WO2014057971A1 - Electroluminescence element - Google Patents

Electroluminescence element Download PDF

Info

Publication number
WO2014057971A1
WO2014057971A1 PCT/JP2013/077463 JP2013077463W WO2014057971A1 WO 2014057971 A1 WO2014057971 A1 WO 2014057971A1 JP 2013077463 W JP2013077463 W JP 2013077463W WO 2014057971 A1 WO2014057971 A1 WO 2014057971A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
emitting layer
ring
Prior art date
Application number
PCT/JP2013/077463
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 康
池水 大
秀雄 ▲高▼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014540865A priority Critical patent/JP6225912B2/en
Publication of WO2014057971A1 publication Critical patent/WO2014057971A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0814Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an electroluminescence element (EL element), and more particularly to an electroluminescence element excellent in luminous efficiency, luminous lifetime and color rendering.
  • EL element electroluminescence element
  • organic electroluminescence element using an organic substance
  • OLED Organic light-Emitting Diode
  • OLED Organic light-Emitting Diode
  • the use as an efficient and inexpensive large-area full-color display element and light source array is regarded as promising, and research and development is actively promoted.
  • illumination that is thinner and lighter than conventional ones and that does not break (illumination made of a flexible substrate) is expected.
  • the performance is low with respect to existing fluorescent lamps and white LEDs, and there is a need for technologies for further increasing efficiency and extending the life.
  • An organic EL element is composed of an organic functional layer (single layer portion or multilayer portion) having a thickness of only about 0.1 ⁇ m containing an organic light emitting substance between a pair of anode and cathode formed on a film. It is a thin film type all solid state device.
  • a relatively low voltage of about 2 to 20 V is applied to such an organic EL element, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer. It is known that emission is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band. This technology is expected as a flat display and lighting.
  • OLEDs organic light-emitting diodes
  • a quantum dot is a nanoparticle made of an inorganic semiconductor material having dimensions that are small enough to allow excitons to be confined within a three-dimensional space.
  • a quantum dot is composed of a core surrounded by a shell made of a semiconductor material having a forbidden band wider than that of the core.
  • molecules may be deposited on the shell.
  • Quantum dots emit light and have a relatively narrow emission band compared to organic light emitters, so that when properly incorporated as a light emitting element in an optoelectronic component, the quantum dots are , Making it possible to obtain extremely vivid colors. That is, it is expected that the color rendering property and light emission efficiency of OLED illumination can be further enhanced by combining quantum dots with OLEDs.
  • LEDs including such an organic light emitting material and a quantum dot compound in the same layer have been proposed so far (a light emitting device that defines the wavelength relationship between quantum dots and phosphorescent light emitting materials as in Patent Document 1, (See, for example, composite light-emitting elements in which phosphorescent light-emitting molecules are incorporated into the ligands of quantum dots as in Patent Document 2), and high efficiency LEDs have not been obtained so far due to this mismatch. .
  • the light emitting elements are so-called “normal layer type” elements in which a transparent electrode is used as an anode, that is, a hole injection layer / hole transport layer is formed on the transparent electrode.
  • the quantum dot layer is generally formed by a coating method, the light emitting layer is preferably the first light emitting layer (the light emitting layer closer to the substrate).
  • the quantum dot layer functions as a hole blocking layer because the energy level of the quantum dot itself is very deep.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an electroluminescence element having high luminous efficiency and long life.
  • the present inventor has examined the cause of the above-mentioned problems.
  • cathode cathode
  • reverse layer type the electron transport layer and then the quantum dot layer are formed, it is sufficient that electrons can be injected into the quantum dot layer, and the electrons can actually flow well into the quantum dot layer having a deep LUMO level. It has been found that a good white light emitting device can be obtained by providing a charge generation layer, and the present invention has been completed.
  • An electroluminescent element in which a first electrode, a first light emitting layer, a second light emitting layer, and a second electrode are stacked in this order on a substrate,
  • the first light emitting layer contains quantum dots
  • the second light emitting layer contains a phosphorescent light emitting dopant
  • An electroluminescence element wherein an electron transport layer is formed between the first electrode and the first light emitting layer.
  • the light emitting layer containing the quantum dots has a light emission maximum wavelength in a wavelength region of 450 to 470 nm.
  • the quantum dots are composed of Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, CuInS, CuInSe, CuInGaSe, or a mixture thereof. . 4).
  • the film thickness of the light emitting layer containing the quantum dots is in the range of 10 to 30 nm.
  • the light emitting layer containing the phosphorescent light emitting dopant has a maximum emission wavelength in a wavelength region of at least 520 to 560 nm and 600 to 640 nm. 6).
  • the light emitting layer containing the phosphorescent light emitting dopant has a light emission maximum wavelength in a wavelength region of at least 470 to 490 nm, 520 to 560 nm, and 600 to 640 nm.
  • the light emitting layer containing the quantum dots contains a host compound. 8). More preferably, the emission maximum wavelength attributed to the 0-0 transition band in the phosphorescence spectrum of the host compound is in the wavelength region of 414 to 459 nm.
  • the host compound is represented by the general formula (1).
  • X represents NR ′, oxygen atom, sulfur atom, CR′R ′′ or SiR′R ′′.
  • y 1 and y 2 each represent CR ′ or a nitrogen atom.
  • R ′ and R ′′ each represent a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
  • m and n each represents an integer of 0 to 4.
  • X is an oxygen atom.
  • at least one of Ar1 and Ar2 is represented by the general formula (2).
  • y 1 and y 2 each represent CR ′ or a nitrogen atom.
  • R ′ represents a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
  • m and n each represents an integer of 0 to 4.
  • the phosphorescent dopant is represented by the general formula (3).
  • R 1 represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • n1 represents an integer of 0 to 5.
  • B1 to B5 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
  • M1 represents a group 8-10 metal in the periodic table.
  • X1 and X2 represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L1 represents an atomic group forming a bidentate ligand together with X1 and X2.
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • it has a tandem structure in which a charge generation layer is formed between the first light emitting layer and the second light emitting layer. 14 More preferably, the charge generation layer contains a compound represented by the general formula (4)
  • each R is independently hydrogen, halogen group, alkyl group having 1 to 12 carbon atoms, alkoxy group, alkylamino group, alkylsilyl group, aryl group, arylamino group, heterocyclic group,
  • the substituent is selected from the group consisting of an ester group, an amide group, a nitro group and a nitrile group.
  • Adjacent Rs may be bonded to each other to form a cyclic structure.
  • a light emitting element having high color rendering properties and a high color temperature by combining an OLED exhibiting highly efficient light emission and a quantum dot having a sharp light emission spectrum.
  • a long-life light-emitting element can be obtained because it is not necessary to use a compound that is susceptible to moisture and oxygen such as KF.
  • a light-emitting element that emits white light which has a high color temperature and high color rendering, which has been difficult with known combinations.
  • is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • an EL element 100 has a support substrate 1.
  • a first electrode 2 is formed on the support substrate 1
  • an organic functional layer 20 is formed on the first electrode 2
  • a second electrode 8 is formed on the organic functional layer 20.
  • the organic functional layer 20 refers to each layer constituting the EL element 100 provided between the first electrode 2 and the second electrode 8.
  • the organic functional layer 20 includes, for example, an electron transport layer 21, a first light emitting layer 22, a charge generation layer 23 (intermediate layer), a second light emitting layer 24, and a hole transport layer 25.
  • a hole injection layer or the like may be included.
  • the first electrode 2, the organic functional layer 20, and the second electrode 8 on the support substrate 1 are sealed with a flexible sealing member 10 through a sealing adhesive 9.
  • Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / second electrode / sealing adhesive / sealing member (ii) support substrate / first Electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / second electrode / sealing adhesive / sealing member (iii) support substrate / first electrode / electron transport layer / First light emitting layer / charge generation layer / second light emitting layer / second electrode / sealing adhesive / sealing member (iv) support substrate / first electrode / electron injection layer / electron transport layer / first 1 light emitting layer / second light emitting layer / second electrode / sealing adhesive / sealing member (v) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / Intermediate layer / second light emitting layer / second electrode / sealing adhesive / sealing member (vi) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer /
  • Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (viii) support Substrate / first electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (ix) support substrate / First electrode / electron transport layer / first light emitting layer / charge generation layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (x) support substrate / First electrode / electron injection layer / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (xi) support substrate / First electrode / electron injection layer / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive for sealing / sealing / sealing
  • Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / adhesive for sealing / sealing Member (xiv) Support substrate / first electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / adhesive for sealing Agent / sealing member (XV) support substrate / first electrode / electron transport layer / first light emitting layer / charge generation layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / Sealing adhesive / sealing member (xvi) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / hole injection layer / Second electrode / sealing adhesive / sealing member (xvii) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / intermediate
  • Organic functional layer of EL element >> Next, details of the organic functional layer constituting the EL element will be described.
  • Injection layer hole injection layer, electron injection layer
  • an injection layer can be provided as necessary.
  • the injection layer includes an electron injection layer and a hole injection layer.
  • the electron injection layer is between the first electrode and the first light emitting layer or the electron transport layer as described above, and the hole injection layer is the second electrode. You may exist between a 2nd light emitting layer or a positive hole transport layer.
  • the injection layer referred to in the present invention is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance.
  • Injection materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives.
  • the details of the electron injection layer are described in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and specific examples thereof include strontium and aluminum.
  • a composition in which conductivity is improved by doping the above-described alkali metal compound, alkali metal, an electron transport material described later with an n-type dopant as described in WO2005 / 86251, WO2007 / 107306, or the like is also preferably used.
  • an electron injection layer in which an alkali metal and an electron transport layer are combined can be formed with reference to Appl. Phys. Lett. 94, 083303 (2009)).
  • the buffer layer is a very thin film, and potassium fluoride and sodium fluoride are preferable.
  • the film thickness is about 0.1 nm to 5 ⁇ m, preferably 0.1 to 100 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 4 nm.
  • the hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the material used for the hole transport layer (hereinafter referred to as a hole transport material) may have any of the hole injection property or the transport property and the electron barrier property. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polymer materials or oligomers in which an aromatic amine is introduced into the main chain or side chain, polysilane , Conductive polymers or oligomers (for example, PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.) and the like.
  • PEDOT PSS, aniline copolymers,
  • triarylamine derivative examples include a benzidine type typified by ⁇ NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine-linked core such as Spiro-TPD.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. JP-A-11-251067, J. Org. Huang et. al.
  • p-type hole transport materials inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139).
  • ortho-metalated organometallic complexes having Ir or Pt as the central metal represented by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, carbazole derivative, indolocarbazole derivative, azatriphenylene derivative, organometallic complex, aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • Patent Publication No. 200880106190 U.S. Pat. Publication No. 20080018221, International Publication No. -135145, US Patent Application No. 13/585981, and the like.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport layer constituting the organic functional layer of the EL element is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. .
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • an electron transport material also serving as a hole blocking material
  • any one of conventionally known compounds can be selected and used.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • carbazole derivatives azacarbazole derivatives, pyridine derivatives and the like are preferable in the present invention, and more preferably an azacarbazole derivative.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a spin coating method, a casting method, a printing method including an ink jet method, an LB method, and the like, preferably It can be formed by a wet process using a coating solution containing an electron transport material and a fluorinated alcohol solvent.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer according to the present invention preferably contains an organic alkali metal salt.
  • the type of organic substance is not particularly limited, but for example, formate, acetate, propionic acid, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, Succinate, benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate
  • it is an alkali metal salt of an aliphatic carboxylic acid such as formate, acetate, propionate, butyrate, etc.
  • the aliphatic carboxylic acid preferably has 4 or less carbon atoms, most preferably acetate. It is.
  • the kind of alkali metal of the organic alkali metal salt is not particularly limited, and examples thereof include Na, K, and Cs, preferably K, Cs, and more preferably Cs.
  • the alkali metal salt of the organic substance include a combination of the organic substance and the alkali metal, preferably, formic acid Li, formic acid K, Na formic acid, formic acid Cs, Li acetate, K acetate, Na acetate, Cs acetate, Lipropionate, Propionic acid Na, propionic acid K, propionic acid Cs, oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, benzoic acid Na, benzoic acid K, benzoic acid Cs, more preferably Li acetate,
  • the content of the alkali metal salt of these organic substances is preferably in the range of 1.5 to 35% by mass, more preferably in the range of 3 to 25% by mass with respect to 100% by mass of the electron transport layer to be added. Most preferably, it is in the range of 5 to 15% by mass.
  • the light emitting layer constituting the EL element is divided into a first light emitting layer and a second light emitting layer.
  • the first light emitting layer contains quantum dots
  • the second light emitting layer contains a phosphorescent dopant.
  • the structure of the light emitting layer is not particularly limited as long as the contained light emitting material satisfies the above requirements.
  • a non-light emitting intermediate layer or a charge generation layer is provided between the first light emitting layer and the second light emitting layer. This is because it is possible to avoid contact between two light emitting materials having different energy levels, that is, quantum dots and a phosphorescent dopant, and to prevent a decrease in light emission efficiency due to carrier trapping or the like. In particular, when a charge generation layer is provided, the amount of injected carriers for the two light emitting layers can be halved and the life can be improved.
  • the thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably 50 nm or less because a lower driving voltage can be obtained. Note that the thickness of the light emitting layer is the total thickness of the first light emitting layer and the second light emitting layer, and an intermediate layer made of only a non-light emitting host compound exists between the light emitting layers.
  • the film thickness includes the intermediate layer.
  • each light emitting layer It is preferable to adjust the film thickness of each light emitting layer to a range of 1 to 50 nm.
  • the individual light emitting layers may emit blue, green, and red colors, and there is no particular limitation on the film thickness relationship of each light emitting layer.
  • a light-emitting material or a host compound which will be described later, is formed into a known thin film such as, for example, a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an inkjet method, or the like.
  • the film can be formed by the method.
  • a plurality of light emitting materials may be mixed in each light emitting layer, and a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
  • the first light emitting layer contains a host compound and quantum dots
  • the second light emitting layer contains a host compound and a light emitting material (also referred to as a light emitting dopant compound).
  • the host compound is a compound having a short emission wavelength in which the emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum is in the range of 414 to 459 nm (2.7 to 3.0 eV). That is, it is a compound having a high triplet energy.
  • the host compound according to the present invention is not particularly limited as long as it satisfies the above conditions.
  • the emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum of the host compound according to the present invention can be determined by the following method.
  • any solvent that can dissolve the host compound may be used.
  • the above-described measurement method is considered to have no problem because the solvent effect of the phosphorescence wavelength is negligible.
  • the 0-0 transition band is determined.
  • the 0-0 transition band having the maximum emission wavelength that appears on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method is Define.
  • the emission spectrum during excitation light irradiation (for convenience, this is referred to as a steady light spectrum) is expanded, and after the excitation light is irradiated, the emission spectrum after 100 ms (for convenience, this is referred to as a phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the stationary light spectrum portion derived from the phosphorescence spectrum.
  • a fluorometer F4500 manufactured by Hitachi High-Technology Corporation can be exemplified.
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • the host compound is not particularly limited as long as it is a compound having the above conditions defined in the present invention, and a known host compound may be used alone or in combination of two or more.
  • a known host compound may be used alone or in combination of two or more.
  • the host compound used in the present invention is not particularly limited as long as it is a compound having the above-mentioned conditions defined in the present invention, and may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and may be a vinyl group. Or a low molecular compound (polymerizable light-emitting host) having a polymerizable group such as an epoxy group, but when a high molecular weight material is used, the compound may take up the solvent and swell or gelate, and the solvent is unlikely to escape. In order to prevent this phenomenon, it is preferable that the molecular weight is not high.
  • a material having a molecular weight of 2,000 or less during coating and a molecular weight of 1,000 or less during coating. It is more preferable to use a material, and in particular, a host compound having a molecular weight in the range of 500 to 1000 is preferable.
  • the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the host compound according to the present invention is preferably a compound represented by the following general formula (1). This is because the compound represented by the following formula (1) has a condensed ring structure and therefore has a high carrier transport property, and also has the above-described broad triplet energy (0-0 band of phosphorescence).
  • X represents NR ′, oxygen atom, sulfur atom, CR′R ′′ or SiR′R ′′.
  • Y 1 and y 2 each represent CR ′ or a nitrogen atom.
  • R ′ and R ′′ each represents a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
  • M, n represents an integer of 0-4.
  • examples of the substituent represented by R ′ and R ′′ include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, t -Butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group) Group), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl
  • a compound in which X is NR ′ or an oxygen atom in the general formula (1) is preferable. That is, a compound having a (aza) carbazole ring or a (aza) dibenzofuran ring is preferable.
  • R ′ is an aromatic hydrocarbon group (also called an aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, Azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl) or aromatic heterocyclic groups (eg furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl) Group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthalazinyl group, etc.) are particularly preferred.
  • aromatic hydrocarbon group also called an aromatic carbocyclic group, aryl group, etc., for example, phen
  • aromatic hydrocarbon group and aromatic heterocyclic group may each have a substituent represented by R ′ and R ′′ in X of the general formula (1).
  • examples of the atom represented by y 1 and y 2 include CR ′ and a nitrogen atom, and CR ′ is more preferable.
  • Such a compound is also excellent in hole transportability, and can efficiently recombine and emit electrons and holes injected from the first electrode and the second electrode in the light emitting layer.
  • examples of the aromatic ring represented by Ar 1 and Ar 2 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by R ′ and R ′′ in X of the general formula (1).
  • examples of the aromatic hydrocarbon ring represented by Ar 1 and Ar 2 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • examples of the aromatic heterocycle represented by Ar 1 and Ar 2 include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine.
  • These rings may further have a substituent represented by R ′ and R ′′ in the general formula (1).
  • the aromatic ring represented by Ar 1 and Ar 2 is preferably a carbazole ring, carboline ring, dibenzofuran ring, or benzene ring, and more preferably used.
  • the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of three or more rings, and as an aromatic hydrocarbon condensed ring in which three or more rings are condensed.
  • aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzod
  • m and n represent an integer of 0 to 4, preferably 0 to 2, and in particular, when X is an oxygen atom or a sulfur atom, 1 to 2 It is preferable that m and n may be the same as or different from each other.
  • a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
  • At least one of Ar1 and Ar2 is preferably represented by general formula (2).
  • y 1 and y 2 each represent CR ′ or a nitrogen atom.
  • R ′ each represents a hydrogen atom or a substituent.
  • Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
  • M, n represents an integer of 0 to 4, and may be the same or different from each other.
  • Aromatic ring represented by Ar 1 and Ar 2 may be the same as the aromatic ring represented by Ar 1 and Ar 2 in the general formula (1).
  • the emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum is preferably at least shorter than 459 nm. If the wave length is longer than this, the efficiency of energy transfer to the quantum dot compound decreases. Further, if it is less than 414 nm, the drive voltage becomes high, and there is a concern that the light emission efficiency is lowered. That is, the range of 414 to 459 nm (2.7 to 3.0 eV) is preferable. Examples of the host compound according to the present invention in the range of less than 459 nm (2.7 eV) include compounds represented by the general formula (1) and other structures, but are not limited thereto.
  • Luminescent material As the luminescent material according to the present invention, generally, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) can be used. In the present invention, at least a phosphorescent compound is used.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
  • the above phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but when using a phosphorescent material in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • the excited state energy of the phosphorescent material is lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, but is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
  • the phosphorescent dopant according to the present invention includes a phosphorescent dopant having an emission wavelength belonging to the 0-0 transition band in the phosphorescence spectrum in the range of 460 to 827 nm (2.7 to 1.5 eV). It is preferable that Among them, it is preferable to include a phosphorescent dopant having an emission maximum wavelength in a wavelength region of at least 520 to 560 nm and 600 to 640 nm, and further including a phosphorescence dopant having an emission maximum wavelength in a wavelength region of 460 to 490 nm. preferable.
  • the emission wavelength attributed to the 0-0 transition band of the phosphorescent dopant according to the present invention can be determined by the same method used for the measurement of the emission wavelength attributed to the 0-0 transition band of the host compound. .
  • the phosphorescent compound according to the present invention is preferably a combination that produces white light in combination with light emission from the quantum dots.
  • a combination that produces white light in combination with light emission from the quantum dots For example, there are combinations such as blue light emitted from quantum dots, green light emitted from phosphorescent compounds, and red, and blue light emitted from quantum dots and light blue light emitted from phosphorescent compounds.
  • a phosphorescent dopant represented by the following general formula (3) is preferable.
  • R 1 represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • n1 represents an integer of 0 to 5.
  • B 1 to B 5 each represent a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom, and at least one represents a nitrogen atom.
  • M 1 represents a group 8 to group 10 metal in the periodic table.
  • X 1 and X 2 represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2, or 3
  • m2 represents an integer of 0, 1, or 2
  • m1 + m2 is 2 or 3.
  • the phosphorescent compound represented by the general formula (3) according to the present invention has a HOMO of ⁇ 5.15 to ⁇ 3.50 eV, a LUMO of ⁇ 1.25 to +1.00 eV, and preferably a HOMO of ⁇ 4.80 to ⁇ 3.50 eV, and LUMO is ⁇ 0.80 to +1.00 eV.
  • examples of the substituent represented by R 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group).
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
  • B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, oxadiazole ring, and thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring in which B2 and B5 are nitrogen atoms is particularly preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred as the substituent are an alkyl group and an aryl group, and more preferably an aryl group.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
  • n1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • the case where m2 is 0 is preferable.
  • the metal represented by M 1 a transition metal element belonging to Group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, among which iridium and platinum are preferable, and iridium is more preferable.
  • phosphorescent compound (D-1 to D-93) represented by the general formula (3) are shown below.
  • the 0-0 transition band in the phosphorescence spectrum is exemplified.
  • a phosphorescent compound having an emission wavelength belonging to is in the range of 460 to 827 nm (2.7 to 1.5 eV) is more preferable.
  • Quantum Dots The present invention is characterized in that the light emitting layer contains quantum dots having an emission wavelength in the range of 413 to 477 nm.
  • the quantum dots 30 are contained in the first light emitting layer 22.
  • the quantum dots 30 may exist at the interface between the first light emitting layer 22 and a layer adjacent to the light emitting layer (for example, the electron transport layer 21 and the charge generation layer 23). In the present invention, it is particularly preferable that the quantum dots are contained in at least the first light emitting layer.
  • the quantum dot according to the present invention refers to a particle having a predetermined size, which is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of about several nanometers to several tens of nanometers. This means that the quantum dot effect can be obtained.
  • the particle diameter of the quantum dots (fine particles) according to the present invention is specifically preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
  • the energy level E of such a quantum dot is generally expressed by the following formula (I) when the Planck constant is “h”, the effective mass of the electron is “m”, and the radius of the fine particle is “R”. Is done.
  • the band gap of the quantum dot increases in proportion to “R ⁇ 2 ”, and a so-called quantum dot effect is obtained.
  • the band gap value of a quantum dot can be controlled by controlling and defining the particle diameter of the quantum dot. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity not found in ordinary atoms. For this reason, it is possible to convert electrical energy into light of a desired wavelength by exciting it with light or applying a voltage to an EL element including a quantum dot to confine electrons and holes in the quantum dot and recombine them. Can be emitted. In the present invention, such a light-emitting quantum dot material is defined as a quantum dot.
  • the average particle diameter of the quantum dots is about several nanometers to several tens of nanometers.
  • the average particle diameter is set to the target light emission color.
  • the average particle diameter of the quantum dots is preferably set within a range of 3.0 to 20 nm.
  • the average particle diameter of the quantum dots is set to It is preferable to set within the range of 1.5 to 10 nm, and when it is desired to obtain blue light emission, it is preferable to set the average particle diameter of the quantum dots within the range of 1.0 to 3.0 nm.
  • the average particle diameter of the blue-emitting quantum dots varies depending on the material constituting the quantum dots.
  • a known method can be used. For example, a quantum dot particle observation is performed with a transmission electron microscope (TEM), and a method for obtaining the number average particle size of the particle size distribution therefrom, or a method for obtaining an average particle size using an electron force microscope (AFM),
  • TEM transmission electron microscope
  • a particle size measuring apparatus using a dynamic light scattering method for example, “ZETASIZER Nano-Series—Nano-ZS, manufactured by Malvern, Inc. can be measured using a spectrum obtained by a small-angle X-ray scattering method.
  • a method of deriving a particle size distribution using particle size distribution simulation calculation and the like can be mentioned.
  • a method of obtaining an average particle size using an electron force microscope (AFM) is preferable.
  • the aspect ratio (major axis diameter / minor axis diameter) is preferably in the range of 1.0 to 2.0, more preferably 1.1 to 1. .7 range.
  • the aspect ratio (major axis diameter / minor axis diameter) related to the quantum dots according to the present invention can also be determined by measuring the major axis diameter and the minor axis diameter using, for example, an electron force microscope (AFM). .
  • the number of individuals to be measured is preferably 300 or more.
  • the addition amount of the quantum dots is preferably in the range of 0.01 to 50% by mass, and in the range of 0.05 to 25% by mass, when the total constituent materials of the layer to be added are 100% by mass. More preferably, it is most preferably in the range of 0.1 to 20% by mass. If the addition amount is 0.01% by mass or more, white light emission with sufficient luminance efficiency and good color rendering can be obtained, and if it is 50% by mass or less, an appropriate distance between quantum dot particles can be maintained. The size effect can be exhibited sufficiently.
  • the phosphorescent compound described above has a relatively long excitation lifetime on the order of millimeters or microseconds, so-called concentration quenching, in which the exciton energy is relaxed and lost when the concentration in the layer is too high.
  • concentration quenching in which the exciton energy is relaxed and lost when the concentration in the layer is too high.
  • concentration quenching in which the exciton energy is relaxed and lost when the concentration in the layer is too high.
  • Examples of the constituent material of the quantum dot include a simple substance of a periodic table group 14 element such as carbon, silicon, germanium, and tin, a simple substance of a periodic table group 15 element such as phosphorus (black phosphorus), and a periodicity of selenium, tellurium, and the like.
  • Table 16 group element simple substance, compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin (II) sulfide (SnS), tin (II) selenide (SnSe), tin telluride (II) (SnTe), lead sulfide (II) ) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), phosphorus Boron halide (BP), Boron arsenide (BAs), Aluminum nitride (AlN), Al phosphide Ni (AlP
  • III-V group compound semiconductors aluminum sulfide ( Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium oxide (In 2) O 3), indium sulfide (In 2 S 3), indium selenide (I 2 Se 3), compounds of tellurium indium (In 2 Te 3) periodic table group 13 elements and the periodic table group 16 element such as, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr ), Compounds of group 13 elements of the periodic table and elements of group 17 of the periodic table such as thallium (I) iodide (TlI), zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), tellurium Zinc iodide (ZnTe), cadmi
  • Group 15 elements and Group 16 elements of the periodic table, Group 11 elements of the periodic table and Group 16 of the periodic table such as copper (I) (Cu 2 O), copper selenide (Cu 2 Se), etc.
  • Periodic tables of compounds with elements copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr), etc.
  • Nickel oxide (II) N compounds of periodic table group 10 elements such as iO) and periodic table group 16 elements
  • periodic table group 9 elements such as cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS) and periodic table Compounds with Group 16 elements
  • compounds of Group 8 elements of the periodic table such as triiron tetroxide (Fe 3 O 4 ), iron (II) sulfide (FeS), and Group 16 elements of the periodic table
  • manganese (II) oxide A compound of a periodic table group 7 element such as (MnO) and a periodic table group 16 element, a periodic table group 6 element such as molybdenum sulfide (IV) (MoS 2 ), tungsten oxide (IV) (WO 2 ), etc.
  • Periodic Table Group 5 elements such as vanadium (II) oxide (VO), vanadium oxide (IV) (VO 2 ), tantalum oxide (V) (Ta 2 O 5 ) and the period Table compound of group 16 element, a titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 O , A compound of Group 4 of the periodic table element and Periodic Table Group 16 element of Ti 5 O 9, etc.) and the like, magnesium sulfide (MgS), the second group elements and the periodic table periodic table such as magnesium selenide (MgSe) Compounds with group 16 elements, cadmium (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), copper sulfide (II) chromium (III) ( Examples thereof include chalcogen spinels such as CuCr 2 S 4 ), mercury (II) se
  • III-V group compound semiconductors such as Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3, etc.
  • Compounds of Group 13 elements and Group 16 elements of the periodic table ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe and other II-VI group compound semiconductors, As 2 O 3 , As 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2
  • a compound of a periodic table group 15 element such as Se 3 or Bi 2 Te 3 and a group 16 element of the periodic table, a compound of periodic table group 2 element such as MgS or MgSe, and a group 16 element of the periodic table are preferable, Among them, Si, Ge GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , Z
  • the quantum dots may be CuInS, CuInSe, or CuInGaSe. Said material may be used by 1 type and may be used in combination of 2 or more type.
  • quantum dots can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
  • the emission wavelength is preferably in the range of 413 to 477 nm (2.6 to 3.6 eV). This is because the quantum dot of this emission wavelength, that is, the blue quantum dot, has the widest band gap and is the quantum dot with the deepest HOMO and the shallow LUMO. As a result, when it is installed as the first light emitting layer of the OLED having the reverse layer configuration, it is possible to obtain a quantum dot layer having the highest electron transporting property and the highest hole blocking property. Further, since it is also a light emitting region that is very difficult to emit with the phosphorescent dopant, the first light emitting layer that shines in this region can impart high color temperature, high color rendering, and the like.
  • the band gap (eV) of a quantum dot can be measured using a Tauc plot.
  • the Tauc plot which is one of the optical scientific measurement methods of the band gap (eV), will be described.
  • quantum dots were generated not only in light emission due to direct recombination of holes and electrons in the quantum dots, but also in an organic electron block hole transport layer, an organic light emission layer, or a hole block electron transport layer.
  • the energy of excitons may be absorbed by the quantum dots to obtain light emission from the quantum dot core. Since these quantum dots are lightly doped, other phosphorescent compounds can also absorb the exciton energy to obtain light emission.
  • the surface of the quantum dot is preferably coated with an inert inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the quantum dot has a core / shell structure having a core region made of a quantum dot material and a shell region made of an inert inorganic coating layer or an organic ligand. Is preferred.
  • This core / shell structure is preferably formed of at least two kinds of compounds, and a gradient structure (gradient structure) may be formed of two or more kinds of compounds.
  • a gradient structure gradient structure
  • a surface modifier as described later can be reliably supported in the vicinity of the surface of the quantum dot.
  • the thickness of the coating (shell part) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
  • the emission color can be controlled by the average particle diameter of the quantum dots, and if the thickness of the coating is within the above range, the thickness of the coating can be determined from the thickness corresponding to several atoms.
  • the thickness is less than one, the quantum dots can be filled with high density, and a sufficient amount of light emission can be obtained.
  • the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
  • Functional surface modifiers applicable in the present invention may be those directly attached to the surface of the quantum dots, or those attached via a shell (the surface modifier is directly attached to the shell. In other words, it may not be in contact with the core of the quantum dot.
  • the surface modifier examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like.
  • Trialkylphosphines polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecyl
  • the surface modifier may be a fine particle of quantum dots in a high-temperature liquid phase. It is preferable that the substance is coordinated to be stabilized, specifically, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides. , Organic sulfur compounds, higher fatty acids and alcohols are preferred.
  • the dispersibility of the quantum dots in the coating solution can be made particularly excellent.
  • the shape of the quantum dot formed at the time of manufacture of a quantum dot can be made into a higher sphericity, and the particle size distribution of a quantum dot can be made sharper.
  • the size (average particle diameter) of the quantum dots is preferably in the range of 1 to 20 nm.
  • the size of the quantum dots means the total area composed of a core region composed of a quantum dot material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents size. If the surface modifier or shell is not included, the size does not include it.
  • raw material aqueous solution for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene
  • alkanes such as n-heptane, n-octane, isooctane, or benzene
  • Inverted micelles which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium
  • examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, the liquid phase production method is preferred.
  • the organic surface modifier present on the surface when the quantum dots are synthesized is referred to as an initial surface modifier.
  • the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the above-described functional surface modifiers by an exchange reaction.
  • the initial surface modifier such as trioctyl phosphine oxide obtained by the hot soap method described above is obtained by performing the functional surface modification described above by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to replace it with an agent.
  • the following shows an example of a method for producing quantum dots.
  • n-octanethiol added to TOA (210 ⁇ l in 6 ml) is injected at a rate of 1 ml / min using a syringe pump and allowed to react for 40 minutes.
  • a 16 ml aliquot of Zn-oleic acid solution (heated at 100 ° C.) is injected into the Cd-containing reaction medium at a rate of 2 ml / min.
  • 6.4 mmol of n-octanethiol in TOA (1.12 ml in 6 ml) is injected at a rate of 1 ml / min using a syringe pump.
  • TOPO fixed quantum dots nanoparticles with CdSe nanocrystals with TOPO fixed on the surface and ZnS as the core.
  • TOPO fixed quantum dots nanoparticles with CdSe nanocrystals with TOPO fixed on the surface and ZnS as the core.
  • the quantum dot of this state is soluble in organic solvents, such as toluene and tetrahydrofuran (THF).
  • the prepared TOPO fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (Sigma) dissolved in ethanol there. (Aldrich) 100 mg was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF.
  • the obtained unpurified quantum dots are purified and concentrated using ultrafiltration (Millipore, “Microcon”) and Sephadex column (Amersham Biosciences, “MicroSpin G-25 Columns”).
  • a hydrophilic quantum dot in which N-[(S) -3-mercapto-2-methylpropionyl] -L-proline is immobilized on the surface of the quantum dot can be produced.
  • the quantum dot film formation method is preferably a wet process.
  • spin coating method casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir Brodgett method), etc.
  • LB method Liangmuir Brodgett method
  • a film forming method using a transfer method that transfers after forming a monomolecular film of quantum dots on another medium is also useful.
  • the solvent used preferably includes a solvent having a boiling point of 100 to 150 ° C.
  • a solvent having a boiling point of 100 to 150 ° C By using the solvent in such a range, an appropriate drying speed is obtained, the quantum dot compound contained in the coating film can be properly oriented, and higher luminous efficiency and durability can be obtained.
  • a solvent such as toluene, xylene, chlorobenzene, n-butanol and the like can be raised.
  • a mixed solvent containing these solvents may be used, and the ratio is preferably in the range of 9: 1 to 0:10.
  • the charge generation layer is a layer that generates holes and electrons when an electric field is formed.
  • the generation interface may be in the charge generation layer. It may be at or near the layer interface.
  • the charge generation of electrons and holes may be within the charge generation layer, or may be at the interface between the adjacent layer and the charge generation layer.
  • the charge generation layer is composed of two or more layers and includes one or both of a p-type semiconductor layer and an n-type semiconductor layer.
  • the charge generation layer may function as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer and can be used as the same layer, but the charge generation layer generates holes and electrons. It is defined as a layer having an interface or a layer having an interface.
  • the configuration of the charge generation layer in the present invention (reverse layer configuration) is as follows.
  • the bipolar layer is a layer capable of generating and transporting holes and electrons inside the layer by an external electric field.
  • the n-type layer is a charge transport layer in which majority carriers are electrons, and preferably has conductivity higher than that of a semiconductor.
  • the p-type layer is a charge transport layer in which majority carriers are holes, and preferably has conductivity higher than that of a semiconductor.
  • the intermediate layer may be provided if necessary in order to improve the charge generation capability and long-term stability, for example, an n-type layer and a p-type diffusion prevention layer, a pn reaction suppression layer, Examples include a level adjusting layer that adjusts the charge level of the p-type layer and the n-type layer.
  • a bipolar layer, a p-type layer, and an n-type layer may be further provided between the light emitting unit and the charge generation layer.
  • these layers are included in the light emitting unit and are not regarded as charge generating layers, although they may be provided if necessary when the generated charge is quickly injected into the light emitting unit.
  • the charge generation layer is preferably formed of at least two layers, and is a layer having a function of injecting holes in the cathode direction of the device and electrons in the anode direction when a voltage is applied. preferable.
  • the layer interface between two or more charge generation layers may have a clear interface (heterointerface, homointerface), and a multidimensional interface such as a bulk heterostructure, islands, or phase separation. It may be formed.
  • each of the two layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 10 to 50 nm.
  • the light transmittance of the charge generation layer according to the present invention preferably has a high transmittance for the light emitted from the light emitting layer.
  • the transmittance at a wavelength of 550 nm is preferably 50% or more, and more preferably 80% or more.
  • one layer has an inorganic compound or organic compound having a work function of 3.0 eV or less, and the other layer has a work function of 4.0 eV.
  • the above inorganic compounds or organic compounds can be preferably used. More preferably, one layer of the charge generation layer is a metal having a work function of 3.0 eV or less, or an inorganic oxide, an inorganic salt, an organometallic complex, or an organic salt, and the other layer is a work layer.
  • EL-unit represents a light emitting unit
  • the layer structure of the light emitting unit itself is not particularly limited, but includes at least one light emitting layer.
  • a layer structure including a transport layer and an electron transport layer can be used, and a known layer structure including a hole injection layer, a hole transport light emitting layer, an electron injection layer, an electron transport light emitting layer, and the like can also be used.
  • one light emitting unit can have a layer configuration such as a hole injection transport layer / light emission layer / electron injection transport layer.
  • the organic material described in paragraphs 0079 to 0180 of WO2011-46166, the inorganic material described in paragraphs 0181 to 0203, and the like are used as the constituent material of the charge generation layer.
  • the present invention is not limited to these.
  • the compound which has a hexaazatriphenylene structure represented by following formula (4) is included as a p-type layer.
  • each R independently represents hydrogen, a halogen group, an alkyl group having 1 to 12 carbon atoms, an alkoxy group, an alkylamino group, an alkylsilyl group, an aryl group, an arylamino group, a heterocyclic group,
  • the substituent is selected from the group consisting of an ester group, an amide group, a nitro group and a nitrile group.
  • Adjacent Rs may be bonded to each other to form a cyclic structure.
  • the compound having a structure represented by the general formula (4) is preferably a p-type material having a structure represented by the general formula (5).
  • n-type layer an n-type layer in which an electron transport layer is n-doped with an alkali metal or the like (US Pat. No. 7,719,180, etc.), and an n-type layer combining an n-type dopant and an n-type host of Novaled, Inc. Etc. can be preferably used.
  • n-type dopants such as alkali metals are highly prone to deterioration due to their high activity, but an n-type layer combining NET18 and NDN26, NDN77, NDN87, etc. of Novaled can be preferably used (Reference: Display International) The Society Information Display (SID) 2012 DIGEST, 21-1).
  • First electrode (cathode, cathode)
  • a material having a small work function (5 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof as an electrode material is used.
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • the second electrode includes, for example, a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium, and the like. / Aluminum mixtures, aluminum etc. are preferred.
  • the first electrode is preferably a transparent electrode because the light generated in the light emitting layer can be taken out by making the electrode transparent. That is, an electrode made of a metal oxide such as ITO, IZO, AZO, or FTO may be used.
  • the first electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the first electrode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium-tin composite oxide (hereinafter abbreviated as ITO), SnO 2 , and ZnO.
  • a conductive transparent material such as a metal such as Au, CuI, indium-tin composite oxide (hereinafter abbreviated as ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a desired shape pattern may be formed by a photolithography method, or when pattern accuracy is not required (100 ⁇ m or more) The degree) may form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply
  • the metal oxide-based conductive transparent material mentioned in the description of the first electrode is formed thereon, so that the transparent or A semitransparent second electrode can be manufactured, and by applying this, an EL element in which both the first electrode and the second electrode are transmissive can be manufactured.
  • the first electrode / second electrode functions as an anode / cathode (forward layer) or a cathode / anode (reverse layer) depends on the work functions of the first electrode and the second electrode. However, it is often determined by whether there is a hole transporting layer or an electron transporting layer between these electrodes and the light emitting layer.
  • ⁇ Support substrate ⁇ There are no particular limitations on the material of the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.), such as glass or plastic, and it may be transparent or opaque.
  • the support substrate is preferably transparent.
  • the transparent support substrate preferably used include glass, quartz, and a transparent resin film. Since a substrate that is more flexible than a rigid substrate exerts the effect of suppressing high-temperature storage stability and chromaticity variation, a particularly preferable support substrate has flexibility that can give flexibility to an EL element. Resin film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name
  • an inorganic film, an organic film or a hybrid film of both may be formed on the surface of the resin film.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h ⁇ atm) or less, and further measured by a method according to JIS K 7126-1987.
  • the water vapor permeability is more preferably 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h ⁇ atm) or less.
  • the material for forming the barrier film may be any material that has a function of suppressing entry of factors that cause deterioration of the EL element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • laminate stack both alternately several times.
  • the method for forming the barrier film is not particularly limited.
  • a polymerization method, a plasma CVD method (CVD: Chemical Vapor Deposition), a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but atmospheric pressure plasma weight as described in JP-A-2004-68143 is used.
  • a legal method is particularly preferred.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the EL element / the number of electrons sent to the EL element ⁇ 100.
  • a sealing means applicable to the EL element for example, a method of adhering a sealing member, an electrode, and a support substrate with a sealing adhesive can be exemplified.
  • the sealing member may be disposed so as to cover the display area of the EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicone, germanium, and tantalum.
  • the sealing member a polymer film or a metal film can be preferably used because the EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the above method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the sealing adhesive include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing types such as 2-cyanoacrylic acid esters. Mention may be made of adhesives. Moreover, heat
  • an EL element may be deteriorated by heat treatment
  • a material that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil. Is preferably injected. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • Sealing includes casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning.
  • solid sealing is preferable because the sealing member is also required to be flexible.
  • thermosetting adhesive an ultraviolet curable resin, or the like
  • a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
  • the water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and most preferably 0.01 to 100 ppm.
  • the moisture content in the present invention may be measured by any method.
  • a volumetric moisture meter Karl Fischer
  • an infrared moisture meter a microwave transmission moisture meter
  • a heat-dry weight method a GC / MS
  • IR a GC / MS
  • IR a GC / MS
  • IR a GC / MS
  • IR a GC / MS
  • IR a GC / MS
  • IR IR
  • DSC Densonic Scanning Calorimeter
  • TDS Temporal Scanning Calorimeter
  • the moisture content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on the sealing member and dried.
  • the sealing member for example, a 50 ⁇ m thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 ⁇ m thick) can be used.
  • a sealing adhesive was placed in advance, the resin substrate and the sealing member were aligned, and both were crimped (0 0.1-3 MPa) and at a temperature of 80-180 ° C., it can be tightly bonded (bonded) to achieve close sealing (solid sealing).
  • Heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and heat curing time is in the range of 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Just choose.
  • a heated pressure-bonding roll because pressure bonding (temporary bonding) and heating can be performed simultaneously, and internal voids can be eliminated simultaneously.
  • a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used using a dispenser depending on the material.
  • solid sealing is a form in which there is no space between the sealing member and the EL element substrate and the resin is covered with a cured resin.
  • sealing member examples include metals such as stainless steel, aluminum and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like.
  • metals such as stainless steel, aluminum and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like.
  • a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used as in the case of a resin substrate.
  • the gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method.
  • the oxygen permeability is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ It is preferably 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the sealing member may be a film laminated with a metal foil such as aluminum.
  • a method for laminating the polymer film on one side of the metal foil a generally used laminating machine can be used.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the metal foil when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be created by a method of forming a metal foil on a polymer film as a base. Good.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • a light extraction member between the flexible support substrate and the first electrode or at any position on the light emission side from the flexible support substrate.
  • Examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface or any medium that causes total reflection can be used.
  • a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of light loss.
  • prismatic or lens-like processing is applied to the surface of the substrate, or prism sheets, lens sheets, and diffusion sheets are affixed to the surface of the substrate, thereby suppressing total reflection and light extraction efficiency. To improve.
  • Method for Manufacturing EL Element As an example of a method for manufacturing an EL element, a method for manufacturing an EL element including a first electrode / electron transport layer / first light emitting layer / charge generation layer / hole transport layer / hole injection layer / second electrode is used. explain.
  • a desired electrode material for example, a thin film made of a first electrode material is formed on a suitable substrate by a thin film forming method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • a thin film forming method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • an organic functional layer including an electron transport layer, a first light emitting layer, a charge generation layer, a second light emitting layer, a hole transport layer, and a hole injection layer is formed thereon.
  • the step of forming the organic functional layer mainly includes: (i) a step of applying and laminating the coating liquid constituting the organic functional layer on the first electrode of the support substrate; and (ii) after the application and lamination. And a step of drying the coating liquid.
  • a vapor deposition method for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating).
  • Method curtain coating method, LB method (Langmuir-Blodgett method and the like can be used).
  • a light emitting layer containing at least quantum dots is formed by a coating method, and the coating liquid for forming the light emitting layer has a boiling point of 100 to 150 ° C. A form containing a solvent within the range is preferred.
  • a wet process is preferable in the present invention because a homogeneous film is easily obtained and pinholes are hardly generated.
  • Film formation by a coating method such as a casting method, a die coating method, a blade coating method, a roll coating method, or an ink jet method is preferable.
  • liquid medium for dissolving or dispersing the EL material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, cyclohexylbenzene and the like.
  • Aromatic hydrocarbons, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) can be used.
  • the boiling point is in the range of 100 to 150 ° C. It is preferable to use the solvent in the inside.
  • a dispersion method it can disperse
  • the preparation process for dissolving or dispersing the EL material and the application process until the EL material is applied on the base material are in an inert gas atmosphere. Since film formation can be performed without deteriorating device performance, it may not always be performed in an inert gas atmosphere. In this case, the manufacturing cost can be suppressed, which is more preferable.
  • each layer for example, a charge generation layer, a 2nd light emitting layer, etc.
  • the layer can also be formed by a well-known vapor deposition method.
  • step (Ii) In the step (ii), the coated and laminated organic functional layer is dried.
  • Drying refers to reduction to 0.2% or less when the solvent content of the film immediately after coating is 100%.
  • the means for drying those generally used can be used, and examples thereof include reduced pressure or pressure drying, heat drying, air drying, IR drying, and electromagnetic wave drying.
  • heat drying is preferable, the temperature is equal to or higher than the boiling point of the solvent having the lowest boiling point in the organic functional layer coating solvent, and the temperature is lower than (Tg + 20) ° C. of the material having the lowest Tg among the Tg of the organic functional layer material.
  • it is held at In the present invention, more specifically, it is preferable to hold and dry at 80 ° C. or higher and 150 ° C. or lower, and more preferable to hold and dry at 100 ° C. or higher and 130 ° C. or lower.
  • the atmosphere when drying the coating liquid after coating / lamination is preferably an atmosphere having a volume concentration of a gas other than the inert gas of 200 ppm or less, but it is not necessarily in an inert gas atmosphere as in the liquid preparation coating process. It may not be necessary. In this case, the manufacturing cost can be suppressed, which is more preferable.
  • the inert gas is preferably a rare gas such as nitrogen gas or argon gas, and most preferably nitrogen gas in terms of production cost.
  • the coating / laminating and drying steps of these layers may be single wafer manufacturing or line manufacturing. Further, the drying process may be performed while being conveyed on the line, but from the viewpoint of productivity, it may be deposited or rolled in a non-contact manner in a roll form.
  • a thin film made of the second electrode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • An EL element can be manufactured by adhering the contact sealing or sealing member to the electrode and the support substrate with an adhesive after the heat treatment.
  • the EL element of the present invention can be used as various light sources such as a display device, a display, and illumination.
  • Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Furthermore, it can be used in a wide range of applications such as general household appliances that require a display device, but it can be used effectively as a backlight for a liquid crystal display device combined with a color filter, and as a light source for illumination. it can.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • a light-emitting layer composition having the following composition was formed as a light-emitting layer by spin coating at 1500 rpm for 30 seconds, dried at 120 ° C. for 5 minutes, and then AFM. The coating film thickness was confirmed using ⁇ Quantum dot light emitting layer composition> Quantum dots (Trilite (registered trademark) 450 manufactured by Cytodiagnostics) 20 parts by weight Hexane 1,000 parts by weight
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
  • DGEBA Bisphenol A diglycidyl ether
  • DIY Dicyandiamide
  • C Epoxy adduct curing accelerator
  • Example Sample 4 (4.1) Formation of First Electrode A first electrode (cathode, cathode) was formed in the same manner as in Comparative Example Sample 1.
  • the patterned ITO substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a sol-gel ZnO forming solution prepared by the following method was formed by spin coating at 2000 rpm for 30 seconds, and then baked at 300 ° C. for 5 minutes to form a 30 nm thick electron composed of ZnO.
  • a transport layer was provided.
  • a light-emitting layer composition having the following composition and a composition double-diluted with the same solvent were respectively formed by spin coating at 1500 rpm for 30 seconds, and then 30 ° C. at 30 ° C. Each of the light emitting layers having a film thickness of 40 nm was formed by holding for 30 minutes.
  • Quantum dots Site Diagnostics Trilite (registered trademark) 450, 450 nm emission) 20 parts by weight Hexane 1,000 parts by weight
  • Example Sample 5 was produced in the same manner as Example Sample 4 except that the first light-emitting layer was changed as follows in the production of Example Sample 4.
  • Example Sample 6 was produced in the same manner as Example Sample 5, except that the second light-emitting layer was changed as follows in the production of Example Sample 4.
  • ⁇ Second light emitting layer> Iridium complex D-90 (B): 7.6 parts by mass, Iridium complex G: 0.3 part by mass Iridium complex R: 0.1 part by mass Host compound H-210: 92 parts by mass
  • Example Sample 7 was produced in the same manner as Example Sample 5, except that the second light-emitting layer was changed as follows in the production of Example Sample 5.
  • ⁇ Second light emitting layer> Iridium complex D-90 (B): 7.6 parts by mass, Iridium complex G: 0.3 part by mass, Iridium complex R: 0.1 part by mass Host compound H-73: 92 parts by mass
  • Example Sample 7 and Example 11 were produced in the same manner as in Example Sample 7, except that the conditions for forming the first light-emitting layer (spin coating conditions) were changed as follows.
  • Example samples 8 to 11 were produced in the same manner. ⁇ First light emitting layer>
  • Example Sample 8 4000 rpm Example Sample 9 2500 rpm
  • Example Samples 12 to 17 were produced in the same manner as Example Sample 7, except that the first light emitting layer was changed as follows in the production of Example 7. did.
  • the intermediate layer was formed of the same compound as the host compound of the first light emitting layer.
  • Quantum dot (Trilite (registered trademark) 480, 480 nm light emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-73 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass ⁇ First emission layer of Example 13> Quantum dot (Site Diagnostics Co., Ltd.
  • Quantum dot (TRILITE (registered trademark) 450, 450 nm emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-210 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass ⁇ First emission layer of Example 16> Quantum dots (TRILITE (registered trademark) 450 manufactured by Cytodiagnostics, 450 nm emission) 10 parts by mass Host compound H-115 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass ⁇ First emission layer of Example 17> Quantum dot (TRILITE (registered trademark) 450, 450 nm light emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-60 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass
  • Example 1 was carried out in the same manner as Example Sample 4 except that the first light emitting layer and the second light emitting layer were changed as follows.
  • Sample 18 was produced.
  • Example 2 a tandem EL element having a charge generation layer was manufactured, and the durability was compared with that of the single-type Example Sample 16 manufactured in Example 1.
  • the composition of the tandem-type intermediate layer was prepared with reference to US Pat. No. 7,719,180 and International Society for Display The Society Information Display (SID) 09 DIGEST, p499.
  • SID Society Information Display
  • the intermediate layer formed as a layer of only the host compound containing no dopant in the “(4.4) Formation of the intermediate layer” is converted into the following charge generation layer (hole transport layer / p-type).
  • the effect of the tandem element was confirmed by substituting 5 layers of layer / intermediate layer / n-type layer / electron transport layer).
  • Example Sample 21 First, Spiro-TPD was deposited as a hole transport layer to a thickness of 20 nm. Next, as a p-type layer, NDP9 manufactured by Novaled was deposited on Spiro-TPD in an amount of 10: 1 (weight ratio) to a thickness of 5 nm. Next, aluminum was deposited to a thickness of 1 nm to form an intermediate electrode layer. Next, NET18 and NDN26 manufactured by Novaled were deposited as an n-type layer at a ratio of 10: 1 to a thickness of 5 nm (the n-type layer has a function of an electron transport layer). Subsequent formation of the second light-emitting layer and the like were performed in the same manner as in the preparation of the example sample 16, thereby producing an inverted layer tandem example sample 21.
  • Example Sample 22 An example sample 22 was produced in the same manner as in the example sample 21, except that the p-type layer was a layer obtained by doping Spiro-TPD with F4-TCNQ at a ratio of 10: 1.
  • Example Sample 23 Prepared in the same manner as in Example Sample 21, except that HATCN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile, see general formula (5)) was used as the p-type layer. Example sample 23 was produced.
  • Example Samples 16 and 21 to 23 were similarly evaluated for the obtained Example Samples 16 and 21 to 23.
  • Table 6 it can be seen that the tandem example samples 21 to 23 are advantageous in terms of the LT 70 as compared to the single type example sample 16. This is because the applied electric field only needs to be shared by the two units, and the electric field applied per unit cell is reduced. As these charge generation layers, it was confirmed that, in particular, Example Sample 23 using HATCN had a long lifetime and was good.
  • the present invention can be particularly suitably used to provide an electroluminescent device with high luminous efficiency and long life.

Abstract

Disclosed is an electroluminescence element wherein a first electrode (2) (cathode), a first light-emitting layer (22), a second light-emitting layer (24), and a second electrode (8) (anode) are laminated on a substrate (1) in said order. In said element, the first light-emitting layer (22) contains quantum dots (30), the second light-emitting layer (24) contains a phosphorescence emission dopant, and an electron transport layer (21) is formed between the first electrode (2) and the first light-emitting layer (22).

Description

エレクトロルミネッセンス素子Electroluminescence element
 本発明はエレクトロルミネッセンス素子(EL素子)に関し、詳しくは、発光効率、発光寿命および演色性に優れたエレクトロルミネッセンス素子に関する。 The present invention relates to an electroluminescence element (EL element), and more particularly to an electroluminescence element excellent in luminous efficiency, luminous lifetime and color rendering.
 近年、有機物質を使用した有機エレクトロルミネッセンス素子(以下において、適宜、「有機EL素子」、または「OLED;Organic light-Emitting Diode」と略称する。)は、固体発光型で軽量・薄型・かつ高効率な安価な大面積フルカラー表示素子や光源アレイとしての用途が有望視されており、研究開発が活発に進められている。
 特に移動体(携帯電話、自動車、航空機)においては従来よりも薄く軽量で、割れない照明(フレキシブル基板からなる照明)が期待されている。また、これらの新しい価値を期待されつつも、既存の蛍光灯や白色LEDに対して性能が低いのが現状であり、さらなる高効率化、長寿命化の技術が求められている。
In recent years, an organic electroluminescence element using an organic substance (hereinafter, abbreviated as “organic EL element” or “OLED; Organic light-Emitting Diode” as appropriate) is a solid light-emitting type that is lightweight, thin, and high. The use as an efficient and inexpensive large-area full-color display element and light source array is regarded as promising, and research and development is actively promoted.
In particular, in mobile bodies (cell phones, automobiles, aircraft), illumination that is thinner and lighter than conventional ones and that does not break (illumination made of a flexible substrate) is expected. In addition, while these new values are expected, the performance is low with respect to existing fluorescent lamps and white LEDs, and there is a need for technologies for further increasing efficiency and extending the life.
 有機EL素子は、フィルム上に形成された1対の陽極と陰極との間に、有機発光物質を含有する厚さ僅か0.1μm程度の有機機能層(単層部又は多層部)で構成する薄膜型の全固体素子である。このような有機EL素子に2~20V程度の比較的低い電圧を印加すると、有機化合物層に陰極から電子が注入され、陽極から正孔が注入される。この電子と正孔とが発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られており、次世代の平面ディスプレイや照明として期待されている技術である。
 さらに、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用するそれに比べ、原理的に約4倍の発光効率が実現可能であることから、その材料開発を始めとし、有機機能層の層構成や電極の研究開発が世界中で行われている。特に、地球温暖化防止策の1つとして、人類のエネルギー消費の多くを占める照明器具への応用が検討されはじめ、従来の照明器具に置き換わりうる白色発光パネルの実用化に向けて、性能向上やコストダウンの試みが盛んになっている。
An organic EL element is composed of an organic functional layer (single layer portion or multilayer portion) having a thickness of only about 0.1 μm containing an organic light emitting substance between a pair of anode and cathode formed on a film. It is a thin film type all solid state device. When a relatively low voltage of about 2 to 20 V is applied to such an organic EL element, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer. It is known that emission is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band. This technology is expected as a flat display and lighting.
In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous methods that use fluorescence. Research and development of organic functional layer layers and electrodes are conducted all over the world. In particular, as one of the measures to prevent global warming, application to lighting fixtures that occupy much of human energy consumption has begun to be studied. There are many attempts to reduce costs.
 他方で有機EL素子(OLED;Organic light-Emitting Diode)の大きな欠点の1つは、それらのOLEDが放射する光の広いスペクトル幅であり、白色OLEDのスペクトルを測定すると、発光の少ない「谷」となるような波長帯を有するようなスペクトルであるものが多い。このような発光スペクトルでは演色性を高めることができず、また発光効率を上げることにも限界を有していた。 On the other hand, one of the major drawbacks of organic light-emitting diodes (OLEDs) is the wide spectral width of the light emitted by those OLEDs. Many of the spectra have such a wavelength band. In such an emission spectrum, the color rendering property cannot be improved, and there is a limit to increasing the light emission efficiency.
 この問題の1つの解決方法としては、(蛍光およびリン光を発する)有機発光層と量子ドットを含むハイブリッド・ダイオードを使用することである。
 量子ドットは、励起子を3次元空間内に閉じこめるのを可能にするほど十分に小さい寸法を有する無機半導体材料からなるナノ粒子である。
 典型的には、量子ドットは、コアの禁制帯よりも広い禁制帯を有する半導体材料からなるシェルによって取り囲まれたコアによって構成される。量子ドットの化学的特性及び物理化学的特性、例えば量子ドットが溶媒中において懸濁状態のままでいる能力を変化させるために、シェル上に分子が堆積されてもよい。量子ドットは、発光するものであり、そして、有機発光体と比較すると相対的に狭い発光帯を有し、そのために、オプトエレクトロニクス部品内に発光素子として適切に組み込まれると、それらの量子ドットは、きわめて鮮やかな色を得るのを可能にする。すなわち、量子ドットを、OLEDと組み合わせることで、OLED照明の演色性と発光効率を一層高いものとすることができると期待される。
One solution to this problem is to use a hybrid diode that includes an organic light emitting layer (which emits fluorescence and phosphorescence) and quantum dots.
A quantum dot is a nanoparticle made of an inorganic semiconductor material having dimensions that are small enough to allow excitons to be confined within a three-dimensional space.
Typically, a quantum dot is composed of a core surrounded by a shell made of a semiconductor material having a forbidden band wider than that of the core. In order to change the chemical and physicochemical properties of the quantum dots, such as the ability of the quantum dots to remain suspended in the solvent, molecules may be deposited on the shell. Quantum dots emit light and have a relatively narrow emission band compared to organic light emitters, so that when properly incorporated as a light emitting element in an optoelectronic component, the quantum dots are , Making it possible to obtain extremely vivid colors. That is, it is expected that the color rendering property and light emission efficiency of OLED illumination can be further enhanced by combining quantum dots with OLEDs.
 しかしながら、量子ドットの価電子帯及び伝導帯と、隣接する有機半導体の最高占有分子軌道(HOMO)及び最低非占有分子軌道(LUMO)との間には大きな不整合が存在する。
 これまでこのような有機発光材料と量子ドット化合物を同じ層内に含むLEDが提案されてきたものの(特許文献1のように量子ドットとリン光発光材料の波長の関係を規定した発光素子や、特許文献2のような、量子ドットの配位子にリン光発光分子を組み込んだような複合型の発光素子など参照)、この不整合のために効率の高いLEDはこれまで得られていなかった。
 そのため、例えば量子ドットを含む層とリン光材料を含む層とを別の層に分けるような試み(特許文献3のようなリン光発光層と量子ドット発光層の間にリン光材料の禁制帯よりも大きい禁制帯を有するバッファー層を有するような発光素子参照)が提案されているが、いまだ良好な効率は得られていない。
However, there is a large mismatch between the valence and conduction bands of quantum dots and the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of adjacent organic semiconductors.
Although LEDs including such an organic light emitting material and a quantum dot compound in the same layer have been proposed so far (a light emitting device that defines the wavelength relationship between quantum dots and phosphorescent light emitting materials as in Patent Document 1, (See, for example, composite light-emitting elements in which phosphorescent light-emitting molecules are incorporated into the ligands of quantum dots as in Patent Document 2), and high efficiency LEDs have not been obtained so far due to this mismatch. .
Therefore, for example, an attempt to separate a layer containing quantum dots and a layer containing phosphorescent material into separate layers (forbidden band of phosphorescent material between the phosphorescent light emitting layer and the quantum dot light emitting layer as in Patent Document 3) Although a light-emitting element having a buffer layer having a larger forbidden band has been proposed), a good efficiency has not been obtained yet.
 しかし、これらの発光素子はいずれも、透明電極を陽極として用いる、すなわち透明電極上に正孔注入層・正孔輸送層が形成される、いわゆる「順層型」の素子であった。一般に量子ドット層は塗布法によって形成されるため、発光層としては第1の発光層(基板に近い側の発光層)とすることが好ましい。しかし順層型素子として、前記正孔輸送層上に量子ドット層を形成した場合、量子ドット自体のエネルギー準位が非常に深いため、その量子ドット層が正孔阻止層として機能し、結果的に量子ドット層の先に正孔が注入しにくいために効率の高い素子を得にくいと想定された。 However, all of these light emitting elements are so-called “normal layer type” elements in which a transparent electrode is used as an anode, that is, a hole injection layer / hole transport layer is formed on the transparent electrode. Since the quantum dot layer is generally formed by a coating method, the light emitting layer is preferably the first light emitting layer (the light emitting layer closer to the substrate). However, when a quantum dot layer is formed on the hole transport layer as a forward layer type device, the quantum dot layer functions as a hole blocking layer because the energy level of the quantum dot itself is very deep. In addition, it is assumed that it is difficult to obtain a highly efficient device because it is difficult to inject holes into the tip of the quantum dot layer.
国際公開第2011/147522号International Publication No. 2011/147522 特開2007-513478号公報JP 2007-513478 A 特開2011-238590号公報JP 2011-238590 A
 本発明は上記問題・状況に鑑みてなされたものであり、その解決課題は高発光効率で長寿命のエレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an electroluminescence element having high luminous efficiency and long life.
 本発明者は上記課題を解決すべく、上記問題の原因等について検討したところ、透明電極側を陰極(カソード)として適用する構成(「逆層型」)とした場合には、透明電極の上には電子輸送層、次いで量子ドット層が形成されるという構成となるため、量子ドット層には電子を注入できればよく、実際LUMO準位の深い量子ドット層に良好に電子を流せ、さらに特定の電荷発生層を設けることで良好な白色発光素子を得られることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventor has examined the cause of the above-mentioned problems. When the transparent electrode side is applied as a cathode (“cathode”) (“reverse layer type”), Since the electron transport layer and then the quantum dot layer are formed, it is sufficient that electrons can be injected into the quantum dot layer, and the electrons can actually flow well into the quantum dot layer having a deep LUMO level. It has been found that a good white light emitting device can be obtained by providing a charge generation layer, and the present invention has been completed.
 すなわち、本発明にかかる上記課題は以下の手段により解決される。
1. 基板上に、第1の電極、第1の発光層、第2の発光層および第2の電極をこの順に積層したエレクトロルミネッセンス素子であって、
 前記第1の発光層には量子ドットが含有され、
 前記第2の発光層にはリン光発光ドーパントが含有され、
 前記第1の電極と前記第1の発光層との間には電子輸送層が形成されていることを特徴とするエレクトロルミネッセンス素子。
2. 好ましくは、前記量子ドットが含有された発光層が、450~470nmの波長領域に発光極大波長を有する。
3. 好ましくは、前記量子ドットがSi、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In2S3、ZnO、CdO、CuInS、CuInSe、CuInGaSeまたはこれらの混合物で構成されている。
4. 好ましくは、前記量子ドットが含有された発光層の膜厚が10~30nmの範囲内である。
That is, the said subject concerning this invention is solved by the following means.
1. An electroluminescent element in which a first electrode, a first light emitting layer, a second light emitting layer, and a second electrode are stacked in this order on a substrate,
The first light emitting layer contains quantum dots,
The second light emitting layer contains a phosphorescent light emitting dopant,
An electroluminescence element, wherein an electron transport layer is formed between the first electrode and the first light emitting layer.
2. Preferably, the light emitting layer containing the quantum dots has a light emission maximum wavelength in a wavelength region of 450 to 470 nm.
3. Preferably, the quantum dots are composed of Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, CuInS, CuInSe, CuInGaSe, or a mixture thereof. .
4). Preferably, the film thickness of the light emitting layer containing the quantum dots is in the range of 10 to 30 nm.
5. 好ましくは、前記リン光発光ドーパントが含有された発光層が、少なくとも520~560nm、600~640nmの波長領域に発光極大波長を有する。
6. 好ましくは、前記リン光発光ドーパントが含有された発光層が、少なくとも470~490nm、520~560nm、600~640nmの波長領域に発光極大波長を有する。
5. Preferably, the light emitting layer containing the phosphorescent light emitting dopant has a maximum emission wavelength in a wavelength region of at least 520 to 560 nm and 600 to 640 nm.
6). Preferably, the light emitting layer containing the phosphorescent light emitting dopant has a light emission maximum wavelength in a wavelength region of at least 470 to 490 nm, 520 to 560 nm, and 600 to 640 nm.
7. 好ましくは、前記量子ドットが含有された発光層には、ホスト化合物が含有されている。
8. より好ましくは、前記ホスト化合物のリン光スペクトルにおける0-0遷移バンドに帰属される発光極大波長が414~459nmの波長領域内にある。
7). Preferably, the light emitting layer containing the quantum dots contains a host compound.
8). More preferably, the emission maximum wavelength attributed to the 0-0 transition band in the phosphorescence spectrum of the host compound is in the wavelength region of 414 to 459 nm.
9. より好ましくは、前記ホスト化合物が一般式(1)で表される。 9. More preferably, the host compound is represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
[式中、XはNR′、酸素原子、硫黄原子、CR′R″またはSiR′R″を表す。
 yおよびyは各々CR′または窒素原子を表す。
 R′およびR″は各々水素原子または置換基を表す。
 ArおよびArは各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
 m、nは0~4の整数を表す。]
10. さらに好ましくは、前記一般式(1)中、Xが酸素原子である。
11. さらに好ましくは、前記一般式(1)中、Ar1およびAr2の少なくとも一方が、一般式(2)で表される。
[Wherein, X represents NR ′, oxygen atom, sulfur atom, CR′R ″ or SiR′R ″.
y 1 and y 2 each represent CR ′ or a nitrogen atom.
R ′ and R ″ each represent a hydrogen atom or a substituent.
Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
m and n each represents an integer of 0 to 4. ]
10. More preferably, in the general formula (1), X is an oxygen atom.
11. More preferably, in the general formula (1), at least one of Ar1 and Ar2 is represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
〔式中、yおよびyは各々CR′または窒素原子を表す。
 R′は各々水素原子または置換基を表す。
 ArおよびArは各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
 m、nは0~4の整数を表す。〕
12. 好ましくは、前記リン光発光ドーパントとして一般式(3)で表される。
[Wherein, y 1 and y 2 each represent CR ′ or a nitrogen atom.
R ′ represents a hydrogen atom or a substituent.
Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
m and n each represents an integer of 0 to 4. ]
12 Preferably, the phosphorescent dopant is represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
[式中、R1は置換基を表す。
 Zは5~7員環を形成するのに必要な非金属原子群を表す。
 n1は0~5の整数を表す。
 B1~B5は炭素原子、窒素原子、酸素原子または硫黄原子を表し、少なくとも1つは窒素原子を表す。
 M1は元素周期表における8族~10族の金属を表す。
 X1およびX2は炭素原子、窒素原子または酸素原子を表す。
 L1はX1およびX2と共に2座の配位子を形成する原子群を表す。
 m1は1、2または3の整数を表し、m2は0、1または2の整数を表し、m1+m2は2または3である。]
13. 好ましくは、前記第1の発光層と前記第2の発光層との間に電荷発生層が形成されたタンデム構造を有する。
14. より好ましくは、前記電荷発生層には一般式(4)で表される化合物が含有されている。
[Wherein R 1 represents a substituent.
Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
n1 represents an integer of 0 to 5.
B1 to B5 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
M1 represents a group 8-10 metal in the periodic table.
X1 and X2 represent a carbon atom, a nitrogen atom or an oxygen atom.
L1 represents an atomic group forming a bidentate ligand together with X1 and X2.
m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
13. Preferably, it has a tandem structure in which a charge generation layer is formed between the first light emitting layer and the second light emitting layer.
14 More preferably, the charge generation layer contains a compound represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
[式(4)中、Rは、それぞれ独立に、水素、ハロゲン基、炭素数1~12のアルキル基、アルコキシ基、アルキルアミノ基、アルキルシリル基、アリール基、アリールアミノ基、複素環基、エステル基、アミド基、ニトロ基およびニトリル基からなる群の中から選ばれた置換基である。
 隣り合うRは互いに結合して、環状構造を形成していてもよい。]
[In the formula (4), each R is independently hydrogen, halogen group, alkyl group having 1 to 12 carbon atoms, alkoxy group, alkylamino group, alkylsilyl group, aryl group, arylamino group, heterocyclic group, The substituent is selected from the group consisting of an ester group, an amide group, a nitro group and a nitrile group.
Adjacent Rs may be bonded to each other to form a cyclic structure. ]
 本発明によれば、高効率な発光を示すOLEDと、シャープな発光スペクトルを有する量子ドットとを併せて、高演色性、高色温度の発光素子を得ることができる。また本発明にかかる逆層型の構成によれば、KFなどの水分・酸素に影響を受けやすい化合物を用いる必要がないためか、長寿命の発光素子を得ることができる。特に、公知の組み合わせでは難しかった色温度が高く、かつ演色性が高い白色発光の発光素子を提供することができる。 According to the present invention, it is possible to obtain a light emitting element having high color rendering properties and a high color temperature by combining an OLED exhibiting highly efficient light emission and a quantum dot having a sharp light emission spectrum. Further, according to the reverse layer structure of the present invention, a long-life light-emitting element can be obtained because it is not necessary to use a compound that is susceptible to moisture and oxygen such as KF. In particular, it is possible to provide a light-emitting element that emits white light, which has a high color temperature and high color rendering, which has been difficult with known combinations.
EL素子の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of an EL element.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present invention, “˜” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 《EL素子の構成》
 図1に示すとおり、本発明の好ましい実施形態にかかるEL素子100は、支持基板1を有している。支持基板1上には第1の電極2が形成され、第1の電極2上には有機機能層20が形成され、有機機能層20上には第2の電極8が形成されている。
<< Configuration of EL element >>
As shown in FIG. 1, an EL element 100 according to a preferred embodiment of the present invention has a support substrate 1. A first electrode 2 is formed on the support substrate 1, an organic functional layer 20 is formed on the first electrode 2, and a second electrode 8 is formed on the organic functional layer 20.
 有機機能層20とは、第1の電極2と第2の電極8との間に設けられているEL素子100を構成する各層をいう。 The organic functional layer 20 refers to each layer constituting the EL element 100 provided between the first electrode 2 and the second electrode 8.
 有機機能層20には、たとえば、電子輸送層21、第1の発光層22、電荷発生層23(中間層)、第2の発光層24、正孔輸送層25が含まれ、電子注入層や正孔注入層等が含まれてもよい。 The organic functional layer 20 includes, for example, an electron transport layer 21, a first light emitting layer 22, a charge generation layer 23 (intermediate layer), a second light emitting layer 24, and a hole transport layer 25. A hole injection layer or the like may be included.
 支持基板1上の第1の電極2,有機機能層20,第2の電極8は封止接着剤9を介して可撓性封止部材10によって封止されている。 The first electrode 2, the organic functional layer 20, and the second electrode 8 on the support substrate 1 are sealed with a flexible sealing member 10 through a sealing adhesive 9.
 なお、EL素子100のこれらの逆層型の構造(図1参照)は単に好ましい具体例を示したものであり、本発明は図1に例示した構成に限定されない。 EL素子100の代表的な構成として、例えば、下記(i)~(xii)に例示するような層構造を挙げることができる。 It should be noted that these reverse layer type structures (see FIG. 1) of the EL element 100 are merely preferred specific examples, and the present invention is not limited to the configuration illustrated in FIG. As a typical configuration of the EL element 100, for example, layer structures as exemplified in the following (i) to (xii) can be given.
 (i)支持基板/第1の電極/電子輸送層/第1の発光層/第2の発光層/第2の電極/封止用接着剤/封止部材
 (ii)支持基板/第1の電極/電子輸送層/第1の発光層/中間層/第2の発光層/第2の電極/封止用接着剤/封止部材
 (iii)支持基板/第1の電極/電子輸送層/第1の発光層/電荷発生層/第2の発光層/第2の電極/封止用接着剤/封止部材
 (iv)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/第2の発光層/第2の電極/封止用接着剤/封止部材
 (v)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/中間層/第2の発光層/第2の電極/封止用接着剤/封止部材
 (vi)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/電荷発生層/第2の発光層/第2の電極/封止用接着剤/封止部材
(I) Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / second electrode / sealing adhesive / sealing member (ii) support substrate / first Electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / second electrode / sealing adhesive / sealing member (iii) support substrate / first electrode / electron transport layer / First light emitting layer / charge generation layer / second light emitting layer / second electrode / sealing adhesive / sealing member (iv) support substrate / first electrode / electron injection layer / electron transport layer / first 1 light emitting layer / second light emitting layer / second electrode / sealing adhesive / sealing member (v) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / Intermediate layer / second light emitting layer / second electrode / sealing adhesive / sealing member (vi) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / charge generation Layer / second light emitting layer / second electrode Sealing adhesive / sealing member
 (vii)支持基板/第1の電極/電子輸送層/第1の発光層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
 (viii)支持基板/第1の電極/電子輸送層/第1の発光層/中間層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
 (ix)支持基板/第1の電極/電子輸送層/第1の発光層/電荷発生層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
 (x)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
 (xi)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/中間層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
 (xii)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/電荷発生層/第2の発光層/正孔輸送層/第2の電極/封止用接着剤/封止部材
(Vii) Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (viii) support Substrate / first electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (ix) support substrate / First electrode / electron transport layer / first light emitting layer / charge generation layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (x) support substrate / First electrode / electron injection layer / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / second electrode / sealing adhesive / sealing member (xi) support substrate / First electrode / electron injection layer / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / second electrode / adhesive for sealing / sealing member (xii) ) Support substrate / first electrode / electron injection layer Electron transporting layer / first emitting layer / charge generation layer / second emitting layer / hole transport layer / second electrode / encapsulation adhesive / sealing member
 (xiii)支持基板/第1の電極/電子輸送層/第1の発光層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
 (xiv)支持基板/第1の電極/電子輸送層/第1の発光層/中間層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
 (XV)支持基板/第1の電極/電子輸送層/第1の発光層/電荷発生層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
 (xvi)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
 (xvii)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/中間層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
 (xviii)支持基板/第1の電極/電子注入層/電子輸送層/第1の発光層/電荷発生層/第2の発光層/正孔輸送層/正孔注入層/第2の電極/封止用接着剤/封止部材
(Xiii) Support substrate / first electrode / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / adhesive for sealing / sealing Member (xiv) Support substrate / first electrode / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / adhesive for sealing Agent / sealing member (XV) support substrate / first electrode / electron transport layer / first light emitting layer / charge generation layer / second light emitting layer / hole transport layer / hole injection layer / second electrode / Sealing adhesive / sealing member (xvi) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / second light emitting layer / hole transport layer / hole injection layer / Second electrode / sealing adhesive / sealing member (xvii) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / intermediate layer / second light emitting layer / positive Hole transport layer / hole injection layer / second electrode / Fixing adhesive / sealing member (xviii) support substrate / first electrode / electron injection layer / electron transport layer / first light emitting layer / charge generating layer / second light emitting layer / hole transport layer / hole Injection layer / second electrode / adhesive for sealing / sealing member
 《EL素子の有機機能層》
 次いで、EL素子を構成する有機機能層の詳細について説明する。
<< Organic functional layer of EL element >>
Next, details of the organic functional layer constituting the EL element will be described.
 〔1〕注入層:正孔注入層、電子注入層
 EL素子においては、注入層は必要に応じて設けることができる。
 注入層としては電子注入層と正孔注入層があり、電子注入層は上記の如く第1の電極と第1の発光層または電子輸送層の間、及び正孔注入層は第2の電極と第2の発光層または正孔輸送層との間に存在させてもよい。
[1] Injection layer: hole injection layer, electron injection layer In an EL device, an injection layer can be provided as necessary.
The injection layer includes an electron injection layer and a hole injection layer. The electron injection layer is between the first electrode and the first light emitting layer or the electron transport layer as described above, and the hole injection layer is the second electrode. You may exist between a 2nd light emitting layer or a positive hole transport layer.
 本発明でいう注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層で、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層と電子注入層とがある。 The injection layer referred to in the present invention is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of “Part 2” of S. Co., Ltd.) and includes a hole injection layer and an electron injection layer.
 正孔注入層は、例えば、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に適用可能な正孔注入材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体等を含むポリマーやアニリン系共重合体、ポリアリールアルカン誘導体、または導電性ポリマーが挙げられ、好ましくはポリチオフェン誘導体、ポリアニリン誘導体、ポリピロール誘導体であり、さらに好ましくはポリチオフェン誘導体である。また、Chem. Rev. 107, 1233 (2007)、Phys. Rev. B 79, 245308 (2009)、WO2011/131185やWO2011/134458等に記載されているように、p型ドーパントと、前記正孔注入材料として好ましい誘導体または後述する正孔輸送材料とを組み合わせて導電性を高めた組成物で構成されていても良い。 The details of the hole injection layer are described, for example, in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069. Injection materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives. , Polymers containing silazane derivatives, aniline copolymers, polyarylalkane derivatives, or conductive polymers, preferably polythiophene derivatives, polyaniline derivatives, polypyrrole derivatives, more preferably Thiophene derivatives. In addition, as described in Chem. Rev. 107, 1233 (2007), Phys. You may be comprised with the composition which improved the electroconductivity combining the derivative | guide_body preferable as a material, or the positive hole transport material mentioned later.
 電子注入層は、例えば、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。また、上記アルカリ金属化合物やアルカリ金属、WO2005/86251、WO2007/107306等に記載されるようなn型ドーパント等で後述する電子輸送材料等にドープすることにより導電性を高めた組成物も好ましく用いることができる(例えばアルカリ金属と電子輸送層を組み合わせた電子注入層はAppl. Phys. Lett. 94, 083303 (2009)等を参考として形成することができる)。 The details of the electron injection layer are described in, for example, JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586, and specific examples thereof include strontium and aluminum. A metal buffer layer, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide. In addition, a composition in which conductivity is improved by doping the above-described alkali metal compound, alkali metal, an electron transport material described later with an n-type dopant as described in WO2005 / 86251, WO2007 / 107306, or the like is also preferably used. (For example, an electron injection layer in which an alkali metal and an electron transport layer are combined can be formed with reference to Appl. Phys. Lett. 94, 083303 (2009)).
 但し前述のように、これらの材料は酸素や水分に不安定であることが多く、素子の効率低下の一因となるため、これらの材料、特にアルカリ金属やアルカリ金属化合物は使用しない方が好ましい。しかし用いる必要がある場合には、上記バッファー層(注入層)はごく薄い膜であることが望ましく、フッ化カリウム、フッ化ナトリウムが好ましい。その膜厚は0.1nm~5μm程度、好ましくは0.1~100nm、さらに好ましくは0.5~10nm、最も好ましくは0.5~4nmである。 However, as described above, these materials are often unstable to oxygen and moisture and contribute to lowering the efficiency of the device. Therefore, it is preferable not to use these materials, particularly alkali metals or alkali metal compounds. . However, when it is necessary to use, it is desirable that the buffer layer (injection layer) is a very thin film, and potassium fluoride and sodium fluoride are preferable. The film thickness is about 0.1 nm to 5 μm, preferably 0.1 to 100 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 4 nm.
 〔2〕正孔輸送層
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明の正孔輸送層の総膜厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性または輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、、及びポリビニルカルバゾール、芳香族アミンをを主鎖または側鎖に導入した高分子材料またはオリゴマー、ポリシラン、導電性ポリマーまたはオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、Spiro-TPD等のトリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
[2] Hole transport layer In the present invention, the hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer. .
The total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
The material used for the hole transport layer (hereinafter referred to as a hole transport material) may have any of the hole injection property or the transport property and the electron barrier property. Any one can be selected and used.
For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polymer materials or oligomers in which an aromatic amine is introduced into the main chain or side chain, polysilane , Conductive polymers or oligomers (for example, PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.) and the like.
Examples of the triarylamine derivative include a benzidine type typified by αNPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine-linked core such as Spiro-TPD.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー等が好ましく用いられる。
In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
Furthermore, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials, inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal represented by Ir (ppy) 3 are also preferably used.
Although the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, carbazole derivative, indolocarbazole derivative, azatriphenylene derivative, organometallic complex, aromatic amine is introduced into the main chain or side chain. The polymer materials or oligomers used are preferably used.
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl. Phys. Lett. 69, 2160 (1996)、J. Lumin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)、Synth. Met. 111,421 (2000)、SID Symposium Digest, 37, 923 (2006)、J. Mater. Chern. 3, 319 (1993)、Adv. Mater. 6, 677 (1994)、Chern. Mater. 15,3148 (2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003-519432号公報、特開2006-135145号、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
Specific examples of known preferred hole transport materials used in the organic EL device of the present invention include the compounds described in the following documents in addition to the documents listed above, but the present invention is not limited thereto. Not.
For example, Appl. Phys. Lett. 69, 2160 (1996), J.A. Lumin. 72-74, 985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chern. 3, 319 (1993), Adv. Mater. 6, 677 (1994), Chern. Mater. 15,3148 (2003), U.S. Patent Publication No. 20030162053, U.S. Patent Publication No. 200201558242, U.S. Patent Publication No. 20060240279, U.S. Patent Publication No. 20080220265, U.S. Patent No. 5061569, International Publication No. 2007002683, and International Publication No. 2007002683. 2008018009, EP650955, U.S. Patent Publication No. 20080124572, U.S. Patent Publication No. 200707078938, U.S. Patent Publication No. 200880106190, U.S. Pat. Publication No. 20080018221, International Publication No. -135145, US Patent Application No. 13/585981, and the like.
The hole transport material may be used alone or in combination of two or more.
 〔3〕電子輸送層
 EL素子の有機機能層を構成する電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔ブロック層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
[3] Electron transport layer The electron transport layer constituting the organic functional layer of the EL element is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. . The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数の電子輸送層とする場合、発光層に対して第1の電極側に隣接する電子輸送層に用いられる電子輸送材料(正孔ブロック材料を兼ねる)としては、第1の電極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、フルオレン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、シロール誘導体、ピリジン誘導体、ピリミジン誘導体、8-キノリノール誘導体等の金属錯体等が挙げられる。 Conventionally, when a single electron transport layer and a plurality of electron transport layers are used, as an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the first electrode side. Is only required to have a function of transmitting electrons injected from the first electrode to the light emitting layer, and as the material, any one of conventionally known compounds can be selected and used. , Fluorene derivatives, carbazole derivatives, azacarbazole derivatives, oxadiazole derivatives, triazole derivatives, silole derivatives, pyridine derivatives, pyrimidine derivatives, 8-quinolinol derivatives, and the like.
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
 これらの中でもカルバゾール誘導体、アザカルバゾール誘導体、ピリジン誘導体等が本発明では好ましく、アザカルバゾール誘導体であることがより好ましい。 Among these, carbazole derivatives, azacarbazole derivatives, pyridine derivatives and the like are preferable in the present invention, and more preferably an azacarbazole derivative.
 電子輸送層は、上記電子輸送材料を、例えば、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができ、好ましくは上記電子輸送材料,フッ化アルコール溶剤を含有する塗布液を用いたウェットプロセスにより形成することができる。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a spin coating method, a casting method, a printing method including an ink jet method, an LB method, and the like, preferably It can be formed by a wet process using a coating solution containing an electron transport material and a fluorinated alcohol solvent.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種または2種以上からなる単層構造であってもよい。 The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an n-type electron transport layer doped with impurities as a guest material. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明に係る電子輸送層には、有機物のアルカリ金属塩を含有することが好ましい。有機物の種類としては、特に制限はないが、例えば、ギ酸塩、酢酸塩、プロピオン酸、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、ピルビン酸塩、乳酸塩、リンゴ酸塩、アジピン酸塩、メシル酸塩、トシル酸塩、ベンゼンスルホン酸塩が挙げられ、好ましくはギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩等が挙げられる。より好ましくは、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩等の脂肪族カルボン酸のアルカリ金属塩であり、脂肪族カルボン酸の炭素数が4以下であることが好ましく、最も好ましくは酢酸塩である。 The electron transport layer according to the present invention preferably contains an organic alkali metal salt. The type of organic substance is not particularly limited, but for example, formate, acetate, propionic acid, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, Succinate, benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate Preferably, formate, acetate, propionate, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, succinate, benzoate Etc. More preferably, it is an alkali metal salt of an aliphatic carboxylic acid such as formate, acetate, propionate, butyrate, etc., and the aliphatic carboxylic acid preferably has 4 or less carbon atoms, most preferably acetate. It is.
 有機物のアルカリ金属塩のアルカリ金属の種類としては、特に制限はないが、Na、K、Csが挙げられ、好ましくはK、Cs、さらに好ましくはCsである。有機物のアルカリ金属塩としては、前記有機物とアルカリ金属の組み合わせが挙げられ、好ましくは、ギ酸Li、ギ酸K、ギ酸Na、ギ酸Cs、酢酸Li、酢酸K、酢酸Na、酢酸Cs、プロピオン酸Li、プロピオン酸Na、プロピオン酸K、プロピオン酸Cs、シュウ酸Li、シュウ酸Na、シュウ酸K、シュウ酸Cs、マロン酸Li、マロン酸Na、マロン酸K、マロン酸Cs、コハク酸Li、コハク酸Na、コハク酸K、コハク酸Cs、安息香酸Li、安息香酸Na、安息香酸K、安息香酸Cs、より好ましくは酢酸Li、酢酸K、酢酸Na、酢酸Cs、最も好ましくは酢酸Csである。 The kind of alkali metal of the organic alkali metal salt is not particularly limited, and examples thereof include Na, K, and Cs, preferably K, Cs, and more preferably Cs. Examples of the alkali metal salt of the organic substance include a combination of the organic substance and the alkali metal, preferably, formic acid Li, formic acid K, Na formic acid, formic acid Cs, Li acetate, K acetate, Na acetate, Cs acetate, Lipropionate, Propionic acid Na, propionic acid K, propionic acid Cs, oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, benzoic acid Na, benzoic acid K, benzoic acid Cs, more preferably Li acetate, K acetate, Na acetate, Cs acetate, most preferably Cs acetate.
 これら有機物のアルカリ金属塩の含有量は、添加する電子輸送層100質量%に対し、好ましくは1.5~35質量%の範囲内であり、より好ましくは3~25質量%の範囲内であり、最も好ましくは5~15質量%の範囲内である。 The content of the alkali metal salt of these organic substances is preferably in the range of 1.5 to 35% by mass, more preferably in the range of 3 to 25% by mass with respect to 100% by mass of the electron transport layer to be added. Most preferably, it is in the range of 5 to 15% by mass.
 〔4〕発光層
 EL素子を構成する発光層は第1の発光層と第2の発光層とに分けられる。
 第1の発光層には量子ドットが含有され、第2の発光層にはリン光発光ドーパントが含有される。
[4] Light emitting layer The light emitting layer constituting the EL element is divided into a first light emitting layer and a second light emitting layer.
The first light emitting layer contains quantum dots, and the second light emitting layer contains a phosphorescent dopant.
 発光層は、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。 The structure of the light emitting layer is not particularly limited as long as the contained light emitting material satisfies the above requirements.
 同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。
 第1の発光層と第2の発光層との間には、非発光性の中間層や電荷発生層を有していることが好ましい。これは、エネルギー準位の異なる2つの発光材料、すなわち量子ドットとリン光ドーパントの接触を避け、キャリアのトラップ等による発光効率の低下を防ぐことができるためである。中でも電荷発生層を設けると、2つの発光層に対する注入キャリア量を半減でき、寿命を向上できるため、電荷発生層であることが好ましい。
There may be a plurality of layers having the same emission spectrum or emission maximum wavelength.
It is preferable that a non-light emitting intermediate layer or a charge generation layer is provided between the first light emitting layer and the second light emitting layer. This is because it is possible to avoid contact between two light emitting materials having different energy levels, that is, quantum dots and a phosphorescent dopant, and to prevent a decrease in light emission efficiency due to carrier trapping or the like. In particular, when a charge generation layer is provided, the amount of injected carriers for the two light emitting layers can be halved and the life can be improved.
 発光層の膜厚は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから50nm以下である。
 なお、発光層の膜厚とは、第1の発光層と第2の発光層との総和の膜厚であって、各発光層間に非発光性のホスト化合物のみからなる中間層が存在する場合には、当該中間層も含む膜厚である。
The thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably 50 nm or less because a lower driving voltage can be obtained.
Note that the thickness of the light emitting layer is the total thickness of the first light emitting layer and the second light emitting layer, and an intermediate layer made of only a non-light emitting host compound exists between the light emitting layers. The film thickness includes the intermediate layer.
 個々の発光層の膜厚としては1~50nmの範囲に調整することが好ましい。 It is preferable to adjust the film thickness of each light emitting layer to a range of 1 to 50 nm.
 個々の発光層は青、緑、赤の各色発光を示しても良く、各発光層の膜厚の関係については、特に制限はない。 The individual light emitting layers may emit blue, green, and red colors, and there is no particular limitation on the film thickness relationship of each light emitting layer.
 発光層の形成には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)、インクジェット法等の公知の薄膜化法により製膜して形成することができる。 For the formation of the light-emitting layer, a light-emitting material or a host compound, which will be described later, is formed into a known thin film such as, for example, a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an inkjet method, or the like. The film can be formed by the method.
 各発光層には複数の発光材料を混合してもよく、またリン光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。 A plurality of light emitting materials may be mixed in each light emitting layer, and a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
 発光層の構成として、第1の発光層にはホスト化合物および量子ドットが含有され、第2の発光層にはホスト化合物、発光材料(発光ドーパント化合物ともいう)が含有される。 As a configuration of the light emitting layer, the first light emitting layer contains a host compound and quantum dots, and the second light emitting layer contains a host compound and a light emitting material (also referred to as a light emitting dopant compound).
 (4.1)ホスト化合物
 ホスト化合物としては、リン光スペクトルにおける0-0遷移バンドに帰属される発光波長が414~459nm(2.7~3.0eV)の範囲という発光波長の短い化合物であり、すなわち三重項エネルギーの高い化合物であるにあることを特徴とするものである。
(4.1) Host compound The host compound is a compound having a short emission wavelength in which the emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum is in the range of 414 to 459 nm (2.7 to 3.0 eV). That is, it is a compound having a high triplet energy.
 このように、三重項のエネルギー準位においても、量子ドット化合物よりも広いバンドギャップのホスト化合物を用いることで、量子ドット化合物へのキャリアの注入や励起子の閉じ込めが効率的なものとなり、高効率の発光、および熱的失活過程の低減による寿命の向上を得ることができる。 In this way, even in the triplet energy level, by using a host compound having a wider band gap than the quantum dot compound, carrier injection into the quantum dot compound and exciton confinement become efficient. Increased lifetime due to efficient light emission and reduced thermal deactivation process can be obtained.
 本発明に係るホスト化合物としては、上記条件を満たす化合物であれば特に制限はない。 The host compound according to the present invention is not particularly limited as long as it satisfies the above conditions.
 本発明に係るホスト化合物のリン光スペクトルにおける0-0遷移バンドに帰属される発光波長は、下記の方法により求めることができる。 The emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum of the host compound according to the present invention can be determined by the following method.
 はじめに、測定対象であるホスト化合物を、よく脱酸素されたエタノール/メタノール=4/1(vol/vol)の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度77Kで励起光を照射し、励起光を照射した後、100msでの発光スペクトルを測定する。リン光は蛍光に比べ発光寿命が長いため、100ms後に残存する光はほぼリン光であると考えることができる。なお、リン光寿命が100msより短い化合物に対しては遅延時間を短くして測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうとリン光と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要がある。 First, the host compound to be measured is dissolved in a well-deoxygenated ethanol / methanol = 4/1 (vol / vol) mixed solvent, put into a phosphorescence measurement cell, and then excited with liquid nitrogen temperature of 77K. After irradiating with excitation light, an emission spectrum at 100 ms is measured. Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that light remaining after 100 ms is almost phosphorescence. For compounds with a phosphorescence lifetime shorter than 100 ms, measurement may be performed with a shorter delay time, but phosphorescence and fluorescence cannot be separated if the delay time is shortened so that it cannot be distinguished from fluorescence. Since this is a problem, it is necessary to select a delay time that can be separated.
 また、上記溶媒系で溶解できないホスト化合物については、そのホスト化合物を溶解しうる任意の溶媒を使用してもよい。実質上、上記測定法ではリン光波長の溶媒効果はごくわずかなので問題ないと考えられる。 For the host compound that cannot be dissolved in the solvent system, any solvent that can dissolve the host compound may be used. In practice, the above-described measurement method is considered to have no problem because the solvent effect of the phosphorescence wavelength is negligible.
 次に0-0遷移バンドの求め方であるが、本発明においては、上記測定法で得られたリン光スペクトルチャートのなかで、最も短波長側に現れる発光極大波長をもって0-0遷移バンドと定義する。 Next, the 0-0 transition band is determined. In the present invention, the 0-0 transition band having the maximum emission wavelength that appears on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method is Define.
 リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判別が難しくなるケースがある。このような場合には、励起光照射中の発光スペクトル(便宜上これを定常光スペクトルと言う)を拡大し、励起光を照射した後、100ms後の発光スペクトル(便宜上、これをリン光スペクトルという)と重ねあわせリン光スペクトルに由来する定常光スペクトル部分から、リン光スペクトルのピーク波長を読みとることで決定することができる。 Since the phosphorescence spectrum is usually weak in intensity, it may become difficult to distinguish between noise and peak when enlarged. In such a case, the emission spectrum during excitation light irradiation (for convenience, this is referred to as a steady light spectrum) is expanded, and after the excitation light is irradiated, the emission spectrum after 100 ms (for convenience, this is referred to as a phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the stationary light spectrum portion derived from the phosphorescence spectrum.
 また、リン光スペクトルをスムージング処理することでノイズとピークを分離しピーク波長を読みとることもできる。なお、スムージング処理としては、Savitzky&Golayの平滑化法等を適用することができる。 Also, by smoothing the phosphorescence spectrum, noise and peak can be separated and peak wavelength can be read. As the smoothing process, a smoothing method of Savitzky & Golay can be applied.
 上記測定で用いることのできる測定装置としては、日立ハイテク製の蛍光光度計F4500等を挙げることができる。 As a measuring apparatus that can be used in the above measurement, a fluorometer F4500 manufactured by Hitachi High-Technology Corporation can be exemplified.
 ホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。 As the host compound, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、本発明で規定する上記条件を持たす化合物であれば特に制限はなく、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 The host compound is not particularly limited as long as it is a compound having the above conditions defined in the present invention, and a known host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the EL element can be highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of luminescent material mentioned later, and can thereby obtain arbitrary luminescent colors.
 また、本発明に用いられるホスト化合物としては、本発明で規定する上記条件を持たす化合物であれば特に制限はなく、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよいが、高分子材料を用いた場合、化合物が溶媒を取り込んで膨潤やゲル化等、溶媒が抜けにくいと思われる現象が起こりやすいので、これを防ぐために分子量は高くない方が好ましく、具体的には塗布時での分子量が2,000以下の材料を用いることが好ましく、塗布時の分子量1,000以下の材料を用いることが更に好ましく、特には、分子量が500~1000の範囲にあるホスト化合物が好ましい。 The host compound used in the present invention is not particularly limited as long as it is a compound having the above-mentioned conditions defined in the present invention, and may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and may be a vinyl group. Or a low molecular compound (polymerizable light-emitting host) having a polymerizable group such as an epoxy group, but when a high molecular weight material is used, the compound may take up the solvent and swell or gelate, and the solvent is unlikely to escape. In order to prevent this phenomenon, it is preferable that the molecular weight is not high. Specifically, it is preferable to use a material having a molecular weight of 2,000 or less during coating, and a molecular weight of 1,000 or less during coating. It is more preferable to use a material, and in particular, a host compound having a molecular weight in the range of 500 to 1000 is preferable.
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられ、本発明で規定する上記条件を持たす化合物を選択して用いることができる。 Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. 2002-302516, 2002-305083, 2002-305084, 2002-308837, etc., and a compound having the above-mentioned conditions defined in the present invention can be selected and used. it can.
 更には、本発明に係るホスト化合物が、下記一般式(1)で示される化合物が好ましい。これは、下記式(1)で表わされる化合物は、縮環構造を有するためにキャリア輸送性が高く、また前記の広い三重項エネルギー(リン光の0-0バンド)を有するためである。 Furthermore, the host compound according to the present invention is preferably a compound represented by the following general formula (1). This is because the compound represented by the following formula (1) has a condensed ring structure and therefore has a high carrier transport property, and also has the above-described broad triplet energy (0-0 band of phosphorescence).
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 一般式(1)中、「X」はNR′、酸素原子、硫黄原子、CR′R″またはSiR′R″を表す。
 「yおよびy」は各々CR′または窒素原子を表す。
 「R′およびR″」は各々水素原子または置換基を表す。
 「ArおよびAr」は各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
 「m、n」は0~4の整数を表す。
In the general formula (1), “X” represents NR ′, oxygen atom, sulfur atom, CR′R ″ or SiR′R ″.
“Y 1 and y 2 ” each represent CR ′ or a nitrogen atom.
“R ′ and R ″” each represents a hydrogen atom or a substituent.
“Ar 1 and Ar 2 ” each represent an aromatic ring and may be the same or different from each other.
“M, n” represents an integer of 0-4.
 一般式(1)におけるX、y及びyにおいて、R′及びR″で各々表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換されていてもよい。これらの置換基は複数が互いに結合して環を形成していてもよい。 In X, y 1 and y 2 in the general formula (1), examples of the substituent represented by R ′ and R ″ include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, t -Butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group) Group), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl Group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl , Indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1 , 2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group Quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is nitrogen (Represented by atoms replaced), quinoxalini Group, pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy) Group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.) Alkylthio groups (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio Group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group ( For example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylamino) Sulfonyl groups, dodecylaminosulfonyl groups, phenylaminosulfonyl groups, naphthylaminosulfonyl groups, 2-pyridylaminosulfonyl groups, etc.), acyl groups (eg Acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethyl group) Carbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octyl Rucarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group) Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, Ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2 Pyridylaminoureido group, etc.), sulfinyl groups (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Etc.), alkylsulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl) Group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, buty Amino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom etc.), fluorinated carbonization Hydrogen group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group) , Triphenylsilyl group, phenyldiethylsilyl group, etc.). These substituents may be further substituted with the above substituents. A plurality of these substituents may be bonded to each other to form a ring.
 中でも、電子輸送性に優れる構造として、一般式(1)中でXが、NR′または酸素原子である化合物が好ましい。すなわち、(アザ)カルバゾール環または(アザ)ジベンゾフラン環を有する化合物であることが好ましい。ここでR′としては、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、又は芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)が特に好ましい。 Among them, as a structure having excellent electron transport properties, a compound in which X is NR ′ or an oxygen atom in the general formula (1) is preferable. That is, a compound having a (aza) carbazole ring or a (aza) dibenzofuran ring is preferable. Here, R ′ is an aromatic hydrocarbon group (also called an aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, Azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenylyl) or aromatic heterocyclic groups (eg furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl) Group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthalazinyl group, etc.) are particularly preferred.
 上記の芳香族炭化水素基、芳香族複素環基は、各々一般式(1)のXにおいて、R′及びR″で各々表される置換基を有してもよい。 The above aromatic hydrocarbon group and aromatic heterocyclic group may each have a substituent represented by R ′ and R ″ in X of the general formula (1).
 一般式(1)において、y及びyで表される原子としては、CR′または窒素原子が挙げられるが、より好ましくはCR′である。このような化合物は正孔輸送性にも優れ、第1の電極・第2の電極から注入された電子・正孔を効率よく発光層内で再結合・発光させることができる。 In the general formula (1), examples of the atom represented by y 1 and y 2 include CR ′ and a nitrogen atom, and CR ′ is more preferable. Such a compound is also excellent in hole transportability, and can efficiently recombine and emit electrons and holes injected from the first electrode and the second electrode in the light emitting layer.
 一般式(1)において、Ar及びArにより表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも、一般式(1)のXにおいて、R′及びR″で各々表される置換基を有してもよい。 In the general formula (1), examples of the aromatic ring represented by Ar 1 and Ar 2 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by R ′ and R ″ in X of the general formula (1).
 一般式(1)において、Ar及びArにより表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the general formula (1), examples of the aromatic hydrocarbon ring represented by Ar 1 and Ar 2 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
 一般式(1)で表される部分構造において、Ar及びArにより表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。 In the partial structure represented by the general formula (1), examples of the aromatic heterocycle represented by Ar 1 and Ar 2 include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine. Ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, Quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is a nitrogen atom) Has been replaced Shown) and the like.
 これらの環は、更に一般式(1)において、R′及びR″で各々表される置換基を有してもよい。 These rings may further have a substituent represented by R ′ and R ″ in the general formula (1).
 上記の中でも、一般式(1)において、Ar及びArにより表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、更に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環であり、より好ましくは置換基を有するベンゼン環であり、特に好ましくはカルバゾリル基を有するベンゼン環が挙げられる。 Among the above, in the general formula (1), the aromatic ring represented by Ar 1 and Ar 2 is preferably a carbazole ring, carboline ring, dibenzofuran ring, or benzene ring, and more preferably used. , A carbazole ring, a carboline ring, and a benzene ring, more preferably a benzene ring having a substituent, and particularly preferably a benzene ring having a carbazolyl group.
 また、一般式(1)において、Ar及びArにより表される芳香環としては、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。 In the general formula (1), the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of three or more rings, and as an aromatic hydrocarbon condensed ring in which three or more rings are condensed. Specifically, naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, Coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen ring, picene ring, pyranthrene ring, coronene ring, naphthocoronene ring , Ovalene ring, Ansula Ntoren ring and the like. In addition, these rings may further have the above substituent.
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。 Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, Emissions tiger thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring). In addition, these rings may further have a substituent.
 また、一般式(1)において、m、nは0~4の整数を表すが、0~2であることが好ましく、特に、Xが、酸素原子または硫黄原子である場合には、1~2であることが好ましい。
 m、nは互いに同じでもよいし異なっていてもよい。
In the general formula (1), m and n represent an integer of 0 to 4, preferably 0 to 2, and in particular, when X is an oxygen atom or a sulfur atom, 1 to 2 It is preferable that
m and n may be the same as or different from each other.
 本発明においては、特に、ジベンゾフラン環とカルバゾール環をともに有するホスト化合物が好ましい。 In the present invention, a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
 一般式(1)中、好ましくはAr1およびAr2の少なくとも一方が、一般式(2)で表される。 In general formula (1), at least one of Ar1 and Ar2 is preferably represented by general formula (2).
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 一般式(2)中、「yおよびy」は各々CR′または窒素原子を表す。
 「R′」は各々水素原子または置換基を表す。
 「ArおよびAr」は各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
 「m、n」は0~4の整数を表し、互いに同じでもよいし異なっていてもよい。
In general formula (2), “y 1 and y 2 ” each represent CR ′ or a nitrogen atom.
“R ′” each represents a hydrogen atom or a substituent.
“Ar 1 and Ar 2 ” each represent an aromatic ring and may be the same or different from each other.
“M, n” represents an integer of 0 to 4, and may be the same or different from each other.
 yおよびyやR′の置換基は、前記一般式(1)において説明したものと同様のものを挙げることができる。
 ArおよびArで表される芳香環は、前記一般式(1)においてAr及びArにより表される芳香環と同様のものを挙げることができる。
Examples of the substituent for y 1, y 2 and R ′ are the same as those described in the general formula (1).
Aromatic ring represented by Ar 1 and Ar 2 may be the same as the aromatic ring represented by Ar 1 and Ar 2 in the general formula (1).
 以下に、リン光スペクトルにおける0-0遷移バンドに帰属される発光波長が、少なくとも459nmよりも短波であることが好ましい。これよりも長波であると、量子ドット化合物へのエネルギー移動の効率が低下する。また、414nm未満であると、駆動電圧が高くなるため、発光効率の低下が懸念される。すなわち414~459nm(2.7~3.0eV)の範囲が好ましい。459nm(2.7eV)未満の範囲にある本発明に係るホスト化合物として、一般式(1)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。 Hereinafter, the emission wavelength attributed to the 0-0 transition band in the phosphorescence spectrum is preferably at least shorter than 459 nm. If the wave length is longer than this, the efficiency of energy transfer to the quantum dot compound decreases. Further, if it is less than 414 nm, the drive voltage becomes high, and there is a concern that the light emission efficiency is lowered. That is, the range of 414 to 459 nm (2.7 to 3.0 eV) is preferable. Examples of the host compound according to the present invention in the range of less than 459 nm (2.7 eV) include compounds represented by the general formula (1) and other structures, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000047
 
 (4.2)発光材料
 本発明に係る発光材料としては、一般には、蛍光性化合物、リン光発光材料(リン光発光性化合物、リン光発光性化合物等ともいう)を用いることができるが、本発明においては、少なくともリン光発光性化合物を用いることを特徴とする。
(4.2) Luminescent Material As the luminescent material according to the present invention, generally, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) can be used. In the present invention, at least a phosphorescent compound is used.
 本発明において、リン光発光性化合物とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 In the present invention, a phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明においてリン光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The above phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents, but when using a phosphorescent material in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
 リン光発光材料の発光原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光材料に移動させることでリン光発光材料からの発光を得るというエネルギー移動型、もう一つはリン光発光材料がキャリアトラップとなり、リン光発光材料上でキャリアの再結合が起こりリン光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission principles of phosphorescent materials. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is converted into the phosphorescent material. The energy transfer type that obtains light emission from the phosphorescent light emitting material by moving it, and the other is that the phosphorescent light emitting material becomes a carrier trap, and carrier recombination occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material In any case, the excited state energy of the phosphorescent material is lower than the excited state energy of the host compound.
 リン光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, but is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
 また、本発明に係るリン光発光ドーパントとしては、リン光スペクトルにおける0-0遷移バンドに帰属する発光波長が、460~827nm(2.7~1.5eV)の範囲内にあるリン光発光ドーパントであることが好ましい。
 中でも、少なくとも520~560nm、600~640nmの波長領域に発光極大波長を有するリン光発光ドーパントを含むことが好ましく、さらに460~490nmの波長領域に発光極大波長を有するリン光発光ドーパントも含むことが好ましい。
The phosphorescent dopant according to the present invention includes a phosphorescent dopant having an emission wavelength belonging to the 0-0 transition band in the phosphorescence spectrum in the range of 460 to 827 nm (2.7 to 1.5 eV). It is preferable that
Among them, it is preferable to include a phosphorescent dopant having an emission maximum wavelength in a wavelength region of at least 520 to 560 nm and 600 to 640 nm, and further including a phosphorescence dopant having an emission maximum wavelength in a wavelength region of 460 to 490 nm. preferable.
 本発明に係るリン光発光ドーパントの0-0遷移バンドに帰属する発光波長は、前記ホスト化合物の0-0遷移バンドに帰属する発光波長の測定に用いたのと同様の方法で求めることができる。 The emission wavelength attributed to the 0-0 transition band of the phosphorescent dopant according to the present invention can be determined by the same method used for the measurement of the emission wavelength attributed to the 0-0 transition band of the host compound. .
 本発明に係るリン光発光性化合物としては、量子ドットからの発光と合わせて白色光となるような組合せ方が好ましい。たとえば量子ドットからの発光が青、リン光発光性化合物からの発光が緑、赤といった組合せもあるし、量子ドットからの発光が青、リン光発光性化合物からの発光がライトブルーといった組合せもある。発光がライトブルーのリン光発光性化合物としては、下記一般式(3)で表されるリン光発光ドーパントが好ましい。 The phosphorescent compound according to the present invention is preferably a combination that produces white light in combination with light emission from the quantum dots. For example, there are combinations such as blue light emitted from quantum dots, green light emitted from phosphorescent compounds, and red, and blue light emitted from quantum dots and light blue light emitted from phosphorescent compounds. . As the phosphorescent compound that emits light blue, a phosphorescent dopant represented by the following general formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000048
 
 一般式(3)において、Rは置換基を表す。Zは5~7員環を形成するのに必要な非金属原子群を表す。n1は0~5の整数を表す。B~Bは炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、少なくとも一つは窒素原子を表す。Mは元素周期表における8族~10族の金属を表す。X及びXは炭素原子、窒素原子又は酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2、又は3の整数を表し、m2は0、1、又は2の整数を表すが、m1+m2は2又は3である。 In the general formula (3), R 1 represents a substituent. Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring. n1 represents an integer of 0 to 5. B 1 to B 5 each represent a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom, and at least one represents a nitrogen atom. M 1 represents a group 8 to group 10 metal in the periodic table. X 1 and X 2 represent a carbon atom, a nitrogen atom, or an oxygen atom, and L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . m1 represents an integer of 1, 2, or 3, m2 represents an integer of 0, 1, or 2, and m1 + m2 is 2 or 3.
 本発明に係る一般式(3)で表されるリン光発光性化合物は、HOMOが-5.15~-3.50eV、LUMOが-1.25~+1.00eVであり、好ましくはHOMOが-4.80~-3.50eV、LUMOが-0.80~+1.00eVである。 The phosphorescent compound represented by the general formula (3) according to the present invention has a HOMO of −5.15 to −3.50 eV, a LUMO of −1.25 to +1.00 eV, and preferably a HOMO of − 4.80 to −3.50 eV, and LUMO is −0.80 to +1.00 eV.
 一般式(3)で表されるリン光発光性化合物において、Rで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基のうち、好ましいものはアルキル基もしくはアリール基である。 In the phosphorescent compound represented by the general formula (3), examples of the substituent represented by R 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group). Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) Alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl Group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1, 2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, A quinolyl group, a benzofuryl group, a dibenzofuryl group, a benzothienyl group, a dibenzothienyl group, an indolyl group, a carbazolyl group, a carbolinyl group, a diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is a nitrogen atom) Quinoxalinyl) , Pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, Pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio Groups (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio (Eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, , Phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group) Group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group ( For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octyl Sulfonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethyl) Ureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2- Lysylaminoureido group, etc.), sulfinyl groups (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Group), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group etc.), arylsulfonyl group or heteroarylsulfonyl group (eg phenyl Sulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butyryl) Mino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group) , Triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.). Of these substituents, preferred are an alkyl group and an aryl group.
 Zは、5~7員環を形成するのに必要な非金属原子群を表す。Zにより形成される5~7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環及びチアゾール環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。 Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring. Examples of the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
 B~Bは、炭素原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つは窒素原子を表す。これら5つの原子により形成される芳香族含窒素複素環としては単環が好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環及びチアジアゾー環ル等が挙げられる。これらのうちで好ましいものは、ピラゾール環、イミダゾール環であり、特に好ましくはB2、B5が窒素原子であるイミダゾール環である。これらの環は上記の置換基によって更に置換されていてもよい。置換基として好ましいものはアルキル基及びアリール基であり、更に好ましくはアリール基である。 B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom. The aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, oxadiazole ring, and thiadiazole ring. Among these, a pyrazole ring and an imidazole ring are preferable, and an imidazole ring in which B2 and B5 are nitrogen atoms is particularly preferable. These rings may be further substituted with the above substituents. Preferred as the substituent are an alkyl group and an aryl group, and more preferably an aryl group.
 Lは、X、Xと共に2座の配位子を形成する原子群を表す。X-L-Xで表される2座の配位子の具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボル、ピコリン酸及びアセチルアセトン等が挙げられる。これらの基は上記の置換基によって更に置換されていてもよい。 L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 . Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
 m1は、1、2又は3の整数を表し、m2は0、1又は2の整数を表すが、m1+m2は2又は3である。中でも、m2は0である場合が好ましい。Mで表される金属としては、元素周期表の8~10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でもイリジウム、白金が好ましく、更に好ましくはイリジウムである。 m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. Especially, the case where m2 is 0 is preferable. As the metal represented by M 1 , a transition metal element belonging to Group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, among which iridium and platinum are preferable, and iridium is more preferable.
 以下に、一般式(3)で表されるリン光発光性化合物の具体的な化合物(D-1~D-93)を例示するが、これら例示する中でも、リン光スペクトルにおける0-0遷移バンドに帰属する発光波長が、460~827nm(2.7~1.5eV)の範囲内にあるリン光発光性化合物がより好ましい。 Specific examples of the phosphorescent compound (D-1 to D-93) represented by the general formula (3) are shown below. Among these examples, the 0-0 transition band in the phosphorescence spectrum is exemplified. A phosphorescent compound having an emission wavelength belonging to is in the range of 460 to 827 nm (2.7 to 1.5 eV) is more preferable.
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000059
 
 (4.3)量子ドット
 本発明においては、発光層が、発光波長が413~477nmの範囲にある量子ドットを含有することを特徴とする。
(4.3) Quantum Dots The present invention is characterized in that the light emitting layer contains quantum dots having an emission wavelength in the range of 413 to 477 nm.
 すなわち、図1に示すように、量子ドット30は、第1の発光層22に含有されている。量子ドット30は、第1の発光層22と発光層に隣接する層(たとえば電子輸送層21や電荷発生層23)との界面に存在していても良い。
 本発明においては、特には、量子ドットが、少なくとも第1の発光層に含有している態様が好ましい。
That is, as shown in FIG. 1, the quantum dots 30 are contained in the first light emitting layer 22. The quantum dots 30 may exist at the interface between the first light emitting layer 22 and a layer adjacent to the light emitting layer (for example, the electron transport layer 21 and the charge generation layer 23).
In the present invention, it is particularly preferable that the quantum dots are contained in at least the first light emitting layer.
 本発明に係る量子ドットとは、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒子径が数nm~数十nm程度の微粒子であり、下記に示す量子ドット効果が得られるものをいう。 The quantum dot according to the present invention refers to a particle having a predetermined size, which is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of about several nanometers to several tens of nanometers. This means that the quantum dot effect can be obtained.
 本発明に係る量子ドット(微粒子)の粒子径としては、具体的には1~20nmの範囲内であることが好ましく、更に好ましくは1~10nmの範囲内である。 The particle diameter of the quantum dots (fine particles) according to the present invention is specifically preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
 このような量子ドットのエネルギー準位Eは、一般に、プランク定数を「h」と、電子の有効質量を「m」と、微粒子の半径を「R」としたとき、下式(I)で表される。 The energy level E of such a quantum dot is generally expressed by the following formula (I) when the Planck constant is “h”, the effective mass of the electron is “m”, and the radius of the fine particle is “R”. Is done.
 式(I)
   E∝h/mR
 式(I)で示されるように、量子ドットのバンドギャップは、「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、量子ドットの粒子径を制御、規定することによって、量子ドットのバンドギャップ値を制御することができる。すなわち、微粒子の粒子径を制御、規定することにより、通常の原子には無い多様性を持たせることができる。そのため、光によって励起させたり、量子ドットを含むEL素子に対して電圧をかけることで、量子ドットに電子とホールを閉じ込めて再結合させたりすることで電気エネルギーを所望の波長の光に変換して出射させることができる。本発明では、このような発光性の量子ドット材料を量子ドットと定義する。
Formula (I)
E∝h 2 / mR 2
As shown by the formula (I), the band gap of the quantum dot increases in proportion to “R −2 ”, and a so-called quantum dot effect is obtained. Thus, the band gap value of a quantum dot can be controlled by controlling and defining the particle diameter of the quantum dot. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity not found in ordinary atoms. For this reason, it is possible to convert electrical energy into light of a desired wavelength by exciting it with light or applying a voltage to an EL element including a quantum dot to confine electrons and holes in the quantum dot and recombine them. Can be emitted. In the present invention, such a light-emitting quantum dot material is defined as a quantum dot.
 量子ドットの平均粒子径は、上述したように、数nm~数十nm程度であるが、白色発光の発光材料の1つとして用いる場合、目的とする発光色に対応する平均粒子径に設定する。例えば、赤発光を得たい場合には、量子ドットの平均粒子径としては3.0~20nmの範囲内に設定することが好ましく、緑発光を得たい場合には、量子ドットの平均粒子径を1.5~10nmの範囲内に設定することが好ましく、青色発光を得たい場合には、量子ドットの平均粒子径を1.0~3.0nmの範囲内に設定することが好ましい。但し、青色発光の量子ドットの平均粒子径は、それを構成する材料に寄っても変動する。 As described above, the average particle diameter of the quantum dots is about several nanometers to several tens of nanometers. However, when used as one of the light emitting materials for white light emission, the average particle diameter is set to the target light emission color. . For example, when it is desired to obtain red light emission, the average particle diameter of the quantum dots is preferably set within a range of 3.0 to 20 nm. When green light emission is desired to be obtained, the average particle diameter of the quantum dots is set to It is preferable to set within the range of 1.5 to 10 nm, and when it is desired to obtain blue light emission, it is preferable to set the average particle diameter of the quantum dots within the range of 1.0 to 3.0 nm. However, the average particle diameter of the blue-emitting quantum dots varies depending on the material constituting the quantum dots.
 平均粒子径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により量子ドットの粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、電子間力顕微鏡(AFM)を用いて平均粒子径を求める方法、動的光散乱法による粒径測定装置、例えば、Malvern社製、「ZETASIZERNano Series Nano-ZSを用いて測定することができる。その他にも、X線小角散乱法により得られたスペクトルから量子ドットの粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられるが、本発明においては、電子間力顕微鏡(AFM)を用いて平均粒子径を求める方法が好ましい。 As a method for measuring the average particle diameter, a known method can be used. For example, a quantum dot particle observation is performed with a transmission electron microscope (TEM), and a method for obtaining the number average particle size of the particle size distribution therefrom, or a method for obtaining an average particle size using an electron force microscope (AFM), A particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano-Series—Nano-ZS, manufactured by Malvern, Inc. can be measured using a spectrum obtained by a small-angle X-ray scattering method. A method of deriving a particle size distribution using particle size distribution simulation calculation and the like can be mentioned. In the present invention, a method of obtaining an average particle size using an electron force microscope (AFM) is preferable.
 また、本発明に係る量子ドットにおいては、アスペクト比(長軸径/短軸径)の値が、1.0~2.0の範囲内であることが好ましく、より好ましくは1.1~1.7の範囲である。本発明に係る量子ドットに係るアスペクト比(長軸径/短軸径)についても、例えば、電子間力顕微鏡(AFM)を用いて、長軸径及び短軸径を測定して求めることができる。なお測定する個体数としては、300個以上であることが好ましい。 In the quantum dot according to the present invention, the aspect ratio (major axis diameter / minor axis diameter) is preferably in the range of 1.0 to 2.0, more preferably 1.1 to 1. .7 range. The aspect ratio (major axis diameter / minor axis diameter) related to the quantum dots according to the present invention can also be determined by measuring the major axis diameter and the minor axis diameter using, for example, an electron force microscope (AFM). . The number of individuals to be measured is preferably 300 or more.
 量子ドットの添加量は、添加する層の全構成物質を100質量部%としたとき、0.01~50質量%の範囲内であることが好ましく、0.05~25質量%の範囲内であることがより好ましく、0.1~20質量%の範囲内であることが最も好ましい。添加量が0.01質量%以上であれば、十分な輝度効率、演色性の良い白色発光を得ることができ、50質量%以下であれば、適度な量子ドット粒子間距離を維持でき、量子サイズ効果を十分に発揮させることができる。 The addition amount of the quantum dots is preferably in the range of 0.01 to 50% by mass, and in the range of 0.05 to 25% by mass, when the total constituent materials of the layer to be added are 100% by mass. More preferably, it is most preferably in the range of 0.1 to 20% by mass. If the addition amount is 0.01% by mass or more, white light emission with sufficient luminance efficiency and good color rendering can be obtained, and if it is 50% by mass or less, an appropriate distance between quantum dot particles can be maintained. The size effect can be exhibited sufficiently.
 また、前述したリン光発光性化合物は、その励起寿命がミリもしくはマイクロ秒オーダーと比較的長いために、層内での濃度が濃すぎると励起子のエネルギーが振動緩和して消失するいわゆる濃度消光の問題がある。しかし、これらの量子ドットを発光層もしくはその隣接層に添加することにより、量子ドットおよびリン光発光性化合物そのものの発光が得られるだけに留まらず、詳細は不明だが量子ドットによる層全体の形状の変化や量子ドットの表面エネルギーによるリン光発光性化合物の分散性向上によるものと推測されるリン光発光性化合物の発光効率の向上効果が得られる。 In addition, since the phosphorescent compound described above has a relatively long excitation lifetime on the order of millimeters or microseconds, so-called concentration quenching, in which the exciton energy is relaxed and lost when the concentration in the layer is too high. There is a problem. However, by adding these quantum dots to the light-emitting layer or its adjacent layer, not only the light emission of the quantum dots and the phosphorescent compound itself is obtained, but the details are unknown, but the shape of the entire layer by the quantum dots is not known. The effect of improving the luminous efficiency of the phosphorescent compound, which is presumed to be due to the change or the dispersibility of the phosphorescent compound due to the surface energy of the quantum dots, is obtained.
 量子ドットの構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、錫等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、酸化錫(IV)(SnO)、硫化錫(II,IV)(Sn(II)Sn(IV)S)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化砒素(III)(As)、セレン化砒素(III)(AsSe)、テルル化砒素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の周期表第11族元素と周期表第16族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO、Ti、Ti、Ti等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられるが、SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の周期表第15族元素と周期表第16族元素との化合物、MgS、MgSe等の周期表第2族元素と周期表第16族元素との化合物が好ましく、中でも、Si、Ge、GaN、GaP、InN、InP、Ga、Ga、In、In、ZnO、ZnS、CdO、CdSがより好ましい。これらの物質は、毒性の高い陰性元素を含まないので耐環境汚染性や生物への安全性に優れており、また、可視光領域で純粋なスペクトルを安定して得ることができるので、発光素子の形成に有利である。これらの材料のうち、CdSe、ZnSe、CdSは、発光の安定性の点で好ましい。発光効率、高屈折率、安全性の経済性の観点から、ZnO、ZnSの量子ドットが好ましい。また量子ドットはCuInS、CuInSe、CuInGaSeであってもよい。
 上記の材料は、1種で用いるものであってもよいし、2種以上を組み合わせて用いてもよい。
Examples of the constituent material of the quantum dot include a simple substance of a periodic table group 14 element such as carbon, silicon, germanium, and tin, a simple substance of a periodic table group 15 element such as phosphorus (black phosphorus), and a periodicity of selenium, tellurium, and the like. Table 16 group element simple substance, compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin (II) sulfide (SnS), tin (II) selenide (SnSe), tin telluride (II) (SnTe), lead sulfide (II) ) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), phosphorus Boron halide (BP), Boron arsenide (BAs), Aluminum nitride (AlN), Al phosphide Ni (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), Compounds of Group 13 elements of the periodic table and Group 15 elements of the periodic table such as indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc. (or III-V group compound semiconductors), aluminum sulfide ( Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium oxide (In 2) O 3), indium sulfide (In 2 S 3), indium selenide (I 2 Se 3), compounds of tellurium indium (In 2 Te 3) periodic table group 13 elements and the periodic table group 16 element such as, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr ), Compounds of group 13 elements of the periodic table and elements of group 17 of the periodic table such as thallium (I) iodide (TlI), zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), tellurium Zinc iodide (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe) ) periodic table group 12 element and the periodic table compound of group 16 element such as (or II-VI compound semiconductor), arsenic sulfide (III) (as 2 S 3), selenium arsenic (III (As 2 Se 3), telluride arsenic (III) (As 2 Te 3 ), antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III ) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ), bismuth telluride (III) (Bi 2 Te 3 ), etc. Compounds of Group 15 elements and Group 16 elements of the periodic table, Group 11 elements of the periodic table and Group 16 of the periodic table such as copper (I) (Cu 2 O), copper selenide (Cu 2 Se), etc. Periodic tables of compounds with elements, copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), silver bromide (AgBr), etc. Compounds of Group 11 elements and Periodic Table Group 17 elements, nickel oxide (II) (N compounds of periodic table group 10 elements such as iO) and periodic table group 16 elements, periodic table group 9 elements such as cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS) and periodic table Compounds with Group 16 elements, compounds of Group 8 elements of the periodic table such as triiron tetroxide (Fe 3 O 4 ), iron (II) sulfide (FeS), and Group 16 elements of the periodic table, manganese (II) oxide A compound of a periodic table group 7 element such as (MnO) and a periodic table group 16 element, a periodic table group 6 element such as molybdenum sulfide (IV) (MoS 2 ), tungsten oxide (IV) (WO 2 ), etc. Compounds with Group 16 elements of the Periodic Table, Periodic Table Group 5 elements such as vanadium (II) oxide (VO), vanadium oxide (IV) (VO 2 ), tantalum oxide (V) (Ta 2 O 5 ) and the period Table compound of group 16 element, a titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 O , A compound of Group 4 of the periodic table element and Periodic Table Group 16 element of Ti 5 O 9, etc.) and the like, magnesium sulfide (MgS), the second group elements and the periodic table periodic table such as magnesium selenide (MgSe) Compounds with group 16 elements, cadmium (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), copper sulfide (II) chromium (III) ( Examples thereof include chalcogen spinels such as CuCr 2 S 4 ), mercury (II) selenide, chromium (III) (HgCr 2 Se 4 ), barium titanate (BaTiO 3 ), etc., but SnS 2 , SnS, SnSe, SnTe, PbS , PbSe, PbTe, etc. compounds of periodic table group 14 elements and periodic table group 16 elements, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, etc. III-V group compound semiconductors such as Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3, etc. Compounds of Group 13 elements and Group 16 elements of the periodic table, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe and other II-VI group compound semiconductors, As 2 O 3 , As 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 A compound of a periodic table group 15 element such as Se 3 or Bi 2 Te 3 and a group 16 element of the periodic table, a compound of periodic table group 2 element such as MgS or MgSe, and a group 16 element of the periodic table are preferable, Among them, Si, Ge GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, CdO, and CdS are more preferable. Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and since a pure spectrum can be stably obtained in the visible light region, light emitting devices Is advantageous for the formation of Of these materials, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, and safety, ZnO and ZnS quantum dots are preferable. The quantum dots may be CuInS, CuInSe, or CuInGaSe.
Said material may be used by 1 type and may be used in combination of 2 or more type.
 なお、上述した量子ドットには、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより発光特性を大きく向上させることができる。 Note that the above-described quantum dots can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
 本発明に係る量子ドットにおいては、発光波長が413~477nm(2.6~3.6eV)としての範囲にあることが好ましい。これは、赤青緑それぞれの量子ドットに置いて、この発光波長の量子ドット、つまり青色の量子ドットは最もバンドギャップが広いため、最もHOMOが深く、LUMOが浅い量子ドットとなる。その結果、逆層構成のOLEDの第1の発光層として設置する場合には、最も電子輸送性が高く正孔ブロック性の高い量子ドット層とすることができるためである。また、前記リン光発光ドーパントでは非常に出しにくい発光領域でもあるため、この領域に光る第1発光層とすると、高色温度や高演色性などを付与することができる。 In the quantum dot according to the present invention, the emission wavelength is preferably in the range of 413 to 477 nm (2.6 to 3.6 eV). This is because the quantum dot of this emission wavelength, that is, the blue quantum dot, has the widest band gap and is the quantum dot with the deepest HOMO and the shallow LUMO. As a result, when it is installed as the first light emitting layer of the OLED having the reverse layer configuration, it is possible to obtain a quantum dot layer having the highest electron transporting property and the highest hole blocking property. Further, since it is also a light emitting region that is very difficult to emit with the phosphorescent dopant, the first light emitting layer that shines in this region can impart high color temperature, high color rendering, and the like.
 本発明でいう発光波長(バンドギャップ)とは、無機物である量子ドットの場合は、価電子帯と伝導帯のエネルギー差を量子ドットにおけるバンドギャップ(eV)であり、発光波長(nm)=1240/バンドギャップ(eV)で表される。 The emission wavelength (band gap) as used in the present invention is the band gap (eV) in a quantum dot, and the emission wavelength (nm) = 1240 in the case of an inorganic quantum dot. / Band gap (eV).
 量子ドットのバンドギャップ(eV)は、Taucプロットを用いて測定することができる。 The band gap (eV) of a quantum dot can be measured using a Tauc plot.
 バンドギャップ(eV)の光科学的測定手法の一つであるTaucプロットについて説明する。 The Tauc plot, which is one of the optical scientific measurement methods of the band gap (eV), will be described.
 Taucプロットを用いたバンドギャップ(E0)の測定原理を以下に示す。 The measurement principle of the band gap (E 0 ) using the Tauc plot is shown below.
 半導体材料の長波長側の光学吸収端近傍の比較的吸収の大きい領域に於いて光吸収係数αと光エネルギーhν(ただし、hはプランク常数、νは振動数)、及びバンドキャップエネルギーE0の間には次式(A)、が成り立つと考えられている。 In the region of relatively large absorption near the optical absorption edge on the long wavelength side of the semiconductor material, the light absorption coefficient α, the light energy hν (where h is the Planck constant, ν is the frequency), and the band cap energy E 0 In the meantime, the following equation (A) is considered to hold.
 式(A)
   αhν=B(hν-E
 従って、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット(いわゆる、Taucプロット)し、直線区間を外挿したα=0におけるhνの値が求めようとする量子ドットのバンドギャップエネルギーE0となる。
Formula (A)
αhν = B (hν−E 0 ) 2
Therefore, an absorption spectrum is measured, and hν is plotted (so-called Tauc plot) with respect to (αhν) raised to the 0.5th power, and the value of hν at α = 0 with extrapolation of the straight section is sought. It becomes the band gap energy E 0 of the quantum dot.
 なお、量子ドットの場合は、吸収と発光のスペクトルの差異(ストークスシフト)が小さく、また波形もシャープであるため、簡便には発光スペクトルの極大波長をバンドギャップの指標として用いることもできる。 In the case of quantum dots, the difference between absorption and emission spectra (Stokes shift) is small and the waveform is sharp, so the maximum wavelength of the emission spectrum can be used as an index of the band gap.
 また、他の方法として、これら有機および無機機能材料のエネルギー準位を見積もる方法としては、走査型トンネル分光法、紫外線光電子分光法、X線光電子分光法、オージェ電子分光法により求められるエネルギー準位から求める方法および光学的にバンドギャップを見積もる方法が挙げられる。 In addition, as another method for estimating the energy levels of these organic and inorganic functional materials, energy levels required by scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and the like. And a method for optically estimating the band gap.
 また、これら量子ドットは、ホールと電子が量子ドット内での直接再結合することによる発光だけでなく、有機電子ブロック正孔輸送層や有機発光層、または正孔ブロック電子輸送層中で生じた励起子のエネルギーを量子ドットに吸収させ量子ドットのコアからの発光を得ても良い。これらの量子ドットは、低濃度ドープされているため、その他のリン光発光性化合物にも励起子のエネルギーを吸収させて発光を得ることができる。 In addition, these quantum dots were generated not only in light emission due to direct recombination of holes and electrons in the quantum dots, but also in an organic electron block hole transport layer, an organic light emission layer, or a hole block electron transport layer. The energy of excitons may be absorbed by the quantum dots to obtain light emission from the quantum dot core. Since these quantum dots are lightly doped, other phosphorescent compounds can also absorb the exciton energy to obtain light emission.
 量子ドットの表面は、不活性な無機物の被覆層または有機配位子で構成された被膜で被覆されたものであるのが好ましい。すなわち、量子ドットの表面は、量子ドット材料で構成されたコア領域と、不活性な無機物の被覆層または有機配位子で構成されたシェル領域とを有するコア/シェル構造を有するものであるのが好ましい。 The surface of the quantum dot is preferably coated with an inert inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the quantum dot has a core / shell structure having a core region made of a quantum dot material and a shell region made of an inert inorganic coating layer or an organic ligand. Is preferred.
 このコア/シェル構造は、少なくとも2種類の化合物で形成さていることが好ましく、2種類以上の化合物でグラジエント構造(傾斜構造)を形成していても良い。これにより、塗布液中における量子ドットの凝集を効果的に防止することができ、量子ドットの分散性を向上させることができるとともに、輝度効率が向上し、連続駆動させた場合に生じる色ズレを抑制することができる。また、被覆層の存在により、安定的に発光特性が得られる。 This core / shell structure is preferably formed of at least two kinds of compounds, and a gradient structure (gradient structure) may be formed of two or more kinds of compounds. This effectively prevents aggregation of the quantum dots in the coating liquid, improves the dispersibility of the quantum dots, improves the luminance efficiency, and prevents color shifts that occur when driven continuously. Can be suppressed. Further, the light emission characteristics can be stably obtained due to the presence of the coating layer.
 また、量子ドットの表面が被膜(シェル部)で被覆されていると、後述するような表面修飾剤を量子ドットの表面付近に確実に担持させることができる。 In addition, when the surface of the quantum dot is covered with a coating (shell part), a surface modifier as described later can be reliably supported in the vicinity of the surface of the quantum dot.
 被膜(シェル部)の厚さは、特に限定されないが、0.1~10nmの範囲内であることが好ましく、0.1~5nmの範囲内であることがより好ましい。 The thickness of the coating (shell part) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
 一般に、量子ドットの平均粒子径により発光色を制御することができ、被膜の厚さが上記範囲内の値であれば、被膜の厚さが原子数個分に相当する厚さから量子ドット1個に満たない厚さであり、量子ドットを高密度で充填することができ、十分な発光量が得られる。また、被膜の存在により、お互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。 In general, the emission color can be controlled by the average particle diameter of the quantum dots, and if the thickness of the coating is within the above range, the thickness of the coating can be determined from the thickness corresponding to several atoms. The thickness is less than one, the quantum dots can be filled with high density, and a sufficient amount of light emission can be obtained. In addition, the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
 (4.4)機能性の表面修飾剤
 量子ドットを含有している有機機能層を湿式塗布方式で形成する際、それに用いる塗布液中においては、量子ドットの表面近傍に、表面修飾剤が付着していることが好ましい。これにより、塗布液中における量子ドットの分散安定性を特に優れたものとすることができる。また、量子ドットの製造時において、量子ドット表面に表面修飾剤を付着させることにより、形成される量子ドットの形状が真球度の高いものとなり、また、量子ドットの粒子径分布を狭く抑えられるため、特に優れたものとすることができる。
(4.4) Functional surface modifier When forming an organic functional layer containing quantum dots by a wet coating method, a surface modifier is attached in the vicinity of the surface of the quantum dots in the coating solution used therefor. It is preferable. Thereby, especially the dispersion stability of the quantum dot in a coating liquid can be made excellent. In addition, when a quantum dot is manufactured, by attaching a surface modifier to the surface of the quantum dot, the shape of the formed quantum dot becomes highly spherical, and the particle size distribution of the quantum dot can be kept narrow. Therefore, it can be made particularly excellent.
 本発明で適用可能な機能性の表面修飾剤としては、量子ドットの表面に直接付着したものであってもよいし、シェルを介して付着したもの(表面修飾剤が直接付着するのはシェルで、量子ドットのコア部には接触していないもの)であってもよい。 Functional surface modifiers applicable in the present invention may be those directly attached to the surface of the quantum dots, or those attached via a shell (the surface modifier is directly attached to the shell. In other words, it may not be in contact with the core of the quantum dot.
 表面修飾剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類;ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等の第3級アミン類;トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類;ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等の有機窒素化合物;ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類;ジブチルスルフィド等のジアルキルスルフィド類;ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類;チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物;パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸;アルコール類;ソルビタン脂肪酸エステル類;脂肪酸変性ポリエステル類;3級アミン変性ポリウレタン類;ポリエチレンイミン類等が挙げられるが、量子ドットが後述するような方法で調製されるものである場合、表面修飾剤としては、高温液相において量子ドットの微粒子に配位して、安定化する物質であるのが好ましく、具体的には、トリアルキルホスフィン類、有機リン化合物、アミノアルカン類、第3級アミン類、有機窒素化合物、ジアルキルスルフィド類、ジアルキルスルホキシド類、有機硫黄化合物、高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、塗布液中における量子ドットの分散性を特に優れたものとすることができる。また、量子ドットの製造時において形成される量子ドットの形状をより真球度の高いものとし、量子ドットの粒度分布をよりシャープなものとすることができる。 Examples of the surface modifier include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like. Trialkylphosphines; polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine; dialkyl sulfides such as dibutyl sulfide; dialkyl sulfoxides such as dimethyl sulfoxide and dibutyl sulfoxide; sulfur-containing aromatics such as thiophene Organic sulfur compounds such as compounds; higher fatty acids such as palmitic acid, stearic acid and oleic acid; alcohols; sorbitan fatty acid esters; fatty acid-modified poly Stealtes; tertiary amine-modified polyurethanes; polyethyleneimines and the like. When the quantum dots are prepared by the method described later, the surface modifier may be a fine particle of quantum dots in a high-temperature liquid phase. It is preferable that the substance is coordinated to be stabilized, specifically, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides. , Organic sulfur compounds, higher fatty acids and alcohols are preferred. By using such a surface modifier, the dispersibility of the quantum dots in the coating solution can be made particularly excellent. Moreover, the shape of the quantum dot formed at the time of manufacture of a quantum dot can be made into a higher sphericity, and the particle size distribution of a quantum dot can be made sharper.
 本発明において、前述のように、量子ドットのサイズ(平均粒子径)としては、1~20nmの範囲内であることが好ましい。本発明において、量子ドットのサイズとは、量子ドット材料で構成されたコア領域と、不活性な無機物の被覆層または有機配位子で構成されたシェル領域および表面修飾剤で構成されるトータルのサイズを表す。表面修飾剤やシェルが含まれない場合は、それを含まないサイズを表す。 In the present invention, as described above, the size (average particle diameter) of the quantum dots is preferably in the range of 1 to 20 nm. In the present invention, the size of the quantum dots means the total area composed of a core region composed of a quantum dot material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents size. If the surface modifier or shell is not included, the size does not include it.
 (4.5)量子ドットの製造方法
 量子ドットの製造方法としては、従来行われている下記のような量子ドットの製造方法等が挙げられるが、これらに限定されるものではなく公知の任意の方法を用いることができる。また、また、Aldrich社、CrystalPlex社、NNLab社等から市販品として購入することもできる。
(4.5) Manufacturing method of quantum dot As a manufacturing method of a quantum dot, the manufacturing method of the following quantum dots etc. which are performed conventionally are mentioned, However, It is not limited to these, Well-known arbitrary The method can be used. Moreover, it can also be purchased as a commercial product from Aldrich, CrystalPlex, NNLab, etc.
 例えば、高真空下のプロセスとしては、分子ビームエピタキシー法、CVD法等;液相製造方法としては、原料水溶液を、例えば、n-ヘプタン、n-オクタン、イソオクタン等のアルカン類、またはベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中の逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、さらに、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法等が挙げられる。これらの製造方法から任意の方法を使用することができるが、中でも、液相製造方法が好ましい。 For example, as a process under high vacuum, molecular beam epitaxy method, CVD method, etc .; as a liquid phase production method, raw material aqueous solution, for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene Inverted micelles, which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium Examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, the liquid phase production method is preferred.
 なお、液相製造方法において、量子ドットの合成に際して、表面に存在する有機表面修飾剤を初期表面修飾剤という。例えば、ホットソープ法における初期表面修飾剤の例としては、トリアルキルホスフィン類、トリアルキルホスフィンオキシド類、アルキルアミン類、ジアルキルスルホキシド類、アルカンホスホン酸等が挙げられる。これらの初期表面修飾剤は、交換反応により上述の機能性表面修飾剤に交換することが好ましい。 In the liquid phase production method, the organic surface modifier present on the surface when the quantum dots are synthesized is referred to as an initial surface modifier. For example, examples of the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the above-described functional surface modifiers by an exchange reaction.
 具体的には、例えば、前述したホットソープ法により得られるトリオクチルホスフィンオキシド等の初期表面修飾剤は、機能性表面修飾剤を含有する液相中で行う交換反応により、上述の機能性表面修飾剤と交換することが可能である。 Specifically, for example, the initial surface modifier such as trioctyl phosphine oxide obtained by the hot soap method described above is obtained by performing the functional surface modification described above by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to replace it with an agent.
 以下に、量子ドットの製造方法の一例を示す。 The following shows an example of a method for producing quantum dots.
〈1〉量子ドットの製造例1
 まず、CdOパウダー(1.6mmol、0.206g;Aldrich、+99.99%)とオレイン酸(6.4mmol、1.8g;Aldrich、95%)とを40mlのトリオクチルアミン(TOA、Aldrich、95%)中で混合する。混合された溶液を高速で撹拌しながら150℃で熱処理し、Nを流しながら300℃まで温度を上昇させた。次いで、300℃で、トリオクチルホスフィン(TOP、Strem、97%)に添加された2.0モル/LのSe(Alfa Aesar)0.2mlを、上記Cd-含有混合物に高速で注入する。
<1> Production example 1 of quantum dots
First, CdO powder (1.6 mmol, 0.206 g; Aldrich, + 99.99%) and oleic acid (6.4 mmol, 1.8 g; Aldrich, 95%) were mixed with 40 ml of trioctylamine (TOA, Aldrich, 95 %). The mixed solution was heat-treated at 150 ° C. while stirring at high speed, and the temperature was increased to 300 ° C. while N 2 was allowed to flow. Then, at 300 ° C., 0.2 ml of 2.0 mol / L Se (Alfa Aesar) added to trioctylphosphine (TOP, Strem, 97%) is injected into the Cd-containing mixture at high speed.
 90秒後、TOA(210μl in6ml)に添加された1.2mmolのn-オクタンチオールを、注射器ポンプ(syringe pump)を用いて1ml/minの速度で注入して40分間反応させる。 After 90 seconds, 1.2 mmol of n-octanethiol added to TOA (210 μl in 6 ml) is injected at a rate of 1 ml / min using a syringe pump and allowed to react for 40 minutes.
 次に、0.92gの酢酸亜鉛と2.8gのオレイン酸とを20mlのTOAに200℃で、N雰囲気下で溶解させて0.25モル/LのZn前駆体溶液を調製する。 Next, 0.92 g of zinc acetate and 2.8 g of oleic acid are dissolved in 20 ml of TOA at 200 ° C. in an N 2 atmosphere to prepare a 0.25 mol / L Zn precursor solution.
 次いで、16mlのアリコート(aliquot)のZn-オレイン酸溶液(100℃で加熱された)を前記Cd-含有反応媒質に2ml/minの速度で注入する。その後、TOA(1.12ml in 6ml)中の6.4mmolのn-オクタンチオールを、注射器ポンプを用いて1ml/minの速度で注入する。 Next, a 16 ml aliquot of Zn-oleic acid solution (heated at 100 ° C.) is injected into the Cd-containing reaction medium at a rate of 2 ml / min. Thereafter, 6.4 mmol of n-octanethiol in TOA (1.12 ml in 6 ml) is injected at a rate of 1 ml / min using a syringe pump.
 全体反応は、2時間かけて行う。反応が終わった後、生成物を約50~60℃に冷却し、有機スラッジを遠心分離(5,600rpm)で除去する。不透明な塊がなくなるまでエタノール(Fisher、HPLC grade)を添加する。次いで、遠心分離して得られた沈殿物をトルエン(Sigma-Aldrich、Anhydrous 99.8%)中で溶解させることにより、CdSe/CdS/ZnSコア-シェル量子ドットコロイド溶液をえることができる。 The entire reaction takes 2 hours. After the reaction is complete, the product is cooled to about 50-60 ° C. and the organic sludge is removed by centrifugation (5,600 rpm). Add ethanol (Fisher, HPLC grade) until there is no opaque mass. Next, the precipitate obtained by centrifugation is dissolved in toluene (Sigma-Aldrich, Anhydrous 99.8%) to obtain a CdSe / CdS / ZnS core-shell quantum dot colloidal solution.
 〈2〉量子ドットの製造例2
 CdSe/ZnSのコア/シェル構造を有する量子ドットを得ようとする場合、界面活性剤としてTOPO(trioctylphosphine oxide)を使用した有機溶媒に(CHCd(dimethyl cadmium)、TOPSe(trioctylphosphine selenide)などのコア(CdSe)に該当する前駆体物質を注入して結晶が生成されるようにし、結晶が一定の大きさで成長するように高温で一定時間維持した後、シェル(ZnS)に該当する前駆体物質を注入して既に生成されたコアの表面にシェルが形成されるようにすることで、TOPOでキャッピング(capping)されたCdSe/ZnSの量子ドットを得ることができる。
<2> Production example 2 of quantum dots
When a quantum dot having a core / shell structure of CdSe / ZnS is to be obtained, (CH 3 ) 2 Cd (dimethyl cadmium), TOPSe (trioctylphosphine selenine selene) is used as an organic solvent using TOPO (trioctylphosphine oxide) as a surfactant. A precursor material corresponding to the core (CdSe) is injected to generate a crystal, and is maintained at a high temperature for a certain period of time so that the crystal grows at a certain size, and then corresponds to the shell (ZnS). CdSe / ZnS quantum dots capped with TOPO can be obtained by injecting the precursor material so that a shell is formed on the surface of the core already formed.
 〈3〉量子ドットの製造例3
 アルゴン気流下、トリ-n-オクチルホスフィンオキシド(TOPO)(関東化学社製)7.5gに、ステアリン酸(関東化学社製)2.9g、n-テトラデシルホスホン酸(AVOCADO社製)620mg、及び、酸化カドミニウム(和光純薬工業社製)250mgを加え、370℃に加熱混合した。これを270℃まで自然冷却させた後、予めトリブチルホスフィン(関東化学社製)2.5mLにセレン(STREM CHEMICAL社製)200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSe微粒子を得る。
<3> Production example 3 of quantum dots
Under an argon stream, 7.5 g of tri-n-octylphosphine oxide (TOPO) (manufactured by Kanto Chemical Co., Ltd.), 2.9 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.), 620 mg of n-tetradecylphosphonic acid (manufactured by AVOCADO), And 250 mg of cadmium oxide (made by Wako Pure Chemical Industries Ltd.) was added, and it heat-mixed at 370 degreeC. After naturally cooling this to 270 ° C., a solution prepared by dissolving 200 mg of selenium (manufactured by STREM CHEMICAL) in 2.5 mL of tributylphosphine (manufactured by Kanto Chemical Co., Inc.) in advance, dried under reduced pressure, and CdSe coated with TOPO Get fine particles.
 次いで、得られたCdSe微粒子に、TOPO15gを加えて加熱し、引き続き270℃でトリオクチルホスフィン(シグマアルドリッチ社製)10mLにジエチルジチオカルバミン酸亜鉛(東京化成社製)1.1gを溶解した溶液を加え、表面にTOPOが固定された、CdSeのナノ結晶をコアとし、ZnSをシェルとするナノ粒子(以下、TOPO固定量子ドットともいう)を得た。なお、この状態の量子ドットは、トルエンやテトラヒドロフラン(THF)等の有機溶媒に可溶である。 Next, 15 g of TOPO was added to the obtained CdSe fine particles and heated, and subsequently a solution of 1.1 g of zinc diethyldithiocarbamate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 10 mL of trioctylphosphine (manufactured by Sigma Aldrich) at 270 ° C. was added. Then, nanoparticles with CdSe nanocrystals with TOPO fixed on the surface and ZnS as the core (hereinafter also referred to as TOPO fixed quantum dots) were obtained. In addition, the quantum dot of this state is soluble in organic solvents, such as toluene and tetrahydrofuran (THF).
 その後、作製したTOPO固定量子ドットをTHFに溶解させて85℃に加温し、そこにエタノールに溶解させたN-[(S)-3-メルカプト-2-メチルプロピオニル]-L-プロリン(シグマアルドリッチ社製)100mgを滴下させ、12時間程度還流させた。12時間還流後、NaOH水溶液を加え、2時間、90℃で加熱してTHFを蒸発させた。得られた未精製の量子ドットを、限外濾過(Millipore社製、「Microcon」)及びセファデックスカラム(Amersham Biosciences社製、「MicroSpin G-25Columns」)を用いて精製と濃縮とを行うことで、量子ドットの表面にN-[(S)-3-メルカプト-2-メチルプロピオニル]-L-プロリンが固定された親水性の量子ドットを製造することができる。 Thereafter, the prepared TOPO fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (Sigma) dissolved in ethanol there. (Aldrich) 100 mg was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF. The obtained unpurified quantum dots are purified and concentrated using ultrafiltration (Millipore, “Microcon”) and Sephadex column (Amersham Biosciences, “MicroSpin G-25 Columns”). A hydrophilic quantum dot in which N-[(S) -3-mercapto-2-methylpropionyl] -L-proline is immobilized on the surface of the quantum dot can be produced.
 (4.6)量子ドットの製膜方法
 量子ドットの製膜方法は、ウェットプロセスによるものが好ましい。例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。
(4.6) Quantum Dot Film Formation Method The quantum dot film formation method is preferably a wet process. For example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir Brodgett method), etc. Can do.
 更に、量子ドットの単分子膜を他の媒体上に形成した後に転写するような転写方法(フィルム、スタンプ等)による製膜方法も有用である。 Furthermore, a film forming method using a transfer method (film, stamp, etc.) that transfers after forming a monomolecular film of quantum dots on another medium is also useful.
 この際、用いる溶媒としては沸点が100~150℃の溶媒を含むことが好ましい。このような範囲の溶媒を用いることで、適切な乾燥速度となり、塗布膜に含まれる量子ドット化合物が適切に配向させることができ、より高い発光効率と耐久性をえることができるようになる。 In this case, the solvent used preferably includes a solvent having a boiling point of 100 to 150 ° C. By using the solvent in such a range, an appropriate drying speed is obtained, the quantum dot compound contained in the coating film can be properly oriented, and higher luminous efficiency and durability can be obtained.
 このような溶媒としては、トルエン、キシレン、クロロベンゼン、n-ブタノール等を上げることができる。また、これらの溶媒を含む混合溶媒でもよく、その比率としては9:1~0:10の範囲であることが好ましい。 As such a solvent, toluene, xylene, chlorobenzene, n-butanol and the like can be raised. Moreover, a mixed solvent containing these solvents may be used, and the ratio is preferably in the range of 9: 1 to 0:10.
 〔5〕電荷発生層
 電荷発生層とは、電界が形成されるときに、正孔と電子を発生する層であるが、その発生界面は、電荷発生層内でもよく、また電荷発生層と他層の界面もしくはその近傍でも良い。例えば、電荷発生層が1層である場合、電子とホールの電荷発生は電荷発生層内でも良く、もしくは隣接する層と電荷発生層界面でも良い。
[5] Charge generation layer The charge generation layer is a layer that generates holes and electrons when an electric field is formed. The generation interface may be in the charge generation layer. It may be at or near the layer interface. For example, when the charge generation layer is a single layer, the charge generation of electrons and holes may be within the charge generation layer, or may be at the interface between the adjacent layer and the charge generation layer.
 本発明において、更に好ましくは、電荷発生層は2層以上からなり、p型半導体層、n型半導体層の一方もしくは両方を含む構成であることが好ましい。 In the present invention, it is more preferable that the charge generation layer is composed of two or more layers and includes one or both of a p-type semiconductor layer and an n-type semiconductor layer.
 電荷発生層は、正孔注入層、正孔輸送層、電子輸送層、電子注入層として機能しても良く、同一の層として用いることができるが、電荷発生層とは正孔と電子が発生する層、もしくは界面を持つ層であると定義する。 The charge generation layer may function as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer and can be used as the same layer, but the charge generation layer generates holes and electrons. It is defined as a layer having an interface or a layer having an interface.
 本発明(逆層構成)における電荷発生層の構成は下記の通りである。 The configuration of the charge generation layer in the present invention (reverse layer configuration) is as follows.
1.発光ユニット/バイポーラ層(一層)/発光ユニット
2.発光ユニット/p型層/n型層/発光ユニット
3.発光ユニット/p型層/中間層/n型層/発光ユニット
 上記バイポーラ層とは、外部電界により、層内部で正孔、電子を発生及び輸送することができる層である。また、n型層とは、多数キャリアが電子である電荷輸送層であり、半導体以上の導電性を有していることが好ましい。また、p型層とは、多数キャリアが正孔である電荷輸送層であり、半導体以上の導電性を有していることが好ましい。中間層とは、電荷発生能および、長期安定性を向上する上で、必要であれば設けてよく、例えば、n型層およびp型層の拡散防止層やp-n間の反応抑制層、p型層とn型層の電荷準位を調整する準位調整層などが挙げられる。
1. 1. Light emitting unit / bipolar layer (one layer) / light emitting unit 2. Light emitting unit / p-type layer / n-type layer / light emitting unit Light emitting unit / p-type layer / intermediate layer / n-type layer / light emitting unit The bipolar layer is a layer capable of generating and transporting holes and electrons inside the layer by an external electric field. The n-type layer is a charge transport layer in which majority carriers are electrons, and preferably has conductivity higher than that of a semiconductor. The p-type layer is a charge transport layer in which majority carriers are holes, and preferably has conductivity higher than that of a semiconductor. The intermediate layer may be provided if necessary in order to improve the charge generation capability and long-term stability, for example, an n-type layer and a p-type diffusion prevention layer, a pn reaction suppression layer, Examples include a level adjusting layer that adjusts the charge level of the p-type layer and the n-type layer.
 本発明においては、発光ユニットと電荷発生層の間に、更にバイポーラ層、p型層、n型層を有しても良い。これは発生した電荷を速やかに発光ユニットに注入する場合、必要であれば設けてもよいが、本発明においてこれらの層は発光ユニットに含まれ、電荷発生層とは見なさない。 In the present invention, a bipolar layer, a p-type layer, and an n-type layer may be further provided between the light emitting unit and the charge generation layer. In the present invention, these layers are included in the light emitting unit and are not regarded as charge generating layers, although they may be provided if necessary when the generated charge is quickly injected into the light emitting unit.
 本発明において、電荷発生層が少なくとも二層の層から形成されていることが好ましく、電圧印加時、素子の陰極方向に正孔を、陽極方向に電子を注入する機能を有する層であることが好ましい。 In the present invention, the charge generation layer is preferably formed of at least two layers, and is a layer having a function of injecting holes in the cathode direction of the device and electrons in the anode direction when a voltage is applied. preferable.
 二層以上の層から成る電荷発生層間の層界面は、明確な界面(ヘテロ界面、ホモ界面)を有していても良く、またバルクヘテロ構造、島状、相分離等の多次元的な界面を形成していても良い。 The layer interface between two or more charge generation layers may have a clear interface (heterointerface, homointerface), and a multidimensional interface such as a bulk heterostructure, islands, or phase separation. It may be formed.
 二つの層それぞれの厚さは、1~100nmの範囲内であることが好ましく、さらに好ましくは10~50nmの範囲内である。 The thickness of each of the two layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 10 to 50 nm.
 本発明に係る電荷発生層の光透過率は、発光層から放出される光に対して高い透過率を有することが好ましい。十分に光を取り出し、十分な輝度を得るためには、波長550nmでの透過率が50%以上であることが好ましく、さらに好ましくは80%以上である。 The light transmittance of the charge generation layer according to the present invention preferably has a high transmittance for the light emitted from the light emitting layer. In order to sufficiently extract light and obtain sufficient luminance, the transmittance at a wavelength of 550 nm is preferably 50% or more, and more preferably 80% or more.
 前記二層以上の層から形成される電荷発生層のうち、1層には、仕事関数が3.0eV以下の無機化合物、または有機化合物、且つ他の1層には、仕事関数が4.0eV以上の無機化合物、または有機化合物が好ましく用いることができる。より好ましい構成としては、電荷発生層の一方の層が、仕事関数が3.0eV以下の金属、もしくは無機酸化物、無機塩、有機金属錯体、有機塩であり、かつ他の1層は、仕事関数が4.0eV以上の金属、もしくは無機酸化物、無機塩、有機金属錯体、有機塩である。 Among the charge generation layers formed from the two or more layers, one layer has an inorganic compound or organic compound having a work function of 3.0 eV or less, and the other layer has a work function of 4.0 eV. The above inorganic compounds or organic compounds can be preferably used. More preferably, one layer of the charge generation layer is a metal having a work function of 3.0 eV or less, or an inorganic oxide, an inorganic salt, an organometallic complex, or an organic salt, and the other layer is a work layer. A metal having a function of 4.0 eV or more, or an inorganic oxide, an inorganic salt, an organometallic complex, or an organic salt.
 以下に好ましい電荷発生層の構成例を示す。 An example of a preferred charge generation layer configuration is shown below.
i)従来から知られているITO/EL-unit/Li/Al/MoO3/EL-unit/Alのような発光ユニット間の電荷発生層の一部にモリブデン層を用いる構成を使用することもできる。 i) A structure using a molybdenum layer as a part of a charge generation layer between light emitting units, such as ITO / EL-unit / Li / Al / MoO3 / EL-unit / Al, which is conventionally known can also be used. .
 ここでいうEL-unitとは、発光ユニットを表し、発光ユニット自体の層構成は、特に限定されるものではないが、少なくとも1層の発光層を含むものであり、それ以外には、正孔輸送層、電子輸送層を含む層構成とすることができ、また、正孔注入層、正孔輸送発光層、電子注入層、電子輸送発光層等をも含む公知の層構成とすることもできる。例えば、1個の発光ユニットを、正孔注入輸送層/発光層/電子注入輸送層のような層構成とすることができる。 Here, EL-unit represents a light emitting unit, and the layer structure of the light emitting unit itself is not particularly limited, but includes at least one light emitting layer. A layer structure including a transport layer and an electron transport layer can be used, and a known layer structure including a hole injection layer, a hole transport light emitting layer, an electron injection layer, an electron transport light emitting layer, and the like can also be used. . For example, one light emitting unit can have a layer configuration such as a hole injection transport layer / light emission layer / electron injection transport layer.
ii)更に、特開2010-192719号公報に記載されているような、発光ユニットが2個の場合は、ITO/EL-unit/LiF/Al/HAT/EL-unit/Al、発光ユニットが3個以上の場合は、ITO/EL-unit/LiF/Al/HAT/EL-unit/……/LiF/Al/HAT/EL-unit/Al等の層構成が挙げられる。発光ユニットの各説明は前述の説明と同義である(HATとは、ヘキサアザトリフェニレン化合物を表わす)。 ii) Further, when there are two light emitting units as described in JP 2010-192719 A, there are three ITO / EL-unit / LiF / Al / HAT / EL-unit / Al and three light emitting units. In the case of more than one, a layer structure such as ITO / EL-unit / LiF / Al / HAT / EL-unit /... / LiF / Al / HAT / EL-unit / Al can be mentioned. Each description of the light emitting unit is synonymous with the above description (HAT represents a hexaazatriphenylene compound).
 更に、本発明の有機EL素子においては、電荷発生層の構成材料として、WO2011-46166号公報の段落0079~0180に記載の有機材料、および段落0181~0203に記載の無機材料等を用いることができるが、本発明はこれらに限定されない。
 これらの中でも、下記式(4)で表わされるヘキサアザトリフェニレン構造を有する化合物をp型層として含むことが好ましい。
Furthermore, in the organic EL device of the present invention, the organic material described in paragraphs 0079 to 0180 of WO2011-46166, the inorganic material described in paragraphs 0181 to 0203, and the like are used as the constituent material of the charge generation layer. However, the present invention is not limited to these.
Among these, it is preferable that the compound which has a hexaazatriphenylene structure represented by following formula (4) is included as a p-type layer.
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000060
 
 一般式(4)中、Rは、それぞれ独立に、水素、ハロゲン基、炭素数1~12のアルキル基、アルコキシ基、アルキルアミノ基、アルキルシリル基、アリール基、アリールアミノ基、複素環基、エステル基、アミド基、ニトロ基およびニトリル基からなる群の中から選ばれた置換基である。隣り合うRは互いに結合して、環状構造を形成していてもよい。 In the general formula (4), each R independently represents hydrogen, a halogen group, an alkyl group having 1 to 12 carbon atoms, an alkoxy group, an alkylamino group, an alkylsilyl group, an aryl group, an arylamino group, a heterocyclic group, The substituent is selected from the group consisting of an ester group, an amide group, a nitro group and a nitrile group. Adjacent Rs may be bonded to each other to form a cyclic structure.
 一般式(4)で表される構造を有する化合物は、好ましくは、一般式(5)で表される構造を有するp型材料である。 The compound having a structure represented by the general formula (4) is preferably a p-type material having a structure represented by the general formula (5).
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000061
 
 このような材料は非常にLUMO準位が深いため、中間層を介して・または介さずにn型材料層と接した際に、効率よく電荷を発生させることができるため、タンデム型素子における電荷発生層に好ましく用いることができる。
 他方、n型層としては電子輸送層をアルカリ金属等によってnドープしたn型層(米国特許第7719180号明細書等、)、およびNovaled社のn型ドーパント・n型ホストを組み合わせたn型層などが好ましく用いることができる。通常、アルカリ金属等のn型ドーパントは活性が高いため非常に劣化しやすいが、Novaled社のNET18とNDN26、NDN77、NDN87等を組み合わせたn型層などを好ましく用いることができる(参考:ディスプレイ国際学会The Society Information Display(SID) 2012 DIGEST、21-1)。
Since such a material has a very deep LUMO level, when it comes into contact with an n-type material layer with or without an intermediate layer, charges can be efficiently generated. It can be preferably used for the generation layer.
On the other hand, as an n-type layer, an n-type layer in which an electron transport layer is n-doped with an alkali metal or the like (US Pat. No. 7,719,180, etc.), and an n-type layer combining an n-type dopant and an n-type host of Novaled, Inc. Etc. can be preferably used. Usually, n-type dopants such as alkali metals are highly prone to deterioration due to their high activity, but an n-type layer combining NET18 and NDN26, NDN77, NDN87, etc. of Novaled can be preferably used (Reference: Display International) The Society Information Display (SID) 2012 DIGEST, 21-1).
《第1の電極(陰極、カソード)》
 第1の電極としては、仕事関数の小さい(5eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、酸化等に対する耐久性の点から、第2の電極は、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 なお、発光した光を透過させるため、EL素子の第1の電極または第2の電極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合であるが、一般には基板および第1の電極を透明とすることで発光層で発生した光を外部に取りだせるため、第1の電極は透明電極であることが好ましい。すなわち、ITO,IZO、AZO、FTOなどの金属酸化物からなる電極であっても良い。
 第1の電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、第1の電極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
<< First electrode (cathode, cathode) >>
As the first electrode, a material having a small work function (5 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
Among these, from the viewpoint of durability against oxidation or the like, the second electrode includes, for example, a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium, and the like. / Aluminum mixtures, aluminum etc. are preferred.
Note that in order to transmit the emitted light, if either the first electrode or the second electrode of the EL element is transparent or translucent, it is convenient to improve the light emission luminance. The first electrode is preferably a transparent electrode because the light generated in the light emitting layer can be taken out by making the electrode transparent. That is, an electrode made of a metal oxide such as ITO, IZO, AZO, or FTO may be used.
The first electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the first electrode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
《第2の電極(陽極、アノード)》
 第1の電極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウム-スズの複合酸化物(以下、ITOと略記。)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 第1の電極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状パターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 この第1の電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また第1の電極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常は、10~1000nmの範囲であり、好ましくは10~200nmの範囲で選ばれる。
<< second electrode (anode, anode) >>
As the first electrode, an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium-tin composite oxide (hereinafter abbreviated as ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
In the first electrode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a desired shape pattern may be formed by a photolithography method, or when pattern accuracy is not required (100 μm or more) The degree) may form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used.
When light emission is extracted from the first electrode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the first electrode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
 また、第2の電極に上記金属を1~20nmの膜厚で形成した後に、第1の電極の説明で挙げた金属酸化物系の導電性透明材料をその上に形成することで、透明または半透明の第2の電極を作製することができ、これを応用することで第1の電極と第2の電極の両方が透過性を有するEL素子を作製することができる。
 なお、第1の電極/第2の電極が陽極/陰極(順層)として働くか、陰極/陽極(逆層)として働くか、は第1の電極と第2の電極の仕事関数にもよるが、どちらかといえばこれらの電極と発光層の間に正孔輸送性の層があるか電子輸送性の層があるかで決まることが多い。すなわち、第1電極と発光層の間に正孔輸送層があれば順層構成として機能し、逆に第1電極と発光層の間に電子輸送層があれば逆層構成として機能する。
Further, after the metal is formed on the second electrode with a thickness of 1 to 20 nm, the metal oxide-based conductive transparent material mentioned in the description of the first electrode is formed thereon, so that the transparent or A semitransparent second electrode can be manufactured, and by applying this, an EL element in which both the first electrode and the second electrode are transmissive can be manufactured.
Whether the first electrode / second electrode functions as an anode / cathode (forward layer) or a cathode / anode (reverse layer) depends on the work functions of the first electrode and the second electrode. However, it is often determined by whether there is a hole transporting layer or an electron transporting layer between these electrodes and the light emitting layer. That is, if there is a hole transport layer between the first electrode and the light emitting layer, it functions as a normal layer structure, and conversely, if there is an electron transport layer between the first electrode and the light emitting layer, it functions as a reverse layer structure.
《支持基板》
 支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等、その材質には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、例えば、ガラス、石英、透明樹脂フィルムを挙げることができる。リジットな基板よりもフレキシブルな基板が、高温保存安定性や色度変動を抑制する効果が大きく発現するため、特に好ましい支持基板は、EL素子にフレキシブル性を与えることが可能な可撓性を備えた樹脂フィルムである。
《Support substrate》
There are no particular limitations on the material of the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.), such as glass or plastic, and it may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. Since a substrate that is more flexible than a rigid substrate exerts the effect of suppressing high-temperature storage stability and chromaticity variation, a particularly preferable support substrate has flexibility that can give flexibility to an EL element. Resin film.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h・atm)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定した酸素透過度が、1×10-3cm/(m・24h・atm)以下、水蒸気透過度が1×10-3g/(m・24h・atm)以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度が1×10-5g/(m・24h・atm)以下であることが、更に好ましい。 On the surface of the resin film, an inorganic film, an organic film or a hybrid film of both may be formed. The water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h · atm) or less, and further measured by a method according to JIS K 7126-1987. It is a high barrier film having an oxygen permeability of 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 1 × 10 −3 g / (m 2 · 24 h · atm) or less. The water vapor permeability is more preferably 1 × 10 −5 g / (m 2 · 24 h · atm) or less.
 バリア膜を形成する材料としては、水分や酸素等のEL素子の劣化を招く因子の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing entry of factors that cause deterioration of the EL element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic functional layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法(CVD:Chemical Vapor Deposition)、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method (CVD: Chemical Vapor Deposition), a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but atmospheric pressure plasma weight as described in JP-A-2004-68143 is used. A legal method is particularly preferred.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 EL素子において、発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。 In the EL element, the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more.
 ここで、外部取り出し量子効率(%)=EL素子外部に発光した光子数/EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the EL element / the number of electrons sent to the EL element × 100.
《封止》
 EL素子に適用可能な封止手段としては、例えば、封止部材と電極、支持基板とを封止接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means applicable to the EL element, for example, a method of adhering a sealing member, an electrode, and a support substrate with a sealing adhesive can be exemplified.
 封止部材としては、EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコーン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicone, germanium, and tantalum.
 本発明においては、封止部材として、EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。 In the present invention, as the sealing member, a polymer film or a metal film can be preferably used because the EL element can be thinned. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, and conforms to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by the above method is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 封止接着剤としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the sealing adhesive include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing types such as 2-cyanoacrylic acid esters. Mention may be made of adhesives. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an EL element may be deteriorated by heat treatment, a material that can be adhesively cured from room temperature to 80 ° C. is preferable. Further, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機機能層を挟み支持基板と対向する側の電極の外側に該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 It is also preferable that the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. Can be. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材とEL素子の表示領域との間隙には、気相及び液相を形成することを目的として、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In order to form a gas phase and a liquid phase in the gap between the sealing member and the display area of the EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil. Is preferably injected. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 封止にはケーシングタイプの封止(缶封止)と密着タイプの封止(固体封止)があるが、薄型化の観点からは固体封止が好ましい。また、可撓性のEL素子を作製する場合は、封止部材にも可撓性が求められるため、固体封止が好ましい。 Sealing includes casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning. When a flexible EL element is manufactured, solid sealing is preferable because the sealing member is also required to be flexible.
 以下に、固体封止を行う場合の好ましい態様を説明する。 In the following, a preferred embodiment when performing solid sealing will be described.
 本発明に係る封止用接着剤には、熱硬化接着剤や紫外線硬化樹脂などを用いることができるが、好ましくはエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂など熱硬化接着剤、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂である。 As the sealing adhesive according to the present invention, a thermosetting adhesive, an ultraviolet curable resin, or the like can be used, but preferably a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
 本発明に係る封止用接着剤の含水率は、300ppm以下であることが好ましく、0.01~200ppmであることがより好ましく、0.01~100ppmであることが最も好ましい。 The water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and most preferably 0.01 to 100 ppm.
 本発明でいう含水率は、いかなる方法により測定しても構わないが、例えば、容量法水分計(カールフィッシャ-)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)が挙げられる。また、精密水分計AVM-3000型(オムニテック社製)等を用い、水分の蒸発によって生じる圧力上昇から水分を測定でき、フィルムまた固形フィルム等の水分率の測定を行うことができる。 The moisture content in the present invention may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, a GC / MS, IR, DSC (Differential Scanning Calorimeter), TDS (Temperature Desorption Analysis). Further, using a precision moisture meter AVM-3000 (Omnitech) or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or a solid film can be measured.
 本発明おいて、封止用接着剤の含水率は、例えば、露点温度が-80℃以下、酸素濃度0.8ppmの窒素雰囲気下に置き時間を変化させることで調整することができる。また、100Pa以下の真空状態で置き時間を変化させて乾燥させることもできる。また、封止用接着材は接着剤のみで乾燥させることもできるが、封止部材へ予め配置し乾燥させることもできる。 In the present invention, the moisture content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on the sealing member and dried.
 密着封止(固体封止)を行う場合、封止部材としては、例えば、50μm厚のPET(ポリエチレンテレフタレート)にアルミ箔(30μm厚)をラミネートしたものを用いることができる。これを封止部材として、アルミニウム面にディスペンサを使用して均一に塗布し、封止用接着剤を予め配置しておき、樹脂基板と封止部材を位置合わせ後、両者を圧着して(0.1~3MPa)、温度80~180℃で密着・接合(接着)して、密着封止(固体封止)することができる。 When close sealing (solid sealing) is performed, as the sealing member, for example, a 50 μm thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 μm thick) can be used. Using this as a sealing member, it was uniformly applied to the aluminum surface using a dispenser, a sealing adhesive was placed in advance, the resin substrate and the sealing member were aligned, and both were crimped (0 0.1-3 MPa) and at a temperature of 80-180 ° C., it can be tightly bonded (bonded) to achieve close sealing (solid sealing).
 接着剤の種類や量、そして面積等によって加熱また圧着時間は変わるが0.1~3MPaの圧力で仮接着、また80~180℃の温度で、熱硬化時間は5秒~10分間の範囲で選べばよい。 Heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and heat curing time is in the range of 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Just choose.
 加熱した圧着ロールを用いると圧着(仮接着)と加熱が同時にでき、且つ内部の空隙も同時に排除でき好ましい。 It is preferable to use a heated pressure-bonding roll because pressure bonding (temporary bonding) and heating can be performed simultaneously, and internal voids can be eliminated simultaneously.
 また、接着層の形成方法としては、材料に応じて、ディスペンサを用い、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法を用いることができる。 Further, as a method for forming the adhesive layer, a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used using a dispenser depending on the material.
 固体封止は以上のように封止部材とEL素子基板との間に空間がなく硬化した樹脂で覆う形態である。 As described above, solid sealing is a form in which there is no space between the sealing member and the EL element substrate and the resin is covered with a cured resin.
 封止部材としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、およびこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、樹脂基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。 Examples of the sealing member include metals such as stainless steel, aluminum and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like. In the case of a resin film, a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used as in the case of a resin substrate.
 ガスバリア層は、封止部材成形前に封止部材の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。 The gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method. . Also in this case, the oxygen permeability is 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × It is preferably 10 −3 g / (m 2 · 24 h) or less.
 封止部材としては、アルミニウム等の金属箔をラミネートしたフィルム等でも良い。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。 The sealing member may be a film laminated with a metal foil such as aluminum. As a method for laminating the polymer film on one side of the metal foil, a generally used laminating machine can be used. As the adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
 また、金属箔をスパッタや蒸着等で形成し、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作成してもよい。 In addition, when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be created by a method of forming a metal foil on a polymer film as a base. Good.
《保護膜、保護板》
 有機機能層を挟み支持基板と対向する側の封止膜、あるいは封止用フィルムの外側に、EL素子の機械的強度を高めるため、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the EL element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween. In particular, when sealing is performed with a sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 本発明において、可撓性支持基板から第1の電極との間、あるいは可撓性支持基板から光出射側の何れかの場所に光取出し部材を有することが好ましい。 In the present invention, it is preferable to have a light extraction member between the flexible support substrate and the first electrode or at any position on the light emission side from the flexible support substrate.
 光取出し部材としては、プリズムシートやレンズシートおよび拡散シートが挙げられる。また、全反射を起こす界面もしくはいずれかの媒質中に導入される回折格子や拡散構造等が挙げられる。 Examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface or any medium that causes total reflection can be used.
 通常、基板から光を放射するようなEL素子においては、発光層から放射された光の一部が基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートおよび拡散シートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。 Usually, in an EL element that emits light from a substrate, a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of light loss. In order to solve this problem, prismatic or lens-like processing is applied to the surface of the substrate, or prism sheets, lens sheets, and diffusion sheets are affixed to the surface of the substrate, thereby suppressing total reflection and light extraction efficiency. To improve.
 また、光取り出し効率を高めるためには、全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法や拡散構造を導入する方法が知られている。 Also, in order to increase the light extraction efficiency, a method of introducing a diffraction grating or a method of introducing a diffusion structure in an interface or any medium that causes total reflection is known.
《EL素子の製造方法》
 EL素子の製造方法の一例として、第1の電極/電子輸送層/第1の発光層/電荷発生層/正孔輸送層/正孔注入層/第2の電極からなるEL素子の製造方法を説明する。
<< Method for Manufacturing EL Element >>
As an example of a method for manufacturing an EL element, a method for manufacturing an EL element including a first electrode / electron transport layer / first light emitting layer / charge generation layer / hole transport layer / hole injection layer / second electrode is used. explain.
 はじめに、適当な基体上に所望の電極物質、例えば、第1の電極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように、蒸着やスパッタリング等の薄膜形成方法により形成させて、第1の電極を作製する。 First, a desired electrode material, for example, a thin film made of a first electrode material is formed on a suitable substrate by a thin film forming method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably 10 to 200 nm. Thus, the first electrode is manufactured.
 次に、この上に電子輸送層、第1の発光層、電荷発生層、第2の発光層、正孔輸送層、正孔注入層の有機機能層(有機化合物薄膜)を形成させる。 Next, an organic functional layer (organic compound thin film) including an electron transport layer, a first light emitting layer, a charge generation layer, a second light emitting layer, a hole transport layer, and a hole injection layer is formed thereon.
 有機機能層を形成する工程は、主に、(i)その有機機能層を構成する塗布液を、支持基板の第1の電極上に塗布・積層する工程と、(ii)塗布・積層後の塗布液を、乾燥させる工程とで構成される。 The step of forming the organic functional layer mainly includes: (i) a step of applying and laminating the coating liquid constituting the organic functional layer on the first electrode of the support substrate; and (ii) after the application and lamination. And a step of drying the coating liquid.
 (i)の工程では、各層の形成方法として、前記の如く蒸着法、ウェットプロセス(例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。)を用いることができる。
 本発明のEL素子の製造方法においては、少なくとも量子ドットを含有する発光層(第1の発光層)を塗布方式で形成し、該発光層の形成用塗布液が、沸点が100~150℃の範囲内にある溶媒を含有する形態が好ましい。
In the step (i), as a method for forming each layer, as described above, a vapor deposition method, a wet process (for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating). Method, curtain coating method, LB method (Langmuir-Blodgett method and the like can be used).
In the method for producing an EL device of the present invention, a light emitting layer containing at least quantum dots (first light emitting layer) is formed by a coating method, and the coating liquid for forming the light emitting layer has a boiling point of 100 to 150 ° C. A form containing a solvent within the range is preferred.
 第1の発光層以外の有機機能層の形成においても、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはウェットプロセスが好ましく、中でも、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法等の塗布法による成膜が好ましい。 In the formation of the organic functional layer other than the first light emitting layer, a wet process is preferable in the present invention because a homogeneous film is easily obtained and pinholes are hardly generated. Film formation by a coating method such as a casting method, a die coating method, a blade coating method, a roll coating method, or an ink jet method is preferable.
 EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができ、その中でも沸点が100~150℃の範囲内にある溶媒を用いることが好ましい。また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the EL material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, cyclohexylbenzene and the like. Aromatic hydrocarbons, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) can be used. Among them, the boiling point is in the range of 100 to 150 ° C. It is preferable to use the solvent in the inside. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 また、EL材料を溶解または分散する調液行程、基材上に塗布されるまでの塗布工程は不活性ガス雰囲気下であることが好ましいが、使用素材により不活性ガス雰囲気下で行わなくともEL素子性能を落とさずに成膜できるため、必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができより好ましい。 In addition, it is preferable that the preparation process for dissolving or dispersing the EL material and the application process until the EL material is applied on the base material are in an inert gas atmosphere. Since film formation can be performed without deteriorating device performance, it may not always be performed in an inert gas atmosphere. In this case, the manufacturing cost can be suppressed, which is more preferable.
 なお、第1の発光層以外の有機機能層の各層(たとえば、電荷発生層や第2の発光層など)を形成する場合には、公知の蒸着法によりその層を形成することもできる。 In addition, when forming each layer (for example, a charge generation layer, a 2nd light emitting layer, etc.) of organic functional layers other than a 1st light emitting layer, the layer can also be formed by a well-known vapor deposition method.
 (ii)の工程では、塗布・積層された有機機能層の乾燥を行う。 (Ii) In the step (ii), the coated and laminated organic functional layer is dried.
 ここでいう乾燥とは、塗布直後の膜の溶媒含有量を100%とした場合に、0.2%以下まで低減されることを指す。 “Drying” as used herein refers to reduction to 0.2% or less when the solvent content of the film immediately after coating is 100%.
 乾燥の手段としては一般的に汎用されているものを使用でき、減圧あるいは加圧乾燥、加熱乾燥、送風乾燥、IR乾燥および電磁波による乾燥などが挙げられる。中でも加熱乾燥が好ましく、有機機能層塗布溶媒の中で最も低沸点の溶媒の沸点以上の温度であり、有機機能層材料のTgの中で最も低Tgである材料の(Tg+20)℃より低い温度で保持することが最も好ましい。本発明において、より具体的には80℃以上150℃以下で保持し乾燥することが好ましく、100℃以上130℃以下で保持し乾燥することがより好ましい。 As the means for drying, those generally used can be used, and examples thereof include reduced pressure or pressure drying, heat drying, air drying, IR drying, and electromagnetic wave drying. Of these, heat drying is preferable, the temperature is equal to or higher than the boiling point of the solvent having the lowest boiling point in the organic functional layer coating solvent, and the temperature is lower than (Tg + 20) ° C. of the material having the lowest Tg among the Tg of the organic functional layer material. Most preferably, it is held at In the present invention, more specifically, it is preferable to hold and dry at 80 ° C. or higher and 150 ° C. or lower, and more preferable to hold and dry at 100 ° C. or higher and 130 ° C. or lower.
 塗布・積層後の塗布液を乾燥させる際の雰囲気は、不活性ガス以外の気体の体積濃度が200ppm以下の雰囲気とすることが好ましいが、調液塗布工程と同様に必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができより好ましい。 The atmosphere when drying the coating liquid after coating / lamination is preferably an atmosphere having a volume concentration of a gas other than the inert gas of 200 ppm or less, but it is not necessarily in an inert gas atmosphere as in the liquid preparation coating process. It may not be necessary. In this case, the manufacturing cost can be suppressed, which is more preferable.
 不活性ガスは好ましくは窒素ガスおよびアルゴンガス等の希ガスであり、製造コスト上最も好ましくは窒素ガスである。 The inert gas is preferably a rare gas such as nitrogen gas or argon gas, and most preferably nitrogen gas in terms of production cost.
 これらの層の塗布・積層および乾燥工程は枚葉製造であっても、ライン製造であっても良い。更に、乾燥工程はライン上で搬送中に行っても良いが、生産性の観点から堆積あるいはロール状に非接触で巻き取り乾燥しても良い。 The coating / laminating and drying steps of these layers may be single wafer manufacturing or line manufacturing. Further, the drying process may be performed while being conveyed on the line, but from the viewpoint of productivity, it may be deposited or rolled in a non-contact manner in a roll form.
 これらの層を乾燥後、その上に第2の電極用物質からなる薄膜を、1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、第2の電極を設けることにより、所望のEL素子が得られる。 After these layers are dried, a thin film made of the second electrode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm. By providing the second electrode, a desired EL element can be obtained.
 該加熱処理後に前記密着封止あるいは封止部材と電極、支持基板とを接着剤で接着することでEL素子を製造することができる。 An EL element can be manufactured by adhering the contact sealing or sealing member to the electrode and the support substrate with an adhesive after the heat treatment.
《用途》
 本発明のEL素子は、表示デバイス、ディスプレイ、照明等の各種発光光源として用いることができる。
<Application>
The EL element of the present invention can be used as various light sources such as a display device, a display, and illumination.
 発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられるが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Furthermore, it can be used in a wide range of applications such as general household appliances that require a display device, but it can be used effectively as a backlight for a liquid crystal display device combined with a color filter, and as a light source for illumination. it can.
 本発明のEL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
《サンプル(EL素子)の作製》
(1)比較例サンプル1の作製
 特許文献3を参考として作製を行った。
(1.1)第1の電極の形成
 準備した厚さ0.5mmの白板ガラス基板上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層(陽極)を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
<< Preparation of sample (EL element) >>
(1) Production of Comparative Example Sample 1 Production was carried out with reference to Patent Document 3.
(1.1) Formation of first electrode A 120 nm thick ITO (Indium Tin Oxide) film is formed on a prepared white plate glass substrate having a thickness of 0.5 mm by sputtering, and patterned by photolithography. A first electrode layer (anode) was formed. The pattern was such that the light emission area was 50 mm square.
(1.2)正孔注入層の形成
 パターニング後のITO基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板を上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
(1.2) Formation of hole injection layer The patterned ITO substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. On this substrate, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (abbreviated as PEDOT / PSS, manufactured by Bayer, Baytron P Al 4083) diluted to 70% with pure water at 3000 rpm for 30 seconds After forming the film by spin coating, the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
(1.3)正孔輸送層の形成
 この基板を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、前記正孔輸送材料である下記化合物(PolyTPD)(Mw=80,000)をクロロベンゼンに0.5%溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持し、膜厚30nmの正孔輸送層とした。
(1.3) Formation of hole transport layer This substrate was transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and the following compound (PolyTPD) (Mw = 80,000) as the hole transport material was added. A solution of 0.5% dissolved in chlorobenzene was formed by spin coating at 1500 rpm for 30 seconds, and then kept at 160 ° C. for 30 minutes to form a 30 nm-thick hole transport layer.
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000062
 
(1.4)第1の発光層の形成
 次いで、発光層として下記組成の発光層組成物を1500rpm、30秒でスピンコート法によりそれぞれ製膜した後、120℃で5分乾燥した後、AFMを用いて塗布膜厚を確認した。
〈量子ドット発光層組成物〉
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)450) 20質量部
   ヘキサン 1,000質量部
(1.4) Formation of First Light-Emitting Layer Next, a light-emitting layer composition having the following composition was formed as a light-emitting layer by spin coating at 1500 rpm for 30 seconds, dried at 120 ° C. for 5 minutes, and then AFM. The coating film thickness was confirmed using
<Quantum dot light emitting layer composition>
Quantum dots (Trilite (registered trademark) 450 manufactured by Cytodiagnostics) 20 parts by weight Hexane 1,000 parts by weight
(1.5)中間層の形成
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにH-121(TCTA)とTMM060(メルク社製)をセットし、H-121で25重量%でドーピングされたTMM060からなる中間層を20nmの厚さで形成した。
(1.5) Formation of intermediate layer Subsequently, the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. Further, H-121 (TCTA) and TMM060 (Merck) were set on a resistance heating boat made of molybdenum, and an intermediate layer made of TMM060 doped with 25% by weight of H-121 was formed to a thickness of 20 nm.
(1.6)第2の発光層の形成
 次いで、リン光発光材料からなる第2の発光層として、下記の蒸着速度比で蒸着し、これらからなる組成物を形成した。
<発光層組成物>
   イリジウム錯体G: 4.0質量部
   イリジウム錯体R: 1.0質量部
   TMM04(メルク製): 92質量部
(1.6) Formation of Second Light-Emitting Layer Next, a second light-emitting layer made of a phosphorescent light-emitting material was vapor-deposited at the following vapor deposition rate ratio to form a composition composed of these.
<Light emitting layer composition>
Iridium complex G: 4.0 parts by mass Iridium complex R: 1.0 parts by mass TMM04 (manufactured by Merck): 92 parts by mass
  イリジウム錯体G;
Figure JPOXMLDOC01-appb-C000063
 
Iridium complex G;
Figure JPOXMLDOC01-appb-C000063
  イリジウム錯体R;
Figure JPOXMLDOC01-appb-C000064
 
Iridium complex R;
Figure JPOXMLDOC01-appb-C000064
(1.7)電子輸送層・電子注入層と第2の電極との形成
 電子輸送層として厚さ20nmのBPhenの層を形成し、さらに電子注入層として厚さ5nmのBPhenにCaをドープした層を形成した。
 さらに第2の電極(陰極)として厚さ100nmのアルミニウムを蒸着することで順層型のEL素子1を得た。
(1.7) Formation of Electron Transport Layer / Electron Injection Layer and Second Electrode A BPhen layer having a thickness of 20 nm was formed as an electron transport layer, and Ca was doped into BPhen having a thickness of 5 nm as an electron injection layer. A layer was formed.
Further, a normal layer type EL element 1 was obtained by vapor-depositing aluminum having a thickness of 100 nm as a second electrode (cathode).
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000065
 
(1.8)封止及び白色電界発光デバイスの作製
 続いて、基板を大気に曝露することなく真空蒸着装置から取出し、グローブボックス内でガラスキャップと熱硬化接着材としてエポキシ系接着剤を用いて封止し、比較例サンプル1(白色電界発光デバイス)を製作した。
 熱硬化接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
(1.8) Sealing and production of white electroluminescent device Subsequently, the substrate was taken out from the vacuum deposition apparatus without being exposed to the atmosphere, and an epoxy adhesive was used as a glass cap and a thermosetting adhesive in the glove box. Sealed to produce Comparative Example Sample 1 (white electroluminescent device).
As the thermosetting adhesive, an epoxy adhesive mixed with the following (A) to (C) was used.
(A) Bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy adduct curing accelerator
(2)比較例サンプル2の作製
 比較例サンプル1の「(1.5)中間層の形成、および(1.6)第2の発光層の形成」において、組成を、以下に変更した以外は同様にして比較例のサンプル2を作製した。
<中間層>
   H-121: 100質量部 
<第2の発光層>
   イリジウム錯体D-90(B): 7.6質量部、
   イリジウム錯体R: 0.1質量部
   イリジウム錯体G: 0.3質量部
   H-121: 92質量部
(2) Production of Comparative Example Sample 2 In Comparative Example Sample 1 “(1.5) Formation of Intermediate Layer and (1.6) Formation of Second Light-Emitting Layer”, the composition was changed to the following. Similarly, Sample 2 of Comparative Example was produced.
<Intermediate layer>
H-121: 100 parts by mass
<Second light emitting layer>
Iridium complex D-90 (B): 7.6 parts by mass,
Iridium complex R: 0.1 part by mass Iridium complex G: 0.3 part by mass H-121: 92 parts by mass
(3)比較例サンプル3の作製
 比較例サンプル1の「(1.5)中間層の形成、および(1.6)第2の発光層の形成」において、組成を、以下に変更した以外は同様にして比較例のサンプル3を作製した。
<中間層>
   H-121: 100質量部 
<第2の発光層>
   イリジウム錯体D-90(B): 7.6質量部、
   イリジウム錯体R: 0.1質量部
   イリジウム錯体G: 0.3質量部
   H-73: 92質量部
(3) Production of Comparative Example Sample 3 In Comparative Example Sample 1 “(1.5) Formation of Intermediate Layer and (1.6) Formation of Second Light-Emitting Layer”, the composition was changed to the following. Similarly, Sample 3 of Comparative Example was produced.
<Intermediate layer>
H-121: 100 parts by mass
<Second light emitting layer>
Iridium complex D-90 (B): 7.6 parts by mass,
Iridium complex R: 0.1 part by mass Iridium complex G: 0.3 part by mass H-73: 92 parts by mass
(4)実施例サンプル4の作製
(4.1)第1の電極の形成
 比較例サンプル1と同様に第1の電極(陰極、カソード)を形成した
(4) Production of Example Sample 4 (4.1) Formation of First Electrode A first electrode (cathode, cathode) was formed in the same manner as in Comparative Example Sample 1.
(4.2)電子輸送層の形成
 パターニング後のITO基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、下記の方法により調製したゾルゲルZnO形成液を2000rpm、30秒でスピンコート法により製膜した後、300℃で5分焼成することにより、ZnOから構成される膜厚30nmの電子輸送層を設けた。
(4.2) Formation of Electron Transport Layer The patterned ITO substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. On this substrate, a sol-gel ZnO forming solution prepared by the following method was formed by spin coating at 2000 rpm for 30 seconds, and then baked at 300 ° C. for 5 minutes to form a 30 nm thick electron composed of ZnO. A transport layer was provided.
<ゾルゲルZnO形成液の調製>
   無水酢酸亜鉛(シグマ-アルドリッチ社製 99.999%グレード) 157質量部
   2-メトキシエタノール 960質量部
   エタノールアミン 40質量部
<Preparation of sol-gel ZnO forming liquid>
Anhydrous zinc acetate (Sigma-Aldrich 99.999% grade) 157 parts by mass 2-methoxyethanol 960 parts by mass ethanolamine 40 parts by mass
(4.3)第1の発光層の形成
 次いで、下記組成の発光層組成物および同溶媒により倍希釈した組成物を1500rpm、30秒でスピンコート法によりそれぞれ製膜した後、120℃で30分間保持し膜厚40nmの発光層をそれぞれ形成した。
<量子ドット発光層組成物>
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)450、450nm発光) 20質量部
   ヘキサン 1,000質量部
(4.3) Formation of First Light-Emitting Layer Next, a light-emitting layer composition having the following composition and a composition double-diluted with the same solvent were respectively formed by spin coating at 1500 rpm for 30 seconds, and then 30 ° C. at 30 ° C. Each of the light emitting layers having a film thickness of 40 nm was formed by holding for 30 minutes.
<Quantum dot light emitting layer composition>
Quantum dots (Site Diagnostics Trilite (registered trademark) 450, 450 nm emission) 20 parts by weight Hexane 1,000 parts by weight
(4.4)中間層の形成
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにH-73を入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱し、H-73からなる厚さ20nmの中間層を形成した。
(4.4) Formation of intermediate layer Subsequently, the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. A molybdenum resistance heating boat containing H-73 is attached to a vacuum deposition apparatus, and the vacuum chamber is depressurized to 4 × 10 −5 Pa, and then the boat is energized and heated to form H-73. An intermediate layer having a thickness of 20 nm was formed.
(4.5)第2の発光層の形成
 引き続き、蒸着速度を調整して下記の比率となるように第2の発光層を30nmの膜厚で形成した。
   イリジウム錯体G: 4.0質量部
   イリジウム錯体R: 1.0質量部
   ホスト化合物H-73: 92質量部
(4.5) Formation of Second Light-Emitting Layer Subsequently, the second light-emitting layer was formed to a thickness of 30 nm so that the evaporation rate was adjusted and the following ratio was obtained.
Iridium complex G: 4.0 parts by mass Iridium complex R: 1.0 parts by mass Host compound H-73: 92 parts by mass
(4.6)正孔輸送層・正孔注入層の第2の電極との形成
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにSpiro-TPD、H-121およびF4-TCNQを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱してSpiro-TPDを0.02nm/秒で前記発光層上に膜厚60nmの正孔輸送層を形成し、続けて同様H-121とF4-TCNQをそれぞれ0.02nm/秒、0.005nm/秒で前記正孔輸送層上に膜厚10nmの正孔注入層を形成した。
 引き続き、アルミニウム100nmを蒸着して陽極を形成した。
(4.6) Formation of Hole Transport Layer / Hole Injection Layer with Second Electrode Subsequently, the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. A molybdenum resistance heating boat containing Spiro-TPD, H-121 and F4-TCNQ is attached to a vacuum evaporation system, and after the vacuum chamber is depressurized to 4 × 10 −5 Pa, the boat is energized. By heating, a hole transporting layer having a film thickness of 60 nm is formed on the light emitting layer at a Spiro-TPD of 0.02 nm / second, and subsequently, H-121 and F4-TCNQ are similarly formed at 0.02 nm / second and 0.02 nm, respectively. A hole injection layer having a thickness of 10 nm was formed on the hole transport layer at 005 nm / second.
Subsequently, 100 nm of aluminum was deposited to form an anode.
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000066
 
 以後、封止については比較例サンプル1と同様にして行うことで、逆層型の実施例サンプル4を得た。 Thereafter, sealing was performed in the same manner as in Comparative Example Sample 1 to obtain an inverted layer type Example Sample 4.
(5)実施例サンプル5の作製
 実施例サンプル4の作製において、第1の発光層を、以下のように変更した以外は、実施例サンプル4と同様にして実施例サンプル5を作製した。
<第1の発光層>
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)450、450nm発光) 10質量部
   ホスト化合物H-73 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
(5) Production of Example Sample 5 Example Sample 5 was produced in the same manner as Example Sample 4 except that the first light-emitting layer was changed as follows in the production of Example Sample 4.
<First light emitting layer>
Quantum dots (Site Diagnostics Trilite (registered trademark) 450, 450 nm emission) 10 parts by weight Host compound H-73 10 parts by weight Hexane 500 parts by weight Toluene 500 parts by weight
(6)実施例サンプル6の作製
 実施例サンプル4の作製において、第2の発光層を、以下のように変更した以外は、実施例サンプル5と同様にして実施例サンプル6を作製した。
<第2の発光層>
   イリジウム錯体D-90(B): 7.6質量部、
   イリジウム錯体G: 0.3質量部
   イリジウム錯体R: 0.1質量部
   ホスト化合物H-210: 92質量部
(6) Production of Example Sample 6 Example Sample 6 was produced in the same manner as Example Sample 5, except that the second light-emitting layer was changed as follows in the production of Example Sample 4.
<Second light emitting layer>
Iridium complex D-90 (B): 7.6 parts by mass,
Iridium complex G: 0.3 part by mass Iridium complex R: 0.1 part by mass Host compound H-210: 92 parts by mass
(7)実施例サンプル7の作製
 実施例サンプル5の作製において、第2の発光層を、以下のように変更した以外は、実施例サンプル5と同様にして実施例サンプル7を作製した。
<第2の発光層>
   イリジウム錯体D-90(B): 7.6質量部、
   イリジウム錯体G: 0.3質量部、
   イリジウム錯体R: 0.1質量部
   ホスト化合物H-73: 92質量部
(7) Production of Example Sample 7 Example Sample 7 was produced in the same manner as Example Sample 5, except that the second light-emitting layer was changed as follows in the production of Example Sample 5.
<Second light emitting layer>
Iridium complex D-90 (B): 7.6 parts by mass,
Iridium complex G: 0.3 part by mass,
Iridium complex R: 0.1 part by mass Host compound H-73: 92 parts by mass
(8)実施例サンプル8~11の作製
 実施例サンプル7の作製において、第1の発光層の形成時の条件(スピンコート条件)を、以下のように変更した以外は、実施例サンプル7と同様にして実施例サンプル8~11を作製した。
<第1の発光層>
   実施例サンプル8  4000rpm
   実施例サンプル9  2500rpm
   実施例サンプル10 1000rpm
   実施例サンプル11  700rpm
(8) Production of Example Samples 8 to 11 Example Sample 7 and Example 11 were produced in the same manner as in Example Sample 7, except that the conditions for forming the first light-emitting layer (spin coating conditions) were changed as follows. Example samples 8 to 11 were produced in the same manner.
<First light emitting layer>
Example Sample 8 4000 rpm
Example Sample 9 2500 rpm
Example Sample 10 1000 rpm
Example Sample 11 700 rpm
(9)実施例サンプル12~17の作製
 実施例7の作製において、第1の発光層を、以下のように変更した以外は、実施例サンプル7と同様にして実施例サンプル12~17を作製した。
 なお、実施例サンプル15~17では、中間層を、第1の発光層のホスト化合物と同じ化合物で形成した。
(9) Production of Example Samples 12 to 17 Example Samples 12 to 17 were produced in the same manner as Example Sample 7, except that the first light emitting layer was changed as follows in the production of Example 7. did.
In Example Samples 15 to 17, the intermediate layer was formed of the same compound as the host compound of the first light emitting layer.
<実施例12の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)480、480nm発光) 10質量部
   ホスト化合物H-73 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<実施例13の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)490、490nm発光) 10質量部
   ホスト化合物CBP 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<実施例14の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製Trilite(登録商標)450、450nm発光) 10質量部
   ホスト化合物H-212 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<First Light-Emitting Layer of Example 12>
Quantum dot (Trilite (registered trademark) 480, 480 nm light emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-73 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass <First emission layer of Example 13>
Quantum dot (Site Diagnostics Co., Ltd. Trilite (registered trademark) 490, 490 nm emission) 10 parts by mass Host compound CBP 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass <First emission layer of Example 14>
Quantum dot (Site Diagnostics, Trilite (registered trademark) 450, 450 nm emission) 10 parts by weight Host compound H-212 10 parts by weight Hexane 500 parts by weight Toluene 500 parts by weight
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000067
 
<実施例15の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製TRILITE(登録商標)450、450nm発光) 10質量部
   ホスト化合物H-210 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<実施例16の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製TRILITE(登録商標)450、450nm発光) 10質量部
   ホスト化合物H-115 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<実施例17の第1の発光層>
   量子ドット(サイトダイアグノスティクス社製TRILITE(登録商標)450、450nm発光) 10質量部
   ホスト化合物H-60 10質量部
   ヘキサン 500質量部
   トルエン 500質量部
<First Light-Emitting Layer of Example 15>
Quantum dot (TRILITE (registered trademark) 450, 450 nm emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-210 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass <First emission layer of Example 16>
Quantum dots (TRILITE (registered trademark) 450 manufactured by Cytodiagnostics, 450 nm emission) 10 parts by mass Host compound H-115 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass <First emission layer of Example 17>
Quantum dot (TRILITE (registered trademark) 450, 450 nm light emission manufactured by Cytodiagnostics) 10 parts by mass Host compound H-60 10 parts by mass Hexane 500 parts by mass Toluene 500 parts by mass
(10)実施例サンプル18の作製
 実施例サンプル4の作製において、第1の発光層と第2の発光層とを、以下のように変更した以外は、実施例サンプル4と同様にして実施例サンプル18を作製した。
<第1の発光層(量子ドット発光層組成物)>
   サイトダイアグノスティクス社製Trilite(登録商標)540 発光波長540nm, 8質量部
   サイトダイアグノスティクス社製Trilite(登録商標)630 発光波長630nm, 2質量部
   ホスト化合物H-73 10質量部
   ヘキサン 1,000質量部
<第2の発光層>
   イリジウム錯体D-93(Ir(dbfmi)) 8質量部、
   ホスト化合物H-73 92質量部
(10) Production of Example Sample 18 In production of Example Sample 4, Example 1 was carried out in the same manner as Example Sample 4 except that the first light emitting layer and the second light emitting layer were changed as follows. Sample 18 was produced.
<First light emitting layer (quantum dot light emitting layer composition)>
Trilite (registered trademark) 540 manufactured by Sight Diagnostics Co., Ltd. Emission wavelength 540 nm, 8 parts by mass Trilite (registered trademark) 630 manufactured by Sight Diagnostics Co., Ltd. Emission wavelength 630 nm, 2 parts by mass Host compound H-73 10 parts by mass Hexane 1,000 Part by mass <second light emitting layer>
Iridium complex D-93 (Ir (dbfmi)) 8 parts by mass,
92 parts by mass of host compound H-73
《サンプルの評価》
 比較例サンプル1~3および実施例サンプル4から18について、下記の各評価を行った。
<Evaluation of sample>
The following evaluations were performed on Comparative Samples 1 to 3 and Example Samples 4 to 18.
(1)色温度および演色性の測定
 各サンプルに対し、室温(約23~25℃)で、分光放射輝度計CS-2000(コニカミノルタセンシング社製)を用いて、各サンプルの発光輝度を測定し、発光輝度1000cd/mにおける色温度および演色性を評価した。評価の基準は下記のとおりである。
<色温度>
   ◎:5000K以上
   ○:5000K未満
   △:4000K未満
   ×:3000K未満
<演色性>
   ◎:85以上
   ○:85未満
   △:80未満
   ×:75未満
(1) Measurement of color temperature and color rendering properties For each sample, the emission luminance of each sample is measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing) at room temperature (about 23-25 ° C). Then, the color temperature and color rendering properties at an emission luminance of 1000 cd / m 2 were evaluated. The criteria for evaluation are as follows.
<Color temperature>
A: More than 5000K B: Less than 5000K Δ: Less than 4000K ×: Less than 3000K <Color rendering property>
◎: 85 or more ○: Less than 85 △: Less than 80 ×: Less than 75
(2)発光効率の測定
 各サンプルを、室温(約23℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度Lを、分光放射輝度計CS-2000(コニカミノルタオプティクス社製)を用いて測定した。
 次いで、比較例サンプル1の発光輝度を1.0とした相対発光輝度を求め、これを初期の発光効率(外部取り出し量子効率)の尺度とした。数値が大きいほど、発光効率に優れていることを表す。
(2) Measurement of luminous efficiency Each sample was allowed to emit light at room temperature (about 23 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the luminance L immediately after the start of emission was measured using a spectral radiance meter CS-2000. (Measured using Konica Minolta Optics).
Next, a relative light emission luminance was obtained with the light emission luminance of Comparative Example Sample 1 being 1.0, and this was used as a measure of the initial light emission efficiency (external extraction quantum efficiency). It represents that it is excellent in luminous efficiency, so that a numerical value is large.
(3)連続駆動安定性(寿命)の評価
 各サンプルを連続駆動させ、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が70%となる時間(LT70)を求めた。駆動条件は、連続駆動開始時に4000cd/mとなる電流値とした。
 比較例サンプル1のLT70を1.00とした相対値を求め、これを連続駆動安定性の尺度とした。数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。
(3) Evaluation of continuous drive stability (lifetime) Each sample was continuously driven, the luminance was measured using the above-mentioned spectral radiance meter CS-2000, and the time for which the measured luminance was 70% (LT70) was obtained. . The driving condition was set to a current value of 4000 cd / m 2 at the start of continuous driving.
The relative value which set LT70 of the comparative example sample 1 to 1.00 was calculated | required, and this was made into the scale of continuous drive stability. The larger the value, the better the continuous driving stability (long life).
Figure JPOXMLDOC01-appb-T000068
 
Figure JPOXMLDOC01-appb-T000068
 
Figure JPOXMLDOC01-appb-T000069
 
Figure JPOXMLDOC01-appb-T000069
 
Figure JPOXMLDOC01-appb-T000070
 
Figure JPOXMLDOC01-appb-T000070
 
Figure JPOXMLDOC01-appb-T000071
 
Figure JPOXMLDOC01-appb-T000071
 
(4)まとめ
 表4に示すとおり、実施例サンプル4~18では、色温度および演色性が高く、また発光効率が高く、さらには寿命も向上している。これは逆層構成によってキャリアの輸送性が改善し、発光のバランスが改善したためと想定される。
 特に、リン光スペクトルにおける0-0遷移バンドに帰属される発光波長が414~459nmの範囲にある特定のホストを、第1の発光層に用いることによって、この効果は顕著に現れることがわかる。
(4) Summary As shown in Table 4, in the example samples 4 to 18, the color temperature and the color rendering properties are high, the luminous efficiency is high, and the lifetime is also improved. This is presumably because the carrier transportability is improved by the reverse layer structure, and the light emission balance is improved.
In particular, it can be seen that this effect is prominent when a specific host having an emission wavelength belonging to the 0-0 transition band in the phosphorescence spectrum in the range of 414 to 459 nm is used for the first light emitting layer.
 実施例2では、電荷発生層を有するタンデム型のEL素子を作製し、実施例1で作製したシングル型の実施例サンプル16との耐久性を比較した。
 タンデム型の中間層の組成としては、米国特許第7719180号明細書およびディスプレイ国際学会The Society Information Display(SID) 09 DIGEST、p499を参考として作製した。
 なお、実技上、前記「(4.4)中間層の形成」において単にドーパントを含まないホスト化合物だけの層として形成されていた中間層を、下記の電荷発生層(正孔輸送層/p型層/中間層/n型層/電子輸送層)の5層に置換することによってタンデム型素子の効果を確認した。
In Example 2, a tandem EL element having a charge generation layer was manufactured, and the durability was compared with that of the single-type Example Sample 16 manufactured in Example 1.
The composition of the tandem-type intermediate layer was prepared with reference to US Pat. No. 7,719,180 and International Society for Display The Society Information Display (SID) 09 DIGEST, p499.
In practice, the intermediate layer formed as a layer of only the host compound containing no dopant in the “(4.4) Formation of the intermediate layer” is converted into the following charge generation layer (hole transport layer / p-type). The effect of the tandem element was confirmed by substituting 5 layers of layer / intermediate layer / n-type layer / electron transport layer).
(1)実施例サンプル21
 まず、正孔輸送層としてSpiro-TPDを厚さ20nm蒸着した。
 次いで、p型層として、Spiro-TPDに対してNovaled社製NDP9を10:1(重量比)の混合比となる量で厚さ5nm蒸着した。
 次いで、アルミニウムを厚さ1nm蒸着し、中間電極層とした。
 次いで、n型層としてNovaled社製NET18とNDN26を10:1の比率で厚さ5nm蒸着した(当該n型層は電子輸送層の機能を有している。)。
 これ以降の第2の発光層の形成等は、前記実施例サンプル16の作製と同様にすることで、逆層タンデム型の実施例サンプル21を作製した。
(1) Example Sample 21
First, Spiro-TPD was deposited as a hole transport layer to a thickness of 20 nm.
Next, as a p-type layer, NDP9 manufactured by Novaled was deposited on Spiro-TPD in an amount of 10: 1 (weight ratio) to a thickness of 5 nm.
Next, aluminum was deposited to a thickness of 1 nm to form an intermediate electrode layer.
Next, NET18 and NDN26 manufactured by Novaled were deposited as an n-type layer at a ratio of 10: 1 to a thickness of 5 nm (the n-type layer has a function of an electron transport layer).
Subsequent formation of the second light-emitting layer and the like were performed in the same manner as in the preparation of the example sample 16, thereby producing an inverted layer tandem example sample 21.
(2)実施例サンプル22
 前記p型層として、Spiro-TPDに対してF4-TCNQを10:1でドーピングした層とした以外は実施例サンプル21の作製と同様にして、実施例サンプル22を作製した。
(2) Example Sample 22
An example sample 22 was produced in the same manner as in the example sample 21, except that the p-type layer was a layer obtained by doping Spiro-TPD with F4-TCNQ at a ratio of 10: 1.
(3)実施例サンプル23
 前記p型層として、HATCN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、一般式(5)参照)を用いた以外は、前記実施例サンプル21と同様に作製し、実施例サンプル23を作製した。
(3) Example Sample 23
Prepared in the same manner as in Example Sample 21, except that HATCN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile, see general formula (5)) was used as the p-type layer. Example sample 23 was produced.
Figure JPOXMLDOC01-appb-T000072
 
Figure JPOXMLDOC01-appb-T000072
 
Figure JPOXMLDOC01-appb-T000073
 
Figure JPOXMLDOC01-appb-T000073
 
(4)まとめ
 得られた実施例サンプル16、21~23でも、同様に初期効率とLT70の評価を行った。
 表6に示すとおり、シングル型の実施例サンプル16に対し、タンデム型の実施例サンプル21~23はLT70の点で有利となることが分かる。これは、印加される電界を2つのユニットで分担すればよくなるためで、単セルあたりに印加される電界が低減されるためと考えられる。
 これらの電荷発生層としては、中でもHATCNを用いた実施例サンプル23が、寿命が長く良好であることを確認することができた。
(4) Summary Initial efficiency and LT70 were similarly evaluated for the obtained Example Samples 16 and 21 to 23.
As shown in Table 6, it can be seen that the tandem example samples 21 to 23 are advantageous in terms of the LT 70 as compared to the single type example sample 16. This is because the applied electric field only needs to be shared by the two units, and the electric field applied per unit cell is reduced.
As these charge generation layers, it was confirmed that, in particular, Example Sample 23 using HATCN had a long lifetime and was good.
 本発明は、高発光効率で長寿命のエレクトロルミネッセンス素子を提供するのに特に好適に利用することができる。 The present invention can be particularly suitably used to provide an electroluminescent device with high luminous efficiency and long life.
 1 支持基板
 2 第1の電極
 8 第2の電極
 9 封止接着剤
 10 可撓性封止部材
 20 有機機能層
 21 電子輸送層
 22 第1の発光層
 23 電荷発生層
 24 第2の発光層
 25 正孔輸送層
 30 量子ドット
 100 エレクトロルミネッセンス素子
DESCRIPTION OF SYMBOLS 1 Support substrate 2 1st electrode 8 2nd electrode 9 Sealing adhesive 10 Flexible sealing member 20 Organic functional layer 21 Electron transport layer 22 1st light emitting layer 23 Charge generation layer 24 2nd light emitting layer 25 Hole transport layer 30 Quantum dot 100 Electroluminescence device

Claims (14)

  1.  基板上に、第1の電極、第1の発光層、第2の発光層および第2の電極をこの順に積層したエレクトロルミネッセンス素子であって、
     前記第1の発光層には量子ドットが含有され、
     前記第2の発光層にはリン光発光ドーパントが含有され、
     前記第1の電極と前記第1の発光層との間には電子輸送層が形成されていることを特徴とするエレクトロルミネッセンス素子。
    An electroluminescent element in which a first electrode, a first light emitting layer, a second light emitting layer, and a second electrode are stacked in this order on a substrate,
    The first light emitting layer contains quantum dots,
    The second light emitting layer contains a phosphorescent light emitting dopant,
    An electroluminescence element, wherein an electron transport layer is formed between the first electrode and the first light emitting layer.
  2.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記量子ドットが含有された発光層が、450~470nmの波長領域に発光極大波長を有することを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    The electroluminescent device, wherein the light emitting layer containing the quantum dots has a light emission maximum wavelength in a wavelength region of 450 to 470 nm.
  3.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記量子ドットがSi、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In2S3、ZnO、CdO、CuInS、CuInSe、CuInGaSeまたはこれらの混合物で構成されていることを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    The quantum dots are composed of Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, CuInS, CuInSe, CuInGaSe or a mixture thereof. An electroluminescence element.
  4.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記量子ドットが含有された発光層の膜厚が10~30nmの範囲内であることを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    An electroluminescent element, wherein the light emitting layer containing the quantum dots has a thickness in a range of 10 to 30 nm.
  5.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記リン光発光ドーパントが含有された発光層が、少なくとも520~560nm、600~640nmの波長領域に発光極大波長を有することを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    The electroluminescent device, wherein the light emitting layer containing the phosphorescent light emitting dopant has a light emission maximum wavelength in a wavelength region of at least 520 to 560 nm and 600 to 640 nm.
  6.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記リン光発光ドーパントが含有された発光層が、少なくとも460~490nm、520~560nm、600~640nmの波長領域に発光極大波長を有することを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    The electroluminescent device, wherein the light emitting layer containing the phosphorescent light emitting dopant has a maximum emission wavelength in a wavelength region of at least 460 to 490 nm, 520 to 560 nm, and 600 to 640 nm.
  7.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記量子ドットが含有された発光層には、ホスト化合物が含有されていることを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    The light emitting layer containing the quantum dots contains a host compound.
  8.  請求項7に記載のエレクトロルミネッセンス素子において、
     前記ホスト化合物のリン光スペクトルにおける0-0遷移バンドに帰属される発光極大波長が414~459nmの波長領域内にあることを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 7, wherein
    An electroluminescent device, wherein an emission maximum wavelength attributed to a 0-0 transition band in a phosphorescence spectrum of the host compound is in a wavelength region of 414 to 459 nm.
  9.  請求項7に記載のエレクトロルミネッセンス素子において、
     前記ホスト化合物が一般式(1)で表されることを特徴とするエレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、XはNR′、酸素原子、硫黄原子、CR′R″またはSiR′R″を表す。
     yおよびyは各々CR′または窒素原子を表す。
     R′およびR″は各々水素原子または置換基を表す。
     ArおよびArは各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
     m、nは0~4の整数を表す。]
    The electroluminescent device according to claim 7, wherein
    The host compound is represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, X represents NR ′, oxygen atom, sulfur atom, CR′R ″ or SiR′R ″.
    y 1 and y 2 each represent CR ′ or a nitrogen atom.
    R ′ and R ″ each represent a hydrogen atom or a substituent.
    Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
    m and n each represents an integer of 0 to 4. ]
  10.  請求項9に記載のエレクトロルミネッセンス素子において、
     前記一般式(1)中、Xが酸素原子であることを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 9,
    X is an oxygen atom in the said General formula (1), The electroluminescent element characterized by the above-mentioned.
  11.  請求項9に記載のエレクトロルミネッセンス素子において、
     前記一般式(1)中、Ar1およびAr2の少なくとも一方が、一般式(2)で表されることを特徴とするエレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
     
    〔式中、yおよびyは各々CR′または窒素原子を表す。
     R′は各々水素原子または置換基を表す。
     ArおよびArは各々芳香環を表し、互いに同一でもよいし異なっていてもよい。
     m、nは0~4の整数を表す。〕
    The electroluminescent device according to claim 9,
    In said general formula (1), at least one of Ar1 and Ar2 is represented by General formula (2), The electroluminescent element characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000002

    [Wherein, y 1 and y 2 each represent CR ′ or a nitrogen atom.
    R ′ represents a hydrogen atom or a substituent.
    Ar 1 and Ar 2 each represent an aromatic ring and may be the same or different from each other.
    m and n each represents an integer of 0 to 4. ]
  12.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記リン光発光ドーパントが一般式(3)で表されることを特徴とするエレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
     
    [式中、R1は置換基を表す。
     Zは5~7員環を形成するのに必要な非金属原子群を表す。
     n1は0~5の整数を表す。
     B1~B5は炭素原子、窒素原子、酸素原子または硫黄原子を表し、少なくとも1つは窒素原子を表す。
     M1は元素周期表における8族~10族の金属を表す。
     X1およびX2は炭素原子、窒素原子または酸素原子を表す。
     L1はX1およびX2と共に2座の配位子を形成する原子群を表す。
     m1は1、2または3の整数を表し、m2は0、1または2の整数を表し、m1+m2は2または3である。]
    The electroluminescent device according to claim 1,
    The phosphorescent light emitting dopant is represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000003

    [Wherein R 1 represents a substituent.
    Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
    n1 represents an integer of 0 to 5.
    B1 to B5 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
    M1 represents a group 8-10 metal in the periodic table.
    X1 and X2 represent a carbon atom, a nitrogen atom or an oxygen atom.
    L1 represents an atomic group forming a bidentate ligand together with X1 and X2.
    m1 represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, and m1 + m2 is 2 or 3. ]
  13.  請求項1に記載のエレクトロルミネッセンス素子において、
     前記第1の発光層と前記第2の発光層との間に電荷発生層が形成されたタンデム構造を有することを特徴とするエレクトロルミネッセンス素子。
    The electroluminescent device according to claim 1,
    An electroluminescence element having a tandem structure in which a charge generation layer is formed between the first light emitting layer and the second light emitting layer.
  14.  請求項13に記載のエレクトロルミネッセンス素子において、
     前記電荷発生層には一般式(4)で表される化合物が含有されていることを特徴とするエレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
     
    [式(4)中、Rは、それぞれ独立に、水素、ハロゲン基、炭素数1~12のアルキル基、アルコキシ基、アルキルアミノ基、アルキルシリル基、アリール基、アリールアミノ基、複素環基、エステル基、アミド基、ニトロ基およびニトリル基からなる群の中から選ばれた置換基である。
     隣り合うRは互いに結合して、環状構造を形成していてもよい。]
    The electroluminescent device according to claim 13, wherein
    The electroluminescent element characterized in that the charge generation layer contains a compound represented by the general formula (4).
    Figure JPOXMLDOC01-appb-C000004

    [In the formula (4), each R is independently hydrogen, halogen group, alkyl group having 1 to 12 carbon atoms, alkoxy group, alkylamino group, alkylsilyl group, aryl group, arylamino group, heterocyclic group, The substituent is selected from the group consisting of an ester group, an amide group, a nitro group and a nitrile group.
    Adjacent Rs may be bonded to each other to form a cyclic structure. ]
PCT/JP2013/077463 2012-10-10 2013-10-09 Electroluminescence element WO2014057971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540865A JP6225912B2 (en) 2012-10-10 2013-10-09 Electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225288 2012-10-10
JP2012225288 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057971A1 true WO2014057971A1 (en) 2014-04-17

Family

ID=50477438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077463 WO2014057971A1 (en) 2012-10-10 2013-10-09 Electroluminescence element

Country Status (2)

Country Link
JP (1) JP6225912B2 (en)
WO (1) WO2014057971A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141647A (en) * 2015-02-02 2016-08-08 日本放送協会 Chemical compound, organic electroluminescent element, display device, lighting device, and organic thin film solar cell
WO2017025843A1 (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting apparatus, electronic device, display apparatus, and illumination apparatus
JP2017063031A (en) * 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 Display device and manufacturing method thereof
CN107623075A (en) * 2017-09-22 2018-01-23 深圳市华星光电半导体显示技术有限公司 Quantum light emitting diode and display device
WO2018198972A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Composition and light-emitting element comprising same
US10418578B2 (en) 2017-09-22 2019-09-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot light-emitting diode and display device
WO2020183586A1 (en) * 2019-03-11 2020-09-17 シャープ株式会社 Light emitting element and display device using same
JPWO2019093346A1 (en) * 2017-11-08 2020-12-17 Nsマテリアルズ株式会社 Display device
CN112259689A (en) * 2020-10-12 2021-01-22 深圳市华星光电半导体显示技术有限公司 Electroluminescent device and display panel
JP2021506084A (en) * 2018-09-25 2021-02-18 ティーシーエル テクノロジー グループ コーポレーションTCL Technology Group Corporation Quantum dot white light diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177168A (en) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd Nano-dot light emitting diode of tandem structure and its manufacturing method
WO2008120603A1 (en) * 2007-03-30 2008-10-09 Idemitsu Kosan Co., Ltd. Light emitting element
JP2009087784A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd White light-emitting element
JP2012169460A (en) * 2011-02-15 2012-09-06 Konica Minolta Holdings Inc Organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177168A (en) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd Nano-dot light emitting diode of tandem structure and its manufacturing method
WO2008120603A1 (en) * 2007-03-30 2008-10-09 Idemitsu Kosan Co., Ltd. Light emitting element
JP2009087784A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd White light-emitting element
JP2012169460A (en) * 2011-02-15 2012-09-06 Konica Minolta Holdings Inc Organic electroluminescent element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141647A (en) * 2015-02-02 2016-08-08 日本放送協会 Chemical compound, organic electroluminescent element, display device, lighting device, and organic thin film solar cell
WO2017025843A1 (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting apparatus, electronic device, display apparatus, and illumination apparatus
JP2017038049A (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic apparatus, display device, and illumination device
JP2017063031A (en) * 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 Display device and manufacturing method thereof
JPWO2018198972A1 (en) * 2017-04-27 2019-06-27 住友化学株式会社 Composition and light emitting device using the same
WO2018198972A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Composition and light-emitting element comprising same
CN107623075A (en) * 2017-09-22 2018-01-23 深圳市华星光电半导体显示技术有限公司 Quantum light emitting diode and display device
US10418578B2 (en) 2017-09-22 2019-09-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot light-emitting diode and display device
JPWO2019093346A1 (en) * 2017-11-08 2020-12-17 Nsマテリアルズ株式会社 Display device
JP2021506084A (en) * 2018-09-25 2021-02-18 ティーシーエル テクノロジー グループ コーポレーションTCL Technology Group Corporation Quantum dot white light diode
US11502265B2 (en) 2018-09-25 2022-11-15 Tcl Technology Group Corporation Quantum dot white light diode
WO2020183586A1 (en) * 2019-03-11 2020-09-17 シャープ株式会社 Light emitting element and display device using same
CN112259689A (en) * 2020-10-12 2021-01-22 深圳市华星光电半导体显示技术有限公司 Electroluminescent device and display panel

Also Published As

Publication number Publication date
JP6225912B2 (en) 2017-11-08
JPWO2014057971A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6237636B2 (en) Electroluminescence element
JP6079118B2 (en) Light-emitting layer forming ink composition, method for producing light-emitting element, and electroluminescence device
JP6237619B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP6168050B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5664311B2 (en) Organic electroluminescence device
JP6225912B2 (en) Electroluminescence element
JP6052324B2 (en) Organic electroluminescence device
JP6127436B2 (en) White electroluminescent device and method of manufacturing white electroluminescent device
US9773993B2 (en) Electroluminescence element
CN106953021B (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, and lighting device
JP6136175B2 (en) White electroluminescence device
JP5994551B2 (en) Electroluminescence device
WO2013157563A1 (en) Organic electroluminescence element
JP2015149230A (en) organic electroluminescent panel
JP5790536B2 (en) Organic electroluminescence device and method for manufacturing the same
US20200006687A1 (en) Organic electroluminescence element
JP2016001548A (en) Electroluminescence element and quantum dot material
JP2016001547A (en) Electroluminescence element and quantum dot material
WO2015111365A1 (en) Quantum dot material and electroluminescent element
JP2014103290A (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, and metal oxide particle-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845964

Country of ref document: EP

Kind code of ref document: A1