WO2013077317A1 - Photoelectric conversion element and photoelectric conversion element module - Google Patents

Photoelectric conversion element and photoelectric conversion element module Download PDF

Info

Publication number
WO2013077317A1
WO2013077317A1 PCT/JP2012/080054 JP2012080054W WO2013077317A1 WO 2013077317 A1 WO2013077317 A1 WO 2013077317A1 JP 2012080054 W JP2012080054 W JP 2012080054W WO 2013077317 A1 WO2013077317 A1 WO 2013077317A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
layer
conductive layer
substrate
Prior art date
Application number
PCT/JP2012/080054
Other languages
French (fr)
Japanese (ja)
Inventor
古宮 良一
福井 篤
山中 良亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013077317A1 publication Critical patent/WO2013077317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element and a photoelectric conversion element module.
  • Patent Document 1 Japanese Patent No. 2664194 (Patent Document 1)
  • a photoelectric conversion layer that adsorbs a photosensitizing dye and has an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates.
  • a first electrode and a second electrode are formed on the surfaces of the two glass substrates, respectively.
  • the photoelectric conversion element described in Patent Document 1 has a structure in which an electrolytic solution is injected between the electrodes of two glass substrates. For this reason, trial production of a small area solar cell is possible, but it is difficult to produce a large area solar cell such as 1 m square. That is, when the area of one solar cell is increased, the generated current increases in proportion to the area, but the resistance in the in-plane direction of the first electrode increases, and accordingly, the internal series electric resistance as a solar cell increases. Increase. As a result, there arises a problem that the fill factor (FF) in the current-voltage characteristic during photoelectric conversion is lowered.
  • FF fill factor
  • Patent Document 2 proposes a dye-sensitized solar cell module in which a current collecting electrode 103 is formed on a first electrode 102.
  • FIG. 5 (a) is a top view of the dye-sensitized solar cell module of Patent Document 2
  • FIG. 5 (b) is a cross-section when the dye-sensitized solar cell module of Patent Document 2 is cut along AA.
  • FIG. 5 (a) is a top view of the dye-sensitized solar cell module of Patent Document 2
  • FIG. 5 (b) is a cross-section when the dye-sensitized solar cell module of Patent Document 2 is cut along AA.
  • a plurality of strip-like photoelectric conversion layers 104 are formed in the same plane on the first electrode 102 as shown in FIG. Between the photoelectric conversion layers 104, a grid-like current collecting electrode 103 made of an alloy of gold and silver is formed. By forming the current collecting electrode 103, the electric resistance can be reduced, and the FF can be dramatically improved and the short-circuit current density can be improved.
  • Patent Document 3 discloses a dye-sensitized solar cell shown in FIGS. 6 (a) and 6 (b).
  • FIG. 6A is a schematic cross-sectional view of the dye-sensitized solar cell disclosed in Patent Document 3
  • FIG. 6B illustrates another form of the dye-sensitized solar cell disclosed in Patent Document 3. It is a schematic diagram.
  • a photoelectric conversion layer 203 is formed on the first electrode 201, and the photoelectric conversion layer 203 (that is, the photoelectric conversion layer 203) is formed.
  • a collecting electrode 204 is formed on the surface opposite to the surface in contact with the first electrode 201.
  • the current collecting electrode 204 is formed in a line shape or a lattice shape to prevent the movement of the electrolyte. A shape that has not been proposed has also been proposed.
  • FF can improve remarkably and a short circuit current density can be improved.
  • the upper limit of the FF is only about 0.66 to 0.67, and further improvement of the FF cannot be expected.
  • the dye-sensitized solar cell of Patent Document 3 has a problem that depending on the material of the current collecting electrode 204, the leakage current from the current collecting electrode 204 increases and the open circuit voltage decreases, resulting in improved conversion efficiency. I did not.
  • the present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a photoelectric conversion element and a photoelectric conversion element module that improve FF and improve conversion efficiency.
  • the present inventors have found that the conductive layer, the catalyst layer, and the counter electrode conductivity with respect to the projected area when the photoelectric conversion layer is vertically projected onto the light-transmitting substrate.
  • Photoelectric conversion that improves the FF and improves the conversion efficiency by setting the ratio of the projected area when the portion where the layer and the carrier transport material are in contact with each other to be projected vertically onto the light-transmitting substrate is 1.2 or less It came to complete an element and a photoelectric conversion element module.
  • the photoelectric conversion element of the present invention includes a light-transmitting substrate, a support substrate placed opposite to the light-transmitting substrate, a conductive layer and the conductive layer between the light-transmitting substrate and the support substrate.
  • a photoelectric conversion layer in contact with the layer; a catalyst layer; a counter electrode conductive layer; a carrier transport material; and a sealing material for fixing the translucent substrate and the support substrate;
  • the area where one of the conductive layer, catalyst layer, and counter electrode conductive layer is in contact with the carrier transport material is projected vertically onto the light-transmitting substrate with respect to the projected area when projected vertically onto the substrate
  • the ratio of the projected area is 1.2 or less.
  • the above sealing material is preferably in contact with the photoelectric conversion layer. It is preferable to have a porous insulating layer between the photoelectric conversion layer and the catalyst layer.
  • the porous insulating layer preferably has a portion containing a material constituting the sealing material inside.
  • an insulating layer in contact with the conductive layer other than the projection surface when the photoelectric conversion layer is vertically projected toward the conductive layer. Moreover, it is preferable to have an insulating layer in contact with the counter electrode conductive layer other than the projection surface when the photoelectric conversion layer is vertically projected toward the counter electrode conductive layer.
  • the insulating layer is preferably in contact with the conductive layer and the counter electrode conductive layer.
  • the support substrate has an injection hole for injecting the carrier transport material, and the injection hole is preferably located on at least a part of the projection surface on which the photoelectric conversion layer is projected onto the support substrate.
  • the support substrate has an injection hole seal for sealing the injection hole, and at least a part of the material constituting the injection hole seal is in contact with the conductive layer or the counter electrode conductive layer.
  • the present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element. It is characterized by that.
  • the present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in parallel, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element. It is characterized by that.
  • the present invention is also a photoelectric conversion element module in which three or more photoelectric conversion elements are electrically connected in series and / or in parallel. At least one of the three or more photoelectric conversion elements is the photoelectric conversion element described above. It is characterized by being. All the photoelectric conversion elements constituting the photoelectric conversion element module are the photoelectric conversion elements described above.
  • a FF can be improved, and a photoelectric conversion element and a photoelectric conversion element module with high conversion efficiency can be provided.
  • (A) is a top view of the photoelectric conversion element of the present invention, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along AA.
  • (A) is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along BB. is there.
  • (A) is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along CC. is there. It is sectional drawing which shows typically an example of the structure of the photoelectric conversion element module of this invention.
  • FIG. 1 is a top view of the dye-sensitized solar cell module disclosed in Patent Document 2 and (b) is a cross-sectional view when the dye-sensitized solar cell module of (a) is cut along AA. is there.
  • (A) is typical sectional drawing of the dye-sensitized solar cell shown by patent document 3
  • (b) is a schematic diagram of another form of the dye-sensitized solar cell shown by patent document 3.
  • FIG. 1A is a top view of the photoelectric conversion element of the present invention
  • FIG. 1B is a cross-sectional view of the photoelectric conversion element of FIG.
  • the photoelectric conversion element 10 of the present invention includes a light-transmitting substrate 1, a support substrate 7 that is installed to face the light-transmitting substrate 1, and the light-transmitting substrate 1 and the support substrate. 7, the conductive layer 2, the photoelectric conversion layer 3 in contact with the conductive layer 2, the catalyst layer 5, the counter electrode conductive layer 6, the translucent substrate 1, the support substrate 7, and the sealing material 9.
  • the carrier transport material 4 injected into the enclosed region, and the sealing material 9 for fixing the translucent substrate 1 and the support substrate 7 are included.
  • the photoelectric conversion layer 3 includes a porous semiconductor, a carrier transport material, and a photosensitizer, and is a conductive layer with respect to the projected area when the photoelectric conversion layer 3 is vertically projected toward the translucent substrate 1. 2, the ratio of the projected area when the portion where any one of the catalyst layer 5 and the counter electrode conductive layer 6 is in contact with the carrier transporting material 4 is vertically projected toward the translucent substrate 1 is 1.2 or less. It is characterized by that. By setting it as such a structure, FF can be improved and the photoelectric conversion efficiency of a photoelectric conversion element can be improved.
  • the carrier transport material 4 is filled not only in the photoelectric conversion layer 3 but also in the gaps in the catalyst layer 5. Below, each part which comprises the photoelectric conversion element 10 of this invention is demonstrated.
  • the translucent substrate 1 needs to be made of a light transmissive material because at least the light receiving surface needs to have light transmissive properties.
  • the translucent substrate 1 is not necessarily required to be transmissive to light in all wavelength regions, and may be any material that substantially transmits light having a wavelength having effective sensitivity to a dye described later. Good.
  • the translucent substrate 1 preferably has a thickness of about 0.2 to 5 mm.
  • the material constituting such a translucent substrate 1 is not particularly limited as long as it is a material generally used for solar cells.
  • a glass substrate such as soda glass, fused quartz glass, and crystalline quartz glass
  • flexible A heat resistant resin plate such as a conductive film
  • the flexible film include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyetherimide (PEI), phenoxy resin, and Teflon. (Registered trademark).
  • the translucent substrate 1 When forming another member with heating on the translucent substrate 1, that is, for example, when forming the photoelectric conversion layer 3 made of a porous semiconductor with heating at about 250 ° C. on the translucent substrate, It is preferable to use Teflon (registered trademark) as the translucent substrate 1. This is because Teflon (registered trademark) has a heat resistance of 250 ° C. or higher.
  • substrate 1 can be utilized as a base
  • the conductive layer 2 only needs to be a material that substantially transmits light having a wavelength having effective sensitivity to the photosensitizer described below, and is not necessarily transparent to light in all wavelength regions. There is no need to have.
  • examples of such materials include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), zinc oxide (ZnO), titanium oxide doped with tantalum or niobium, and the like. Can be mentioned.
  • the conductive layer 2 can be formed on the translucent substrate 1 by a known method such as a sputtering method or a spray method.
  • the film thickness of the conductive layer 2 is about 0.02 to 5 ⁇ m, and the film resistance is preferably as low as possible, more preferably 40 ⁇ / sq or less.
  • the translucent substrate 1 When using soda-lime float glass as the translucent substrate 1, it is preferable to laminate
  • the photoelectric conversion layer 3 includes a porous semiconductor, a carrier transport material, and a photosensitizer, and is made of a porous semiconductor that has adsorbed the photosensitizer.
  • the carrier transport material can move inside and outside the layer.
  • the kind of the porous semiconductor constituting the photoelectric conversion layer 3 is not particularly limited as long as it is generally used for a photoelectric conversion material.
  • titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide are used.
  • Semiconductors such as tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , SrCu 2 O 2 and combinations thereof Can be used.
  • Titanium oxides suitably used for porous semiconductors include various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide. These may be used alone or in combination of two or more. Two types of crystalline titanium oxide, anatase type and rutile type, can be in any form depending on the production method and thermal history, but as titanium oxide constituting the porous semiconductor, the content of anatase type titanium oxide is high. It is preferable that it contains 80% or more of anatase-type titanium oxide.
  • the porous semiconductor may be formed of either a single crystal or a polycrystal, but is preferably a polycrystal from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like.
  • the porous semiconductor is preferably composed of nanoscale to microscale semiconductor fine particles, and more preferably titanium oxide fine particles.
  • Such fine particles of titanium oxide can be produced by a known method such as a gas phase method or a liquid phase method (hydrothermal synthesis method, sulfuric acid method). It can also be obtained by high-temperature hydrolysis of chlorides developed by Degussa.
  • semiconductor compounds having the same composition may be used, or two or more kinds of semiconductor compounds having different compositions may be mixed and used.
  • particle size of the semiconductor fine particles those having an average particle size of about 100 to 500 nm may be used, those having an average particle size of about 5 nm to 50 nm may be used, or these semiconductor fine particles may be mixed. You may use what you did.
  • Semiconductor fine particles having a particle size of about 100 to 500 nm scatter incident light and contribute to an improvement in light capture rate.
  • Semiconductor fine particles having an average particle size of about 5 nm to 50 nm can increase the adsorption point by increasing the adsorption point. It is thought that it contributes to the improvement.
  • the average particle size of the semiconductor fine particles having a small particle size is 10 times or more the average particle size of the semiconductor fine particles having a large particle size. It is preferable.
  • it is effective to use a semiconductor compound having a strong adsorption action as a semiconductor fine particle having a small particle size.
  • the film thickness of the porous semiconductor that is, the film thickness of the photoelectric conversion layer 3 is not particularly limited, but is preferably about 0.1 to 100 ⁇ m, for example.
  • the porous semiconductor preferably has a large surface area, for example, about 10 to 200 m 2 / g.
  • the photosensitizer adsorbed on the porous semiconductor is provided to convert light energy incident on the photoelectric conversion element into electric energy.
  • those having an interlock group in the molecule constituting the photosensitizer are preferable.
  • the interlock group is generally present when the dye is fixed to the porous semiconductor, and provides an electrical bond that facilitates the movement of electrons between the excited state dye and the semiconductor conduction band.
  • functional groups such as a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group can be given.
  • the photosensitizer adsorbed on the porous semiconductor various organic dyes having absorption in the visible light region and the infrared light region, metal complex dyes, and the like can be used. Two or more kinds may be used in combination.
  • the extinction coefficient of the organic dye is generally larger than the extinction coefficient of the metal complex dye described later.
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include perylene dyes, indigo dyes, and naphthalocyanine dyes.
  • the above-mentioned metal complex dye is one in which a transition metal is coordinated to a metal atom.
  • metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium dyes, and the like.
  • the metal atoms constituting the metal complex dye include Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, and Zr.
  • phthalocyanine dyes and ruthenium dyes in which a metal is coordinated are preferable, and ruthenium metal complex dyes are particularly preferable.
  • ruthenium-based metal complex dyes represented by the following formulas (1) to (3) are preferable.
  • examples of commercially available ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, Ruthenium 620-1H3TBA dye manufactured by Solaronix.
  • a carrier transport material is filled in the entire space or gap in the photoelectric conversion element 10 shown in FIG. That is, the carrier transport material 4 is included in a region surrounded by the conductive layer 2, the support substrate 7, and the sealing material 9 as shown in FIG. 1. Further, the carrier transport material 4 is also filled in the gaps between the photoelectric conversion layer 3 and the catalyst layer 5. In the present specification, the carrier transport material 4 means a region filled with only the carrier transport material without other components for convenience.
  • Such a carrier transport material is composed of a conductive material capable of transporting ions.
  • a suitable material a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
  • the liquid electrolyte is not particularly limited as long as it is a liquid substance containing redox species, and is generally not limited as long as it is generally used in the field of solar cells.
  • a reducing species and a molten salt that can dissolve the reducing species, or a redox species, a solvent that can dissolve the reducing species, and a molten salt can be used.
  • Examples of the redox species include I ⁇ / I 3 ⁇ series, Br 2 ⁇ / Br 3 ⁇ series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series.
  • metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium iodide (TEAI), Tetraalkylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), combinations of tetraalkylammonium salts such as tetrahexylammonium iodide (THAI) and iodine, and lithium bromide (LiBr), sodium bromide (NaBr) ), potassium bromide (KBr), calcium bromide (C
  • examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
  • the solid electrolyte may be any conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte for a solar cell and has no fluidity.
  • hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate
  • Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
  • Gel electrolyte usually consists of electrolyte and gelling agent.
  • gelling agents include polymer gelation such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, and polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. Agents and the like.
  • the molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
  • the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salt compounds such as pyridinium salts and imidazolium salts.
  • Additives may be added to the above electrolyte as necessary.
  • Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazoleioio
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • EMII ethylmethylimidazole iodide
  • ethylimidazoleioioio examples thereof include imidazole salts such as dye (EII) and hexylmethylimidazole iodide (HMII).
  • the electrolyte concentration in the electrolyte is preferably in the range of 0.001 mol / L to 1.5 mol / L, and more preferably in the range of 0.01 mol / L to 0.7 mol / L.
  • the support substrate 7 serves as a light receiving surface
  • incident light reaches the photoelectric conversion layer 3 through the electrolytic solution, and carriers are excited.
  • the performance of the solar cell may be reduced depending on the electrolyte concentration. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
  • the catalyst layer 5 is provided in contact with the counter electrode conductive layer 6, and the catalyst layer 5 can efficiently transfer electrons to and from the counter electrode conductive layer 6.
  • a catalyst layer 5 is not particularly limited as long as it is a material that can transfer electrons on the surface thereof, and any material can be used.
  • noble metal materials such as platinum and palladium, carbon black, ketjen black, carbon Examples thereof include carbon materials such as nanotubes and fullerenes.
  • the counter electrode conductive layer 6 is not particularly limited as long as it has conductivity, and may not necessarily have light transmittance. However, in the case where the support substrate 7 is a light receiving surface, it is necessary to have light transmission like the conductive layer.
  • the material constituting the counter electrode conductive layer 6 examples include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO).
  • ITO indium tin composite oxide
  • SnO 2 tin oxide
  • FTO fluorine
  • ZnO zinc oxide
  • metals that are not corrosive to the electrolyte such as titanium, nickel, and tantalum, may be used.
  • the counter electrode conductive layer 6 made of such a material can be formed by a known method such as a sputtering method or a spray method.
  • a catalyst layer has sufficient electroconductivity, it can also serve as a catalyst layer and a counter electrode conductive layer only with a single layer.
  • the film thickness of the counter electrode conductive layer 6 is preferably about 0.02 ⁇ m to 5 ⁇ m.
  • the film resistance of the counter electrode conductive layer 6 is preferably as low as possible, and is preferably 40 ⁇ / sq or less.
  • a plurality of counter electrode conductive layers 6 are provided in the counter electrode conductive layer 6 so that the photosensitizer can be easily adsorbed or the carrier transport material can easily pass through. It is preferable to form a small hole.
  • Such small holes can be formed by subjecting the counter electrode conductive layer 6 to physical contact or laser processing.
  • the size of the small holes is preferably about 0.1 to 100 ⁇ m, more preferably about 1 to 50 ⁇ m.
  • the interval between the small holes is preferably about 1 to 200 ⁇ m, and more preferably about 10 to 300 ⁇ m.
  • a similar effect can be obtained by forming a stripe-shaped opening in the counter electrode conductive layer 6.
  • the stripe-shaped openings are preferably spaced at an interval of about 1 ⁇ m to 200 ⁇ m, more preferably at an interval of about 10 ⁇ m to 300 ⁇ m.
  • the support substrate 7 that can hold the carrier transport material 4 inside and prevent the intrusion of water or the like from the outside.
  • a support substrate 7 serves as a light receiving surface, it is necessary to use the same material as that of the translucent substrate 1 because the same light transmissivity as that of the translucent substrate 1 is required.
  • the support substrate 7 is preferably made of tempered glass or the like.
  • the support substrate 7 (including a catalyst layer or a counter electrode conductive layer formed on the surface thereof) does not come into contact with the photoelectric conversion layer 3 formed on the translucent substrate 1. Thereby, a sufficient amount of the carrier transport material 4 can be held inside the photoelectric conversion element.
  • a support substrate 7 preferably includes an injection port for injecting the carrier transport material 4.
  • the carrier transport material can be injected from such an inlet using a vacuum injection method, a vacuum impregnation method, or the like.
  • the support substrate 7 and the photoelectric conversion layer 3 formed on the translucent substrate 1 are not in contact with each other, the injection speed when the carrier transport material is injected from the injection port can be increased. For this reason, the manufacturing tact of a photoelectric conversion element and a photoelectric conversion element module can be improved.
  • the support substrate 7 has an injection hole 8 ′ for injecting the carrier transport material 4.
  • the injection hole 8 ′ is preferably located on at least a part of a projection surface obtained by projecting the photoelectric conversion layer 3 onto the support substrate 7.
  • the sealing material 9 is provided to bond the translucent substrate 1 and the support substrate 7 together.
  • a sealing material 9 is preferably made of a silicone resin, an epoxy resin, a polyisobutylene-based resin, a hot-melt resin, a glass-based material, or the like, and may have a laminated structure using two or more of these.
  • the material constituting the sealing material 9 examples include commercially available epoxy resins such as Three Bond, model number 31X-101, Three Bond, model number 31X-088, and the like. it can.
  • the sealing material 9 is formed using a silicone resin, an epoxy resin, or a glass frit, it is preferably formed using a dispenser, and when the sealing material 9 is formed using a hot melt resin, a sheet-like material is used. It can be formed by drilling a patterned hole in the hot melt resin.
  • the sealing material 9 is preferably in contact with the photoelectric conversion layer 3.
  • the ratio of the projected area can be reduced.
  • An injection hole seal 8 for sealing the injection hole 8 ′ is provided on the support substrate 7.
  • the material constituting the injection hole seal 8 is in contact with the conductive layer 2 or the counter electrode conductive layer 6. Since the material constituting the injection hole seal 8 is in contact with the conductive layer 2 or the counter electrode conductive layer 6, the area of the conductive layer or the counter electrode conductive layer in contact with the electrolyte around the seal hole can be reduced. , The proportion of the projected area can be reduced.
  • sticker 8 the material same as the material which comprises said sealing material 9 can be used. Below, the formation method of a porous semiconductor and the adsorption
  • the method for forming the porous semiconductor on the conductive layer 2 is not particularly limited, and a known method can be used. That is, for example, a porous semiconductor is formed by applying a suspension in which semiconductor fine particles are suspended in a suitable solvent to a predetermined place using a known method, and performing at least one of drying and baking.
  • the viscosity of the suspension is adjusted low, and this is divided into regions divided by the sealing material 9 from a dispenser or the like. It is preferable to apply. Thereby, it spreads to the edge part of the said area
  • the solvent used in the suspension examples include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water.
  • glyme solvents such as ethylene glycol monomethyl ether
  • alcohols such as isopropyl alcohol
  • alcohol-based mixed solvents such as isopropyl alcohol / toluene
  • water water.
  • a commercially available titanium oxide paste for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • Ti-nanoxide for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • a porous semiconductor is formed on the conductive layer 2 by applying the suspension thus obtained onto the conductive layer 2 and then performing at least one of drying and baking.
  • known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method can be used.
  • the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles.
  • the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles.
  • in an air atmosphere or an inert gas atmosphere In the case of drying and baking at a temperature of 50 to 800 ° C., it is preferably performed for 10 seconds to 12 hours. This drying and baking may be performed once at a single temperature or twice or more at different temperatures.
  • the porous semiconductor may be a laminate of a plurality of layers.
  • the porous semiconductor After forming the porous semiconductor in this way, it is preferable to perform a post-treatment in order to improve the performance of the porous semiconductor.
  • a post-treatment By performing post-processing on the porous semiconductor, the electrical connection between the semiconductor fine particles can be improved, the surface area of the porous semiconductor can be increased, and the defect level on the semiconductor fine particles can be reduced.
  • the performance of a porous semiconductor can be improved by post-processing a porous semiconductor made of titanium oxide with a titanium tetrachloride aqueous solution.
  • the photoelectric conversion layer 3 is produced by making a photosensitizer adsorb
  • the method for adsorbing the photosensitizer is not particularly limited.
  • a method of immersing the porous semiconductor in the above-described dye adsorption solution can be used.
  • the dye adsorbing solution may be heated in order to penetrate the dye adsorbing solution to the depths of the micropores in the porous semiconductor.
  • the solvent for dissolving the photosensitizer may be any solvent that can dissolve the photosensitizer, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, dimethylformamide and the like.
  • a purified one is preferably used, and two or more kinds may be mixed and used.
  • the concentration of the dye contained in the dye adsorption solution can be appropriately set according to the conditions such as the dye to be used, the type of solvent, the dye adsorption process, etc., but it is a high concentration to improve the adsorption function. For example, it is preferably 1 ⁇ 10 ⁇ 5 mol / L or more. In preparing the dye adsorption solution, heating may be performed to improve the solubility of the dye.
  • FIG. 2A is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface
  • FIG. 2B is a cross-section when the photoelectric conversion element of FIG. 2A is cut along BB.
  • FIG. 2A is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface
  • FIG. 2B is a cross-section when the photoelectric conversion element of FIG. 2A is cut along BB.
  • the photoelectric conversion element of the present embodiment may be the one shown in FIG. 2 (a) and FIG. 2 (b). That is, in the photoelectric conversion element of this embodiment, as shown in FIG. 2B, the translucent substrate 11 and the support substrate 17 are fixed by the sealing material 19, and the translucent substrate 11 includes a conductive layer 12 formed on the conductive layer 12 and a photoelectric conversion layer 13 formed on the conductive layer 12.
  • the conductive layer 12 is provided with a scribe line 12 '.
  • a porous insulating layer 111 is provided on the scribe line 12 ′ and the photoelectric conversion layer 13.
  • a catalyst layer 15 and a counter electrode conductive layer 16 are provided on the porous insulating layer 111.
  • the support substrate 17 is bonded to the translucent substrate 11 by the sealing material 19.
  • a region surrounded by the support substrate 17, the sealing material 19, and the translucent substrate 11 is filled with the carrier transport material 14.
  • the carrier transport material 14 is also filled in the voids of the photoelectric conversion layer 13, the porous insulating layer 111, and the catalyst layer 15.
  • a porous insulating layer that is not used in Embodiment 1 will be described.
  • Each part other than the porous insulating layer 111 can be the same as that described in the first embodiment.
  • a porous insulating layer 111 is provided between the photoelectric conversion layer 13 and the catalyst layer 15.
  • the porous insulating layer 111 is provided to reduce the leakage current from the photoelectric conversion layer 13 to the counter electrode conductive layer 16.
  • the porous insulating layer 111 is provided in contact with the photoelectric conversion layer 3 and contains a carrier transport material therein. As shown in FIG. 2A, the leakage current from the photoelectric conversion layer 3 can be reduced by forming the porous insulating layer 111 so as to cover the top and side surfaces of the photoelectric conversion layer 3.
  • the porous insulating layer 111 has a portion including the material constituting the sealing material 19 inside. As described above, when part of the porous insulating layer 111 includes the sealing material, the conductive layer portion in contact with the porous insulating layer is covered, and as a result, the ratio of the projected area can be reduced.
  • Examples of the material constituting the porous insulating layer 111 include silicon oxide such as niobium oxide, zirconium oxide, silica glass, and soda glass, aluminum oxide, and barium titanate. One or two of these materials are used. The above can be used in combination.
  • the material used for the porous insulating layer 111 is preferably in the form of particles, and the average particle diameter is more preferably 5 to 500 nm, and still more preferably 10 to 300 nm. Further, titanium oxide or rutile type titanium oxide having a particle size of 100 nm to 500 nm can be suitably used.
  • the porous insulating layer 111 is preferably made of a material having a conductivity of 1 ⁇ 10 12 ⁇ ⁇ cm or less, and the lower the conductivity, the more preferable. By using a material having such conductivity, leakage current from the photoelectric conversion layer 13 to the counter electrode conductive layer 16 can be reduced. On the other hand, it is not preferable that the porous insulating layer 111 is made of a material having a conductivity exceeding 1 ⁇ 10 12 ⁇ ⁇ cm because leakage current easily flows and the photoelectric conversion efficiency decreases due to a decrease in fill factor.
  • the porous insulating layer 111 preferably has a thickness of 0.2 ⁇ m to 20 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m. If the thickness of the porous insulating layer 111 exceeds 20 ⁇ m, the short circuit current value (Jsc) is lowered, which is not preferable. Further, it is not preferable that the thickness of the porous insulating layer 111 is less than 0.2 ⁇ m because a leak current is likely to occur.
  • the porous insulating layer 111 can be formed using a method similar to that of the above-described porous semiconductor. That is, the above-mentioned fine particle insulator is dispersed in a suitable solvent, and a polymer compound such as ethyl cellulose and polyethylene glycol (PEG) is further mixed to prepare a paste. The paste thus obtained is applied onto the photoelectric conversion layer 3, and at least one of drying and baking is performed. Thereby, the porous insulating layer 111 is formed on the photoelectric conversion layer 3.
  • a polymer compound such as ethyl cellulose and polyethylene glycol (PEG)
  • FIG. 3A is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface
  • FIG. 3B is a cross-section when the photoelectric conversion element of FIG. FIG.
  • the photoelectric conversion element of this embodiment may have the form shown in FIG.
  • the photoelectric conversion element shown in FIG. 3 is different from the photoelectric conversion element of Embodiment 2 in that an insulating layer 122 is provided between the sealing material 29 and the translucent substrate 21, and the upper surface of the porous insulating layer 121.
  • the catalyst layer 25 and the counter electrode conductive layer 26 are the same except that the catalyst layer 25 and the counter electrode conductive layer 26 are provided.
  • an insulating layer that is not used in the first and second embodiments will be described.
  • the insulating layer 122 used in this embodiment is provided in order to suppress contact between the conductive layer 22 or the counter electrode conductive layer 26 and the carrier transport material 24.
  • the insulating layer 122 used in this embodiment is provided in order to suppress contact between the conductive layer 22 or the counter electrode conductive layer 26 and the carrier transport material 24.
  • the material for forming the insulating layer 122 may be any material that can be electrically insulated, and the internal structure is preferably dense.
  • Examples of the material constituting the insulating layer 122 include a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, a glass material, and the like. A multilayer structure using two or more of these materials It may be.
  • the insulating layer 122 when the insulating layer 122 is formed before the porous semiconductor is formed, the insulating layer 122 needs to have heat resistance against the heating temperature at the time of forming the porous semiconductor. Further, when the light-transmitting substrate 1 is used as a light receiving surface, the insulating layer 122 is also irradiated with ultraviolet rays, so that light resistance to ultraviolet rays is required. From the above viewpoint, it is more preferable to use a glass-based material as the insulating layer 122, and it is more preferable to use a bismuth-based glass paste.
  • glass-based materials mentioned above include those commercially available as glass paste and glass frit. In consideration of reactivity with the carrier transport material and environmental problems, a lead-free material is preferable. Furthermore, when forming the insulating layer 122 on the translucent board
  • the insulating layer 122 is preferably in contact with the conductive layer 22 other than the projected surface when the photoelectric conversion layer 23 is vertically projected toward the conductive layer 22. Thereby, the area of the conductive layer in contact with the electrolytic solution can be reduced. Further, the insulating layer 122 may be in contact with the counter electrode conductive layer 26 other than the projection surface when the photoelectric conversion layer 23 is vertically projected toward the counter electrode conductive layer 26. Thereby, the area of the counter electrode conductive layer in contact with the electrolytic solution can be reduced. The insulating layer 122 is preferably in contact with the conductive layer 22 and the counter electrode conductive layer 26. Thereby, the area of both the conductive layer in contact with the electrolytic solution and the counter electrode conductive layer can be reduced.
  • the present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element of the present invention. It is characterized by.
  • FIG. 4 is a cross-sectional view schematically showing an example of the structure of the photoelectric conversion element module of the present invention.
  • the photoelectric conversion element module of FIG. 4 is obtained by connecting four photoelectric conversion elements of the present invention.
  • Each photoelectric conversion element includes a translucent substrate 31 and the translucent substrate as shown in FIG. A conductive layer 32 formed on 31, a photoelectric conversion layer 33 formed on the conductive layer 32, a porous insulating layer 311 formed in contact with the photoelectric conversion layer 33, and the porous insulating layer 311. And a catalyst layer 35 formed in contact with the substrate.
  • a portion where the conductive layer 32, the catalyst layer 35, the counter electrode conductive layer 36, and the carrier transport material 34 are in contact with the projected area when the photoelectric conversion layer 33 is vertically projected toward the translucent substrate 31.
  • the ratio of the projected area when projected vertically onto the translucent substrate 31 is 1.2 or less.
  • the carrier transport material is filled in the gaps of the photoelectric conversion layer 33, the porous insulating layer 311, and the catalyst layer 35.
  • a counter electrode conductive layer 36 is formed on the catalyst layer 35.
  • the translucent substrate 31 and the support substrate 37 are connected by a sealing material 39.
  • the conductive layer 32 is partially interrupted, and the interrupted portion is referred to as a scribe line 32 '.
  • a collecting electrode 41 is provided at the end of the translucent substrate 31.
  • the photoelectric conversion element module of the present invention is not limited to the one shown in FIG. 4, and includes one in which two or more photoelectric conversion elements are electrically connected in series and / or in parallel. As long as at least one of the conversion elements is the photoelectric conversion element of the present invention, it does not depart from the present invention.
  • the photoelectric conversion element module preferably includes three or more photoelectric conversion elements. It is preferable that all the photoelectric conversion elements constituting the photoelectric conversion element module are the photoelectric conversion elements of the present invention.
  • the film thickness of each layer is a value measured using a surface roughness shape measuring instrument (trade name: Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.) unless otherwise specified.
  • Example 1 the photoelectric conversion element 10 shown in FIG. 1 was produced.
  • a transparent electrode substrate manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film, sheet resistance: 10.5 ⁇ / sq
  • the transparent electrode substrate is obtained by forming a conductive layer 2 made of SnO 2 on a translucent substrate 1 made of glass.
  • the coating film of titanium oxide paste was dried in an oven set at 80 ° C. for 20 minutes. Further, the coating film was baked in air for 60 minutes using a baking furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C. In the same manner as described above, a porous semiconductor having a film thickness of 25 ⁇ m was produced by repeating the application and baking of the titanium oxide paste four times each.
  • the dye of the above formula (2) (manufactured by Solaronix, trade name: Ruthenium 620 1H3TBA) at a concentration ratio of 4 ⁇ 10 ⁇ 4 mol / liter with respect to a mixed solvent of acetonitrile and t-butanol having a volume ratio of 1: 1
  • the dye adsorbing solution was prepared by dissolving as described above.
  • the porous semiconductor prepared above was immersed in this dye adsorption solution, and the state was kept at room temperature for 100 hours. Thereafter, the porous semiconductor was washed with ethanol and dried at about 60 ° C. for about 5 minutes, thereby adsorbing the dye to the porous semiconductor. In this way, a photoelectric conversion layer 3 made of a porous semiconductor adsorbed with a dye was produced.
  • a transparent electrode substrate having a size of 10 mm ⁇ 65 mm ⁇ thickness 1.0 mm similar to the above-described translucent substrate 1 and conductive layer 2 was used as the support substrate 7 and the counter electrode conductive layer 6. Then, a catalyst layer 5 made of Pt was formed on the surface of the counter electrode conductive layer 6.
  • substrate 1 with which the photoelectric converting layer 3 was formed, and the support substrate 7 were bonded together using the heat sealing
  • the support substrate 7 and the translucent substrate 1 were bonded together using a heat welding film having an opening (manufactured by DuPont, Himiran 1702). Subsequently, the support substrate 7 and the translucent substrate 1 were pressure-bonded by heating for 10 minutes in an oven set to about 100 ° C. This heat-sealing film becomes the sealing material 9.
  • Carrier transport materials are acetonitrile and solvent, and LiI (Aldrich) as a redox species has a concentration of 0.1 mol / liter and I 2 (Kishida Chemical) has a concentration of 0.01 mol / liter.
  • LiI Aldrich
  • I 2 Korean Chemical
  • t-butylpyridine manufactured by Aldrich
  • dimethylpropylimidazole iodide manufactured by Shikoku Kasei Kogyo
  • the injection hole 8 ′ was sealed by forming the injection hole seal 8 using an ultraviolet curable resin (manufactured by Three Bond Co., Ltd., model number: 31X-101 229).
  • a collector electrode was formed by applying an Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) to the translucent substrate 1 of the obtained photoelectric conversion element.
  • the photoelectric conversion element (single cell) of this example was completed as described above.
  • Example 1 Photoelectric conversion of Examples 2 to 3 and Comparative Example 1 is the same as Example 1 except that the opening (inner dimensions) of the heat-sealing film is different from Example 1 as shown in Table 1 below. An element was produced.
  • Example 4 the photoelectric conversion element shown in FIG. 2 was produced.
  • the conductive layer of the transparent electrode substrate used in Example 1 was cut by laser scribing to form a scribe line 12 ′.
  • the porous semiconductor with a film thickness of 25 micrometers was produced on the conductive layer by the method similar to Example 1.
  • a paste containing zirconia particles having an average particle size of 50 nm was applied on the porous semiconductor by a screen printing machine using a screen plate having a pattern of 5.8 mm ⁇ 51 mm.
  • the paste was baked at 500 ° C. for 60 minutes to form a porous insulating layer 111 with a flat portion having a thickness of 13 ⁇ m.
  • a catalyst layer 15 made of Pt was formed on the porous insulating layer 111 by vapor deposition.
  • the catalyst layer 15 has the same position and size as the porous semiconductor.
  • a counter electrode conductive layer 16 having a size of 9 mm ⁇ 50 mm was formed on the catalyst layer 15 by vapor deposition.
  • the photoelectric conversion layer 13 was produced by adsorb
  • a support substrate 17 made of a glass substrate having a size of 11 mm ⁇ 60 mm was prepared. And the translucent board
  • This heat-sealing film becomes the sealing material 19.
  • the above heat-sealing film was an opening having the same shape as the porous insulating layer, and the opening (inner dimension) of the heat-sealing film after thermocompression bonding was 5.8 mm ⁇ 51 mm.
  • An injection hole 18 ′ was formed in a portion where the photoelectric conversion layer 13 was projected on the support substrate 17.
  • a photoelectric conversion element of this example was fabricated in the same manner as in Example 1 except that the injection hole 18 ′ was formed at such a position.
  • Example 5 and Comparative Example 2 The photoelectric conversion elements of Example 5 and Comparative Example 2 were the same as Example 4 except that the opening (inner dimensions) of the heat-sealing film was different as shown in Table 1 below. Produced.
  • Example 6 a photoelectric conversion element having the structure shown in FIG. 3 was produced.
  • the size of the porous insulating layer 121 was 5.8 mm ⁇ 50 mm
  • the insulating layers 122 were formed on both ends of the porous insulating layer 121
  • the counter electrode conductive layer was 9 mm ⁇ It was produced by the same method as in Example 5 except that the thickness was 51 mm. Note that the insulating layer 122 having a size of 5.8 mm ⁇ 4 mm was formed using glass paste.
  • a photoelectric conversion element module having the structure shown in FIG. 4 was produced.
  • a transparent electrode substrate manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film
  • the transparent electrode substrate is obtained by forming a conductive layer 32 made of SnO 2 on a translucent substrate 31 made of glass.
  • the conductive layer 32 was cut by laser scribing to form a scribe line 32 ′ having a width of 60 ⁇ m parallel to the vertical direction.
  • the scribe lines 32 ' were formed at a position of 9.5 mm from the left end portion of the translucent substrate 31 and a total of four places at intervals of 7 mm therefrom.
  • a porous semiconductor having a thickness of 25 ⁇ m, a width of 5 mm, and a length of 50 mm is formed around the position of 6.9 mm from the left end portion of the translucent substrate 31 by the same method as in Example 1.
  • Three porous semiconductors of the same size were formed at intervals of 7 mm from the position.
  • a porous insulating layer 311 was produced on the porous semiconductor by the same method as in Example 1.
  • One such porous insulating layer 311 was formed with a width of 5.6 mm and a length of 51 mm centering on a position 6.9 mm from the left end of the translucent substrate 31.
  • Three porous insulating layers having the same size were formed at an interval of 7 mm from the center of the leftmost porous insulating layer 24.
  • a catalyst layer 35 made of Pt was formed on the porous insulating layer 311 by the same method as in Example 1.
  • the catalyst layer 35 has the same position and size as the porous semiconductor.
  • a counter electrode conductive layer 36 was formed by the same method as in Example 4.
  • the counter electrode conductive layer 36 is formed to have a width of 5.6 mm and a length of 50 mm centered at a position of 7.2 mm from the left end portion of the translucent substrate 31, and the center of the leftmost porous insulating layer 311 is formed.
  • Three counter electrode conductive layers 36 having the same size were formed at intervals of 7 mm to 7 mm.
  • the four porous semiconductors were immersed in the dye adsorption solution used in Example 1, and held at room temperature for 120 hours to adsorb the dye to the porous semiconductor.
  • an ultraviolet curable resin 31X-101, manufactured by ThreeBond Co., Ltd.
  • the support substrate 37 which consists of a 65 mm long x 30 mm wide glass substrate was bonded together, and it irradiated with the ultraviolet-ray using the ultraviolet lamp (NOVACURE by EFD company).
  • the sealing material 39 was formed by curing the ultraviolet curable resin.
  • the opening formed by the sealing material 39 was 5.8 mm ⁇ 51 mm.
  • a carrier transport material was injected from an injection hole provided in advance in the support substrate 37 by the same method as in Example 1.
  • the photoelectric conversion element module of a present Example was completed by sealing an injection hole with ultraviolet curing resin.
  • the current collecting electrode 41 was formed by applying Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) on the translucent substrate of this photoelectric conversion element module.
  • Example 8 A photoelectric conversion element module of this example was fabricated in the same manner as in Example 7, except that the sealing portion was penetrated by about 0.2 mm into the porous insulating layer.
  • Example 9 Compared to Example 7, after forming the counter electrode conductive layer, forming scribe lines in the series direction of the photoelectric conversion layer produced four photoelectric conversion elements in the series direction and two rows in the parallel direction. Others were carried out similarly to Example 7, and produced the photoelectric conversion element module of a present Example.

Abstract

Provided is a photoelectric conversion element characterized in having: a translucent substrate; a supporting substrate, which is disposed to face the translucent substrate; and a sealing material for fixing, between the translucent substrate and the supporting substrate, a conductive layer, a photoelectric conversion layer in contact with the conductive layer, a catalyst layer, a counter electrode conductive layer, a carrier transport material, the translucent substrate, and the supporting substrate. The photoelectric conversion element is also characterized in that, with respect to a projection area obtained when the photoelectric conversion layer is perpendicularly projected toward the translucent substrate, a ratio of a projection area obtained when a portion where any one of the conductive layer, the catalyst layer and the counter electrode conductive layer is in contact with the carrier transport material is perpendicularly projected toward the translucent substrate is 1.2 or less. A photoelectric conversion element module that includes the photoelectric conversion element is also provided.

Description

光電変換素子および光電変換素子モジュールPhotoelectric conversion element and photoelectric conversion element module
 本発明は、光電変換素子および光電変換素子モジュールに関する。 The present invention relates to a photoelectric conversion element and a photoelectric conversion element module.
 化石燃料に代わるエネルギ源として、太陽光を電力に変換する太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池や、薄膜シリコン太陽電池が実用化されている。しかし、前者の太陽電池は、シリコン基板の作製コストが高いという問題がある。後者の薄膜シリコン太陽電池は、多種の半導体製造用ガスや複雑な装置を用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池も、光電変換の高効率化による発電出力当たりのコストを低減するという課題を解決するには至っていない。 As an alternative energy source to fossil fuels, solar cells that convert sunlight into electric power are attracting attention. Currently, solar cells using crystalline silicon substrates and thin-film silicon solar cells have been put into practical use. However, the former solar cell has a problem that the production cost of the silicon substrate is high. The latter thin-film silicon solar cell has a problem that the manufacturing cost increases because it is necessary to use various semiconductor manufacturing gases and complicated devices. For this reason, none of the solar cells has been able to solve the problem of reducing the cost per power generation output by increasing the efficiency of photoelectric conversion.
 さらに、新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した光電変換素子が提案されている(たとえば、特許第2664194号公報(特許文献1))。この光電変換素子の構造は、2枚のガラス基板の間に、光増感色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換層と電解液とを挟持している。上記の2枚のガラス基板の表面にはそれぞれ、第1電極および第2電極が形成されている。 Furthermore, as a new type of solar cell, a photoelectric conversion element using photoinduced electron transfer of a metal complex has been proposed (for example, Japanese Patent No. 2664194 (Patent Document 1)). In the structure of this photoelectric conversion element, a photoelectric conversion layer that adsorbs a photosensitizing dye and has an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates. A first electrode and a second electrode are formed on the surfaces of the two glass substrates, respectively.
 そして、第1電極側から光を照射すると、光電変換層に電子が発生し、発生した電子が一方の第1電極から外部電気回路を通って対向する第2電極に移動する。移動した電子は、電解質中のイオンに運ばれて光電変換層に戻る。このような一連の電子の移動により、電気エネルギを取り出すことができる。 Then, when light is irradiated from the first electrode side, electrons are generated in the photoelectric conversion layer, and the generated electrons move from one first electrode to the opposing second electrode through the external electric circuit. The moved electrons are transported to ions in the electrolyte and return to the photoelectric conversion layer. Electric energy can be taken out by such a series of electron movements.
 上記特許文献1に記載の光電変換素子は、2枚のガラス基板の電極間に電解液を注入した構造である。このため、小面積の太陽電池の試作は可能であるが、1m角のような大面積の太陽電池を作製することは困難である。すなわち、1つの太陽電池セルの面積を大きくすると、発生電流は面積に比例して増加するが、第1電極の面内方向の抵抗が増大し、それに伴って太陽電池としての内部直列電気抵抗が増大する。その結果、光電変換時の電流電圧特性における曲線因子(FF:フィルファクタ)が低下するという問題が起こる。 The photoelectric conversion element described in Patent Document 1 has a structure in which an electrolytic solution is injected between the electrodes of two glass substrates. For this reason, trial production of a small area solar cell is possible, but it is difficult to produce a large area solar cell such as 1 m square. That is, when the area of one solar cell is increased, the generated current increases in proportion to the area, but the resistance in the in-plane direction of the first electrode increases, and accordingly, the internal series electric resistance as a solar cell increases. Increase. As a result, there arises a problem that the fill factor (FF) in the current-voltage characteristic during photoelectric conversion is lowered.
 FFの低下を防止するための試みとして、特開2003-203681号公報(特許文献2)には、第1電極102上に集電電極103を形成した色素増感太陽電池モジュールが提案されている。図5(a)は、特許文献2の色素増感太陽電池モジュールの上面図であり、図5(b)は、特許文献2の色素増感太陽電池モジュールをA-Aで切断したときの断面図である。 As an attempt to prevent a decrease in FF, JP 2003-203681 A (Patent Document 2) proposes a dye-sensitized solar cell module in which a current collecting electrode 103 is formed on a first electrode 102. . FIG. 5 (a) is a top view of the dye-sensitized solar cell module of Patent Document 2, and FIG. 5 (b) is a cross-section when the dye-sensitized solar cell module of Patent Document 2 is cut along AA. FIG.
 特許文献2の色素増感太陽電池モジュールは、図5(b)に示されるように、第1電極102上の同一平面内に複数の短冊状の光電変換層104が形成されている。そして、光電変換層104の間に、金と銀の合金からなる格子状の集電電極103を形成している。この集電電極103を形成することにより、電気抵抗を低減することができ、飛躍的にFFが向上するとともに短絡電流密度を向上させることができる。 In the dye-sensitized solar cell module of Patent Document 2, a plurality of strip-like photoelectric conversion layers 104 are formed in the same plane on the first electrode 102 as shown in FIG. Between the photoelectric conversion layers 104, a grid-like current collecting electrode 103 made of an alloy of gold and silver is formed. By forming the current collecting electrode 103, the electric resistance can be reduced, and the FF can be dramatically improved and the short-circuit current density can be improved.
 また、特許文献2とは別のFFの低下を防止する試みとして、特許第4474691号公報(特許文献3)には、図6(a)および図6(b)に示される色素増感太陽電池が提案されている。図6(a)は、特許文献3に示される色素増感太陽電池の模式的な断面図であり、図6(b)は、特許文献3に示される色素増感太陽電池の別の形態の模式図である。 Further, as an attempt to prevent a decrease in FF different from that of Patent Document 2, Japanese Patent No. 4474691 (Patent Document 3) discloses a dye-sensitized solar cell shown in FIGS. 6 (a) and 6 (b). Has been proposed. FIG. 6A is a schematic cross-sectional view of the dye-sensitized solar cell disclosed in Patent Document 3, and FIG. 6B illustrates another form of the dye-sensitized solar cell disclosed in Patent Document 3. It is a schematic diagram.
 特許文献3の色素増感太陽電池は、図6(a)に示されるように、第1電極201上に光電変換層203を形成し、該光電変換層203上(すなわち、光電変換層203の第1電極201と接触する面の反対面)に、集電電極204を形成したものである。また、特許文献3に開示される別の形態の色素増感太陽電池として、図6(b)に示されるように、集電電極204をライン状や格子状に形成し、電解質の移動の妨げとならない形状も提案されている。このようにして5cm角の光電変換層203上に集電電極204を形成することにより、飛躍的にFFが向上し、短絡電流密度を向上させることができる。 In the dye-sensitized solar cell of Patent Document 3, as shown in FIG. 6A, a photoelectric conversion layer 203 is formed on the first electrode 201, and the photoelectric conversion layer 203 (that is, the photoelectric conversion layer 203) is formed. A collecting electrode 204 is formed on the surface opposite to the surface in contact with the first electrode 201. Further, as another dye-sensitized solar cell disclosed in Patent Document 3, as shown in FIG. 6B, the current collecting electrode 204 is formed in a line shape or a lattice shape to prevent the movement of the electrolyte. A shape that has not been proposed has also been proposed. Thus, by forming the current collection electrode 204 on the photoelectric conversion layer 203 of 5 cm square, FF can improve remarkably and a short circuit current density can be improved.
特許第2664194号公報Japanese Patent No. 2664194 特開2003-203681号公報JP 2003-203681 A 特許第4474691号公報Japanese Patent No. 4474691
 しかしながら、特許文献2に示されるように集電電極の形状を変えても、FFの上限は0.66~0.67程度に留まり、さらなるFFの向上は望めなかった。また、特許文献3の色素増感太陽電池は、集電電極204の材料によっては、集電電極204からのリーク電流が大きくなり、開放電圧が低下する問題があり、結果的に変換効率が向上しなかった。 However, even if the shape of the current collecting electrode is changed as shown in Patent Document 2, the upper limit of the FF is only about 0.66 to 0.67, and further improvement of the FF cannot be expected. In addition, the dye-sensitized solar cell of Patent Document 3 has a problem that depending on the material of the current collecting electrode 204, the leakage current from the current collecting electrode 204 increases and the open circuit voltage decreases, resulting in improved conversion efficiency. I did not.
 また、特許文献3の色素増感太陽電池において、光電変換層203の膜厚によっては、光電変換層203の膜厚方向に電子の分布が生じ、受光面から膜厚方向に向かって電子の分布が小さくなる。このため、電子の分布が小さいところに集電電極204を設置しても、集電が効率的に進まないという問題もあった。 Further, in the dye-sensitized solar cell of Patent Document 3, depending on the film thickness of the photoelectric conversion layer 203, an electron distribution occurs in the film thickness direction of the photoelectric conversion layer 203, and an electron distribution from the light receiving surface toward the film thickness direction. Becomes smaller. For this reason, even if the current collection electrode 204 is installed in a place where the distribution of electrons is small, there is a problem that current collection does not proceed efficiently.
 本発明は、上記のような現状に鑑みなされたものであり、その目的とするところは、FFを向上し、変換効率が向上する光電変換素子および光電変換素子モジュールを提供することである。 The present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a photoelectric conversion element and a photoelectric conversion element module that improve FF and improve conversion efficiency.
 本発明者らは上記の課題を解決すべく鋭意研究を行なった結果、光電変換層を透光性基板に向けて垂直に投影したときの投影面積に対し、導電層、触媒層、および対極導電層と、キャリア輸送材料とが接する部分を透光性基板に向けて垂直に投影したときの投影面積の割合を1.2以下とすることにより、FFを向上し、変換効率が向上する光電変換素子および光電変換素子モジュールを完成させるに至った。 As a result of intensive studies to solve the above-described problems, the present inventors have found that the conductive layer, the catalyst layer, and the counter electrode conductivity with respect to the projected area when the photoelectric conversion layer is vertically projected onto the light-transmitting substrate. Photoelectric conversion that improves the FF and improves the conversion efficiency by setting the ratio of the projected area when the portion where the layer and the carrier transport material are in contact with each other to be projected vertically onto the light-transmitting substrate is 1.2 or less It came to complete an element and a photoelectric conversion element module.
 すなわち、本発明の光電変換素子は、透光性基板と、該透光性基板に相対して設置された支持基板と、透光性基板と支持基板との間に、導電層と、該導電層に接する光電変換層と、触媒層と、対極導電層と、キャリア輸送材料と、透光性基板と支持基板とを固定するための封止材とを有し、光電変換層を透光性基板に向けて垂直に投影したときの投影面積に対し、導電層、触媒層、および対極導電層のいずれかと、キャリア輸送材料とが接する部分を透光性基板に向けて垂直に投影したときの投影面積の割合は、1.2以下であることを特徴とする。 That is, the photoelectric conversion element of the present invention includes a light-transmitting substrate, a support substrate placed opposite to the light-transmitting substrate, a conductive layer and the conductive layer between the light-transmitting substrate and the support substrate. A photoelectric conversion layer in contact with the layer; a catalyst layer; a counter electrode conductive layer; a carrier transport material; and a sealing material for fixing the translucent substrate and the support substrate; When the area where one of the conductive layer, catalyst layer, and counter electrode conductive layer is in contact with the carrier transport material is projected vertically onto the light-transmitting substrate with respect to the projected area when projected vertically onto the substrate The ratio of the projected area is 1.2 or less.
 上記の封止材は、光電変換層と接することが好ましい。光電変換層と触媒層との間に多孔質絶縁層を有することが好ましい。多孔質絶縁層は、その内部に封止材を構成する材料を含む部分があることが好ましい。 The above sealing material is preferably in contact with the photoelectric conversion layer. It is preferable to have a porous insulating layer between the photoelectric conversion layer and the catalyst layer. The porous insulating layer preferably has a portion containing a material constituting the sealing material inside.
 光電変換層を導電層に向けて垂直に投影したときの投影面以外の導電層に接する絶縁層を有することが好ましい。また、光電変換層を対極導電層に向けて垂直に投影したときの投影面以外の対極導電層に接する絶縁層を有することが好ましい。絶縁層は、導電層および対極導電層に接することが好ましい。 It is preferable to have an insulating layer in contact with the conductive layer other than the projection surface when the photoelectric conversion layer is vertically projected toward the conductive layer. Moreover, it is preferable to have an insulating layer in contact with the counter electrode conductive layer other than the projection surface when the photoelectric conversion layer is vertically projected toward the counter electrode conductive layer. The insulating layer is preferably in contact with the conductive layer and the counter electrode conductive layer.
 支持基板は、キャリア輸送材料を注入するための注入孔を有し、該注入孔は、光電変換層を支持基板に投影した投影面の少なくとも一部に位置することが好ましい。 The support substrate has an injection hole for injecting the carrier transport material, and the injection hole is preferably located on at least a part of the projection surface on which the photoelectric conversion layer is projected onto the support substrate.
 支持基板上に、注入孔を封止するための注入孔封止を有し、該注入孔封止を構成する材料の少なくとも一部は、導電層または対極導電層に接することが好ましい。 It is preferable that the support substrate has an injection hole seal for sealing the injection hole, and at least a part of the material constituting the injection hole seal is in contact with the conductive layer or the counter electrode conductive layer.
 本発明は、2以上の光電変換素子を電気的に直列に接続されてなる光電変換素子モジュールでもあり、上記の2以上の光電変換素子のうちの少なくとも1つは、上記の光電変換素子であることを特徴とする。本発明は、2以上の光電変換素子を電気的に並列に接続されてなる光電変換素子モジュールでもあり、上記の2以上の光電変換素子のうちの少なくとも1つは、上記の光電変換素子であることを特徴とする。 The present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element. It is characterized by that. The present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in parallel, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element. It is characterized by that.
 本発明は、3以上の光電変換素子を電気的に直列および/または並列に接続されてなる光電変換素子モジュールでもあり、3以上の光電変換素子のうちの少なくとも1つは、上記の光電変換素子であることを特徴とする。上記の光電変換素子モジュールを構成する全ての光電変換素子が上記の光電変換素子であることを特徴とする。 The present invention is also a photoelectric conversion element module in which three or more photoelectric conversion elements are electrically connected in series and / or in parallel. At least one of the three or more photoelectric conversion elements is the photoelectric conversion element described above. It is characterized by being. All the photoelectric conversion elements constituting the photoelectric conversion element module are the photoelectric conversion elements described above.
 本発明によれば、FFを向上することができ、変換効率の高い光電変換素子および光電変換素子モジュールを提供することができる。 According to the present invention, a FF can be improved, and a photoelectric conversion element and a photoelectric conversion element module with high conversion efficiency can be provided.
(a)は、本発明の光電変換素子の上面図であり、(b)は、(a)の光電変換素子をA-Aで切断したときの断面図である。(A) is a top view of the photoelectric conversion element of the present invention, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along AA. (a)は、本発明の光電変換素子をある一方の面で切断したときの断面図であり、(b)は、(a)の光電変換素子をB-Bで切断したときの断面図である。(A) is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along BB. is there. (a)は、本発明の光電変換素子をある一方の面で切断したときの断面図であり、(b)は、(a)の光電変換素子をC-Cで切断したときの断面図である。(A) is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and (b) is a cross-sectional view when the photoelectric conversion element of (a) is cut along CC. is there. 本発明の光電変換素子モジュールの構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the photoelectric conversion element module of this invention. (a)は、特許文献2に示される色素増感太陽電池モジュールの上面図であり、(b)は、(a)の色素増感太陽電池モジュールをA-Aで切断したときの断面図である。(A) is a top view of the dye-sensitized solar cell module disclosed in Patent Document 2, and (b) is a cross-sectional view when the dye-sensitized solar cell module of (a) is cut along AA. is there. (a)は、特許文献3に示される色素増感太陽電池の模式的な断面図であり、(b)は、特許文献3に示される色素増感太陽電池の別の形態の模式図である。(A) is typical sectional drawing of the dye-sensitized solar cell shown by patent document 3, (b) is a schematic diagram of another form of the dye-sensitized solar cell shown by patent document 3. FIG. .
 以下、本発明の光電変換素子および光電変換素子モジュールについて図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。 Hereinafter, the photoelectric conversion element and the photoelectric conversion element module of the present invention will be described with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 (実施の形態1)
 <光電変換素子>
 図1(a)は、本発明の光電変換素子の上面図であり、(b)は、(a)の光電変換素子をA-Aで切断したときの断面図である。本発明の光電変換素子10は、図1に示されるように、透光性基板1と、該透光性基板1に相対して設置された支持基板7と、透光性基板1と支持基板7との間に、導電層2と、該導電層2に接する光電変換層3と、触媒層5と、対極導電層6と、透光性基板1と支持基板7と封止材9とで囲まれた領域に注入されたキャリア輸送材料4と、透光性基板1と支持基板7とを固定するための封止材9とを有する。そして、光電変換層3は、多孔性半導体とキャリア輸送材料と光増感剤とを含み、光電変換層3を透光性基板1に向けて垂直に投影したときの投影面積に対し、導電層2、触媒層5、および対極導電層6のいずれかと、キャリア輸送材料4とが接する部分を透光性基板1に向けて垂直に投影したときの投影面積の割合は、1.2以下であることを特徴とする。このような構造とすることにより、FFを向上することができ、光電変換素子の光電変換効率を高めることができる。
(Embodiment 1)
<Photoelectric conversion element>
FIG. 1A is a top view of the photoelectric conversion element of the present invention, and FIG. 1B is a cross-sectional view of the photoelectric conversion element of FIG. As shown in FIG. 1, the photoelectric conversion element 10 of the present invention includes a light-transmitting substrate 1, a support substrate 7 that is installed to face the light-transmitting substrate 1, and the light-transmitting substrate 1 and the support substrate. 7, the conductive layer 2, the photoelectric conversion layer 3 in contact with the conductive layer 2, the catalyst layer 5, the counter electrode conductive layer 6, the translucent substrate 1, the support substrate 7, and the sealing material 9. The carrier transport material 4 injected into the enclosed region, and the sealing material 9 for fixing the translucent substrate 1 and the support substrate 7 are included. The photoelectric conversion layer 3 includes a porous semiconductor, a carrier transport material, and a photosensitizer, and is a conductive layer with respect to the projected area when the photoelectric conversion layer 3 is vertically projected toward the translucent substrate 1. 2, the ratio of the projected area when the portion where any one of the catalyst layer 5 and the counter electrode conductive layer 6 is in contact with the carrier transporting material 4 is vertically projected toward the translucent substrate 1 is 1.2 or less. It is characterized by that. By setting it as such a structure, FF can be improved and the photoelectric conversion efficiency of a photoelectric conversion element can be improved.
 上記のキャリア輸送材料4は、光電変換層3だけではなく、触媒層5の空隙にも充填されている。以下においては、本発明の光電変換素子10を構成する各部を説明する。 The carrier transport material 4 is filled not only in the photoelectric conversion layer 3 but also in the gaps in the catalyst layer 5. Below, each part which comprises the photoelectric conversion element 10 of this invention is demonstrated.
 ≪透光性基板≫
 本発明において、透光性基板1は、少なくとも受光面が光透過性を有する必要があるため、光透過性の材料からなる必要がある。ただし、透光性基板1は、必ずしもすべての波長領域の光に対して透過性を有する必要はなく、後述する色素に実効的な感度を有する波長の光を実質的に透過させる材料であればよい。かかる透光性基板1は、その厚みが0.2~5mm程度であることが好ましい。
≪Translucent substrate≫
In the present invention, the translucent substrate 1 needs to be made of a light transmissive material because at least the light receiving surface needs to have light transmissive properties. However, the translucent substrate 1 is not necessarily required to be transmissive to light in all wavelength regions, and may be any material that substantially transmits light having a wavelength having effective sensitivity to a dye described later. Good. The translucent substrate 1 preferably has a thickness of about 0.2 to 5 mm.
 このような透光性基板1を構成する材料としては、一般に太陽電池に使用されている材料であれば特に限定されず、たとえばソーダガラス、溶融石英ガラス、結晶石英ガラスなどのガラス基板、可撓性フィルムなどの耐熱性樹脂板などを用いることができる。可撓性フィルムとしては、たとえばテトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、テフロン(登録商標)などを挙げることができる。 The material constituting such a translucent substrate 1 is not particularly limited as long as it is a material generally used for solar cells. For example, a glass substrate such as soda glass, fused quartz glass, and crystalline quartz glass, flexible A heat resistant resin plate such as a conductive film can be used. Examples of the flexible film include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyetherimide (PEI), phenoxy resin, and Teflon. (Registered trademark).
 透光性基板1上に加熱を伴って他の部材を形成する場合、すなわちたとえば、透光性基板上に250℃程度の加熱を伴って多孔性半導体からなる光電変換層3を形成する場合、透光性基板1としてテフロン(登録商標)を用いることが好ましい。テフロン(登録商標)は、250℃以上の耐熱性を有するからである。透光性基板1は、他の構造体に取り付けるときの基体として利用することができる。すなわち、透光性基板1の周辺部に対し、金属加工部品とねじを用いることにより、他の構造体に容易に取り付けることができる。 When forming another member with heating on the translucent substrate 1, that is, for example, when forming the photoelectric conversion layer 3 made of a porous semiconductor with heating at about 250 ° C. on the translucent substrate, It is preferable to use Teflon (registered trademark) as the translucent substrate 1. This is because Teflon (registered trademark) has a heat resistance of 250 ° C. or higher. The translucent board | substrate 1 can be utilized as a base | substrate when attaching to another structure. That is, it is possible to easily attach to other structures by using metal processed parts and screws on the periphery of the translucent substrate 1.
 ≪導電層≫
 本発明において、導電層2は、後述する光増感剤に実効的な感度を有する波長の光を実質的に透過する材料であればよく、必ずしもすべての波長領域の光に対して透過性を有する必要はない。このような材料としては、たとえばインジウム錫複合酸化物(ITO)、酸化錫(SnO2)、フッ素をドープした酸化錫(FTO)、酸化亜鉛(ZnO)、タンタルあるいはニオブをドープした酸化チタンなどを挙げることができる。
≪Conductive layer≫
In the present invention, the conductive layer 2 only needs to be a material that substantially transmits light having a wavelength having effective sensitivity to the photosensitizer described below, and is not necessarily transparent to light in all wavelength regions. There is no need to have. Examples of such materials include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), zinc oxide (ZnO), titanium oxide doped with tantalum or niobium, and the like. Can be mentioned.
 かかる導電層2は、スパッタ法、スプレー法などの公知の方法により、透光性基板1上に形成することができる。導電層2の膜厚は、0.02~5μm程度であり、その膜抵抗は低いほど好ましく、40Ω/sq以下がより好ましい。 The conductive layer 2 can be formed on the translucent substrate 1 by a known method such as a sputtering method or a spray method. The film thickness of the conductive layer 2 is about 0.02 to 5 μm, and the film resistance is preferably as low as possible, more preferably 40Ω / sq or less.
 透光性基板1としてソーダ石灰フロートガラスを用いる場合は、透光性基板1上に、FTOからなる導電層2を積層することが好ましく、市販品の導電層2付きの透光性基板1を用いてもよい。 When using soda-lime float glass as the translucent substrate 1, it is preferable to laminate | stack the conductive layer 2 which consists of FTO on the translucent substrate 1, and the translucent substrate 1 with the conductive layer 2 of a commercial item is attached. It may be used.
 ≪光電変換層≫
 本発明において、光電変換層3は、多孔性半導体とキャリア輸送材料と光増感剤とを含むものであり、光増感剤を吸着した多孔性半導体からなるものである。このような構成の光電変換層3は、キャリア輸送材料が層内外を移動することができる。以下に、多孔性半導体および光増感剤をそれぞれ説明する。
≪Photoelectric conversion layer≫
In the present invention, the photoelectric conversion layer 3 includes a porous semiconductor, a carrier transport material, and a photosensitizer, and is made of a porous semiconductor that has adsorbed the photosensitizer. In the photoelectric conversion layer 3 having such a configuration, the carrier transport material can move inside and outside the layer. Below, a porous semiconductor and a photosensitizer are each demonstrated.
 (多孔性半導体)
 光電変換層3を構成する多孔性半導体は、一般に光電変換材料に使用されるものであればその種類は特に限定されず、たとえば酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、SrCu22などの半導体およびこれらの組み合わせを用いることができる。これらの中でも、安定性および安全性の点から、酸化チタンを用いることが特に好ましい。
(Porous semiconductor)
The kind of the porous semiconductor constituting the photoelectric conversion layer 3 is not particularly limited as long as it is generally used for a photoelectric conversion material. For example, titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide are used. Semiconductors such as tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , SrCu 2 O 2 and combinations thereof Can be used. Among these, it is particularly preferable to use titanium oxide from the viewpoint of stability and safety.
 多孔性半導体に好適に用いられる酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタンおよび水酸化チタン、含水酸化チタン等を挙げることができ、これらを単独または2種以上を混合して用いることができる。アナターゼ型とルチル型との2種類の結晶系酸化チタンは、その製法や熱履歴によりいずれの形態にもなるが、多孔性半導体を構成する酸化チタンとしては、アナターゼ型酸化チタンの含有率が高いことが好ましく、80%以上のアナターゼ型酸化チタンを含むことがより好ましい。 Titanium oxides suitably used for porous semiconductors include various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide. These may be used alone or in combination of two or more. Two types of crystalline titanium oxide, anatase type and rutile type, can be in any form depending on the production method and thermal history, but as titanium oxide constituting the porous semiconductor, the content of anatase type titanium oxide is high. It is preferable that it contains 80% or more of anatase-type titanium oxide.
 多孔性半導体は、単結晶および多結晶のいずれによって形成されてもよいが、安定性、結晶成長の容易さ、製造コストなどの観点から、多結晶であることが好ましい。また、多孔性半導体は、ナノスケールからマイクロスケールの半導体微粒子によって構成されることが好ましく、より好ましくは酸化チタンの微粒子を用いることである。かかる酸化チタンの微粒子は、気相法、液相法(水熱合成法、硫酸法)など公知の方法により製造することができる。また、デグサ(Degussa)社が開発した塩化物を高温加水分解することによっても得ることができる。 The porous semiconductor may be formed of either a single crystal or a polycrystal, but is preferably a polycrystal from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like. The porous semiconductor is preferably composed of nanoscale to microscale semiconductor fine particles, and more preferably titanium oxide fine particles. Such fine particles of titanium oxide can be produced by a known method such as a gas phase method or a liquid phase method (hydrothermal synthesis method, sulfuric acid method). It can also be obtained by high-temperature hydrolysis of chlorides developed by Degussa.
 また、多孔性半導体を構成する半導体微粒子としては、同一の組成からなる半導体化合物を用いてもよいし、2種類以上の異なる組成の半導体化合物を混合して用いてもよい。また、半導体微粒子の粒子サイズとしては、100~500nm程度の平均粒子径のものを用いてもよいし、5nm~50nm程度の平均粒子径のものを用いてもよいし、これらの半導体微粒子を混合したものを用いてもよい。100~500nm程度の粒子径の半導体微粒子は、入射光を散乱させ光捕捉率の向上に寄与し、5nm~50nm程度の平均粒子径の半導体微粒子は、吸着点をより多くして色素の吸着量の向上に寄与するものと考えられる。 Further, as the semiconductor fine particles constituting the porous semiconductor, semiconductor compounds having the same composition may be used, or two or more kinds of semiconductor compounds having different compositions may be mixed and used. As the particle size of the semiconductor fine particles, those having an average particle size of about 100 to 500 nm may be used, those having an average particle size of about 5 nm to 50 nm may be used, or these semiconductor fine particles may be mixed. You may use what you did. Semiconductor fine particles having a particle size of about 100 to 500 nm scatter incident light and contribute to an improvement in light capture rate. Semiconductor fine particles having an average particle size of about 5 nm to 50 nm can increase the adsorption point by increasing the adsorption point. It is thought that it contributes to the improvement.
 異なる粒子径の半導体微粒子を2種以上混合して多孔性半導体を構成する場合は、粒子径が小さい半導体微粒子の平均粒子径が、粒子径が大きい半導体微粒子の平均粒子径の10倍以上であることが好ましい。2種以上の半導体微粒子を混合する場合、吸着作用の強い半導体化合物を粒子サイズの小さな半導体微粒子とするのが効果的である。 When a porous semiconductor is formed by mixing two or more types of semiconductor fine particles having different particle sizes, the average particle size of the semiconductor fine particles having a small particle size is 10 times or more the average particle size of the semiconductor fine particles having a large particle size. It is preferable. When mixing two or more kinds of semiconductor fine particles, it is effective to use a semiconductor compound having a strong adsorption action as a semiconductor fine particle having a small particle size.
 多孔性半導体の膜厚、すなわち光電変換層3の膜厚は、特に限定されるものではないが、たとえば0.1~100μm程度であることが好ましい。多孔性半導体は、その表面積が大きなものが好ましく、たとえば10~200m2/g程度であることが好ましい。 The film thickness of the porous semiconductor, that is, the film thickness of the photoelectric conversion layer 3 is not particularly limited, but is preferably about 0.1 to 100 μm, for example. The porous semiconductor preferably has a large surface area, for example, about 10 to 200 m 2 / g.
 (光増感剤)
 上記の多孔性半導体に吸着される光増感剤は、光電変換素子に入射した光エネルギを電気エネルギに変換するために設けられるものである。このような光増感剤を多孔性半導体に強固に吸着させるためには、光増感剤を構成する分子中にインターロック基を有するものが好ましい。ここで、インターロック基とは、一般に、多孔性半導体に色素が固定される際に介在し、励起状態の色素と半導体の伝導帯との間の電子の移動を容易にする電気的結合を提供するものであり、具体的にはカルボキシル基、アルコキシ基、ヒドロキシル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などの官能基を挙げることができる。
(Photosensitizer)
The photosensitizer adsorbed on the porous semiconductor is provided to convert light energy incident on the photoelectric conversion element into electric energy. In order to firmly adsorb such a photosensitizer to the porous semiconductor, those having an interlock group in the molecule constituting the photosensitizer are preferable. Here, the interlock group is generally present when the dye is fixed to the porous semiconductor, and provides an electrical bond that facilitates the movement of electrons between the excited state dye and the semiconductor conduction band. Specifically, functional groups such as a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group can be given.
 多孔性半導体に吸着される光増感剤としては、可視光領域や赤外光領域に吸収をもつ種々の有機色素の他、金属錯体色素などを用いることができ、これらの色素の1種または2種以上を組み合わせて用いてもよい。有機色素の吸光係数は、一般に後述する金属錯体色素の吸光係数に比べて大きい。 As the photosensitizer adsorbed on the porous semiconductor, various organic dyes having absorption in the visible light region and the infrared light region, metal complex dyes, and the like can be used. Two or more kinds may be used in combination. The extinction coefficient of the organic dye is generally larger than the extinction coefficient of the metal complex dye described later.
 上記の有機色素としては、たとえばアゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素などを挙げることができる。 Examples of the organic dyes include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include perylene dyes, indigo dyes, and naphthalocyanine dyes.
 上記の金属錯体色素としては、金属原子に遷移金属が配位結合したものである。このような金属錯体色素としては、ポルフィリン系色素、フタロシアニン系色素、ナフタロシアニン系色素、ルテニウム系色素などを挙げることができる。金属錯体色素を構成する金属原子としては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどを挙げることができる。中でも、フタロシアニン系色素、ルテニウム系色素に金属が配位したものが好ましく、ルテニウム系金属錯体色素が特に好ましい。 The above-mentioned metal complex dye is one in which a transition metal is coordinated to a metal atom. Examples of such metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium dyes, and the like. The metal atoms constituting the metal complex dye include Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, and Zr. Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te , Rh and the like. Among these, phthalocyanine dyes and ruthenium dyes in which a metal is coordinated are preferable, and ruthenium metal complex dyes are particularly preferable.
 特に、次式(1)~(3)で表されるルテニウム系金属錯体色素が好ましい。市販のルテニウム系金属錯体色素としては、たとえば、Solaronix社製の商品名Ruthenium535色素、Ruthenium535-bisTBA色素、Ruthenium620-1H3TBA色素などを挙げることができる。 In particular, ruthenium-based metal complex dyes represented by the following formulas (1) to (3) are preferable. Examples of commercially available ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, Ruthenium 620-1H3TBA dye manufactured by Solaronix.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ≪キャリア輸送材料≫
 本発明において、図1に示される光電変換素子10内の空間や空隙の全域にキャリア輸送材料が充填されている。すなわち、キャリア輸送材料4は、図1に示されるように、導電層2、支持基板7、および封止材9によって囲まれた領域に含まれている。さらに、キャリア輸送材料4は、光電変換層3および触媒層5の空隙にも充填されている。なお、本明細書において、キャリア輸送材料4は、便宜的に他の構成要素が介在せず、キャリア輸送材料のみで満たされている領域を意味する。
≪Carrier transport material≫
In the present invention, a carrier transport material is filled in the entire space or gap in the photoelectric conversion element 10 shown in FIG. That is, the carrier transport material 4 is included in a region surrounded by the conductive layer 2, the support substrate 7, and the sealing material 9 as shown in FIG. 1. Further, the carrier transport material 4 is also filled in the gaps between the photoelectric conversion layer 3 and the catalyst layer 5. In the present specification, the carrier transport material 4 means a region filled with only the carrier transport material without other components for convenience.
 このようなキャリア輸送材料は、イオンを輸送できる導電性材料で構成されるものであり、好適な材料としては、液体電解質、固体電解質、ゲル電解質、溶融塩ゲル電解質などを用いることができる。 Such a carrier transport material is composed of a conductive material capable of transporting ions. As a suitable material, a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
 液体電解質は、酸化還元種を含む液状物であればよく、一般に太陽電池の分野に使用されるものであれば特に限定されず、たとえば酸化還元種とこれを溶解可能な溶剤からなるもの、酸化還元種とこれを溶解可能な溶融塩からなるもの、または酸化還元種とこれを溶解可能な溶剤と溶融塩からなるものを用いることができる。 The liquid electrolyte is not particularly limited as long as it is a liquid substance containing redox species, and is generally not limited as long as it is generally used in the field of solar cells. A reducing species and a molten salt that can dissolve the reducing species, or a redox species, a solvent that can dissolve the reducing species, and a molten salt can be used.
 酸化還元種としては、たとえば、I-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、キノン/ハイドロキノン系などを挙げることができ、具体的には、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)の組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素の組み合わせ、および臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)などの金属臭化物と臭素の組み合わせが好ましく、これらの中でも、LiIとI2の組み合わせが特に好ましい。 Examples of the redox species include I / I 3− series, Br 2− / Br 3− series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series. Specifically, A combination of metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium iodide (TEAI), Tetraalkylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), combinations of tetraalkylammonium salts such as tetrahexylammonium iodide (THAI) and iodine, and lithium bromide (LiBr), sodium bromide (NaBr) ), potassium bromide (KBr), calcium bromide (CaBr 2) Any combination of metal bromide and bromine are preferred, among these, the combination of LiI and I 2 is particularly preferable.
 また、酸化還元種の溶剤としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。これらの溶剤は2種類以上を混合して用いることもできる。 Also, examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
 固体電解質は、電子、ホール、イオンを輸送できる導電性材料で、太陽電池の電解質として用いることができ、流動性がないものであればよい。具体的には、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。 The solid electrolyte may be any conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte for a solar cell and has no fluidity. Specifically, hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
 ゲル電解質は、通常、電解質とゲル化剤からなる。ゲル化剤としては、たとえば、架橋ポリアクリル樹脂誘導体や架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などが挙げられる。 Gel electrolyte usually consists of electrolyte and gelling agent. Examples of gelling agents include polymer gelation such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, and polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. Agents and the like.
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩からなる。常温型溶融塩としては、たとえば、ピリジニウム塩類、イミダゾリウム塩類などの含窒素複素環式四級アンモニウム塩化合物類などが挙げられる。 The molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt. Examples of the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salt compounds such as pyridinium salts and imidazolium salts.
 上記の電解質には、必要に応じて添加剤を加えてもよい。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、ヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩が挙げられる。 ∙ Additives may be added to the above electrolyte as necessary. Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazoleioio Examples thereof include imidazole salts such as dye (EII) and hexylmethylimidazole iodide (HMII).
 電解質中の電解質濃度は、0.001mol/L以上1.5mol/L以下の範囲が好ましく、0.01mol/L以上0.7mol/L以下の範囲がより好ましい。ただし、光電変換素子モジュールにおいて、支持基板7が受光面となる場合、入射光が電解液を通して光電変換層3に達し、キャリアが励起されることになる。そのため、電解質濃度により、太陽電池の性能が低下する場合があるので、この点を考慮して電解質濃度を設定することが好ましい。 The electrolyte concentration in the electrolyte is preferably in the range of 0.001 mol / L to 1.5 mol / L, and more preferably in the range of 0.01 mol / L to 0.7 mol / L. However, in the photoelectric conversion element module, when the support substrate 7 serves as a light receiving surface, incident light reaches the photoelectric conversion layer 3 through the electrolytic solution, and carriers are excited. For this reason, the performance of the solar cell may be reduced depending on the electrolyte concentration. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
 ≪触媒層≫
 本発明において、触媒層5は、対極導電層6に接して設けられるものであり、該触媒層5により対極導電層6との電子の受け渡しを効率的に行なうことができる。このような触媒層5は、その表面で電子の受け渡しができる材料であれば特に限定されずいかなるものをも用いることができ、たとえば白金、パラジウムなどの貴金属材料、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレンなどのカーボン系材料などを挙げることができる。
≪Catalyst layer≫
In the present invention, the catalyst layer 5 is provided in contact with the counter electrode conductive layer 6, and the catalyst layer 5 can efficiently transfer electrons to and from the counter electrode conductive layer 6. Such a catalyst layer 5 is not particularly limited as long as it is a material that can transfer electrons on the surface thereof, and any material can be used. For example, noble metal materials such as platinum and palladium, carbon black, ketjen black, carbon Examples thereof include carbon materials such as nanotubes and fullerenes.
 ≪対極導電層≫
 本発明において、対極導電層6は、導電性を有するものであれば特に限定されず、光透過性を必ずしも有していなくてもよい。ただし、支持基板7を受光面にする場合は、導電層と同様に光透過性を有する必要がある。
≪Counterelectrode conductive layer≫
In the present invention, the counter electrode conductive layer 6 is not particularly limited as long as it has conductivity, and may not necessarily have light transmittance. However, in the case where the support substrate 7 is a light receiving surface, it is necessary to have light transmission like the conductive layer.
 上記の対極導電層6を構成する材料としては、たとえば、インジウム錫複合酸化物(ITO)、酸化錫(SnO2)、酸化錫にフッ素をドープしたもの(FTO)、酸化亜鉛(ZnO)などを用いることができる他、チタン、ニッケル、タンタルなど、電解液に対して腐食性を示さない金属を用いてもよい。このような材料からなる対極導電層6は、スパッタ法、スプレー法などの公知の方法により形成することができる。また、触媒層が、十分な導電性を有する場合は、単一の層のみで触媒層と対極導電層とを兼ねることもできる。 Examples of the material constituting the counter electrode conductive layer 6 include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO). In addition to metals that can be used, metals that are not corrosive to the electrolyte, such as titanium, nickel, and tantalum, may be used. The counter electrode conductive layer 6 made of such a material can be formed by a known method such as a sputtering method or a spray method. Moreover, when a catalyst layer has sufficient electroconductivity, it can also serve as a catalyst layer and a counter electrode conductive layer only with a single layer.
 対極導電層6の膜厚は、0.02μm~5μm程度であることが好ましく、対極導電層6の膜抵抗は低いほどよく、40Ω/sq以下が好ましい。対極導電層6を構成する材料が緻密な構造のものである場合は、光増感剤を吸着しやすくしたり、キャリア輸送材料が容易に通過したりするように、対極導電層6に複数の小孔を形成することが好ましい。 The film thickness of the counter electrode conductive layer 6 is preferably about 0.02 μm to 5 μm. The film resistance of the counter electrode conductive layer 6 is preferably as low as possible, and is preferably 40Ω / sq or less. When the material constituting the counter electrode conductive layer 6 has a dense structure, a plurality of counter electrode conductive layers 6 are provided in the counter electrode conductive layer 6 so that the photosensitizer can be easily adsorbed or the carrier transport material can easily pass through. It is preferable to form a small hole.
 かかる小孔は、対極導電層6に対し、物理接触やレーザー加工をすることによって形成することができる。小孔の大きさは、0.1~100μm程度が好ましく、1~50μm程度がより好ましい。小孔間の間隔は1~200μm程度であることが好ましく、10~300μm程度であることがより好ましい。また、対極導電層6にストライプ状の開口部を形成することによっても同様な効果が得られる。ストライプ状の開口部は、1μm~200μm程度の間隔であることが好ましく、より好ましくは10μm~300μm程度の間隔である。 Such small holes can be formed by subjecting the counter electrode conductive layer 6 to physical contact or laser processing. The size of the small holes is preferably about 0.1 to 100 μm, more preferably about 1 to 50 μm. The interval between the small holes is preferably about 1 to 200 μm, and more preferably about 10 to 300 μm. Further, a similar effect can be obtained by forming a stripe-shaped opening in the counter electrode conductive layer 6. The stripe-shaped openings are preferably spaced at an interval of about 1 μm to 200 μm, more preferably at an interval of about 10 μm to 300 μm.
 ≪支持基板≫
 本発明において、支持基板7は、キャリア輸送材料4を内部に保持し、かつ外部からの水などの浸入を防ぐことができるものを用いる必要がある。このような支持基板7が受光面となる場合は、透光性基板1と同様の光透過性が必要となるため、透光性基板1と同様の材料を用いる必要がある。光電変換素子を屋外に設置する場合を考慮すると、支持基板7は、強化ガラスなどを用いることが好ましい。
≪Support substrate≫
In the present invention, it is necessary to use the support substrate 7 that can hold the carrier transport material 4 inside and prevent the intrusion of water or the like from the outside. When such a support substrate 7 serves as a light receiving surface, it is necessary to use the same material as that of the translucent substrate 1 because the same light transmissivity as that of the translucent substrate 1 is required. Considering the case where the photoelectric conversion element is installed outdoors, the support substrate 7 is preferably made of tempered glass or the like.
 ここで、支持基板7(表面に触媒層や対極導電層が形成される場合これらも含む)は、透光性基板1上に形成された光電変換層3とは接触しないことが好ましい。これにより光電変換素子の内部に十分な量のキャリア輸送材料4を保持することができる。このような支持基板7は、キャリア輸送材料4を注入するための注入口を備えることが好ましい。かかる注入口から真空注入法や真空含浸法などを用いてキャリア輸送材料を注入することができる。 Here, it is preferable that the support substrate 7 (including a catalyst layer or a counter electrode conductive layer formed on the surface thereof) does not come into contact with the photoelectric conversion layer 3 formed on the translucent substrate 1. Thereby, a sufficient amount of the carrier transport material 4 can be held inside the photoelectric conversion element. Such a support substrate 7 preferably includes an injection port for injecting the carrier transport material 4. The carrier transport material can be injected from such an inlet using a vacuum injection method, a vacuum impregnation method, or the like.
 また、支持基板7と透光性基板1上に形成された光電変換層3とが接触していないことにより、注入口からキャリア輸送材料を注入するときの注入速度を速くすることができる。このため、光電変換素子および光電変換素子モジュールの製造タクトを向上させることができる。 Further, since the support substrate 7 and the photoelectric conversion layer 3 formed on the translucent substrate 1 are not in contact with each other, the injection speed when the carrier transport material is injected from the injection port can be increased. For this reason, the manufacturing tact of a photoelectric conversion element and a photoelectric conversion element module can be improved.
 本実施の形態において、支持基板7は、キャリア輸送材料4を注入するための注入孔8’を有する。この注入孔8’は、光電変換層3を支持基板7に投影した投影面の少なくとも一部に位置することが好ましい。このような位置に注入孔8’を設けることにより、注入孔と同じ投影部分に位置する導電層部分の面積を減らすことができるため、投影面積の割合を減らすことができる。 In the present embodiment, the support substrate 7 has an injection hole 8 ′ for injecting the carrier transport material 4. The injection hole 8 ′ is preferably located on at least a part of a projection surface obtained by projecting the photoelectric conversion layer 3 onto the support substrate 7. By providing the injection hole 8 ′ at such a position, it is possible to reduce the area of the conductive layer portion located at the same projection portion as the injection hole, so that the ratio of the projection area can be reduced.
 ≪封止材≫
 本発明において、封止材9は、透光性基板1と支持基板7とを結合させるために設けられるものである。このような封止材9は、シリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、ガラス系材料などからなることが好ましく、これらの2種類以上を用いて積層構造にしてもよい。
≪Sealing material≫
In the present invention, the sealing material 9 is provided to bond the translucent substrate 1 and the support substrate 7 together. Such a sealing material 9 is preferably made of a silicone resin, an epoxy resin, a polyisobutylene-based resin, a hot-melt resin, a glass-based material, or the like, and may have a laminated structure using two or more of these.
 封止材9を構成する材料としては、たとえば、スリーボンド社製、型番:31X-101や、スリーボンド社製、型番:31X-088等のように、一般に市販されているエポキシ樹脂などを挙げることができる。シリコーン樹脂、エポキシ樹脂、ガラスフリットを用いて封止材9を形成する場合は、ディスペンサーを用いて形成することが好ましく、ホットメルト樹脂を用いて封止材9を形成する場合は、シート状のホットメルト樹脂にパターニングした穴を開けることにより形成することができる。 Examples of the material constituting the sealing material 9 include commercially available epoxy resins such as Three Bond, model number 31X-101, Three Bond, model number 31X-088, and the like. it can. When the sealing material 9 is formed using a silicone resin, an epoxy resin, or a glass frit, it is preferably formed using a dispenser, and when the sealing material 9 is formed using a hot melt resin, a sheet-like material is used. It can be formed by drilling a patterned hole in the hot melt resin.
 本発明において、封止材9は、光電変換層3と接することが好ましい。封止材9が光電変換層3と接することにより、投影面積の割合を減らすことができる。 In the present invention, the sealing material 9 is preferably in contact with the photoelectric conversion layer 3. When the sealing material 9 is in contact with the photoelectric conversion layer 3, the ratio of the projected area can be reduced.
 ≪注入孔封止≫
 上記の支持基板7上に、注入孔8’を封止するための注入孔封止8を有する。ここで、注入孔封止8を構成する材料の少なくとも一部は、導電層2または対極導電層6に接することが好ましい。このように注入孔封止8を構成する材料が、導電層2または対極導電層6に接することにより、封止孔周辺の電解液と接する導電層または対極導電層の面積を減らすことができるため、投影面積の割合を減らすことができる。なお、注入孔封止8を構成する材料としては、上記の封止材9を構成する材料と同一のものを用いることができる。以下においては、多孔性半導体の形成および光増感剤の吸着方法を説明する。
≪Injection hole sealing≫
An injection hole seal 8 for sealing the injection hole 8 ′ is provided on the support substrate 7. Here, it is preferable that at least a part of the material constituting the injection hole seal 8 is in contact with the conductive layer 2 or the counter electrode conductive layer 6. Since the material constituting the injection hole seal 8 is in contact with the conductive layer 2 or the counter electrode conductive layer 6, the area of the conductive layer or the counter electrode conductive layer in contact with the electrolyte around the seal hole can be reduced. , The proportion of the projected area can be reduced. In addition, as a material which comprises the injection hole seal | sticker 8, the material same as the material which comprises said sealing material 9 can be used. Below, the formation method of a porous semiconductor and the adsorption | suction method of a photosensitizer are demonstrated.
 ≪多孔性半導体の形成方法≫
 導電層2上に多孔性半導体を形成する方法としては、特に限定されず、公知の方法を用いることができる。すなわちたとえば、半導体微粒子を適当な溶剤に懸濁した懸濁液を、公知の方法を用いて所定の場所に塗布し、乾燥および焼成の少なくとも一方を行なうことによって多孔性半導体を形成する。
<< Method of forming porous semiconductor >>
The method for forming the porous semiconductor on the conductive layer 2 is not particularly limited, and a known method can be used. That is, for example, a porous semiconductor is formed by applying a suspension in which semiconductor fine particles are suspended in a suitable solvent to a predetermined place using a known method, and performing at least one of drying and baking.
 光電変換層3と封止材9とが接触するように光電変換層3を形成したい場合は、懸濁液の粘度を低く調整し、これをディスペンサーなどから封止材9によって分割される領域に塗布することが好ましい。これによりペーストの自重で当該領域の端部まで広がり容易にレベリングする。 When it is desired to form the photoelectric conversion layer 3 so that the photoelectric conversion layer 3 and the sealing material 9 are in contact with each other, the viscosity of the suspension is adjusted low, and this is divided into regions divided by the sealing material 9 from a dispenser or the like. It is preferable to apply. Thereby, it spreads to the edge part of the said area | region with the dead weight of a paste, and is leveled easily.
 懸濁液に用いる溶剤としては、エチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール類、イソプロピルアルコール/トルエンなどのアルコール系混合溶剤、水などを挙げることができる。また、このような懸濁液の代わりに市販の酸化チタンペースト(たとえば、Solaronix社製、Ti-nanoxide、T、D、T/SP、D/SP)を用いてもよい。 Examples of the solvent used in the suspension include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water. Instead of such a suspension, a commercially available titanium oxide paste (for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP) may be used.
 このようにして得られた懸濁液を導電層2上に塗布した上で、乾燥および焼成の少なくとも一方を行なうことにより、導電層2上に多孔性半導体を形成する。懸濁液を塗布する方法としては、ドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法など公知の方法を用いることができる。 A porous semiconductor is formed on the conductive layer 2 by applying the suspension thus obtained onto the conductive layer 2 and then performing at least one of drying and baking. As a method for applying the suspension, known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method can be used.
 ここで、多孔性半導体を乾燥および焼成するために必要な条件(温度、時間、雰囲気など)は、半導体微粒子の種類に応じて適宜設定すればよく、たとえば、大気雰囲気下または不活性ガス雰囲気下で乾燥および焼成する場合は、50~800℃程度の範囲で10秒~12時間程度行なうことが好ましい。この乾燥および焼成は、単一の温度で1回または温度を変化させて2回以上行なってもよい。 Here, the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles. For example, in an air atmosphere or an inert gas atmosphere In the case of drying and baking at a temperature of 50 to 800 ° C., it is preferably performed for 10 seconds to 12 hours. This drying and baking may be performed once at a single temperature or twice or more at different temperatures.
 多孔性半導体は、複数層を積層したものであってもよい。多孔性半導体を積層させるためには、異なる半導体微粒子の懸濁液を調製し、塗布、乾燥、および焼成の少なくともいずれかの工程を2回以上繰り返すことが好ましい。 The porous semiconductor may be a laminate of a plurality of layers. In order to laminate the porous semiconductor, it is preferable to prepare a suspension of different semiconductor fine particles and repeat at least one of the steps of coating, drying, and baking twice or more.
 このようにして多孔性半導体を形成した後、多孔性半導体の性能を向上させるために、後処理を行なうことが好ましい。多孔性半導体に対し後処理を行なうことにより、半導体微粒子同士の電気的接続を向上したり、多孔性半導体の表面積を増加させたり、半導体微粒子上の欠陥準位を低減させたりすることができる。たとえば、酸化チタンからなる多孔性半導体を、四塩化チタン水溶液で後処理することにより、多孔性半導体の性能を向上させることができる。 After forming the porous semiconductor in this way, it is preferable to perform a post-treatment in order to improve the performance of the porous semiconductor. By performing post-processing on the porous semiconductor, the electrical connection between the semiconductor fine particles can be improved, the surface area of the porous semiconductor can be increased, and the defect level on the semiconductor fine particles can be reduced. For example, the performance of a porous semiconductor can be improved by post-processing a porous semiconductor made of titanium oxide with a titanium tetrachloride aqueous solution.
 ≪光増感剤の吸着≫
 次に、多孔性半導体に光増感剤を吸着させることにより、光電変換層3を作製する。光増感剤を吸着させる方法としては特に限定されず、たとえば、多孔性半導体を上述の色素吸着用溶液に浸漬する方法を用いることができる。この際、色素吸着用溶液を多孔性半導体内の微細孔奥部まで浸透させるために、色素吸着用溶液を加熱してもよい。
≪Adsorption of photosensitizer≫
Next, the photoelectric conversion layer 3 is produced by making a photosensitizer adsorb | suck to a porous semiconductor. The method for adsorbing the photosensitizer is not particularly limited. For example, a method of immersing the porous semiconductor in the above-described dye adsorption solution can be used. At this time, the dye adsorbing solution may be heated in order to penetrate the dye adsorbing solution to the depths of the micropores in the porous semiconductor.
 光増感剤を溶解させる溶剤としては、光増感剤を溶解するものであればよく、たとえば、アルコール、トルエン、アセトニトリル、テトラヒドロフラン(THF)、クロロホルム、ジメチルホルムアミドなどが挙げられる。かかる溶剤は、精製されたものを用いることが好ましく、2種類以上を混合して用いてもよい。 The solvent for dissolving the photosensitizer may be any solvent that can dissolve the photosensitizer, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, dimethylformamide and the like. As the solvent, a purified one is preferably used, and two or more kinds may be mixed and used.
 色素吸着用溶液に含まれる色素の濃度は、使用する色素、溶剤の種類、色素吸着工程などの条件に応じて適宜設定することができるが、吸着機能を向上させるためには、高濃度であることが好ましく、たとえば、1×10-5mol/L以上であることが好ましい。色素吸着用溶液の調製においては、色素の溶解性を向上させるために加熱してもよい。 The concentration of the dye contained in the dye adsorption solution can be appropriately set according to the conditions such as the dye to be used, the type of solvent, the dye adsorption process, etc., but it is a high concentration to improve the adsorption function. For example, it is preferably 1 × 10 −5 mol / L or more. In preparing the dye adsorption solution, heating may be performed to improve the solubility of the dye.
 (実施の形態2)
 図2(a)は、本発明の光電変換素子をある一方の面で切断したときの断面図であり、(b)は、(a)の光電変換素子をB-Bで切断したときの断面図である。
(Embodiment 2)
2A is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and FIG. 2B is a cross-section when the photoelectric conversion element of FIG. 2A is cut along BB. FIG.
 本実施の形態の光電変換素子は、図2(a)および図2(b)に示されるものであってもよい。すなわち、本実施の形態の光電変換素子は、図2(b)に示されるように、透光性基板11と支持基板17とが封止材19により固定されたものであり、透光性基板11上に形成された導電層12と、該導電層12上に形成された光電変換層13とを有するものである。 The photoelectric conversion element of the present embodiment may be the one shown in FIG. 2 (a) and FIG. 2 (b). That is, in the photoelectric conversion element of this embodiment, as shown in FIG. 2B, the translucent substrate 11 and the support substrate 17 are fixed by the sealing material 19, and the translucent substrate 11 includes a conductive layer 12 formed on the conductive layer 12 and a photoelectric conversion layer 13 formed on the conductive layer 12.
 そして、導電層12には、スクライブライン12’が設けられている。該スクライブライン12’上および光電変換層13上には、多孔質絶縁層111が設けられる。該多孔質絶縁層111上に触媒層15および対極導電層16が設けられる。また、支持基板17が封止材19によって透光性基板11に接合されている。支持基板17と封止材19と透光性基板11によって囲まれた領域にキャリア輸送材料14が充填されている。キャリア輸送材料14は、光電変換層13、多孔質絶縁層111、および触媒層15の空隙にも充填されている。以下においては、実施の形態1で用いない多孔質絶縁層を説明する。多孔質絶縁層111以外の各部は、実施の形態1で説明したものと同一のものを用いることができる。 The conductive layer 12 is provided with a scribe line 12 '. A porous insulating layer 111 is provided on the scribe line 12 ′ and the photoelectric conversion layer 13. A catalyst layer 15 and a counter electrode conductive layer 16 are provided on the porous insulating layer 111. Further, the support substrate 17 is bonded to the translucent substrate 11 by the sealing material 19. A region surrounded by the support substrate 17, the sealing material 19, and the translucent substrate 11 is filled with the carrier transport material 14. The carrier transport material 14 is also filled in the voids of the photoelectric conversion layer 13, the porous insulating layer 111, and the catalyst layer 15. In the following, a porous insulating layer that is not used in Embodiment 1 will be described. Each part other than the porous insulating layer 111 can be the same as that described in the first embodiment.
 ≪多孔質絶縁層≫
 本実施の形態において、光電変換層13と触媒層15との間に多孔質絶縁層111を有する。多孔質絶縁層111は、光電変換層13から対極導電層16へのリーク電流を低減するために設けられるものである。多孔質絶縁層111は、光電変換層3に接して設けられ、内部にキャリア輸送材料を含むものである。図2(a)に示すように、光電変換層3の上部および側面を覆うように多孔質絶縁層111を形成することにより、光電変換層3からのリーク電流を低減することができる。
≪Porous insulation layer≫
In the present embodiment, a porous insulating layer 111 is provided between the photoelectric conversion layer 13 and the catalyst layer 15. The porous insulating layer 111 is provided to reduce the leakage current from the photoelectric conversion layer 13 to the counter electrode conductive layer 16. The porous insulating layer 111 is provided in contact with the photoelectric conversion layer 3 and contains a carrier transport material therein. As shown in FIG. 2A, the leakage current from the photoelectric conversion layer 3 can be reduced by forming the porous insulating layer 111 so as to cover the top and side surfaces of the photoelectric conversion layer 3.
 上記の多孔質絶縁層111は、その内部に封止材19を構成する材料を含む部分があることが好ましい。このように多孔質絶縁層111の一部が封止材を含むことにより、多孔性絶縁層と接する部分の導電層部分を覆うことになり、結果として投影面積の割合を減らすことができる。 It is preferable that the porous insulating layer 111 has a portion including the material constituting the sealing material 19 inside. As described above, when part of the porous insulating layer 111 includes the sealing material, the conductive layer portion in contact with the porous insulating layer is covered, and as a result, the ratio of the projected area can be reduced.
 多孔質絶縁層111を構成する材料としては、たとえば、酸化ニオブ、酸化ジルコニウム、シリカガラス、ソーダガラスなどの酸化ケイ素、酸化アルミニウム、チタン酸バリウムなどが挙げられ、これらの材料の1種または2種以上を組合せて用いることができる。多孔質絶縁層111に用いる材料は、粒子状であるのが好ましく、その平均粒径は5~500nmであることがより好ましく、さらに好ましくは10~300nmである。また、粒径が100nm~500nmの酸化チタンまたはルチル型酸化チタンを好適に用いることができる。 Examples of the material constituting the porous insulating layer 111 include silicon oxide such as niobium oxide, zirconium oxide, silica glass, and soda glass, aluminum oxide, and barium titanate. One or two of these materials are used. The above can be used in combination. The material used for the porous insulating layer 111 is preferably in the form of particles, and the average particle diameter is more preferably 5 to 500 nm, and still more preferably 10 to 300 nm. Further, titanium oxide or rutile type titanium oxide having a particle size of 100 nm to 500 nm can be suitably used.
 上記の多孔質絶縁層111は、1×1012Ω・cm以下の導電率の材料からなることが好ましく、導電率が低いほど好ましい。このような導電率の材料を用いることにより、光電変換層13から対極導電層16へのリーク電流を低減することができる。一方、多孔質絶縁層111が1×1012Ω・cmを超える導電率の材料であると、リーク電流が流れやすくなり、フィルファクタが低下する等により光電変換効率が低下するため好ましくない。 The porous insulating layer 111 is preferably made of a material having a conductivity of 1 × 10 12 Ω · cm or less, and the lower the conductivity, the more preferable. By using a material having such conductivity, leakage current from the photoelectric conversion layer 13 to the counter electrode conductive layer 16 can be reduced. On the other hand, it is not preferable that the porous insulating layer 111 is made of a material having a conductivity exceeding 1 × 10 12 Ω · cm because leakage current easily flows and the photoelectric conversion efficiency decreases due to a decrease in fill factor.
 上記の多孔質絶縁層111は、0.2μm以上20μm以下の膜厚であることが好ましく、より好ましくは0.5μm以上5μm以下の膜厚である。多孔質絶縁層111の膜厚が20μmを超えると、短絡電流値(Jsc)が低下するため好ましくない。また、多孔質絶縁層111の膜厚が0.2μm未満であると、リーク電流が発生しやすくなるため好ましくない。 The porous insulating layer 111 preferably has a thickness of 0.2 μm to 20 μm, more preferably 0.5 μm to 5 μm. If the thickness of the porous insulating layer 111 exceeds 20 μm, the short circuit current value (Jsc) is lowered, which is not preferable. Further, it is not preferable that the thickness of the porous insulating layer 111 is less than 0.2 μm because a leak current is likely to occur.
 ≪多孔質絶縁層の形成≫
 次に、光電変換層3上に多孔質絶縁層111を形成する方法を説明する。多孔質絶縁層111は、上述の多孔性半導体と同様の方法を用いて形成することができる。すなわち、上記微粒子状の絶縁物を適当な溶剤に分散し、さらにエチルセルロース、ポリエチレングリコール(PEG)などの高分子化合物を混合してペーストを作製する。このようにして得られたペーストを光電変換層3上に塗布し、乾燥および焼成の少なくとも一方を行なう。これにより、光電変換層3上に多孔質絶縁層111を形成する。
≪Formation of porous insulating layer≫
Next, a method for forming the porous insulating layer 111 on the photoelectric conversion layer 3 will be described. The porous insulating layer 111 can be formed using a method similar to that of the above-described porous semiconductor. That is, the above-mentioned fine particle insulator is dispersed in a suitable solvent, and a polymer compound such as ethyl cellulose and polyethylene glycol (PEG) is further mixed to prepare a paste. The paste thus obtained is applied onto the photoelectric conversion layer 3, and at least one of drying and baking is performed. Thereby, the porous insulating layer 111 is formed on the photoelectric conversion layer 3.
 (実施の形態3)
 図3(a)は、本発明の光電変換素子をある一方の面で切断したときの断面図であり、(b)は、(a)の光電変換素子をC-Cで切断したときの断面図である。本実施の形態の光電変換素子は、図3に示される形態のものであってもよい。図3に示される光電変換素子は、実施の形態2の光電変換素子に対し、封止材29と透光性基板21との間に絶縁層122を設けたこと、多孔質絶縁層121の上面に触媒層25および対極導電層26を設けたことが異なる他は同一である。以下においては、実施の形態1および2で用いていない絶縁層を説明する。
(Embodiment 3)
3A is a cross-sectional view when the photoelectric conversion element of the present invention is cut along one surface, and FIG. 3B is a cross-section when the photoelectric conversion element of FIG. FIG. The photoelectric conversion element of this embodiment may have the form shown in FIG. The photoelectric conversion element shown in FIG. 3 is different from the photoelectric conversion element of Embodiment 2 in that an insulating layer 122 is provided between the sealing material 29 and the translucent substrate 21, and the upper surface of the porous insulating layer 121. The catalyst layer 25 and the counter electrode conductive layer 26 are the same except that the catalyst layer 25 and the counter electrode conductive layer 26 are provided. In the following, an insulating layer that is not used in the first and second embodiments will be described.
 ≪絶縁層≫
 本実施の形態で用いられる絶縁層122は、導電層22または対極導電層26とキャリア輸送材料24との接触を抑制するために設けられるものである。導電層22または対極導電層26とキャリア輸送材料24との接触を抑制することにより、実質的な電解液と接する導電層または対極導電層の面積を減らすことができるため、投影面積の割合を減らすことができる。
≪Insulating layer≫
The insulating layer 122 used in this embodiment is provided in order to suppress contact between the conductive layer 22 or the counter electrode conductive layer 26 and the carrier transport material 24. By suppressing the contact between the conductive layer 22 or the counter electrode conductive layer 26 and the carrier transporting material 24, the area of the conductive layer or the counter electrode conductive layer in contact with the substantial electrolyte can be reduced, so the ratio of the projected area is reduced. be able to.
 上記の絶縁層122を形成する材料は、電気的に絶縁できる材料であればよく、その内部構造は緻密であることが好ましい。このような絶縁層122を構成する材料としては、たとえばシリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、ガラス系材料などを挙げることができ、これらの2種類以上を用いて複数層構造にしてもよい。 The material for forming the insulating layer 122 may be any material that can be electrically insulated, and the internal structure is preferably dense. Examples of the material constituting the insulating layer 122 include a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, a glass material, and the like. A multilayer structure using two or more of these materials It may be.
 ただし、多孔性半導体を形成する前に絶縁層122を形成する場合、絶縁層122は、多孔性半導体の形成時の加熱温度に対する耐熱性を有する必要がある。また、透光性基板1を受光面とする場合、絶縁層122も紫外線に照射されることになるため、紫外線に対する耐光性が必要となる。以上のような観点から、絶縁層122としては、ガラス系材料を用いることがより好ましく、さらに好ましくは、ビスマス系ガラスペーストを用いることである。 However, when the insulating layer 122 is formed before the porous semiconductor is formed, the insulating layer 122 needs to have heat resistance against the heating temperature at the time of forming the porous semiconductor. Further, when the light-transmitting substrate 1 is used as a light receiving surface, the insulating layer 122 is also irradiated with ultraviolet rays, so that light resistance to ultraviolet rays is required. From the above viewpoint, it is more preferable to use a glass-based material as the insulating layer 122, and it is more preferable to use a bismuth-based glass paste.
 上記で挙げたガラス系材料としては、たとえば、ガラスペーストやガラスフリットとして市販されているものがある。キャリア輸送材料との反応性や環境問題を考慮すれば、鉛フリーの材料であることが好ましい。さらに、ガラス材料からなる透光性基板21上に絶縁層122を形成する場合、550℃以下の焼成温度で形成されることが好ましい。 Examples of the glass-based materials mentioned above include those commercially available as glass paste and glass frit. In consideration of reactivity with the carrier transport material and environmental problems, a lead-free material is preferable. Furthermore, when forming the insulating layer 122 on the translucent board | substrate 21 which consists of glass materials, it is preferable to form with the calcination temperature of 550 degrees C or less.
 上記の絶縁層122は、光電変換層23を導電層22に向けて垂直に投影したときの投影面以外の導電層22に接することが好ましい。これにより、電解液と接する導電層の面積を減らすことができる。また、絶縁層122が、光電変換層23を対極導電層26に向けて垂直に投影したときの投影面以外の対極導電層26に接していてもよい。これにより、電解液と接する対極導電層の面積を減らすことができる。絶縁層122は、導電層22および対極導電層26に接することが好ましい。これにより、電解液と接する導電層および対極導電層の両方の面積を減らすことができる。 The insulating layer 122 is preferably in contact with the conductive layer 22 other than the projected surface when the photoelectric conversion layer 23 is vertically projected toward the conductive layer 22. Thereby, the area of the conductive layer in contact with the electrolytic solution can be reduced. Further, the insulating layer 122 may be in contact with the counter electrode conductive layer 26 other than the projection surface when the photoelectric conversion layer 23 is vertically projected toward the counter electrode conductive layer 26. Thereby, the area of the counter electrode conductive layer in contact with the electrolytic solution can be reduced. The insulating layer 122 is preferably in contact with the conductive layer 22 and the counter electrode conductive layer 26. Thereby, the area of both the conductive layer in contact with the electrolytic solution and the counter electrode conductive layer can be reduced.
 ≪光電変換素子モジュール≫
 本発明は、2以上の光電変換素子を電気的に直列に接続されてなる光電変換素子モジュールでもあり、2以上の光電変換素子のうちの少なくとも1つは、本発明の光電変換素子であることを特徴とするものである。図4は、本発明の光電変換素子モジュールの構造の一例を模式的に示す断面図である。
≪Photoelectric conversion element module≫
The present invention is also a photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series, and at least one of the two or more photoelectric conversion elements is the photoelectric conversion element of the present invention. It is characterized by. FIG. 4 is a cross-sectional view schematically showing an example of the structure of the photoelectric conversion element module of the present invention.
 図4の光電変換素子モジュールは、本発明の光電変換素子を4つ接続したものであり、各光電変換素子が、図1に示されるように、透光性基板31と、該透光性基板31上に形成された導電層32と、該導電層32上に形成された光電変換層33と、該光電変換層33に接して形成された多孔質絶縁層311と、該多孔質絶縁層311に接して形成された触媒層35とを有する。そして、光電変換層33を透光性基板31に向けて垂直に投影したときの投影面積に対し、導電層32、触媒層35、および対極導電層36と、キャリア輸送材料34とが接する部分を透光性基板31に向けて垂直に投影したときの投影面積の割合は、1.2以下であることを特徴とする。 The photoelectric conversion element module of FIG. 4 is obtained by connecting four photoelectric conversion elements of the present invention. Each photoelectric conversion element includes a translucent substrate 31 and the translucent substrate as shown in FIG. A conductive layer 32 formed on 31, a photoelectric conversion layer 33 formed on the conductive layer 32, a porous insulating layer 311 formed in contact with the photoelectric conversion layer 33, and the porous insulating layer 311. And a catalyst layer 35 formed in contact with the substrate. A portion where the conductive layer 32, the catalyst layer 35, the counter electrode conductive layer 36, and the carrier transport material 34 are in contact with the projected area when the photoelectric conversion layer 33 is vertically projected toward the translucent substrate 31. The ratio of the projected area when projected vertically onto the translucent substrate 31 is 1.2 or less.
 上記の光電変換層33、多孔質絶縁層311、および触媒層35の空隙には、キャリア輸送材料が充填されている。また、触媒層35上には対極導電層36が形成される。透光性基板31と支持基板37とは封止材39によって接続される。また、導電層32は、部分的に断続されており、その断続されている部分をスクライブライン32’という。そして、透光性基板31の端部には、集電電極41が設けられている。 The carrier transport material is filled in the gaps of the photoelectric conversion layer 33, the porous insulating layer 311, and the catalyst layer 35. A counter electrode conductive layer 36 is formed on the catalyst layer 35. The translucent substrate 31 and the support substrate 37 are connected by a sealing material 39. The conductive layer 32 is partially interrupted, and the interrupted portion is referred to as a scribe line 32 '. A collecting electrode 41 is provided at the end of the translucent substrate 31.
 本発明の光電変換素子モジュールは、図4に示されるもののみに限定されず、2以上の光電変換素子を電気的に直列および/または並列に接続されてなるものも含まれ、2以上の光電変換素子のうちの少なくとも1つが、本発明の光電変換素子である限り本発明を逸脱するものではない。光電変換素子モジュールは、3以上の光電変換素子を含むことが好ましい。上記の光電変換素子モジュールを構成する全ての光電変換素子が本発明の光電変換素子であることが好ましい。 The photoelectric conversion element module of the present invention is not limited to the one shown in FIG. 4, and includes one in which two or more photoelectric conversion elements are electrically connected in series and / or in parallel. As long as at least one of the conversion elements is the photoelectric conversion element of the present invention, it does not depart from the present invention. The photoelectric conversion element module preferably includes three or more photoelectric conversion elements. It is preferable that all the photoelectric conversion elements constituting the photoelectric conversion element module are the photoelectric conversion elements of the present invention.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において、各層の膜厚は、特に断りのない限り、表面粗さ形状測定機(株式会社東京精密製、商品名:サーフコム1400A)を用いて測定した値である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following, the film thickness of each layer is a value measured using a surface roughness shape measuring instrument (trade name: Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.) unless otherwise specified.
 <実施例1>
 本実施例では、図1に示される光電変換素子10を作製した。まず、10mm×65mm×厚さ1.0mmの透明電極基板(日本板硝子株式会社製、SnO2膜付ガラス、シート抵抗:10.5Ω/sq)を用意した。該透明電極基板は、ガラスからなる透光性基板1上に、SnO2からなる導電層2を成膜したものである。
<Example 1>
In this example, the photoelectric conversion element 10 shown in FIG. 1 was produced. First, a transparent electrode substrate (manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film, sheet resistance: 10.5Ω / sq) having a size of 10 mm × 65 mm × thickness 1.0 mm was prepared. The transparent electrode substrate is obtained by forming a conductive layer 2 made of SnO 2 on a translucent substrate 1 made of glass.
 そして、5mm×50mmのパターンを有するスクリーン版とスクリーン印刷機(ニューロング精密工業株式会社製、型番:LS-150)を用いて、上記の導電層2上に、市販の酸化チタンペースト(Solaronix社製、商品名:D/SP)を塗布し、室温で1時間レベリングを行なった。 Using a screen plate having a pattern of 5 mm × 50 mm and a screen printing machine (manufactured by Neurong Seimitsu Kogyo Co., Ltd., model number: LS-150), a commercially available titanium oxide paste (Solaronix) Manufactured, trade name: D / SP), and leveling was performed at room temperature for 1 hour.
 その後、酸化チタンペーストの塗膜を80℃に設定したオーブンで20分間乾燥した。さらに、上記塗膜を500℃に設定した焼成炉(株式会社デンケン製、型番:KDF P-100)を用いて空気中で60分間焼成した。上記と同様に、酸化チタンペーストの塗布および焼成を各4回ずつ繰り返すことにより、膜厚25μmの多孔性半導体を作製した。 Thereafter, the coating film of titanium oxide paste was dried in an oven set at 80 ° C. for 20 minutes. Further, the coating film was baked in air for 60 minutes using a baking furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C. In the same manner as described above, a porous semiconductor having a film thickness of 25 μm was produced by repeating the application and baking of the titanium oxide paste four times each.
 次いで、体積比1:1のアセトニトリルとt-ブタノールとの混合溶剤に対し、上記式(2)の色素(Solaronix社製、商品名:Ruthenium620 1H3TBA)を濃度4×10-4モル/リットルになるように溶解させて色素吸着用溶液を調製した。 Next, the dye of the above formula (2) (manufactured by Solaronix, trade name: Ruthenium 620 1H3TBA) at a concentration ratio of 4 × 10 −4 mol / liter with respect to a mixed solvent of acetonitrile and t-butanol having a volume ratio of 1: 1 The dye adsorbing solution was prepared by dissolving as described above.
 この色素吸着用溶液に、上記で作製した多孔性半導体を浸漬させて、その状態を室温で100時間保った。その後、多孔性半導体をエタノールで洗浄し、約60℃で約5分間乾燥させることにより、多孔性半導体に色素を吸着させた。このようにして色素が吸着した多孔性半導体からなる光電変換層3を作製した。 The porous semiconductor prepared above was immersed in this dye adsorption solution, and the state was kept at room temperature for 100 hours. Thereafter, the porous semiconductor was washed with ethanol and dried at about 60 ° C. for about 5 minutes, thereby adsorbing the dye to the porous semiconductor. In this way, a photoelectric conversion layer 3 made of a porous semiconductor adsorbed with a dye was produced.
 上記の透光性基板1および導電層2と同様の10mm×65mm×厚さ1.0mmの透明電極基板を支持基板7および対極導電層6として用いた。そして、該対極導電層6の表面にPtからなる触媒層5を形成した。 A transparent electrode substrate having a size of 10 mm × 65 mm × thickness 1.0 mm similar to the above-described translucent substrate 1 and conductive layer 2 was used as the support substrate 7 and the counter electrode conductive layer 6. Then, a catalyst layer 5 made of Pt was formed on the surface of the counter electrode conductive layer 6.
 そして、光電変換層3が形成された透光性基板1と、支持基板7とを熱融着フィルム(デュポン社製、ハイミラン1702)を用いて貼り合せた。そして、約100℃に設定したオーブンで10分間加熱することにより、熱融着フィルムの開口部(内寸)が5.5mm×51mmとなるように圧着した。 And the translucent board | substrate 1 with which the photoelectric converting layer 3 was formed, and the support substrate 7 were bonded together using the heat sealing | fusion film (the Du Pont company make, High Milan 1702). And it was crimped | bonded so that the opening part (internal dimension) of a heat sealing | fusion film might be set to 5.5 mm x 51 mm by heating for 10 minutes in the oven set to about 100 degreeC.
 次に、開口部を有する熱溶着フィルム(デュポン社製、ハイミラン1702)を用いて、支持基板7と透光性基板1とを貼り合わせた。次いで、約100℃に設定したオーブンで10分間加熱することにより、支持基板7と透光性基板1とを圧着した。この熱融着フィルムが封止材9となる。 Next, the support substrate 7 and the translucent substrate 1 were bonded together using a heat welding film having an opening (manufactured by DuPont, Himiran 1702). Subsequently, the support substrate 7 and the translucent substrate 1 were pressure-bonded by heating for 10 minutes in an oven set to about 100 ° C. This heat-sealing film becomes the sealing material 9.
 次いで、支持基板7に設けられた注入孔8’から予め調製したキャリア輸送材料を注入した。キャリア輸送材料は、アセトニトリルを溶剤として、酸化還元種としてLiI(アルドリッチ社製)が濃度0.1モル/リットル、I2(キシダ化学社製)が濃度0.01モル/リットルになり、さらに添加剤としてt-ブチルピリジン(アルドリッチ社製)が濃度0.5モル/リットル、ジメチルプロピルイミダゾールアイオダイド(四国化成工業社製)が濃度0.6モル/リットルになるように調整したものを用いた。 Next, a carrier transport material prepared in advance was injected from an injection hole 8 ′ provided in the support substrate 7. Carrier transport materials are acetonitrile and solvent, and LiI (Aldrich) as a redox species has a concentration of 0.1 mol / liter and I 2 (Kishida Chemical) has a concentration of 0.01 mol / liter. As the agent, t-butylpyridine (manufactured by Aldrich) adjusted to a concentration of 0.5 mol / liter and dimethylpropylimidazole iodide (manufactured by Shikoku Kasei Kogyo) to a concentration of 0.6 mol / liter was used. .
 そして、注入孔8’を紫外線硬化樹脂(スリーボンド社製、型番:31X-101 229)を用いて注入孔封止8を形成することにより、注入孔8’を封止した。得られた光電変換素子の透光性基板1に対し、Agペースト(藤倉化成株式会社製、商品名:ドータイト)を塗布することにより、集電電極を形成した。以上のようにして本実施例の光電変換素子(単セル)を完成した。 The injection hole 8 ′ was sealed by forming the injection hole seal 8 using an ultraviolet curable resin (manufactured by Three Bond Co., Ltd., model number: 31X-101 229). A collector electrode was formed by applying an Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) to the translucent substrate 1 of the obtained photoelectric conversion element. The photoelectric conversion element (single cell) of this example was completed as described above.
 <実施例2~3、比較例1>
 実施例1に対し、熱融着フィルムの開口部(内寸)が以下の表1に示すように異なる他は、実施例1と同様にして、実施例2~3および比較例1の光電変換素子を作製した。
<Examples 2 to 3, Comparative Example 1>
Photoelectric conversion of Examples 2 to 3 and Comparative Example 1 is the same as Example 1 except that the opening (inner dimensions) of the heat-sealing film is different from Example 1 as shown in Table 1 below. An element was produced.
 <実施例4>
 本実施例では、図2に示される光電変換素子を作製した。まず、実施例1で用いた透明電極基板の導電層をレーザースクライブにより切断することにより、スクライブライン12’を形成した。そして、実施例1と同様の方法により、導電層上に膜厚25μmの多孔性半導体を作製した。
<Example 4>
In this example, the photoelectric conversion element shown in FIG. 2 was produced. First, the conductive layer of the transparent electrode substrate used in Example 1 was cut by laser scribing to form a scribe line 12 ′. And the porous semiconductor with a film thickness of 25 micrometers was produced on the conductive layer by the method similar to Example 1. FIG.
 上記の多孔性半導体上に、平均粒経50nmのジルコニア粒子を含むペーストを、5.8mm×51mmのパターンを有するスクリーン版を用いてスクリーン印刷機で塗布した。該ペーストを500℃で60分間焼成することにより、平坦部分の膜厚が13μmの多孔質絶縁層111を形成した。 A paste containing zirconia particles having an average particle size of 50 nm was applied on the porous semiconductor by a screen printing machine using a screen plate having a pattern of 5.8 mm × 51 mm. The paste was baked at 500 ° C. for 60 minutes to form a porous insulating layer 111 with a flat portion having a thickness of 13 μm.
 次いで、上記の多孔質絶縁層111上に、蒸着法によってPtからなる触媒層15を形成した。該触媒層15は、多孔性半導体と同一の位置および大きさとした。さらに、この触媒層15上に、9mm×50mmの大きさの対極導電層16を蒸着により形成した。次に、実施例1と同様の方法で多孔性半導体に色素を吸着させることにより、光電変換層13を作製した。 Next, a catalyst layer 15 made of Pt was formed on the porous insulating layer 111 by vapor deposition. The catalyst layer 15 has the same position and size as the porous semiconductor. Further, a counter electrode conductive layer 16 having a size of 9 mm × 50 mm was formed on the catalyst layer 15 by vapor deposition. Next, the photoelectric conversion layer 13 was produced by adsorb | sucking a pigment | dye to a porous semiconductor by the method similar to Example 1. FIG.
 次いで、11mm×60mmの大きさのガラス基板からなる支持基板17を準備した。そして、上記の積層体を形成した透光性基板11と支持基板17とを熱融着フィルム(デュポン社製、ハイミラン1702)を用いて貼り合わせた。そして、約100℃に設定したオーブンで10分間加熱することにより、支持基板17と透光性基板11とを圧着した。この熱融着フィルムが封止材19となる。上記の熱融着フィルムは、多孔質絶縁層と同一形状の開口部で、熱圧着後の熱融着フィルムの開口部(内寸)は、5.8mm×51mmであった。 Next, a support substrate 17 made of a glass substrate having a size of 11 mm × 60 mm was prepared. And the translucent board | substrate 11 in which said laminated body was formed, and the support substrate 17 were bonded together using the heat sealing | fusion film (the Du Pont company make, High Milan 1702). And the support substrate 17 and the translucent board | substrate 11 were crimped | bonded by heating for 10 minutes in the oven set to about 100 degreeC. This heat-sealing film becomes the sealing material 19. The above heat-sealing film was an opening having the same shape as the porous insulating layer, and the opening (inner dimension) of the heat-sealing film after thermocompression bonding was 5.8 mm × 51 mm.
 上記の支持基板17に対し、光電変換層13を投影した部分に注入孔18’を作製した。このような位置に注入孔18’を形成したことが異なる他は、実施例1と同様にして本実施例の光電変換素子を作製した。 An injection hole 18 ′ was formed in a portion where the photoelectric conversion layer 13 was projected on the support substrate 17. A photoelectric conversion element of this example was fabricated in the same manner as in Example 1 except that the injection hole 18 ′ was formed at such a position.
 <実施例5および比較例2>
 実施例4に対し、熱融着フィルムの開口部(内寸)が以下の表1に示すように異なる他は、実施例4と同様にして、実施例5および比較例2の光電変換素子を作製した。
<Example 5 and Comparative Example 2>
The photoelectric conversion elements of Example 5 and Comparative Example 2 were the same as Example 4 except that the opening (inner dimensions) of the heat-sealing film was different as shown in Table 1 below. Produced.
 <実施例6>
 本実施例では、図3に示される構造の光電変換素子を作製した。本実施例の光電変換素子は、多孔質絶縁層121の大きさを5.8mm×50mmとしたこと、多孔質絶縁層121の両端に絶縁層122を形成したこと、および対極導電層を9mm×51mmとしたことが異なる他は、実施例5と同様の方法によって作製した。なお、絶縁層122は、ガラスペーストを用いて5.8mm×4mmの大きさのものを形成した。
<Example 6>
In this example, a photoelectric conversion element having the structure shown in FIG. 3 was produced. In the photoelectric conversion element of this example, the size of the porous insulating layer 121 was 5.8 mm × 50 mm, the insulating layers 122 were formed on both ends of the porous insulating layer 121, and the counter electrode conductive layer was 9 mm × It was produced by the same method as in Example 5 except that the thickness was 51 mm. Note that the insulating layer 122 having a size of 5.8 mm × 4 mm was formed using glass paste.
 <実施例1~6および比較例1~2の光電変換素子の太陽電池特性>
 実施例1~6および比較例1の光電変換素子の受光面に対し、開口部の面積が1.5cm2である黒色のマスクを設置した。そして、各光電変換素子の受光面に対し、AM1.5ソーラーシミュレータを用いて1kW/m2の強度の光を照射することにより、短絡電流値Jsc(mA/cm2)、開放電圧Voc(V)、フィルファクタ(FF)、および光電変換効率(%)を測定した。その結果を表1に示す。
<Solar cell characteristics of photoelectric conversion elements of Examples 1 to 6 and Comparative Examples 1 to 2>
A black mask having an opening area of 1.5 cm 2 was placed on the light receiving surfaces of the photoelectric conversion elements of Examples 1 to 6 and Comparative Example 1. Then, the light receiving surface of each photoelectric conversion element is irradiated with light having an intensity of 1 kW / m 2 using an AM1.5 solar simulator, whereby a short circuit current value Jsc (mA / cm 2 ) and an open circuit voltage Voc (V ), Fill factor (FF), and photoelectric conversion efficiency (%). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1において、実施例1~6の光電変換素子と、比較例1および2の光電変換素子とを対比すると、実施例1~6において、光電変換層を透光性基板に向けて垂直に投影したときの投影面積に対し、導電層、触媒層、および対極導電層と、キャリア輸送材料とが接する部分を透光性基板に向けて垂直に投影したときの投影面積の割合は、1.2以下である。これにより、FFを向上させることができ、変換効率を向上させることができる。 In Table 1, when comparing the photoelectric conversion elements of Examples 1 to 6 and the photoelectric conversion elements of Comparative Examples 1 and 2, in Examples 1 to 6, the photoelectric conversion layer is projected vertically toward the light-transmitting substrate. The ratio of the projected area when the conductive layer, the catalyst layer, the counter electrode conductive layer, and the portion where the carrier transport material is in contact with the carrier transporting material is vertically projected toward the translucent substrate with respect to the projected area is 1.2. It is as follows. Thereby, FF can be improved and conversion efficiency can be improved.
 <実施例7>
 本実施例では、図4に示される構造の光電変換素子モジュールを作製した。まず、縦70mm×横37mmの透明電極基板(日本板硝子株式会社製、SnO2膜付ガラス)を用意した。該透明電極基板は、ガラスからなる透光性基板31上に、SnO2からなる導電層32が成膜されたものである。
<Example 7>
In this example, a photoelectric conversion element module having the structure shown in FIG. 4 was produced. First, a transparent electrode substrate (manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film) having a length of 70 mm and a width of 37 mm was prepared. The transparent electrode substrate is obtained by forming a conductive layer 32 made of SnO 2 on a translucent substrate 31 made of glass.
 上記の導電層32をレーザースクライブによって切断することにより、縦方向に平行に60μmの幅のスクライブライン32’を形成した。該スクライブライン32’は透光性基板31の左端部から9.5mmの位置と、そこから7mm間隔で合計4箇所に形成した。 The conductive layer 32 was cut by laser scribing to form a scribe line 32 ′ having a width of 60 μm parallel to the vertical direction. The scribe lines 32 'were formed at a position of 9.5 mm from the left end portion of the translucent substrate 31 and a total of four places at intervals of 7 mm therefrom.
 次に、実施例1と同様の方法により、透光性基板31の左端部から6.9mmの位置を中心として膜厚25μm、幅5mm、長さ50mmのサイズの多孔性半導体を形成し、その位置から7mmの間隔で同様のサイズの多孔性半導体を3つ形成した。 Next, a porous semiconductor having a thickness of 25 μm, a width of 5 mm, and a length of 50 mm is formed around the position of 6.9 mm from the left end portion of the translucent substrate 31 by the same method as in Example 1. Three porous semiconductors of the same size were formed at intervals of 7 mm from the position.
 そして、該多孔性半導体上に、実施例1と同様の方法によって多孔質絶縁層311を作製した。かかる多孔質絶縁層311は、透光性基板31の左端から6.9mmの位置を中心として、幅5.6mm、長さ51mmのサイズで1つ形成した。この左端の多孔質絶縁層24の中心から7mmの間隔で同様のサイズの多孔質絶縁層を3つ作製した。 Then, a porous insulating layer 311 was produced on the porous semiconductor by the same method as in Example 1. One such porous insulating layer 311 was formed with a width of 5.6 mm and a length of 51 mm centering on a position 6.9 mm from the left end of the translucent substrate 31. Three porous insulating layers having the same size were formed at an interval of 7 mm from the center of the leftmost porous insulating layer 24.
 次いで、多孔質絶縁層311上に実施例1と同様の方法によってPtからなる触媒層35を形成した。触媒層35は、多孔性半導体と同様の位置および大きさとした。そして、実施例4と同様の方法によって、対極導電層36を形成した。対極導電層36は、透光性基板31の左端部から7.2mmの位置を中心として、幅5.6mm、長さ50mmのサイズで1つ形成し、該左端の多孔質絶縁層311の中心から7mmの間隔で同様の大きさの対極導電層36を3つ形成した。 Next, a catalyst layer 35 made of Pt was formed on the porous insulating layer 311 by the same method as in Example 1. The catalyst layer 35 has the same position and size as the porous semiconductor. Then, a counter electrode conductive layer 36 was formed by the same method as in Example 4. The counter electrode conductive layer 36 is formed to have a width of 5.6 mm and a length of 50 mm centered at a position of 7.2 mm from the left end portion of the translucent substrate 31, and the center of the leftmost porous insulating layer 311 is formed. Three counter electrode conductive layers 36 having the same size were formed at intervals of 7 mm to 7 mm.
 次に、実施例1で用いた色素吸着用溶液に4つの多孔性半導体を浸漬させて、室温で120時間保持することによって、多孔性半導体に色素を吸着させた。次に、光電変換層33の間および透光性基板31の周囲に、ディスペンサー(EFD社製 ULTRASAVER)を用いて紫外線硬化樹脂(スリーボンド社製 31X-101)を塗布した。そして、縦65mm×横30mmのガラス基板からなる支持基板37を貼り合わせて、紫外線ランプ(EFD社製 NOVACURE)を用いて紫外線を照射した。このようにして紫外線硬化樹脂を硬化させて封止材39を形成した。封止材39によって形成された開口部は、5.8mm×51mmであった。 Next, the four porous semiconductors were immersed in the dye adsorption solution used in Example 1, and held at room temperature for 120 hours to adsorb the dye to the porous semiconductor. Next, an ultraviolet curable resin (31X-101, manufactured by ThreeBond Co., Ltd.) was applied between the photoelectric conversion layers 33 and around the translucent substrate 31 using a dispenser (ULTRASAVE manufactured by EFD). And the support substrate 37 which consists of a 65 mm long x 30 mm wide glass substrate was bonded together, and it irradiated with the ultraviolet-ray using the ultraviolet lamp (NOVACURE by EFD company). In this way, the sealing material 39 was formed by curing the ultraviolet curable resin. The opening formed by the sealing material 39 was 5.8 mm × 51 mm.
 その後、実施例1と同様の方法によって支持基板37に予め設けてある注入孔からキャリア輸送材料を注入した。そして、注入口を紫外線硬化樹脂で封止することにより本実施例の光電変換素子モジュールを完成した。この光電変換素子モジュールの透光性基板上にAgペースト(藤倉化成株式会社製、商品名:ドータイト)を塗布することにより、集電電極41を形成した。 Thereafter, a carrier transport material was injected from an injection hole provided in advance in the support substrate 37 by the same method as in Example 1. And the photoelectric conversion element module of a present Example was completed by sealing an injection hole with ultraviolet curing resin. The current collecting electrode 41 was formed by applying Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) on the translucent substrate of this photoelectric conversion element module.
 <実施例8>
 実施例7に対し、多孔質絶縁層の内部に封止部を約0.2mm程度浸透させたことが異なる他は、実施例7と同様にして本実施例の光電変換素子モジュールを作製した。
<Example 8>
A photoelectric conversion element module of this example was fabricated in the same manner as in Example 7, except that the sealing portion was penetrated by about 0.2 mm into the porous insulating layer.
 <実施例9>
 実施例7に対し、対極導電層を形成した後に、光電変換層の直列方向にスクライブラインを形成することにより、直列方向に4列、並列方向に2列の光電変換素子を作製したことが異なる他は、実施例7と同様にして、本実施例の光電変換素子モジュールを作製した。
<Example 9>
Compared to Example 7, after forming the counter electrode conductive layer, forming scribe lines in the series direction of the photoelectric conversion layer produced four photoelectric conversion elements in the series direction and two rows in the parallel direction. Others were carried out similarly to Example 7, and produced the photoelectric conversion element module of a present Example.
 <比較例3>
 実施例7において、封止部の開口部を5.8mm×55mmとしたことが異なる他は、実施例7と同様にして本比較例の光電変換素子モジュールを作製した。
<Comparative Example 3>
A photoelectric conversion element module of this comparative example was produced in the same manner as in Example 7, except that the opening of the sealing part was changed to 5.8 mm × 55 mm in Example 7.
 <実施例7~9および比較例3の光電変換素子モジュールの太陽電池特性>
 実施例7~9および比較例3の光電変換素子モジュールの受光面に対し、開口部の面積が7.8cm2である黒色のマスクを設置した。そして、各光電変換素子の受光面に対し、AM1.5ソーラーシミュレータを用いて1kW/m2の強度の光を照射することにより、短絡電流値Jsc(mA/cm2)、開放電圧Voc(V)、フィルファクタ(FF)、および光電変換効率(%)を測定した。その結果を表2に示す。
<Solar cell characteristics of photoelectric conversion element modules of Examples 7 to 9 and Comparative Example 3>
A black mask having an opening area of 7.8 cm 2 was placed on the light receiving surfaces of the photoelectric conversion element modules of Examples 7 to 9 and Comparative Example 3. Then, the light receiving surface of each photoelectric conversion element is irradiated with light having an intensity of 1 kW / m 2 using an AM1.5 solar simulator, whereby a short circuit current value Jsc (mA / cm 2 ) and an open circuit voltage Voc (V ), Fill factor (FF), and photoelectric conversion efficiency (%). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例7~9の光電変換素子モジュールと、比較例3のそれとを対比することによっても、上記の実施例1~6および比較例1~2の対比と同様の結論が導き出される。すなわち、実施例7~9の光電変換素子モジュールは、比較例3のそれに比して、FFが高く、変換効率が高くなっている。 By comparing the photoelectric conversion element modules of Examples 7 to 9 with those of Comparative Example 3, the same conclusions as those of Examples 1 to 6 and Comparative Examples 1 to 2 are derived. That is, the photoelectric conversion element modules of Examples 7 to 9 have higher FF and higher conversion efficiency than those of Comparative Example 3.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,11,21,31 透光性基板、2,12,22,32 導電層、3,13,23,33 光電変換層、4,14,24,34 キャリア輸送材料、5,15,25,35 触媒層、6,16,26,36 対極導電層、7,17,27,37 支持基板、8,18,28 注入孔封止、8’,18’,28’ 注入孔、9,19,29,39 封止材、10,20,30 光電変換素子、12’,22’,32’ スクライブライン、111,121,311 多孔質絶縁層、122 絶縁層、41 集電電極、203 光電変換層、204 集電電極。 1, 11, 21, 31 translucent substrate, 2, 12, 22, 32 conductive layer, 3, 13, 23, 33 photoelectric conversion layer, 4, 14, 24, 34 carrier transport material, 5, 15, 25, 35 catalyst layer, 6, 16, 26, 36 counter electrode conductive layer, 7, 17, 27, 37 support substrate, 8, 18, 28 injection hole sealing, 8 ', 18', 28 'injection hole, 9, 19, 29,39 sealing material, 10, 20, 30 photoelectric conversion element, 12 ', 22', 32 'scribe line, 111, 121, 311 porous insulating layer, 122 insulating layer, 41 collector electrode, 203 photoelectric conversion layer , 204 Current collecting electrode.

Claims (13)

  1.  透光性基板と、
     前記透光性基板に相対して設置された支持基板と、
     前記透光性基板と前記支持基板との間に、導電層と、前記導電層に接する光電変換層と、触媒層と、対極導電層と、キャリア輸送材料と、前記透光性基板と前記支持基板とを固定するための封止材とを有し、
     前記光電変換層を前記透光性基板に向けて垂直に投影したときの投影面積に対し、前記導電層、前記触媒層、および前記対極導電層のいずれかと、前記キャリア輸送材料とが接する部分を前記透光性基板に向けて垂直に投影したときの投影面積の割合は、1.2以下である、光電変換素子。
    A translucent substrate;
    A support substrate installed relative to the translucent substrate;
    Between the translucent substrate and the support substrate, a conductive layer, a photoelectric conversion layer in contact with the conductive layer, a catalyst layer, a counter electrode conductive layer, a carrier transport material, the translucent substrate and the support. Having a sealing material for fixing the substrate,
    With respect to the projected area when the photoelectric conversion layer is vertically projected toward the translucent substrate, a portion where any of the conductive layer, the catalyst layer, and the counter electrode conductive layer is in contact with the carrier transport material A photoelectric conversion element having a projected area ratio of 1.2 or less when vertically projected onto the translucent substrate.
  2.  前記封止材は、前記光電変換層と接する、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the sealing material is in contact with the photoelectric conversion layer.
  3.  前記光電変換層と前記触媒層との間に多孔質絶縁層を有する、請求項1または2に記載の光電変換素子。 The photoelectric conversion element according to claim 1, further comprising a porous insulating layer between the photoelectric conversion layer and the catalyst layer.
  4.  前記多孔質絶縁層は、その内部に前記封止材を構成する材料を含む部分がある、請求項3に記載の光電変換素子。 The photoelectric conversion element according to claim 3, wherein the porous insulating layer has a portion including a material constituting the sealing material therein.
  5.  前記光電変換層を前記導電層に向けて垂直に投影したときの投影面以外の前記導電層に接する絶縁層を有する、請求項1~4のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 4, further comprising an insulating layer in contact with the conductive layer other than a projection surface when the photoelectric conversion layer is vertically projected toward the conductive layer.
  6.  前記光電変換層を前記対極導電層に向けて垂直に投影したときの投影面以外の前記対極導電層に接する絶縁層を有する、請求項1~4のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 4, further comprising an insulating layer in contact with the counter electrode conductive layer other than a projection surface when the photoelectric conversion layer is vertically projected toward the counter electrode conductive layer.
  7.  前記絶縁層は、前記導電層および前記対極導電層に接する、請求項5または6に記載の光電変換素子。 The photoelectric conversion element according to claim 5 or 6, wherein the insulating layer is in contact with the conductive layer and the counter electrode conductive layer.
  8.  前記支持基板は、キャリア輸送材料を注入するための注入孔を有し、
     前記注入孔は、前記光電変換層を前記支持基板に投影した投影面の少なくとも一部に位置する、請求項1~7のいずれかに記載の光電変換素子。
    The support substrate has an injection hole for injecting a carrier transport material,
    The photoelectric conversion element according to any one of claims 1 to 7, wherein the injection hole is located on at least a part of a projection surface obtained by projecting the photoelectric conversion layer onto the support substrate.
  9.  前記支持基板上に、前記注入孔を封止するための注入孔封止を有し、
     前記注入孔封止を構成する材料の少なくとも一部は、前記導電層または前記対極導電層に接する、請求項8に記載の光電変換素子。
    On the support substrate, has an injection hole seal for sealing the injection hole,
    The photoelectric conversion element according to claim 8, wherein at least a part of a material constituting the injection hole sealing is in contact with the conductive layer or the counter electrode conductive layer.
  10.  2以上の光電変換素子を電気的に直列に接続されてなる光電変換素子モジュールであって、
     前記光電変換素子の少なくとも1つは、請求項1~9のいずれかに記載の光電変換素子である、光電変換素子モジュール。
    A photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series,
    10. A photoelectric conversion element module, wherein at least one of the photoelectric conversion elements is the photoelectric conversion element according to claim 1.
  11.  2以上の光電変換素子を電気的に並列に接続されてなる光電変換素子モジュールであって、
     前記光電変換素子の少なくとも1つは、請求項1~9のいずれかに記載の光電変換素子である、光電変換素子モジュール。
    A photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in parallel,
    10. A photoelectric conversion element module, wherein at least one of the photoelectric conversion elements is the photoelectric conversion element according to claim 1.
  12.  3以上の光電変換素子を電気的に直列および並列に接続されてなる光電変換素子モジュールであって、
     前記光電変換素子の少なくとも1つは、請求項1~9のいずれかに記載の光電変換素子である、光電変換素子モジュール。
    A photoelectric conversion element module in which three or more photoelectric conversion elements are electrically connected in series and in parallel,
    10. A photoelectric conversion element module, wherein at least one of the photoelectric conversion elements is the photoelectric conversion element according to claim 1.
  13.  2以上の光電変換素子を電気的に直列および/または並列に接続されてなる光電変換素子モジュールであって、
     前記光電変換素子の全てが請求項1~9のいずれかに記載の光電変換素子である、光電変換素子モジュール。
    A photoelectric conversion element module in which two or more photoelectric conversion elements are electrically connected in series and / or in parallel,
    A photoelectric conversion element module, wherein all of the photoelectric conversion elements are the photoelectric conversion elements according to any one of claims 1 to 9.
PCT/JP2012/080054 2011-11-21 2012-11-20 Photoelectric conversion element and photoelectric conversion element module WO2013077317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-254135 2011-11-21
JP2011254135A JP5536015B2 (en) 2011-11-21 2011-11-21 Photoelectric conversion element and photoelectric conversion element module

Publications (1)

Publication Number Publication Date
WO2013077317A1 true WO2013077317A1 (en) 2013-05-30

Family

ID=48469761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080054 WO2013077317A1 (en) 2011-11-21 2012-11-20 Photoelectric conversion element and photoelectric conversion element module

Country Status (2)

Country Link
JP (1) JP5536015B2 (en)
WO (1) WO2013077317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950370A (en) * 2014-03-25 2015-09-30 住友化学株式会社 Polarizing plate and liquid crystal panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235787A (en) * 2012-05-11 2013-11-21 Hitachi Zosen Corp Dye-sensitized solar cell and manufacturing method of the same
JP2014067650A (en) * 2012-09-27 2014-04-17 Hitachi Zosen Corp Dye-sensitized solar cell manufacturing method
JP6580147B2 (en) * 2015-09-25 2019-09-25 シャープ株式会社 Photoelectric conversion element and photoelectric conversion module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
JP2006134870A (en) * 2004-10-08 2006-05-25 Sharp Corp Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
WO2010044445A1 (en) * 2008-10-17 2010-04-22 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080315A (en) * 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd Dye-sensitized type solar cell
JP2010103094A (en) * 2008-09-29 2010-05-06 Kyocera Corp Photoelectric conversion device
JP4900443B2 (en) * 2009-09-30 2012-03-21 大日本印刷株式会社 Dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
JP2006134870A (en) * 2004-10-08 2006-05-25 Sharp Corp Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
WO2010044445A1 (en) * 2008-10-17 2010-04-22 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950370A (en) * 2014-03-25 2015-09-30 住友化学株式会社 Polarizing plate and liquid crystal panel

Also Published As

Publication number Publication date
JP5536015B2 (en) 2014-07-02
JP2013109958A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5273709B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
US9607772B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5714005B2 (en) Wet solar cell and wet solar cell module
JP5536015B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2012009374A (en) Dye-sensitized solar cell and its manufacturing method, and dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
US10916382B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5956929B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2013114733A1 (en) Photoelectric conversion element module
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
WO2015049983A1 (en) Photoelectric conversion device and method for producing photoelectric conversion device
WO2013161557A1 (en) Photoelectric conversion element module and method for manufacturing same
WO2015133030A1 (en) Photoelectric conversion module and electronic device using same
JP2014229434A (en) Photoelectric conversion element and dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851962

Country of ref document: EP

Kind code of ref document: A1