WO2014059845A1 - 上行宏分集合并等待时间动态调整方法及装置 - Google Patents

上行宏分集合并等待时间动态调整方法及装置 Download PDF

Info

Publication number
WO2014059845A1
WO2014059845A1 PCT/CN2013/083777 CN2013083777W WO2014059845A1 WO 2014059845 A1 WO2014059845 A1 WO 2014059845A1 CN 2013083777 W CN2013083777 W CN 2013083777W WO 2014059845 A1 WO2014059845 A1 WO 2014059845A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
uplink
macro diversity
data frame
frame
Prior art date
Application number
PCT/CN2013/083777
Other languages
English (en)
French (fr)
Inventor
吴敏恬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13846471.4A priority Critical patent/EP2911344A4/en
Priority to US14/436,176 priority patent/US9537782B2/en
Publication of WO2014059845A1 publication Critical patent/WO2014059845A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/18End to end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink in a Wideband Code Division Multiple Access System (WCDMA).
  • WCDMA Wideband Code Division Multiple Access System
  • the WCDMA system consists of the following network elements: User Equipment (User Equipment, UE for short), UMTS Terrestrial Radio Access Network (UTRAN) and Core Network (CN).
  • UE User Equipment
  • UTRAN UMTS Terrestrial Radio Access Network
  • CN Core Network
  • the UTRAN performs the functions related to the wireless side processing, and the CN is responsible for the exchange of voice and data with the external network.
  • the macro diversity function of WCDMA is directly related to soft handoff.
  • the UE When the UE is in the handover state, it also needs to communicate with a plurality of base stations (Node b) participating in the handover, and combine signals from the base stations to improve the quality of the uplink and downlink signals, and ensure that data is not lost during the handover process. The communication is not affected by the UE during the mobile process.
  • This technique is macro diversity.
  • the same packet data sent by the UE is respectively routed to two or more base stations to be uploaded to a radio network controller (Radio Network Control, referred to as RNC), and the RNC is responsible for determining the handover of the UE and completing data merging.
  • the signal is then sent to the core network.
  • RNC Radio Network Control
  • various information in the uplink FP (Frame Protocol) data frame is received along with the data block, and then it is judged when storing the data, if the same connection frame number (Connection Frame Number, currently exists)
  • the FP frame referred to as CFN is merged, and the Cyclic Redundancy Check Indicator (CRCI) is selected.
  • the correct data block is placed in the corresponding position. If it is not correct, the quality is selected. Quality Estimate QE Small data blocks are placed in the appropriate locations.
  • the data content of the FP frame is taken from the smallest to the largest in the CFN order, demultiplexed, decrypted, and placed on the corresponding logical channel.
  • the Iub transmission path distance and the traffic load status of different sites are different, when the link data arrives at the RNC in the macro diversity state, there is inevitably a delay difference, and when the MAC performs uplink scheduling, A CFN point needs to collect data from all links for further processing, which introduces the concept of macro-division and latency.
  • the pre-set macro diversity set is exceeded and the waiting time has not yet collected the data of all the links, it is judged that the macro diversity set and waits for the timeout, and the other links that have been merged are available at this time.
  • the data is processed for subsequent processing.
  • the macro diversity set and the waiting time are theoretically set to be large enough.
  • the macro diversity set and the waiting time need to be set. Therefore, in order to solve this problem, there is a need for a dynamic adjustment method for uplink macro diversity and waiting time, so that an appropriate macro diversity set can be automatically selected and wait time is valid during system operation.
  • an object of the embodiments of the present invention is to provide a dynamic adjustment method and apparatus for uplink macro diversity and latency.
  • the method for dynamically adjusting the uplink macro diversity and the waiting time includes the following steps: acquiring an uplink downlink DCH (Dedicated Channel) FP data frame of the current link; Determining whether the frame belongs to a macro diversity set and waiting for a timeout unconsolidated data frame, and if so, continuing to determine whether the RNC is in a macro diversity set and waiting for a timeout state at the time of receiving the frame, and if so, recording the CFN of the frame and the first receiving time And performing traversal cycles on the FP data frames of the same DCH of other links, searching for the uplink receiving time of the FP data of the CFN stored in the uplink buffer, calculating the difference between the FP data and the first receiving time, and updating
  • the method further comprises the steps of: discarding the FP data frame, and updating the current RNC link state to a non-macro diversity waiting timeout.
  • the frame is directly delivered to the determination process for subsequent processing; and, if the acquired FP data frame is obtained A frame that belongs to a macro-division set and waits for a timeout not to be merged, but at the time of receiving the frame
  • the RNC discards the frame if it is not in the macro diversity set and waits for a timeout state.
  • the method further includes a determining process, where the determining process includes the following steps: Obtaining an uplink DCH FP data frame of a CFN delivered by the processing flow, determining whether the FP data frame of the CFN is received for the first time, and if yes, recording the first receiving time, otherwise calculating the current receiving time and the first receiving time Time difference; judge whether the DCH FP data frame of the CFN of all links of the uplink macro diversity has been collected, and if it has been collected, update the time difference between the latest and first received DCH FP data frames as a new macro diversity set and wait time.
  • the determining process further includes: if the DCH FP data frame of the CFN of all links of the uplink macro diversity is not collected, continuing to wait for the FP data frame of the CFN of the other link.
  • the determining process further includes: if the data of all links is not collected after the arrival of the first uplink DCH FP data frame of a certain CFN and the waiting time has not been collected, the marked RNC link is already in the macro. Divide and wait for a timeout state.
  • An uplink macro-diversity and waiting time dynamic adjustment apparatus comprising: an obtaining module, configured to obtain a current link uplink dedicated transport channel DCH FP data frame; and a processing module, configured to determine whether the frame belongs to a macro diversity set and wait for a timeout uncombined The data frame, if yes, continues to determine whether the RNC is in the macro diversity set and waits for the timeout state at the time of receiving the frame, and if so, records the CFN of the frame and the first receiving time, and performs FP data frames of the same DCH of other links.
  • the traversal cycle finds the uplink reception time of the FP data of the CFN stored in the uplink buffer and calculates the difference between it and the first reception time, and updates the maximum difference to the new macro diversity set and waits for the time.
  • the processing module is further configured to discard the FP data frame after updating the maximum difference value to a new macro diversity set and wait for a time, and update the current RNC link state to a non-macro diversity waiting timeout.
  • the processing module is further configured to directly deliver the frame to the determining module for subsequent processing; and if the acquired FP data frame belongs to the macro diversity
  • the merge module waits for a timeout uncombined data frame, but at the time the frame is received, the RNC is not in the macro diversity set and waits for a timeout state, and the processing module is further configured to discard the frame.
  • the uplink macro diversity and wait time dynamic adjustment apparatus further includes:
  • the determining module is configured to obtain an uplink DCH FP data frame of a CFN delivered by the processing module, determine whether the FP data frame of the CFN is received for the first time, and if yes, record the first receiving time, otherwise calculate the current receiving time. Time difference from the first reception time; and further set to determine whether the DCN FP data frame of the CFN of all links of the uplink macro diversity has been collected, and if it has been collected, the time difference between the latest and first received DCH FP data frames Update to the new macro collection and wait for the time.
  • the judging module is further configured to continue to wait for the FP data frame of the CFN of the other link.
  • the judging module is further configured to mark the RNC link as being in the macro diversity set and waiting Timeout status. It can be seen that the uplink macro diversity set and the waiting time obtained by using the embodiment of the present invention can perform adaptive dynamic adjustment according to the jitter and delay of each transmission link, and solve the problem.
  • FIG. 1 is a schematic flow chart showing a relationship between a processing flow and a determination process in a dynamic adjustment process of uplink macro diversity and waiting time in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a determination process in an embodiment of the present invention
  • 3 is a schematic diagram of a specific process flow in the embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a dynamic adjustment apparatus for uplink macro diversity and waiting time according to an embodiment of the present invention.
  • the embodiment of the present invention discloses a dynamic update method for uplink macro diversity and wait time in the third generation mobile communication system.
  • the core content of the embodiment of the present invention is: real-time transmission of each link of the RNC according to the current macro diversity.
  • the uplink macro diversity and wait time dynamic adjustment method includes the following steps:
  • the method further includes the following steps: S102: Discard the FP data frame, and update the current RNC link state to a non-macro diversity waiting timeout.
  • step S101 of the processing flow if the acquired FP data frame is not a macro diversity set and waits for a timeout unconsolidated data frame, the frame is directly delivered to the determination process for subsequent processing; and, if the acquired FP data frame A data frame belonging to a macro diversity set and waiting for a timeout uncombined, but the RNC is discarded in the macro diversity set and waiting for a timeout state at the time of receiving the frame.
  • the uplink macro diversity and latency dynamic adjustment method provided by this embodiment further includes a determining process, where the determining process includes the following steps:
  • the determining process further includes: S203. If the DCH FP data frame of the CFN of all links of the uplink macro diversity is not collected, continue to wait for the FP data frame of the CFN of the other link.
  • the determining process further includes:
  • the uplink macro diversity and wait time dynamic adjustment method calculates an appropriate waiting time in real time according to the jitter and delay of each transmission link. It can ensure that the uplink macro diversity can collect the DCH FP data of the link as much as possible, and can make the waiting time the shortest, speed up the completion of the signaling process, and improve the performance of the system.
  • the method provided by the embodiment of the present invention specifically includes the following steps: wherein the specific implementation process may be further divided into a judgment process and a process flow, and the determination process determines whether the link is already in accordance with a received data frame.
  • the macro diversity waits for the timeout state.
  • the processing flow will process the frame differently according to the judgment of the previous frame.
  • the process proceeds to the judgment process for the next round of judgment.
  • the two processes are mutually recursive. Relationship. 1.
  • Step 1 After receiving the uplink FP data frame of a CFN delivered after the processing, it is determined whether the frame of the CFN is received for the first time, and if so, the first receiving moment is recorded, if If not, calculate the time difference from the first reception time of the record.
  • Step 2 Determine whether the DCH FP data frame of the CFN of all links of the uplink macro diversity has been collected, and if it has been collected, update the time difference of the latest and first received DCH FP data frames to a new macro diversity set and wait. time.
  • Step 3 If not, the FP data of the CFN waiting for other links is not processed.
  • Step 4 If after the arrival of the first uplink DCH FP data frame of a CFN, the current macro diversity set is exceeded and the waiting time has not yet collected the data of all the links, it is determined that the RNC link is in the macro diversity set and waits for the timeout state. After determining whether the link has been waiting for the macro diversity to wait, the received and merged data frames will be sent to the next processing module, and when the next data frame arrives, the processing flow will first wait for the macro diversity to wait for the link to time out. The judgment is handled differently. Second, the processing steps are as follows: Step 1: The user receives the next data frame, and determines whether the frame is a data frame that has not been combined before timeout. If not, the frame is directly delivered to the judgment process for subsequent processing.
  • Step 2 If the frame is a data frame that has not been combined before timeout, it is processed according to whether the RNC link is a macro diversity set and waits for a timeout state. If it is not waiting for a timeout state, the frame is simply discarded and not processed.
  • Step 3 If the frame is a data frame that has not been merged before timeout, and is in the macro diversity set and waits for the timeout state, the CFN and the receiving time of the frame are recorded. Performing a traversal cycle for the FPs of the same DCH of other links, finding the uplink receiving time of the CFN data stored in the uplink buffer, and calculating the difference between them and the receiving time just recorded, and the largest The difference is set to the new macro diversity set and waits for time.
  • Step 4 Discard the frame and update the link state to non-macro diversity waiting timeout.
  • the overall processing flow of the processing flow and the judgment flow is shown, including the following steps: First, the FP data frame is received; the second step is to enter the processing flow, and the last judgment process is needed. The judgment result, wherein the specific implementation process of the processing flow can be seen in FIG. 3; the third step, the data frame after the processing flow enters the judgment process, and the judgment result is used for the processing flow of the next data frame, and the judgment process is The specific implementation process can be seen in Figure 2; In the fourth step, after the process is judged, the data frame can be delivered to the next processing unit.
  • the first uplink FP data frame of a CFN delivered by the processing flow is received during macro diversity, and it is determined whether the frame is received by the CFN for the first time. If yes, the first receiving time is recorded as Fi r st - ReevTiek , if not, record the reception time of this FP data frame as eurrent - ReevTiek and calculate the time difference from the first reception time:
  • RecvTickOflfset Current RecvTick First RecvTick
  • the time difference that is, the maximum value of RecVTickOffset of the same CFN, MaxRecvTickOffset, is the new macro diversity set and wait time New_UlMacroCombWaitTime. It is worth noting that: In order to avoid macro diversity and time changes frequently, in this embodiment,
  • WewJJlMaeroQHnbWaitTime is rounded up by 5ms and then used as the subsequent uplink macro diversity set and waits for time.
  • the third step after the arrival of the first uplink DCH FP data frame, if the CFN uplink DCH FP data frame of all links is not collected, it continues to wait for no processing.
  • the fourth step if the current macro diversity set is exceeded and the waiting time has not yet collected the data of all the links, it is judged to be
  • the RNC macro divides the set and waits for a timeout. It can perform subsequent processing on the merged other link data and set the timeout indication value -
  • Step 4 Finally discard the frame, and update the RNC link status to non-macro diversity waiting timeout at this time, and set the timeout indication value:
  • the embodiment of the present invention further provides an uplink macro diversity and wait time dynamic adjustment apparatus.
  • the method includes: an obtaining module 10, configured to acquire a current link uplink dedicated transport channel DCH FP data frame; and processing module 20 And setting to determine whether the frame belongs to a macro diversity set and waiting for a timeout unconsolidated data frame, and if so, continuing to determine whether the RNC is in a macro diversity set and waiting for a timeout state at the time of receiving the frame, and if so, recording the CFN of the frame and the first At a receiving time, performing an ergonomic cycle on the FP data frames of the same DCH of other links, searching for the uplink receiving time of the FP data of the CFN stored in the uplink buffer, and calculating the difference between the FP data of the CFN and the receiving time of the first frame.
  • the largest difference is updated to the new macro diversity set and waits for time.
  • the processing module 20 is further configured to discard the FP data frame after updating the maximum difference value to the new macro diversity set and wait for the time, and update the current RNC link state to a non-macro diversity waiting timeout.
  • the processing module 20 is further configured to directly deliver the frame to the determining module 30 for subsequent processing; and if the acquired FP data frame belongs to The macro divides and waits for a timeout uncombined frame, but the RNC is not in the macro diversity set and waits for a timeout state at the time the frame is received, and the processing module 20 is also set to discard the frame.
  • the uplink macro-division and latency dynamic adjustment apparatus further includes: a determining module 30, configured to acquire an uplink DCH FP data frame of a CFN delivered by the processing module 20, and determine whether the FP data of the CFN is received for the first time.
  • the determining module 30 is further configured to continue to wait for the FP data frame of the CFN of the other link.
  • the determining module 30 is further configured to mark the RNC link as being in the macro diversity set and Waiting for a timeout state.
  • the technical solution of the embodiments of the present invention can be applied to the field of a wideband code division multiple access system, and solves the problem that the existing macro diversity waiting time is set to a fixed single value, and the integrity and flow of the merged data of the macro diversity. Can you quickly complete the problem of not being both.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行宏分集合并等待时间动态调整方法及装置,在本发明中,RNC根据当前宏分集的各条链路的实时传输情况和时延,不同链路相同CFN的DCH FP数据帧到达RNC的具体时间,动态的增大或者减小宏分集合并等待时间,提高了宏分集合并处理的效率和正确率。

Description

上行宏分集合并等待时间动态调整方法及装置 技术领域 本发明涉及通信技术领域, 具体而言, 尤其涉及宽带码分多址系统 (Wide-band Code Division Multiple Access System, 简称为 WCDMA) 中一种上行宏分集合并等待 时间的动态调整方法及装置, 更为具体地, 涉及宏分集情况下上行数据包合并的等待 时间的设置和调整。 背景技术
WCDMA系统由以下网元组成: 用户终端设备 (User Equipment, 简称为 UE), UMTS地面无线接入网 (UMTS Terrestrial Radio Access Network, 简称为 UTRAN)和 核心网 (Core Network, 简称为 CN), 其中 UTRAN完成无线侧处理相关的功能, CN 则负责与外部网络进行语音和数据的交换。
WCDMA的宏分集功能是与软切换直接相关的。 当 UE处于越区切换状态时, 同 时要和多个参与切换的基站 (Node b)通信,并对来自这些基站的信号进行合并, 以改善 上、 下行信号质量, 保证切换过程中数据不丢失, 使得 UE在移动过程中通讯不受影 响, 这种技术就是宏分集。 通常,宏分集情况下, UE发送的同一包数据分别途径两个或多个基站以上传至无 线网络控制器(Radio Network Control, 简称为 RNC), RNC负责决定 UE的切换, 并 完成数据合并, 之后将信号送往核心网。 在 RNC进行宏分集合并的具体实现中, 上行 FP (Frame Protocol) 数据帧中各种 信息会随同数据块一起收到, 于是在存放数据时判断, 如果当前存在相同连接帧号 (Connection Frame Number, 简称为 CFN) 的 FP帧, 则进行合并处理, 选择循环冗 余校验指示符 (Cyclic Redundancy Check Indicator , 简称为 CRCI) 正确的数据块放 到相应的位置, 如果都不正确, 则选择质量估量值(Quality Estimate QE) 小的数据块 放到相应的位置。 媒体接入控制 (Medium Access Control, 简称为 MAC)层在上行调 度的时候, 按 CFN顺序从小到大取 FP帧的数据内容, 解复用、 解密后放到相应的逻 辑信道。 然而, 由于不同站点 Iub传输路径距离及业务负载状况都不尽相同, 所以宏分集 状态下各链路数据到达 RNC时难免会存在时延差, 而 MAC在进行上行调度时, 对于 某个 CFN点需要收齐所有链路的数据才能进一步处理,这就引入了宏分集合并等待时 间的概念。 如果在第一条链路的数据到来之后, 超过预先设置的宏分集合并等待时间仍未收 齐所有链路的数据, 则判断是宏分集合并等待超时, 此时可对已合并的其他链路数据 进行后续处理。 然而, 在实际应用当中, 一方面为了收齐所有链路的数据, 宏分集合 并等待时间在理论上需要设置足够大, 而另一方面, 为了提高数据处理性能, 宏分集 合并等待时间又需要设置的比较小, 因此, 为了解决该问题, 目前亟需一种用于上行 宏分集合并等待时间的动态调整方法, 以使得在系统运行过程中, 能够自动选择一个 合适的宏分集合并等待时间以有效地提高系统的性能。 发明内容 鉴于此, 本发明实施例的目的在于提供一种上行宏分集合并等待时间的动态调整 方法及装置。 为了实现本发明实施例的目的, 其采用如下技术方案实现: 一种上行宏分集合并等待时间动态调整方法, 包括如下步骤: 获取当前链路上行 DCH (Dedicated Channel, 专用传输信道) FP数据帧; 判断该帧是否属宏分集合并等待超时未合并的数据帧, 若是, 则继续判断在接收 该帧的时刻 RNC是否处于宏分集合并等待超时状态, 若是, 则记录该帧的 CFN以及 第一接收时刻, 并对其他链路相同 DCH的 FP数据帧进行遍历循环, 查找其上行缓存 里保存的该 CFN的 FP数据的上行接收时刻并计算其与第一接收时刻的差值, 将最大 的差值更新为新的宏分集合并等待时间。 优选地,在将最大的差值更新为新的宏分集合并等待时间之后,还包括如下步骤: 丢弃该 FP数据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 优选地, 在所述处理流程中, 若获取的 FP数据帧不属宏分集合并等待超时未合 并的数据帧, 则直接将该帧投递到判断流程进行后续处理; 以及, 若获取的 FP数据帧属于宏分集合并等待超时未合并的帧, 但在接收该帧的时刻
RNC不处于宏分集合并等待超时状态, 则丢弃该帧。 优选地, 所述方法还包括判断流程, 所述判断流程包括如下步骤: 获取经处理流程投递来的某 CFN的上行 DCH FP数据帧,判断是否是首次收到该 CFN的 FP数据帧, 如果是, 则记录下该首次接收时刻, 否则计算该当前接收时刻与 首次接收时刻的时间差; 判断是否已经收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧,如果已收齐, 则将最晚和首次收到 DCH FP数据帧的时间差更新为新的宏分集合并等待时间。 优选地, 所述判断流程还包括: 如果没有收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧,则继续等待其他 链路的该 CFN的 FP数据帧。 优选地, 所述判断流程还包括: 如果在某 CFN的首个上行 DCH FP数据帧到来之后,超过当前宏分集合并等待时 间仍未收齐所有链路的数据, 则标记 RNC链路已处于宏分集合并等待超时状态。 一种上行宏分集合并等待时间动态调整装置, 包括: 获取模块, 设置为获取当前链路上行专用传输信道 DCH FP数据帧; 处理模块, 设置为判断该帧是否属宏分集合并等待超时未合并的数据帧, 若是, 则继续判断在接收该帧的时刻 RNC是否处于宏分集合并等待超时状态,若是,则记录 该帧的 CFN以及第一接收时刻, 并对其他链路相同 DCH的 FP数据帧进行遍历循环, 查找其上行缓存里保存的该 CFN的 FP数据的上行接收时刻并计算其与第一接收时刻 的差值, 将最大的差值更新为新的宏分集合并等待时间。 优选地,处理模块还设置为在将最大的差值更新为新的宏分集合并等待时间之后, 丢弃该 FP数据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 优选地, 若获取的 FP数据帧不属宏分集合并等待超时未合并的数据帧, 处理模 块还设置为直接将该帧投递到判断模块进行后续处理; 以及, 若获取的 FP数据帧属于宏分集合并等待超时未合并的数据帧, 但在接收该帧的 时刻 RNC不处于宏分集合并等待超时状态, 处理模块还设置为丢弃该帧。 优选地, 所述上行宏分集合并等待时间动态调整装置还包括: 判断模块, 设置为获取处理模块投递来的某 CFN的上行 DCH FP数据帧, 判断是 否是首次收到该 CFN的 FP数据帧, 如果是, 则记录下该首次接收时刻, 否则计算该 当前接收时刻与首次接收时刻的时间差; 以及进一步设置为判断是否已经收齐上行宏 分集所有链路的该 CFN的 DCH FP数据帧,如果已收齐,则将最晚和首次收到 DCH FP 数据帧的时间差更新为新的宏分集合并等待时间。 优选地, 如果没有收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 判断模 块还设置为继续等待其他链路的该 CFN的 FP数据帧。 优选地, 如果在某 CFN的首个上行 DCH FP数据帧到来之后, 超过当前宏分集合 并等待时间仍未收齐所有链路的数据,判断模块还设置为标记 RNC链路已处于宏分集 合并等待超时状态。 通过上述本发明实施例的技术方案可以看出, 采用本发明实施例得到的上行宏分 集合并等待时间,可以根据各条传输链路的抖动和时延情况,进行自适应的动态调整, 解决了现有的宏分集等待时间设定为固定的单一值的情况、 宏分集所合并数据的完整 性与流程能否快速完成不能两全的问题。 附图说明 图 1是本发明实施例中在进行上行宏分集合并等待时间的动态调整过程中, 处理 流程和判断流程的关系流程示意图; 图 2是本发明实施例中判断流程的具体流程示意图; 图 3是本发明实施例中处理流程的具体流程示意图; 图 4是本发明实施例中上行宏分集合并等待时间的动态调整装置的结构示意图。 本发明目的的实现、 功能特点及优异效果, 下面将结合具体实施例以及附图做进 一步的说明。 具体实施方式 下面结合附图和具体实施例对本发明所述技术方案作进一步的详细描述, 以使本 领域的技术人员可以更好的理解本发明并能予以实施, 但所举实施例不作为对本发明 的限定。 本发明实施例公开了第三代移动通信系统中, 上行宏分集合并等待时间的一种动 态更新方法, 本发明实施例的核心内容为: RNC根据当前宏分集的各条链路的实时传 输情况和时延, 不同链路相同 CFN的 DCH FP数据帧到达 RNC的具体时间, 动态的 增大或者减小宏分集合并等待时间, 提高了宏分集合并处理的效率和正确率。 优选的, 本发明实施例提供的一种上行宏分集合并等待时间动态调整方法, 包括 如下步骤:
5100、 获取当前链路上行专用传输信道 DCH FP数据帧;
5101、 判断该帧是否属宏分集合并等待超时未合并的数据帧, 若是, 则继续判断 在接收该帧的时刻 RNC是否处于宏分集合并等待超时状态,若是,则记录该帧的 CFN 以及第一接收时刻, 并对其他链路相同 DCH的 FP数据帧进行遍历循环, 查找其上行 缓存里保存的该 CFN的 FP数据的上行接收时刻并计算其与第一此帧接收时刻的差值, 将最大的差值更新为新的宏分集合并等待时间。 本发明实施例中, 在将最大的差值更新为新的宏分集合并等待时间之后, 还包括 如下步骤: S102、 丢弃该 FP数据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 在所述处理流程的步骤 S101中, 若获取的 FP数据帧不属宏分集合并等待超时未 合并的数据帧, 则直接将该帧投递到判断流程进行后续处理; 以及, 若获取的 FP数据帧属于宏分集合并等待超时未合并的数据帧, 但在接收该帧的 时刻 RNC不处于宏分集合并等待超时状态, 则丢弃该帧。 本实施例提供的所述上行宏分集合并等待时间动态调整方法还包括判断流程, 所 述判断流程包括如下步骤:
S200、获取经处理流程投递来的某 CFN的上行 DCH FP数据帧,判断是否是首次 收到该 CFN的 FP数据帧, 如果是, 则记录下该首次接收时刻, 否则计算该当前接收 时刻与首次接收时刻的时间差; S20K判断是否已经收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 如果 已收齐, 则将最晚和首次收到 DCH FP数据帧的时间差更新为新的宏分集合并等待时 间。 优选地, 所述判断流程还包括: 5203、如果没有收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 则继续等 待其他链路的该 CFN的 FP数据帧。 优选地, 所述判断流程还包括:
5204、如果在某 CFN的首个上行 DCH FP数据帧到来之后, 超过当前宏分集合并 等待时间仍未收齐所有链路的数据, 则标记 RNC 链路已处于宏分集合并等待超时状 态。 本实施例提供的所述上行宏分集合并等待时间动态调整方法, 根据各条传输链路 的抖动和时延情况, 实时计算合适的等待时间。 既可以保证上行宏分集能尽量收齐有 链路 DCH FP数据进行处理, 又能使得等待的时间最短, 加快信令流程的完成, 提高 系统的性能。 优选的, 本发明实施例的提供的该方法具体包括以下步骤: 其中, 其具体实现过程又可以分为判断流程和处理流程两部分, 判断流程根据收 到的某数据帧判断链路是否已经处于宏分集等待超时状态, 而下一帧到来时, 处理流 程会根据前一帧的判断对帧进行不同的处理, 完成后继续进入到判断过程进行下一轮 的判断, 两个流程是呈相互递归的关系。 一、 判断流程的步骤如下: 步骤一、 收到处理过程后投递来的某 CFN的上行 FP数据帧, 判断是否是首次收 到该 CFN的帧, 如果是, 则记录下该首次接收时刻, 如果不是, 则计算其与记录的首 次接收时刻的时间差。 步骤二、判断是否已经收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 如 果已收齐, 则把最晚和首次收到的 DCH FP数据帧时间差更新为新的宏分集合并等待 时间。 步骤三、 如果没有收齐, 则等待其他链路该 CFN的 FP数据不处理。 步骤四、如果在某 CFN的首个上行 DCH FP数据帧到来之后, 超过当前宏分集合 并等待时间仍未收齐所有链路的数据,则判断 RNC链路已处于宏分集合并等待超时状 态。 在判断链路是否已经宏分集等待超时后, 已经收到和合并的数据帧都将发送给下 一处理模块, 而下一数据帧到来时, 处理流程会先根据链路是否已经宏分集等待超时 的判断进行不同的处理。 二、 处理过程的步骤如下: 步骤一、 用户收到下一个数据帧, 判断该帧是不是之前超时未合并的数据帧, 如 果不是, 则直接把该帧投递到判断过程进行后续处理。 步骤二、如果该帧是之前超时未合并的数据帧,则根据 RNC链路是否是宏分集合 并等待超时状态进行处理, 如果不是等待超时状态, 则简单把该帧丢弃不处理。 步骤三、 如果该帧是之前超时未合并的数据帧, 且此时处于宏分集合并等待超时 状态, 则记录该帧的 CFN和接收时刻。对其他链路的相同 DCH的 FP进行遍历循环, 查找到其上行缓存里面保存的该 CFN数据的上行接收时刻,并将其与刚才记录的接收 时刻计算其之间的差值, 并将最大的差值设为新的宏分集合并等待时间。 步骤四、 丢弃该帧, 并更新此时链路状态为非宏分集等待超时。 参考图 1, 其示出了处理流程和判断流程的整体处理流程, 包括如下步骤: 第一步, 收到 FP数据帧; 第二步, 进入处理流程, 此时需要用到上一次判断流程的判断结果, 其中, 处理 流程的具体实现流程可参见附图 3所示; 第三步, 处理流程后的数据帧进入到判断流程, 判断结果将用于下一数据帧的处 理流程, 判断流程的具体实现流程可参见附图 2所示; 第四步, 判断流程后数据帧可投递到下一处理单元。
第一步, 在宏分集时收到处理流程投递来的某 CFN的首个上行 FP数据帧, 判断 是否是首次收到该 CFN的帧, 如果是, 则记录下该首次接收时刻为 First-ReevTiek, 如果不是, 将此 FP数据帧的接收时刻记为 eurrent-ReevTiek, 并计算和首次接收时刻 的时间差:
RecvTickOflfset = Current RecvTick First RecvTick 第二步, 在 MAC上行调度处理时, 对于某一 CFN, 判断是否已经收齐上行宏分 集所有链路的该 CFN的 FP数据帧, 如果已经收齐, 则更新最晚和最早收到数据帧的 时间差, 也就是相同 CFN的 RecvTickOffset的最大值 MaxRecvTickOffset , 为新的宏 分集合并等待时间 New_UlMacroCombWaitTime 值得注意的是: 为了避免宏分集合并时间频繁变化, 在本实施例中, 需要将
WewJJlMaeroQHnbWaitTime按 5ms 向上取整后作为后续的上行宏分集合并等待时 间。 第三步, 在首个上行 DCH FP数据帧到来之后, 如果未收齐所有链路的该 CFN上 行 DCH FP数据帧, 则继续等待不处理。 第四步, 如果超过当前宏分集合并等待时间仍未收齐所有链路的数据, 则判断是
RNC宏分集合并等待超时, 可对已合并的其他链路数据进行后续处理, 并且设置超时 指示值-
IsUlMacCombTimerOut = 1。 参见图 3, 其描绘了处理流程的具体流程, 包括如下: 第一步, 获收到下一个数据帧, 判断该帧是不是之前超时未合并的数据帧, 如果 不是, 则直接把该帧投递到判断流程进行后续处理。 第二步: 如果该帧是之前超时未合并的数据帧,则根据 RNC链路是否是宏分集合 并等待超时状态进行处理, 如果不是宏分集合并等待超时状态 (IsUlMacCombTimerOut = 0), 则简单把该帧丢弃不处理。 第三步: 如果该帧是之前超时未合并的数据帧, 且此时处于宏分集合并等待超时 状态 (IsUlMaeCombTimerGut = 1), 则记录该帧的 CFN和记录接收时刻为 RecvTick, 对此时其他链路的相同 DCH的 FP进行循环, 查找到其上行缓存里面保存的该 CFN 数据的上行接收时刻 ArriveTick , 与刚才记录的接收时刻计算差值 TickOffset = ecvTick - ArriveTick ? 其中最大的差值 ax TickOffset gp更新为新的宏 分集合并等待时间, 记为 New_UlMaeroC:GmbWaitTime。 注意, 在本实施例中, 这里同样地需要进行 5ms取整的操作。 第四步: 最后丢弃该帧, 并更新此时 RNC链路状态为非宏分集等待超时, 设置超 时指示值:
IsUlMacCombTimerOut = 0。 本发明实施例还提供了一种上行宏分集合并等待时间动态调整装置, 参见图 4所 示, 其包括: 获取模块 10, 设置为获取当前链路上行专用传输信道 DCH FP数据帧; 处理模块 20,设置为判断该帧是否属宏分集合并等待超时未合并的数据帧,若是, 则继续判断在接收该帧的时刻 RNC是否处于宏分集合并等待超时状态,若是,则记录 该帧的 CFN以及第一接收时刻, 并对其他链路相同 DCH的 FP数据帧进行遍历循环, 查找其上行缓存里保存的该 CFN的 FP数据的上行接收时刻并计算其与第一此帧接收 时刻的差值, 将最大的差值更新为新的宏分集合并等待时间。 具体地,处理模块 20还设置为在将最大的差值更新为新的宏分集合并等待时间之 后, 丢弃该 FP数据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 具体地, 若获取的 FP数据帧不属宏分集合并等待超时未合并的数据帧, 处理模 块 20还设置为直接将该帧投递到判断模块 30进行后续处理; 以及, 若获取的 FP数据帧属于宏分集合并等待超时未合并的帧, 但在接收该帧的时刻 RNC不处于宏分集合并等待超时状态, 处理模块 20还设置为丢弃该帧。 具体地, 所述上行宏分集合并等待时间动态调整装置还包括: 判断模块 30, 设置为获取处理模块 20投递来的某 CFN的上行 DCH FP数据帧, 判断是否是首次收到该 CFN的 FP数据帧, 如果是, 则记录下该首次接收时刻, 否则 计算该当前接收时刻与首次接收时刻的时间差; 以及进一步设置为判断是否已经收齐 上行宏分集所有链路的该 CFN的 DCH FP数据帧, 如果已收齐, 则将最晚和首次收到 DCH FP数据帧的时间差更新为新的宏分集合并等待时间。 具体地, 如果没有收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 判断模 块 30还设置为继续等待其他链路的该 CFN的 FP数据帧。 具体地, 如果在某 CFN的首个上行 DCH FP数据帧到来之后, 超过当前宏分集合 并等待时间仍未收齐所有链路的数据, 判断模块 30还设置为标记 RNC链路已处于宏 分集合并等待超时状态。 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用 本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他 相关的技术领域, 均同理包括在本发明的专利保护范围内。 工业实用性 本发明实施例的技术方案可以应用于宽带码分多址系统领域, 解决了现有的宏分 集等待时间设定为固定的单一值的情况、 宏分集所合并数据的完整性与流程能否快速 完成不能两全的问题。

Claims

权 利 要 求 书 、 一种上行宏分集合并等待时间动态调整方法, 包括如下步骤:
获取当前链路上行专用传输信道 DCH FP数据帧;
判断该帧是否属宏分集合并等待超时未合并的数据帧, 若是, 则继续判断 在接收该帧的时刻无线网络控制器 RNC 是否处于宏分集合并等待超时状态, 若是, 则记录该帧的 CFN以及第一接收时刻, 并对其他链路相同 DCH的 FP 数据帧进行遍历循环, 查找其上行缓存里保存的该 CFN的 FP数据的上行接收 时刻, 并计算其与第一接收时刻的差值, 将最大的差值更新为新的宏分集合并 等待时间。 、 如权利要求 1所述的上行宏分集合并等待时间动态调整方法, 其中, 还包括如 下步骤:
丢弃该 FP数据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 、 如权利要求 1所述的上行宏分集合并等待时间动态调整方法, 其中, 在所述处 理流程中, 若获取的 FP数据帧不属宏分集合并等待超时未合并的数据帧, 则 直接将该帧投递到判断流程进行后续处理; 以及,
若获取的 FP数据帧属于宏分集合并等待超时未合并的帧, 但在接收该帧 的时刻 RNC不处于宏分集合并等待超时状态, 则丢弃该帧。 、 如权利要求 1-3任一所述的上行宏分集合并等待时间动态调整方法, 其中, 所 述方法还包括判断流程, 所述判断流程包括如下步骤:
获取经处理流程投递来的某 CFN的上行 DCH FP数据帧,判断是否是首次 收到该 CFN的 FP数据帧, 如果是, 则记录下该首次接收时刻, 否则计算该当 前接收时刻与首次接收时刻的时间差;
判断是否已经收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧,如果 已收齐, 则将最晚和首次收到 DCH FP数据帧的时间差更新为新的宏分集合并 等待时间。 、 如权利要求 4所述的上行宏分集合并等待时间动态调整方法, 其中, 所述判断 流程还包括: 如果没有收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧,则继续等 待其他链路的该 CFN的 FP数据帧。 、 如权利要求 4或 5所述的上行宏分集合并等待时间动态调整方法, 其中, 所述 判断流程还包括:
如果在某 CFN的首个上行 DCH FP数据帧到来之后,超过当前宏分集合并 等待时间仍未收齐所有链路的数据, 则标记 RNC链路已处于宏分集合并等待 超时状态。 、 一种上行宏分集合并等待时间动态调整装置, 包括:
获取模块, 设置为获取当前链路上行专用传输信道 DCH FP数据帧; 处理模块, 设置为判断该帧是否属宏分集合并等待超时未合并的数据帧, 若是, 则继续判断在接收该帧的时刻 RNC是否处于宏分集合并等待超时状态, 若是, 则记录该帧的 CFN以及第一接收时刻, 并对其他链路相同 DCH的 FP 数据帧进行遍历循环, 查找其上行缓存里保存的该 CFN的 FP数据的上行接收 时刻并计算其与第一接收时刻的差值, 将最大的差值更新为新的宏分集合并等 待时间。 、 如权利要求 7所述的上行宏分集合并等待时间动态调整装置, 其中, 处理模块 还设置为在将最大的差值更新为新的宏分集合并等待时间之后, 丢弃该 FP数 据帧, 并更新当前 RNC链路状态为非宏分集等待超时。 、 如权利要求 7所述的上行宏分集合并等待时间动态调整装置, 其中, 若获取的 FP数据帧不属宏分集合并等待超时未合并的数据帧,处理模块还设置为直接将 该帧投递到判断模块进行后续处理; 以及,
若获取的 FP数据帧属于宏分集合并等待超时未合并的数据帧, 但在接收 该帧的时刻 RNC 不处于宏分集合并等待超时状态, 处理模块还设置为丢弃该 帧。 0、 如权利要求 7-9任一所述的上行宏分集合并等待时间动态调整装置, 其中, 还 包括:
判断模块, 设置为获取处理模块投递来的某 CFN的上行 DCH FP数据帧, 判断是否是首次收到该 CFN的 FP数据帧,如果是,则记录下该首次接收时刻, 否则计算该当前接收时刻与首次接收时刻的时间差; 以及进一步设置为判断是 否已经收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧, 如果已收齐, 则 将最晚和首次收到 DCH FP数据帧的时间差更新为新的宏分集合并等待时间。 、 如权利要求 7所述的上行宏分集合并等待时间动态调整装置, 其中, 如果没有 收齐上行宏分集所有链路的该 CFN的 DCH FP数据帧,判断模块还设置为继续 等待其他链路的该 CFN的 FP数据帧。 、 如权利要求 7所述的上行宏分集合并等待时间动态调整装置, 其中, 如果在某 CFN的首个上行 DCH FP数据帧到来之后, 超过当前宏分集合并等待时间仍未 收齐所有链路的数据, 判断模块还设置为标记 RNC 链路已处于宏分集合并等 待超时状态。
PCT/CN2013/083777 2012-10-16 2013-09-18 上行宏分集合并等待时间动态调整方法及装置 WO2014059845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13846471.4A EP2911344A4 (en) 2012-10-16 2013-09-18 METHOD AND DEVICE FOR DYNAMICALLY ADJUSTING THE UPLINK MACRODIVERSITY COMBINATION WAIT TIME
US14/436,176 US9537782B2 (en) 2012-10-16 2013-09-18 Method and device for dynamically adjusting waiting time of uplink macro diversity combining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210393784.XA CN103731885B (zh) 2012-10-16 2012-10-16 上行宏分集合并等待时间动态调整方法及装置
CN201210393784.X 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014059845A1 true WO2014059845A1 (zh) 2014-04-24

Family

ID=50455774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083777 WO2014059845A1 (zh) 2012-10-16 2013-09-18 上行宏分集合并等待时间动态调整方法及装置

Country Status (4)

Country Link
US (1) US9537782B2 (zh)
EP (1) EP2911344A4 (zh)
CN (1) CN103731885B (zh)
WO (1) WO2014059845A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027674A1 (zh) 2016-08-10 2018-02-15 富士通株式会社 传输状态报告装置、方法以及通信系统
CN114666912B (zh) * 2022-05-25 2022-08-05 广东海洋大学 请求上行资源的方法、装置、计算机设备和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842050A (zh) * 2005-03-28 2006-10-04 华为技术有限公司 一种上行宏分集合并的方法
WO2007127543A2 (en) * 2006-04-27 2007-11-08 Motorola, Inc. High speed downlink packet access communication in a cellular communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002258052A1 (en) 2002-05-08 2003-11-11 Nokia Corporation Method and network node for selecting a combining point
CN100337490C (zh) * 2003-10-16 2007-09-12 华为技术有限公司 移动通信系统宏分集合并方法
SE0303463D0 (sv) 2003-12-22 2003-12-22 Ericsson Telefon Ab L M Arrangements and method for handling macro diversity in a Universal Mobile Telecommunications System
ATE430412T1 (de) * 2003-12-22 2009-05-15 Ericsson Telefon Ab L M Anordnungen und verfahren zum handhaben von makro-diversity in einem utran-transport-netzwerk
SE0303462D0 (sv) * 2003-12-22 2003-12-22 Ericsson Telefon Ab L M Arrangements and method for handling macro diversity in UTRAN
US7724656B2 (en) * 2005-01-14 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Uplink congestion detection and control between nodes in a radio access network
CN101394209B (zh) 2007-09-21 2013-02-27 华为技术有限公司 宏分集合并实现方法、系统和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842050A (zh) * 2005-03-28 2006-10-04 华为技术有限公司 一种上行宏分集合并的方法
WO2007127543A2 (en) * 2006-04-27 2007-11-08 Motorola, Inc. High speed downlink packet access communication in a cellular communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP.: "Delay Budget within the Access Stratum", TR 25.932 V1.1.0., 31 August 2000 (2000-08-31), pages 9, XP050369467 *
ITALTEL ET AL.: "Report of the ad-hoc Meeting ''Delay Budget within the Access Stratum''.", TSG-RAN WORKING GROUP 3 MEETING TSGR3#7(99)D19, 24 September 1999 (1999-09-24), pages 6, XP050145200 *
See also references of EP2911344A4 *

Also Published As

Publication number Publication date
CN103731885B (zh) 2016-12-07
US9537782B2 (en) 2017-01-03
CN103731885A (zh) 2014-04-16
US20150281103A1 (en) 2015-10-01
EP2911344A1 (en) 2015-08-26
EP2911344A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US9402264B2 (en) Methods to transport internet traffic over multiple wireless networks simultaneously
EP2279577B1 (en) Tti bundling indication to a non-serving base station
DK2667661T3 (en) FACILITATION OF A TRANSFER IN AN LTE SYSTEM.
TW202037198A (zh) 協定資料單元會話建立程序期間資源不足處理方法及其使用者設備
JP5805221B2 (ja) 無線電気通信システムにおけるコンピューティング・クラウド
US20130178213A1 (en) Handover method, dedicated network user equipment, access network device, and system
JP2008053870A5 (zh)
TW201933847A (zh) 傳送和接收資料單元
WO2009097812A1 (zh) 无线通信系统、空中接口同步调整方法、基站及其控制装置
WO2010048835A1 (zh) 一种资源配置的方法、装置和系统
US20190223256A1 (en) Data transmission method, network device, and terminal device
CN110149166A (zh) 传输控制方法、装置和系统
US7151934B2 (en) Radio data communications method, server, and radio network controller
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
US9775076B2 (en) Method and related apparatus for resetting high speed medium access control entity
WO2014059845A1 (zh) 上行宏分集合并等待时间动态调整方法及装置
WO2016189978A1 (ja) ユーザ装置及び基地局
CN1949918A (zh) 一种两层节点网络架构下的双播切换方法和设备
WO2012155557A1 (zh) 一种异构网络中业务流的同步传输方法及系统
WO2013078847A1 (zh) 传输通道表修改方法及装置
WO2020150997A1 (en) Apparatus and methods to support dual-protocol for mobility enhancement
KR101637788B1 (ko) 공통 e-dch 전송들에 대한 mac-is 리셋 모호성을 감소시키기 위한 방법 및 시스템
WO2018171679A1 (zh) 传输rrc消息的方法、装置、终端设备和接入网设备
WO2022067796A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021027900A1 (zh) 一种通信方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14436176

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013846471

Country of ref document: EP