WO2014057942A1 - Photoelectric conversion element and process for producing same, and photoelectric conversion module - Google Patents

Photoelectric conversion element and process for producing same, and photoelectric conversion module Download PDF

Info

Publication number
WO2014057942A1
WO2014057942A1 PCT/JP2013/077361 JP2013077361W WO2014057942A1 WO 2014057942 A1 WO2014057942 A1 WO 2014057942A1 JP 2013077361 W JP2013077361 W JP 2013077361W WO 2014057942 A1 WO2014057942 A1 WO 2014057942A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
dye
layer
conversion element
porous semiconductor
Prior art date
Application number
PCT/JP2013/077361
Other languages
French (fr)
Japanese (ja)
Inventor
恵 笠原
教雄 室伏
福井 篤
山中 良亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014057942A1 publication Critical patent/WO2014057942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element, a manufacturing method thereof, and a photoelectric conversion module.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-220380
  • the wet solar cell described in Patent Document 1 is manufactured according to the following method. Electrodes are formed on the surfaces of the two glass substrates, the two glass substrates are arranged so that the formed electrodes are inside, and the photoelectric conversion layer and the electrolytic solution are sandwiched between the two glass substrates.
  • the photoelectric conversion layer is a semiconductor layer having an absorption spectrum in the visible light region by adsorbing a photosensitizing dye to a metal oxide such as titanium oxide.
  • a wet solar cell is also called a dye-sensitized solar cell.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-79606 discloses a powder hygroscopic agent by providing a hygroscopic porous film in a region between electrodes and filled with an electrolytic solution, or in place of the hygroscopic porous film. It is described that by using an electrolytic solution in which is dispersed, it is possible to prevent deterioration of a wet solar cell due to intrusion of moisture.
  • This invention is made
  • the place made into the objective provides the photoelectric conversion element which was able to suppress the penetration
  • the conductive layer, the photoelectric conversion layer, and the counter electrode are sequentially provided on the support substrate, and the carrier transport material is filled at least between the photoelectric conversion layer and the counter electrode.
  • the photoelectric conversion layer is configured such that a dye is adsorbed to a porous semiconductor layer made of a semiconductor material using a dye adsorption solution containing a water content of 600 ppm or more.
  • the adsorption amount of the dye in the photoelectric conversion layer is 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more.
  • the dye is preferably a metal complex having a terpyridyl group.
  • the solvent contained in the dye adsorption solution is preferably an organic solvent, and more preferably a mixed solvent containing one or more nitrile compounds and one or more alcohols.
  • the porous semiconductor layer preferably includes at least a layer made of a semiconductor material having an average particle diameter of 10 nm or more and 30 nm or less, and the pore diameter of the porous semiconductor layer is preferably 15 nm or more.
  • the semiconductor material is preferably made of a metal oxide, and the metal oxide preferably contains at least titanium oxide.
  • the method for producing a photoelectric conversion element includes at least a step of preparing a dye adsorption solution in which a dye is dissolved, and a step of adsorbing the dye contained in the dye adsorption solution to the porous semiconductor layer.
  • the prepared dye adsorption solution contains a water content of 600 ppm or more.
  • the amount of the dye adsorbed on the porous semiconductor layer is 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more.
  • the step of preparing the dye adsorption solution preferably includes a step of dissolving the dye in a mixed solvent containing one or more nitrile compounds and one or more alcohols.
  • two or more photoelectric conversion elements are connected in series. At least one of the two or more photoelectric conversion elements is the photoelectric conversion element of the present invention.
  • the counter electrode conductive layer of one photoelectric conversion element and the conductive layer of the other photoelectric conversion element are electrically connected.
  • the present invention it is possible to provide a photoelectric conversion element with suppressed moisture intrusion and excellent photoelectric conversion efficiency, and to provide a photoelectric conversion module with suppressed moisture intrusion and excellent photoelectric conversion efficiency.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element of the present invention.
  • a conductive layer 2, a photoelectric conversion layer 3, and a counter electrode 12 are sequentially provided on a support substrate 1, and a carrier transport material is filled between the photoelectric conversion layer 3 and the counter electrode 12.
  • the charge transport layer 10 is formed.
  • the counter electrode 12 the counter electrode conductive layer 7 and the catalyst layer 6 are preferably formed on the cover body 8 in order, and the catalyst layer 6 is preferably opposed to the photoelectric conversion layer 3.
  • the photoelectric conversion layer 3 and the charge transport layer 10 are preferably sealed with a sealing portion 9.
  • each component in the photoelectric conversion element shown in FIG. 1 will be described.
  • the support substrate 1 constitutes at least a part of the light receiving surface of the photoelectric conversion element shown in FIG. Therefore, it is preferable that the part used as the light-receiving surface of a photoelectric conversion element among the support substrates 1 consists of a material which has a light transmittance.
  • the light-transmitting material is at least a material that substantially transmits light having a wavelength that has an effective sensitivity to a dye described later (the light transmittance is, for example, 80% or more, preferably 90% or more). It is not always necessary to have transparency to light in all wavelength regions.
  • the support substrate 1 may be a glass substrate made of, for example, soda lime float glass, fused quartz glass, or crystal quartz glass, or may be a heat resistant resin substrate such as a flexible film.
  • the flexible film include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), and polyether.
  • a film made of imide (PEI), phenoxy resin, polytetrafluoroethylene (PTFE), or the like can be used.
  • the support substrate 1 is made of polytetrafluoroethylene. It is preferable to use a film. Since the film made of polytetrafluoroethylene has a heat resistance of 250 ° C. or higher, thermal damage to the support substrate 1 can be suppressed even if the support substrate 1 is heated to about 250 ° C.
  • the thickness of the support substrate 1 is not particularly limited, but is preferably 0.2 mm or more and 5 mm or less. If the thickness of the support substrate 1 is 0.2 mm or more, the support substrate 1 tends to exhibit a function as a support substrate. If the thickness of the support substrate 1 is 5 mm or less, a decrease in the amount of light transmitted through the support substrate 1 is prevented, so that a decrease in photoelectric conversion efficiency of the photoelectric conversion element tends to be prevented.
  • the support substrate 1 can be used when the completed photoelectric conversion element is attached to another structure.
  • the peripheral portion of the support substrate 1 made of a glass substrate or the like can be easily attached to another support substrate using a metal processed part and a screw.
  • the conductive layer 2 constitutes at least a part of the light receiving surface of the photoelectric conversion element. Therefore, it is preferable that the part used as the light-receiving surface of a photoelectric conversion element among the conductive layers 2 consists of a material which has a light transmittance and electroconductivity.
  • the conductive layer 2 is a material that substantially transmits light having a wavelength that has an effective sensitivity to at least a dye described later (the light transmittance is, for example, 80% or more, preferably 90%). And the like, and it is not always necessary to have transparency to light in all wavelength regions.
  • Examples of the light-transmitting material used for the conductive layer 2 include indium tin composite oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO).
  • ITO indium tin composite oxide
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • the thickness of the conductive layer 2 is not particularly limited, but is preferably 0.02 ⁇ m or more and 5 ⁇ m or less. If the thickness of the conductive layer 2 is 0.02 ⁇ m or more, since the resistance of the conductive layer 2 is reduced, the amount of current that can be taken out of the photoelectric conversion element increases. Therefore, the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved. If the thickness of the conductive layer 2 is 5 ⁇ m or less, a decrease in the amount of light transmitted through the conductive layer 2 is prevented, so that the photoelectric conversion efficiency of the photoelectric conversion element tends to be maintained.
  • the surface resistivity (sheet resistance) of the conductive layer 2 is not particularly limited, but is preferably 40 ⁇ / sq or less. If the surface resistivity of the conductive layer 2 is 40 ⁇ / sq or less, the amount of current that can be extracted to the outside of the photoelectric conversion element increases, and thus the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved.
  • the conductive layer 2 may be provided with a metal wire.
  • a metal wire When a metal wire is provided on the conductive layer 2, the resistance of the conductive layer 2 tends to decrease.
  • the metal wire for example, a metal wire containing at least one metal selected from platinum, gold, silver, copper, aluminum, nickel, and titanium can be used. From the viewpoint of avoiding a decrease in the amount of incident light due to the metal wire provided on the conductive layer 2, the thickness of the metal wire is preferably about 0.1 to 4 mm, for example.
  • the photoelectric conversion layer 3 has a porous semiconductor layer made of a semiconductor material.
  • the porous semiconductor layer is adsorbed with a dye and is preferably filled with a carrier transport material.
  • the carrier transport material is as shown in ⁇ Charge transport layer> below.
  • the form of the porous semiconductor layer is not particularly limited, and is a film-form porous semiconductor made of a semiconductor material in which a bulk material or a particulate semiconductor material made of a semiconductor material or a semiconductor material in which a large number of micropores are formed. Layers and the like can be used. Among them, as a form of the porous semiconductor layer, a film-like porous semiconductor layer made of a semiconductor material in which a large number of micropores are formed (hereinafter, simply referred to as “thin-film-like porous semiconductor layer”) Is preferably used. Thereby, since the light receiving area of the photoelectric conversion layer 3 increases, the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved. In addition, thinning of the photoelectric conversion element tends to be promoted.
  • the porous semiconductor layer In order to improve the photoelectric conversion efficiency of the photoelectric conversion element, it is necessary to form the photoelectric conversion layer 3 in which more dye is adsorbed. For this reason, it is preferable to use a porous semiconductor layer having a large specific surface area.
  • the porous semiconductor layer preferably has a specific surface area of, for example, 10 m 2 / g or more and 200 m 2 / g or less.
  • the specific surface area of the porous semiconductor layer is set in the above range from the viewpoint of securing the adsorption amount of the dye. It is preferable.
  • the specific surface area of a porous semiconductor layer is calculated
  • the porosity of the porous semiconductor layer (ratio of the volume of voids formed in the porous semiconductor layer to the total volume of the porous semiconductor layer) is preferably 20% or more, more preferably 40% or more and 80%. It is as follows. When the porosity of the porous semiconductor layer is 20% or more, the carrier transport material tends to diffuse sufficiently inside the porous semiconductor layer. Note that the porosity of the porous semiconductor layer is obtained by calculation from the thickness of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor material.
  • semiconductor material examples include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, nickel oxide or titanic acid. It may be a metal oxide such as strontium, or may be cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper indium sulfide (CuInS 2 ), CuAlO 2 or SrCu 2 O 2 . As a material constituting the porous semiconductor layer, one of the listed materials may be used alone, or two or more of the listed materials may be used in combination.
  • the semiconductor material preferably includes at least one of titanium oxide, zinc oxide, tin oxide, and niobium oxide, and more preferably includes titanium oxide.
  • the porous semiconductor layer contains titanium oxide, the stability and safety of the porous semiconductor layer tend to be improved, and the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved.
  • titanium oxide means, for example, not only various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid or orthotitanic acid, but also titanium hydroxide or Also included is a titanium compound (titanium oxide in a broad sense) containing oxygen such as hydrous titanium oxide. These titanium oxides may be used alone or in combination. Anatase-type titanium oxide and rutile-type titanium oxide can be in either form depending on the production method or thermal history, but anatase-type titanium oxide is common.
  • the form of the porous semiconductor layer may be either a single crystal or a polycrystalline sintered body, but is preferably a polycrystalline sintered body. If the porous semiconductor layer is made of a polycrystalline sintered body, the stability of the porous semiconductor layer tends to be improved. Further, since the crystal growth of the porous semiconductor layer becomes easy, the manufacturing cost of the photoelectric conversion element tends to be reduced.
  • the average particle size of the semiconductor material is not particularly limited. However, since the number of adsorption points of the dye can be adjusted by changing the average particle size of the semiconductor material, it is preferable to appropriately set the average particle size of the semiconductor material in consideration of this fact. Specifically, although it cannot be said unconditionally because of the formation conditions of the photoelectric conversion layer 3, the adsorption point of the dye increases as the average particle size of the semiconductor material decreases. Therefore, when the porous semiconductor layer includes a semiconductor material having a small average particle diameter, the photoelectric conversion layer 3 including the porous semiconductor layer increases the amount of dye adsorbed, and thus tends to improve the photoelectric conversion efficiency of the photoelectric conversion element. It is in.
  • the photoelectric conversion layer 3 including the porous semiconductor layer is excellent in light scattering properties, which contributes to an improvement in the light capture rate.
  • the average particle size of the crystallites constituting the polycrystalline sintered body is preferably 5 nm or more and less than 50 nm, and preferably 10 nm or more and 30 nm or less. More preferred.
  • the average particle size of the crystallites is calculated by applying Scherrer's equation to the X-ray diffraction spectrum of the porous semiconductor layer obtained by X-ray diffraction measurement, for example.
  • the porous semiconductor layer is preferably made of a semiconductor material having an average particle size of 5 nm or more and less than 50 nm, and more preferably a semiconductor having an average particle size of 10 nm or more and 30 nm or less. It consists of materials.
  • the porous semiconductor layer preferably has a mean particle size of a layer made of a semiconductor material having an average particle size of 5 nm or more and less than 50 nm.
  • a layer made of a semiconductor material having a mean particle size of 10 nm to 30 nm and a layer made of a semiconductor material having a mean particle size of 50 nm or more. is there.
  • the amount of dye adsorbed is proportional to the size of the effective surface area of the photoelectric conversion layer 3, it also changes when the thickness of the photoelectric conversion layer 3 changes.
  • the amount of water necessary for the dye adsorption solution does not depend on the thickness of the photoelectric conversion layer 3.
  • the pore diameter in a porous semiconductor layer is 15 nm or more.
  • the dye adsorption process described later is hindered, and the dye adsorption amount may decrease.
  • the photoelectric conversion efficiency of the photoelectric conversion element it may be difficult to improve the photoelectric conversion efficiency of the photoelectric conversion element.
  • the pore diameter in the porous semiconductor layer is 15 nm or more, a decrease in the amount of dye adsorbed can be prevented, and the amount of dye adsorbed should be, for example, 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more. Can do. Therefore, a photoelectric conversion element having excellent photoelectric conversion efficiency can be provided.
  • the pore diameter in the porous semiconductor layer is determined in accordance with, for example, the BET method (JIS Z8830: 2001) which is a gas adsorption method.
  • the porous semiconductor layer preferably has a semiconductor layer made of semiconductor particles having an average particle size of 50 nm or more, and the semiconductor particles having an average particle size of 50 nm or more and 600 nm or less It is more preferable to have a semiconductor layer made of Thereby, since the optical path length in the photoelectric converting layer 3 becomes long, more light can be absorbed by the photoelectric converting layer 3.
  • the thickness of the photoelectric conversion layer 3 is not particularly limited, but is preferably 5 ⁇ m or more and 45 ⁇ m or less from the viewpoints of light transmittance and photoelectric conversion efficiency.
  • the dye for example, various metal complex dyes capable of absorbing light in at least one of the visible light region and the infrared light region may be used, or at least one region of the visible light region and the infrared light region.
  • Various organic dyes that can absorb the light may be used.
  • the metal complex dye examples include Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh, etc. At least one of dyes in which a ligand is coordinately bonded to the metal atom can be used.
  • Such metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium metal complex dyes, and the like.
  • a phthalocyanine dye or a ruthenium metal complex dye is preferably used, more preferably a ruthenium metal complex dye, and particularly, a ruthenium series represented by the following chemical formulas (1) to (3). It is preferable to use a metal complex dye.
  • a metal complex dye particularly when a ruthenium metal complex dye represented by the following chemical formulas (1) to (3) is used, this dye is in the near infrared region. Therefore, the photoelectric conversion efficiency of the photoelectric conversion element is increased.
  • “TBA” in the following chemical formulas (2) to (3) represents tetrabutylammonium.
  • the metal complex dye used in the present invention is preferably a metal complex dye having a terpyridyl group. Thereby, higher photoelectric conversion efficiency can be obtained. It was confirmed that the effects of the present invention were obtained even when a metal complex dye having a bipyridyl group as represented by the above chemical formulas (1) and (2) was used. However, the present inventors have actually confirmed that the degree of effect obtained is greater when the metal complex dye having a terpyridyl group is used than when the metal complex dye having a bipyridyl group is used. ing.
  • Examples of the metal complex dye having a terpyridyl group include a compound represented by the above chemical formula (3) or a dye described in Japanese Patent No. 4485181 (Japanese Patent Laid-Open No. 2005-162718).
  • the terpyridyl group also includes a terpyridyl group in which at least one hydrogen atom constituting the terpyridyl group is substituted with an atom or an atomic group other than a hydrogen atom (for example, COOH or COOTBA).
  • the dye described in Japanese Patent No. 4485181 contains ruthenium, osmium, iron, rhenium or technetium as a metal atom.
  • This dye preferably contains one terpyridyl group and a halogen atom or an atomic group other than the terpyridyl group as a ligand.
  • the terpyridyl group contained in this dye is preferably one in which at least one hydrogen atom in the para position with respect to the nitrogen atom constituting the terpyridyl group is substituted with an atomic group (for example, COOH or an alkyl group).
  • the atomic group other than the terpyridyl group is preferably at least one of NCS ⁇ , CN ⁇ , NCO ⁇ and H 2 O, for example.
  • the dye contains carboxylic acid group, carboxylic acid anhydride group, alkoxy group, hydroxyl group, hydroxyalkyl group, sulfonic acid group, ester group, mercapto group in the molecule.
  • it preferably has an interlock group such as a phosphonyl group, and more preferably has a carboxylic acid group or a carboxylic anhydride group.
  • the interlock group provides an electrical bond that facilitates the transfer of electrons between the excited state of the dye and the conduction band of the semiconductor material.
  • the adsorptivity of the dye to the porous semiconductor layer is stabilized, so that electrons are likely to be efficiently injected from the dye into the porous semiconductor layer.
  • the dye has a carboxylic acid anhydride group instead of a carboxylic acid group, or when the dye has a carboxylic acid anhydride group together with a carboxylic acid group in the molecule, electrons from the dye to the porous semiconductor layer There is a tendency that the injection of is efficiently performed.
  • the dye is adsorbed to the porous semiconductor layer using a dye adsorption solution in which the dye is dissolved in a solvent.
  • the amount of water contained in the dye adsorption solution is preferably 600 ppm or more, more preferably 2000 ppm or more, and further preferably 2000 ppm or more and 15000 ppm or less.
  • the dye is considered to be adsorbed to the porous semiconductor layer by a dehydration condensation reaction between a functional group of the dye and a hydroxyl group present on the surface of the semiconductor material.
  • the amount of water contained in the dye adsorption solution is 600 ppm or more, the dehydration condensation reaction is promoted, so that it is considered that more dye is adsorbed to the porous semiconductor layer.
  • the adsorption amount of the dye in the photoelectric conversion layer 3 is 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more. Therefore, since a high short circuit current density tends to be obtained, the photoelectric conversion efficiency is improved.
  • the photoelectric conversion efficiency starts to decrease. The reason for this is that if the amount of water contained in the dye adsorption solution exceeds 15000 ppm, the dye may be agglomerated and adsorbed on the porous semiconductor layer, thus reducing the open-circuit voltage and the fill factor. It is thought that it is because it invites.
  • the amount of water contained in the dye adsorption solution is the ratio of the mass of H 2 O contained in the dye adsorption solution to the mass of the dye adsorption solution, and is contained in the dye adsorption solution by, for example, the Karl Fischer method. It can be determined by measuring the mass of H 2 O. Further, the amount of water contained in the dye adsorption solution is synonymous with the amount of water contained in the solvent of the dye adsorption solution.
  • a method for adjusting the amount of water contained in the dye adsorption solution for example, after measuring the amount of water in the solvent (dehydrated solvent) of the dye adsorption solution using a Karl Fischer moisture meter, Examples thereof include a method of adding H 2 O to the dye adsorption solution or the solvent of the dye adsorption solution so that the contained moisture amount becomes an appropriate moisture amount.
  • the solvent capable of dissolving the dye for example, a carbonate compound such as propylene carbonate, a nitrile compound such as acetonitrile or methoxypropionitrile, an alcohol such as methanol, ethanol or t-butanol, or an aprotic polar substance is used. These anhydrous solvents are preferably used. As the solvent capable of dissolving the dye, these may be used alone or in combination of two or more. Among these, in the present invention, it is preferable to use a mixed solvent containing one or more nitrile compounds and one or more alcohols.
  • a mixed solvent of acetonitrile and t-butanol it is preferable to use a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol.
  • a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol it is preferable to use a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol.
  • dye adsorption can be suitably adjusted with the kind of pigment
  • the concentration of the dye in the dye adsorption solution is preferably as high as possible, for example, preferably 1 ⁇ 10 ⁇ 4 mol / L or more. .
  • the amount of dye adsorbed in the photoelectric conversion layer 3 is preferably 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more, and more preferably 8.0 ⁇ 10 ⁇ 8 mol / cm 2 or more. Preferably, it is 8.0 ⁇ 10 ⁇ 8 mol / cm 2 or more and 1.0 ⁇ 10 ⁇ 6 mol / cm 2 or less. If the amount of dye adsorbed in the photoelectric conversion layer 3 is less than 3.5 ⁇ 10 ⁇ 8 mol / cm 2 , the amount of light absorbed by the photoelectric conversion layer 3 is decreased, and thus the short-circuit current density is decreased. There is.
  • the amount of dye adsorbed in the photoelectric conversion layer 3 is 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more, the amount of light absorbed by the photoelectric conversion layer 3 increases, so that the short-circuit current density increases.
  • the photoelectric conversion efficiency is improved.
  • the adsorption amount of the dye in the photoelectric conversion layer 3 exceeds 1.0 ⁇ 10 ⁇ 6 mol / cm 2 , the dye may be aggregated and adsorbed on the surface of the porous semiconductor layer. Then, electrons injected into the semiconductor material (semiconductor material constituting the porous semiconductor layer) through this dye may leak, which may cause a reduction in open circuit voltage.
  • the adsorption amount of the dye in the photoelectric conversion layer 3 is 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more and 1.0 ⁇ 10 ⁇ 6 mol / cm 2 or less, the dye is simply attached to the surface of the porous semiconductor layer. Since it is adsorbed by the layer, it is considered that the leakage of electrons can be prevented, and thus the open circuit voltage can be prevented from being lowered.
  • the amount of dye adsorbed in the photoelectric conversion layer 3 can be determined according to, for example, an absorptiometric method.
  • the carrier transport material is preferably a conductive material that can transport ions.
  • a suitable material for the carrier transport material for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
  • the liquid electrolyte is preferably a liquid containing redox species, and is not particularly limited as long as it can be generally used in a battery or a solar battery.
  • the liquid electrolyte include those comprising a redox species and a solvent capable of dissolving the redox species, those comprising a redox species and a molten salt capable of dissolving the redox species, or the redox species and the above solvent. And the above-mentioned molten salt.
  • the redox species for example, at least one of I ⁇ / I 3 ⁇ , Br 2 ⁇ / Br 3 ⁇ , Fe 2+ / Fe 3+, and quinone / hydroquinone can be used.
  • Photoelectric conversion elements using these redox species exhibit better IV curves than photoelectric conversion elements using, for example, cobalt complexes or ferrocene as redox species.
  • the metal iodide for example, at least one of lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), and calcium iodide (CaI 2 ) can be used.
  • LiI lithium iodide
  • NaI sodium iodide
  • KI potassium iodide
  • CaI 2 calcium iodide
  • the salt composed of iodide ions for example, at least one of ammonium salt and imidazolium salt can be used.
  • ammonium salt for example, at least one of tetraethylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), and tetrahexylammonium iodide (THAI) is used.
  • TEAI tetraethylammonium iodide
  • TPAI tetrapropylammonium iodide
  • TBAI tetrabutylammonium iodide
  • THAI tetrahexylammonium iodide
  • imidazolium salt examples include dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazole iodide (EII), and hexylmethylimidazole iodide (HMII). ) Can be used.
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • EMII ethylmethylimidazole iodide
  • EII ethylimidazole iodide
  • HMII hexylmethylimidazole iodide
  • metal bromide for example, at least one of lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), and calcium bromide (CaBr 2 ) can be used.
  • LiBr lithium bromide
  • NaBr sodium bromide
  • KBr potassium bromide
  • CaBr 2 calcium bromide
  • redox species As the redox species, several types can be used in combination, such as a combination of a metal iodide and iodide ion salt and iodine.
  • the solvent capable of dissolving the redox species examples include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, aprotic polar substances, and the like.
  • carbonate compounds such as propylene carbonate
  • nitrile compounds such as acetonitrile
  • alcohols such as ethanol, water, aprotic polar substances, and the like.
  • solvent capable of dissolving the redox species these may be used alone or in admixture of two or more. Among these, it is preferable to use a carbonate compound or a nitrile compound.
  • the solid electrolyte is preferably a conductive material that can transport electrons, holes, or ions, and can preferably be used as an electrolyte of a photoelectric conversion element and has no fluidity.
  • a hole transport material such as polycarbazole, an electron transport material such as tetranitrofluororenone, a conductive polymer such as polyroll, a polymer electrolyte obtained by solidifying a liquid electrolyte with a polymer compound, A p-type semiconductor such as copper iodide or copper thiocyanate, or an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles can be used.
  • the gel electrolyte is preferably composed of an electrolyte and a gelling agent.
  • the mixing ratio of the electrolyte and the gelling agent is preferably adjusted as appropriate.
  • the electrolyte for example, the liquid electrolyte or the solid electrolyte can be used.
  • gelling agents examples include polymers such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, or polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain.
  • a gelling agent or the like can be used.
  • the molten salt gel electrolyte is preferably composed of the gel electrolyte and a room temperature molten salt.
  • a room temperature molten salt for example, quaternary ammonium salts of nitrogen-containing heterocyclic compounds such as pyridinium salts or imidazolium salts can be used.
  • the charge transport layer 10 may contain the following additives as required.
  • a nitrogen-containing aromatic compound such as t-butylpyridine (TBP) or an ionic organic compound such as guanidine thiocyanate may be used.
  • TBP t-butylpyridine
  • ionic organic compound such as guanidine thiocyanate
  • both of the aromatic compound containing nitrogen and an ionic organic compound such as guanidine thiocyanate can be used.
  • the concentration of the redox species in the carrier transport material is preferably selected as appropriate depending on the type of solvent and electrolyte that can dissolve the redox species, but is preferably 0.001 mol / L or more and 1.5 mol / L or less. Preferably, it is 0.01 mol / L or more and 0.7 mol / L or less. When the concentration of the redox species in the carrier transport material is within the above range, the redox species in the charge transport layer 10 tend to be efficiently transported.
  • Catalyst layer> As a material constituting the catalyst layer 6, for example, it is preferable to use at least one of platinum and carbon.
  • the catalyst layer 6 is made of carbon, the catalyst layer 6 is made of, for example, at least one of carbon black, graphite, glass carbon, amorphous carbon, hard carbon, soft carbon, carbon whisker, carbon nanotube, and fullerene. It is preferable.
  • the thickness of the catalyst layer 6 is not particularly limited, but is preferably about 0.5 nm to 1000 nm.
  • the counter electrode conductive layer 7 collects electrons and also functions as an electrode for electrically connecting adjacent photoelectric conversion elements when manufacturing photoelectric conversion modules by connecting photoelectric conversion elements in series.
  • a conductive material is preferably used.
  • the conductive material for example, at least one of metal oxides such as ITO, FTO, and ZnO may be used, and the conductive material includes at least one metal such as titanium, tungsten, gold, silver, copper, and nickel.
  • a conductive material may be used, or a conductive material containing at least one of the above metal oxides and at least one of the above metals may be used.
  • titanium is preferably used as the conductive material. Thereby, the strength of the counter electrode conductive layer 7 is improved.
  • the thickness of the counter electrode conductive layer 7 is preferably set as appropriate according to the specific resistivity of the material of the counter electrode conductive layer 7. If the thickness of the counter electrode conductive layer 7 is too thin, the resistance of the counter electrode conductive layer 7 becomes high, and if the thickness of the counter electrode conductive layer 7 is too thick, the movement of the carrier transport material is hindered.
  • the cover body 8 prevents the carrier transport material from volatilizing and prevents water and the like from entering the photoelectric conversion element.
  • the material constituting the cover body 8 is not particularly limited as long as it is a material that can generally be used for a solar cell and can exhibit the effects of the present invention.
  • a material that can generally be used for a solar cell and can exhibit the effects of the present invention.
  • examples of such a material include soda lime glass, lead glass, borosilicate glass, fused silica glass, and crystal quartz glass. Among them, it is preferable to use soda lime float glass as a material constituting the cover body 8.
  • the sealing portion 9 prevents the carrier transport material from volatilizing and prevents water and the like from entering the photoelectric conversion element. In addition, the sealing portion 9 absorbs stress (impact) that acts on the support substrate 1 and absorbs bending that acts on the support substrate 1 when the photoelectric conversion element is used for a long period of time.
  • the sealing portion 9 may be a single layer including at least one of a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, and a glass frit. It may be a laminated body constructed. In the case where a hardly volatile solvent such as a nitrile solvent or a carbonate solvent is used as the solvent for the carrier transport material, the sealing portion 9 is made of a silicone resin, a hot melt resin (for example, an ionomer resin), or a polyisobutylene resin. And at least one of glass frit. Thereby, it exists in the tendency for the corrosion of the sealing part 9 with respect to carrier transport material to be suppressed.
  • FIG. 2 is a flowchart showing an example of a method for producing a photoelectric conversion element of the present invention.
  • a transparent electrode substrate 11 in which the conductive layer 2 is formed on the support substrate 1 is prepared.
  • a commercially available transparent electrode substrate may be prepared, or the conductive layer 2 may be formed on the support substrate 1 by a method such as sputtering or thermal CVD.
  • a porous semiconductor layer is formed on the conductive layer 2.
  • the method for forming the porous semiconductor layer is not particularly limited.
  • the porous semiconductor layer can be formed by any one of the following methods (i) to (iv).
  • a paste containing fine particles made of a semiconductor material is applied onto the conductive layer 2 by a screen printing method or an inkjet method, and then baked.
  • a porous semiconductor layer is formed on the conductive layer 2 using a desired source gas by CVD or MOCVD.
  • a porous semiconductor layer is formed on the conductive layer 2 by a PVD method (for example, a vapor deposition method or a sputtering method) using a solid material.
  • a porous semiconductor layer is formed on the conductive layer 2 by a sol-gel method or a method using an electrochemical redox reaction.
  • a porous semiconductor layer having a specific surface area of 10 m 2 / g or more and 200 m 2 / g or less may be formed.
  • maintained can exist, it exists in the tendency for the photoelectric conversion efficiency of a photoelectric conversion element to improve.
  • the obtained sol solution is heated at 230 ° C. for 11 hours in a titanium autoclave. Thereby, titanium oxide particles grow. Thereafter, ultrasonic dispersion is performed at room temperature for 30 minutes. Thereby, a colloidal solution containing titanium oxide particles having an average particle diameter (average primary particle diameter) of 15 nm is obtained.
  • the titanium oxide particles are added to a solution in which ethylcellulose and terpineol are dissolved in absolute ethanol and stirred. Thereby, the titanium oxide particles are dispersed in the solution.
  • the solution in which the titanium oxide particles are dispersed is heated under vacuum to evaporate ethanol. Thereby, a titanium oxide paste is obtained.
  • concentration is adjusted so that it may become titanium oxide solid concentration 20 mass%, ethyl cellulose 10 mass%, and terpineol 70 mass%, for example. Note that the above-mentioned final composition is illustrative and is not limited to this.
  • a solvent used for preparing a paste containing (suspended) titanium oxide particles in addition to the above, for example, a glyme solvent such as ethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol, isopropyl alcohol
  • a mixed solvent such as a mixed solution of toluene and toluene, or water can be used.
  • the obtained titanium oxide paste is screen-printed on the conductive layer 2 and then dried and fired. Thereby, a porous semiconductor layer is formed.
  • the drying conditions and the firing conditions (temperature, time, atmosphere, etc.) of the titanium oxide paste are adjusted according to the types of the material of the support substrate 1 and the semiconductor material, respectively.
  • the titanium oxide paste is preferably baked, for example, in an air atmosphere or an inert gas atmosphere within a range of about 50 to 800 ° C. for about 10 seconds to 12 hours.
  • the drying and firing of the titanium oxide paste may be performed once at a single temperature, for example, or may be performed twice or more at different temperatures.
  • the specific surface area of the porous semiconductor layer made of titanium oxide produced under the above conditions is in the range of 10 m 2 / g to 200 m 2 / g.
  • the average particle diameter of the semiconductor particles constituting the porous semiconductor layer is not particularly limited, but it is preferable that the average particle diameter is uniform to some extent as in the case of commercially available semiconductor material powders in that incident light is effectively used for photoelectric conversion. In this way, a porous semiconductor layer is formed.
  • a dye adsorption solution is prepared.
  • the dye adsorption solution described in ⁇ Dye> above after measuring the water content of the solvent (dehydrated solvent) of the dye adsorption solution using a Karl Fischer moisture meter, the amount of water contained in the dye adsorption solution It is preferable to add H 2 O to the dye adsorbing solution or the solvent of the dye adsorbing solution so that the water content becomes the target amount of water.
  • a colorless hydrophobic compound may be co-adsorbed for the purpose of reducing the interaction between the dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include a steroid compound having a carboxyl group.
  • step S104 the dye contained in the dye adsorption solution is adsorbed on the porous semiconductor layer.
  • the transparent electrode substrate 11 on which the porous semiconductor layer is formed in the dye adsorption solution is prepared in the above step S103, and the water content in the dye adsorption solution is 600 ppm or more.
  • the amount of dye adsorbed on the porous semiconductor layer can be 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more. Therefore, a photoelectric conversion element with a high short-circuit current density can be manufactured, and a photoelectric conversion element excellent in photoelectric conversion efficiency can be provided.
  • the immersion conditions in process S104 are adjusted suitably.
  • the counter electrode 12 is formed.
  • the counter electrode conductive layer 7 is preferably formed on the cover body 8 by a method such as a sputtering method or a thermal CVD method.
  • the catalyst layer 6 made of platinum is formed, the catalyst layer 6 may be formed on the counter electrode conductive layer 7 by a PVD method such as vapor deposition or sputtering, or thermal decomposition or electrodeposition of chloroplatinic acid.
  • the catalyst layer 6 may be formed on the counter electrode conductive layer 7.
  • the catalyst layer 6 made of a carbon material such as carbon black, ketjen black, carbon nanotube or fullerene
  • the carbon dispersed in an arbitrary solvent and formed into a paste is formed on the counter electrode conductive layer 7 by a screen printing method or the like. It is preferable to apply to.
  • step S106 the carrier transport material is filled.
  • the sealing portion 9 is disposed so as to surround the periphery of the porous semiconductor layer formed on the transparent electrode substrate 11.
  • the transparent electrode substrate 11 and the counter electrode 12 are arranged so that the porous semiconductor layer formed on the transparent electrode substrate 11 and the catalyst layer 6 of the counter electrode 12 face each other, and the transparent electrode substrate 11 and the counter electrode 12 are connected to the sealing portion 9.
  • a carrier transport material is injected into a region surrounded by the sealing portion 9 from a hole formed in advance in the transparent electrode substrate 11 or the counter electrode 12, and then the hole is closed. Thereby, the photoelectric conversion element shown in FIG. 1 is manufactured.
  • FIG. 3 is a graph showing the relationship between the water content of the dye adsorption solution prepared in step S103 and the photoelectric conversion efficiency.
  • the result at the time of using the metal complex represented by the said Chemical formula (3) is shown.
  • a black mask having an opening area of 0.22 cm 2 is provided on the light receiving surface of the photoelectric conversion element, and light with an intensity of 1 kW / m 2 is applied to the photoelectric conversion element (AM1.5 solar simulator). ).
  • the vertical axis in FIG. 3 represents a value normalized based on the photoelectric conversion efficiency when the water content of the dye adsorption solution is 620 ppm.
  • FIG. 4 is a graph showing the relationship (experimental result) between the moisture content of the dye adsorption solution prepared in step S103 and the adsorption amount of the dye adsorbed on the porous semiconductor layer.
  • the result at the time of using the metal complex represented by the said Chemical formula (3) is shown.
  • the amount of dye adsorbed represented on the vertical axis in FIG. 4 was determined according to the spectrophotometric method.
  • the photoelectric conversion efficiency rapidly decreased.
  • the adsorption amount of the dye in the photoelectric conversion layer 3 was less than 3.5 ⁇ 10 ⁇ 8 mol / cm 2 .
  • the dye adsorption amount in the photoelectric conversion layer 3 increased rapidly. The reason for this is that when the water content of the dye adsorption solution is 600 ppm or more, the dehydration condensation reaction between the functional group of the dye and the hydroxyl group present on the surface of the semiconductor material is promoted, so that more dye is porous. This is presumably because it is adsorbed by the conductive semiconductor layer.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module of the present invention.
  • the photoelectric conversion elements included in the photoelectric conversion module are the photoelectric conversion elements illustrated in FIG. 1.
  • the counter electrode conductive layer 7 of one photoelectric conversion element and the conductive layer 2 of the other photoelectric conversion element are electrically connected.
  • the photoelectric conversion module illustrated in FIG. 5 includes the photoelectric conversion element illustrated in FIG. 1, moisture intrusion is suppressed, and a photoelectric conversion module excellent in photoelectric conversion efficiency can be provided.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
  • the thickness of each layer was measured using a step gauge (manufactured by Tokyo Seimitsu Co., Ltd., model number: E-VS-S28A).
  • a transparent electrode substrate 11 (made by Nippon Sheet Glass Co., Ltd., trade name “SnO 2 film-attached glass plate”) having a width of 30 mm ⁇ length of 30 mm ⁇ thickness of 1 mm was prepared.
  • the conductive layer 2 made of tin oxide (FTO) doped with fluorine was formed on the support substrate 1 made of glass.
  • a commercially available titanium oxide paste (manufactured by Solaronix, trade name) using a screen plate having a pattern of width 5 mm ⁇ length 5 mm and a screen printer (manufactured by Neurong Seimitsu Kogyo Co., Ltd., model number: LS-150) : D / SP) was applied on the conductive layer 2 and leveled at room temperature for 1 hour.
  • the obtained coating film was dried in an oven set at 80 ° C. for 20 minutes and then baked in air for 60 minutes using a baking furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C.
  • the porous semiconductor layer having a thickness of about 14 ⁇ m was obtained by repeatedly applying the titanium oxide paste, drying it, and firing it.
  • the X-ray diffraction spectrum of the obtained porous semiconductor layer was measured using an X-ray diffractometer (manufactured by Shimadzu Corporation, model number “XD-D1”).
  • XD-D1 X-ray diffractometer
  • the average particle diameter of the titanium oxide particles was determined by applying the Scherrer equation to the measured X-ray diffraction spectrum, the average particle diameter was 20 nm.
  • the pore diameter in the porous semiconductor layer was measured according to the BET method (JIS Z8830: 2001) which is a gas adsorption method, the pore diameter was 30 nm.
  • a dye adsorption solution was prepared. Specifically, a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol having a volume ratio of 1: 1 was prepared. The amount of water contained in the mixed solvent prepared using a Karl Fischer moisture meter (manufactured by Hiranuma Sangyo Co., Ltd., model number: AQ-2100) was 46 ppm. Therefore, H 2 O was added to the mixed solvent so that the amount of water contained in the mixed solvent was 620 ppm.
  • the dye represented by the above chemical formula (3) (manufactured by Solaronix, trade name: Ruthenizer 620-1H1TBA) was dissolved in the solvent of the dye adsorption solution thus prepared. The concentration of the dye in the obtained solution for dye adsorption was 3 ⁇ 10 ⁇ 4 mol / L.
  • the transparent electrode substrate 11 on which the porous semiconductor layer was formed was immersed in the prepared dye adsorption solution at room temperature for 24 hours. Thereafter, it was washed with ethanol and dried at about 60 ° C. for about 5 minutes. As a result, the dye contained in the dye adsorption solution was adsorbed on the porous semiconductor layer.
  • the transparent electrode substrate 11 and the counter electrode 12 are formed using a heat-sealing film (DuPont, trade name: Binnel (registered trademark)) cut into a shape surrounding the periphery of the porous semiconductor layer on which the dye is adsorbed. And pasted together.
  • the transparent electrode substrate 11 and the counter electrode 12 were pressure bonded by heating in an oven set at about 130 ° C. for 10 minutes.
  • an electrolytic solution carrier transport material
  • an ultraviolet curable resin manufactured by ThreeBond, model number: 31X-101.
  • the electrolytic solution was prepared as follows. Methylpropylimidazole iodide (Shikoku Kasei Kogyo Co., Ltd., redox species) is dissolved in acetonitrile as a solvent so that the concentration becomes 0.6 mol / L, and I 2 is adjusted so that the concentration becomes 0.05 mol / L. (Kishida Chemical Co., Ltd., redox species) was dissolved. Further, t-butylpyridine (additive) was dissolved in the solvent so that the concentration was 0.5 mol / L, and LiI (additive) was dissolved so that the concentration was 0.1 mol / L.
  • Example 2 A photoelectric conversion element of Example 2 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 1247 ppm.
  • Example 3 The photoelectric conversion element of Example 3 was manufactured according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 2000 ppm.
  • Example 4 A photoelectric conversion element of Example 4 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 3129 ppm.
  • Example 5 A photoelectric conversion element of Example 5 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 6398 ppm.
  • Example 6 A photoelectric conversion element of Example 6 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 12712 ppm.
  • Comparative Example 1 The photoelectric conversion device of Comparative Example 1 was prepared according to the method described in Example 1 except that the dye adsorption solution was prepared without adding H 2 O to a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol. Manufactured. That is, the amount of water contained in the dye adsorption solution in Comparative Example 1 was 46 ppm.
  • Comparative Example 2 A photoelectric conversion element of Comparative Example 2 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent having a moisture content adjusted to 287 ppm.
  • water content is the water content contained in the dye adsorption solution and is synonymous with the water content contained in the solvent of the dye adsorption solution.
  • “Dye adsorption amount” was determined according to the spectrophotometric method.
  • the short-circuit current density Jsc, the open circuit voltage Voc, the fill factor FF, and the photoelectric conversion efficiency ⁇ in Table 1 are values normalized based on the results of Example 1.
  • Comparative Example 3 when the water content of the dye adsorption solution is less than 600 ppm, the transparent electrode substrate 11 on which the porous semiconductor layer is formed is immersed in the dye adsorption solution for a sufficiently long time. Even so, the adsorption amount of the dye could not be 3.5 ⁇ 10 ⁇ 8 mol / cm 2 or more.
  • Example 7 the photoelectric conversion module shown in FIG. 5 was manufactured.
  • a transparent electrode substrate 11 manufactured by Nippon Sheet Glass Co., Ltd., trade name “SnO 2 film-attached glass”, length 60 mm ⁇ width 37 mm
  • a scribe line 13 was formed in parallel with the vertical direction on the SnO 2 film on the surface of the transparent electrode substrate 11 by laser scribing. Thereby, the conductive layer 2 was divided.
  • a total of three scribe lines 13 were formed on the glass substrate (support substrate 1), and the width of the formed scribe line 13 was 30 ⁇ m.
  • a layer composed of a porous semiconductor was formed according to the method described in Example 1 above. Three such layers having a thickness of 21 ⁇ m, a width of 5 mm, and a length of 50 mm were formed on the glass substrate.
  • a paste containing zirconia particles (average particle size of 50 nm) was applied on each of the layers composed of the porous semiconductor. Thereafter, baking was performed at 500 ° C. for 60 minutes. As a result, the porous insulating layer 14 having a distance (thickness) of 7 ⁇ m from the upper surface of each layer composed of the porous semiconductor to the flat portion was formed.
  • Ti was vapor-deposited on each of the catalyst layers 6 at a vapor deposition rate of 5 ⁇ / s using a mask on which a predetermined pattern was formed and a vapor deposition apparatus (model number: ei-5, manufactured by Aruba). Thereby, the counter electrode conductive layer 7 was obtained.
  • the transparent electrode substrate 11 on which the three laminates were formed was immersed in the dye adsorption solution prepared in Example 1 at room temperature for 70 hours. Thereby, the pigment
  • an ultraviolet curable resin (3035B manufactured by ThreeBond Co., Ltd.) was applied between the adjacent stacked bodies and outside the stacked bodies at both ends.
  • Example 2 the electrolyte solution (carrier transport material) of Example 1 was injected from the electrolyte solution injection hole provided in advance in the glass substrate. Thereby, the charge transport layer was formed. Thereafter, an ultraviolet curable resin was applied to the electrolyte solution injection hole, and then the ultraviolet curable resin was irradiated with ultraviolet rays.
  • the current collecting electrode 15 was formed by applying an Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) on a glass substrate. Thereby, the photoelectric conversion module of the present Example was obtained.
  • Example 8 A photoelectric conversion module of Example 8 was produced according to the method described in Example 7 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 2000 ppm.
  • water content is the water content contained in the dye adsorption solution, and is synonymous with the water content contained in the solvent of the dye adsorption solution.
  • “Dye adsorption amount” was determined according to the spectrophotometric method.
  • the short-circuit current density Jsc, the open circuit voltage Voc, the fill factor FF, and the photoelectric conversion efficiency ⁇ in Table 2 are values normalized based on the results of Example 7. As shown in Table 2, the same results as in Table 1 were obtained for the photoelectric module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectric conversion element which comprises a supporting substrate (1) and, disposed thereon in the following order, a conductive layer (2), a photoelectric conversion layer (3), and a counter electrode (12) and in which a carrier transport material has been packed at least in the space between the photoelectric conversion layer (3) and the counter electrode (12). The photoelectric conversion layer (3) has been configured by using a solution for colorant adsorption having a water content of 600 ppm or higher to adsorb the colorant onto a porous semiconductor layer constituted of a semiconductor material. The adsorption amount of the colorant in the photoelectric conversion layer (3) is 3.5×10-8 mol/cm2 or more.

Description

光電変換素子およびその製造方法ならびに光電変換モジュールPHOTOELECTRIC CONVERSION ELEMENT, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION MODULE
 本発明は、光電変換素子およびその製造方法ならびに光電変換モジュールに関する。 The present invention relates to a photoelectric conversion element, a manufacturing method thereof, and a photoelectric conversion module.
 化石燃料に代わるエネルギー源として、太陽光エネルギーを電気エネルギーに変換できる太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池および薄膜シリコン太陽電池などが実用化されている。しかし、前者の太陽電池には、シリコン基板の製造コストが高いという問題がある。後者の薄膜シリコン太陽電池には、多種の半導体製造用ガスおよび複雑な装置などを用いて製造するために製造コストが高くなるという問題がある。いずれの太陽電池にも光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、この問題を解決するには至っていない。 As an alternative energy source to fossil fuels, solar cells that can convert solar energy into electrical energy are attracting attention. Currently, solar cells using crystalline silicon substrates, thin-film silicon solar cells, and the like have been put into practical use. However, the former solar cell has a problem that the manufacturing cost of the silicon substrate is high. The latter thin film silicon solar cell has a problem that the manufacturing cost is high because it is manufactured using various semiconductor manufacturing gases and complicated apparatuses. Although efforts have been made to reduce the cost per power generation output by increasing the efficiency of photoelectric conversion in any solar cell, this problem has not yet been solved.
 新しいタイプの太陽電池として、金属錯体における光誘起電子移動を応用した湿式太陽電池が提案されている(たとえば、特許文献1(特開平1-220380号公報))。特許文献1に記載の湿式太陽電池は次に示す方法にしたがって製造される。2枚のガラス基板の表面にそれぞれ電極を形成し、形成された電極が内側となるように2枚のガラス基板を配置し、2枚のガラス基板で光電変換層と電解液とを挟みこむ。光電変換層は、酸化チタンのような金属酸化物に光増感色素を吸着させることにより可視光領域に吸収スペクトルを持たせた半導体層である。このような湿式太陽電池は、色素増感太陽電池とも呼ばれる。 As a new type of solar cell, a wet solar cell using photoinduced electron transfer in a metal complex has been proposed (for example, Patent Document 1 (Japanese Patent Laid-Open No. 1-220380)). The wet solar cell described in Patent Document 1 is manufactured according to the following method. Electrodes are formed on the surfaces of the two glass substrates, the two glass substrates are arranged so that the formed electrodes are inside, and the photoelectric conversion layer and the electrolytic solution are sandwiched between the two glass substrates. The photoelectric conversion layer is a semiconductor layer having an absorption spectrum in the visible light region by adsorbing a photosensitizing dye to a metal oxide such as titanium oxide. Such a wet solar cell is also called a dye-sensitized solar cell.
 このような湿式太陽電池に光が入射すると、電子が光電変換層で発生し、光電変換層で発生した電子は光電変換層内を通って一方の電極に到達する。一方の電極に到達した電子は、電極間を接続する外部電気回路を通って他方の電極に移動し、電解液に供給される。電解液に供給された電子は、電解液中のイオンによって運ばれて光電変換層に戻る。このような一連の電子の流れにより、電気エネルギーを取り出すことができる。 When light enters such a wet solar cell, electrons are generated in the photoelectric conversion layer, and the electrons generated in the photoelectric conversion layer reach one electrode through the photoelectric conversion layer. The electrons that have reached one electrode move to the other electrode through an external electric circuit that connects the electrodes, and are supplied to the electrolyte. Electrons supplied to the electrolytic solution are carried by ions in the electrolytic solution and return to the photoelectric conversion layer. Electric energy can be taken out by such a series of electron flows.
 一般に、湿式太陽電池に水分が入ると、色素の脱離などが起こり、その結果、湿式太陽電池の劣化を招くことがある。特許文献2(特開2012-79606号公報)には、電極間であって電解液が充填される領域に吸湿多孔質膜を設けることにより、または、吸湿多孔質膜の代わりに粉末の吸湿剤が分散された電解液を用いることにより、水分の侵入による湿式太陽電池の劣化を防ぐことができるということが記載されている。 In general, when moisture enters a wet solar cell, desorption of the dye occurs, and as a result, the wet solar cell may be deteriorated. Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-79606) discloses a powder hygroscopic agent by providing a hygroscopic porous film in a region between electrodes and filled with an electrolytic solution, or in place of the hygroscopic porous film. It is described that by using an electrolytic solution in which is dispersed, it is possible to prevent deterioration of a wet solar cell due to intrusion of moisture.
特開平1-220380号公報Japanese Patent Laid-Open No. 1-220380 特開2012-79606号公報JP 2012-79606 A
 湿式太陽電池への水分の侵入の抑制を目的として、多孔性半導体層に色素を吸着させる工程において当該色素を溶解する溶媒に脱水溶媒を用いることが考えられる。しかし、この場合には、光電変換効率に優れた湿式太陽電池を製造することが難しいという課題があった。 For the purpose of suppressing moisture intrusion into the wet solar cell, it is conceivable to use a dehydrated solvent as a solvent for dissolving the dye in the step of adsorbing the dye on the porous semiconductor layer. However, in this case, there is a problem that it is difficult to manufacture a wet solar cell excellent in photoelectric conversion efficiency.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、光電変換素子への水分の侵入を抑制できるとともに光電変換効率に優れた光電変換素子およびその製造方法を提供することである。また、このような光電変換素子を備えた光電変換モジュールを提供することである。 This invention is made | formed in view of this point, The place made into the objective provides the photoelectric conversion element which was able to suppress the penetration | invasion of the water | moisture content to a photoelectric conversion element, and was excellent in photoelectric conversion efficiency, and its manufacturing method. That is. Moreover, it is providing the photoelectric conversion module provided with such a photoelectric conversion element.
 本発明の光電変換素子では、導電層と光電変換層と対極とが支持基板上に順に設けられており、キャリア輸送材料が少なくとも光電変換層と対極との間に充填されている。光電変換層は、600ppm以上の水分量を含む色素吸着用溶液を用いて、半導体材料からなる多孔性半導体層に色素が吸着されて構成されている。光電変換層における色素の吸着量は、3.5×10-8mol/cm2以上である。 In the photoelectric conversion element of the present invention, the conductive layer, the photoelectric conversion layer, and the counter electrode are sequentially provided on the support substrate, and the carrier transport material is filled at least between the photoelectric conversion layer and the counter electrode. The photoelectric conversion layer is configured such that a dye is adsorbed to a porous semiconductor layer made of a semiconductor material using a dye adsorption solution containing a water content of 600 ppm or more. The adsorption amount of the dye in the photoelectric conversion layer is 3.5 × 10 −8 mol / cm 2 or more.
 色素は、ターピリジル基を有する金属錯体であることが好ましい。色素吸着用溶液に含まれる溶媒は、有機溶媒であることが好ましく、1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒であることがより好ましい。 The dye is preferably a metal complex having a terpyridyl group. The solvent contained in the dye adsorption solution is preferably an organic solvent, and more preferably a mixed solvent containing one or more nitrile compounds and one or more alcohols.
 多孔性半導体層は、平均粒径が10nm以上30nm以下の半導体材料からなる層を少なくとも含むことが好ましく、多孔性半導体層における細孔径は、15nm以上であることが好ましい。半導体材料は金属酸化物からなることが好ましく、金属酸化物は少なくとも酸化チタンを含むことが好ましい。 The porous semiconductor layer preferably includes at least a layer made of a semiconductor material having an average particle diameter of 10 nm or more and 30 nm or less, and the pore diameter of the porous semiconductor layer is preferably 15 nm or more. The semiconductor material is preferably made of a metal oxide, and the metal oxide preferably contains at least titanium oxide.
 光電変換素子の製造方法は、色素が溶解されてなる色素吸着用溶液を調製する工程と、色素吸着用溶液に含まれる色素を多孔性半導体層に吸着させる工程とを少なくとも備える。調製された色素吸着用溶液は、600ppm以上の水分量を含む。多孔性半導体層に吸着される色素の量は、3.5×10-8mol/cm2以上である。色素吸着用溶液を調製する工程は、色素を1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒に溶解する工程を含むことが好ましい。 The method for producing a photoelectric conversion element includes at least a step of preparing a dye adsorption solution in which a dye is dissolved, and a step of adsorbing the dye contained in the dye adsorption solution to the porous semiconductor layer. The prepared dye adsorption solution contains a water content of 600 ppm or more. The amount of the dye adsorbed on the porous semiconductor layer is 3.5 × 10 −8 mol / cm 2 or more. The step of preparing the dye adsorption solution preferably includes a step of dissolving the dye in a mixed solvent containing one or more nitrile compounds and one or more alcohols.
 本発明の光電変換モジュールでは、2つ以上の光電変換素子が直列に接続されている。2つ以上の光電変換素子の少なくとも1つは、本発明の光電変換素子である。隣り合う光電変換素子のうち、一方の光電変換素子の対極導電層と他方の光電変換素子の導電層とが電気的に接続されている。 In the photoelectric conversion module of the present invention, two or more photoelectric conversion elements are connected in series. At least one of the two or more photoelectric conversion elements is the photoelectric conversion element of the present invention. Among the adjacent photoelectric conversion elements, the counter electrode conductive layer of one photoelectric conversion element and the conductive layer of the other photoelectric conversion element are electrically connected.
 本発明では、水分の侵入が抑制され、光電変換効率に優れた光電変換素子を提供することができ、水分の侵入が抑制され、光電変換効率に優れた光電変換モジュールを提供することができる。 In the present invention, it is possible to provide a photoelectric conversion element with suppressed moisture intrusion and excellent photoelectric conversion efficiency, and to provide a photoelectric conversion module with suppressed moisture intrusion and excellent photoelectric conversion efficiency.
本発明の光電変換素子の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the photoelectric conversion element of this invention. 本発明の光電変換素子の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the photoelectric conversion element of this invention. 色素吸着用溶液の水分量と光電変換効率との関係を示すグラフである。It is a graph which shows the relationship between the moisture content of the solution for pigment | dye adsorption, and photoelectric conversion efficiency. 色素吸着用溶液の水分量と光電変換層における色素の吸着量との関係を示すグラフである。It is a graph which shows the relationship between the moisture content of the solution for pigment | dye adsorption, and the adsorption amount of the pigment | dye in a photoelectric converting layer. 本発明の光電変換モジュールの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the photoelectric conversion module of this invention.
 以下、本発明の光電変換素子およびその製造方法ならびに光電変換モジュールについて図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。 Hereinafter, the photoelectric conversion element, the manufacturing method thereof, and the photoelectric conversion module of the present invention will be described with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 以下の実施形態では本発明の光電変換素子の一例を示し、本発明の範囲内で種々の実施形態での実施が可能である。 In the following embodiments, an example of the photoelectric conversion element of the present invention is shown, and various embodiments can be implemented within the scope of the present invention.
 [光電変換素子の構成]
 図1は、本発明の光電変換素子の構成の一例を示す断面図である。図1に示す光電変換素子では、支持基板1上に導電層2と光電変換層3と対極12とが順に設けられており、光電変換層3と対極12との間にはキャリア輸送材料が充填されて電荷輸送層10が形成されている。対極12では対極導電層7と触媒層6とがカバー体8上に順に形成されていることが好ましく、触媒層6が光電変換層3と対向していることが好ましい。光電変換層3と電荷輸送層10とは封止部9により封止されていることが好ましい。以下、図1に示す光電変換素子における各構成要素を説明する。
[Configuration of photoelectric conversion element]
FIG. 1 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element of the present invention. In the photoelectric conversion element shown in FIG. 1, a conductive layer 2, a photoelectric conversion layer 3, and a counter electrode 12 are sequentially provided on a support substrate 1, and a carrier transport material is filled between the photoelectric conversion layer 3 and the counter electrode 12. Thus, the charge transport layer 10 is formed. In the counter electrode 12, the counter electrode conductive layer 7 and the catalyst layer 6 are preferably formed on the cover body 8 in order, and the catalyst layer 6 is preferably opposed to the photoelectric conversion layer 3. The photoelectric conversion layer 3 and the charge transport layer 10 are preferably sealed with a sealing portion 9. Hereinafter, each component in the photoelectric conversion element shown in FIG. 1 will be described.
 <支持基板>
 支持基板1は、図1に示す光電変換素子の受光面の少なくとも一部を構成する。そのため、支持基板1のうち光電変換素子の受光面となる部分は、光透過性を有する材料からなることが好ましい。光透過性を有する材料は、少なくとも後述の色素に実効的な感度を有する波長の光を実質的に透過させる材料(当該光の透過率がたとえば80%以上、好ましくは90%以上)であれば良く、必ずしも全ての波長領域の光に対して透過性を有する必要はない。
<Support substrate>
The support substrate 1 constitutes at least a part of the light receiving surface of the photoelectric conversion element shown in FIG. Therefore, it is preferable that the part used as the light-receiving surface of a photoelectric conversion element among the support substrates 1 consists of a material which has a light transmittance. The light-transmitting material is at least a material that substantially transmits light having a wavelength that has an effective sensitivity to a dye described later (the light transmittance is, for example, 80% or more, preferably 90% or more). It is not always necessary to have transparency to light in all wavelength regions.
 支持基板1は、たとえば、ソーダ石灰フロートガラス、溶融石英ガラスまたは結晶石英ガラスなどからなるガラス基板であっても良いし、可撓性フィルムなどの耐熱性樹脂基板であっても良い。可撓性フィルム(以下、「フィルム」という)としては、たとえば、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂またはポリテトラフルオロエチレン(PTFE)などからなるフィルムを用いることができる。 The support substrate 1 may be a glass substrate made of, for example, soda lime float glass, fused quartz glass, or crystal quartz glass, or may be a heat resistant resin substrate such as a flexible film. Examples of the flexible film (hereinafter referred to as “film”) include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), and polyether. A film made of imide (PEI), phenoxy resin, polytetrafluoroethylene (PTFE), or the like can be used.
 加熱を伴って支持基板1上に他の層を形成する場合、たとえば250℃程度の加熱を伴って支持基板1上に導電層2を形成する場合には、支持基板1としてポリテトラフルオロエチレンからなるフィルムを用いることが好ましい。ポリテトラフルオロエチレンからなるフィルムは250℃以上の耐熱性を有することから、支持基板1を250℃程度に加熱しても支持基板1への熱ダメージを抑えることができる。 When another layer is formed on the support substrate 1 with heating, for example, when the conductive layer 2 is formed on the support substrate 1 with heating at about 250 ° C., the support substrate 1 is made of polytetrafluoroethylene. It is preferable to use a film. Since the film made of polytetrafluoroethylene has a heat resistance of 250 ° C. or higher, thermal damage to the support substrate 1 can be suppressed even if the support substrate 1 is heated to about 250 ° C.
 支持基板1の厚さは、特に限定されないが、0.2mm以上5mm以下であることが好ましい。支持基板1の厚さが0.2mm以上であれば、支持基板1が支持基板としての機能を発揮することができる傾向にある。支持基板1の厚さが5mm以下であれば、支持基板1を透過する光量の減少が防止されるため、光電変換素子の光電変換効率の低下を防止できる傾向にある。 The thickness of the support substrate 1 is not particularly limited, but is preferably 0.2 mm or more and 5 mm or less. If the thickness of the support substrate 1 is 0.2 mm or more, the support substrate 1 tends to exhibit a function as a support substrate. If the thickness of the support substrate 1 is 5 mm or less, a decrease in the amount of light transmitted through the support substrate 1 is prevented, so that a decrease in photoelectric conversion efficiency of the photoelectric conversion element tends to be prevented.
 完成した光電変換素子を他の構造体に取り付けるときに、支持基板1を利用できる。すなわち、金属加工部品とねじとを用いて、ガラス基板などからなる支持基板1の周辺部を他の支持基板に容易に取り付けることができる。 The support substrate 1 can be used when the completed photoelectric conversion element is attached to another structure. In other words, the peripheral portion of the support substrate 1 made of a glass substrate or the like can be easily attached to another support substrate using a metal processed part and a screw.
 <導電層>
 導電層2は、光電変換素子の受光面の少なくとも一部を構成する。そのため、導電層2のうち光電変換素子の受光面となる部分は、光透過性および導電性を有する材料からなることが好ましい。ただし、導電層2は、支持基板1と同じく、少なくとも後述の色素に実効的な感度を有する波長の光を実質的に透過させる材料(当該光の透過率がたとえば80%以上、好ましくは90%以上)であれば良く、必ずしも全ての波長領域の光に対して透過性を有する必要はない。
<Conductive layer>
The conductive layer 2 constitutes at least a part of the light receiving surface of the photoelectric conversion element. Therefore, it is preferable that the part used as the light-receiving surface of a photoelectric conversion element among the conductive layers 2 consists of a material which has a light transmittance and electroconductivity. However, like the support substrate 1, the conductive layer 2 is a material that substantially transmits light having a wavelength that has an effective sensitivity to at least a dye described later (the light transmittance is, for example, 80% or more, preferably 90%). And the like, and it is not always necessary to have transparency to light in all wavelength regions.
 導電層2に用いられる光透過性を有する材料としては、たとえば、インジウム錫複合酸化物(ITO)、フッ素がドープされた酸化錫(FTO)または酸化亜鉛(ZnO)などを用いることができる。 Examples of the light-transmitting material used for the conductive layer 2 include indium tin composite oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO).
 導電層2の厚さは、特に限定されないが、0.02μm以上5μm以下であることが好ましい。導電層2の厚さが0.02μm以上であれば、導電層2の抵抗が低減されるので、光電変換素子の外部に取り出すことができる電流量が増大する。よって、光電変換素子の光電変換効率が向上する傾向にある。導電層2の厚さが5μm以下であれば、導電層2を透過する光量の減少が防止されるため、光電変換素子の光電変換効率が維持される傾向にある。 The thickness of the conductive layer 2 is not particularly limited, but is preferably 0.02 μm or more and 5 μm or less. If the thickness of the conductive layer 2 is 0.02 μm or more, since the resistance of the conductive layer 2 is reduced, the amount of current that can be taken out of the photoelectric conversion element increases. Therefore, the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved. If the thickness of the conductive layer 2 is 5 μm or less, a decrease in the amount of light transmitted through the conductive layer 2 is prevented, so that the photoelectric conversion efficiency of the photoelectric conversion element tends to be maintained.
 導電層2の表面抵抗率(シート抵抗)は、特に限定されないが、40Ω/sq以下であることが好ましい。導電層2の表面抵抗率が40Ω/sq以下であれば、光電変換素子の外部に取り出すことができる電流量が増大するので、光電変換素子の光電変換効率が向上する傾向にある。 The surface resistivity (sheet resistance) of the conductive layer 2 is not particularly limited, but is preferably 40 Ω / sq or less. If the surface resistivity of the conductive layer 2 is 40 Ω / sq or less, the amount of current that can be extracted to the outside of the photoelectric conversion element increases, and thus the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved.
 導電層2には、金属線が設けられていても良い。導電層2に金属線を設けると、導電層2の抵抗が低くなる傾向にある。金属線としては、たとえば、白金、金、銀、銅、アルミニウム、ニッケルおよびチタンのうちの少なくとも1種の金属を含む金属線を用いることができる。なお、導電層2に設けられた金属線による入射光量の低下を避けるという観点から、金属線の太さは、たとえば0.1~4mm程度であることが好ましい。 The conductive layer 2 may be provided with a metal wire. When a metal wire is provided on the conductive layer 2, the resistance of the conductive layer 2 tends to decrease. As the metal wire, for example, a metal wire containing at least one metal selected from platinum, gold, silver, copper, aluminum, nickel, and titanium can be used. From the viewpoint of avoiding a decrease in the amount of incident light due to the metal wire provided on the conductive layer 2, the thickness of the metal wire is preferably about 0.1 to 4 mm, for example.
 <光電変換層>
 光電変換層3は、半導体材料からなる多孔性半導体層を有する。多孔性半導体層には、色素が吸着されており、好ましくはキャリア輸送材料が充填されている。キャリア輸送材料は、下記<電荷輸送層>で示すとおりである。
<Photoelectric conversion layer>
The photoelectric conversion layer 3 has a porous semiconductor layer made of a semiconductor material. The porous semiconductor layer is adsorbed with a dye and is preferably filled with a carrier transport material. The carrier transport material is as shown in <Charge transport layer> below.
 <多孔性半導体層>
 多孔性半導体層の形態としては、特に限定されず、半導体材料からなるバルク状、粒子状の半導体材料を含む層、または、多数の微細孔が形成された半導体材料からなる膜状の多孔性半導体層などを用いることができる。その中でも、多孔性半導体層の形態としては、多数の微細孔が形成された半導体材料からなる膜状の多孔性半導体層(以下では単に「薄膜状の多孔性半導体層」と記すことがある)を用いることが好ましい。これにより、光電変換層3の受光面積が増大するので、光電変換素子の光電変換効率が向上する傾向にある。また、光電変換素子の薄型化が促進される傾向にある。
<Porous semiconductor layer>
The form of the porous semiconductor layer is not particularly limited, and is a film-form porous semiconductor made of a semiconductor material in which a bulk material or a particulate semiconductor material made of a semiconductor material or a semiconductor material in which a large number of micropores are formed. Layers and the like can be used. Among them, as a form of the porous semiconductor layer, a film-like porous semiconductor layer made of a semiconductor material in which a large number of micropores are formed (hereinafter, simply referred to as “thin-film-like porous semiconductor layer”) Is preferably used. Thereby, since the light receiving area of the photoelectric conversion layer 3 increases, the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved. In addition, thinning of the photoelectric conversion element tends to be promoted.
 光電変換素子の光電変換効率を向上させるためには、より多くの色素が吸着された光電変換層3を形成することが必要である。このため、多孔性半導体層として、比表面積の大きなものを用いることが好ましい。多孔性半導体層の形態として薄膜状の多孔性半導体層を用いる場合、多孔性半導体層は、たとえば、10m2/g以上200m2/g以下の比表面積を有することが好ましい。また、多孔性半導体層の形態として粒子状の半導体材料を含む層を用いた場合であっても、色素の吸着量を確保するという観点から、多孔性半導体層の比表面積を上記の範囲とすることが好ましい。なお、多孔性半導体層の比表面積は、たとえば、気体吸着法であるBET法(JIS Z8830:2001)などに準拠して求められる。 In order to improve the photoelectric conversion efficiency of the photoelectric conversion element, it is necessary to form the photoelectric conversion layer 3 in which more dye is adsorbed. For this reason, it is preferable to use a porous semiconductor layer having a large specific surface area. When using a thin-film-like porous semiconductor layer as the form of the porous semiconductor layer, the porous semiconductor layer preferably has a specific surface area of, for example, 10 m 2 / g or more and 200 m 2 / g or less. In addition, even when a layer containing a particulate semiconductor material is used as the form of the porous semiconductor layer, the specific surface area of the porous semiconductor layer is set in the above range from the viewpoint of securing the adsorption amount of the dye. It is preferable. In addition, the specific surface area of a porous semiconductor layer is calculated | required based on the BET method (JIS Z8830: 2001) etc. which are gas adsorption methods, for example.
 多孔性半導体層の空孔率(多孔性半導体層の全容積に対する多孔性半導体層に形成された空隙の容積の割合)は、20%以上であることが好ましく、より好ましくは40%以上80%以下である。多孔性半導体層の空孔率が20%以上である場合には、キャリア輸送材料が多孔性半導体層の内部を十分拡散する傾向にある。なお、多孔性半導体層の空孔率は、多孔性半導体層の厚さ、多孔性半導体層の質量、および、半導体材料の密度から計算によって求められる。 The porosity of the porous semiconductor layer (ratio of the volume of voids formed in the porous semiconductor layer to the total volume of the porous semiconductor layer) is preferably 20% or more, more preferably 40% or more and 80%. It is as follows. When the porosity of the porous semiconductor layer is 20% or more, the carrier transport material tends to diffuse sufficiently inside the porous semiconductor layer. Note that the porosity of the porous semiconductor layer is obtained by calculation from the thickness of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor material.
 多孔性半導体層を構成する半導体材料(以下単に「半導体材料」と記す)としては、たとえば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、酸化ニッケルまたはチタン酸ストロンチウムなどの金属酸化物であっても良いし、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅インジウム硫化物(CuInS2)、CuAlO2またはSrCu22などであっても良い。多孔性半導体層を構成する材料としては、上記列挙された材料のうちの一つを単独で用いても良いし、上記列挙された材料のうちの2つ以上を組み合わせて用いても良い。この中でも、半導体材料としては、酸化チタン、酸化亜鉛、酸化錫および酸化ニオブのうちの少なくとも1種を含むことが好ましく、より好ましくは酸化チタンを含むことである。多孔性半導体層が酸化チタンを含む場合には、多孔性半導体層の安定性およびその安全性が向上する傾向にあり、また、光電変換素子の光電変換効率が向上する傾向にある。 Examples of the semiconductor material constituting the porous semiconductor layer (hereinafter simply referred to as “semiconductor material”) include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, nickel oxide or titanic acid. It may be a metal oxide such as strontium, or may be cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper indium sulfide (CuInS 2 ), CuAlO 2 or SrCu 2 O 2 . As a material constituting the porous semiconductor layer, one of the listed materials may be used alone, or two or more of the listed materials may be used in combination. Among these, the semiconductor material preferably includes at least one of titanium oxide, zinc oxide, tin oxide, and niobium oxide, and more preferably includes titanium oxide. When the porous semiconductor layer contains titanium oxide, the stability and safety of the porous semiconductor layer tend to be improved, and the photoelectric conversion efficiency of the photoelectric conversion element tends to be improved.
 本明細書において、「酸化チタン」は、たとえば、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸またはオルソチタン酸などの各種の狭義の酸化チタンだけでなく、水酸化チタンまたは含水酸化チタンなどの酸素を含むチタン化合物(広義の酸化チタン)も含む。これらの酸化チタンを単独で用いても良いし、混合して用いても良い。アナターゼ型酸化チタンとルチル型酸化チタンとについては、製法または熱履歴によりどちらの形態にもなり得るが、アナターゼ型酸化チタンが一般的である。 In the present specification, “titanium oxide” means, for example, not only various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid or orthotitanic acid, but also titanium hydroxide or Also included is a titanium compound (titanium oxide in a broad sense) containing oxygen such as hydrous titanium oxide. These titanium oxides may be used alone or in combination. Anatase-type titanium oxide and rutile-type titanium oxide can be in either form depending on the production method or thermal history, but anatase-type titanium oxide is common.
 多孔性半導体層の形態としては、単結晶または多結晶焼結体のどちらであっても良いが、多結晶焼結体であることが好ましい。多孔性半導体層が多結晶焼結体からなれば、多孔性半導体層の安定性が向上する傾向にある。また、多孔性半導体層の結晶成長が容易となるため、光電変換素子の製造コストが低減する傾向にある。 The form of the porous semiconductor layer may be either a single crystal or a polycrystalline sintered body, but is preferably a polycrystalline sintered body. If the porous semiconductor layer is made of a polycrystalline sintered body, the stability of the porous semiconductor layer tends to be improved. Further, since the crystal growth of the porous semiconductor layer becomes easy, the manufacturing cost of the photoelectric conversion element tends to be reduced.
 半導体材料の平均粒径は、特に限定されない。しかし、半導体材料の平均粒径を変更すれば色素の吸着点の個数を調整可能であるため、このことを考慮して半導体材料の平均粒径を適宜設定することが好ましい。具体的には、光電変換層3の形成条件などによるため一概には言えないが、半導体材料の平均粒径が小さくなると、色素の吸着点が増加する。よって、多孔性半導体層が平均粒径の小さな半導体材料を含む場合、その多孔性半導体層を含む光電変換層3では色素の吸着量が増加するため、光電変換素子の光電変換効率が向上する傾向にある。一方、半導体材料の平均粒径が大きくなると、光散乱性が向上する。よって、多孔性半導体層が平均粒径の大きな半導体材料を含む場合、その多孔性半導体層を含む光電変換層3は光散乱性に優れるので、光捕捉率の向上に寄与する。 The average particle size of the semiconductor material is not particularly limited. However, since the number of adsorption points of the dye can be adjusted by changing the average particle size of the semiconductor material, it is preferable to appropriately set the average particle size of the semiconductor material in consideration of this fact. Specifically, although it cannot be said unconditionally because of the formation conditions of the photoelectric conversion layer 3, the adsorption point of the dye increases as the average particle size of the semiconductor material decreases. Therefore, when the porous semiconductor layer includes a semiconductor material having a small average particle diameter, the photoelectric conversion layer 3 including the porous semiconductor layer increases the amount of dye adsorbed, and thus tends to improve the photoelectric conversion efficiency of the photoelectric conversion element. It is in. On the other hand, when the average particle size of the semiconductor material is increased, the light scattering property is improved. Therefore, when the porous semiconductor layer includes a semiconductor material having a large average particle diameter, the photoelectric conversion layer 3 including the porous semiconductor layer is excellent in light scattering properties, which contributes to an improvement in the light capture rate.
 たとえば多孔性半導体層が多結晶焼結体からなる場合、当該多結晶焼結体を構成する結晶子の平均粒径は、5nm以上50nm未満であることが好ましく、10nm以上30nm以下であることがより好ましい。これにより、投影面積に対して十分に大きい実効表面積を得ることができるため、色素の吸着量が増大する。よって、高い短絡電流密度が得られるので、光電変換効率が向上する傾向にある。なお、結晶子の平均粒径は、たとえば、X線回折測定によって得られた多孔性半導体層のX線回折スペクトルにシェラーの式を適用することによって算出される。 For example, when the porous semiconductor layer is made of a polycrystalline sintered body, the average particle size of the crystallites constituting the polycrystalline sintered body is preferably 5 nm or more and less than 50 nm, and preferably 10 nm or more and 30 nm or less. More preferred. Thereby, since an effective surface area sufficiently large with respect to the projected area can be obtained, the amount of dye adsorbed increases. Therefore, since a high short circuit current density is obtained, the photoelectric conversion efficiency tends to be improved. The average particle size of the crystallites is calculated by applying Scherrer's equation to the X-ray diffraction spectrum of the porous semiconductor layer obtained by X-ray diffraction measurement, for example.
 色素の吸着量の増大を図るためには、多孔性半導体層は、好ましくは平均粒径が5nm以上50nm未満の半導体材料からなることであり、より好ましくは平均粒径が10nm以上30nm以下の半導体材料からなることである。しかし、色素の吸着量の増大だけでなく光散乱性の向上をも図る場合には、多孔性半導体層は、好ましくは平均粒径が5nm以上50nm未満の半導体材料からなる層と平均粒径が50nm以上の半導体材料からなる層とを含むことであり、より好ましくは平均粒径が10nm以上30nm以下の半導体材料からなる層と平均粒径が50nm以上の半導体材料からなる層とを含むことである。 In order to increase the adsorption amount of the dye, the porous semiconductor layer is preferably made of a semiconductor material having an average particle size of 5 nm or more and less than 50 nm, and more preferably a semiconductor having an average particle size of 10 nm or more and 30 nm or less. It consists of materials. However, when not only increasing the amount of dye adsorbed but also improving light scattering properties, the porous semiconductor layer preferably has a mean particle size of a layer made of a semiconductor material having an average particle size of 5 nm or more and less than 50 nm. A layer made of a semiconductor material having a mean particle size of 10 nm to 30 nm and a layer made of a semiconductor material having a mean particle size of 50 nm or more. is there.
 また、色素の吸着量は、光電変換層3の実効表面積の大きさに比例するので、光電変換層3の厚さが変わることによっても変化する。ただし、色素吸着用溶液(色素が溶媒に溶解されてなる溶液)に必要な水分量は光電変換層3の厚さに依存しない。 In addition, since the amount of dye adsorbed is proportional to the size of the effective surface area of the photoelectric conversion layer 3, it also changes when the thickness of the photoelectric conversion layer 3 changes. However, the amount of water necessary for the dye adsorption solution (solution in which the dye is dissolved in a solvent) does not depend on the thickness of the photoelectric conversion layer 3.
 また、多孔性半導体層における細孔径は、15nm以上であることが好ましい。多孔性半導体層における細孔径が15nm未満である場合には、後述する色素の吸着工程が妨げられるため、色素の吸着量が減少することがある。その結果、光電変換素子の光電変換効率の向上を図ることが難しい場合がある。しかし、多孔性半導体層における細孔径が15nm以上であれば、色素の吸着量の減少を防止することができ、色素の吸着量をたとえば3.5×10-8mol/cm2以上とすることができる。よって、光電変換効率に優れた光電変換素子を提供することができる。なお、多孔性半導体層における細孔径は、たとえば、気体吸着法であるBET法(JIS Z8830:2001)などに準拠して求められる。 Moreover, it is preferable that the pore diameter in a porous semiconductor layer is 15 nm or more. When the pore diameter in the porous semiconductor layer is less than 15 nm, the dye adsorption process described later is hindered, and the dye adsorption amount may decrease. As a result, it may be difficult to improve the photoelectric conversion efficiency of the photoelectric conversion element. However, if the pore diameter in the porous semiconductor layer is 15 nm or more, a decrease in the amount of dye adsorbed can be prevented, and the amount of dye adsorbed should be, for example, 3.5 × 10 −8 mol / cm 2 or more. Can do. Therefore, a photoelectric conversion element having excellent photoelectric conversion efficiency can be provided. The pore diameter in the porous semiconductor layer is determined in accordance with, for example, the BET method (JIS Z8830: 2001) which is a gas adsorption method.
 多孔性半導体層が多層構造からなる場合、多孔性半導体層は、平均粒径が50nm以上の半導体粒子からなる半導体層を有していることが好ましく、平均粒径が50nm以上600nm以下の半導体粒子からなる半導体層を有していることがより好ましい。これにより、光電変換層3における光路長が長くなるため、より多くの光を光電変換層3に吸収させることができる。 When the porous semiconductor layer has a multilayer structure, the porous semiconductor layer preferably has a semiconductor layer made of semiconductor particles having an average particle size of 50 nm or more, and the semiconductor particles having an average particle size of 50 nm or more and 600 nm or less It is more preferable to have a semiconductor layer made of Thereby, since the optical path length in the photoelectric converting layer 3 becomes long, more light can be absorbed by the photoelectric converting layer 3.
 光電変換層3の厚さは、特に限定されないが、光透過性および光電変換効率などの観点から5μm以上45μm以下であることが好ましい。 The thickness of the photoelectric conversion layer 3 is not particularly limited, but is preferably 5 μm or more and 45 μm or less from the viewpoints of light transmittance and photoelectric conversion efficiency.
 <色素>
 色素としては、たとえば、可視光領域および赤外光領域の少なくとも一方の領域の光を吸収可能な種々の金属錯体色素を用いても良いし、可視光領域および赤外光領域の少なくとも一方の領域の光を吸収可能な種々の有機色素を用いても良い。
<Dye>
As the dye, for example, various metal complex dyes capable of absorbing light in at least one of the visible light region and the infrared light region may be used, or at least one region of the visible light region and the infrared light region. Various organic dyes that can absorb the light may be used.
 金属錯体色素としては、たとえば、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、TeまたはRhなどの金属原子に配位子が配位結合されてなる色素のうちの少なくとも1種を用いることができる。このような金属錯体色素としては、たとえば、ポルフィリン系色素、フタロシアニン系色素、ナフタロシアニン系色素またはルテニウム系金属錯体色素などを挙げることができる。 Examples of the metal complex dye include Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh, etc. At least one of dyes in which a ligand is coordinately bonded to the metal atom can be used. Examples of such metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium metal complex dyes, and the like.
 金属錯体色素としては、フタロシアニン系色素またはルテニウム系金属錯体色素を用いることが好ましく、ルテニウム系金属錯体色素を用いることがより好ましく、特に、下記化学式(1)~(3)にて表わされるルテニウム系金属錯体色素を用いることが好ましい。金属錯体色素としてフタロシアニン系色素またはルテニウム系金属錯体色素を用いた場合、特に下記化学式(1)~(3)にて表わされるルテニウム系金属錯体色素を用いた場合には、この色素は近赤外線領域の波長の光をも吸収するため、光電変換素子の光電変換効率が高くなる。なお、下記化学式(2)~(3)における「TBA」はテトラブチルアンモニウムを表わす。 As the metal complex dye, a phthalocyanine dye or a ruthenium metal complex dye is preferably used, more preferably a ruthenium metal complex dye, and particularly, a ruthenium series represented by the following chemical formulas (1) to (3). It is preferable to use a metal complex dye. When a phthalocyanine dye or a ruthenium metal complex dye is used as the metal complex dye, particularly when a ruthenium metal complex dye represented by the following chemical formulas (1) to (3) is used, this dye is in the near infrared region. Therefore, the photoelectric conversion efficiency of the photoelectric conversion element is increased. “TBA” in the following chemical formulas (2) to (3) represents tetrabutylammonium.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明で使用される金属錯体色素は、ターピリジル基を有する金属錯体色素であることが好ましい。これにより、より高い光電変換効率を得ることができる。上記化学式(1)、(2)にて表されるようなビピリジル基を有する金属錯体色素を用いた場合であっても、本発明の効果が得られることを確認した。しかし、本発明者らは、ターピリジル基を有する金属錯体色素を用いた場合の方が、ビピリジル基を有する金属錯体色素を用いた場合よりも、得られる効果の度合いが大きいことを実際に確認している。 The metal complex dye used in the present invention is preferably a metal complex dye having a terpyridyl group. Thereby, higher photoelectric conversion efficiency can be obtained. It was confirmed that the effects of the present invention were obtained even when a metal complex dye having a bipyridyl group as represented by the above chemical formulas (1) and (2) was used. However, the present inventors have actually confirmed that the degree of effect obtained is greater when the metal complex dye having a terpyridyl group is used than when the metal complex dye having a bipyridyl group is used. ing.
 ターピリジル基を有する金属錯体色素としては、たとえば、上記化学式(3)にて表わされる化合物または特許第4485181号(特開2005-162718号公報)に記載の色素などを挙げることができる。ターピリジル基には、ターピリジル基を構成する水素原子の少なくとも1つが水素原子以外の原子または原子団(たとえばCOOHまたはCOOTBAなど)で置換されたターピリジル基も含まれる。 Examples of the metal complex dye having a terpyridyl group include a compound represented by the above chemical formula (3) or a dye described in Japanese Patent No. 4485181 (Japanese Patent Laid-Open No. 2005-162718). The terpyridyl group also includes a terpyridyl group in which at least one hydrogen atom constituting the terpyridyl group is substituted with an atom or an atomic group other than a hydrogen atom (for example, COOH or COOTBA).
 特許第4485181号に記載の色素は、金属原子として、ルテニウム、オスミウム、鉄、レニウムまたはテクネチウムを含む。この色素は、配位子として、1つのターピリジル基とハロゲン原子またはターピリジル基以外の原子団とを含むことが好ましい。この色素に含まれるターピリジル基は、ターピリジル基を構成する窒素原子に対してパラ位にある水素原子の少なくとも1つが原子団(たとえばCOOHまたはアルキル基など)で置換されたものであることが好ましい。ターピリジル基以外の原子団は、たとえば、NCS-、CN-、NCO-およびH2Oの少なくとも1つであることが好ましい。 The dye described in Japanese Patent No. 4485181 contains ruthenium, osmium, iron, rhenium or technetium as a metal atom. This dye preferably contains one terpyridyl group and a halogen atom or an atomic group other than the terpyridyl group as a ligand. The terpyridyl group contained in this dye is preferably one in which at least one hydrogen atom in the para position with respect to the nitrogen atom constituting the terpyridyl group is substituted with an atomic group (for example, COOH or an alkyl group). The atomic group other than the terpyridyl group is preferably at least one of NCS , CN , NCO and H 2 O, for example.
 色素を多孔性半導体層に強固に吸着させるためには、色素は、分子中に、カルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基またはホスホニル基などのインターロック基を有することが好ましく、カルボン酸基またはカルボン酸無水基を有することがより好ましい。ここで、インターロック基は、色素の励起状態と半導体材料の伝導帯との間の電子の移動を容易にする電気的結合を提供する。 In order to strongly adsorb the dye to the porous semiconductor layer, the dye contains carboxylic acid group, carboxylic acid anhydride group, alkoxy group, hydroxyl group, hydroxyalkyl group, sulfonic acid group, ester group, mercapto group in the molecule. Alternatively, it preferably has an interlock group such as a phosphonyl group, and more preferably has a carboxylic acid group or a carboxylic anhydride group. Here, the interlock group provides an electrical bond that facilitates the transfer of electrons between the excited state of the dye and the conduction band of the semiconductor material.
 色素がカルボン酸基を有すると、多孔性半導体層に対する色素の吸着性が安定するので、色素から多孔性半導体層への電子の注入が効率的に行われる傾向にある。色素がカルボン酸基の代わりにカルボン酸無水基を有する場合であっても、色素が分子内にカルボン酸基とともにカルボン酸無水基を有する場合であっても、色素から多孔性半導体層への電子の注入が効率的に行われる傾向にある。 When the dye has a carboxylic acid group, the adsorptivity of the dye to the porous semiconductor layer is stabilized, so that electrons are likely to be efficiently injected from the dye into the porous semiconductor layer. Even when the dye has a carboxylic acid anhydride group instead of a carboxylic acid group, or when the dye has a carboxylic acid anhydride group together with a carboxylic acid group in the molecule, electrons from the dye to the porous semiconductor layer There is a tendency that the injection of is efficiently performed.
 色素は、当該色素が溶媒に溶解されてなる色素吸着用溶液を用いて、多孔性半導体層に吸着される。色素吸着用溶液に含まれる水分量は、600ppm以上であることが好ましく、2000ppm以上であることがより好ましく、2000ppm以上15000ppm以下であることがさらに好ましい。一般に、色素は、当該色素が有する官能基と半導体材料の表面に存在する水酸基との脱水縮合反応により、多孔性半導体層に吸着されると考えられている。色素吸着用溶液に含まれる水分量が600ppm以上である場合には、上記脱水縮合反応が促進されるため、より多くの色素が多孔性半導体層に吸着されると考えられる。たとえば、光電変換層3における色素の吸着量は3.5×10-8mol/cm2以上となる。よって、高い短絡電流密度が得られる傾向にあるため、光電変換効率が向上する。一方、色素吸着用溶液に含まれる水分量が15000ppmを上回ると、光電変換効率が低下しはじめる。この理由としては、色素吸着用溶液に含まれる水分量が15000ppmを上回ると、色素が多孔性半導体層に凝集して吸着される恐れがあると考えられ、よって、開放電圧および曲線因子の低下を招くからであると考えられる。なお、色素吸着用溶液に含まれる水分量は、色素吸着用溶液の質量に対する当該色素吸着用溶液に含まれるH2Oの質量の割合であり、たとえばカールフィッシャー法などにより色素吸着用溶液に含まれるH2Oの質量を測定することにより求めることができる。また、色素吸着用溶液に含まれる水分量は、当該色素吸着用溶液の溶媒に含まれる水分量と同義である。 The dye is adsorbed to the porous semiconductor layer using a dye adsorption solution in which the dye is dissolved in a solvent. The amount of water contained in the dye adsorption solution is preferably 600 ppm or more, more preferably 2000 ppm or more, and further preferably 2000 ppm or more and 15000 ppm or less. In general, the dye is considered to be adsorbed to the porous semiconductor layer by a dehydration condensation reaction between a functional group of the dye and a hydroxyl group present on the surface of the semiconductor material. When the amount of water contained in the dye adsorption solution is 600 ppm or more, the dehydration condensation reaction is promoted, so that it is considered that more dye is adsorbed to the porous semiconductor layer. For example, the adsorption amount of the dye in the photoelectric conversion layer 3 is 3.5 × 10 −8 mol / cm 2 or more. Therefore, since a high short circuit current density tends to be obtained, the photoelectric conversion efficiency is improved. On the other hand, when the amount of water contained in the dye adsorption solution exceeds 15000 ppm, the photoelectric conversion efficiency starts to decrease. The reason for this is that if the amount of water contained in the dye adsorption solution exceeds 15000 ppm, the dye may be agglomerated and adsorbed on the porous semiconductor layer, thus reducing the open-circuit voltage and the fill factor. It is thought that it is because it invites. The amount of water contained in the dye adsorption solution is the ratio of the mass of H 2 O contained in the dye adsorption solution to the mass of the dye adsorption solution, and is contained in the dye adsorption solution by, for example, the Karl Fischer method. It can be determined by measuring the mass of H 2 O. Further, the amount of water contained in the dye adsorption solution is synonymous with the amount of water contained in the solvent of the dye adsorption solution.
 色素吸着用溶液に含まれる水分量を調整する方法としては、たとえば、カールフィッシャー水分計などを用いて当該色素吸着用溶液の溶媒(脱水溶媒)の水分量を測定した後、色素吸着用溶液に含まれる水分量が適切な水分量となるように色素吸着用溶液または色素吸着用溶液の溶媒にH2Oを加えるという方法が挙げられる。 As a method for adjusting the amount of water contained in the dye adsorption solution, for example, after measuring the amount of water in the solvent (dehydrated solvent) of the dye adsorption solution using a Karl Fischer moisture meter, Examples thereof include a method of adding H 2 O to the dye adsorption solution or the solvent of the dye adsorption solution so that the contained moisture amount becomes an appropriate moisture amount.
 色素を溶解可能な溶媒としては、たとえば、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルもしくはメトキシプロピオニトリルなどのニトリル化合物、メタノール、エタノールもしくはt-ブタノールなどのアルコール類、または、非プロトン極性物質などを用いることができ、これらの無水溶媒を用いることが好ましい。色素を溶解可能な溶媒としては、これらを単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、本発明では、1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒を用いることが好ましい。たとえば、アセトニトリルとt-ブタノールとの混合溶媒を用いることが好ましく、無水アセトニトリルと無水t-ブタノールとの混合溶媒を用いることがより好ましい。これにより、色素の溶解性が増し、多孔性半導体層への色素の浸透性も増す。よって、多孔性半導体層への色素の吸着量が増加するため、高い短絡電流密度が得られる傾向にある。したがって、光電変換素子の光電変換効率の向上を図ることができる。色素を溶解可能な溶媒として1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒を用いる場合には、(1種類以上のニトリル化合物):(1種類以上のアルコール類)=1:10以上10:1以下(体積比)であることが好ましく、(1種類以上の無水ニトリル化合物):(1種類以上の無水アルコール類)=1:10以上10:1以下(体積比)であることがより好ましい。 As the solvent capable of dissolving the dye, for example, a carbonate compound such as propylene carbonate, a nitrile compound such as acetonitrile or methoxypropionitrile, an alcohol such as methanol, ethanol or t-butanol, or an aprotic polar substance is used. These anhydrous solvents are preferably used. As the solvent capable of dissolving the dye, these may be used alone or in combination of two or more. Among these, in the present invention, it is preferable to use a mixed solvent containing one or more nitrile compounds and one or more alcohols. For example, it is preferable to use a mixed solvent of acetonitrile and t-butanol, and it is more preferable to use a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol. Thereby, the solubility of a pigment | dye increases and the permeability | transmittance of the pigment | dye to a porous semiconductor layer also increases. Therefore, since the amount of dye adsorbed on the porous semiconductor layer increases, a high short-circuit current density tends to be obtained. Therefore, the photoelectric conversion efficiency of the photoelectric conversion element can be improved. When using a mixed solvent containing one or more nitrile compounds and one or more alcohols as a solvent capable of dissolving the dye, (one or more nitrile compounds): (one or more alcohols) = 1 : 10 or more and 10: 1 or less (volume ratio), (one or more anhydrous nitrile compounds): (one or more anhydrous alcohols) = 1: 10 or more and 10: 1 or less (volume ratio) More preferably.
 色素吸着用溶液における色素の濃度は、使用する色素および溶媒の種類により適宜調整することができる。しかし、多孔質半導体層への色素の吸着機能を向上させるためには、色素吸着用溶液における色素の濃度は、できるだけ高い方が好ましく、たとえば1×10-4mol/L以上であることが好ましい。 The density | concentration of the pigment | dye in the solution for pigment | dye adsorption can be suitably adjusted with the kind of pigment | dye and solvent to be used. However, in order to improve the function of adsorbing the dye to the porous semiconductor layer, the concentration of the dye in the dye adsorption solution is preferably as high as possible, for example, preferably 1 × 10 −4 mol / L or more. .
 本発明では、光電変換層3における色素の吸着量は、3.5×10-8mol/cm2以上であることが好ましく、8.0×10-8mol/cm2以上であることがより好ましく、8.0×10-8mol/cm2以上1.0×10-6mol/cm2以下であることがさらに好ましい。光電変換層3における色素の吸着量が3.5×10-8mol/cm2未満であれば、光電変換層3による光の吸収量の減少を引き起こし、よって、短絡電流密度の低下を招くことがある。しかし、光電変換層3における色素の吸着量が3.5×10-8mol/cm2以上であれば、光電変換層3による光の吸収量が増大するため、短絡電流密度が高くなり、よって、光電変換効率が向上する。また、光電変換層3における色素の吸着量が1.0×10-6mol/cm2を超えると、色素が多孔性半導体層の表面に凝集して吸着されることがある。そして、この色素を介して半導体材料(当該多孔性半導体層を構成する半導体材料)へ注入された電子がリークするおそれがあるので、開放電圧の低下を招くことがある。しかし、光電変換層3における色素の吸着量が3.5×10-8mol/cm2以上1.0×10-6mol/cm2以下であれば、色素は多孔性半導体層の表面に単層で吸着されるため、上記電子のリークを防止でき、よって、開放電圧の低下を防止できていると考えられる。 In the present invention, the amount of dye adsorbed in the photoelectric conversion layer 3 is preferably 3.5 × 10 −8 mol / cm 2 or more, and more preferably 8.0 × 10 −8 mol / cm 2 or more. Preferably, it is 8.0 × 10 −8 mol / cm 2 or more and 1.0 × 10 −6 mol / cm 2 or less. If the amount of dye adsorbed in the photoelectric conversion layer 3 is less than 3.5 × 10 −8 mol / cm 2 , the amount of light absorbed by the photoelectric conversion layer 3 is decreased, and thus the short-circuit current density is decreased. There is. However, if the amount of dye adsorbed in the photoelectric conversion layer 3 is 3.5 × 10 −8 mol / cm 2 or more, the amount of light absorbed by the photoelectric conversion layer 3 increases, so that the short-circuit current density increases. The photoelectric conversion efficiency is improved. Moreover, when the adsorption amount of the dye in the photoelectric conversion layer 3 exceeds 1.0 × 10 −6 mol / cm 2 , the dye may be aggregated and adsorbed on the surface of the porous semiconductor layer. Then, electrons injected into the semiconductor material (semiconductor material constituting the porous semiconductor layer) through this dye may leak, which may cause a reduction in open circuit voltage. However, when the adsorption amount of the dye in the photoelectric conversion layer 3 is 3.5 × 10 −8 mol / cm 2 or more and 1.0 × 10 −6 mol / cm 2 or less, the dye is simply attached to the surface of the porous semiconductor layer. Since it is adsorbed by the layer, it is considered that the leakage of electrons can be prevented, and thus the open circuit voltage can be prevented from being lowered.
 光電変換層3における色素の吸着量は、たとえば、吸光光度法などにしたがって求めることができる。 The amount of dye adsorbed in the photoelectric conversion layer 3 can be determined according to, for example, an absorptiometric method.
 <電荷輸送層>
 キャリア輸送材料は、イオンを輸送できる導電性材料であることが好ましい。キャリア輸送材料の好適な材料としては、たとえば、液体電解質、固体電解質、ゲル電解質または溶融塩ゲル電解質などを用いることができる。
<Charge transport layer>
The carrier transport material is preferably a conductive material that can transport ions. As a suitable material for the carrier transport material, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
 液体電解質は、酸化還元種を含む液状物であることが好ましく、一般に電池または太陽電池などにおいて使用できるものであれば特に限定されない。液体電解質としては、たとえば、酸化還元種と酸化還元種を溶解可能な溶媒とからなるもの、酸化還元種と酸化還元種を溶解可能な溶融塩とからなるもの、または、酸化還元種と上記溶媒と上記溶融塩とからなるものなどが挙げられる。 The liquid electrolyte is preferably a liquid containing redox species, and is not particularly limited as long as it can be generally used in a battery or a solar battery. Examples of the liquid electrolyte include those comprising a redox species and a solvent capable of dissolving the redox species, those comprising a redox species and a molten salt capable of dissolving the redox species, or the redox species and the above solvent. And the above-mentioned molten salt.
 酸化還元種としては、たとえばI-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系およびキノン/ハイドロキノン系のうちの少なくとも1種を用いることができる。具体的には、酸化還元種としては、金属ヨウ化物とヨウ素(I2)との組み合わせ、ヨウ化物イオンからなる塩とヨウ素(I2)との組み合わせ、または、金属臭化物と臭素(Br2)との組み合わせなどを用いることが好ましい。これらの酸化還元種を用いた光電変換素子は、たとえばコバルト錯体またはフェロセンなどを酸化還元種として用いた光電変換素子に比べて、良好なI-V曲線を示す。 As the redox species, for example, at least one of I / I 3− , Br 2− / Br 3− , Fe 2+ / Fe 3+, and quinone / hydroquinone can be used. Specifically, as the redox species, a combination of metal iodide and iodine (I 2 ), a combination of a salt composed of iodide ions and iodine (I 2 ), or a metal bromide and bromine (Br 2 ). It is preferable to use a combination thereof. Photoelectric conversion elements using these redox species exhibit better IV curves than photoelectric conversion elements using, for example, cobalt complexes or ferrocene as redox species.
 金属ヨウ化物としては、たとえば、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)およびヨウ化カルシウム(CaI2)のうちの少なくとも1種を用いることができる。 As the metal iodide, for example, at least one of lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), and calcium iodide (CaI 2 ) can be used.
 ヨウ化物イオンからなる塩としては、たとえば、アンモニウム塩およびイミダゾリウム塩のうちの少なくとも1種を用いることができる。アンモニウム塩としては、たとえば、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)およびテトラヘキシルアンモニウムアイオダイド(THAI)のうちの少なくとも1種を用いることができる。イミダゾリウム塩としては、たとえば、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)およびヘキシルメチルイミダゾールアイオダイド(HMII)のうちの少なくとも1種を用いることができる。 As the salt composed of iodide ions, for example, at least one of ammonium salt and imidazolium salt can be used. As the ammonium salt, for example, at least one of tetraethylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), and tetrahexylammonium iodide (THAI) is used. Can do. Examples of the imidazolium salt include dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazole iodide (EII), and hexylmethylimidazole iodide (HMII). ) Can be used.
 金属臭化物としては、たとえば、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)および臭化カルシウム(CaBr2)のうちの少なくとも1種を用いることができる。 As the metal bromide, for example, at least one of lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), and calcium bromide (CaBr 2 ) can be used.
 酸化還元種としては、金属ヨウ化物とヨウ化物イオンからなる塩とヨウ素との組み合わせのように数種類を組み合わせて用いることもできる。 As the redox species, several types can be used in combination, such as a combination of a metal iodide and iodide ion salt and iodine.
 酸化還元種を溶解可能な溶媒としては、たとえば、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水または非プロトン極性物質などを用いることができる。酸化還元種を溶解可能な溶媒としては、これらを単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、カーボネート化合物またはニトリル化合物を用いることが好ましい。 Examples of the solvent capable of dissolving the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, aprotic polar substances, and the like. As the solvent capable of dissolving the redox species, these may be used alone or in admixture of two or more. Among these, it is preferable to use a carbonate compound or a nitrile compound.
 固体電解質は、電子、ホール、またはイオンを輸送できる導電性材料であることが好ましく、光電変換素子の電解質として用いることができ且つ流動性がないものであることが好ましい。具体的には、固体電解質としては、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅もしくはチオシアン酸銅などのp型半導体、または、溶融塩を含む液体電解質を微粒子により固体化した電解質などを用いることができる。 The solid electrolyte is preferably a conductive material that can transport electrons, holes, or ions, and can preferably be used as an electrolyte of a photoelectric conversion element and has no fluidity. Specifically, as the solid electrolyte, a hole transport material such as polycarbazole, an electron transport material such as tetranitrofluororenone, a conductive polymer such as polyroll, a polymer electrolyte obtained by solidifying a liquid electrolyte with a polymer compound, A p-type semiconductor such as copper iodide or copper thiocyanate, or an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles can be used.
 ゲル電解質は、電解質とゲル化剤とからなることが好ましい。電解質とゲル化剤との混合割合は、適宜調整されることが好ましい。電解質としては、たとえば、上記液体電解質または上記固体電解質を用いることができる。 The gel electrolyte is preferably composed of an electrolyte and a gelling agent. The mixing ratio of the electrolyte and the gelling agent is preferably adjusted as appropriate. As the electrolyte, for example, the liquid electrolyte or the solid electrolyte can be used.
 ゲル化剤としては、たとえば、架橋ポリアクリル樹脂誘導体、架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、または、側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などを用いることができる。 Examples of gelling agents include polymers such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, or polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. A gelling agent or the like can be used.
 溶融塩ゲル電解質は、上記ゲル電解質と常温型溶融塩とからなることが好ましい。常温型溶融塩としては、たとえば、ピリジニウム塩類またはイミダゾリウム塩類などの含窒素複素環式化合物の四級アンモニウム塩類などを用いることができる。 The molten salt gel electrolyte is preferably composed of the gel electrolyte and a room temperature molten salt. As the room temperature molten salt, for example, quaternary ammonium salts of nitrogen-containing heterocyclic compounds such as pyridinium salts or imidazolium salts can be used.
 電荷輸送層10は、必要に応じて、次に示す添加剤を含んでいても良い。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物を用いても良いし、グアニジンチオシアネートなどのイオン性有機化合物を用いても良い。添加剤としては、上記窒素を含有する芳香族化合物とグアニジンチオシアネートなどのイオン性有機化合物との両方を用いることもできる。 The charge transport layer 10 may contain the following additives as required. As the additive, a nitrogen-containing aromatic compound such as t-butylpyridine (TBP) or an ionic organic compound such as guanidine thiocyanate may be used. As the additive, both of the aromatic compound containing nitrogen and an ionic organic compound such as guanidine thiocyanate can be used.
 キャリア輸送材料における酸化還元種の濃度は、酸化還元種を溶解可能な溶媒および電解質などの種類により適宜選択されることが好ましいが、0.001mol/L以上1.5mol/L以下であることが好ましく、0.01mol/L以上0.7mol/L以下であることがより好ましい。キャリア輸送材料における酸化還元種の濃度が上記範囲内であれば、電荷輸送層10における酸化還元種の輸送が効率的に行なわれる傾向にある。 The concentration of the redox species in the carrier transport material is preferably selected as appropriate depending on the type of solvent and electrolyte that can dissolve the redox species, but is preferably 0.001 mol / L or more and 1.5 mol / L or less. Preferably, it is 0.01 mol / L or more and 0.7 mol / L or less. When the concentration of the redox species in the carrier transport material is within the above range, the redox species in the charge transport layer 10 tend to be efficiently transported.
 <触媒層>
 触媒層6を構成する材料としては、たとえば、白金およびカーボンのうちの少なくとも一方を用いることが好ましい。触媒層6がカーボンからなる場合には、触媒層6は、たとえば、カーボンブラック、グラファイト、ガラス炭素、アモルファス炭素、ハードカーボン、ソフトカーボン、カーボンホイスカー、カーボンナノチューブおよびフラーレンのうちの少なくとも1種からなることが好ましい。
<Catalyst layer>
As a material constituting the catalyst layer 6, for example, it is preferable to use at least one of platinum and carbon. When the catalyst layer 6 is made of carbon, the catalyst layer 6 is made of, for example, at least one of carbon black, graphite, glass carbon, amorphous carbon, hard carbon, soft carbon, carbon whisker, carbon nanotube, and fullerene. It is preferable.
 触媒層6の厚さは特に限定されないが、0.5nm~1000nm程度であることが好ましい。 The thickness of the catalyst layer 6 is not particularly limited, but is preferably about 0.5 nm to 1000 nm.
 <対極導電層>
 対極導電層7は、電子を収集するとともに、光電変換素子を直列接続して光電変換モジュールを製造するときに隣り合う光電変換素子同士を電気的に接続させるための電極としても機能する。
<Counter electrode conductive layer>
The counter electrode conductive layer 7 collects electrons and also functions as an electrode for electrically connecting adjacent photoelectric conversion elements when manufacturing photoelectric conversion modules by connecting photoelectric conversion elements in series.
 対極導電層7を構成する材料としては、導電性材料を用いることが好ましい。導電性材料としては、たとえば、ITO、FTOおよびZnOなどの金属酸化物の少なくとも1種を用いても良いし、チタン、タングステン、金、銀、銅およびニッケルなどの金属の少なくとも1種を含む導電性材料を用いても良いし、上記金属酸化物の少なくとも1種と上記金属の少なくとも1種を含む導電性材料とを用いても良い。その中でも、導電性材料としては、チタンを用いることが好ましい。これにより、対極導電層7の強度が向上する。 As the material constituting the counter electrode conductive layer 7, a conductive material is preferably used. As the conductive material, for example, at least one of metal oxides such as ITO, FTO, and ZnO may be used, and the conductive material includes at least one metal such as titanium, tungsten, gold, silver, copper, and nickel. A conductive material may be used, or a conductive material containing at least one of the above metal oxides and at least one of the above metals may be used. Of these, titanium is preferably used as the conductive material. Thereby, the strength of the counter electrode conductive layer 7 is improved.
 対極導電層7の厚さは、対極導電層7の材料の比抵抗率に応じて適宜設定されることが好ましい。対極導電層7の厚さが薄すぎると対極導電層7の抵抗が高くなり、対極導電層7の厚さが厚すぎるとキャリア輸送材料の移動の妨げとなる。 The thickness of the counter electrode conductive layer 7 is preferably set as appropriate according to the specific resistivity of the material of the counter electrode conductive layer 7. If the thickness of the counter electrode conductive layer 7 is too thin, the resistance of the counter electrode conductive layer 7 becomes high, and if the thickness of the counter electrode conductive layer 7 is too thick, the movement of the carrier transport material is hindered.
 <カバー体>
 カバー体8は、キャリア輸送材料の揮発を防止し、光電変換素子への水などの浸入を防止する。
<Cover body>
The cover body 8 prevents the carrier transport material from volatilizing and prevents water and the like from entering the photoelectric conversion element.
 カバー体8を構成する材料は、一般に太陽電池に使用可能な材料であり且つ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、たとえば、ソーダ石灰ガラス、鉛ガラス、ほうけい酸ガラス、溶融石英ガラスまたは結晶石英ガラスなどが挙げられる。その中でも、カバー体8を構成する材料としては、ソーダ石灰フロートガラスを用いることが好ましい。 The material constituting the cover body 8 is not particularly limited as long as it is a material that can generally be used for a solar cell and can exhibit the effects of the present invention. Examples of such a material include soda lime glass, lead glass, borosilicate glass, fused silica glass, and crystal quartz glass. Among them, it is preferable to use soda lime float glass as a material constituting the cover body 8.
 <封止部>
 封止部9は、キャリア輸送材料の揮発を防止し、光電変換素子への水などの浸入を防止する。それだけでなく、封止部9は、支持基板1に作用する応力(衝撃)を吸収し、光電変換素子の長期使用時には支持基板1に作用する撓みなどを吸収する。
<Sealing part>
The sealing portion 9 prevents the carrier transport material from volatilizing and prevents water and the like from entering the photoelectric conversion element. In addition, the sealing portion 9 absorbs stress (impact) that acts on the support substrate 1 and absorbs bending that acts on the support substrate 1 when the photoelectric conversion element is used for a long period of time.
 封止部9は、たとえば、シリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂およびガラスフリットのうちの少なくとも1種を含む単層であっても良いし、この単層が2層以上重ねられて構成された積層体であっても良い。なお、キャリア輸送材料の溶媒としてニトリル系溶媒またはカーボネート系溶媒などの難揮発性溶媒を用いた場合には、封止部9は、シリコーン樹脂、ホットメルト樹脂(たとえばアイオノマー樹脂)、ポリイソブチレン系樹脂およびガラスフリットのうちの少なくとも1種を含むことが好ましい。これにより、キャリア輸送材料に対する封止部9の腐食が抑制される傾向にある。 The sealing portion 9 may be a single layer including at least one of a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, and a glass frit. It may be a laminated body constructed. In the case where a hardly volatile solvent such as a nitrile solvent or a carbonate solvent is used as the solvent for the carrier transport material, the sealing portion 9 is made of a silicone resin, a hot melt resin (for example, an ionomer resin), or a polyisobutylene resin. And at least one of glass frit. Thereby, it exists in the tendency for the corrosion of the sealing part 9 with respect to carrier transport material to be suppressed.
 [光電変換素子の製造方法]
 図2は、本発明の光電変換素子の製造方法の一例を示すフロー図である。図2に示す光電変換素子の製造方法では、工程S101において、導電層2が支持基板1上に形成されてなる透明電極基板11を準備する。たとえば、市販の透明電極基板を準備しても良いし、スパッタリング法または熱CVD法などの方法によって導電層2を支持基板1上に形成しても良い。
[Production Method of Photoelectric Conversion Element]
FIG. 2 is a flowchart showing an example of a method for producing a photoelectric conversion element of the present invention. In the photoelectric conversion element manufacturing method shown in FIG. 2, in step S <b> 101, a transparent electrode substrate 11 in which the conductive layer 2 is formed on the support substrate 1 is prepared. For example, a commercially available transparent electrode substrate may be prepared, or the conductive layer 2 may be formed on the support substrate 1 by a method such as sputtering or thermal CVD.
 次に、工程S102において、導電層2上に多孔性半導体層を形成する。多孔性半導体層を形成する方法は特に限定されないが、たとえば下記(i)~(iv)のいずれかの方法により多孔性半導体層を形成することができる。下記(i)~(iv)の中でも下記(i)に示すスクリーン印刷法を用いて多孔性半導体層を形成することが好ましい。これにより、比較的厚い多孔性半導体層を低コストで製造することができる傾向にある。
(i) スクリーン印刷法またはインクジェット法などによって、半導体材料からなる微粒子を含有するペーストを導電層2上に塗布した後に焼成する。
(ii) CVD法またはMOCVD法などによって、所望の原料ガスを用いて、多孔性半導体層を導電層2上に形成する。
(iii) 固体原料を用いたPVD法(たとえば蒸着法またはスパッタリング法)などによって、多孔性半導体層を導電層2上に形成する。
(iv) ゾル-ゲル法または電気化学的な酸化還元反応を利用した方法などによって、多孔性半導体層を導電層2上に形成する。
Next, in step S <b> 102, a porous semiconductor layer is formed on the conductive layer 2. The method for forming the porous semiconductor layer is not particularly limited. For example, the porous semiconductor layer can be formed by any one of the following methods (i) to (iv). Among the following (i) to (iv), it is preferable to form the porous semiconductor layer by using the screen printing method shown in the following (i). Thereby, it exists in the tendency which can manufacture a comparatively thick porous semiconductor layer at low cost.
(I) A paste containing fine particles made of a semiconductor material is applied onto the conductive layer 2 by a screen printing method or an inkjet method, and then baked.
(Ii) A porous semiconductor layer is formed on the conductive layer 2 using a desired source gas by CVD or MOCVD.
(Iii) A porous semiconductor layer is formed on the conductive layer 2 by a PVD method (for example, a vapor deposition method or a sputtering method) using a solid material.
(Iv) A porous semiconductor layer is formed on the conductive layer 2 by a sol-gel method or a method using an electrochemical redox reaction.
 多孔性半導体層として薄膜状の多孔性半導体層または粒子状の半導体材料を含む層を形成する場合、10m2/g以上200m2/g以下の比表面積を有する多孔性半導体層を形成することが好ましい。これにより、より多くの色素が保持された光電変換層3を形成することができるので、光電変換素子の光電変換効率が向上する傾向にある。 In the case of forming a thin film-like porous semiconductor layer or a layer containing a particulate semiconductor material as the porous semiconductor layer, a porous semiconductor layer having a specific surface area of 10 m 2 / g or more and 200 m 2 / g or less may be formed. preferable. Thereby, since the photoelectric converting layer 3 in which more pigment | dye was hold | maintained can exist, it exists in the tendency for the photoelectric conversion efficiency of a photoelectric conversion element to improve.
 以下に、半導体材料としてアナターゼ型酸化チタンを用いて多孔性半導体層を形成する方法について、具体的に説明する。 Hereinafter, a method for forming a porous semiconductor layer using anatase-type titanium oxide as a semiconductor material will be specifically described.
 まず、チタンイソプロポキシド125mLを0.1mol/Lの硝酸水溶液750mLに滴下して加水分解し、80℃で8時間加熱する。これにより、ゾル液が得られる。 First, 125 mL of titanium isopropoxide is dropped into 750 mL of a 0.1 mol / L nitric acid aqueous solution for hydrolysis, and heated at 80 ° C. for 8 hours. Thereby, a sol liquid is obtained.
 次に、得られたゾル液をチタン製オートクレーブ中で230℃で11時間加熱する。これにより、酸化チタン粒子が成長する。その後、室温下で超音波分散を30分間行なう。これにより、平均粒径(平均一次粒径)15nmの酸化チタン粒子を含むコロイド溶液が得られる。 Next, the obtained sol solution is heated at 230 ° C. for 11 hours in a titanium autoclave. Thereby, titanium oxide particles grow. Thereafter, ultrasonic dispersion is performed at room temperature for 30 minutes. Thereby, a colloidal solution containing titanium oxide particles having an average particle diameter (average primary particle diameter) of 15 nm is obtained.
 次に、得られたコロイド溶液に、該コロイド溶液の2倍容量のエタノールを加え、これを回転数5000rpmで遠心分離する。この遠心分離により酸化チタン粒子と溶媒とが分離され、よって、酸化チタン粒子が得られる。 Next, ethanol twice the volume of the colloidal solution is added to the obtained colloidal solution, and this is centrifuged at a rotational speed of 5000 rpm. By this centrifugation, the titanium oxide particles and the solvent are separated, and thus titanium oxide particles are obtained.
 次に、得られた酸化チタン粒子を洗浄した後、エチルセルロースとテルピネオールとを無水エタノールに溶解させた溶液に酸化チタン粒子を加えて攪拌する。これにより、酸化チタン粒子が上記溶液に分散される。 Next, after washing the obtained titanium oxide particles, the titanium oxide particles are added to a solution in which ethylcellulose and terpineol are dissolved in absolute ethanol and stirred. Thereby, the titanium oxide particles are dispersed in the solution.
 次に、酸化チタン粒子が分散された溶液を真空条件下で加熱してエタノールを蒸発させる。これにより、酸化チタンペーストが得られる。そして、最終的な組成として、たとえば、酸化チタン固体濃度20質量%、エチルセルロース10質量%、および、テルピネオール70質量%となるように濃度を調整する。なお、上記の最終的な組成は例示的なものであって、これに限定されるものではない。 Next, the solution in which the titanium oxide particles are dispersed is heated under vacuum to evaporate ethanol. Thereby, a titanium oxide paste is obtained. And as a final composition, a density | concentration is adjusted so that it may become titanium oxide solid concentration 20 mass%, ethyl cellulose 10 mass%, and terpineol 70 mass%, for example. Note that the above-mentioned final composition is illustrative and is not limited to this.
 酸化チタン粒子を含有する(懸濁させた)ペーストを調製するために用いる溶媒としては、上記以外にも、たとえば、エチレングリコールモノメチルエーテルなどのグライム系溶媒、イソプロピルアルコールなどのアルコール系溶媒、イソプロピルアルコールとトルエンとの混合液などの混合溶媒、または水などを用いることができる。 As a solvent used for preparing a paste containing (suspended) titanium oxide particles, in addition to the above, for example, a glyme solvent such as ethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol, isopropyl alcohol A mixed solvent such as a mixed solution of toluene and toluene, or water can be used.
 次に、得られた酸化チタンペーストを導電層2の上にスクリーン印刷させた後に乾燥させ、焼成させる。これにより、多孔性半導体層が形成される。ここで、酸化チタンペーストの乾燥条件および焼成条件(温度、時間および雰囲気など)は、それぞれ、支持基板1の材料および半導体材料などの種類によって、調整されることが好ましい。酸化チタンペーストの焼成は、たとえば、大気雰囲気下または不活性ガス雰囲気下で、50~800℃程度の範囲内で、10秒~12時間程度行なわれることが好ましい。酸化チタンペーストの乾燥および焼成は、それぞれ、たとえば、単一の温度で1回行なわれても良いし、温度を変化させて2回以上行なわれても良い。なお、上記条件で作製された酸化チタンからなる多孔性半導体層の比表面積は10m2/g以上200m2/g以下の範囲内にある。 Next, the obtained titanium oxide paste is screen-printed on the conductive layer 2 and then dried and fired. Thereby, a porous semiconductor layer is formed. Here, it is preferable that the drying conditions and the firing conditions (temperature, time, atmosphere, etc.) of the titanium oxide paste are adjusted according to the types of the material of the support substrate 1 and the semiconductor material, respectively. The titanium oxide paste is preferably baked, for example, in an air atmosphere or an inert gas atmosphere within a range of about 50 to 800 ° C. for about 10 seconds to 12 hours. The drying and firing of the titanium oxide paste may be performed once at a single temperature, for example, or may be performed twice or more at different temperatures. The specific surface area of the porous semiconductor layer made of titanium oxide produced under the above conditions is in the range of 10 m 2 / g to 200 m 2 / g.
 多孔性半導体層を構成する半導体粒子の平均粒径は、特に限定されないが、入射光を光電変換に有効利用するという点では、市販の半導体材料粉末のようにある程度揃っていることが好ましい。このようにして、多孔性半導体層が形成される。 The average particle diameter of the semiconductor particles constituting the porous semiconductor layer is not particularly limited, but it is preferable that the average particle diameter is uniform to some extent as in the case of commercially available semiconductor material powders in that incident light is effectively used for photoelectric conversion. In this way, a porous semiconductor layer is formed.
 次に、工程S103において、色素吸着用溶液を調製する。たとえば、上記<色素>で記載の色素吸着用溶液を調製することが好ましい。この工程S103では、上記<色素>で記載したように、カールフィッシャー水分計などを用いて色素吸着用溶液の溶媒(脱水溶媒)の水分量を測定した後、色素吸着用溶液に含まれる水分量が目的の水分量となるように色素吸着用溶液または色素吸着用溶液の溶媒にH2Oを加えることが好ましい。この工程S103では、会合など色素同士の相互作用を低減することを目的として、無色の疎水性化合物を共吸着させてもよい。共吸着させる疎水性化合物としては、カルボキシル基を有するステロイド化合物などが挙げられる。 Next, in step S103, a dye adsorption solution is prepared. For example, it is preferable to prepare the dye adsorption solution described in <Dye> above. In this step S103, as described in <Dye> above, after measuring the water content of the solvent (dehydrated solvent) of the dye adsorption solution using a Karl Fischer moisture meter, the amount of water contained in the dye adsorption solution It is preferable to add H 2 O to the dye adsorbing solution or the solvent of the dye adsorbing solution so that the water content becomes the target amount of water. In this step S103, a colorless hydrophobic compound may be co-adsorbed for the purpose of reducing the interaction between the dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include a steroid compound having a carboxyl group.
 次に、工程S104において、色素吸着用溶液に含まれる色素を多孔性半導体層に吸着させる。たとえば、多孔性半導体層が形成された透明電極基板11を色素吸着用溶液に浸漬させることが好ましい。この色素吸着用溶液は上記工程S103において調製されたものであり、この色素吸着用溶液における水分量は600ppm以上である。これにより、より多くの色素が多孔性半導体層に吸着されることとなり、たとえば多孔性半導体層に吸着される色素の量を3.5×10-8mol/cm2以上とすることができる。よって、短絡電流密度が高い光電変換素子を製造することができ、光電変換効率に優れた光電変換素子を提供することができる。なお、工程S104における浸漬条件は、適宜調整されることが好ましい。 Next, in step S104, the dye contained in the dye adsorption solution is adsorbed on the porous semiconductor layer. For example, it is preferable to immerse the transparent electrode substrate 11 on which the porous semiconductor layer is formed in the dye adsorption solution. This dye adsorption solution is prepared in the above step S103, and the water content in the dye adsorption solution is 600 ppm or more. As a result, more dye is adsorbed on the porous semiconductor layer. For example, the amount of dye adsorbed on the porous semiconductor layer can be 3.5 × 10 −8 mol / cm 2 or more. Therefore, a photoelectric conversion element with a high short-circuit current density can be manufactured, and a photoelectric conversion element excellent in photoelectric conversion efficiency can be provided. In addition, it is preferable that the immersion conditions in process S104 are adjusted suitably.
 次に、工程S105において、対極12を形成する。たとえば、スパッタリング法または熱CVD法などの方法によって対極導電層7をカバー体8上に形成することが好ましい。白金からなる触媒層6を形成する場合には、蒸着法またはスパッタ法などのPVD法により触媒層6を対極導電層7上に形成しても良いし、塩化白金酸の熱分解または電着などにより触媒層6を対極導電層7上に形成しても良い。カーボンブラック、ケッチェンブラック、カーボンナノチューブまたはフラーレンなどのカーボン材料からなる触媒層6を形成する場合には、任意の溶媒に分散してペースト状にしたカーボンをスクリーン印刷法などにより対極導電層7上に塗布することが好ましい。 Next, in step S105, the counter electrode 12 is formed. For example, the counter electrode conductive layer 7 is preferably formed on the cover body 8 by a method such as a sputtering method or a thermal CVD method. When the catalyst layer 6 made of platinum is formed, the catalyst layer 6 may be formed on the counter electrode conductive layer 7 by a PVD method such as vapor deposition or sputtering, or thermal decomposition or electrodeposition of chloroplatinic acid. Thus, the catalyst layer 6 may be formed on the counter electrode conductive layer 7. When the catalyst layer 6 made of a carbon material such as carbon black, ketjen black, carbon nanotube or fullerene is formed, the carbon dispersed in an arbitrary solvent and formed into a paste is formed on the counter electrode conductive layer 7 by a screen printing method or the like. It is preferable to apply to.
 次に、工程S106において、キャリア輸送材料を充填する。たとえば、透明電極基板11に形成された多孔性半導体層の周囲を取り囲むようにして封止部9を配置する。透明電極基板11に形成された多孔性半導体層と対極12の触媒層6とが向かい合うようにして透明電極基板11と対極12とを配置し、透明電極基板11と対極12とを封止部9により固定する。その後、透明電極基板11または対極12に予め形成された孔から封止部9で取り囲まれた領域へキャリア輸送材料を注入してから、その孔を塞ぐ。これにより、図1に示す光電変換素子が製造される。 Next, in step S106, the carrier transport material is filled. For example, the sealing portion 9 is disposed so as to surround the periphery of the porous semiconductor layer formed on the transparent electrode substrate 11. The transparent electrode substrate 11 and the counter electrode 12 are arranged so that the porous semiconductor layer formed on the transparent electrode substrate 11 and the catalyst layer 6 of the counter electrode 12 face each other, and the transparent electrode substrate 11 and the counter electrode 12 are connected to the sealing portion 9. To fix. Thereafter, a carrier transport material is injected into a region surrounded by the sealing portion 9 from a hole formed in advance in the transparent electrode substrate 11 or the counter electrode 12, and then the hole is closed. Thereby, the photoelectric conversion element shown in FIG. 1 is manufactured.
 図3は、工程S103において調製された色素吸着用溶液の水分量と光電変換効率との関係を示すグラフである。図3には、上記化学式(3)にて表わされる金属錯体を用いた場合の結果を示す。光電変換効率は、開口部の面積が0.22cm2である黒色のマスクを光電変換素子の受光面に設け、その光電変換素子に対して1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射することにより、測定された。ここで、図3の縦軸には、色素吸着用溶液の水分量が620ppmであるときの光電変換効率を基準として規格化された値を表わしている。 FIG. 3 is a graph showing the relationship between the water content of the dye adsorption solution prepared in step S103 and the photoelectric conversion efficiency. In FIG. 3, the result at the time of using the metal complex represented by the said Chemical formula (3) is shown. For the photoelectric conversion efficiency, a black mask having an opening area of 0.22 cm 2 is provided on the light receiving surface of the photoelectric conversion element, and light with an intensity of 1 kW / m 2 is applied to the photoelectric conversion element (AM1.5 solar simulator). ). Here, the vertical axis in FIG. 3 represents a value normalized based on the photoelectric conversion efficiency when the water content of the dye adsorption solution is 620 ppm.
 図4は、工程S103において調製された色素吸着用溶液の水分量と多孔性半導体層に吸着された色素の吸着量との関係(実験結果)を示すグラフである。図4には、上記化学式(3)にて表わされる金属錯体を用いた場合の結果を示す。図4の縦軸に表わされた色素の吸着量は、吸光光度法にしたがって求められた。 FIG. 4 is a graph showing the relationship (experimental result) between the moisture content of the dye adsorption solution prepared in step S103 and the adsorption amount of the dye adsorbed on the porous semiconductor layer. In FIG. 4, the result at the time of using the metal complex represented by the said Chemical formula (3) is shown. The amount of dye adsorbed represented on the vertical axis in FIG. 4 was determined according to the spectrophotometric method.
 図3に示すように、色素吸着用溶液の水分量が600ppm未満である場合、光電変換効率が急激に低下した。この場合、光電変換層3における色素の吸着量は3.5×10-8mol/cm2未満であった。一方、色素吸着用溶液の水分量が600ppm以上である場合には、光電変換層3における色素の吸着量が急激に増加した。この理由としては、色素吸着用溶液の水分量が600ppm以上であれば、色素が有する官能基と半導体材料の表面に存在する水酸基との脱水縮合反応が促進されるので、より多くの色素が多孔性半導体層に吸着されるからであると考えられる。 As shown in FIG. 3, when the water content of the dye adsorption solution was less than 600 ppm, the photoelectric conversion efficiency rapidly decreased. In this case, the adsorption amount of the dye in the photoelectric conversion layer 3 was less than 3.5 × 10 −8 mol / cm 2 . On the other hand, when the water content of the dye adsorption solution was 600 ppm or more, the dye adsorption amount in the photoelectric conversion layer 3 increased rapidly. The reason for this is that when the water content of the dye adsorption solution is 600 ppm or more, the dehydration condensation reaction between the functional group of the dye and the hydroxyl group present on the surface of the semiconductor material is promoted, so that more dye is porous. This is presumably because it is adsorbed by the conductive semiconductor layer.
 [光電変換モジュール]
 図5は、本発明の光電変換モジュールの構成の一例を示す断面図である。図5に示す光電変換モジュールでは2つ以上の光電変換素子が直列に接続されており、光電変換モジュールを構成する光電変換素子は図1に示す光電変換素子である。隣り合う光電変換素子のうち、一方の光電変換素子の対極導電層7と他方の光電変換素子の導電層2とが電気的に接続されている。このように図5に示す光電変換モジュールは図1に示す光電変換素子を含んでいるので、水分の侵入が抑制され、光電変換効率に優れた光電変換モジュールを提供することができる。
[Photoelectric conversion module]
FIG. 5 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module of the present invention. In the photoelectric conversion module illustrated in FIG. 5, two or more photoelectric conversion elements are connected in series, and the photoelectric conversion elements included in the photoelectric conversion module are the photoelectric conversion elements illustrated in FIG. 1. Of the adjacent photoelectric conversion elements, the counter electrode conductive layer 7 of one photoelectric conversion element and the conductive layer 2 of the other photoelectric conversion element are electrically connected. As described above, since the photoelectric conversion module illustrated in FIG. 5 includes the photoelectric conversion element illustrated in FIG. 1, moisture intrusion is suppressed, and a photoelectric conversion module excellent in photoelectric conversion efficiency can be provided.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において、特に断りのない限り、各層の厚さは、段差計((株)東京精密製、型番:E-VS-S28A)を用いて測定された。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following, unless otherwise specified, the thickness of each layer was measured using a step gauge (manufactured by Tokyo Seimitsu Co., Ltd., model number: E-VS-S28A).
 <実施例1>
 まず、幅30mm×長さ30mm×厚さ1mmの透明電極基板11(日本板硝子株式会社製、商品名「SnO2膜付ガラス板」)を準備した。透明電極基板11では、フッ素がドープされた酸化錫(FTO)からなる導電層2がガラスからなる支持基板1上に形成されていた。
<Example 1>
First, a transparent electrode substrate 11 (made by Nippon Sheet Glass Co., Ltd., trade name “SnO 2 film-attached glass plate”) having a width of 30 mm × length of 30 mm × thickness of 1 mm was prepared. In the transparent electrode substrate 11, the conductive layer 2 made of tin oxide (FTO) doped with fluorine was formed on the support substrate 1 made of glass.
 次に、幅5mm×長さ5mmのパターンを有するスクリーン版とスクリーン印刷機(ニューロング精密工業株式会社製、型番:LS-150)とを用いて市販の酸化チタンペースト(Solaronix社製、商品名:D/SP)を導電層2上に塗布し、室温で1時間、レベリングを行なった。得られた塗膜を80℃に設定したオーブンで20分間乾燥した後、500℃に設定した焼成炉(株式会社デンケン製、型番:KDF P-100)を用いて空気中で60分間焼成した。酸化チタンペーストの塗布、その乾燥およびその焼成を順に繰り返し行なうことにより、厚さが14μm程度の多孔性半導体層を得た。 Next, a commercially available titanium oxide paste (manufactured by Solaronix, trade name) using a screen plate having a pattern of width 5 mm × length 5 mm and a screen printer (manufactured by Neurong Seimitsu Kogyo Co., Ltd., model number: LS-150) : D / SP) was applied on the conductive layer 2 and leveled at room temperature for 1 hour. The obtained coating film was dried in an oven set at 80 ° C. for 20 minutes and then baked in air for 60 minutes using a baking furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C. The porous semiconductor layer having a thickness of about 14 μm was obtained by repeatedly applying the titanium oxide paste, drying it, and firing it.
 X線回折装置((株)島津製作所製、型番「XD-D1」)を用いて、得られた多孔性半導体層のX線回折スペクトルを測定した。測定されたX線回折スペクトルにシェラーの式を適用して酸化チタン粒子の平均粒径を求めると、その平均粒径は20nmであった。また、気体吸着法であるBET法(JIS Z8830:2001)などに準拠して多孔性半導体層における細孔径を測定すると、その細孔径は30nmであった。 The X-ray diffraction spectrum of the obtained porous semiconductor layer was measured using an X-ray diffractometer (manufactured by Shimadzu Corporation, model number “XD-D1”). When the average particle diameter of the titanium oxide particles was determined by applying the Scherrer equation to the measured X-ray diffraction spectrum, the average particle diameter was 20 nm. Moreover, when the pore diameter in the porous semiconductor layer was measured according to the BET method (JIS Z8830: 2001) which is a gas adsorption method, the pore diameter was 30 nm.
 次に、色素吸着用溶液を調製した。具体的には、体積比が1:1である無水アセトニトリルと無水t-ブタノールとの混合溶媒を準備した。カールフィッシャー水分計(平沼産業株式会社製、型番:AQ-2100)を用いて調製された混合溶媒に含まれる水分量を測定すると、46ppmであった。そのため、この混合溶媒に含まれる水分量が620ppmとなるように当該混合溶媒にH2Oを加えた。このようにして調製された色素吸着用溶液の溶媒に対して、上記化学式(3)で表わされる色素(Solaronix社製、商品名:Ruthenizer 620-1H1TBA)を溶解させた。得られた色素吸着用溶液における色素の濃度は、3×10-4mol/Lであった。 Next, a dye adsorption solution was prepared. Specifically, a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol having a volume ratio of 1: 1 was prepared. The amount of water contained in the mixed solvent prepared using a Karl Fischer moisture meter (manufactured by Hiranuma Sangyo Co., Ltd., model number: AQ-2100) was 46 ppm. Therefore, H 2 O was added to the mixed solvent so that the amount of water contained in the mixed solvent was 620 ppm. The dye represented by the above chemical formula (3) (manufactured by Solaronix, trade name: Ruthenizer 620-1H1TBA) was dissolved in the solvent of the dye adsorption solution thus prepared. The concentration of the dye in the obtained solution for dye adsorption was 3 × 10 −4 mol / L.
 次に、調製された色素吸着用溶液に、多孔性半導体層が形成された透明電極基板11を室温で24時間浸漬させた。その後、エタノールで洗浄し、約60℃で約5分間乾燥させた。これにより、色素吸着用溶液に含まれる色素が多孔性半導体層に吸着された。 Next, the transparent electrode substrate 11 on which the porous semiconductor layer was formed was immersed in the prepared dye adsorption solution at room temperature for 24 hours. Thereafter, it was washed with ethanol and dried at about 60 ° C. for about 5 minutes. As a result, the dye contained in the dye adsorption solution was adsorbed on the porous semiconductor layer.
 次に、透明電極基板11とは別に、日本板硝子株式会社製のSnO2膜付ガラス板をもう一枚用意した。このSnO2膜上に、スパッタ法により厚さ約7nmの白金膜(触媒層6)を形成した。これにより、対極12が形成された。 Next, separately from the transparent electrode substrate 11, another glass plate with SnO 2 film manufactured by Nippon Sheet Glass Co., Ltd. was prepared. A platinum film (catalyst layer 6) having a thickness of about 7 nm was formed on the SnO 2 film by sputtering. Thereby, the counter electrode 12 was formed.
 次に、色素が吸着された多孔性半導体層の周囲を囲う形状に切り出された熱融着フィルム(デュポン社製、商品名:バイネル(登録商標))を用いて、透明電極基板11と対極12とを貼り合せた。約130℃に設定したオーブンで10分間加熱することにより、透明電極基板11と対極12とを圧着させた。 Next, the transparent electrode substrate 11 and the counter electrode 12 are formed using a heat-sealing film (DuPont, trade name: Binnel (registered trademark)) cut into a shape surrounding the periphery of the porous semiconductor layer on which the dye is adsorbed. And pasted together. The transparent electrode substrate 11 and the counter electrode 12 were pressure bonded by heating in an oven set at about 130 ° C. for 10 minutes.
 次に、対極12に予め形成されていた孔から電解液(キャリア輸送材料)を注入し、その後、紫外線硬化樹脂(スリーボンド社製、型番:31X-101)を用いて当該孔を封止した。これにより、色素が吸着された多孔性半導体層と触媒層6との間に電解液が充填され、実施例1の光電変換素子が製造された。 Next, an electrolytic solution (carrier transport material) was injected from a hole formed in the counter electrode 12 in advance, and then the hole was sealed using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101). Thereby, the electrolyte solution was filled between the porous semiconductor layer on which the dye was adsorbed and the catalyst layer 6, and the photoelectric conversion element of Example 1 was manufactured.
 上記電解液は、以下に示すようにして調製された。溶媒であるアセトニトリルに、濃度が0.6mol/Lとなるようにメチルプロピルイミダゾールアイオダイド(四国化成工業社製、酸化還元種)を溶解させ、濃度が0.05mol/LとなるようにI2(キシダ化学社製、酸化還元種)を溶解させた。さらに、上記溶媒に、濃度が0.5mol/Lとなるようにt-ブチルピリジン(添加剤)を溶解させ、濃度が0.1mol/LとなるようにLiI(添加剤)を溶解させた。 The electrolytic solution was prepared as follows. Methylpropylimidazole iodide (Shikoku Kasei Kogyo Co., Ltd., redox species) is dissolved in acetonitrile as a solvent so that the concentration becomes 0.6 mol / L, and I 2 is adjusted so that the concentration becomes 0.05 mol / L. (Kishida Chemical Co., Ltd., redox species) was dissolved. Further, t-butylpyridine (additive) was dissolved in the solvent so that the concentration was 0.5 mol / L, and LiI (additive) was dissolved so that the concentration was 0.1 mol / L.
 <実施例2>
 水分量が1247ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、実施例2の光電変換素子を製造した。
<Example 2>
A photoelectric conversion element of Example 2 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 1247 ppm.
 <実施例3>
 水分量が2000ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、実施例3の光電変換素子を製造した。
<Example 3>
The photoelectric conversion element of Example 3 was manufactured according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 2000 ppm.
 <実施例4>
 水分量が3129ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、実施例4の光電変換素子を製造した。
<Example 4>
A photoelectric conversion element of Example 4 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 3129 ppm.
 <実施例5>
 水分量が6398ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、実施例5の光電変換素子を製造した。
<Example 5>
A photoelectric conversion element of Example 5 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 6398 ppm.
 <実施例6>
 水分量が12712ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、実施例6の光電変換素子を製造した。
<Example 6>
A photoelectric conversion element of Example 6 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 12712 ppm.
 <比較例1>
 無水アセトニトリルと無水t-ブタノールとの混合溶媒にH2Oを加えることなく色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、比較例1の光電変換素子を製造した。すなわち、比較例1における色素吸着用溶液に含まれる水分量は46ppmであった。
<Comparative Example 1>
The photoelectric conversion device of Comparative Example 1 was prepared according to the method described in Example 1 except that the dye adsorption solution was prepared without adding H 2 O to a mixed solvent of anhydrous acetonitrile and anhydrous t-butanol. Manufactured. That is, the amount of water contained in the dye adsorption solution in Comparative Example 1 was 46 ppm.
 <比較例2>
 水分量が287ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例1に記載の方法にしたがって、比較例2の光電変換素子を製造した。
<Comparative Example 2>
A photoelectric conversion element of Comparative Example 2 was produced according to the method described in Example 1 except that the dye adsorption solution was prepared using a solvent having a moisture content adjusted to 287 ppm.
 <比較例3>
 水分量が287ppmに調整された色素吸着用溶液に、多孔性半導体層が形成された透明電極基板11を室温で120時間浸漬させたことを除いては上記実施例1に記載の方法にしたがって、比較例3の光電変換素子を製造した。
<Comparative Example 3>
According to the method described in Example 1 above, except that the transparent electrode substrate 11 on which the porous semiconductor layer was formed was immersed in a dye adsorption solution adjusted to a moisture content of 287 ppm at room temperature for 120 hours. The photoelectric conversion element of Comparative Example 3 was produced.
 <評価>
 実施例1~6および比較例1~3の光電変換素子に対して、短絡電流密度Jsc、開放電圧Voc、曲線因子FFおよび光電変換効率ηを測定した。光電変換効率は、次に示す方法にしたがって測定された。まず、実施例1~6および比較例1~3の光電変換素子に対して、集電電極部としてAgペースト(藤倉化成株式会社製、商品名:ドータイト)を公知の方法により塗布した。次いで、光電変換素子の受光面に、開口部の面積が0.22cm2である黒色のマスクを設置した。光電変換素子に対して1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、光電変換効率を測定した。結果を表1に示す。
<Evaluation>
For the photoelectric conversion elements of Examples 1 to 6 and Comparative Examples 1 to 3, the short circuit current density Jsc, the open circuit voltage Voc, the fill factor FF, and the photoelectric conversion efficiency η were measured. The photoelectric conversion efficiency was measured according to the following method. First, Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) was applied as a collecting electrode part to the photoelectric conversion elements of Examples 1 to 6 and Comparative Examples 1 to 3 by a known method. Next, a black mask having an opening area of 0.22 cm 2 was placed on the light receiving surface of the photoelectric conversion element. Photoelectric conversion efficiency was measured by irradiating the photoelectric conversion element with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator). The results are shown in Table 1.
 表1において、「水分量」は、色素吸着用溶液に含まれる水分量であり、色素吸着用溶液の溶媒に含まれる水分量と同義である。「色素の吸着量」は、吸光光度法にしたがって求めた。表1の短絡電流密度Jsc、開放電圧Voc、曲線因子FFおよび光電変換効率ηは、それぞれ、実施例1の結果を基準として規格化された値である。 In Table 1, “water content” is the water content contained in the dye adsorption solution and is synonymous with the water content contained in the solvent of the dye adsorption solution. “Dye adsorption amount” was determined according to the spectrophotometric method. The short-circuit current density Jsc, the open circuit voltage Voc, the fill factor FF, and the photoelectric conversion efficiency η in Table 1 are values normalized based on the results of Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、色素吸着用溶液に含まれる水分量が600ppm以上である実施例1~6では、色素吸着用溶液に含まれる水分量が600ppm未満である比較例1~3に比べて、多孔性半導体層への色素の吸着量が多く、高い短絡電流密度が得られ、光電変換効率が高くなった。この理由としては、色素吸着用溶液に含まれる水分量が600ppm以上であれば、色素が有する官能基と半導体材料の表面に存在する水酸基との脱水縮合反応が促進されるため、より多くの色素が多孔性半導体層に吸着されるためであると考えられる。さらに、比較例3に示すように、色素吸着用溶液の水分量が600ppm未満であれば、多孔性半導体層が形成された透明電極基板11を色素吸着用溶液に十分に長い時間浸漬させた場合であっても、色素の吸着量を3.5×10-8mol/cm2以上とすることはできなかった。 As shown in Table 1, in Examples 1 to 6 where the amount of water contained in the dye adsorption solution is 600 ppm or more, compared to Comparative Examples 1 to 3 where the amount of water contained in the dye adsorption solution is less than 600 ppm. The amount of dye adsorbed on the porous semiconductor layer was large, a high short-circuit current density was obtained, and the photoelectric conversion efficiency was high. The reason for this is that if the amount of water contained in the dye adsorption solution is 600 ppm or more, the dehydration condensation reaction between the functional group of the dye and the hydroxyl group present on the surface of the semiconductor material is promoted. Is considered to be adsorbed by the porous semiconductor layer. Further, as shown in Comparative Example 3, when the water content of the dye adsorption solution is less than 600 ppm, the transparent electrode substrate 11 on which the porous semiconductor layer is formed is immersed in the dye adsorption solution for a sufficiently long time. Even so, the adsorption amount of the dye could not be 3.5 × 10 −8 mol / cm 2 or more.
 <実施例7>
 実施例7では、図5に示す光電変換モジュールを製造した。
<Example 7>
In Example 7, the photoelectric conversion module shown in FIG. 5 was manufactured.
 まず、表面に導電層2が形成された透明電極基板11(日本板硝子株式会社製、商品名「SnO2膜付ガラス」、縦60mm×横37mm)を用意した。レーザースクライブにより、透明電極基板11の表面のSnO2膜に縦方向に平行にスクライブライン13を形成した。これにより、導電層2が分断された。スクライブライン13はガラス基板(支持基板1)上に合計3箇所形成され、形成されたスクライブライン13の幅は30μmであった。 First, a transparent electrode substrate 11 (manufactured by Nippon Sheet Glass Co., Ltd., trade name “SnO 2 film-attached glass”, length 60 mm × width 37 mm) having a conductive layer 2 formed on the surface was prepared. A scribe line 13 was formed in parallel with the vertical direction on the SnO 2 film on the surface of the transparent electrode substrate 11 by laser scribing. Thereby, the conductive layer 2 was divided. A total of three scribe lines 13 were formed on the glass substrate (support substrate 1), and the width of the formed scribe line 13 was 30 μm.
 次に、上記実施例1に記載の方法にしたがって、多孔性半導体により構成される層を形成した。厚さが21μmであり、幅が5mmであり、長さが50mmである当該層が3つ、ガラス基板上に形成された。 Next, a layer composed of a porous semiconductor was formed according to the method described in Example 1 above. Three such layers having a thickness of 21 μm, a width of 5 mm, and a length of 50 mm were formed on the glass substrate.
 スクリーン印刷機を用いて、多孔性半導体により構成される層のそれぞれの上に、ジルコニア粒子(平均粒経50nm)を含むペーストを塗布した。その後、500℃で60分間、焼成を行なった。これにより、多孔性半導体により構成される層のそれぞれの上面から平坦な部分までの距離(厚さ)が7μmである多孔性絶縁層14を形成した。 Using a screen printer, a paste containing zirconia particles (average particle size of 50 nm) was applied on each of the layers composed of the porous semiconductor. Thereafter, baking was performed at 500 ° C. for 60 minutes. As a result, the porous insulating layer 14 having a distance (thickness) of 7 μm from the upper surface of each layer composed of the porous semiconductor to the flat portion was formed.
 続いて、所定のパターンが形成されたマスクと蒸着装置(アルバック社製、型番:ei-5)とを用いて、多孔性絶縁層14のそれぞれの上にPtを蒸着速度4Å/sで蒸着させた。これにより、触媒層6を得た。触媒層6の大きさ(形状)と透明電極基板11の横方向における触媒層6の位置とについては、多孔性半導体により構成される層と同じとした。さらに、所定のパターンが形成されたマスクと蒸着装置(アルバッ社製、型番:ei-5)とを用いて、触媒層6のそれぞれの上にTiを蒸着速度5Å/sで蒸着させた。これにより、対極導電層7を得た。 Subsequently, Pt is deposited on each of the porous insulating layers 14 at a deposition rate of 4 Å / s using a mask on which a predetermined pattern is formed and a deposition apparatus (model number: ei-5, manufactured by ULVAC). It was. Thereby, the catalyst layer 6 was obtained. The size (shape) of the catalyst layer 6 and the position of the catalyst layer 6 in the lateral direction of the transparent electrode substrate 11 were the same as the layer made of the porous semiconductor. Further, Ti was vapor-deposited on each of the catalyst layers 6 at a vapor deposition rate of 5 Å / s using a mask on which a predetermined pattern was formed and a vapor deposition apparatus (model number: ei-5, manufactured by Aruba). Thereby, the counter electrode conductive layer 7 was obtained.
 3つの積層体が形成された透明電極基板11を上記実施例1で調製した色素吸着用溶液に室温で70時間浸漬させた。これにより、多孔性半導体により構成される層に色素が吸着され、よって、光電変換層4が形成された。 The transparent electrode substrate 11 on which the three laminates were formed was immersed in the dye adsorption solution prepared in Example 1 at room temperature for 70 hours. Thereby, the pigment | dye was adsorb | sucked to the layer comprised with a porous semiconductor, and the photoelectric converting layer 4 was formed.
 続いて、ディスペンサー(EFD社製 ULTRASAVER)を用いて、隣り合う積層体の間と両端の積層体の外側とに紫外線硬化樹脂(スリーボンド社製 3035B)を塗布した。縦60mm×横30mmのガラス基板(カバー体8)を貼り合わせた後、紫外線ランプ(EFD社製 NOVACURE)を用いて紫外線を照射した。これにより、紫外線硬化樹脂を硬化させて封止部9を形成した。 Subsequently, using a dispenser (ULTRASAVER manufactured by EFD), an ultraviolet curable resin (3035B manufactured by ThreeBond Co., Ltd.) was applied between the adjacent stacked bodies and outside the stacked bodies at both ends. A glass substrate (cover body 8) having a length of 60 mm and a width of 30 mm was bonded, and then irradiated with ultraviolet rays using an ultraviolet lamp (NOVACURE manufactured by EFD). Thereby, the ultraviolet curable resin was hardened and the sealing part 9 was formed.
 その後、ガラス基板に予め設けられていた電解液注入用孔から、上記実施例1の電解液(キャリア輸送材料)を注入した。これにより、電荷輸送層が形成された。その後、電解液注入用孔に紫外線硬化樹脂を塗布してから、その紫外線硬化樹脂に紫外線を照射した。ガラス基板上にAgペースト(藤倉化成株式会社製、商品名:ドータイト)を塗布して集電電極15を形成した。これにより、本実施例の光電変換モジュールが得られた。 Thereafter, the electrolyte solution (carrier transport material) of Example 1 was injected from the electrolyte solution injection hole provided in advance in the glass substrate. Thereby, the charge transport layer was formed. Thereafter, an ultraviolet curable resin was applied to the electrolyte solution injection hole, and then the ultraviolet curable resin was irradiated with ultraviolet rays. The current collecting electrode 15 was formed by applying an Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) on a glass substrate. Thereby, the photoelectric conversion module of the present Example was obtained.
 <実施例8>
 水分量が2000ppmに調整された溶媒を用いて色素吸着用溶液を調製したことを除いては上記実施例7に記載の方法にしたがって、実施例8の光電変換モジュールを製造した。
<Example 8>
A photoelectric conversion module of Example 8 was produced according to the method described in Example 7 except that the dye adsorption solution was prepared using a solvent whose water content was adjusted to 2000 ppm.
 <比較例4>
 上記比較例1で用いた色素吸着用溶液に浸漬したことを除いては上記実施例7に記載の方法にしたがって、比較例4の光電変換モジュールを製造した。
<Comparative example 4>
A photoelectric conversion module of Comparative Example 4 was produced according to the method described in Example 7 except that it was immersed in the dye adsorption solution used in Comparative Example 1.
 <評価>
 実施例7~8、比較例4の光電変換モジュールの受光面に、開口部の面積が13cm2である黒色のマスクを設置した。この太陽電池に対して1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、光電変換効率を測定した。結果を表2に示す。
<Evaluation>
On the light receiving surfaces of the photoelectric conversion modules of Examples 7 to 8 and Comparative Example 4, a black mask having an opening area of 13 cm 2 was placed. The solar cell was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and the photoelectric conversion efficiency was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2において、「水分量」は、色素吸着用溶液に含まれる水分量であり、色素吸着用溶液の溶媒に含まれる水分量と同義である。「色素の吸着量」は、吸光光度法にしたがって求めた。表2の短絡電流密度Jsc、開放電圧Voc、曲線因子FFおよび光電変換効率ηは、それぞれ、実施例7の結果を基準として規格化された値である。表2に示すように、光電モジュールにおいても表1と同様の結果が得られた。 In Table 2, “water content” is the water content contained in the dye adsorption solution, and is synonymous with the water content contained in the solvent of the dye adsorption solution. “Dye adsorption amount” was determined according to the spectrophotometric method. The short-circuit current density Jsc, the open circuit voltage Voc, the fill factor FF, and the photoelectric conversion efficiency η in Table 2 are values normalized based on the results of Example 7. As shown in Table 2, the same results as in Table 1 were obtained for the photoelectric module.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 支持基板、2 導電層、3 光電変換層、6 触媒層、7 対極導電層、8 カバー体、9 封止部、10 電荷輸送層、11 透明電極基板、12 対極、13 スクライブライン、14 多孔性絶縁層、15 集電電極。 1 support substrate, 2 conductive layer, 3 photoelectric conversion layer, 6 catalyst layer, 7 counter electrode conductive layer, 8 cover body, 9 sealing portion, 10 charge transport layer, 11 transparent electrode substrate, 12 counter electrode, 13 scribe line, 14 porous Insulating layer, 15 current collecting electrode.

Claims (11)

  1.  導電層と光電変換層と対極とが支持基板上に順に設けられており、キャリア輸送材料が少なくとも前記光電変換層と前記対極との間に充填されている光電変換素子であって、
     前記光電変換層は、600ppm以上の水分量を含む色素吸着用溶液を用いて、半導体材料からなる多孔性半導体層に色素が吸着されて構成され、
     前記光電変換層における前記色素の吸着量は、3.5×10-8mol/cm2以上である、光電変換素子。
    A conductive layer, a photoelectric conversion layer, and a counter electrode are sequentially provided on a support substrate, and a photoelectric conversion element in which a carrier transport material is filled at least between the photoelectric conversion layer and the counter electrode,
    The photoelectric conversion layer is configured by adsorbing a dye to a porous semiconductor layer made of a semiconductor material using a dye adsorbing solution containing a water content of 600 ppm or more,
    The photoelectric conversion element whose adsorption amount of the said pigment | dye in the said photoelectric converting layer is 3.5x10 < -8 > mol / cm < 2 > or more.
  2.  前記色素は、ターピリジル基を有する金属錯体である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the dye is a metal complex having a terpyridyl group.
  3.  前記色素吸着用溶液に含まれる溶媒は、有機溶媒である請求項1または2に記載の光電変換素子。 The photoelectric conversion element according to claim 1 or 2, wherein the solvent contained in the dye adsorption solution is an organic solvent.
  4.  前記色素吸着用溶液に含まれる溶媒は、1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒である請求項3に記載の光電変換素子。 The photoelectric conversion device according to claim 3, wherein the solvent contained in the dye adsorption solution is a mixed solvent containing one or more nitrile compounds and one or more alcohols.
  5.  前記多孔性半導体層は、平均粒径が10nm以上30nm以下の半導体材料からなる層を少なくとも含む請求項1~4のいずれかに記載の光電変換素子。 5. The photoelectric conversion element according to claim 1, wherein the porous semiconductor layer includes at least a layer made of a semiconductor material having an average particle diameter of 10 nm or more and 30 nm or less.
  6.  前記多孔性半導体層における細孔径は、15nm以上である請求項1~5のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 5, wherein a pore diameter in the porous semiconductor layer is 15 nm or more.
  7.  前記半導体材料は、金属酸化物からなる請求項1~6のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein the semiconductor material is made of a metal oxide.
  8.  前記金属酸化物は、少なくとも酸化チタンを含む請求項7に記載の光電変換素子。 The photoelectric conversion element according to claim 7, wherein the metal oxide includes at least titanium oxide.
  9.  色素が溶解されてなる色素吸着用溶液を調製する工程と、
     前記色素吸着用溶液に含まれる前記色素を多孔性半導体層に吸着させる工程とを少なくとも備え、
     調製された前記色素吸着用溶液は、600ppm以上の水分量を含み、
     前記多孔性半導体層に吸着される前記色素の量は、3.5×10-8mol/cm2以上である、光電変換素子の製造方法。
    A step of preparing a dye adsorption solution in which the dye is dissolved;
    And at least a step of adsorbing the dye contained in the dye adsorption solution to a porous semiconductor layer,
    The prepared dye adsorption solution contains a water content of 600 ppm or more,
    The method for producing a photoelectric conversion element, wherein the amount of the dye adsorbed on the porous semiconductor layer is 3.5 × 10 −8 mol / cm 2 or more.
  10.  前記色素吸着用溶液を調製する工程は、前記色素を1種類以上のニトリル化合物と1種類以上のアルコール類とを含む混合溶媒に溶解する工程を含む請求項9に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 9, wherein the step of preparing the dye adsorption solution includes a step of dissolving the dye in a mixed solvent containing one or more nitrile compounds and one or more alcohols. .
  11.  2つ以上の光電変換素子が直列に接続されてなる光電変換モジュールであって、
     前記2つ以上の光電変換素子の少なくとも1つは、請求項1~8のいずれかに記載の前記光電変換素子であり、
     隣り合う前記光電変換素子のうち、一方の前記光電変換素子の前記対極導電層と他方の前記光電変換素子の前記導電層とが電気的に接続されている光電変換モジュール。
    A photoelectric conversion module in which two or more photoelectric conversion elements are connected in series,
    At least one of the two or more photoelectric conversion elements is the photoelectric conversion element according to any one of claims 1 to 8,
    A photoelectric conversion module in which the counter conductive layer of one of the photoelectric conversion elements and the conductive layer of the other photoelectric conversion element of the adjacent photoelectric conversion elements are electrically connected.
PCT/JP2013/077361 2012-10-09 2013-10-08 Photoelectric conversion element and process for producing same, and photoelectric conversion module WO2014057942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223995 2012-10-09
JP2012-223995 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057942A1 true WO2014057942A1 (en) 2014-04-17

Family

ID=50477410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077361 WO2014057942A1 (en) 2012-10-09 2013-10-08 Photoelectric conversion element and process for producing same, and photoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2014057942A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150007A (en) * 1998-11-12 2000-05-30 Fuji Photo Film Co Ltd Photoelectric conversion element, its manufacture, and photo electrochemical battery
WO2005029571A1 (en) * 2003-09-19 2005-03-31 National Institute Of Advanced Industrial Science And Technology Coating agent for forming semiconductor film, semiconductor film, photoelectric converter, and solar cell
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2010262760A (en) * 2009-04-30 2010-11-18 Sharp Corp Porous electrode, dye-sensitized solar cell, and dye-sensitized solar-cell module
JP2012043662A (en) * 2010-08-20 2012-03-01 Toyo Ink Sc Holdings Co Ltd Metal oxide semiconductor electrode manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150007A (en) * 1998-11-12 2000-05-30 Fuji Photo Film Co Ltd Photoelectric conversion element, its manufacture, and photo electrochemical battery
WO2005029571A1 (en) * 2003-09-19 2005-03-31 National Institute Of Advanced Industrial Science And Technology Coating agent for forming semiconductor film, semiconductor film, photoelectric converter, and solar cell
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2010262760A (en) * 2009-04-30 2010-11-18 Sharp Corp Porous electrode, dye-sensitized solar cell, and dye-sensitized solar-cell module
JP2012043662A (en) * 2010-08-20 2012-03-01 Toyo Ink Sc Holdings Co Ltd Metal oxide semiconductor electrode manufacturing method

Similar Documents

Publication Publication Date Title
JP5273709B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
WO2010044445A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2007194039A (en) Dye-sensitized solar cell and module thereof
WO2011086869A1 (en) Wet-type solar battery and wet-type solar battery module
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5922242B2 (en) Photoelectric conversion element, method for manufacturing the same, photoelectric conversion element module, and method for manufacturing the same
JP6029982B2 (en) Photoelectric conversion element
WO2013164967A1 (en) Photoelectric conversion element and photoelectric conversion module
WO2013077317A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP6104177B2 (en) Photoelectric conversion element
JP5930970B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5566681B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element
WO2013077209A1 (en) Wet-type solar cell and wet-type solar-cell module
WO2014057942A1 (en) Photoelectric conversion element and process for producing same, and photoelectric conversion module
JP5956929B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2013024642A1 (en) Photoelectric conversion element
JP6062376B2 (en) Photoelectric conversion element
JP2015170761A (en) Photoelectric conversion element and photoelectric conversion module
JP2014053150A (en) Photoelectric conversion element and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP