WO2014059581A1 - 配置信道状态信息参考信号的方法、基站及接入点 - Google Patents

配置信道状态信息参考信号的方法、基站及接入点 Download PDF

Info

Publication number
WO2014059581A1
WO2014059581A1 PCT/CN2012/082973 CN2012082973W WO2014059581A1 WO 2014059581 A1 WO2014059581 A1 WO 2014059581A1 CN 2012082973 W CN2012082973 W CN 2012082973W WO 2014059581 A1 WO2014059581 A1 WO 2014059581A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
access point
pilot pattern
channel state
state information
Prior art date
Application number
PCT/CN2012/082973
Other languages
English (en)
French (fr)
Inventor
夏亮
任晓涛
孙静原
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002809.7A priority Critical patent/CN103931226B/zh
Priority to EP12886555.7A priority patent/EP2900008B1/en
Priority to PCT/CN2012/082973 priority patent/WO2014059581A1/zh
Publication of WO2014059581A1 publication Critical patent/WO2014059581A1/zh
Priority to US14/687,657 priority patent/US9634751B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, a base station, and an access point for configuring a channel state information reference signal. Background technique
  • the base station in order to enable the user equipment (User Equipment, hereinafter referred to as UE) to measure the downlink channel state information (CSI), the base station needs to send a certain reference signal to the UE in the coverage area. Measurement of the downlink channel.
  • the base station in the 3rd Generation Partnership Project (hereinafter referred to as 3GPP) Long Term Evolution (LTE) Release 10 (Release 10) protocol, the base station needs to transmit a channel state information reference signal (Channel The State Information Reference signal (CSI-RS) is used to measure the downlink channel of the UE in the coverage area.
  • the base station needs to notify the UE of the configuration information of the CSI-RS, so that the UE can refer to the reference indicated by the configuration information.
  • the signal measures downlink channel state information.
  • the configuration information of the CSI-RS includes a pilot pattern, where the pilot pattern indicates a resource element occupied by the CSI-RS in a Resource Block Pair (hereinafter referred to as RB pair) (Resource Element) , hereinafter referred to as the location of RE).
  • RB pair Resource Block Pair
  • RE Resource Element
  • the configuration information of the CSI-RS further includes a period and a subframe offset, where the period and the subframe offset indicate the location of the subframe in which the CSI-RS is transmitted.
  • Coordinated Multiple Point transmission and reception can be used in the communication system.
  • Collaborative multi-point transceiver technology means: Multiple access points simultaneously provide one or more users For data services.
  • the base station needs to use the channel state information between the terminal and the candidate access point and the set as the input amount or the reference quantity to complete the processes of resource allocation, data transmission, and the like.
  • the feedback method of the downlink channel state information is: the terminal selects an optimal codeword from the defined codebook, and feeds back the sequence number of the codeword in the codebook (Precoding Matrix Indicator, below Referred to as PMI), the codeword can reflect downlink channel state information.
  • PMI Precoding Matrix Indicator
  • the terminal For a multipoint transmission system, the terminal needs to feed back channel state information between multiple service points.
  • JP joint transmission
  • the terminal needs to feed back the combined multi-cell channel state information.
  • the 3GPP LTE Release 11 protocol the CoMP feature is added.
  • the base station can only configure one CSI-RS for the UE.
  • the base station can configure up to three CSI-RSs for the UE, so that the UE can measure the CSI of multiple cells, but the UE cannot The channel adjustment information between the feedback cells is directly measured. Therefore, for the base station and UE of LTE Release 11, a new scheme needs to be designed to implement measurement and feedback of joint multi-cell channel state information. Summary of the invention
  • the embodiments of the present invention provide a method for configuring a channel state information reference signal, a base station, and an access point, so as to implement measurement of joint downlink channel state information in an application scenario in which multiple access points serve one UE.
  • an embodiment of the present invention provides a method for configuring a channel state information reference signal, including:
  • the plurality of access points that are cooperatively transmitted are divided into a first access point set and a second access point set, where the first access point set includes M access points, and the second access point set includes N connections Incoming point; configuring a first channel state information reference signal CSI-RS pilot pattern for the user equipment UE, second
  • the first CSI-RS pilot pattern is an X port CSI-RS pilot pattern
  • the X port CSI-RS pilot pattern includes M
  • the second CSI-RS pilot pattern is a Y port CSI-RS pilot pattern,
  • the third CSI-RS pilot pattern is a 2-port CSI-RS pilot pattern, The 2-port CSI-RS pilot pattern, The 2-port CSI-RS pilot pattern
  • the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern configuring the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern to the first access point set and the second connection, respectively And a set of antennas consisting of the first antenna of the first set of access points and the first antenna of the second set of access points to enable respective accesses of the first set of access points And transmitting, according to the first CSI-RS pilot pattern, a first non-zero power CSI-RS, where each access point of the second access point set sends a second non according to the second CSI-RS pilot pattern a zero-power CSI-RS, the antenna set transmitting a third non-zero-power CSI-RS according to the third CSI-RS pilot pattern;
  • the UE Transmitting non-zero power CSI-RS configuration information to the UE, the configuration information including the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot a pattern, the UE is configured to measure and report the first downlink channel state information according to the first CSI-RS pilot pattern, and measure and report the second downlink channel state information according to the second CSI-RS pilot pattern, And reporting the third downlink channel state information according to the third CSI-RS pilot pattern;
  • the generating, according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the UE, a joint downlink channel state Information including:
  • the first precoding matrix, the second precoding matrix, and the third precoding matrix And generating, by the first rank indication information and the second rank indication information, a joint precoding matrix of the joint downlink channel state information, specifically:
  • PiC,i: ⁇ ; represents the first column to the RIj of the first precoding matrix P1 .
  • the int column, P 2 (:, H ;) represents the first column to the RIj of the second precoding matrix.
  • the mt column, p 31 , / 3 ⁇ 4 respectively represent two elements of the third precoding matrix.
  • the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern are respectively configured to a set of antennas formed by the first access point set, the second access point set, and the first antenna of the first access point set and the first antenna of the second access point set, specifically :
  • the CSI-RS pilot pattern of port 2 is configured to the first antenna of the first set of access points and the second set of the second set of access points Antenna, so that the mth access point of the first set of access points sends the first non-zero power CSI-RS on the CSI-RS pilot pattern with the port number Jm, the second The nth access point of the set of access points sends the second non-zero power CSI-RS on the CSI-RS pilot pattern with the port number Gn, the first one of the first access point set
  • the antenna and the first antenna of the second set of access points transmit a third non-zero power CSI-RS on the 2-port CSI-RS pilot pattern.
  • the configuring, by the UE, a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a three After the CSI-RS pilot pattern further includes:
  • the configuring, by the UE, a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a After the three CSI-RS pilot patterns the method further includes:
  • the nth access point transmits a zero-power CSI-RS on the CSI-RS pilot pattern with the number of antenna ports Jx, where y ⁇ ⁇ .
  • the correspondence between the port of the first CSI-RS pilot pattern and the element in the first precoding matrix Corresponding relationship between a port of the second CSI-RS pilot pattern and an element in the second precoding matrix, a port of the third CSI-RS pilot pattern, and an element in the third precoding matrix At least one of the correspondences is notified to the UE.
  • a period of the second CSI-RS pilot pattern is greater than a period of the first CSI-RS pilot pattern and/or a period of a third CSI-RS pilot pattern.
  • the access point is a physical access point or a virtual access point
  • the antenna is a physical antenna or a virtual antenna
  • the antenna port is a physical antenna port or a virtual antenna port.
  • an embodiment of the present invention provides a method for configuring a channel state information reference signal, including:
  • the access point acquires a CSI-RS pilot pattern that is configured by the base station to the access point, where the CSI-RS pilot pattern is a first CSI-RS pilot pattern configured by the base station for the user equipment UE, One of the two CSI-RS pilot patterns or the third CSI-RS pilot pattern, the first CSI-RS pilot pattern is an X port CSI-RS pilot pattern, and the X port CSI-RS pilot is used.
  • the second CSI-RS pilot pattern is a Y port CSI-RS a pilot pattern
  • the Y port CSI-RS pilot pattern includes N CSI-RS pilot patterns with port numbers Gn
  • Gn is an antenna of the nth access point in the second access point set
  • the third CSI-RS pilot pattern is a 2-port CSI- The RS pilot pattern, the 2-port CSI-RS pilot pattern includes a CSI-RS pilot pattern with a port number of 2;
  • the access point transmits a non-zero power CSI-RS according to the CSI-RS pilot pattern.
  • an embodiment of the present invention provides a base station, including:
  • a dividing unit configured to divide the multiple access points that are cooperatively transmitted into the first access point set and the second access point set, where the first access point set includes M access points, and the second access point The set includes N access points;
  • a first configuration unit connected to the dividing unit, configured to configure, for the user equipment UE, a first channel state information reference signal CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern
  • the first CSI-RS pilot pattern is an X port CSI-RS pilot pattern
  • the X port CSI-RS pilot pattern includes M CSI-RS pilot patterns with Jm numbers respectively, Jm
  • the number of antenna ports of the mth access point in the first set of access points, m l, ..., M
  • X is the antenna port of the M access points in the first set of access points a sum of the numbers
  • the second CSI-RS pilot pattern is a Y port CSI-RS pilot pattern
  • a second configuration unit connected to the first configuration unit, configured to separately use the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern Configuring an antenna composed of the first access point set, the second access point set, and a first antenna of the first access point set and a first antenna of the second access point set Collecting, so that each access point of the first set of access points sends a first non-zero power CSI-RS according to the first CSI-RS pilot pattern, and each access of the first access point set Pointing, according to the second CSI-RS pilot pattern, a second non-zero power CSI-RS, where the antenna set sends a third non-zero power CSI-RS according to the third CSI-RS pilot pattern;
  • a configuration information sending unit configured to send non-zero power CSI-RS configuration information to the UE, where
  • the configuration information includes the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern, so that the UE is according to the first CSI-RS
  • the pilot pattern measures and reports the first downlink channel state information, and measures and reports the second downlink channel state information according to the second CSI-RS pilot pattern, and reports the third CSI-RS pilot pattern according to the third CSI-RS pilot pattern.
  • a processing unit configured to generate joint downlink channel state information according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the UE.
  • the processing unit includes:
  • a first processing subunit configured to acquire the first downlink separately according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the UE a first precoding matrix of channel state information, a second precoding matrix of the second downlink channel state information, and a third precoding matrix of the third downlink channel state information;
  • a second processing subunit configured to determine first rank indication information of the first downlink channel state information and second rank indication information of the second downlink channel state information
  • a third processing subunit which is respectively connected to the first processing subunit and the second processing subunit, and configured to be used according to the first precoding matrix, the second precoding matrix, and the third precoding
  • the matrix, the first rank indication information, and the second rank indication information generate a joint precoding matrix of the joint downlink channel state information.
  • the third processing sub-unit is specifically configured to use the first rank indication information and the second rank indication information
  • the minimum value is used as the joint rank indication information of the joint downlink channel state information
  • the second configuration unit is specifically configured to allocate a CSI-RS pilot pattern with a port number of Jm to an mth access point of the first access point set, Will end Configuring a CSI-RS pilot pattern with a port number of Gn to the nth access point of the second set of access points, and configuring a CSI-RS pilot pattern of port 2 to the first set of access points a first antenna and a second antenna of the second set of access points, such that the mth access point of the first set of access points is in the CSI-RS pilot pattern of the port number Jm Transmitting the first non-zero power CSI-RS, where the nth access point of the second access point set sends the second non-zero on the CSI-RS pilot pattern with the port number Gn a power CSI-RS, the first antenna of the first set of access points and the first antenna of the second set of access points transmitting a third non-zero power on the 2-port CSI-RS pilot pattern CSI-RS.
  • the base station further includes a first notification unit, where the first notification unit is connected to the first configuration unit, Notifying, by the CSI-RS pilot pattern of the Xx, the number of ports corresponding to the Xth access point of the first set of access points to the mth access point of the first set of access points, so that the The mth access point transmits a zero-power CSI-RS on the CSI-RS pilot pattern with the number of antenna ports Jx, where x ⁇ m.
  • the base station further includes a second notification unit, where the second notification unit is connected to the second configuration unit, And notifying, by the CSI-RS pilot pattern of the number of ports corresponding to the yth access point of the second set of access points, the nth access point of the second set of access points, so that the The nth access point transmits a zero-power CSI-RS on the CSI-RS pilot pattern with the number of antenna ports Jx, where y ⁇ ⁇ .
  • the base station further includes a third notification unit, where the third notification unit is configured to use the first CSI-RS pilot Corresponding relationship between a port of the pattern and an element in the first precoding matrix, a correspondence between a port of the second CSI-RS pilot pattern and an element in the second precoding matrix, the third CSI-RS At least one of the correspondence between the port of the pilot pattern and the element in the third precoding matrix is notified to the UE.
  • the third notification unit is configured to use the first CSI-RS pilot Corresponding relationship between a port of the pattern and an element in the first precoding matrix, a correspondence between a port of the second CSI-RS pilot pattern and an element in the second precoding matrix, the third CSI-RS At least one of the correspondence between the port of the pilot pattern and the element in the third precoding matrix is notified to the UE.
  • a period of the second CSI-RS pilot pattern is greater than a period of the first CSI-RS pilot pattern and/or a period of a third CSI-RS pilot pattern.
  • the access point is a physical access point or a virtual access point
  • the antenna is a physical antenna or a virtual antenna
  • the antenna port is a physical antenna port or a virtual antenna port.
  • an embodiment of the present invention provides an access point, including:
  • An acquiring unit configured to acquire a CSI-RS pilot pattern that is configured by the base station to the access point, where the CSI-RS pilot pattern is a first CSI-RS pilot pattern configured by the base station for a user equipment UE And one of the second CSI-RS pilot pattern or the third CSI-RS pilot pattern, where the CSI-RS pilot pattern is an X port CSI-RS pilot pattern, the X port CSI-RS pilot
  • the frequency pattern includes N CSI-RS pilot patterns with port numbers Gn respectively, and Gn is the number of antenna ports of the nth access point in the second access point set
  • a sending unit configured to be connected to the acquiring unit, configured to send a non-zero power CSI-RS according to the CSI-RS pilot pattern.
  • the method for configuring a channel state information reference signal, the base station, and the access point divide the access point served by the UE into a first access point set and a second access point set.
  • Configuring a first CSI-RS pilot pattern for the UE assigning it to the first access point set, configuring the second CSI-RS pilot pattern, and assigning it to the second access point set; configuring the third CSI-RS pilot pattern And assigning to the antenna set of the first antenna of the first access point of the first access point set and the first antenna of the first access point of the second access point set, so that each access point
  • the non-zero power CSI-RS configuration information may be sent to the UE by the base station or the network side device, so that the UE can obtain the corresponding CSI-RS information measurement and report the first of the first access point set.
  • the downlink channel state information, the second downlink channel state information of the second access point set, and the third downlink channel state information of the antenna set, the base station further obtains the joint downlink channel state information according to the downlink channel state information.
  • the first access point set includes at least one access point
  • the second access point set includes at least two access points. Therefore, the method, the base station, and the access point for configuring the channel state information reference signal provided by the embodiment of the present invention are provided. , enabling the UE to measure joint downlink channel state information of at least three access points.
  • Embodiment 1 is a schematic flow chart of Embodiment 1 of a method for configuring a channel state information reference signal according to the present invention
  • Embodiment 2 is a schematic flow chart of Embodiment 2 of a method for configuring a channel state information reference signal according to the present invention
  • FIG. 3 is a schematic diagram of a first scenario of a method for applying to a joint multipoint transmission system according to the present invention
  • FIG. 4A is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 1 of a joint multipoint transmission system according to the method of the present invention
  • 4B is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 2 of a joint multipoint transmission system according to the method of the present invention
  • 4C is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 3 of a joint multipoint transmission system according to the method of the present invention
  • 4D is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 4 of a joint multipoint transmission system according to the method of the present invention
  • 4E is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 5 of a joint multipoint transmission system according to the method of the present invention
  • FIG. 5 is a schematic diagram of a second scenario of a method for applying to a joint multipoint transmission system according to the method of the present invention
  • FIG. 6 is a schematic diagram of a simulation of an access point virtualized into a virtual access point 1 in a first access point set in the embodiment of FIG. 5;
  • Embodiment 7 is a schematic flow chart of Embodiment 5 of a method for configuring a channel state information reference signal according to the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • Embodiment 3 of a base station according to the present invention is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of an access point according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • FIG. 1 is a schematic flow chart of Embodiment 1 of a method for configuring a channel state information reference signal according to the present invention.
  • the method for configuring a channel state information reference signal CSI-RS provided in this embodiment may be specifically applied to a CSI-RS configuration process in a communication system using CoMP technology, where multiple connections are performed.
  • the in-point provides data services for one UE at the same time, and the multiple access points are access points for cooperative transmission.
  • Step S101 The plurality of access points that are cooperatively transmitted are divided into a first access point set and a second access point set, where the first access point set includes M access points, and the second access point set Includes N access points.
  • the access point may be a cell (specifically, a network side device that implements the coverage cell area), a base station corresponding to the cell, a remote radio head (RRH), and a radio remote unit (Radio Remote Unit, Hereinafter referred to as RRU) or Antenna Unit (hereinafter referred to as AU).
  • the base station divides the access point into a first set of access points and a second set of access points.
  • the M ( M > 1 ) access points included in the first set of access points may be a serving access point of the user equipment UE, an access point receiving control information, an access point receiving broadcast information, or a received signal.
  • the strongest M access points can also be M access points configured by the base station.
  • the N ( N > 1 ) access points included in the second set of access points may be access points other than the access points included in the first set of access points.
  • Step S102 Configure a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern for the UE.
  • the first CSI-RS pilot pattern is an X port CSI-RS pilot pattern, and the X port CSI-RS pilot pattern includes M CSI-RS pilot patterns with Jm ports respectively, and Jm is the first access.
  • the third CSI-RS pilot pattern is a 2-port CSI-RS pilot pattern, and the 2-port CSI-RS pilot pattern includes a CSI-
  • the base station configures, for the UE, a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern.
  • the first set of access points includes at least one access point
  • the second set of access points includes at least two access points.
  • the number of antenna ports per access point should be 1, 2, 4, or 8. Assume that there is only one access point in the first set of access points, and the number of antenna ports of the access point is four, and the above X is 4, that is, the base station or the network side entity configures the UE for the first access point set.
  • the second access point set includes two access points, and the number of antenna ports per access point is 4, then the above Y is 8, that is, the base station is targeting the second access
  • the point set configures an 8-port CSI-RS pilot pattern for the UE, the 8-port CSI-RS includes two 4-port CSI-RS pilot patterns; and the base station is also configured for the first access point of the first access point set.
  • the first antenna port of the first antenna port and the first access point of the second access point set configure a third CSI-RS pilot pattern for the UE, and the third CSI-RS pilot pattern includes an antenna port a CSI-RS pilot pattern of 2, the CSI-RS pilot pattern of the port corresponding to the first antenna of the first access point set and the first antenna of the second access point set, the first access point set
  • the first antenna and the first antenna of the second set of access points are determined according to a preset rule.
  • Step S103 Configuring a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern to a first access point set, a second access point set, and a first contact, respectively a set of antennas of the first antenna of the set and the first antenna of the second set of access points, such that each access point of the first set of access points sends the first non-zero according to the first CSI-RS pilot pattern a power CSI-RS, each access point of the second set of access points transmitting a second non-zero power CSI-RS according to the second CSI-RS pilot pattern, and the antenna set transmitting the third non according to the third CSI-RS pilot pattern Zero power CSI-RS.
  • the first CSI-RS pilot pattern includes a CSI-RS pilot pattern corresponding to each access point in the first access point set
  • the second CSI-RS pilot pattern includes a second access point set a CSI-RS pilot pattern of each access point
  • a third CSI-RS pilot pattern is respectively corresponding to the first set of contacts
  • the CSI-RS pilot pattern of the antenna set consisting of the first antenna and the first antenna of the second set of access points.
  • CSI-RS pilot pattern corresponding to each access point in the first access point set to each access point in the first access point set, and corresponding to each access in the second access point set
  • the CSI-RS pilot patterns of the points are respectively configured for each access point in the second set of access points
  • the third CSI-RS pilot pattern is configured to the first antenna and the second access point of the first set of contacts.
  • the access points of the first access point set send the first non-zero power CSI-RS according to the configured CSI-RS pilot pattern
  • the access points of the second access point set are configured according to the respective configurations.
  • the CSI-RS pilot pattern transmits a second non-zero power CSI-RS
  • the antenna set transmits a third non-zero power CSI-RS according to the third CSI-RS pilot pattern, that is, the first access point set and the second contact set
  • Each of the access points transmits a non-zero power CSI-RS in a respective corresponding CSI-RS pilot pattern.
  • Step S104 Send non-zero power CSI-RS configuration information to the UE, where the configuration information includes a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern, so that the UE is configured according to the A CSI-RS pilot pattern measures and reports the first downlink channel state information, and measures and reports the second downlink channel state information according to the second CSI-RS pilot pattern, and reports the third CSI-RS pilot pattern according to the third CSI-RS pilot pattern.
  • the CSI-RS configuration information may specifically include:
  • Non-zero power CSI-RS configuration information including: number of antenna ports, pilot pattern, period, and subframe offset;
  • the base station sends the first non-zero power CSI-RS configuration information to the UE, where the first non-zero power CSI-RS configuration information includes a first CSI-RS pilot pattern, and the UE measures the first connection according to the first CSI-RS pilot pattern.
  • Step S105 According to the first downlink channel state information and the second downlink channel state reported by the UE The information and the third downlink channel state information generate joint downlink channel state information.
  • the joint downlink channel state information may be decomposed into independent downlink channel spatial information of each access point set, that is, first downlink channel state information and second downlink channel state information, and between access point sets, that is, antenna set Three downlink channel state information. Therefore, the base station or the network side entity may be configured according to the first downlink channel state information of the first access point set reported by the UE, the second downlink channel state information of the second access point set, and the third downlink channel state of the antenna set. The information generates joint downlink channel state information.
  • the first downlink channel state information and the second downlink channel state information are, for example, a PMI, a channel covariance matrix, and the like
  • the third downlink channel state information is channel adjustment information, such as phase modulation information, amplitude adjustment information, and the like.
  • the base station divides an access point serving the UE into a first access point set and a second access point set, and configures a first CSI for the UE.
  • the base station configures a CSI-RS pilot pattern for a plurality of access points that participate in the cooperation, so that the UE can measure the joint downlink channel state information of the at least two access points, and implement an application scenario in which multiple access points serve one UE. Measurement of the downlink joint channel state signal.
  • FIG. 2 is a schematic flow chart of Embodiment 2 of a method for configuring a channel state information reference signal according to the present invention.
  • step S105 according to the first downlink channel state information of the first access point set reported by the user equipment UE, the second downlink channel state information of the second access point set, and the antenna
  • the aggregated downlink channel state information generates the joint downlink channel state information, which may be specifically:
  • Step S201 The base station obtains a precoding matrix of each downlink channel state information, that is, obtains the first downlink channel state information, according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the UE.
  • First precoding matrix, second downlink channel state information Obtaining a second precoding matrix and third downlink channel state information to obtain a third precoding matrix.
  • each access point of the first access point set sends a first non-zero power CSI-RS on the first CSI-RS pilot pattern, and the base station accepts the first of the first access point set measured and reported by the UE.
  • Downlink channel state information obtaining a first precoding matrix P1 based on the first downlink channel state information
  • each access point of the second access point set transmitting a second non-zero power CSI on the second CSI-RS pilot pattern -RS
  • the base station accepts the second channel state information of the second access point set measured and reported by the UE, and obtains the second precoding matrix P2 based on the second channel state information
  • the first access point of the first access point set The first antenna of the first antenna and the first access point of the second access point set send a third non-zero power CSI-RS, and the base station accepts the first antenna and the first antenna set included in the first access point set measured and reported by the UE
  • the third channel state information between the first antennas included in the two access point sets obtains
  • Step S202 Determine first rank indication information of the first downlink channel state information and second rank indication information of the second downlink channel state information.
  • the first rank indication information and the second rank indication information may be defined as the same, and the rank indication information is used to indicate the number of layers of the downlink data transmission, that is, the number of columns of the precoding matrix.
  • Step S203 Generate a joint precoding matrix of joint downlink channel state information according to the first precoding matrix, the second precoding matrix, the third precoding matrix, the first rank indication information, and the second rank indication information.
  • the base station generates a joint precoding matrix of the joint downlink channel state information according to the first precoding matrix, the second precoding matrix, the third precoding matrix, the first rank indication information, and the second rank indication information.
  • the method for configuring a channel state information reference signal CSI-RS obtains a first precoding matrix according to the first downlink channel state information, and a second precoding matrix according to the second downlink channel state information technology, according to the third And obtaining, by the downlink channel state information, a third precoding matrix, and determining second rank indication information of the first rank indication information and the second downlink channel state information, and finally determining a joint precoding matrix of the joint downlink channel state information to obtain a joint Downstream channel status information.
  • the first downlink channel state information is downlink channel state information of the first access point set including M (M > 1 ) access points, and the second downlink channel state information is N (N > 1 ) accesses.
  • Downlink information of the second access point set of the point, the third downlink channel state information is the first access point set and the second access Channel adjustment information between in-point sets. Therefore, the method provided by the embodiment of the present invention can be implemented
  • the base station may correspond to the correspondence between the port of the first CSI-RS pilot pattern and the element in the first precoding matrix, the port of the second CSI-RS pilot pattern, and the element in the second precoding matrix. At least one of the relationship and the correspondence between the port of the third CSI-RS pilot pattern and the element in the third precoding matrix is notified to the UE, so that the UE can learn the antenna port of the CSI-RS pilot pattern according to the corresponding relationship.
  • Corresponding relationship of the antenna ports of the access point for example, determining the first antenna and the second interface of the first access point of the first access point set according to the correspondence between the third CSI-RS pilot pattern and the antenna port The first antenna of the first access point of the set of ingress points.
  • Step S203 Generate a joint precoding matrix of the joint downlink channel state information according to the first precoding matrix, the second precoding matrix, the third precoding matrix, the first rank indication information, and the second rank indication information, which may be specifically:
  • P2(: , 1 : ? ) represents the first column to the RIj of the second precoding matrix.
  • the mt column, respectively represents two elements of the third precoding matrix.
  • the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern are respectively performed in step S103.
  • the antenna set configured by the first antenna set and the first antenna of the first access point set and the first antenna set of the first access point set may be:
  • the CSI-RS pilot pattern with the port number Jm is configured to the mth access point of the first access point set, and the CSI-RS pilot pattern with the port number Gn is configured to the nth of the second access point set.
  • the access point, the CSI-RS pilot pattern of port 2 is configured to the first antenna of the first access point set and the second antenna of the second access point set, so that the first access point set The mth access point is at the end
  • the first non-zero power CSI-RS is transmitted on the CSI-RS pilot pattern with the number of ports Jm
  • the nth access point of the second access point set is sent on the CSI-RS pilot pattern with the number of ports Gn.
  • the non-zero power CSI-RS, the first antenna of the first set of access points and the first antenna of the second set of access points transmit a third non-zero power CSI-RS on the 2-port CSI-RS pilot pattern.
  • the access points of each access point set are further sent CSI-RS non-zero power on the respective CSI-RS pilot pattern, and then the base station or the network
  • the side entity sends configuration information to the UE to obtain joint downlink channel state information.
  • the access point is a physical access point.
  • the base station divides the physical access point served by the user equipment UE into the first access point set and the first Two access point sets, the first access point set includes two physical access points: physical access point 1, physical access point 2; second access point set includes three physical access points: physical access point 3. Physical access point 4, physical access point 5.
  • Physical access point 4 contains two antenna ports, and physical access point 5 contains four antenna ports.
  • the base station configures a 4-port first CSI-RS pilot pattern ⁇ AO, Al, A2, for the UE,
  • the first CSI-RS pilot pattern includes two 2-port pilot patterns ⁇ A0, A1 ⁇ , ⁇ A2, A3 ⁇ ; and the UE is configured with a second port CSI-RS pilot pattern ⁇ B0, Bl, B2, B3, B4, B5, B6, B7 ⁇ , the second CSI-RS pilot pattern includes two 2-port pilot patterns ⁇ B0, Bl ⁇ , ⁇ B2, B3 ⁇ and one 4-port Pilot pattern ⁇ B4, B5, B6, B7 ⁇ ; configure a 2-port third CSI-RS pilot pattern ⁇ CO, C1 ⁇ for the UE, the third CSI-RS pilot pattern including a CSI with a port number of 2 -RS pilot pattern ⁇ CO, Cl ⁇ .
  • the base station allocates two 2-port pilot patterns included in the first CSI-RS pilot pattern configuration to the physical access point 1 of the first access point set and the antenna port corresponding to the physical access point 2;
  • the two 2-port pilot patterns included in the two CSI-RS pilot patterns are respectively configured on the physical access point 3 of the second access point set and the antenna port corresponding to the physical access point 4, and the second pilot pattern is
  • the included 4-port pilot pattern is configured on the antenna port corresponding to the physical access point 5;
  • the third CSI-RS pilot pattern is configured to the first antenna port of the physical access point 1 of the first access point set and The first access point of the second access point is set on the first antenna port of the physical access point 3.
  • FIG. 4A-4E is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 1 of a joint multipoint transmission system according to the method of the present invention
  • FIG. 4B is a method of the present invention
  • FIG. 4C is a CSI of a physical access point 3 applied to a joint multipoint transmission system according to the method of the present invention.
  • FIG. 4D is a schematic diagram of a CSI-RS pilot pattern applied to a physical access point 4 of a joint multi-point transmission system according to the method of the present invention
  • FIG. 4E is a schematic diagram of a method for applying multi-point transmission to a joint according to the present invention
  • the first non-zero power CSI-RS is transmitted on an RE (Resource Element, hereinafter referred to as a resource element) labeled ⁇ AO, Al, A2, A3 ⁇ , and the second non-zero power CSI-RS Transmitted on the REs labeled ⁇ BO, Bl, B2, B3, B4, B5, B6, B7 ⁇ , the third non-zero power CSI-RS is transmitted on the RE labeled ⁇ CO, C1 ⁇ .
  • the port included in the third non-zero-power CSI-RS is mapped to the first antenna of the physical access point 1 included in the first access point set and the first antenna of the physical access point 3 included in the second access point set. Above, sent on the RE labeled ⁇ CO, C1 ⁇ .
  • the base station sends non-zero power CSI-RS configuration information to the UE, where the first non-zero power CSI-RS configuration information includes a 4-port pilot pattern ⁇ AO, Al, A2, A3 ⁇ ; the second non-zero power CSI-RS configuration information The 8-port pilot pattern ⁇ B0, Bl, B2, B3, B4, B5, B6, B7 ⁇ is included; the third non-zero-power CSI-RS configuration information includes a 2-port pilot pattern ⁇ CO, Cl ⁇ .
  • the UE may obtain the corresponding CSI-RS according to the non-zero-power CSI-RS configuration information, and measure and report the first downlink channel state information of the first access point set and the second downlink channel state information of the second access point set.
  • a channel state information reference signal CSI-RS in a joint transmission multipoint transmission system, at least three physical access points are divided into two access point sets, and a joint of each set is solved.
  • the downlink channel state information and the downlink channel state information of the antenna set of the combination of the first antennas of each set, and further, the joint downlink channel state information of the plurality of access points to the UE is obtained.
  • the base station configures the first CSI-RS guide for the UE, in order to reduce the interference to the non-zero-power CSI-RS of the other access point.
  • the MSI-RS pilot pattern corresponding to the Xth access point of the first access point set may be notified to the mth access point of the first access point set, so that the mth connection
  • the in-point sends a zero-power CSI-RS on the CSI-RS pilot pattern with the number of ports Jx, where there is interference between the Xth access point and the mth access point, x ⁇ m; or, will be the second
  • the number of ports corresponding to the yth access point of the access point set is the nth access point of the second access point set notified by the CSI-RS pilot pattern of Gy, so that the nth access point is at the port
  • a zero-power CSI-RS is transmitted on the CSI-RS pilot pattern of the number Jx, wherein there is interference between the y-th access point and the n-th access point, y ⁇ n.
  • the base station may notify the physical access point 2 of the CSI-RS pilot pattern ⁇ AO, A1 ⁇ with the number of ports corresponding to the access point 1 being 2, so that the physical access point 2 is in the number of ports. Transmitting a zero-power CSI-RS on the pilot pattern ⁇ AO, A1 ⁇ of 2; or, the base station may notify the physics of the CSI-RS pilot pattern ⁇ A2, A3 ⁇ corresponding to the number of ports corresponding to the physical access point 2 Access point 2, such that physical access point 1 transmits a zero-power CSI-RS on a pilot pattern ⁇ A2, A3 ⁇ with a port number of two.
  • the base station may notify the physical access of the CSI-RS pilot pattern ⁇ BO, B1 ⁇ corresponding to the number of ports corresponding to the physical access point 3 Point 4 and physical access point 5, such that physical access point 4 and physical access point 5 transmit zero-power CSI-RS on pilot pattern ⁇ BO, B1 ⁇ with port number 2; or, the base station can physically connect
  • the CSI-RS pilot pattern ⁇ B2, B3 ⁇ corresponding to the number of ports 2 corresponding to the entry point 4 is notified to the physical access point 3 and the physical access point 5, so that the physical access point 3 and the physical access point 5 are in the number of ports.
  • a zero-power CSI-RS is transmitted on the pilot pattern ⁇ B2, B3 ⁇ of 2; or the base station can set the CSI-RS pilot pattern of the number of ports corresponding to the physical access point 5 to 4 (B4, B5, B6, B7) ⁇ Notification to physical access point 3 and physical access point 4, such that physical access point 3 and physical access point 4 transmit zero-power CSI on pilot patterns ⁇ B4, B5, B6, B7 ⁇ with port number 4 -RS.
  • pilot patterns shown in FIG. 4A-4E are only an example, and may also be allocated in other manners, for example, assigning ⁇ AO, A1 ⁇ to physical access point 2, and ⁇ A2 , A3 ⁇ is assigned to the physical access point 1 and so on.
  • the period of the second CSI-RS pilot pattern is greater than the period of the first CSI-RS pilot pattern and/or the period of the third CSI-RS pilot pattern.
  • the second CSI-RS guide in the non-zero power CSI-RS configuration information sent by the base station to the UE is that the access point in the second set of access points is a cooperative access point other than the first access point set access point.
  • the period of the frequency pattern is greater than the period of the first CSI-RS pilot pattern and/or the period of the third CSI-RS pilot pattern to Reduce the overhead of CSI-RS.
  • the base station configures a CSI-RS pilot pattern for multiple access points participating in the cooperation, so that the UE can measure the joint downlink of at least three access points.
  • Channel status information is included in the base station.
  • FIG. 5 is a schematic diagram of a second scenario of the method of the present invention applied to a joint multipoint transmission system.
  • it is a virtual access point CSI-RS pilot pattern.
  • FIG. 3 For the same as the embodiment of the present embodiment, refer to the embodiment of FIG. 3, and details are not described herein again.
  • the base station virtualizes the physical access point served by the user equipment UE into a virtual access point, and divides the virtual access point into the first A set of virtual access points and a second set of virtual access points.
  • the physical access point A and the physical access point B are virtualized into a virtual access point 1
  • the physical access point C, the physical access point D, and the physical access point E are virtualized into virtual.
  • the access point 2 then divides the virtual access point into a first virtual access point set and a second virtual access point set. That is, the first virtual access point set in FIG.
  • 5 includes a virtual access point 1 having two virtual antenna ports, which are virtualized by the physical access point A and the physical access point B, and the virtual access point 1 2 virtual antenna ports map 4 physical antenna ports of physical access point A and physical access point B;
  • second virtual access point set includes virtual access point 2, with 4 virtual antenna ports, the virtual access Point 2 is virtualized by physical access point C, physical access point B, and physical access point C.
  • the four antenna ports of virtual access point 2 map physical access C, physical access point D, and physical access point. 8 physical antenna ports of E.
  • the base station configures a 2-port first CSI-RS pilot pattern ⁇ AO, A1 ⁇ for the UE, and configures the first CSI-RS pilot pattern to the virtual antenna port of the first virtual access point set;
  • the UE configures a 4-port second CSI-RS pilot pattern ⁇ B0, Bl, B2, B3 ⁇ , and configures the second CSI-RS pilot pattern on the virtual antenna port of the second virtual access point set;
  • the third CSI-RS pilot pattern is configured on the first virtual antenna port of the first virtual access point set and the second virtual antenna port of the second virtual access point set.
  • the present invention is described by taking a first virtual access point set and a second virtual access point set as a virtual access point as an example.
  • the physical access point can be virtualized into multiple virtual access points, and then multiple virtual access points Divided into a first virtual point set and a second virtual point set, each virtual access point may have multiple virtual access points.
  • FIG. 6 is a schematic diagram showing the simulation of the access point virtualized into the virtual access point 1 in the first access point set in the embodiment of FIG. 5.
  • the first virtual antenna port VI is antenna-mapped by the multipliers W1, W12, W13, and W14 and the adders M1 l, M12, M13, and M14, and then mapped to each of the first access point sets.
  • the physical port of the ingress that is, the first physical port 11, the second physical port 12 of the physical access point A, and the first physical port 21 and the second physical port 22 of the physical access point B.
  • the second virtual antenna port V2 of the virtual access point 1 is antenna-mapped to the first access point set by the multipliers W21, W22, W23, W24 and the adders M1 l, M12, M13, M14.
  • the physical port of each access point that is, the first physical port 11, the second physical port 12 of the physical access point A, and the first physical port 21 and the second physical port 22 of the access point B.
  • FIG. 7 is a schematic flow chart of Embodiment 5 of a method for configuring a channel state information reference signal according to the present invention.
  • the access point transmits a non-zero power CSI-RS according to a pilot pattern configured by the base station.
  • the method for configuring a channel state information reference signal CSI-RS includes the following steps: Step S701: The access point acquires a CSI-RS pilot pattern configured by the base station to the access point.
  • the CSI-RS pilot pattern is one included in the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, or the third CSI-RS pilot pattern configured by the base station for the user equipment UE,
  • a CSI-RS pilot pattern is an X-port CSI-RS pilot pattern, and an X-port CSI-RS pilot pattern includes M CSI-RS pilot patterns each having a port number Jm, and Jm is a first access point set.
  • the Y port CSI-RS pilot pattern includes N CSI-RS pilot patterns with port numbers Gn respectively, and Gn is the nth access point in the second access point set.
  • the third CSI-RS pilot pattern is 2-port CSI-RS The frequency pattern, the 2-port CSI-RS pilot pattern includes a CSI-RS pilot pattern of port number 2.
  • Step S702 The access point sends a non-zero power CSI-RS according to the CSI-RS pilot pattern.
  • the physical access point 1 acquires the pilot pattern ⁇ AO, A1 ⁇ of the 2-port in the first CSI-RS pilot pattern that the base station configures to the first set of access points, and physical access.
  • Point 2 gets The pilot pattern is ⁇ A2, A3 ⁇ , the pilot pattern acquired by the physical access point 3 is ⁇ BO, B1 ⁇ , and the pilot pattern acquired by the physical access point 4 is ⁇ B2, B3 ⁇ , physical access
  • the pilot pattern obtained at point 5 is ⁇ B4, B5, B6, B7 ⁇ , the pilot pattern obtained by the antenna set composed of the first antenna of physical access point 1 and the first antenna of physical access point 2 Is ⁇ CO, Cl ⁇ .
  • each access point After acquiring the respective pilot patterns, each access point transmits a non-zero power CSI-RS according to the CSI-RS pilot pattern.
  • pilot patterns shown in FIG. 4A-4E are only an example, and other manners may be allocated to enable each access point to obtain a pilot pattern.
  • the pilot pattern that can be obtained by physical access point 3 is ⁇ B4, B5 ⁇
  • the pilot pattern that can be obtained by physical access point 4 is ⁇ B6, B7 ⁇
  • physical access is different.
  • the pilot pattern obtained at point 5 is ⁇ BO, B1, B2, B3 ⁇ and the like.
  • the access point obtains the CSI-RS of the multiple access points by acquiring the pilot pattern corresponding to the access point, and the downlink channel state information of the multiple access points can be measured.
  • the invention is not limited thereto, and
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station provided in this embodiment includes: a dividing unit 801, a first configuration unit 802, a second configuration unit 803, a configuration information sending unit 804, and a processing unit 805.
  • the dividing unit 801 is configured to divide the multiple access points that are cooperatively transmitted into the first access point set and the second access point set, where the first access point set includes M access points, and the second access The point set includes N access points.
  • the first configuration unit 802 is connected to the dividing unit 801, configured to configure, for the user equipment UE, a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern, where
  • the CSI-RS pilot pattern is an X port CSI-RS pilot pattern, and the X port CSI-RS pilot pattern includes M CSI-RS pilot patterns with port numbers Jm respectively, and Jm is in the first access point set.
  • the number of antenna ports of the mth access point, m l , ...
  • the second CSI-RS pilot pattern is Y port CSI-RS pilot pattern
  • Y port CSI-RS pilot pattern includes N CSI-RS pilot patterns with port numbers Gn respectively, and Gn is the nth access point in the second access point set
  • the third CSI-RS pilot pattern is 2-port CSI-RS The pilot pattern, the 2-port CSI-RS pilot pattern includes a CSI-RS pilot pattern of port number 2.
  • the second configuration unit 803 is connected to the first configuration unit 802, configured to respectively configure the first CSI-RS pilot pattern, the second CSI-RS pilot pattern, and the third CSI-RS pilot pattern to the first access a set of points, a second set of access points, and an antenna set of a first antenna of the first set of access points and a first antenna of the second set of access points to enable respective accesses of the first set of access points And transmitting, according to the first CSI-RS pilot pattern, the first non-zero power CSI-RS, where each access point of the first access point set sends the second non-zero power CSI-RS according to the second CSI-RS pilot pattern, The antenna set transmits a third non-zero power CSI-RS according to the third CSI-RS pilot pattern;
  • the configuration information sending unit 804 is configured to send non-zero power CSI-RS configuration information to the UE, where the configuration information includes a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI-RS pilot pattern. And causing the UE to measure and report the first downlink channel state information according to the first CSI-RS pilot pattern, and measure and report the second downlink channel state information according to the second CSI-RS pilot pattern, according to the first The third CSI-RS pilot pattern is such that the third downlink channel state information is reported;
  • the processing unit 805 is configured to generate joint downlink channel state information according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the UE.
  • the device of this embodiment is used to perform the technical solution of the first embodiment of the method shown in FIG. 1 , and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the second configuration unit 803 is specifically configured to allocate a CSI-RS pilot pattern with a port number of Jm to an mth access point of the first access point set, and set the number of ports to
  • the CSI-RS pilot pattern of Gn is configured to the nth access point of the second access point set
  • the CSI-RS pilot pattern of port 2 is configured to the first antenna and the first set of the first access point set.
  • a second antenna of the second set of access points such that the mth access point of the first set of access points sends the first non-zero power CSI-RS on the CSI-RS pilot pattern with the number of ports Jm,
  • the nth access point of the second access point set sends a second non-zero power CSI-RS on the CSI-RS pilot pattern with the port number Gn, and the first antenna and the second connection of the first access point set
  • the first antenna of the set of ingress points transmits a third non-zero power CSI-RS on the 2-port CSI-RS pilot pattern.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention. As shown in FIG. 9, the base station is further configured to include: a first processing subunit 8051, based on the structure shown in FIG. The second processing sub-unit 8052 and the third processing sub-unit 8053.
  • the first processing sub-unit 8051 is configured to separately acquire the first pre-channel downlink state information according to the first downlink channel state information, the second downlink channel state information, and the third downlink channel state information reported by the user equipment UE a coding matrix, a second precoding matrix of the second downlink channel state information, and a third precoding matrix of the third downlink channel state information;
  • a second processing sub-unit 8052 configured to determine first rank indication information of the first downlink channel state information and second rank indication information of the second downlink channel state information
  • the third processing sub-unit 8053 is connected to the first processing sub-unit 8051 and the second processing sub-unit 8052, respectively, and configured to use, according to the first pre-coding matrix, the second pre-coding matrix, the third pre-coding matrix, and the first rank indication information. Generating a joint precoding matrix of joint downlink channel state information with the second rank indication information.
  • the third processing sub-unit 8053 uses the minimum value of the first rank indication information and the second rank indication information as the joint rank indication information of the joint downlink channel state information, and calculates the joint downlink signal matrix by using the following formula:
  • PiC, i: ⁇ . J represents the third column to the RIj of the first precoding matrix P1 .
  • the int column, 2(:, 1 : ⁇ ) represents the first column to the RIj of the second precoding matrix P 2 .
  • the base station in this embodiment may further include a third notification unit 808, where the third notification unit 808 is configured to use a correspondence between a port of the first CSI-RS pilot pattern and an element in the first precoding matrix, and a second At least one of a correspondence between a port of the CSI-RS pilot pattern and an element in the second precoding matrix and a correspondence between a port of the third CSI-RS pilot pattern and an element in the third precoding matrix is notified to the UE.
  • the third notification unit 808 is configured to use a correspondence between a port of the first CSI-RS pilot pattern and an element in the first precoding matrix, and a second At least one of a correspondence between a port of the CSI-RS pilot pattern and an element in the second precoding matrix and a correspondence between a port of the third CSI-RS pilot pattern and an element in the third precoding matrix is notified to the UE.
  • the base station of this embodiment is used to perform the technical solution of the second embodiment of the method shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station includes, in addition to the partitioning unit 801, the first configuration unit 802, the second configuration unit 803, the configuration information sending unit 804, and the processing unit 805, in addition to the structure shown in FIG. a notification unit 806 and Two notification unit 807.
  • the first notification unit 806 is connected to the first configuration unit 802, and is configured to notify the first access point that the CSI-RS pilot pattern of the number of ports corresponding to the Xth access point of the first access point set is Jx.
  • the mth access point of the set so that the mth access point sends a zero-power CSI-RS on the CSI-RS pilot pattern with the number of ports Jx, where the Xth access point is connected with the mth There is interference between the in points, x ⁇ m.
  • the second notification unit 807 is connected to the second configuration unit 803, and is configured to notify the second access point of the CSI-RS pilot pattern with the number of ports corresponding to the yth access point of the second access point set.
  • the nth access point of the set so that the nth access point sends a zero-power CSI-RS on the CSI-RS pilot pattern with the number of ports Jx, where the yth access point is connected with the nth There is interference between the in points, y ⁇ n.
  • the device in this embodiment is used to perform the technical solution in the fourth embodiment of the foregoing method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of an access point according to the present invention. As shown in FIG. 11, the access point includes: an obtaining unit 1101 and a sending unit 1102.
  • the acquiring unit 1101 is configured to acquire a CSI-RS pilot pattern that is configured by the base station to the access point, where the CSI-RS pilot pattern is a first CSI-RS pilot pattern configured by the base station for the user equipment UE, and the second CSI- One of the RS pilot pattern or the third CSI-RS pilot pattern, the CSI-RS pilot pattern is an X port CSI-RS pilot pattern, and the X port CSI-RS pilot pattern includes M ports number Jm respectively.
  • the second CSI-RS pilot pattern is a Y port CSI-RS pilot pattern
  • the ⁇ port CSI-RS pilot pattern includes C CSI-RS pilot patterns with port numbers Gn respectively
  • Y is the number of antenna ports of N access points in the second set of access points
  • a third CSI-RS pilot pattern is a 2-port CSI-RS pilot pattern, and the 2-port CSI-RS pilot pattern includes a CSI-RS pilot pattern with a port number of 2.
  • the sending unit 1102 is connected to the obtaining unit 1101, and configured to send a non-zero power CSI-RS according to the CSI-RS pilot pattern.
  • the access point of the embodiment is used to perform the technical solution of the fifth embodiment of the method shown in FIG. 4, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • a method, a base station, and an access point for configuring a channel state information reference signal divides the access point serving the UE into a first access point set and a second access point set, and configures a first CSI-RS pilot pattern, a second CSI-RS pilot pattern, and a third CSI for the UE.
  • a -RS pilot pattern, the first antenna port and the first access point set of the first access point assigned to the first access point set, the second access point set, and the first access point set And a non-zero power CSI-RS configuration information that includes the pilot patterns, and the UE measures and reports the first access point set according to the pilot patterns.
  • the base station configures a CSI-RS pilot pattern for multiple access points that participate in the cooperation, so that the UE can measure the joint downlink channel state information of the at least three access points.

Abstract

本发明实施例提供一种配置信道状态信息参考信号的方法、基站及接入点。该方法中,将接入点划分为第一接入点集合及第二接入点集合,为用户设备配置第一CSI-RS导频图案并分配给第一接入点集合、配置第二CSI-RS导频图案并分配给第二接入点集合、配置第三CSI-RS导频图案,并分配给第一接入点集合的第一接入点的第一个天线和第二接入点集合的第一接入点的第一个天线组成的天线集合,使得各个接入点在各自导频图案发送非零功率;向用户设备发送非零功率CSI-RS配置信息,使得用户设备测量并上报第一下行信道状态信息、第二下行信道状态信息以及天线集合的第三下行信道状态信息,基站根据该些下行信道状态信息,进而得到联合下行信道状态信息。

Description

配置信道状态信息参考信号的方法、 基站及接入点 技术领域 本发明涉及无线通信技术,尤其涉及一种配置信道状态信息参考信号的 方法、 基站及接入点。 背景技术
在无线通信系统中,为了使用户设备( User Equipment, 以下简称 UE ) 能够测量下行信道状态信息(Channel State Information , 以下简称 C SI) , 基 站需要发送一定的参考信号给所覆盖区域的 UE用于下行信道的测量。 例 如在第三代合作伙伴项目 ( the 3rd Generation Partnership Project, 以下简 称 3GPP ) 长期演进(Long Term Evolution, 以下简称 LTE ) 第 10版本 ( Release 10 )协议中,基站需要发送信道状态信息参考信号( Channel State Information Reference signal , 以下简称 CSI-RS )给所覆盖区域的 UE以进 行下行信道的测量, 此时基站需要将 CSI-RS 的配置信息通知给 UE, 使 UE能够根据该配置信息所指示的参考信号测量下行信道状态信息。
在 LTE R10协议中, CSI-RS的配置信息中包括导频图案, 其中导频 图案指示了 CSI-RS在一个资源块对 (Resource Block Pair, 以下简称 RB pair ) 中占用的资源元素 (Resource Element, 以下简称 RE ) 的位置。 每 个 RB pair中有多个不同的候选导频图案, 例如, 普通循环前缀时, 8端 口 CSI-RS候选导频图案有 8种, 每种候选导频图案占用 8个 RE; 每种 4 端口 CSI-RS候选导频图案是 8端口 CSI-RS候选导频图案的一半,即包含 16种 4端口 CSI-RS候选导频图案, 每种 4端口 CSI-RS占用 4个 RE; 类 似地,每种 2端口 CSI-RS候选导频图案是 4端口 CSI-RS候选导频图案的 一半。 此外, CSI-RS 的配置信息中还包括周期和子帧偏移, 其中周期和 子帧偏移指示了发送 CSI-RS的子帧的位置。
为了获得更高的用户吞吐率, 可以在通信系统中釆用协同多点收发技 术 ( Coordinated Multiple Point transmission and reception , 以下简称 CoMP ) 。 协同多点收发技术是指: 多个接入点同时为一个或多个用户提 供数据服务。 对于协同多点收发技术而言, 基站需要使用终端和候选接入 点、 集之间的信道状态信息作为输入量或者参考量, 来完成资源分配、 数 据发送等过程。
在 3 GPP LTE Release 10 协议中, 下行信道状态信息的反馈方法是: 终端从已定义的码本中选择最优的一个码字, 反馈该码字在码本中的序号 (Precoding Matrix Indicator, 以下简称 PMI) , 该码字可以反映下行信道状 态信息。 对于多点传输系统, 终端需要反馈多个服务点之间的信道状态信 息 , 对于联合传输 (Joint Transmission , 以下简称 JP)的多点传输系统而言, 终端需要反馈联合的多小区信道状态信息。 在 3GPP LTE Release 10协议 的演进版本 3GPP LTE Release 11协议中, 增加了 CoMP特性。 与 LTE Release 10协议中基站最多只能给 UE配置一个 CSI-RS不同, LTE Release 11协议中,基站最多可以给 UE配置 3个 CSI-RS ,使得 UE可以测量多个 小区的 CSI, 但是 UE无法直接测量反馈小区间的信道调整信息。 因此, 对于 LTE Release 11的基站和 UE , 需要设计新的方案, 以实现联合的多 小区信道状态信息的测量与反馈。 发明内容
本发明实施例提供一种配置信道状态信息参考信号的方法、 基站及接 入点, 以实现多个接入点为一个 UE服务的应用场景下联合下行信道状态 信息的测量。
第一个方面, 本发明实施例提供一种配置信道状态信息参考信号的方 法, 包括:
将协作传输的多个接入点划分为第一接入点集合和第二接入点集合, 其 中, 第一接入点集合包括 M个接入点, 第二接入点集合包括 N个接入点; 为用户设备 UE配置第一信道状态信息参考信号 CSI-RS导频图案、第二
CSI-RS导频图案和第三 CSI-RS导频图案, 其中, 所述第一 CSI-RS导频图案 为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导频图案包括 M个端口数 分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入点集合中的第 m个接入 点的天线端口数, m=l , ...M, X为所述第一接入点集合中 M个接入点的天 线端口数之和; 所述第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图案, Gn 为所述第二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y为所 述第二接入点集合中 N个接入点的天线端口数之和; 所述第三 CSI-RS导频 图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频图案包括一个端口 数为 2的 CSI-RS导频图案;
分别将所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所述第 三 CSI-RS导频图案配置给所述第一接入点集合、所述第二接入点集合以及所 述第一接入点集合的第一个天线和所述第二接入点集合的第一个天线组成的 天线集合,以使所述第一接入点集合的各个接入点根据所述第一 CSI-RS导频 图案发送第一非零功率 CSI-RS, 所述第二接入点集合的各个接入点根据所述 第二 CSI-RS导频图案发送第二非零功率 CSI-RS, 所述天线集合根据所述第 三 CSI-RS导频图案发送第三非零功率 CSI-RS;
向所述 UE发送非零功率 CSI-RS配置信息,所述配置信息包括所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所述第三 CSI-RS导频图案, 以使所述 UE根据所述第一 CSI-RS导频图案测量并上报第一下行信道状态信 息,根据所述第二 CSI-RS导频图案测量并上报第二下行信道状态信息,根据 第三 CSI-RS导频图案此类并上报第三下行信道状态信息;
根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状 态信息和所述第三下行信道状态信息生成联合下行信道状态信息。
在第一种可能的实现方式中, 所述根据所述 UE上报的所述第一下行信 道状态信息、 所述第二下行信道状态信息和所述第三下行信道状态信息生成 联合下行信道状态信息, 包括:
根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状 态信息和所述第三下行信道状态信息, 分别获取所述第一下行信道状态信息 的第一预编码矩阵、 所述第二下行信道状态信息的第二预编码矩阵和所述第 三下行信道状态信息的第三预编码矩阵;
确定所述第一下行信道状态信息的第一秩指示信息和所述第二下行信道 状态信息的第二秩指示信息;
根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状态信息 的联合预编码矩阵。
结合第一个方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状态信息 的联合预编码矩阵, 具体为:
将所述第一秩指示信息和所述第二秩指示信息的最小值作为所述联合下 行信道状态信息的联合秩指示信息, 应用以下公式计算所述联合下行信道状 态信息的联合预编码矩阵 ^。'《':
利用干扰源分析模型对所述频域釆集数据进行频域相关性分析以得 到频域相关性分析结果;
Figure imgf000006_0001
其中, PiC,i : ^ ;)表示所述第一预编码矩阵 P1的第 1列到第 RIjint列, P2(:,H ;)表示所述第二预编码矩阵 的第 1列到第 RIjmt列, p31、 /¾分 别表示所述第三预编码矩阵 的两个元素。
在第三种可能的实现方式中, 所述分别将所述第一 CSI-RS导频图案、所 述第二 CSI-RS导频图案和所述第三 CSI-RS导频图案配置给所述第一接入点 集合、 所述第二接入点集合以及所述第一接入点集合的第一个天线和所述第 二接入点集合的第一个天线组成的天线集合, 具体为:
分别将端口数为 Jm的 CSI-RS导频图案配置给所述第一接入点集合的第 m个接入点, 将端口数为 Gn的 CSI-RS导频图案配置给所述第二接入点集合 的第 n个接入点,将端口为 2的 CSI-RS导频图案配置给所述第一接入点集合 的第一个天线和所述第二接入点集合的第二个天线, 以使所述第一接入点集 合的第 m个接入点在所述端口数为 Jm的 CSI-RS导频图案上发送所述第一非 零功率 CSI-RS, 所述第二接入点集合的第 n个接入点在所述端口数为 Gn的 CSI-RS 导频图案上发送所述第二非零功率 CSI-RS, 所述第一接入点集合的 第一个天线和所述第二接入点集合的第一个天线在所述 2端口 CSI-RS导频图 案上发送第三非零功率 CSI-RS。
结合第一个方面的第三种可能的实现方式,在第四种可能的实现方式中, 所述为所述 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案之后, 所述方法还包括:
将所述第一接入点集合的第 X个接入点对应的端口数为 Jx的 CSI-RS导 频图案通知给所述第一接入点集合的第 m个接入点,以使所述第 m个接入点 在所述端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, x≠m。
结合第一个方面的第三种可能的实现方式,在第五种可能的实现方式中, 所述为所述 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案之后, 所述方法还包括:
将所述第二接入点集合的第 y个接入点对应的端口数为 Gy的 CSI-RS导 频图案通知给所述第二接入点集合的第 n个接入点, 以使所述第 n个接入点 在所述天线端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, y ≠π。
结合第一个方面的第一种可能的实现方式,在第六种可能的实现方式中, 将所述第一 CSI-RS 导频图案的端口与所述第一预编码矩阵中元素的对应关 系、所述第二 CSI-RS导频图案的端口与所述第二预编码矩阵中元素的对应关 系、所述第三 CSI-RS导频图案的端口与所述第三预编码矩阵中元素的对应关 系至少其中之一通知给所述 UE。
在第七种可能的实现方式中,所述第二 CSI-RS导频图案的周期大于所述 第一 CSI-RS导频图案的周期和 /或第三 CSI-RS导频图案的周期。
结合第一个方面的第一种可能的实现方式至第七种可能的实现方式, 在 第八种可能的实现方式中, 所述接入点为物理接入点或虚拟接入点, 所述天 线为物理天线或虚拟天线, 所述天线端口为物理天线端口或虚拟天线端口。
第二个方面, 本发明实施例提供一种配置信道状态信息参考信号的方 法, 包括:
接入点获取基站配置给所述接入点的 CSI-RS 导频图案, 其中, 所述 CSI-RS导频图案是所述基站为用户设备 UE配置的第一 CSI-RS导频图案、 第二 CSI-RS 导频图案或第三 CSI-RS 导频图案中包括的一个, 所述第一 CSI-RS导频图案为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导频图案 包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入点集合 中的第 m个接入点的天线端口数, m=l , ...M, X为所述第一接入点集合中 M个接入点的天线端口数之和; 所述第二 CSI-RS导频图案为 Y端口 CSI-RS 导频图案,所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS 导频图案, Gn 为所述第二接入点集合中的第 n 个接入点的天线端口数, n=l , ...N, Y为所述第二接入点集合中 N个接入点的天线端口数之和; 所述 第三 CSI-RS导频图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频 图案包括一个端口数为 2的 CSI-RS导频图案;
所述接入点根据所述 CSI-RS导频图案发送非零功率 CSI-RS。
第三个方面, 本发明实施例提供一种基站, 包括:
划分单元, 用于将协作传输的多个接入点划分为第一接入点集合和第二 接入点集合, 其中, 第一接入点集合包括 M个接入点, 第二接入点集合包括 N个接入点;
第一配置单元, 与所述划分单元相连, 用于为用户设备 UE配置第一信 道状态信息参考信号 CSI-RS导频图案、第二 CSI-RS导频图案和第三 CSI-RS 导频图案, 其中, 所述第一 CSI-RS导频图案为 X端口 CSI-RS导频图案, 所 述 X端口 CSI-RS导频图案包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入点集合中的第 m个接入点的天线端口数, m=l , ...M, X 为所述第一接入点集合中 M个接入点的天线端口数之和; 所述第二 CSI-RS 导频图案为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N 个端口数分别为 Gn的 CSI-RS导频图案, Gn为所述第二接入点集合中的第 n 个接入点的天线端口数, n=l , ...N, Y为所述第二接入点集合中 N个接入点 的天线端口数之和; 所述第三 CSI-RS导频图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频图案包括一个端口数为 2的 CSI-RS导频图案;
第二配置单元, 与所述第一配置单元相连, 用于分别将所述第一 CSI-RS 导频图案、 所述第二 CSI-RS导频图案和所述第三 CSI-RS导频图案配置给所 述第一接入点集合、 所述第二接入点集合以及所述第一接入点集合的第一个 天线和所述第二接入点集合的第一个天线组成的天线集合, 以使所述第一接 入点集合的各个接入点根据所述第一 CSI-RS 导频图案发送第一非零功率 CSI-RS , 所述第一接入点集合的各个接入点根据所述第二 CSI-RS 导频图案 发送第二非零功率 CSI-RS , 所述天线集合根据所述第三 CSI-RS导频图案发 送第三非零功率 CSI-RS;
配置信息发送单元, 用于向所述 UE发送非零功率 CSI-RS配置信息, 所 述配置信息包括所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所 述第三 CSI-RS导频图案, 以使所述 UE根据所述第一 CSI-RS导频图案测量 并上报第一下行信道状态信息,根据所述第二 CSI-RS导频图案测量并上报第 二下行信道状态信息,根据第三 CSI-RS导频图案此类并上报第三下行信道状 态信息;
处理单元, 用于根据所述 UE上报的所述第一下行信道状态信息、 所述 第二下行信道状态信息和所述第三下行信道状态信息生成联合下行信道状态 信息。
在第一种可能的实现方式中, 所述处理单元包括:
第一处理子单元, 用于根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状态信息和所述第三下行信道状态信息, 分别获取所述第 一下行信道状态信息的第一预编码矩阵、 所述第二下行信道状态信息的第二 预编码矩阵和所述第三下行信道状态信息的第三预编码矩阵;
第二处理子单元, 用于确定所述第一下行信道状态信息的第一秩指示信 息和所述第二下行信道状态信息的第二秩指示信息;
第三处理子单元, 分别与所述第一处理子单元和所述第二处理子单元相 连, 用于根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码 矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状 态信息的联合预编码矩阵。
结合第三个方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述第三处理子单元具体用于将所述第一秩指示信息和所述第二秩指示信息 的最小值作为所述联合下行信道状态信息的联合秩指示信息, 应用以下公式 计算所述联合下行信道状态信息的联合预编码矩阵 = [pi2 x
Figure imgf000009_0001
. 其中, : RI )表示所述第一预编码矩阵 的第 1列到第 RIjmnt列, ^(: ^?/^^表示所述第二预编码矩阵^的第 丄列到第!^^列, Αι、 分 别表示所述第三预编码矩阵 的两个元素。
在第三种可能的实现方式中, 所述第二配置单元具体用于分别将端口数 为 Jm的 CSI-RS导频图案配置给所述第一接入点集合的第 m个接入点,将端 口数为 Gn的 CSI-RS导频图案配置给所述第二接入点集合的第 n个接入点, 将端口为 2的 CSI-RS导频图案配置给所述第一接入点集合的第一个天线和所 述第二接入点集合的第二个天线, 以使所述第一接入点集合的第 m个接入点 在所述端口数为 Jm的 CSI-RS导频图案上发送所述第一非零功率 CSI-RS,所 述第二接入点集合的第 n个接入点在所述端口数为 Gn的 CSI-RS导频图案上 发送所述第二非零功率 CSI-RS, 所述第一接入点集合的第一个天线和所述第 二接入点集合的第一个天线在所述 2端口 CSI-RS导频图案上发送第三非零功 率 CSI-RS。
结合第三个方面的第三种可能的实现方式,在第四种可能的实现方式中, 该基站还包括第一通知单元, 该第一通知单元与所述第一配置单元相连, 用 于将所述第一接入点集合的第 X个接入点对应的端口数为 Jx的 CSI-RS导频 图案通知给所述第一接入点集合的第 m个接入点,以使所述第 m个接入点在 所述天线端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS,其中, x≠m。
结合第三个方面的第三种可能的实现方式,在第五种可能的实现方式中, 该基站还包括第二通知单元, 该第二通知单元与所述第二配置单元相连, 用 于将所述第二接入点集合的第 y个接入点对应的端口数为 Gy的 CSI-RS导频 图案通知给所述第二接入点集合的第 n个接入点, 以使所述第 n个接入点在 所述天线端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, y≠ π。
结合第三个方面的第一种可能的实现方式,在第六种可能的实现方式中, 该基站还包括第三通知单元,该第三通知单元用于将所述第一 CSI-RS导频图 案的端口与所述第一预编码矩阵中元素的对应关系、所述第二 CSI-RS导频图 案的端口与所述第二预编码矩阵中元素的对应关系、所述第三 CSI-RS导频图 案的端口与所述第三预编码矩阵中元素的对应关系至少其中之一通知给所述 UE。
在第七种可能的实现方式中,所述第二 CSI-RS导频图案的周期大于所述 第一 CSI-RS导频图案的周期和 /或第三 CSI-RS导频图案的周期。
结合第三个方面的第一种可能的实现方式至第七种可能的实现方式, 在 第八种可能的实现方式中, 所述接入点为物理接入点或虚拟接入点, 所述天 线为物理天线或虚拟天线, 所述天线端口为物理天线端口或虚拟天线端口。 第四个方面, 本发明实施例提供一种接入点, 包括:
获取单元, 用于获取基站配置给所述接入点的 CSI-RS导频图案, 其中, 所述 CSI-RS导频图案是所述基站为用户设备 UE配置的第一 CSI-RS导频图 案、第二 CSI-RS导频图案或第三 CSI-RS导频图案中包括的一个,所述 CSI-RS 导频图案为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导频图案包括 M 个端口数分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入点集合中的第 m 个接入点的天线端口数, m=l , ...M, X为所述第一接入点集合中 M个接入 点的天线端口数之和;所述第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图案, Gn为所述第二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y 为所述第二接入点集合中 N个接入点的端口数之和; 所述第三 CSI-RS导频 图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频图案包括一个端口 数为 2的 CSI-RS导频图案;
发送单元, 与所述获取单元相连, 用于根据所述 CSI-RS导频图案发送非 零功率 CSI-RS。
由上述技术方案可知,本发明实施例提供的配置信道状态信息参考信号 的方法、 基站及接入点, 将为 UE服务的接入点划分为第一接入点集合及第 二接入点集合, 为 UE配置第一 CSI-RS导频图案并分配给第一接入点集合、 配置第二 CSI-RS导频图案并分配给第二接入点集合; 配置第三 CSI-RS导频 图案, 并分配给第一接入点集合的第一接入点的第一个天线和第二接入点集 合的第一接入点的第一个天线组成的天线集合上, 使得各个接入点可以在各 自导频图案发送非零功率,基站或网络侧设备向 UE发送非零功率 CSI-RS配 置信息,使得 UE可以获取相应的 CSI-RS信息测量并上报第一接入点集合的 第一下行信道状态信息、 第二接入点集合的第二下行信道状态信息以及天线 集合的第三下行信道状态信息, 基站根据该些下行信道状态信息, 进而得到 联合下行信道状态信息。 由于第一接入点集合包含至少一个接入点, 第二接 入点集合包含至少两个接入点, 因此, 本发明实施例提供的配置信道状态信 息参考信号的方法、 基站及接入点, 使得 UE可以测量至少 3个接入点的 联合下行信道状态信息。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳 动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明配置信道状态信息参考信号的方法实施例一的流程示意 图;
图 2为本发明配置信道状态信息参考信号的方法实施例二的流程示意 图;
图 3为本发明方法应用于联合的多点传输系统的第一场景示意图; 图 4A为本发明方法应用于联合的多点传输系统的物理接入点 1的一种 CSI-RS导频图案示意图;
图 4B为本发明方法应用于联合的多点传输系统的物理接入点 2的一种 CSI-RS导频图案示意图;
图 4C为本发明方法应用于联合的多点传输系统的物理接入点 3的一种 CSI-RS导频图案示意图;
图 4D为本发明方法应用于联合的多点传输系统的物理接入点 4的一种 CSI-RS导频图案示意图;
图 4E为本发明方法应用于联合的多点传输系统的物理接入点 5的一种 CSI-RS导频图案示意图;
图 5为本发明方法应用于联合的多点传输系统的第二场景示意图; 图 6为图 5实施例中第一接入点集合中的接入点虚拟成虚拟接入点 1的 模拟示意图;
图 7为本发明配置信道状态信息参考信号的方法实施例五的流程示意 图;
图 8为本发明基站实施例一的结构示意图;
图 9为本发明基站实施例二的结构示意图;
图 10为本发明基站实施例三的结构示意图;
图 11为本发明接入点实施例一的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 为本发明配置信道状态信息参考信号的方法实施例一的流程示意 图。 如图 1所示, 本实施例提供的配置信道状态信息参考信号 CSI-RS的 方法具体可以应用于釆用 CoMP技术的通信系统中 CSI-RS的配置过程, 在该通信系统中, 多个接入点同时为一个 UE提供数据服务, 该多个接入 点即为协作传输的接入点。
本实施例提供的配置信道状态信息参考信号 CSI-RS 的方法, 具体包 括如下步骤:
步骤 S101 :将协作传输的多个接入点划分为第一接入点集合和第二接 入点集合, 其中, 第一接入点的集合包括 M 个接入点, 第二接入点集合 包括 N个接入点。
具体地, 接入点可以是小区(具体为实现覆盖小区区域的网络侧设备)、 小区对应的基站、 远端射频头( Remote Radio Head, 以下简称 RRH ) 、 射频 拉远单元( Radio Remote Unit, 以下简称 RRU )或者天线单元 ( Antenna Unit, 以下简称 AU )等。 基站将接入点划分为第一接入点集合和第二接入点集合。
第一接入点集合所包含的 M ( M > 1 ) 个接入点可以是用户设备 UE 的服务接入点、 接收控制信息的接入点、 接收广播信息的接入点或者接收 到的信号最强的 M个接入点, 也可以是基站配置的 M个接入点。
第二接入点集合所包含的 N ( N > 1 )个接入点可以是除第一接入点集 合包含的接入点之外的接入点。
步骤 S102: 为 UE配置第一 CSI-RS导频图案、第二 CSI-RS导频图案和 第三 CSI-RS导频图案。
其中,第一 CSI-RS导频图案为 X端口 CSI-RS导频图案, X端口 CSI-RS 导频图案包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为第一接入点 集合中的第 m个接入点的天线端口数, m=l , ...M, X为第一接入点集合中 M个接入点的天线端口数之和;第二 CSI-RS导频图案为 Y端口 CSI-RS导频 图案, Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图 案, Gn为第二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y 为第二接入点集合中 N个接入点的天线端口数之和; 第三 CSI-RS导频图案 为 2端口 CSI-RS导频图案, 2端口 CSI-RS导频图案包括一个端口数为 2的 CSI-RS导频图案。
具体地, 基站为 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案 和第三 CSI-RS导频图案。
第一接入点集合包含至少一个接入点, 第二接入点集合包含至少两个接 入点。 通常来讲, 每个接入点的天线端口数应该为 1、 2、 4或 8。 假设第一 接入点集合中仅有一个接入点, 该接入点的天线端口数为 4, 则上述的 X为 4,即基站或是网络侧实体为 UE针对第一接入点集合配置一个 4端口 CSI-RS 导频图案; 假设第二接入点集合包含两个接入点, 每个接入点的天线端口数 为 4, 则上述的 Y为 8, 即基站针对第二接入点集合为 UE配置一个 8端口 CSI-RS导频图案, 该 8端口的 CSI-RS包含 2个 4端口的 CSI-RS导频图案; 基站还针对第一接入点集合的第一接入点的第一天线端口和第二接入点集合 的第一接入点的第一天线端口为 UE配置一第三 CSI-RS导频图案, 该第三 CSI-RS导频图案包括一个天线端口为 2的 CSI-RS导频图案, 该端口为 2的 CSI-RS 导频图案对应于第一接入点集合的第一天线和第二接入点集合的第 一天线, 第一接入点集合的第一天线和第二接入点集合的第一天线按照预设 规则确定。
步骤 S103: 分别将第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案配置给第一接入点集合、 第二接入点集合以及第一接点集合 的第一个天线和第二接入点集合的第一个天线组成的天线集合, 以使第一接 入点集合的各个接入点根据第 ― CSI-RS导频图案发送第一非零功率 CSI-RS , 第二接入点集合的各个接入点根据第二 CSI-RS 导频图案发送第二非零功率 CSI-RS, 天线集合根据第三 CSI-RS导频图案发送第三非零功率 CSI-RS。
具体地,第一 CSI-RS导频图案包括对应于第一接入点集合中各个接入点 的 CSI-RS导频图案, 第二 CSI-RS导频图案包括对应于第二接入点集合中各 个接入点的 CSI-RS导频图案, 第三 CSI-RS导频图案为分别对应第一接点集 合的第一个天线和第二接入点集合的第一个天线组成的天线集合的 CSI-RS 导频图案。将对应于第一接入点集合中各个接入点的 CSI-RS导频图案分别配 置给第一接入点集合中的各个接入点, 将对应于第二接入点集合中各个接入 点的 CSI-RS 导频图案分别配置给第二接入点集合中的各个接入点, 将第三 CSI-RS 导频图案配置给第一接点集合的第一个天线和第二接入点集合的第 一个天线组成的天线集合。
配置完毕后,第一接入点集合的各个接入点根据各自配置的 CSI-RS导频 图案发送第一非零功率 CSI-RS, 第二接入点集合的各个接入点根据各自配置 的 CSI-RS导频图案发送第二非零功率 CSI-RS,天线集合根据第三 CSI-RS导 频图案发送第三非零功率 CSI-RS, 亦即第一接入点集合和第二接点集合的各 个接入点在各自对应的 CSI-RS导频图案发送非零功率 CSI-RS。
步骤 S104: 向 UE发送非零功率 CSI-RS配置信息, 配置信息包括第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案, 以使 UE 根据第一 CSI-RS 导频图案测量并上报第一下行信道状态信息, 根据第二 CSI-RS导频图案测量并上报第二下行信道状态信息, 根据第三 CSI-RS导频 图案此类并上报第三下行信道状态信息。
在实际应用中, CSI-RS配置信息具体可以包含:
( 1 )非零功率 CSI-RS配置信息, 包括: 天线端口数目、 导频图案、 周 期和子帧偏移等信息;
( 2 )零功率 CSI-RS配置信息, 包括: RE位置、周期和子帧偏移等信息。 基站为 UE发送第一非零功率 CSI-RS配置信息, 第一非零功率 CSI-RS 配置信息包括第一 CSI-RS导频图案, UE根据该第一 CSI-RS导频图案测量 第一接入点集合的第一下行信道状态信息; 基站为 UE发送第二非零功率 CSI-RS配置信息,第二非零功率 CSI-RS配置信息包括第二 CSI-RS导频图案, UE根据该第二 CSI-RS导频图案测量第二接入点集合的第二下行信道状态信 息; 基站为 UE发送第三非零功率 CSI-RS配置信息, 第三非零功率 CSI-RS 配置信息包括第三 CSI-RS导频图案, UE根据该第三 CSI-RS导频图案测量 第一接入点集合的第一个天线和第二接入点集合的第一个天线组成的天线集 合的第三下行信道状态信息。
步骤 S105: 根据 UE上报的第一下行信道状态信息、 第二下行信道状态 信息和第三下行信道状态信息生成联合下行信道状态信息。
联合下行信道状态信息可以分解为每个接入点集合独立的下行信道空间 信息, 即第一下行信道状态信息和第二下行信道状态信息, 以及接入点集合 之间, 即天线集合的第三下行信道状态信息。 因此, 基站或是网络侧实体可 以根据 UE上报的第一接入点集合的第一下行信道状态信息、 第二接入点集 合的第二下行信道状态信息和天线集合的第三下行信道状态信息生成联合下 行信道状态信息。 其中, 第一下行信道状态信息、 第二下行信道状态信息例 如为 PMI、 信道协方差矩阵等, 第三下行信道状态信息为信道调整信息, 如 相位调制信息、 幅度调整信息等。
本发明实施例提供的配置信道状态信息参考信号 CSI-RS的方法,基站将 为 UE提供服务的接入点划分为第一接入点集合及第二接入点集合, 为 UE 配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案, 分配给第一接入点集合、 第二接入点集合以及第一接入点集合的第一接入点 的第一天线端口和第二接入点集合的第一接入点的第一天线组成的天线集 合, 并向 UE发送包含该些导频图案的非零功率 CSI-RS配置信息, UE根据 该些导频图案, 测量并上报第一接入点集合的第一下行信道状态信息、 第二 接入点集合的第二下行信道状态信息和天线集合的第三下行信道状态信息, 使得基站或是网络侧实体可以根据第一下行信道状态信息、 第二下行信道状 态信息、 第三下行信道状态信息获得联合下行信道状态信息。 基站为参与协 作的多个接入点配置 CSI-RS导频图案,使 UE可以测量上报至少 2个接入点 的联合下行信道状态信息,实现了多个接入点为一个 UE服务的应用场景下 联合下行信道状态信 , 的测量。
图 2 为本发明配置信道状态信息参考信号的方法实施例二的流程示意 图。 如图 2所示, 本实施例中, 步骤 S105, 根据用户设备 UE上报的第一接 入点集合的第一下行信道状态信息、 第二接入点集合的第二下行信道状态信 息和天线集合的第三下行信道状态信息生成联合下行信道状态信息, 具体可 以为:
步骤 S201: 根据 UE上报的第一下行信道状态信息、 第二下行信道状态 信息和第三下行信道状态信息, 基站获得各个下行信道状态信息的预编码矩 阵, 即第一下行信道状态信息获得第一预编码矩阵、 第二下行信道状态信息 获得第二预编码矩阵和第三下行信道状态信息获得第三预编码矩阵。
具体地, 第一接入点集合的各个接入点在第一 CSI-RS导频图案上发 送第一非零功率 CSI-RS,基站接受 UE测量并上报的第一接入点集合的第 一下行信道状态信息, 基于第一下行信道状态信息获得第一预编码矩阵 P1 ; 第二接入点集合的各个接入点在第二 CSI-RS导频图案上发送第二非 零功率 CSI-RS,基站接受 UE测量并上报的第二接入点集合的第二信道状 态信息, 基于第二信道状态信息, 获得第二预编码矩阵 P2; 第一接入点集 合的第一接入点的第一天线和第二接入点集合的第接入点的第一天线发 送第三非零功率 CSI-RS,基站接受 UE测量并上报的第一接入点集合包含 的第一天线和第二接入点集合包含的第一天线之间的第三信道状态信息, 基于第三信道状态信息获得第三预编码矩阵 P3。各个预编码矩阵的行数为 各自天线集合中天线端口数之和, 列数为下行信道状态信息对应的秩指 示。
步骤 S202:确定第一下行信道状态信息的第一秩指示信息和第二下行信 道状态信息的第二秩指示信息。
具体的, 第一秩指示信息和第二秩指示信息可以限定为相同, 秩指示信 息用于指示下行数据传输的层数, 即预编码矩阵的列数。
步骤 S203: 根据第一预编码矩阵、 第二预编码矩阵、 第三预编码矩阵、 第一秩指示信息和第二秩指示信息生成联合下行信道状态信息的联合预编码 矩阵。
基站根据第一预编码矩阵、 第二预编码矩阵、 第三预编码矩阵、 第一秩 指示信息和第二秩指示信息生成联合下行信道状态信息的联合预编码矩阵。
本发明实施例提供的配置信道状态信息参考信号 CSI-RS的方法,根据第 一下行信道状态信息获得第一预编码矩阵, 根据第二下行信道状态信息技术 第二预编码矩阵, 根据第三下行信道状态信息获得第三预编码矩阵, 并确定 出第一秩指示信息和第二下行信道状态信息的第二秩指示信息, 最终确定出 联合下行信道状态信息的联合预编码矩阵以求得联合下行信道状态信息。 因 第一下行信道状态信息为包含 M ( M > 1 )个接入点的第一接入点集合的下行 信道状态信息, 第二下行信道状态信息为包含 N ( N > 1 )个接入点的第二接 入点集合的下行信信息, 第三下行信道状态信息为第一接入点集合和第二接 入点集合之间的信道调整信息。 因此, 本发明实施例提供的方法, 可以实现
3个或者更多接入点的联合下行信道状态信息的测量。
上述实施例中,基站可以将第 ― CSI-RS导频图案的端口与第一预编码矩 阵中元素的对应关系、第二 CSI-RS导频图案的端口与第二预编码矩阵中元素 的对应关系以及第三 CSI-RS 导频图案的端口与第三预编码矩阵中元素的对 应关系至少其中之一通知给 UE , 以使得 UE可以根据对应关系获知 CSI-RS 导频图案的天线端口与具体的接入点的天线端口的对应关系, 例如, 根据第 三 CSI-RS 导频图案与天线端口的对应关系确定出第一接入点集合的第一接 入点的第一天线和第二接入点集合的第一接入点的第一天线。
步骤 S203: 根据第一预编码矩阵、 第二预编码矩阵、 第三预编码矩阵、 第一秩指示信息和第二秩指示信息生成联合下行信道状态信息的联合预编码 矩阵, 具体可以为:
将第一秩指示信息和第二秩指示信息的最小值作为联合下行信道状态信 息的联合秩指示信息, 应用以下公式计算联合下行信道状态信息的联合预编 码矩阵尸 : = [pi2 x
Figure imgf000018_0001
. 其中, PiC,i : ;)表示第一预编码矩阵 P1的第 1 列到第 RIjint列,
P2(:1 : ? )表示第二预编码矩阵 的第 1 列到第 RIj。mt列, 、 分别 表示第三预编码矩阵 的两个元素。
具体的, 令联合下行信道的秩指示 RI =画 RI , RI2) , 其中 ΜΙΝ ( ) 表示取最小值。
在本发明配置信道状态信息参考信号 CSI-RS的方法实施例三中, 步骤 S103 , 分别将第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS 导频图案配置给第一接入点集合、 第二接入点集合以及第一接入点集合的第 一个天线和第二接入点集合的第一个天线组成的天线集合, 具体可以为: 分别将端口数为 Jm的 CSI-RS导频图案配置给第一接入点集合的第 m个 接入点, 将端口数为 Gn的 CSI-RS导频图案配置给第二接入点集合的第 n个 接入点,将端口为 2的 CSI-RS导频图案配置给第一接入点集合的第一个天线 和第二接入点集合的第二个天线, 以使第一接入点集合的第 m个接入点在端 口数为 Jm的 CSI-RS导频图案上发送第一非零功率 CSI-RS,第二接入点集合 的第 n个接入点在端口数为 Gn 的 CSI-RS 导频图案上发送第二非零功率 CSI-RS, 第一接入点集合的第一个天线和第二接入点集合的第一个天线在 2 端口 CSI-RS导频图案上发送第三非零功率 CSI-RS。
在将 CSI-RS导频图案配置给接入点集合后,进而使得各个接入点集合的 接入点在各自的 CSI-RS导频图案上发送 CSI-RS非零功率, 然后基站或是网 络侧实体为 UE发送配置信息进而获得联合下行信道状态信息。
图 3为本发明方法应用于联合的多点传输系统的第一场景示意图。 本实 施例中, 接入点为物理接入点, 如图 3所示, 联合的多点传输系统中, 基站 将为用户设备 UE服务的物理接入点划分为第一接入点集合及第二接入点集 合, 第一接入点集合包含两个物理接入点: 物理接入点 1、 物理接入点 2; 第 二接入点集合包含 3个物理接入点: 物理接入点 3、 物理接入点 4、 物理接入 点 5。 物理接入点 1、 物理接入点 2、 物理接入点 3、 物理接入点 4包含两个 天线端口, 物理接入点 5包含 4个天线端口。
具体的,基站为 UE配置 4端口的第一 CSI-RS导频图案 {AO, Al , A2,
A3} ,该第一 CSI-RS导频图案包括 2个 2端口的导频图案 { A0, A1 }、{ A2, A3} ; 为 UE配置 8端口的第二 CSI-RS导频图案 { B0, Bl, B2, B3, B4, B5, B6, B7}, 该第二 CSI-RS导频图包括 2个 2端口的导频图案 { B0, Bl }、 { B2, B3}及 1个 4端口的导频图案 { B4, B5, B6, B7} ; 为 UE配 置 2端口的第三 CSI-RS导频图案 {CO, C1 } , 该第三 CSI-RS导频图案包 括一个端口数为 2的 CSI-RS导频图案 {CO, Cl}。
基站将第一 CSI-RS导频图案配置包含的 2个 2端口的导频图案分别配 置给第一接入点集合的物理接入点 1和物理接入点 2对应的天线端口上; 将 第二 CSI-RS导频图案包含的 2个 2端口的导频图案分别配置给第二接入点集 合的物理接入点 3及物理接入点 4对应的天线端口上, 将第二导频图案包含 的 4端口的导频图案配置给物理接入点 5对应的天线端口上;将第三 CSI-RS 导频图案配置给第一接入点集合的物理接入点 1的第一天线端口和第二接入 点集合的物理接入点 3的第一天线端口上。
具体的, 请参照图 4A-图 4E。 图 4A为本发明方法应用于联合的多点传 输系统的物理接入点 1的一种 CSI-RS导频图案示意图; 图 4B为本发明方法 应用于联合的多点传输系统的物理接入点 2的一种 CSI-RS导频图案示意图; 图 4C 为本发明方法应用于联合的多点传输系统的物理接入点 3 的一种 CSI-RS导频图案示意图; 图 4D为本发明方法应用于联合的多点传输系统的 物理接入点 4的一种 CSI-RS导频图案示意图; 图 4E为本发明方法应用于联 合的多点传输系统的物理接入点 5的一种 CSI-RS导频图案示意图。
如图 4A-4E所示, 第一非零功率 CSI-RS在标号为 { AO, Al, A2, A3} 的 RE ( Resource Element, 以下简称资源元素 )上发送,第二非零功率 CSI-RS 在标号为{ BO, Bl, B2, B3, B4, B5, B6, B7}的 RE上发送, 第三非零 功率 CSI-RS在标号为 { CO, C1}的 RE上发送。 其中, 第三非零功率 CSI-RS 包含的端口映射到第一接入点集合包含的物理接入点 1 的第一天线和第二接 入点集合包含的物理接入点 3的第一天线上, 在标号为 {CO, C1}的 RE上发 送。
基站向 UE发送非零功率 CSI-RS配置信息, 第一非零功率 CSI-RS配置 信息包含 4端口的导频图案 {AO, Al, A2, A3}; 第二非零功率 CSI-RS配置 信息包含 8端口的导频图案 { B0, Bl, B2, B3, B4, B5, B6, B7}; 第三 非零功率 CSI-RS配置信息包含 2端口的导频图案 {CO, Cl}。 UE可以根据非 零功率 CSI-RS配置信息获取对应的 CSI-RS, 以测量并上报第一接入点集合 的第一下行信道状态信息、 第二接入点集合的第二下行信道状态信息以及第 一接入点集合的物理接入点 1 的第一天线和第二接入点集合的物理接入点 3 的第一天上组成的天线集合的第三下行信道状态信息进而求出物理接入点 1、 物理接入点 2、 物理接入点 3、 物理接入点 4、 物理接入点 5的联合下行信道 状态信息。
本实施例通过在联合传输的多点传输系统中应用配置信道状态信息参考 信号 CSI-RS的方法,将至少 3个物理接入点划分为两个接入点集合, 求解出 每个集合的联合下行信道状态信息及每个集合的第一天线的组合而成的天线 集合的下行信道状态信息, 进而求出多个接入点到 UE的联合下行信道状态 信息。
为了降低对其他接入点非零功率 CSI-RS的干扰,本发明实施例提供的配 置信道状态信息参考信号 CSI-RS的方法实施例四中,基站在为 UE配置了第 一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案之后, 可以将第一接入点集合的第 X个接入点对应的端口数为 Jx的 CSI-RS导频图 案通知给第一接入点集合的第 m个接入点,以使第 m个接入点在端口数为 Jx 的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, 第 X个接入点与第 m个接 入点间存在干扰, x≠m; 或者, 将第二接入点集合的第 y个接入点对应的端 口数为 Gy的 CSI-RS导频图案通知给第二接入点集合的第 n个接入点, 以使 第 n个接入点在端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS,其中, 第 y个接入点与第 n个接入点间存在干扰, y≠ n。
请参照图 4A及图 4B,基站可以将接入点 1对应的端口数为 2的 CSI-RS 导频图案 { AO, A1}通知给物理接入点 2,使得物理接入点 2在端口数为 2 的 导频图案{ AO, A1}上发送零功率 CSI-RS; 或者, 基站可以将物理接入点 2 对应的端口数为 2的 CSI-RS导频图案 {A2, A3}通知给物理接入点 2, 使得 物理接入点 1在端口数为 2 的导频图案 { A2, A3}上发送零功率 CSI-RS 。
同理, 对于第二接入点集合, 请参照图 4C及图 4E, 基站可以将物理接 入点 3对应的端口数为 2的 CSI-RS导频图案{ BO, B1}通知给物理接入点 4 及物理接入点 5, 使得物理接入点 4及物理接入点 5在端口数为 2 的导频图 案 { BO, B1}上发送零功率 CSI-RS; 或者, 基站可以将物理接入点 4对应的 端口数为 2的 CSI-RS导频图案 {B2, B3}通知给物理接入点 3及物理接入点 5, 使得物理接入点 3及物理接入点 5在端口数为 2 的导频图案 {B2, B3}上发送 零功率 CSI-RS ;或者,基站可以将物理接入点 5对应的端口数为 4的 CSI-RS 导频图案 {B4, B5, B6, B7}通知给物理接入点 3及物理接入点 4, 使得物理 接入点 3及物理接入点 4在端口数为 4 的导频图案 {B4, B5, B6, B7}上发 送零功率 CSI-RS。
需要说明的是, 图 4A-图 4E给出的导频图案只是一种示例, 也可以釆取 其他的方式分配, 例如, 将 {AO, A1}分配给物理接入点 2, 而将 {A2, A3} 分配给物理接入点 1等。
本发明上述实施例中, 第二 CSI-RS导频图案的周期大于第一 CSI-RS导 频图案的周期和 /或第三 CSI-RS导频图案的周期。
因第二接入点集合中的接入点为第一接入点集合接入点之外的协作接入 点, 基站发送给 UE的非零功率 CSI-RS配置信息中第二 CSI-RS导频图案的 周期大于第一 CSI-RS导频图案的周期和 /或第三 CSI-RS导频图案的周期,以 降低 CSI-RS的开销。
本发明实施例提供的配置信道状态信息参考信号 CSI-RS的方法, 基站 为参与协作的多个接入点配置 CSI-RS导频图案, 使 UE可以测量上报至少 3 个接入点的联合下行信道状态信息。
图 5为本发明方法应用于联合的多点传输系统的第二场景示意图。 本 实施例中, 为虚拟接入点 CSI-RS导频图案。 本实施例与图 3实施例的相 同之处请参照图 3实施例, 此处不再赘述。
如图 5所示, 本实施例与图 3实施例的差别之处仅在于, 基站将为用 户设备 UE服务的物理接入点虚拟成虚拟接入点, 并将虚拟接入点划分为第 一虚拟接入点集合及第二虚拟接入点集合。 具体的, 如图 5所示, 将物理接 入点 A、 物理接入点 B虚拟成虚拟接入点 1 , 将物理接入点 C、 物理接入点 D及物理接入点 E虚拟成虚拟接入点 2 , 然后将虚拟接入点划分为第一虚拟 接入点集合及第二虚拟接入点集合。 也就是说, 图 5 中第一虚拟接入点集合 包含虚拟接入点 1 , 其具有两个虚拟天线端口, 由物理接入点 A和物理接入 点 B虚拟而成,虚拟接入点 1的 2个虚拟天线端口映射物理接入点 A和物理 接入点 B的 4个物理天线端口; 第二虚拟接入点集合包含虚拟接入点 2, 具 有 4个虚拟天线端口, 该虚拟接入点 2由物理接入点 C、 物理接入点 B及物 理接入点 C虚拟而成, 虚拟接入点 2的 4个天线端口映射物理接入 C、 物理 接入点 D和物理接入点 E的 8个物理天线端口。
具体的, 基站为 UE配置 2端口的第一 CSI-RS导频图案 {AO , A1 } , 将 该第一 CSI-RS导频图案配置给第一虚拟接入点集合的虚拟天线端口上; 为 UE配置 4端口的第二 CSI-RS导频图案 { B0, Bl, B2 , B3 } , 将该第 二 CSI-RS导频图案配置给第二虚拟接入点集合的虚拟天线端口上; 为 UE 配置 2端口的第三 CSI-RS导频图案 {CO , C 1 } , 该第三 CSI-RS导频图案 包括一个天线端口数为 2的 CSI-RS导频图案 {CO, C1 } , 将该第三 CSI-RS导 频图案配置给第一虚拟接入点集合的第一虚拟天线端口与第二虚拟接入点集 合的第二虚拟天线端口上。
本实施例中, 是以第一虚拟接入点集合和第二虚拟接入点集合各自为一 个虚拟接入点为例来阐述本发明, 然本发明并不以此为限, 在其他可能的实 现方式中, 可以将物理接入点虚拟成多个虚拟接入点, 再将多个虚拟接入点 划分为第一虚拟点集合及第二虚拟点集合, 每个虚拟接入点可以有多个虚拟 接入点。
图 6为图 5实施例中第一接入点集合中的接入点虚拟成虚拟接入点 1的 模拟示意图。 如图 6所示, 第一虚拟天线端口 VI通过乘法器 Wl l、 W12、 W13、 W14与加法器 Ml l、 M12、 M13、 M14进行天线虚拟化后映射到第一 接入点集合的各个接入点的物理天线端口上, 亦即物理接入点 A的第一物理 端口 11、 第二物理端口 12以及物理接入点 B的第一物理端口 21、 第二物理 端口 22上。
同理, 虚拟接入点 1的第二虚拟天线端口 V2通过乘法器 W21、 W22、 W23、 W24与加法器 Ml l、 M12、 M13、 M14进行天线虚拟化后映射到第一 接入点集合的各个接入点的物理天线端口上, 亦即物理接入点 A的第一物理 端口 11、 第二物理端口 12以及接入点 B的第一物理端口 21、 第二物理端口 22上。
图 7 为本发明配置信道状态信息参考信号的方法实施例五的流程示意 图。 本实施例中, 接入点根据基站配置的导频图案发送非零功率 CSI-RS。 如 图 7所示, 该配置信道状态信息参考信号 CSI-RS的方法, 包括下列步骤: 步骤 S701: 接入点获取基站配置给接入点的 CSI-RS导频图案。
本步骤中, CSI-RS导频图案是基站为用户设备 UE配置的第一 CSI-RS 导频图案、 第二 CSI-RS导频图案或第三 CSI-RS导频图案中包括的一个, 第 一 CSI-RS导频图案为 X端口 CSI-RS导频图案, X端口 CSI-RS导频图案包 括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为第一接入点集合中的第 m个接入点的天线端口数, m=l , ...M, X为第一接入点集合中 M个接入点 的天线端口数之和; 第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, Y端 口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图案, Gn为第 二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y为第二接入点 集合中 N个接入点的天线端口数之和;第三 CSI-RS导频图案为 2端口 CSI-RS 导频图案, 2端口 CSI-RS导频图案包括一个端口数为 2的 CSI-RS导频图案。
步骤 S702: 接入点根据 CSI-RS导频图案发送非零功率 CSI-RS。
以图 4A-图 4E为例,物理接入点 1获取基站配置给第一接入点集合的第 一 CSI-RS导频图案中的 2端口的导频图案 {AO, A1} , 物理接入点 2获取到 的导频图案为 {A2, A3} , 物理接入点 3获取到的导频图案为 {BO, B1 } , 物理 接入点 4获取到的导频图案为 {B2, B3} , 物理接入点 5获取到的导频图案为 {B4, B5 , B6, B7} , 物理接入点 1的第一个天线和物理接入点 2的第一个天 线组成的天线集合获取到的导频图案为 {CO, Cl }。
获取到各自的导频图案后 , 各个接入点根据 CSI-RS导频图案发送非零 功率 CSI-RS。
需要说明的是, 图 4A-图 4E给出的导频图案只是一种示例, 也可以釆取 其他的方式分配, 以使得各个接入点获得导频图案。 例如, 因配置的方式不 同, 物理接入点 3可以获取到的导频图案为 {B4, B5 } , 物理接入点 4可以获 取到的导频图案为 {B6, B7} , 而物理接入点 5获取到的导频图案为 {BO, B1 , B2, B3}等。
本实施例中, 接入点通过获取自己对应的导频图案, 实现对多个接入点 的 CSI-RS的识别, 进而可以完成对多个接入点的下行信道状态信息的测量。
例, 然本发明并不以此为限, 在扩展循
Figure imgf000024_0001
图 8为本发明基站实施例一的结构示意图。 如图 8所示, 本实施例提供 的基站包括: 划分单元 801 , 第一配置单元 802, 第二配置单元 803 , 配置信 息发送单元 804, 处理单元 805。
划分单元 801 , 用于将协作传输的多个接入点划分为第一接入点集合和 第二接入点集合, 其中, 第一接入点集合包括 M个接入点, 第二接入点集合 包括 N个接入点。
第一配置单元 802, 与划分单元 801相连, 用于为用户设备 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案, 其中, 第 一 CSI-RS导频图案为 X端口 CSI-RS导频图案, X端口 CSI-RS导频图案包 括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为第一接入点集合中的第 m个接入点的天线端口数, m=l , ... M , X为第一接入点集合中 M个接入点 的天线端口数之和; 第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, Y端 口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图案, Gn为第 二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y为第二接入点 集合中 N个接入点的天线端口数之和;第三 CSI-RS导频图案为 2端口 CSI-RS 导频图案, 2端口 CSI-RS导频图案包括一个端口数为 2的 CSI-RS导频图案。 第二配置单元 803 , 与第一配置单元 802相连, 用于分别将第一 CSI-RS 导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案配置给第一接入点 集合、 第二接入点集合以及第一接入点集合的第一个天线和第二接入点集合 的第一个天线组成的天线集合, 以使第一接入点集合的各个接入点根据第一 CSI-RS 导频图案发送第一非零功率 CSI-RS, 第一接入点集合的各个接入点 根据第二 CSI-RS 导频图案发送第二非零功率 CSI-RS , 天线集合根据第三 CSI-RS导频图案发送第三非零功率 CSI-RS;
配置信息发送单元 804, 用于向 UE发送非零功率 CSI-RS配置信息, 配 置信息包括第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导 频图案, 以使所述 UE根据所述第一 CSI-RS导频图案测量并上报第一下行信 道状态信息,根据所述第二 CSI-RS导频图案测量并上报第二下行信道状态信 息, 根据第三 CSI-RS导频图案此类并上报第三下行信道状态信息;
处理单元 805 , 用于根据 UE上报的第一下行信道状态信息、 第二下行信 道状态信息和第三下行信道状态信息生成联合下行信道状态信息。
本实施例的设备用于执行上述图 1所示方法实施例一的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。
在本发明另一实施例中, 第二配置单元 803具体用于分别将端口数为 Jm 的 CSI-RS导频图案配置给第一接入点集合的第 m个接入点, 将端口数为 Gn 的 CSI-RS导频图案配置给第二接入点集合的第 n个接入点, 将端口为 2的 CSI-RS导频图案配置给第一接入点集合的第一个天线和第二接入点集合的 第二个天线, 以使第一接入点集合的第 m个接入点在端口数为 Jm的 CSI-RS 导频图案上发送第一非零功率 CSI-RS, 第二接入点集合的第 n个接入点在端 口数为 Gn的 CSI-RS导频图案上发送第二非零功率 CSI-RS,第一接入点集合 的第一个天线和第二接入点集合的第一个天线在 2端口 CSI-RS导频图案上发 送第三非零功率 CSI-RS。
具体的, 请参见上述方法实施例三的技术方案, 其实现原理和技术效果 类似, 此处不再赘述。
图 9为本发明基站实施例二的结构示意图。 如图 9所示, 该基站在图 8 所示结构的基础上,处理单元 805进一步地还包括: 第一处理子单元 8051 , 第二处理子单元 8052、 第三处理子单元 8053。
第一处理子单元 8051 , 用于根据用户设备 UE上报的第一下行信道状态 信息、 第二下行信道状态信息和第三下行信道状态信息, 分别获取第一下行 信道状态信息的第一预编码矩阵、 第二下行信道状态信息的第二预编码矩阵 和第三下行信道状态信息的第三预编码矩阵;
第二处理子单元 8052, 用于确定第一下行信道状态信息的第一秩指示信 息和第二下行信道状态信息的第二秩指示信息;
第三处理子单元 8053 , 分别与第一处理子单元 8051和第二处理子单元 8052相连, 用于根据第一预编码矩阵、 第二预编码矩阵、 第三预编码矩阵、 第一秩指示信息和第二秩指示信息生成联合下行信道状态信息的联合预编码 矩阵。
具体的,第三处理子单元 8053将第一秩指示信息和第二秩指示信息的最 小值作为联合下行信道状态信息的联合秩指示信息, 应用以下公式计算联合 下行信 码矩阵 :
Figure imgf000026_0001
其中, PiC,i : ^。J表示第一预编码矩阵 P1的第 丄列到第 RIjint列, 2(:,1 :^ )表示第二预编码矩阵 P2的第 1列到第 RIjint列, ;½、 分别 表示第三预编码矩阵 的两个元素。
进一步的, 本实施例的基站还可以包括第三通知单元 808, 该第三通 知单元 808用于将第 ― CSI-RS导频图案的端口与第一预编码矩阵中元素的 对应关系、第二 CSI-RS导频图案的端口与第二预编码矩阵中元素的对应关系 以及第三 CSI-RS导频图案的端口与第三预编码矩阵中元素的对应关系至少 其中之一通知给 UE。
本实施例的基站用于执行上述图 2所示方法实施例二的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。
图 10为本发明基站实施例三的结构示意图。 如图 10所示, 该基站在图 8 所示结构的基础上,除划分单元 801 ,第一配置单元 802,第二配置单元 803 , 配置信息发送单元 804, 处理单元 805外, 还包括: 第一通知单元 806及第 二通知单元 807。
第一通知单元 806, 与第一配置单元 802相连, 用于将第一接入点集合 的第 X个接入点对应的端口数为 Jx的 CSI-RS导频图案通知给第一接入点集 合的第 m个接入点,以使第 m个接入点在端口数为 Jx的 CSI-RS导频图案上 发送零功率 CSI-RS, 其中, 第 X个接入点与第 m个接入点间存在干扰, x≠ m。
第二通知单元 807, 与第二配置单元 803相连, 用于将第二接入点集合的 第 y个接入点对应的端口数为 Gy的 CSI-RS导频图案通知给第二接入点集合 的第 n个接入点, 以使第 n个接入点在端口数为 Jx的 CSI-RS导频图案上发 送零功率 CSI-RS, 其中, 第 y个接入点与第 n个接入点间存在干扰, y≠n。
本实施例的设备用于执行上述方法实施例四的技术方案, 其实现原理 和技术效果类似, 此处不再赘述。
图 11为本发明接入点实施例一的结构示意图。如图 11所示,该接入点包 括: 获取单元 1101及发送单元 1102。
获取单元 1101 , 用于获取基站配置给接入点的 CSI-RS导频图案, 其中, CSI-RS导频图案是基站为用户设备 UE配置的第一 CSI-RS导频图案、 第二 CSI-RS导频图案或第三 CSI-RS导频图案中包括的一个, CSI-RS导频图案为 X端口 CSI-RS导频图案, X端口 CSI-RS导频图案包括 M个端口数分别为 Jm 的 CSI-RS导频图案, Jm为第一接入点集合中的第 m个接入点的天线端口数, m=l , ...M, X为第一接入点集合中 M个接入点的天线端口数之和; 第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案,Υ端口 CSI-RS导频图案包括 Ν 个端口数分别为 Gn的 CSI-RS导频图案, Gn为第二接入点集合中的第 n个 接入点的天线端口数, n=l , ...N, Y为第二接入点集合中 N个接入点的天线 端口数之和;第三 CSI-RS导频图案为 2端口 CSI-RS导频图案, 2端口 CSI-RS 导频图案包括一个端口数为 2的 CSI-RS导频图案。
发送单元 1102, 与获取单元 1101相连, 用于根据 CSI-RS导频图案发送 非零功率 CSI-RS。
本实施例的接入点用于执行上述图 4所示方法实施例五的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
本发明实施例提供的配置信道状态信息参考信号的方法、基站及接入点, 基站将为 UE提供服务的接入点划分为第一接入点集合及第二接入点集合, 为 UE配置第一 CSI-RS导频图案、第二 CSI-RS导频图案和第三 CSI-RS导频 图案, 分配给第一接入点集合、 第二接入点集合以及第一接入点集合的第一 接入点的第一天线端口和第二接入点集合的第一接入点的第一天线组成的天 线集合, 并向 UE发送包含该些导频图案的非零功率 CSI-RS配置信息, UE 根据该些导频图案, 测量并上报第一接入点集合的第一下行信道状态信息、 第二接入点集合的第二下行信道状态信息和天线集合的第三下行信道状态信 息, 使得基站或是网络侧实体可以根据第一下行信道状态信息、 第二下行信 道状态信息、 第三下行信道状态信息获得联合下行信道状态信息。 本实施例 中, 基站为参与协作的多个接入点配置 CSI-RS导频图案, 使 UE可以测量上 报至少 3个接入点的联合下行信道状态信息。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种配置信道状态信息参考信号的方法, 其特征在于, 包括: 将协作传输的多个接入点划分为第一接入点集合和第二接入点集合, 其 中, 第一接入点集合包括 M个接入点, 第二接入点集合包括 N个接入点; 为用户设备 UE配置第一信道状态信息参考信号 CSI-RS导频图案、第二
CSI-RS导频图案和第三 CSI-RS导频图案, 其中, 所述第一 CSI-RS导频图案 为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导频图案包括 M个端口数 分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入点集合中的第 m个接入 点的天线端口数, m=l , ...M, X为所述第一接入点集合中 M个接入点的天 线端口数之和; 所述第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导频图案, Gn 为所述第二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y为所 述第二接入点集合中 N个接入点的天线端口数之和; 所述第三 CSI-RS导频 图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频图案包括一个天线 端口数为 2的 CSI-RS导频图案;
分别将所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所述第 三 CSI-RS导频图案配置给所述第一接入点集合、所述第二接入点集合以及所 述第一接入点集合的第一个天线和所述第二接入点集合的第一个天线组成的 天线集合,以使所述第一接入点集合的各个接入点根据所述第一 CSI-RS导频 图案发送第一非零功率 CSI-RS, 所述第二接入点集合的各个接入点根据所述 第二 CSI-RS导频图案发送第二非零功率 CSI-RS, 所述天线集合根据所述第 三 CSI-RS导频图案发送第三非零功率 CSI-RS;
向所述 UE发送非零功率 CSI-RS配置信息,所述配置信息包括所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所述第三 CSI-RS导频图案, 以使所述 UE根据所述第一 CSI-RS导频图案测量并上报第一下行信道状态信 息,根据所述第二 CSI-RS导频图案测量并上报第二下行信道状态信息,根据 第三 CSI-RS导频图案此类并上报第三下行信道状态信息;
根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状 态信息和所述第三下行信道状态信息生成联合下行信道状态信息。
2、根据权利要求 1所述的配置信道状态信息参考信号的方法, 其特征在 于, 所述根据所述 UE上报的所述第一下行信道状态信息、 所述第二第二下 行信道状态信息和所述第三下行信道状态信息生成联合下行信道状态信息, 包括:
根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状 态信息和所述第三下行信道状态信息, 分别获取所述第一下行信道状态信息 的第一预编码矩阵、 所述第二下行信道状态信息的第二预编码矩阵和所述第 三下行信道状态信息的第三预编码矩阵;
确定所述第一下行信道状态信息的第一秩指示信息和所述第二下行信道 状态信息的第二秩指示信息;
根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状态信息 的联合预编码矩阵。
3、根据权利要求 2所述的配置信道状态信息参考信号的方法, 其特征在 于, 所述根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码 矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状 态信息的联合预编码矩阵, 具体为:
将所述第一秩指示信息和所述第二秩指示信息的最小值作为所述联合下 行信道状态信息的联合秩指示信息, 应用以下公式计算所述联合下行信道状 态信 :
Figure imgf000030_0001
其中, / 1C,1: RIjoint )表示所述第一预编码矩阵 P1的第 i列到第 RIjint列, 2C,i :^ ;)表示所述第二预编码矩阵 的第 1列到第 RIjint列, P3i、 ^分 别表示所述第三预编码矩阵 的两个元素。
4、根据权利要求 1所述的配置信道状态信息参考信号的方法, 其特征在 于, 所述分别将所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所 述第三 CSI-RS导频图案配置给所述第一接入点集合、所述第二接入点集合以 及所述第一接入点集合的第一个天线和所述第二接入点集合的第一个天线组 成的天线集合, 具体为:
分别将端口数为 Jm的 CSI-RS导频图案配置给所述第一接入点集合的第 m个接入点, 将端口数为 Gn的 CSI-RS导频图案配置给所述第二接入点集合 的第 n个接入点,将端口为 2的 CSI-RS导频图案配置给所述第一接入点集合 的第一个天线和所述第二接入点集合的第二个天线, 以使所述第一接入点集 合的第 m个接入点在所述端口数为 Jm的 CSI-RS导频图案上发送所述第一非 零功率 CSI-RS, 所述第二接入点集合的第 n个接入点在所述端口数为 Gn的 CSI-RS 导频图案上发送所述第二非零功率 CSI-RS, 所述第一接入点集合的 第一个天线和所述第二接入点集合的第一个天线在所述 2端口 CSI-RS导频图 案上发送第三非零功率 CSI-RS。
5、根据权利要求 4所述的配置信道状态信息参考信号的方法, 其特征在 于, 所述为所述 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第 三 CSI-RS导频图案之后, 所述方法还包括:
将所述第一接入点集合的第 X个接入点对应的端口数为 Jx的 CSI-RS导 频图案通知给所述第一接入点集合的第 m个接入点,以使所述第 m个接入点 在所述端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, x≠m。
6、根据权利要求 4所述的配置信道状态信息参考信号的方法, 其特征在 于, 所述为所述 UE配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第 三 CSI-RS导频图案之后, 所述方法还包括:
将所述第二接入点集合的第 y个接入点对应的端口数为 Gy的 CSI-RS导 频图案通知给所述第二接入点集合的第 n个接入点, 以使所述第 n个接入点 在所述天线端口数为 Jx的 CSI-RS导频图案上发送零功率 CSI-RS, 其中, y ≠π。
7、根据权利要求 2所述的配置信道状态信息参考信号的方法, 其特征在 于, 还包括:
将所述第一 CSI-RS 导频图案的端口与所述第一预编码矩阵中元素的对应关 系、所述第二 CSI-RS导频图案的端口与所述第二预编码矩阵中元素的对应关 系、所述第三 CSI-RS导频图案的端口与所述第三预编码矩阵中元素的对应关 系至少其中之一通知给所述 UE。
8、根据权利要求 1所述的配置信道状态信息参考信号的方法, 其特征在 于:
所述第二 CSI-RS导频图案的周期大于所述第一 CSI-RS导频图案的周期 和 /或第三 CSI-RS导频图案的周期。
9、 根据权利要求 1-8任一所述的方法, 其特征在于,
所述接入点为物理接入点或虚拟接入点, 所述天线为物理天线或虚拟天 线, 所述天线端口为物理天线端口或虚拟天线端口。
10、 一种配置信道状态信息参考信号的方法, 其特征在于, 包括: 接入点获取基站配置给所述接入点的 CSI-RS 导频图案, 其中, 所述 CSI-RS导频图案是所述基站为用户设备 UE配置的第一 CSI-RS导频图案、 第二 CSI-RS 导频图案或第三 CSI-RS 导频图案中包括的一个, 所述第一 CSI-RS导频图案为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导频图案 包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为第一接入点集合中的 第 m个接入点的天线端口数, m=l , ...M, X为所述第一接入点集合中 M个 接入点的天线端口数之和; 所述第二 CSI-RS导频图案为 Y端口 CSI-RS导频 图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn的 CSI-RS导 频图案, Gn为第二接入点集合中的第 n个接入点的天线端口数, n=l , ...N, Y为所述第二接入点集合中 N个接入点的天线端口数之和;所述第三 CSI-RS 导频图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS导频图案包括一个 天线端口数为 2的 CSI-RS导频图案;
所述接入点根据所述 CSI-RS导频图案发送非零功率 CSI-RS。
11、 一种基站, 其特征在于, 包括:
划分单元, 用于将协作传输的多个接入点划分为第一接入点集合和第二 接入点集合, 其中, 第一接入点集合包括 M个接入点, 第二接入点集合包括 N个接入点;
第一配置单元, 与所述划分单元相连, 用于为用户设备 UE 配置第一 CSI-RS导频图案、 第二 CSI-RS导频图案和第三 CSI-RS导频图案, 其中, 所 述第一 CSI-RS导频图案为 X端口 CSI-RS导频图案, 所述 X端口 CSI-RS导 频图案包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为所述第一接入 点集合中的第 m个接入点的天线端口数, m=l , ...M, X为所述第一接入点 集合中 M个接入点的天线端口数之和; 所述第二 CSI-RS导频图案为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数分别为 Gn 的 CSI-RS导频图案, Gn为所述第二接入点集合中的第 n个接入点的天线端 口数, n=l , ...N, Y为所述第二接入点集合中 N个接入点的天线端口数之和; 所述第三 CSI-RS导频图案为 2端口 CSI-RS导频图案, 所述 2端口 CSI-RS 导频图案包括一个天线端口数为 2的 CSI-RS导频图案;
第二配置单元, 与所述第一配置单元相连, 用于分别将所述第一 CSI-RS 导频图案、 所述第二 CSI-RS导频图案和所述第三 CSI-RS导频图案配置给所 述第一接入点集合、 所述第二接入点集合以及所述第一接入点集合的第一个 天线和所述第二接入点集合的第一个天线组成的天线集合, 以使所述第一接 入点集合的各个接入点根据所述第一 CSI-RS 导频图案发送第一非零功率 CSI-RS, 所述第一接入点集合的各个接入点根据所述第二 CSI-RS 导频图案 发送第二非零功率 CSI-RS, 所述天线集合根据所述第三 CSI-RS导频图案发 送第三非零功率 CSI-RS;
配置信息发送单元, 用于向所述 UE发送非零功率 CSI-RS配置信息, 所 述配置信息包括所述第一 CSI-RS导频图案、 所述第二 CSI-RS导频图案和所 述第三 CSI-RS导频图案, 以使所述 UE根据所述第一 CSI-RS导频图案测量 并上报第一下行信道状态信息,根据所述第二 CSI-RS导频图案测量并上报第 二下行信道状态信息,根据第三 CSI-RS导频图案此类并上报第三下行信道状 态信息;
处理单元, 用于根据所述 UE上报的所述第一下行信道状态信息、 所述 第二下行信道状态信息和所述第三下行信道状态信息生成联合下行信道状态 信息。
12、 根据权利要求 11所述的基站, 其特征在于, 所述处理单元包括: 第一处理子单元, 用于根据所述 UE上报的所述第一下行信道状态信息、 所述第二下行信道状态信息和所述第三下行信道状态信息, 分别获取所述第 一下行信道状态信息的第一预编码矩阵、 所述第二下行信道状态信息的第二 预编码矩阵和所述第三下行信道状态信息的第三预编码矩阵;
第二处理子单元, 用于确定所述第一下行信道状态信息的第一秩指示信 息和所述第二下行信道状态信息的第二秩指示信息;
第三处理子单元, 分别与所述第一处理子单元和所述第二处理子单元相 连, 用于根据所述第一预编码矩阵、 所述第二预编码矩阵、 所述第三预编码 矩阵、 所述第一秩指示信息和所述第二秩指示信息生成所述联合下行信道状 态信息的联合预编码矩阵。
13、 根据权利要求 12所述的基站, 其特征在于, 所述第三处理子单元具 体用于将所述第一秩指示信息和所述第二秩指示信息的最小值作为所述联合 下行信道状态信息的联合秩指示信息, 应用以下公式计算所述联合下行信道 状态 。'《':
Figure imgf000034_0001
其中, PIC,I: Rijoint )表示所述第一预编码矩阵 PI的第 i列到第 RIjint列, 2 1 ^ )表示所述第二预编码矩阵 的第 1列到第 RIjmnt列, p31、 ¾分 别表示所述第三预编码矩阵 的两个元素。
14、 根据权利要求 11所述的基站, 其特征在于, 所述第二配置单元具体 用于分别将端口数为 Jm的 CSI-RS导频图案配置给所述第一接入点集合的第 m个接入点, 将端口数为 Gn的 CSI-RS导频图案配置给所述第二接入点集合 的第 n个接入点,将端口为 2的 CSI-RS导频图案配置给所述第一接入点集合 的第一个天线和所述第二接入点集合的第二个天线, 以使所述第一接入点集 合的第 m个接入点在所述端口数为 Jm的 CSI-RS导频图案上发送所述第一非 零功率 CSI-RS, 所述第二接入点集合的第 n个接入点在所述端口数为 Gn的 CSI-RS 导频图案上发送所述第二非零功率 CSI-RS, 所述第一接入点集合的 第一个天线和所述第二接入点集合的第一个天线在所述 2端口 CSI-RS导频图 案上发送第三非零功率 CSI-RS。
15、 根据权利要求 14所述的基站, 其特征在于, 还包括:
第一通知单元, 与所述第一配置单元相连, 用于将所述第一接入点集合 的第 X个接入点对应的端口数为 Jx的 CSI-RS导频图案通知给所述第一接入 点集合的第 m个接入点,以使所述第 m个接入点在所述端口数为 Jx的 CSI-RS 导频图案上发送零功率 CSI-RS, 其中, x≠m。
16、 根据权利要求 14所述的基站, 其特征在于, 还包括:
第二通知单元, 与所述第二配置单元相连, 用于将所述第二接入点集合 的第 y个接入点对应的端口数为 Gy的 CSI-RS导频图案通知给所述第二接入 点集合的第 n个接入点,以使所述第 n个接入点在所述端口数为 Jx的 CSI-RS 导频图案上发送零功率 CSI-RS, 其中, y≠n。
17、 根据权利要求 12所述的基站, 其特征在于, 还包括: 第三通知单元,用于将所述第一 CSI-RS导频图案的端口与所述第一预编 码矩阵中元素的对应关系、所述第二 CSI-RS导频图案的端口与所述第二预编 码矩阵中元素的对应关系、所述第三 CSI-RS导频图案的端口与所述第三预编 码矩阵中元素的对应关系至少其中之一通知给所述 UE。
18、 根据权利要求 11〜17任一所述的基站, 其特征在于,
所述接入点为物理接入点或虚拟接入点, 所述天线为物理天线或虚拟天 线, 所述天线端口为物理天线端口或虚拟天线端口。
19、 一种接入点, 其特征在于, 包括:
获取单元, 用于获取基站配置给所述接入点的信道状态信息参考信号
CSI-RS导频图案, 其中, 所述 CSI-RS导频图案是所述基站为用户设备 UE 配置的第一 CSI-RS导频图案、 第二 CSI-RS导频图案或第三 CSI-RS导频图 案中包括的一个, 所述 CSI-RS导频图案为 X端口 CSI-RS导频图案, 所述 X 端口 CSI-RS导频图案包括 M个端口数分别为 Jm的 CSI-RS导频图案, Jm为 所述第一接入点集合中的第 m个接入点的天线端口数, m=l , ...M, X为所 述第一接入点集合中 M个接入点的端口数之和; 所述第二 CSI-RS导频图案 为 Y端口 CSI-RS导频图案, 所述 Y端口 CSI-RS导频图案包括 N个端口数 分别为 Gn的 CSI-RS导频图案, Gn为所述第二接入点集合中的第 n个接入 点的天线端口数, n=l , ...N, Y为所述第二接入点集合中 N个接入点的天线 端口数之和; 所述第三 CSI-RS导频图案为 2端口 CSI-RS导频图案, 所述 2 端口 CSI-RS导频图案包括一个端口数为 2的 CSI-RS导频图案;
发送单元, 与所述获取单元相连, 用于根据所述 CSI-RS导频图案发送非 零功率 CSI-RS。
PCT/CN2012/082973 2012-10-15 2012-10-15 配置信道状态信息参考信号的方法、基站及接入点 WO2014059581A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280002809.7A CN103931226B (zh) 2012-10-15 2012-10-15 配置信道状态信息参考信号的方法、基站及接入点
EP12886555.7A EP2900008B1 (en) 2012-10-15 2012-10-15 Method, base station and access point for configuring channel state information reference signal
PCT/CN2012/082973 WO2014059581A1 (zh) 2012-10-15 2012-10-15 配置信道状态信息参考信号的方法、基站及接入点
US14/687,657 US9634751B2 (en) 2012-10-15 2015-04-15 Method for configuring channel state information reference signal, base station, and access point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082973 WO2014059581A1 (zh) 2012-10-15 2012-10-15 配置信道状态信息参考信号的方法、基站及接入点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/687,657 Continuation US9634751B2 (en) 2012-10-15 2015-04-15 Method for configuring channel state information reference signal, base station, and access point

Publications (1)

Publication Number Publication Date
WO2014059581A1 true WO2014059581A1 (zh) 2014-04-24

Family

ID=50487407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082973 WO2014059581A1 (zh) 2012-10-15 2012-10-15 配置信道状态信息参考信号的方法、基站及接入点

Country Status (4)

Country Link
US (1) US9634751B2 (zh)
EP (1) EP2900008B1 (zh)
CN (1) CN103931226B (zh)
WO (1) WO2014059581A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432006A (zh) * 2015-04-10 2017-12-01 华为技术有限公司 一种信道测量方法、基站及ue
WO2018141261A1 (zh) * 2017-02-06 2018-08-09 中兴通讯股份有限公司 参考信号的配置方法、配置装置及通信节点
CN109412663A (zh) * 2017-08-16 2019-03-01 上海诺基亚贝尔股份有限公司 用于mimo通信的方法、设备和计算机可读介质
CN110476391A (zh) * 2017-03-29 2019-11-19 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치
CN105634680B (zh) * 2014-10-31 2019-02-12 电信科学技术研究院 一种信道状态信息的反馈、获取方法及装置
US9787379B2 (en) * 2014-11-17 2017-10-10 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
US10034295B2 (en) * 2015-07-15 2018-07-24 Nokia Solutions And Networks Oy Coordination of downlink channel assignments for communication with cluster of access points in wireless network
CN106685620B (zh) * 2015-11-06 2021-02-12 中兴通讯股份有限公司 信道状态测量导频的配置方法及装置、解析方法及装置
JP6845871B2 (ja) * 2016-05-05 2021-03-24 株式会社Nttドコモ アップリンクパイロット及び分散されたユーザ近接検出に基づく基地局選択のメカニズム及び手順
CN109392001B (zh) * 2017-08-10 2020-04-14 维沃移动通信有限公司 一种测量报告上报方法和用户终端
WO2019028878A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated TECHNIQUES FOR NON-NULL POWER BEAMS IN WIRELESS SYSTEMS
US11265060B2 (en) * 2018-01-22 2022-03-01 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device therefor
US10993143B2 (en) * 2019-07-10 2021-04-27 Ambit Microsystems (Shanghai) Ltd. Method for improving transmission rate in mesh network
JP7461481B2 (ja) * 2020-02-13 2024-04-03 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報送受信方法及び装置
CN113395098B (zh) * 2021-04-13 2023-11-03 西安宇飞电子技术有限公司 一种多天线信号合并和发射信号赋形的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100520A1 (en) * 2010-02-12 2011-08-18 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
WO2011153286A1 (en) * 2010-06-01 2011-12-08 Qualcomm Incorporated Reference signal patterns
CN102684850A (zh) * 2011-03-11 2012-09-19 夏普株式会社 信道状态信息反馈方法、用户设备和基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406171B2 (en) * 2008-08-01 2013-03-26 Texas Instruments Incorporated Network MIMO reporting, control signaling and transmission
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CN102696183B (zh) * 2010-03-17 2016-01-13 Lg电子株式会社 用于在支持多个天线的无线通信系统中提供信道状态信息-参考信号(csi-rs)配置信息的方法和装置
CN102404689B (zh) * 2010-09-13 2015-08-12 电信科学技术研究院 接收和发送csi-rs配置信息的方法和装置
US8681651B2 (en) * 2010-11-05 2014-03-25 Qualcomm Incorporated Reference signal reception and channel state information determination for multiple nodes in a wireless communication network
CN102685797B (zh) * 2011-03-11 2017-04-12 夏普株式会社 Rrh增强协作多点传输系统及其csi‑rs配置方法
CN102694622B (zh) * 2011-03-25 2017-06-27 中兴通讯股份有限公司 一种测量集合的信令通知方法及系统
CN102255689B (zh) * 2011-07-08 2018-05-04 中兴通讯股份有限公司 一种信道状态信息的处理方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100520A1 (en) * 2010-02-12 2011-08-18 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
WO2011153286A1 (en) * 2010-06-01 2011-12-08 Qualcomm Incorporated Reference signal patterns
CN102684850A (zh) * 2011-03-11 2012-09-19 夏普株式会社 信道状态信息反馈方法、用户设备和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Considerations on CSI-RS configuration for CoMP", 3GPP TSG RAN WG1 MEETING #69, R1-122298, 25 May 2012 (2012-05-25), XP050600561 *
See also references of EP2900008A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768603B (zh) * 2015-04-10 2019-04-23 华为技术有限公司 一种信道测量方法、基站及ue
EP3654717A1 (en) * 2015-04-10 2020-05-20 Huawei Technologies Co., Ltd. Channel measurement method, base station, and ue
CN107432006B (zh) * 2015-04-10 2023-05-09 华为技术有限公司 一种信道测量方法、基站及ue
CN108616344A (zh) * 2015-04-10 2018-10-02 华为技术有限公司 一种信道测量方法、基站及ue
CN108768603A (zh) * 2015-04-10 2018-11-06 华为技术有限公司 一种信道测量方法、基站及ue
US10892865B2 (en) 2015-04-10 2021-01-12 Huawei Technologies Co., Ltd. Channel measurement method, base station, and UE
EP3270648A4 (en) * 2015-04-10 2018-03-07 Huawei Technologies Co., Ltd. Channel measurement method, base station and ue
CN107432006A (zh) * 2015-04-10 2017-12-01 华为技术有限公司 一种信道测量方法、基站及ue
US10903888B2 (en) 2017-02-06 2021-01-26 Zte Corporation Configuration method and configuration device for reference signal and communication node
WO2018141261A1 (zh) * 2017-02-06 2018-08-09 中兴通讯股份有限公司 参考信号的配置方法、配置装置及通信节点
CN110476391A (zh) * 2017-03-29 2019-11-19 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
US11146369B2 (en) 2017-03-29 2021-10-12 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
CN110476391B (zh) * 2017-03-29 2021-12-28 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN109412663B (zh) * 2017-08-16 2020-11-13 上海诺基亚贝尔股份有限公司 用于mimo通信的方法、设备和计算机可读介质
CN109412663A (zh) * 2017-08-16 2019-03-01 上海诺基亚贝尔股份有限公司 用于mimo通信的方法、设备和计算机可读介质

Also Published As

Publication number Publication date
EP2900008B1 (en) 2019-05-22
CN103931226A (zh) 2014-07-16
US9634751B2 (en) 2017-04-25
CN103931226B (zh) 2017-11-28
US20150222347A1 (en) 2015-08-06
EP2900008A1 (en) 2015-07-29
EP2900008A4 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2014059581A1 (zh) 配置信道状态信息参考信号的方法、基站及接入点
WO2017050033A1 (zh) 一种信息发送及确定、关系确定的方法及装置
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
CN102404689B (zh) 接收和发送csi-rs配置信息的方法和装置
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
KR102074790B1 (ko) Csi-rs에 대해 사용되는 컴포넌트 조합의 획득 및 표시
WO2015101109A1 (zh) 一种信道状态信息测量、参考信号的发送方法和装置
WO2015042855A1 (zh) 通信方法、基站和用户设备
WO2013086954A1 (zh) 信道状态信息的获取方法及装置
WO2018130234A1 (zh) 一种数据传输控制方法、网络侧设备及终端侧设备
WO2015014321A1 (zh) 配置csi过程的方法和基站以及csi反馈方法和用户设备
WO2014032606A1 (zh) 一种传输参考信号的方法、装置及系统
WO2015018068A1 (zh) 信息交互方法、基站以及通信系统
WO2013004128A1 (zh) 一种配置参考信号的方法、UE及eNB
WO2014121690A1 (zh) 三维信道测量资源配置和质量测量方法及设备
WO2020063743A1 (zh) Csi的上报方法、装置、终端及网络侧设备
JP2017525219A (ja) 信号送信方法および装置
WO2013020498A1 (zh) 一种基于多点协同传输的信息传输方法和设备
EP2837103A1 (en) Three-dimensional beamforming in a mobile communications network
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
WO2016116006A1 (zh) 一种信道状态信息反馈方法、下行参考信号方法及装置
WO2012122912A1 (zh) 一种解调导频物理资源块绑定解调的方法及系统
CN114696928A (zh) 一种干扰测量方法、用户终端和网络侧设备
WO2012171387A1 (zh) 一种信道信息获取和反馈方法、系统及装置
WO2017197552A1 (zh) Csi-rs配置及csi反馈方法、装置、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012886555

Country of ref document: EP