体層が覆う状態で測定する請求項1から請求項11のうちいずれか一に記載の光学膜厚測定方法。 The optical film thickness measuring method according to any one of claims 1 to 11, wherein measurement is performed in a state where a liquid layer covers the interference film.
  13. 屈折率が既知の分子について、請求項2に記載の光学膜厚測定方法により求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚測定方法。 A film thickness measuring method for determining a film thickness of a molecule having a known refractive index by dividing the optical film thickness of the molecule determined by the optical film thickness measuring method according to claim 2 by the refractive index of the molecule. .
  14. 特定方向の光学的大きさが既知の分子について、請求項2に記載の膜厚測定方法により求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定方法。 By comparing the optical film thickness of the molecule determined by the film thickness measurement method according to claim 2 with the optical size in the specific direction for molecules having a known optical size in the specific direction, A molecular direction estimation method for estimating a direction of molecules adsorbed on an interference film by an action relative to the interference film.
  15. 特定方向の大きさが既知の分子について、請求項13に記載の膜厚測定方法により求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定方法。 The molecule thickness determined by the film thickness measurement method according to claim 13 and the size in the specific direction are compared for molecules having a known size in a specific direction, thereby causing intermolecular interaction on the interference film. Molecular direction estimation method for estimating the direction of molecules adsorbed on the interference film.
  16. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、請求項2に記載の光学膜厚測定方法により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する光学膜厚測定方法。 For each different point in time when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment in which the molecule is placed are changed, along with the optical film thickness of the molecule determined by the optical film thickness measurement method according to claim 2, An optical film thickness measurement method that records environmental variables in association with each other.
  17. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、請求項13に記載の膜厚測定方法により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する膜厚測定方法。 The environmental variables together with the film thicknesses of the molecules determined by the film thickness measurement method according to claim 13 at different points in time when the environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecules are placed have changed. Is a film thickness measurement method for recording in association with each other.
  18. 基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する光学膜厚測定システムであって、
    光源と、
    前記光源からの光を前記積層体に照射する照射手段と、
    前記積層体からの反射光を受光する受光手段と、
    前記受光手段が受光した反射光の分光特性を検出する分光検出手段と、
    予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されるデータを記憶する記憶手段と、
    前記分光検出手段により検出した分光特性に基づき、測定対象の前記積層体における分光反射率について、当該分光反射率の曲線に係る前記所定の特徴値を特定し、前記記憶手段に記憶された前記データに当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める演算手段と、
    を備える光学膜厚測定システム。
    An optical film thickness measurement system for measuring an optical film thickness of an interference film in a laminate in which one or more interference films are laminated on a substrate by reflection interference spectroscopy,
    A light source;
    Irradiating means for irradiating the laminate with light from the light source;
    A light receiving means for receiving reflected light from the laminate;
    Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means;
    In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. Storage means for storing data configured by creating different optical film thicknesses;
    Based on the spectral characteristics detected by the spectral detection means, for the spectral reflectance in the laminate to be measured, the predetermined feature value relating to the spectral reflectance curve is specified, and the data stored in the storage means And calculating means for determining the optical film thickness in the laminate to be measured by identifying the optical film thickness that approximates the feature value, and
    An optical film thickness measurement system.
  19. 基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する光学膜厚測定システムであって、
    光源と、
    前記光源からの光を前記積層体に照射する照射手段と、
    前記積層体からの反射光を受光する受光手段と、
    前記受光手段が受光した反射光の分光特性を検出する分光検出手段と、
    予め、光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されるデータを記憶する記憶手段と、
    前記分光検出手段により検出した分光特性に基づき、測定対象の前記積層体の分子間相互作用の開始前における分光反射率に対する、同測定対象の前記積層体の分子間相互作用の開始後における分光反射率の変化量の曲線に係る前記所定の特徴値を特定し、前記記憶手段に記憶された前記データに当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める演算手段と、
    を備える光学膜厚測定システム。
    An optical system for measuring the optical film thickness of molecules adsorbed on an interference film by reflection interference spectroscopy by intermolecular interaction performed on the interference film of a laminate in which one or more interference films are laminated on a substrate. A film thickness measuring system,
    A light source;
    Irradiating means for irradiating the laminate with light from the light source;
    A light receiving means for receiving reflected light from the laminate;
    Spectral detection means for detecting spectral characteristics of reflected light received by the light receiving means;
    The spectral reflectance in the first laminated body in which the first interference film having a known optical film thickness is laminated in advance, and the second interference film in which the second optical film having a known optical film thickness is laminated on the interference film of the first laminated body. The spectral reflectance of the two laminated body is obtained, and a predetermined feature value different from the wavelength that gives the extreme value relating to the curve of the amount of change in the spectral reflectance of the second laminated body with respect to the spectral reflectance of the first laminated body is extracted. Storage means for storing data constituted by creating in advance the relationship between the characteristic value and the optical film thickness of the second interference film with respect to the optical film thickness of the different second interference film;
    Spectral reflection after the start of the intermolecular interaction of the laminate of the measurement object with respect to the spectral reflectance before the start of the intermolecular interaction of the laminate of the measurement object based on the spectral characteristics detected by the spectroscopic detection means By specifying the predetermined feature value relating to the curve of the rate change amount, applying it to the data stored in the storage means, and identifying the optical film thickness of the second interference film that approximates the feature value, An arithmetic means for obtaining an optical film thickness of molecules adsorbed on the interference film by intermolecular interaction in the laminate to be measured;
    An optical film thickness measurement system.
  20. 所定の波長帯域において、前記所定の特徴値が複数ある場合には当該複数の特徴値について、前記関係が作成されており、前記演算手段は、これら各極値を得て前記同定を行う請求項18又は19に記載の光学膜厚測定システム。 When there are a plurality of the predetermined feature values in a predetermined wavelength band, the relationship is created for the plurality of feature values, and the calculation means obtains each of these extreme values and performs the identification. The optical film thickness measurement system according to 18 or 19.
  21. 前記所定の特徴値は、波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システム。 The optical film thickness measurement system according to any one of claims 18 to 20, wherein the predetermined feature value is a wavelength value.
  22. 前記所定の特徴値は、前記曲線の極値から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システム。 The predetermined characteristic value is a wavelength value of a point on the curve in which a spectral reflectance is separated from the extreme value of the curve by a predetermined amount. Optical film thickness measurement system.
  23. 前記所定の特徴値は、前記曲線の変曲点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システム。 21. The optical film thickness measurement system according to claim 18, wherein the predetermined feature value is a wavelength value of an inflection point of the curve.
  24. 前記所定の特徴値は、前記曲線の変曲点から分光反射率が所定量隔たった当該曲線上の点の波長値であることを特徴とする請求項18から請求項20のうちいずれか一に記載の光学膜厚測定システム。 The predetermined characteristic value is a wavelength value of a point on the curve that is separated from the inflection point of the curve by a predetermined amount in spectral reflectance, according to any one of claims 18 to 20. The optical film thickness measurement system described.
  25. 前記光源は、白色光を発光する光源である請求項18から24のうちいずれか一に記載の光学膜厚測定システム。 The optical film thickness measurement system according to any one of claims 18 to 24, wherein the light source is a light source that emits white light.
  26. 前記干渉膜上に流路を形成する部材と、前記流路に接続し前記干渉膜上に設けられた分子と相互作用する分子を含んだ液体を当該流路に流す送液手段を備える請求項18から25のうちいずれか一に記載の光学膜厚測定システム。 A member that forms a flow path on the interference film, and a liquid feeding means that flows a liquid containing molecules that interact with the molecules connected to the flow path and provided on the interference film to the flow path. The optical film thickness measurement system according to any one of 18 to 25.
  27. 請求項19に記載の光学膜厚測定システムを備え、屈折率が既知の分子について、請求項19に記載の光学膜厚測定システムにより求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚算出手段をさらに備える膜厚測定システム。 The molecule having the optical film thickness measurement system according to claim 19 having a known refractive index, the molecular film thickness obtained by the optical film thickness measurement system according to claim 19 is divided by the refractive index of the molecule. Thus, a film thickness measurement system further comprising a film thickness calculation means for determining the film thickness of the molecule.
  28. 請求項19に記載の光学膜厚測定システムを備え、特定方向の光学的大きさが既知の分子について、請求項19に記載の膜厚測定システムにより求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定手段をさらに備える分子方向推定システム。 An optical film thickness measurement system according to claim 19, the molecular optical film thickness obtained by the film thickness measurement system according to claim 19, and the specific direction, for a molecule whose optical magnitude in a specific direction is known. A molecular direction estimation system further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing with the optical size of.
  29. 請求項27に記載の膜厚測定システムを備え、特定方向の大きさが既知の分子について、請求項27に記載の膜厚測定システムにより求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定手段をさらに備える分子方向推定システム。 For a molecule having the film thickness measurement system according to claim 27 and having a known size in a specific direction, the film thickness of the molecule determined by the film thickness measurement system according to claim 27 and the size in the specific direction are calculated. A molecular direction estimation system further comprising molecular direction estimation means for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparison.
  30. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、前記演算手段により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する記録手段をさらに備える請求項19に記載の光学膜厚測定システム。 For each time point when the environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecules are placed have changed, record the environmental variables in association with the optical film thicknesses of the molecules obtained by the calculation means. The optical film thickness measurement system according to claim 19, further comprising a recording unit.
  31. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点において、前記膜厚算出手段により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する記録手段をさらに備える請求項27に記載の膜厚測定システム。 At different points in time when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecules are placed have changed, the environmental variables are recorded in association with the film thicknesses of the molecules obtained by the film thickness calculation means. 28. The film thickness measurement system according to claim 27, further comprising a recording unit that performs the recording.
  32. 基板上に1又は2以上の干渉膜が積層した積層体における該干渉膜の光学膜厚を反射干渉分光法により測定する処理をコンピュータに実行させるための光学膜厚測定プログラムであって、
    予め、干渉膜の光学膜厚が既知の前記積層体における分光反射率の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と当該光学膜厚との関係を異なる光学膜厚について作成しておくことにより構成されたデータを読み出す処理と、
    反射干渉分光法により得られた測定対象の前記積層体における分光反射率の曲線に係る前記所定の特徴値を特定し、前記データに当てはめて、前記特徴値が近似する光学膜厚を同定することにより、測定対象の前記積層体における光学膜厚を求める演算処理と、
    を前記コンピュータに行わせる光学膜厚測定プログラム。
    An optical film thickness measurement program for causing a computer to execute a process of measuring the optical film thickness of an interference film in a laminate in which one or two or more interference films are laminated on a substrate by reflection interference spectroscopy,
    In advance, a predetermined feature value different from the wavelength that gives the extreme value related to the spectral reflectance curve in the laminate having the known optical film thickness of the interference film is extracted, and the relationship between the feature value and the optical film thickness is determined. A process of reading out data configured by creating different optical film thicknesses;
    Identifying the predetermined feature value relating to a spectral reflectance curve in the laminate to be measured obtained by reflection interference spectroscopy, and applying it to the data to identify an optical film thickness that approximates the feature value By the arithmetic processing to obtain the optical film thickness in the laminate to be measured,
    An optical film thickness measurement program for causing the computer to execute
  33. 基板上に1又は2以上の干渉膜が積層した積層体の該干渉膜上で行われる分子間相互作用により、該干渉膜上に吸着する分子の光学膜厚を反射干渉分光法により測定する処理をコンピュータに実行させるための光学膜厚測定プログラムであって、
    予め、
    光学膜厚が既知の第1干渉膜が積層した第1積層体における分光反射率と、
    前記第1積層体の干渉膜の上に光学膜厚が既知の第2干渉膜が積層した第2積層体における分光反射率と、を求め、
    第1積層体における分光反射率に対する第2積層体における分光反射率の変化量の曲線に係る極値を与える波長とは異なる所定の特徴値を抽出し、当該特徴値と第2干渉膜の光学膜厚との関係を、異なる第2干渉膜の光学膜厚について予め作成しておくことにより構成されたデータを読み出す処理と、
    反射干渉分光法により測定対象の前記積層体の分子間相互作用の開始前における分光反射率を得、反射干渉分光法により同測定対象の前記積層体の分子間相互作用の開始後における分光反射率を得て、開始前に対する変化量の曲線に係る前記所定の特徴値を特定し、前記データに当てはめて、前記特徴値が近似する第2干渉膜の光学膜厚を同定することにより、同測定対象の前記積層体における分子間相互作用により干渉膜上に吸着した分子の光学膜厚を求める演算処理と、
    を前記コンピュータに行わせる光学膜厚測定プログラム。
    A process of measuring the optical film thickness of molecules adsorbed on the interference film by reflection interference spectroscopy by intermolecular interaction performed on the interference film of the laminate in which one or two or more interference films are laminated on the substrate An optical film thickness measurement program for causing a computer to execute
    In advance,
    Spectral reflectance in the first laminate in which the first interference film having a known optical thickness is laminated;
    Spectral reflectance in a second laminate in which a second interference film having a known optical thickness is laminated on the interference film of the first laminate, and
    A predetermined feature value that is different from a wavelength that gives an extreme value related to a curve of the amount of change in the spectral reflectance of the second laminate relative to the spectral reflectance of the first laminate is extracted, and the feature value and the optical properties of the second interference film are extracted. A process of reading out data configured by preparing in advance the relationship between the film thickness and the optical film thickness of different second interference films;
    Spectral reflectance before the start of intermolecular interaction of the laminate to be measured is obtained by reflection interference spectroscopy, and spectral reflectance after initiation of intermolecular interaction of the laminate to be measured by reflection interference spectroscopy The measurement is performed by identifying the predetermined feature value related to the curve of the change amount before the start, and applying the data to identify the optical film thickness of the second interference film that approximates the feature value. A calculation process for obtaining the optical film thickness of the molecules adsorbed on the interference film by the intermolecular interaction in the target laminate;
    An optical film thickness measurement program for causing the computer to execute
  34. 請求項33に記載の光学膜厚測定プログラムを備え、屈折率が既知の分子について、請求項33に記載の光学膜厚測定プログラムに基づき前記コンピュータが求めた分子の光学膜厚を当該分子の屈折率で除することにより、当該分子の膜厚を求める膜厚算出処理をさらに前記コンピュータに実行させるための膜厚測定プログラム。 35. An optical film thickness measurement program according to claim 33, and a molecule having a known refractive index, the optical film thickness of the molecule determined by the computer based on the optical film thickness measurement program according to claim 33. A film thickness measurement program for causing the computer to further execute a film thickness calculation process for determining the film thickness of the molecule by dividing by a ratio.
  35. 請求項33に記載の光学膜厚測定プログラムを備え、特定方向の光学的大きさが既知の分子について、請求項33に記載の光学膜厚測定プログラムによりに基づき前記コンピュータが求めた分子の光学膜厚と、前記特定方向の光学的大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定処理をさらに前記コンピュータに実行させるための分子方向推定プログラム。 34. An optical film of a molecule obtained by the computer based on the optical film thickness measurement program according to claim 33, comprising the optical film thickness measurement program according to claim 33, and having a known optical magnitude in a specific direction. To cause the computer to further execute a molecular direction estimation process for estimating the direction of molecules adsorbed on the interference film by intermolecular interaction with respect to the interference film by comparing the thickness with the optical size in the specific direction. Molecular orientation estimation program.
  36. 請求項34に記載の膜厚測定プログラムを備え、特定方向の大きさが既知の分子について、請求項34に記載の膜厚測定プログラムによりに基づき前記コンピュータが求めた分子の膜厚と、前記特定方向の大きさとを比較することにより、分子間相互作用により干渉膜上に吸着した分子の当該干渉膜に対する方向を推定する分子方向推定処理をさらに前記コンピュータに実行させるための分子方向推定プログラム。 35. A molecule thickness measurement program according to claim 34, the molecule thickness determined by the computer based on the film thickness measurement program according to claim 34 for the molecule whose magnitude in a specific direction is known, and the identification A molecular direction estimation program for causing the computer to further execute a molecular direction estimation process for estimating a direction of a molecule adsorbed on an interference film by an intermolecular interaction with respect to the interference film by comparing the magnitude of the direction.
  37. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点について、前記コンピュータが前記演算処理により求めた分子の光学膜厚とともに、当該環境変数を対応付けて記録する記録処理をさらに前記コンピュータに実行させるための請求項33に記載の光学膜厚測定プログラム。 For each time point when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecule is placed changed, the computer associates the environmental variable with the optical film thickness of the molecule obtained by the calculation process. 34. The optical film thickness measurement program according to claim 33, further causing the computer to execute a recording process for recording.
  38. 前記分子の置かれる測定環境の温度、圧力、pH、塩濃度等の環境変数が変化した異なる各時点において、前記コンピュータが前記膜厚算出処理により求めた分子の膜厚とともに、当該環境変数を対応付けて記録する記録処理をさらに前記コンピュータに実行させるための請求項34に記載の膜厚測定プログラム。 Corresponding to the environmental variables along with the molecular thickness obtained by the computer through the film thickness calculation process at different points in time when environmental variables such as temperature, pressure, pH, and salt concentration of the measurement environment where the molecules are placed have changed. 35. The film thickness measurement program according to claim 34, further causing the computer to execute a recording process of attaching and recording.
PCT/JP2013/075821 2012-10-16 2013-09-25 Method for measuring optical film thickness, system for measuring optical film thickness, and program for measuring optical film thickness WO2014061408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014542008A JPWO2014061408A1 (en) 2012-10-16 2013-09-25 Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, etc.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228723 2012-10-16
JP2012228723 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061408A1 true WO2014061408A1 (en) 2014-04-24

Family

ID=50487981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075821 WO2014061408A1 (en) 2012-10-16 2013-09-25 Method for measuring optical film thickness, system for measuring optical film thickness, and program for measuring optical film thickness

Country Status (2)

Country Link
JP (1) JPWO2014061408A1 (en)
WO (1) WO2014061408A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076698A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
JP2020076697A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
JP2022035917A (en) * 2020-08-19 2022-03-04 大日本印刷株式会社 Barrier film, wavelength conversion sheet using the same, back light unit, liquid crystal display device, and method of selecting barrier film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165103A (en) * 1986-01-17 1987-07-21 Canon Inc Method for measuring film thickness
JPS6344106A (en) * 1986-08-12 1988-02-25 Canon Inc Film thickness measuring method
JP2005265655A (en) * 2004-03-19 2005-09-29 Dainippon Screen Mfg Co Ltd Spectral reflectance measuring device, film thickness measuring device and spectral reflectance measuring method
JP2005283296A (en) * 2004-03-29 2005-10-13 Takatoshi Kinoshita Optical detection method of specimen, and detection system
JP3786073B2 (en) * 2002-10-10 2006-06-14 株式会社日立製作所 Biochemical sensor kit and measuring device
WO2010013429A1 (en) * 2008-07-30 2010-02-04 株式会社ニレコ Film thickness measuring device and film thickness measuring method
WO2011111466A1 (en) * 2010-03-12 2011-09-15 コニカミノルタオプト株式会社 Detection method for intermolecular interaction and detection device therefor
WO2012081445A1 (en) * 2010-12-15 2012-06-21 コニカミノルタオプト株式会社 Intermolecular interaction measurement method, measurement system for use in the method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165103A (en) * 1986-01-17 1987-07-21 Canon Inc Method for measuring film thickness
JPS6344106A (en) * 1986-08-12 1988-02-25 Canon Inc Film thickness measuring method
JP3786073B2 (en) * 2002-10-10 2006-06-14 株式会社日立製作所 Biochemical sensor kit and measuring device
JP2005265655A (en) * 2004-03-19 2005-09-29 Dainippon Screen Mfg Co Ltd Spectral reflectance measuring device, film thickness measuring device and spectral reflectance measuring method
JP2005283296A (en) * 2004-03-29 2005-10-13 Takatoshi Kinoshita Optical detection method of specimen, and detection system
WO2010013429A1 (en) * 2008-07-30 2010-02-04 株式会社ニレコ Film thickness measuring device and film thickness measuring method
WO2011111466A1 (en) * 2010-03-12 2011-09-15 コニカミノルタオプト株式会社 Detection method for intermolecular interaction and detection device therefor
WO2012081445A1 (en) * 2010-12-15 2012-06-21 コニカミノルタオプト株式会社 Intermolecular interaction measurement method, measurement system for use in the method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076698A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
JP2020076697A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
JP2022035917A (en) * 2020-08-19 2022-03-04 大日本印刷株式会社 Barrier film, wavelength conversion sheet using the same, back light unit, liquid crystal display device, and method of selecting barrier film
JP7120287B2 (en) 2020-08-19 2022-08-17 大日本印刷株式会社 Barrier film, wavelength conversion sheet using the same, backlight and liquid crystal display device, and method for selecting barrier film

Also Published As

Publication number Publication date
JPWO2014061408A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5704163B2 (en) Method for detecting intermolecular interaction and detection apparatus therefor
JP5146311B2 (en) Chip for surface plasmon resonance sensor and surface plasmon resonance sensor
JP5890398B2 (en) Improved sensor measurement method
WO2012081445A1 (en) Intermolecular interaction measurement method, measurement system for use in the method, and program
TWI384214B (en) Biological sensing device and its system
Aćimović et al. Antibody–antigen interaction dynamics revealed by analysis of single-molecule equilibrium fluctuations on individual plasmonic nanoparticle biosensors
JP2007501432A (en) Substrate refractive index change for improved sensitivity of grating-coupled waveguides
JPH07508346A (en) Improvements in optical assays
US20120295357A1 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
JP5701778B2 (en) Detection device for detecting target substances
WO2014061408A1 (en) Method for measuring optical film thickness, system for measuring optical film thickness, and program for measuring optical film thickness
JP5683606B2 (en) Method and system for interaction analysis
JP5714023B2 (en) Method and system for analysis of binding behavior
JP5979143B2 (en) Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, etc.
WO2012118433A1 (en) Screening method
WO2014046156A1 (en) Method for measuring intermolecular interaction, method for measuring optical film thickness, measurement system, and measurement program
CN101660997B (en) Surface plasma resonance sensor for reducing background interference and detection method thereof
JP4173746B2 (en) measuring device
CN111033234B (en) Measuring device and measuring method
JP2022550422A (en) A method for classifying monitoring results from an analytical sensor system arranged to monitor intermolecular interactions
EP3071946A1 (en) Method for determining interaction kinetics with rapid dissociation
Sharma Model of a plasmonic phase interrogation probe for optical sensing of hemoglobin in blood samples
US20230349826A1 (en) Background insensitive reflectometric optical methods and systems using the same
JP2012150076A (en) System, program, and method for measuring intermolecular interaction
Ling et al. Thin film thickness variation measurement using dual LEDs and reflectometric interference spectroscopy model in biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847970

Country of ref document: EP

Kind code of ref document: A1