WO2014058407A1 - Method for treating aqueous solutions with electro-erosion coagulation - Google Patents

Method for treating aqueous solutions with electro-erosion coagulation Download PDF

Info

Publication number
WO2014058407A1
WO2014058407A1 PCT/UA2012/000107 UA2012000107W WO2014058407A1 WO 2014058407 A1 WO2014058407 A1 WO 2014058407A1 UA 2012000107 W UA2012000107 W UA 2012000107W WO 2014058407 A1 WO2014058407 A1 WO 2014058407A1
Authority
WO
WIPO (PCT)
Prior art keywords
granules
layer
discharge chamber
steel
water
Prior art date
Application number
PCT/UA2012/000107
Other languages
French (fr)
Russian (ru)
Inventor
Николай Константинович МОНАСТЫРЕВ
Леонид Николаевич ЗИМА
Original Assignee
Monastyrov Mykola Konstantinovich
Zima Leonid Nikolaevich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monastyrov Mykola Konstantinovich, Zima Leonid Nikolaevich filed Critical Monastyrov Mykola Konstantinovich
Publication of WO2014058407A1 publication Critical patent/WO2014058407A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses

Definitions

  • the present invention relates to means for the integrated treatment of industrial and rainwater, as well as the process water of nuclear power plants for the purpose of their decontamination, mainly from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At).
  • a known method of water purification in order to obtain drinking water including the operation of preliminary purification of the source water from harmful and toxic substances, cooling the water and then removing heavy hydrogen isotopes from the water — deuterium and radioactive tritium — in the water stream by selective solid condensation of these heavy isotopes into two stages: at the first stage - on the surface of a solid body - evaporator, cooled below 0 ° ⁇ , washed by leaving water, and then at the second stage - on the surface of single layers of condensate - ice, which They constantly form, while the surface temperature each layer is maintained at the level originally established by the evaporator temperature, after obtaining the necessary ice crystallization process thickness stopped and removed the heavy isotopes of oxygen O d and O-is, then carry the light water sampling with a reduced content of heavy isotopes of hydrogen and oxygen is carried out defrosting and condensate drain activation of the obtained water by optimizing its mineral composition and structure [Declaration Patent of
  • the disadvantage of the described method lies in its complexity and high cost of the obtained product - purified water, which significantly limits its use for purification, in particular, industrial and rainwater from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium- 241 (241 At).
  • a method of purifying aqueous solutions by electroerosive coagulation which includes the operation of passing an aqueous solution through a layer of metal granules that are located in the discharge chamber, and exposing them to electric pulses until the granules gradually disintegrate under the influence of spark discharges and the formation of coagulants [Scherba A.A., Zakharchenko S.N. Application of the method of electroerosive coagulation. / In the journal "Water and Water Purification Technologies" - Ns 4, December 2002; p. 27-29].
  • the granules are placed in the discharge chamber and periodically act on them with short - up to 200 ⁇ s and powerful - up to 500 kW pulses.
  • the disadvantage of the described method is the need to use powerful pulses, and therefore a powerful installation, which is not always economically feasible and affordable.
  • the proposed utility model is based on the task of creating such a method for the purification of aqueous electroerosive solutions coagulation in order to deactivate them, mainly from radioactive compounds of cesium, strontium and americium, which would be more economical, and therefore more accessible.
  • the problem is solved in the proposed method by creating conditions for the selective sorption of cesium, strontium and americium compounds by their coagulation with aluminum and iron hydroxides, which are formed by electroerosive dispersion of aluminum and steel granules in an aqueous medium.
  • the proposed, as well as the known method of purification of aqueous solutions by electroerosive coagulation includes filling the discharge chamber with a purified aqueous solution, placing a layer of metal granules in the cavity of the discharge chamber, applying electric pulses to the layer of granules through electrodes that connect to the corresponding outputs of the pulse generator, and gradually destroying the granules under the action of spark discharges between them until the formation of coagulants and water of the required purity, and, according to the invention, a layer of metal gr the anul is created from granules made of steel and aluminum or its alloys, steel granules and steel electrodes make up approximately 20-25% of the total volume of metals in the purified aqueous solution, and this solution is fed into the cavity of the discharge chamber in a flow mode with a pressure from below, creating "Pseudo-boiling" layer of granules, which are affected by rectangular electric pulses with a duty cycle of 75-85 micro
  • the optimal material for the layer of metal granules which is most able to coagulate the radionuclides of cesium-137 (137Cs), strontium-90 (90Sr) and americium-241 (241At), is a mixture of steel granules, for example, from Art. ⁇ and aluminum or its alloys, for example, ⁇ .
  • the initial diameter (size) of each granule is 8-10 mm. AT As granules can be used and crushed metal chips of these metals of the same size.
  • the aqueous solution is fed into the dispersion zone under pressure from below, through a perforated grating of dielectric material, so that the layer of aluminum and steel granules is in a "pseudo-boiling" state.
  • the intensity of the contacting of the granules with each other and with the electrodes significantly increases, and, as a result, the number of electrical contacts between them per unit time per unit volume of the aqueous solution that is subjected to purification increases, which leads to an increase in the release of the amorphous phase of metal hydroxides (coagulants), ozone, OH- radicals, which intensifies the passage of chemical reactions to create water-insoluble complex compounds, which include radionuclides of cesium-137 (137Cs), strontium-90 (90Sr), ame ricium-241 (241At) - selective sorption of compounds of cesium, strontium and americium.
  • coagulants coagulants
  • ozone ozone
  • OH- radicals which intensifies the passage of chemical reactions to create water-insoluble complex compounds, which include radionuclides of cesium-137 (137Cs), strontium-90 (90Sr), ame ricium-241 (241At) - selective
  • the ratio of the volume of granules in each case is chosen experimentally - depending on the contamination of the solution that needs to be cleaned.
  • steel granules (or shavings) comprise approximately 20 - 25% of the total volume of metals in the discharge chamber.
  • the electrodes in the reactor are made of carbon steel, for example, grade St. 3.
  • the dispersible layer of metal granules consists of several metals - iron, aluminum or its compounds, or alloys based on aluminum.
  • the presence of carbon steel in the discharge chamber not only contributes to the creation of coagulants, but also softens the hydrodynamic load on the body of the discharge chamber.
  • iron hydroxide compounds in which iron has a valency of +2, +3, +4 (based on FeO, Fe 2 O 3 , Fe 3 O 4 oxides) formed during the electroerosion of steel electrodes and steel granules or shavings have a high coagulation level in relation to heavy ions metals such as strontium-90 (90Sr).
  • Aluminum hydroxide / A1 (OH) 3 / which is formed as a result of electroerosion of aluminum granules or shavings, has a high level of coagulation with respect to cesium-137 (137Cs) and americium-241 (241 Am) ions.
  • Table 1 shows the data confirming the optimal volume of carbon steel granules and electrodes in the total volume of metals in the cavity of the discharge chamber when using rectangular pulses with a duty cycle of 75 ⁇ s and an amplitude of 500 V for the purification of aqueous solutions of radionuclides - cesium - 137 (137Cs), strontium -90 (90Sr) and americium-241 (241At), which is 20-25%:
  • the precipitate which does not dissolve and consists of coagulants, also containing AI (OH) 3 , FeO, Fe 2 O 3 , Fe 3 O 4 , has a reduced magnetic susceptibility. This allows you to remotely and quickly manipulate the coagulant during technological operations (its compaction, removal from the sedimentator, etc.).
  • Table 2 shows the data that confirm the fact that the optimal effect on the granule layer is rectangular pulses with a duty cycle of 75-85 ⁇ s and an amplitude of 300-800 V, provided that the volume of granules and electrodes made of carbon steel is stable in the total volume of metals in the discharge camera - 23%:
  • Figure 1 schematically shows the installation for the purification of aqueous solutions by electroerosive coagulation, which carried out the proposed method.
  • Installation for cleaning aqueous solutions by electroerosive coagulation contains a discharge chamber 1 of a dielectric material.
  • a horizontal mesh partition 2 of dielectric material is installed in the cavity of the discharge chamber 1, on which granules of carbon steel (for example, grade 3) and aluminum or an aluminum alloy (for example, grade AMC) with a diameter of 8-10 mm are placed in a uniform layer 3.
  • Two vertical steel electrodes 4 of different polarity pass through the partition 2.
  • the volume of steel granules and electrodes 4 located in the solution to be cleaned is 20 - 25% of the total volume of metals in the cavity of the discharge chamber 1.
  • Each electrode 4 has the shape of a rectangular parallelepiped, the larger edge of which is located vertically, and is connected to the corresponding output of the pulse generator - anode or cathode / not shown /.
  • a nozzle 5 is installed for supplying a cleaned solution under pressure in the flow chamber 1 to the cavity of the chamber 1 with a pressure from below to create a "pseudo-boiling" layer of granules, which is created using the corresponding pump (not shown).
  • a sedimentation tray 6 is horizontally located - for the extraction of coagulated sediment from the chamber 1, which is formed during electroerosive coagulation.
  • a fitting with a valve 7 is installed, designed to control the drain rate of the solution to be purified and its subsequent re-supply in flow mode through the nozzle 5 into the cavity of the chamber 1.
  • a valve 8 is installed, designed to supply new granules into the cavity of the discharge chamber 1.
  • the installation is equipped with a control unit, the corresponding inputs of which are connected to temperature sensors, the level of the aqueous solution and the degree of its purification, and the corresponding outputs are connected to the pump and to the pulse generator ⁇ are not shown ⁇ .
  • the control unit is designed to maintain the stability of the set parameters of a series of rectangular electric pulses and to record data regarding the purity of the solution passing through the valve 7 at the outlet of the chamber 1.
  • the control unit is designed as a control computer with appropriate software.
  • Example 1 In the cavity made of dielectric material of the discharge chamber 1, in which a horizontal mesh partition 2 of dielectric material is installed, granules of carbon steel grade St were loaded. 3 and aluminum alloy AMtsS brand with a diameter of 8 - 10 mm. The granules were placed in a uniform layer 3 on a horizontal mesh partition 2 so that the solution to be cleaned — process effluents — completely covered the layer 3 of granules during operation of the unit for cleaning aqueous solutions.
  • Two vertical steel electrodes 4 of different polarity located at a distance of 200 - 250 millimeters in the cavity of chamber 1, passed through the partition 2.
  • the volume of steel granules and electrodes 4 was approximately 25% of the total volume of metals in the cleaned solution in the cavity of the discharge chamber 1.
  • Each electrode 4 had the shape of a rectangular parallelepiped and was connected to the output of a pulse generator of the corresponding polarity.
  • Technological drains were supplied from the bottom to the top through the nozzle 5 into the discharge chamber 1 with the aim of their decontamination, mainly from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At). Rectangular pulses with a duty cycle of 75 ⁇ s and an amplitude of 600 V were applied to the electrodes 4. During the transmission of pulses between the individual granules and electrodes 4 sparks occurred.
  • hydroxides A1 (OH) s and iron, oxides FeO, Reg ⁇ , Fe 3 0 4 were synthesized, which sorbed cesium, strontium, americium and heavy metal ions dissolved in technological effluents . Namely, there was selective sorption of cesium, strontium and americium compounds by their coagulation with aluminum hydroxides, iron oxides and hydroxides, which were formed during electroerosive dispersion of layer 3 from aluminum and steel granules in an aqueous medium.
  • the solution which was subjected to purification, was fed into the discharge chamber 1 in a flow mode with a pressure from below through the nozzle 5 to create a "pseudo-boiling" layer 3 of granules.
  • the solution through the nozzle with a valve 7 in the upper part of the chamber 1 flowed out of the chamber 1 and entered the pump chamber / not shown /, from which the pump again fed the solution into the cavity of the chamber 1 for re-cleaning through the nozzle 5.
  • the degree of cleaning was monitored solution.
  • Example 2 Purification of rainwater was carried out in order to deactivate them mainly from radionuclides — cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At). The same operations were performed as in example 1, but the volume of steel granules and electrodes 4 was approximately 20% of the total volume of metals in the discharge chamber 1. A series of rectangular pulses with a duty cycle of 80 ⁇ s and an amplitude of 300 V were applied to the electrodes 4.
  • the proposed method turned out to be more economical, since equipment with an installed capacity of only 4 kW was used for its implementation, in contrast to 20-25 kW in the prototype, and in addition, the proposed method had greater productivity due to the use of layer 3 of granules of carbon steel and aluminum alloys that were in the cleaned solution in the cavity of the discharge chamber 1 in a "pseudo-boiling" state, by creating conditions for selective sorption of cesium, strontium and amer compounds it is coagulated by aluminum and iron hydroxides, which are formed by electroerosive dispersion of aluminum and steel granules in an aqueous medium by a series of rectangular pulses with optimal values of duty cycle and amplitude.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The invention relates to facilities for the complex treatment of industrial waste water and rainwater run-off, and also processing water from atomic power plants, with the aim of decontaminating said water from radionuclides. The method comprises filling a discharge chamber with an aqueous solution to be treated, placing a layer of metallic granules into the discharge chamber cavity, subjecting the layer of granules to electric pulses via electrodes, which are connected to corresponding outputs of a pulse generator, and gradually destroying the granules under the action of spark discharges therebetween until coagulants and water of the required purity are produced. The layer of metallic granules is produced from granules manufactured from steel and aluminium or alloys thereof, the steel granules and steel electrodes make up approximately 20-25% of the total volume of metals in the aqueous solution to be treated, and said solution is fed into the discharge chamber cavity in a continuous-flow mode with pressure from below, producing a "pseudo-boiling" layer of granules, the granules being subjected to square-wave electric pulses with a relative pulse duration of 75-85 microseconds and an amplitude of 300-800 volts.

Description

Способ очистки водных растворов электроэрозионной коагуляцией.  The method of purification of aqueous solutions by electroerosive coagulation.
Предлагаемое изобретение относится к средствам для комплексной очистки промышленных и дождевых стоков, а также технологической воды атомных электростанций с целью их дезактивации, преимущественно от радионуклидов - цезия-137 (137Cs), стронция-90 (90Sr), америция-241 (241Ат). The present invention relates to means for the integrated treatment of industrial and rainwater, as well as the process water of nuclear power plants for the purpose of their decontamination, mainly from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At).
Дезактивация радионуклидов, которые накопились в верхнем слое земли и во время осадков переходят в дождевые стоки, а также концентрируются в технологических водах атомных электростанций, является важной задачей, решение которой позволит повысить качество сельскохозяйственных продуктов, улучшить состояние окружающей среды и оздоровить население.  The decontamination of radionuclides that accumulate in the upper layer of the earth and during rainfall turn into rainwater and also concentrate in the technological waters of nuclear power plants is an important task, the solution of which will improve the quality of agricultural products, improve the environment and improve the health of the population.
Одним из методов дезактивации являются сорбционные процессы с использованием неорганических сорбентов и органических ионообменных материалов, но их использование в больших объемах затруднено высокой себестоимостью, а в некоторых случаях и сложностью процессов их изготовления.  One of the methods of decontamination is sorption processes using inorganic sorbents and organic ion-exchange materials, but their use in large volumes is hindered by the high cost, and in some cases, the complexity of the processes of their manufacture.
Принимая во внимание загрязненность больших территорий именно радионуклидами цезия-137 (137Cs), стронция-90 (90Sr) и америция-241 (241Ат), предлагаемое решение являетс актуальным и обоснованным.  Taking into account the contamination of large areas with radionuclides of cesium-137 (137Cs), strontium-90 (90Sr) and americium-241 (241At), the proposed solution is relevant and reasonable.
Известен способ очистки воды с целью получения питьевой воды, включающий операции предварительной очистки исходной воды от вредных и ядовитых веществ, охлаждения воды и последующего удаления из воды тяжелых изотопов водорода - дейтерия и радиоактивного трития - в потоке воды путем избирательной твердой конденсации этих тяжелых изотопов в две стадии: на первой стадии - на поверхности омываемого выходящей водой охлажденного ниже 0°С твердого тела - испарителя, а потом на второй стадии - на поверхности одиночных слоев конденсата - льда, которые постоянно образуются, при этом температуру поверхности каждого слоя поддерживают на уровне изначально установленной температуры испарителя, после получения необходимой толщины льда процесс кристаллизации останавливают и удаляют тяжелые изотопы кислорода Ой и O-is, после чего осуществляют забор легкой воды со сниженным содержанием тяжелых изотопов водорода и кислорода, проводят оттаивание и слив конденсата, активацию полученной воды путем оптимизации ее минерального состава и структуры [Декларационный патент Украины Ns 51330 А на изобретение, МПК 7 C02F9/00, Публ. 15.11.2002. Бюл. Ns 1 1/2002]. A known method of water purification in order to obtain drinking water, including the operation of preliminary purification of the source water from harmful and toxic substances, cooling the water and then removing heavy hydrogen isotopes from the water — deuterium and radioactive tritium — in the water stream by selective solid condensation of these heavy isotopes into two stages: at the first stage - on the surface of a solid body - evaporator, cooled below 0 ° С, washed by leaving water, and then at the second stage - on the surface of single layers of condensate - ice, which They constantly form, while the surface temperature each layer is maintained at the level originally established by the evaporator temperature, after obtaining the necessary ice crystallization process thickness stopped and removed the heavy isotopes of oxygen O d and O-is, then carry the light water sampling with a reduced content of heavy isotopes of hydrogen and oxygen is carried out defrosting and condensate drain activation of the obtained water by optimizing its mineral composition and structure [Declaration Patent of Ukraine Ns 51330 A for Invention, IPC 7 C02F9 / 00, Publ. 11/15/2002. Bull. Ns 1 1/2002].
Недостаток описанного способа заключается в его сложности и высокой себестоимости полученного продукта - очищенной воды, что существенно ограничивает его использование для очистки, в частности, промышленных и дождевых стоков от радионуклидов - цезия-137 (137Cs), стронция-90 (90Sr), америция-241 (241Ат).  The disadvantage of the described method lies in its complexity and high cost of the obtained product - purified water, which significantly limits its use for purification, in particular, industrial and rainwater from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium- 241 (241 At).
Наиболее близким к предлагаемому по количеству существенных признаков является способ очистки водных растворов электроэрозионной коагуляцией, который включает операции пропускания водного раствора через слой металлических гранул, которые расположены в разрядной камере, и воздействия на них электрическими импульсами до постепенного разрушения гранул под действием искровых разрядов и образования коагулянтов [Щерба А.А., Захарченко С.Н. Применение метода электроэрозионной коагуляции. /В журнале "Вода и водоочистительные технологии" - Ns 4, декабрь 2002 г.; с.27-29]. В соответствии с описанным способом гранулы располагают в разрядной камере и периодически воздействуют на них короткими - до 200 мкс и мощными - до 500 кВт импульсами.  Closest to the proposed one by the number of essential features is a method of purifying aqueous solutions by electroerosive coagulation, which includes the operation of passing an aqueous solution through a layer of metal granules that are located in the discharge chamber, and exposing them to electric pulses until the granules gradually disintegrate under the influence of spark discharges and the formation of coagulants [Scherba A.A., Zakharchenko S.N. Application of the method of electroerosive coagulation. / In the journal "Water and Water Purification Technologies" - Ns 4, December 2002; p. 27-29]. In accordance with the described method, the granules are placed in the discharge chamber and periodically act on them with short - up to 200 μs and powerful - up to 500 kW pulses.
Недостатком описанного способа является необходимость в использовании мощных импульсов, а потому и мощной установки, что не всегда экономически целесообразно и доступно.  The disadvantage of the described method is the need to use powerful pulses, and therefore a powerful installation, which is not always economically feasible and affordable.
В основу предлагаемой полезной модели поставлена задача создания такого способа очистки водных растворов электроэрозионной коагуляцией с целью их дезактивации, преимущественно от радиоактивных соединений цезия, стронция и америция, который бы был более экономичным, а потому и более доступным. The proposed utility model is based on the task of creating such a method for the purification of aqueous electroerosive solutions coagulation in order to deactivate them, mainly from radioactive compounds of cesium, strontium and americium, which would be more economical, and therefore more accessible.
Поставленная задача решается в предлагаемом способе за счет создания условий для селективной сорбции соединений цезия, стронция и америция путем их коагуляции гидроксидами алюминия и железа, которые образуются при электроэрозионном диспергировании алюминиевых и стальных гранул в водной среде.  The problem is solved in the proposed method by creating conditions for the selective sorption of cesium, strontium and americium compounds by their coagulation with aluminum and iron hydroxides, which are formed by electroerosive dispersion of aluminum and steel granules in an aqueous medium.
Предлагаемый, как и известный способ очистки водных растворов электроэрозионной коагуляцией, включает заполнение разрядной камеры очищаемым водным раствором, размещение в полости разрядной камеры слоя металлических гранул, воздействие на слой гранул электрическими импульсами через электроды, которые подключают к соответствующим выходам генератора импульсов, постепенного разрушения гранул под действием искровых разрядов между ними до образования коагулянтов и воды необходимой чистоты, а, согласно изобретению, слой металлических гранул создают из гранул, изготовленных из стали и алюминия или его сплавов, стальные гранулы и стальные электроды составляют приблизительно 20-25 % от общего объема металлов в очищаемом водном растворе, а указанный раствор подают в полость разрядной камеры в проточном режиме с напором снизу, создавая «псевдокипящий» слой гранул, на которые воздействуют электрическими импульсами прямоугольной формы со скважностью 75-85 микросекунд и амплитудой 300-800 Вольт.  The proposed, as well as the known method of purification of aqueous solutions by electroerosive coagulation, includes filling the discharge chamber with a purified aqueous solution, placing a layer of metal granules in the cavity of the discharge chamber, applying electric pulses to the layer of granules through electrodes that connect to the corresponding outputs of the pulse generator, and gradually destroying the granules under the action of spark discharges between them until the formation of coagulants and water of the required purity, and, according to the invention, a layer of metal gr the anul is created from granules made of steel and aluminum or its alloys, steel granules and steel electrodes make up approximately 20-25% of the total volume of metals in the purified aqueous solution, and this solution is fed into the cavity of the discharge chamber in a flow mode with a pressure from below, creating "Pseudo-boiling" layer of granules, which are affected by rectangular electric pulses with a duty cycle of 75-85 microseconds and an amplitude of 300-800 volts.
Авторами экспериментально установлено, что оптимальным материалом для слоя металлических гранул, который способен наиболее эффективно коагулировать радионуклиды цезия-137 (137Cs), стронция-90 (90Sr) и америция-241 (241Ат), является смесь из гранул стали, например, из Ст.З и алюминия или его сплавов, например, АМцС. Исходный диаметр (размер) каждой гранулы составляет 8-10 мм. В качестве гранул может быть использована и измельченная металлическая стружка указанных металлов таких же размеров. The authors experimentally found that the optimal material for the layer of metal granules, which is most able to coagulate the radionuclides of cesium-137 (137Cs), strontium-90 (90Sr) and americium-241 (241At), is a mixture of steel granules, for example, from Art. З and aluminum or its alloys, for example, АМЦС. The initial diameter (size) of each granule is 8-10 mm. AT As granules can be used and crushed metal chips of these metals of the same size.
Водный раствор подают в зону диспергирования под напором снизу, через перфорированную решетку из диэлектрического материала, для того, чтобы слой алюминиевых и стальных гранул находился в «псевдокипящем» состоянии. При этом существенно повышается интенсивность контактирования гранул между собой и с электродами, а, как следствие, увеличивается количество электрических контактов между ними в единицу времени в единице объема водного раствора, который подвергают очистке, что приводит к увеличению выделения аморфной фазы гидроксидов метала (коагулянтов), озона, радикалов ОН-, что интенсифицирует прохождение химических реакций по созданию нерастворимых в воде комплексных соединений, в состав которых входят радионуклиды цезия-137 (137Cs), стронция-90 (90Sr), америция-241 (241Ат) - селективной сорбции соединений цезия, стронция и америция.  The aqueous solution is fed into the dispersion zone under pressure from below, through a perforated grating of dielectric material, so that the layer of aluminum and steel granules is in a "pseudo-boiling" state. In this case, the intensity of the contacting of the granules with each other and with the electrodes significantly increases, and, as a result, the number of electrical contacts between them per unit time per unit volume of the aqueous solution that is subjected to purification increases, which leads to an increase in the release of the amorphous phase of metal hydroxides (coagulants), ozone, OH- radicals, which intensifies the passage of chemical reactions to create water-insoluble complex compounds, which include radionuclides of cesium-137 (137Cs), strontium-90 (90Sr), ame ricium-241 (241At) - selective sorption of compounds of cesium, strontium and americium.
Соотношение по объему гранул в каждом случае выбирают экспериментально - в зависимости от загрязненности раствора, который необходимо очистить. При этом стальные гранулы (или стружка) составляют приблизительно 20 - 25 % от общего объема металлов в разрядной камере. Для обеспечения постоянного режима протекания процесса диспергирования электроды в реакторе (катод и анод) изготовливают из углеродистой стали, например марки Ст. 3. Таким образом, диспергируемый слой металлических гранул состоит из нескольких металлов — железа, алюминия или его соединений, или сплавов на основе алюминия. Наличие углеродистой стали в разрядной камере способствует не только созданию коагулянтов, но и смягчает гидродинамическую нагрузку на корпус разрядной камеры. При этом соединения гидроксида железа, в которых железо имеет валентность +2, +3, +4 (на основе оксидов FeO, Fe2O3, Fe3O4), образующиеся в процессе электроэрозии стальных электродов и стальных гранул или стружки, имеют высокий уровень коагуляции по отношению к ионам тяжелых металлов, таких как стронций-90 (90Sr). Гидроксид алюминия /А1(ОН)3/, который образуется в результате электроэрозии алюминиевых гранул или стружки, имеет высокий уровень коагуляции по отношению к ионам цезия- 137 (137Cs) и америция-241 (241 Am). The ratio of the volume of granules in each case is chosen experimentally - depending on the contamination of the solution that needs to be cleaned. In this case, steel granules (or shavings) comprise approximately 20 - 25% of the total volume of metals in the discharge chamber. To ensure a constant flow of the dispersion process, the electrodes in the reactor (cathode and anode) are made of carbon steel, for example, grade St. 3. Thus, the dispersible layer of metal granules consists of several metals - iron, aluminum or its compounds, or alloys based on aluminum. The presence of carbon steel in the discharge chamber not only contributes to the creation of coagulants, but also softens the hydrodynamic load on the body of the discharge chamber. Moreover, iron hydroxide compounds in which iron has a valency of +2, +3, +4 (based on FeO, Fe 2 O 3 , Fe 3 O 4 oxides) formed during the electroerosion of steel electrodes and steel granules or shavings have a high coagulation level in relation to heavy ions metals such as strontium-90 (90Sr). Aluminum hydroxide / A1 (OH) 3 /, which is formed as a result of electroerosion of aluminum granules or shavings, has a high level of coagulation with respect to cesium-137 (137Cs) and americium-241 (241 Am) ions.
В таблице 1 приведены данные, подтверждающие оптимальный объем гранул и электродов из углеродистой стали в общем объеме металлов в полости разрядной камеры при использовании прямоугольных импульсов со скважностью 75 мкс и амплитудой 500 В для очистки водных растворов от радионуклидов - цезия - 137 (137Cs), стронция-90 (90Sr) и америция-241 (241Ат), который составляет 20-25%:  Table 1 shows the data confirming the optimal volume of carbon steel granules and electrodes in the total volume of metals in the cavity of the discharge chamber when using rectangular pulses with a duty cycle of 75 μs and an amplitude of 500 V for the purification of aqueous solutions of radionuclides - cesium - 137 (137Cs), strontium -90 (90Sr) and americium-241 (241At), which is 20-25%:
Таблица 1  Table 1
Figure imgf000007_0001
Figure imgf000007_0001
Кроме того, осадок, который не растворяется и состоит из коагулянтов, содержащих также AI(OH)3, FeO, Fe2O3, Fe3O4, обладает приведенной магнитной восприимчивостью. Это позволяет дистанционно и оперативно манипулировать коагулянтом при выполнении технологических операций (его компактирование, удаление из седиментатора и т.п.). In addition, the precipitate, which does not dissolve and consists of coagulants, also containing AI (OH) 3 , FeO, Fe 2 O 3 , Fe 3 O 4 , has a reduced magnetic susceptibility. This allows you to remotely and quickly manipulate the coagulant during technological operations (its compaction, removal from the sedimentator, etc.).
Авторами также было экспериментально установлено, что во время пропускания импульсов тока прямоугольной формы с амплитудой 300-800 В через слой гранул в водном растворе радионуклидов - цезия-137 ер мметин >- The authors also experimentally established that while passing rectangular current pulses with an amplitude of 300-800 V through a layer of granules in an aqueous solution of radionuclides - cesium-137 Example mmetin> -
(137Cs), стронция-90 (90Sr), америция-241 (241 Am), находящихся в очищаемом растворе в растворенном состоянии, гранулы разрушаются, а ионы упомянутых радиоактивных изотопов сорбируются на гидроксидах алюминия и железа и переходят в нерастворимое состояние в виде комплексных соединений. При использовании пило- или дугообразных импульсов процессы сорбции и коагулянтосоздания проходят медленнее, что приводит к затягиванию процесса. Поэтому оптимальными были определены серии из коротких прямоугольных импульсов со скважностью 75-85 мкс и амплитудой 300-800 В. (137Cs), strontium-90 (90Sr), americium-241 (241 Am), which are in the purified solution in the dissolved state, the granules are destroyed, and the ions of the mentioned radioactive isotopes are sorbed on aluminum and iron hydroxides and turn into an insoluble state in the form of complex compounds . When using sawtooth or arcuate pulses, the processes of sorption and coagulant creation are slower, which leads to a delay of the process. Therefore, the series of short rectangular pulses with a duty cycle of 75-85 μs and an amplitude of 300-800 V were determined optimal.
В таблице 2 приведены данные, которые подтверждают тот факт, что оптимальным является воздействие на слой гранул прямоугольными импульсами со скважностью 75-85 мкс и амплитудой 300-800 В при условии поддержания стабильного значения объема гранул и электродов из углеродистой стали в общем объеме металлов в разрядной камере— 23%:  Table 2 shows the data that confirm the fact that the optimal effect on the granule layer is rectangular pulses with a duty cycle of 75-85 μs and an amplitude of 300-800 V, provided that the volume of granules and electrodes made of carbon steel is stable in the total volume of metals in the discharge camera - 23%:
Таблица 2 table 2
Скважность Амплитуда Время очистки Время очистки прямоуго- прямоуголь- 1 м3 техноло- 1 м3 техноло-Boreness Amplitude Cleaning time Cleaning time rectangular-rectangular-1 m 3 technolo- 1 m 3 technolo-
СП Joint venture
льных импу- ных импу- гических стоков гической воды льсов, в льсов, в литейного атомной  of impulse impulsive effluents from the water of ice, in ice, in the foundry nuclear
<υ микросе- Вольтах производства электростан- о  <υ micro- Volt power plant production-
ϊ  ϊ
о кундах ("Азовсталь", ции (Запорож- г.Мариуполь); ская АЕС);  about kundas (Azovstal, otsii (Zaporizhzhya-Mariupol); Skye AES);
о  about
X в часах в часах  X in hours in hours
1 60 500 3,8 3,6  1 60 500 3.8 3.6
2 75 500 2,5 2,5  2 75 500 2,5 2,5
3 80 500 2,5 2,2  3 80 500 2.5 2.2
85 500 2,5 2,2  85 500 2.5 2.2
5 100 500 3,0 3,5  5 100 500 3.0 3.5
75 260 3,0 3,2 7 75 300 2,6 2,575,260 3.0 3.2 7 75 300 2.6 2.5
8 75 800 2,4 2,2 8 75 800 2.4 2.2
9 75 1000 3,0 3,2  9 75 1000 3.0 3.2
На фиг.1 схематически показана установка для очистки водных растворов электроэрозионной коагуляцией, на которой осуществлен предлагаемый способ. Figure 1 schematically shows the installation for the purification of aqueous solutions by electroerosive coagulation, which carried out the proposed method.
Установка для очистки водных растворов электроэрозионной коагуляцией содержит разрядную камеру 1 из диэлектрического материала. В полости разрядной камеры 1 установлена горизонтальная сетчатая перегородка 2 из диэлектрического материала, на которой равномерным слоем 3 размещены гранулы из углеродистой стали (например, марки Ст. 3) и алюминия или сплава алюминия (например, марки АМцС) диаметром 8 - 10 мм. Через перегородку 2 проходят два вертикальных стальных электрода 4 разной полярности. Объем стальных гранул и электродов 4, находящихся в очищаемом растворе, составляет 20 - 25 % от общего объема металлов в полости разрядной камеры 1. Каждый электрод 4 имеет форму прямоугольного параллелепипеда, большее ребро которого расположено вертикально, и подключен к соответствующему выходу генератора импульсов - анода или катода /не показан/. В нижней части разрядной камеры 1. установлен штуцер 5 для подачи в полость камеры 1 очищаемого раствора под давление в проточном режиме с напором снизу для создания «псевдокипящего» слоя гранул, который создают с помощью соответствующего насоса /не показан/. В нижней части полости камеры 1 под сетчатой перегородкой 2 горизонтально расположен поддон-седиментатор 6 - для выемки из камеры 1 коагулированного осадка, который образуется во время электроэрозионной коагуляции. В верхней части камеры 1 установлен штуцер с задвижкой 7, предназначенной для регулирования скорости слива очищаемого раствора и его последующей повторной подачи в проточном режиме через штуцер 5 в полость камеры 1 . В верхней части камеры 1 установлен клапан 8, предназначенный для подачи новых гранул в полость разрядной камеры 1 . Установка снабжена блоком управления, соответствующие входы которого соединены с датчиками температуры, уровня водного раствора и степени его очистки, а соответствующие выходы - с насосом и с генератором импульсов \не показаны\. Блок управления предназначен для поддержания стабильности задаваемых параметров серии прямоугольных электрических импульсов и регистрации данных, касающихся чистоты раствора, проходящего через задвижку 7 на выходе из камеры 1. Блок управления выполнен в виде управляющего компьютера с соответствующим программным обеспечением. Installation for cleaning aqueous solutions by electroerosive coagulation contains a discharge chamber 1 of a dielectric material. A horizontal mesh partition 2 of dielectric material is installed in the cavity of the discharge chamber 1, on which granules of carbon steel (for example, grade 3) and aluminum or an aluminum alloy (for example, grade AMC) with a diameter of 8-10 mm are placed in a uniform layer 3. Two vertical steel electrodes 4 of different polarity pass through the partition 2. The volume of steel granules and electrodes 4 located in the solution to be cleaned is 20 - 25% of the total volume of metals in the cavity of the discharge chamber 1. Each electrode 4 has the shape of a rectangular parallelepiped, the larger edge of which is located vertically, and is connected to the corresponding output of the pulse generator - anode or cathode / not shown /. In the lower part of the discharge chamber 1. a nozzle 5 is installed for supplying a cleaned solution under pressure in the flow chamber 1 to the cavity of the chamber 1 with a pressure from below to create a "pseudo-boiling" layer of granules, which is created using the corresponding pump (not shown). In the lower part of the cavity of the chamber 1, under the mesh partition 2, a sedimentation tray 6 is horizontally located - for the extraction of coagulated sediment from the chamber 1, which is formed during electroerosive coagulation. In the upper part of the chamber 1, a fitting with a valve 7 is installed, designed to control the drain rate of the solution to be purified and its subsequent re-supply in flow mode through the nozzle 5 into the cavity of the chamber 1. At the top chamber 1, a valve 8 is installed, designed to supply new granules into the cavity of the discharge chamber 1. The installation is equipped with a control unit, the corresponding inputs of which are connected to temperature sensors, the level of the aqueous solution and the degree of its purification, and the corresponding outputs are connected to the pump and to the pulse generator \ are not shown \. The control unit is designed to maintain the stability of the set parameters of a series of rectangular electric pulses and to record data regarding the purity of the solution passing through the valve 7 at the outlet of the chamber 1. The control unit is designed as a control computer with appropriate software.
Пример 1. В полость изготовленной из диэлектрического материала разрядной камеры 1 , в которой установлена горизонтальная сетчатая перегородка 2 из диэлектрического материала, загружали гранулы из углеродистой стали марки Ст. 3 и сплава алюминия марки АМцС диаметром 8 - 10 мм. Гранулы располагали равномерным слоем 3 на горизонтальной сетчатой перегородке 2 таким образом, чтобы раствор, который необходимо очистить - технологические стоки, - во время работы установки для очистки водных растворов полностью покрывал слой 3 гранул. Через перегородку 2 проходили два вертикальных стальных электрода 4 разной полярности, расположенные на расстоянии 200 - 250 миллиметров в полости камеры 1 . Объем стальных гранул и электродов 4 составлял приблизительно 25 % от общего объема металлов в очищаемом растворе в полости разрядной камеры 1 . Каждый электрод 4 имел форму прямоугольного параллелепипеда и был подключен к выходу генератора импульсов соответствующей полярности. В разрядную камеру 1 снизу вверх через штуцер 5 подавали технологические стоки с целью их дезактивации, преимущественно от радионуклидов - цезия-137 (137Cs), стронция-90 (90Sr), америция-241 (241Ат). На электроды 4 подавали прямоугольные импульсы скважностью 75 мкс и амплитудой 600 В. Во время пропускания импульсов между отдельными гранулами и электродами 4 возникали искровые разряды. В процессе разрядов в слое 3 гранул в жидкости синтезировали гидроксиды А1(ОН)з и железа, оксислы FeO, РегОз, Fe304, которые сорбировали на себе ионы цезия, стронция, америция и тяжелых металлов, находящиеся в растворенном виде в технологических стоках. А именно, происходила селективная сорбция соединений цезия, стронция и америция путем их коагуляции гидроксидами алюминия, окислами и гидроксидами железа, которые образовывались при электроэрозионном диспергировании слоя 3 из алюминиевых и стальных гранул в водной среде. Благодаря созданию «псевдокипящего» слоя 3 из алюминиевых и стальных гранул существенно увеличилась интенсивность контактирования как гранул между собой, так и гранул с электродами 4, а, как следствие, увеличилось число электрических контактов между ними в единицу времени. Это существенно увеличило производительность процесса синтеза комплексных соединений на основе гидроксидов-коагулянтов AI(OH)3, FeO, Fe2O3, Fe3O4, которые были не растворимыми или слаборастворимыми в воде, а выделение озона и радикалов ОН- интенсифицировало процесс протекания химических реакций. Раствор, который подвергали очистке, подавали в разрядную камеру 1 в проточном режиме с напором снизу через штуцер 5 для создания «псевдокипящего» слоя 3 гранул. При этом раствор через штуцер с задвижкой 7 в верхней части камеры 1 вытекал из камеры 1 и поступал в камеру насоса /не показано/, из которой насос снова подавал раствор в полость камеры 1 на повторную очистку через штуцер 5. Во время работы контролировали степень очистки раствора. По мере разрушения гранул слоя 3 в разрядной камере 1 через клапан 8 загружали новые порции металлических гранул для сохранении соотношения 25% объема стальных гранул и электродов 4, находящихся в очищаемом растворе, к общему объему металлов в разрядной камере 1. После получения водного раствора необходимой степени очистки его сливали через штуцер с задвижкой 7 из полости разрядной камеры 1 в приемную емкость /не показано/, выгружали коагулированный осадок из поддона 6 и подавали под давлением через штуцер 5 новую порцию технологических стоков на очистку. Example 1. In the cavity made of dielectric material of the discharge chamber 1, in which a horizontal mesh partition 2 of dielectric material is installed, granules of carbon steel grade St were loaded. 3 and aluminum alloy AMtsS brand with a diameter of 8 - 10 mm. The granules were placed in a uniform layer 3 on a horizontal mesh partition 2 so that the solution to be cleaned — process effluents — completely covered the layer 3 of granules during operation of the unit for cleaning aqueous solutions. Two vertical steel electrodes 4 of different polarity, located at a distance of 200 - 250 millimeters in the cavity of chamber 1, passed through the partition 2. The volume of steel granules and electrodes 4 was approximately 25% of the total volume of metals in the cleaned solution in the cavity of the discharge chamber 1. Each electrode 4 had the shape of a rectangular parallelepiped and was connected to the output of a pulse generator of the corresponding polarity. Technological drains were supplied from the bottom to the top through the nozzle 5 into the discharge chamber 1 with the aim of their decontamination, mainly from radionuclides - cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At). Rectangular pulses with a duty cycle of 75 μs and an amplitude of 600 V were applied to the electrodes 4. During the transmission of pulses between the individual granules and electrodes 4 sparks occurred. During discharges in a layer of 3 granules in a liquid, hydroxides A1 (OH) s and iron, oxides FeO, RegОз, Fe 3 0 4 were synthesized, which sorbed cesium, strontium, americium and heavy metal ions dissolved in technological effluents . Namely, there was selective sorption of cesium, strontium and americium compounds by their coagulation with aluminum hydroxides, iron oxides and hydroxides, which were formed during electroerosive dispersion of layer 3 from aluminum and steel granules in an aqueous medium. Due to the creation of a “pseudo-boiling” layer 3 of aluminum and steel granules, the contact intensity of both the granules with each other and the granules with electrodes 4 increased significantly, and, as a result, the number of electrical contacts between them per unit time increased. This significantly increased the performance of the synthesis process of complex compounds based on AI (OH) 3 , FeO, Fe 2 O 3 , Fe 3 O 4 coagulant hydroxides, which were insoluble or slightly soluble in water, and the release of ozone and OH-radicals intensified the process chemical reactions. The solution, which was subjected to purification, was fed into the discharge chamber 1 in a flow mode with a pressure from below through the nozzle 5 to create a "pseudo-boiling" layer 3 of granules. In this case, the solution through the nozzle with a valve 7 in the upper part of the chamber 1 flowed out of the chamber 1 and entered the pump chamber / not shown /, from which the pump again fed the solution into the cavity of the chamber 1 for re-cleaning through the nozzle 5. During operation, the degree of cleaning was monitored solution. As the granules of layer 3 are destroyed in the discharge chamber 1, new batches of metal granules are loaded through the valve 8 to maintain a ratio of 25% of the volume of steel granules and electrodes 4 in the solution to be cleaned to the total volume of metals in the discharge chamber 1. After obtaining an aqueous solution of the required degree cleaning it was poured through the fitting with a valve 7 from the cavity of the discharge chamber 1 into the receiving tank / not shown /, unloaded the coagulated sediment from tray 6 and fed under pressure through the nozzle 5 a new portion of the technological effluents for cleaning.
Пример 2. Выполняли очистку дождевых стоков с целью их дезактивации преимущественно от радионуклидов - цезия-137 (137Cs), стронция-90 (90Sr), америция-241 (241Ат). Выполняли такие же операции, как и в примере 1 , но объем стальных гранул и электродов 4 составлял приблизительно 20 % от общего объема металлов в разрядной камере 1. На электроды 4 подавали серии прямоугольных импульсов скважностью 80 мкс и амплитудой 300 В.  Example 2. Purification of rainwater was carried out in order to deactivate them mainly from radionuclides — cesium-137 (137Cs), strontium-90 (90Sr), americium-241 (241At). The same operations were performed as in example 1, but the volume of steel granules and electrodes 4 was approximately 20% of the total volume of metals in the discharge chamber 1. A series of rectangular pulses with a duty cycle of 80 μs and an amplitude of 300 V were applied to the electrodes 4.
В результате были получены водные растворы необходимой степени очистки.  As a result, aqueous solutions of the required degree of purification were obtained.
По сравнению со способом-прототипом предлагаемый способ оказался более экономичным, поскольку для его реализации было использовано оборудование с установленной мощностью только 4 кВт в отличии от 20-25 кВт в прототипе и, кроме того, предлагаемый способ имел большую производительность за счет использования слоя 3 из гранул углеродистой стали и сплавов алюминия, которые находились в очищаемом растворе в полости разрядной камеры 1 в «псевдокипящем» состоянии, за счет создания условий для селекционной сорбции соединений цезия, стронция и америция путем их коагуляции гидроксидами алюминия и железа, которые образуются при электроэрозионном диспергировании алюминиевых и стальных гранул в водной среде сериями прямоугольных импульсов с оптимальными значениями скважности и амплитуды.  Compared with the prototype method, the proposed method turned out to be more economical, since equipment with an installed capacity of only 4 kW was used for its implementation, in contrast to 20-25 kW in the prototype, and in addition, the proposed method had greater productivity due to the use of layer 3 of granules of carbon steel and aluminum alloys that were in the cleaned solution in the cavity of the discharge chamber 1 in a "pseudo-boiling" state, by creating conditions for selective sorption of cesium, strontium and amer compounds it is coagulated by aluminum and iron hydroxides, which are formed by electroerosive dispersion of aluminum and steel granules in an aqueous medium by a series of rectangular pulses with optimal values of duty cycle and amplitude.

Claims

Формула изобретения. Claim.
Способ очистки водных растворов электроэрозионной коагуляцией, включающий заполнение разрядной камеры очищаемым водным раствором, размещение в полости разрядной камеры слоя металлических гранул, воздействие на слой гранул электрическими импульсами через электроды, которые подключают к соответствующим выходам генератора импульсов, постепенного разрушения гранул под действием искровых разрядов между ними до образования коагулянтов и воды необходимой чистоты, отличающийся тем, что слой металлических гранул создают из гранул, изготовленных из стали и алюминия или его сплавов, стальные гранулы и стальные электроды составляют приблизительно 20-25 % от общего объема металлов в очищаемом водном растворе, а указанный раствор подают в полость разрядной камеры в проточном режиме с напором снизу, создавая «псевдокипящий» слой гранул, на которые воздействуют электрическими импульсами прямоугольной формы со скважностью 75-85 микросекунд и амплитудой 300-800 Вольт. The method of purification of aqueous solutions by electroerosive coagulation, including filling the discharge chamber with a purified aqueous solution, placing a layer of metal granules in the cavity of the discharge chamber, applying electric pulses to the layer of granules through electrodes, which are connected to the respective outputs of the pulse generator, and the granules are gradually destroyed by spark discharges between them to the formation of coagulants and water of necessary purity, characterized in that the layer of metal granules is created from granules, made made of steel and aluminum or its alloys, steel granules and steel electrodes make up approximately 20-25% of the total volume of metals in the purified aqueous solution, and this solution is fed into the cavity of the discharge chamber in a flow mode with a pressure from below, creating a "pseudo-boiling" layer of granules which are affected by rectangular electric pulses with a duty cycle of 75-85 microseconds and an amplitude of 300-800 volts.
PCT/UA2012/000107 2012-10-10 2012-12-03 Method for treating aqueous solutions with electro-erosion coagulation WO2014058407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAU201211730 2012-10-10
UAU201211730U UA76821U (en) 2012-10-10 2012-10-10 Process for the treatment of aqueous solutions with electroerosion coagulation

Publications (1)

Publication Number Publication Date
WO2014058407A1 true WO2014058407A1 (en) 2014-04-17

Family

ID=50477722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2012/000107 WO2014058407A1 (en) 2012-10-10 2012-12-03 Method for treating aqueous solutions with electro-erosion coagulation

Country Status (2)

Country Link
UA (1) UA76821U (en)
WO (1) WO2014058407A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160520A1 (en) * 2018-02-16 2019-08-22 Николай Константинович МОНАСТЫРЕВ Method for producing a mixture of ultra-fine and nano-sized aluminium oxide and hydroxide powders for use as coagulants when deactivating liquid radioactive waste produced by nuclear power plants
WO2020180277A1 (en) * 2019-03-01 2020-09-10 Николай Константинович МОНАСТЫРЕВ Method for purifying aqueous solutions containing heavy metal ions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2220110C2 (en) * 2001-07-24 2003-12-27 Общество с ограниченной ответственностью "ЭКОТЕХ" Electric pulse method of water purification
UA9483U (en) * 2005-08-01 2005-09-15 Mykola Kostiantyno Monastyriov A method for the purification of aqueous solutions by electric erosion coagulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2220110C2 (en) * 2001-07-24 2003-12-27 Общество с ограниченной ответственностью "ЭКОТЕХ" Electric pulse method of water purification
UA9483U (en) * 2005-08-01 2005-09-15 Mykola Kostiantyno Monastyriov A method for the purification of aqueous solutions by electric erosion coagulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHERBA A. A.: "Primenenie metoda elektroerozionnoi koaguliatsii.", VODA I VODOOCHISTITELNYE TEKHNOLOGII, 2002, pages 24 - 29 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160520A1 (en) * 2018-02-16 2019-08-22 Николай Константинович МОНАСТЫРЕВ Method for producing a mixture of ultra-fine and nano-sized aluminium oxide and hydroxide powders for use as coagulants when deactivating liquid radioactive waste produced by nuclear power plants
WO2020180277A1 (en) * 2019-03-01 2020-09-10 Николай Константинович МОНАСТЫРЕВ Method for purifying aqueous solutions containing heavy metal ions

Also Published As

Publication number Publication date
UA76821U (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP7149187B2 (en) Compositions and methods for treating and remediating aqueous waste streams
CN101817575A (en) Electric flocculation method and device for recovering and processing desulfurized wastewater
CN104984986A (en) Rapid environment-friendly heavy soil metal pollution treatment and purification system
CN104016531B (en) Underground water restoration method by iron anode coupled palladium catalytic hydrogenation
Monastyrov et al. Electroerosion dispersion, sorption and coagulation for complex water purification: Electroerosion waste recycling and manufacturing of metal, oxide and alloy nanopowders
RU2430889C1 (en) Method for electric-pulse treatment of contaminated industrial waste water and apparatus for electric-pulse treatment of contaminated industrial waste water
WO2014058407A1 (en) Method for treating aqueous solutions with electro-erosion coagulation
Isaxodjayev et al. Experimental electro coagulation unit for pretreament of mains water for dteam generation at thermal power plants
CN101811794A (en) Method for pretreating industrial wastewater of ABS (Acrylonitrile Butadiene Styrene) resin
CN104030500A (en) Process and equipment for removing nickel ions from wastewater of aluminum profile
CN204779181U (en) Electroplating wastewater treatment system
JPS6338435B2 (en)
CN104108818B (en) A kind of method using ion-exchange and cyclone electrolytic cell technical finesse heavy metal wastewater thereby
Abdulredha et al. Adopting electrocoagulation technology for removing arsenic from contaminated water
WO2020180277A1 (en) Method for purifying aqueous solutions containing heavy metal ions
US20150001164A1 (en) Submerged arc removal of contaminants from liquids
JPS6338434B2 (en)
US20220033284A1 (en) Current based water treatment process and system
JP2001347264A (en) Water treatment equipment and water treatment method
Do et al. Application of zero valent iron to removal chromium and other heavy metals in metallurgical wastewater
EP4392995A1 (en) Plasma electroerosion reactor and the method of its use
UA150319U (en) Plasma electroerosion reactor
US6881347B2 (en) Method for removing radioactive substances from affecting water wells
RU2144848C1 (en) Method of regeneration of ion-exchange resins
JP5314213B1 (en) Leachate treatment facility and leachate treatment method at final disposal site

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12886179

Country of ref document: EP

Kind code of ref document: A1