WO2014057873A1 - Phosphine oxide derivative and light-emitting element provided with same - Google Patents

Phosphine oxide derivative and light-emitting element provided with same Download PDF

Info

Publication number
WO2014057873A1
WO2014057873A1 PCT/JP2013/077045 JP2013077045W WO2014057873A1 WO 2014057873 A1 WO2014057873 A1 WO 2014057873A1 JP 2013077045 W JP2013077045 W JP 2013077045W WO 2014057873 A1 WO2014057873 A1 WO 2014057873A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
aryl
ring
electron
Prior art date
Application number
PCT/JP2013/077045
Other languages
French (fr)
Japanese (ja)
Inventor
上岡耕司
田中大作
新井猛
市橋泰宜
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013547034A priority Critical patent/JPWO2014057873A1/en
Publication of WO2014057873A1 publication Critical patent/WO2014057873A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5329Polyphosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a phosphine oxide compound having excellent electron affinity that can be used for a light-emitting element.
  • the present invention can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators.
  • This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
  • Organic thin-film light-emitting elements must satisfy improved luminous efficiency, lower drive voltage, and improved durable life.
  • techniques using a phosphine oxide derivative to improve the luminous efficiency are disclosed in Patent Documents 1 to 3, the durability life is insufficient.
  • the technique which uses a fluoranthene derivative as a blue light-emitting material is disclosed by patent document 4, it was not satisfied at the point of coexistence of a drive voltage and a durable life.
  • An object of the present invention is to solve the problems of the conventional technology and to provide an organic thin film light emitting device excellent in luminous efficiency, driving voltage and durability life.
  • the present invention is a phosphine oxide derivative represented by the following general formula (1).
  • R 1 and R 2 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group.
  • L 1 is a single bond, an arylene group, or a heteroarylene group
  • Ar 1 is a condensed polycyclic aromatic group represented by the following general formula (2), and n 1 is 1 or more. (When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.)
  • R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group.
  • a phosphine oxide compound having excellent electron affinity can be provided. Furthermore, by using it as a material for each layer of the light emitting element, it is possible to provide an organic thin film light emitting element that simultaneously satisfies the required characteristics of luminous efficiency, driving voltage, and durability life.
  • R 1 and R 2 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, An aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and an adjacent substituent.
  • L 1 is a single bond, an arylene group, or a heteroarylene group.
  • Ar 1 is a condensed polycyclic aromatic group represented by the following general formula (2).
  • n 1 is an integer of 1 or more. When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.
  • R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, It is selected from the group consisting of aryl ether groups, aryl thioether groups, aryl groups, heteroaryl groups, cyano groups, carbonyl groups, carboxyl groups, oxycarbonyl groups, carbamoyl groups, amino groups, and silyl groups. However, at least one pair of adjacent substituents among R 3 to R 12 forms a condensed ring. In addition, it is connected to L 1 at at least one position among R 3 to R 12 .
  • R 1 and R 2 are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group , A heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group and a condensed ring formed between adjacent substituents (hereinafter, in the description of R 1 and R 2 And may be abbreviated as “substituent etc.”). Hereinafter, a substituent etc. are demonstrated.
  • hydrogen may be deuterium. It should be noted that deuterium may be used for hydrogen other than all R 1 and R 2 in the present invention.
  • halogen represents an atom selected from fluorine, chlorine, bromine and iodine.
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
  • This may or may not have a substituent.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the carbon number of the alkyl group does not include the carbon number of the substituent.
  • the cycloalkyl group means, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, etc., which may have a substituent. You don't have to.
  • a substituent for example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms in the alkyl group portion in the cycloalkyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the carbon number of the alkyl group part in a cycloalkyl group shall show the carbon number of the alkyl group contained as a cycloalkyl group and a substituent.
  • the heterocyclic group refers to, for example, an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may have a substituent. It may not have.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the carbon number of the heterocyclic group includes the carbon number of an additional substituent when the heterocyclic group has a substituent.
  • the alkenyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may have a substituent. You don't have to.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the carbon number of the alkenyl group includes the carbon number of an additional substituent when the alkenyl group has a substituent.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, and the like. It may or may not have.
  • a substituent For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the carbon number of an alkynyl group shall include the carbon number of an additional substituent, when an alkynyl group has a substituent.
  • the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group is substituted. It may or may not have a group.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the carbon number of the alkoxy group includes the carbon number of an additional substituent when the alkoxy group has a substituent.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • limiting in particular in the additional substituent in the case of having a substituent For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the carbon number of the alkylthio group includes the carbon number of an additional substituent when the alkylthio group has a substituent.
  • the aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group has a substituent. May not be included.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the carbon number of the aryl ether group includes the carbon number of an additional substituent when the aryl ether group has a substituent.
  • the aryl thioether group is a group in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent.
  • limiting in particular in the additional substituent in the case of having a substituent For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the aryl thioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the carbon number of the aryl thioether group includes the carbon number of an additional substituent when the aryl thioether group has a substituent.
  • the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, a pyrenyl group, or a fluoranthenyl group.
  • the aryl group may or may not have a substituent.
  • limiting in particular in the additional substituent in the case of having a substituent For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 to 40.
  • the carbon number of the aryl group includes the carbon number of an additional substituent when the aryl group has a substituent.
  • the heteroaryl group is a furanyl group, thiophenyl group, pyridyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuran group.
  • a cyclic aromatic group having one or more atoms other than carbon in the ring such as an nyl group, a dibenzothiophenyl group, and a carbazolyl group, which may be unsubstituted or substituted.
  • the additional substituent in the case of having a substituent,
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 to 30.
  • the carbon number of the heteroaryl group includes the carbon number of an additional substituent when the heteroaryl group has a substituent.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group may or may not have a substituent.
  • examples of the additional substituent in the case of having a substituent include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and the like, and these substituents may further have a substituent.
  • the substituent in the case of having a substituent is as described above.
  • the condensed ring formed between adjacent substituents is, for example, R 1 and R 2 , or R 1 or R 2 and L 1 .
  • a conjugated or non-conjugated fused ring is formed between them.
  • L 1 is a single bond
  • a condensed ring may be formed between R 1 and Ar 1 or R 2 and Ar 1 .
  • These fused rings may contain nitrogen, oxygen, sulfur atoms in the ring structure, or may be condensed with another ring. The meaning of the single bond when L 1 is a single bond will be described later.
  • R 1 and R 2 are an aryl group or a heteroaryl group, the electrochemical stability described later is increased, and the durability of the light-emitting element is improved, which is preferable.
  • L 1 is a single bond, an arylene group, or a heteroarylene group.
  • a single bond means that L 1 does not exist as a bonding group, and Ar 1 and phosphorus are directly bonded in the general formula (1).
  • An arylene group refers to a divalent or trivalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or a biphenyl group, which may or may not have a substituent.
  • L 1 in the general formula (1) is an arylene group, the number of nuclear carbon atoms is preferably in the range of 6 to 30.
  • arylene group examples include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 4,4′-biphenylene group, 4,3′-biphenylene group, 3,3 Examples include '-biphenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group and the like. More preferred are a 1,4-phenylene group and a 1,3-phenylene group.
  • a heteroarylene group is an aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a pyrimidinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group.
  • a divalent or trivalent group derived from a group is shown, which may or may not have a substituent.
  • the number of carbon atoms of the heteroarylene group is not particularly limited, but a range of 2 to 30 nuclear carbon atoms is preferable.
  • L 1 is an arylene group or a heteroarylene group
  • the fluorescence quantum yield of the phosphine oxide derivative represented by the general formula (1) is improved, and the efficiency of the light-emitting element is preferably improved.
  • R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group , An arylthioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, and a silyl group (hereinafter referred to as “substituents for R 3 to R 12 etc.”) May be abbreviated as). However, at least one pair of adjacent substituents among R 3 to R 12 forms a condensed ring. In addition, it is connected to L 1 at at least one position among R 3 to R 12 .
  • R 3 to R 12 are specifically R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and It refers to any combination of R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 3 .
  • At least one set of adjacent substituents forms a condensed ring.
  • the size of the condensed ring formed at this time is not particularly limited, but a 5-membered ring or a 6-membered ring is preferable from the viewpoint of the stability of the molecular structure.
  • the condensed ring formed may be an aliphatic ring or an aromatic ring.
  • the condensed ring formed by the adjacent substituent may further have a substituent, or may be further condensed. Examples of the substituent in such a case include the substituents of R 1 and R 2 .
  • the condensed polycyclic aromatic group represented by the general formula (2) contains an electron-donating nitrogen, the electron affinity may be lowered. Therefore, the condensed polycyclic aromatic represented by the general formula (2) It is preferred that the group does not contain electron donating nitrogen in the ring. Therefore, the formed condensed ring may contain a heteroatom other than carbon, but it is preferable that no electron-donating nitrogen is contained in the ring.
  • the electron donating nitrogen represents a nitrogen atom in which all the bonds between adjacent atoms are single bonds. In particular, it is preferable that the ring is composed of only carbon and hydrogen because the electrochemical stability is increased and the durability of the device is improved.
  • the ring formed contains electron-accepting nitrogen, reduction by electrons is performed smoothly, and the electron affinity is increased. This is preferable because drive voltage and light emission efficiency are improved.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom.
  • Ar 1 Ar 1 satisfying the above is not particularly limited, but examples include the following.
  • R 3 is to be connected to the L 1 at least one position of the ⁇ R 12, means that the carbon atom to which R 3 ⁇ R 12 is attached and L 1 is directly connected.
  • a ring is formed by an adjacent substituent among R 3 to R 12 , it includes connection to L 1 at any position of the ring (R 13 to R 24 , R 25 described later). The same applies to .about.R 38 ).
  • the phosphine oxide derivative represented by the general formula (1) has a phosphine oxide group. Since the phosphine oxide group has a three-dimensional pyramid bulky steric structure, the phosphine oxide group has a large steric hindrance and has an effect of suppressing intermolecular interaction. This effect increases the amorphous nature of the material and the glass transition temperature. Therefore, when a thin film of the phosphine oxide derivative of the present invention is formed and used for a light emitting device, the stability of the thin film is improved and the durability of the light emitting device is improved. The service life is improved compared to the conventional one.
  • having a phosphine oxide group also contributes to an improvement in luminous efficiency when used in a light emitting element. Furthermore, since the phosphine oxide group is a strong electron-attracting group, the compound of the general formula (1) is a material having excellent electron affinity, and its driving voltage can be lowered when used in a light-emitting element.
  • n 1 is an integer of 1 or more.
  • L 1 , R 1 and R 2 may be the same or different.
  • the phosphine oxide derivative represented by the general formula (1) has a structure Ar 1 in which at least one of the group consisting of an aliphatic hydrocarbon ring, an aromatic hydrocarbon ring, an aliphatic group and an aromatic heterocyclic ring is condensed to fluoranthene.
  • Ar 1 has a structure in which at least one of the group consisting of an aliphatic hydrocarbon ring, an aromatic hydrocarbon ring, an aliphatic group and an aromatic heterocyclic ring is condensed to fluoranthene.
  • This skeleton has a 5-membered 5-membered ring structure.
  • the 5 ⁇ -electron five-membered ring structure becomes a 6 ⁇ -electron system when one electron enters (reduced), and aromatic stabilization occurs (Hückel rule). For this reason, the 5-membered ring structure of the 5 ⁇ electron system exhibits high electron affinity.
  • Ar 1 has a ⁇ -conjugated plane wider than that of fluoranthene because an aliphatic or aromatic hydrocarbon ring or an aliphatic or aromatic heterocyclic ring is condensed to the fluoranthene skeleton. Since the molecules overlap each other well due to this planarity, Ar 1 has a high charge transporting property and can reduce the driving voltage of the light emitting element.
  • the skeleton represented by Ar 1 can smoothly and repeatedly perform reduction by electrons and oxidation by holes, it contributes to improvement in durability of the light-emitting element.
  • the fluoranthene skeleton has an emission spectrum peak in the ultraviolet region, but when the ⁇ -conjugate plane is expanded by condensing a ring with fluoranthene, the emission spectrum peak shifts to the visible light region and exhibits strong blue to green fluorescence. Therefore, the phosphine oxide derivative represented by the general formula (1) having Ar 1 can be particularly suitably used as a blue to green fluorescent material.
  • the phosphine oxide derivative represented by the general formula (1) of the present invention has a phosphine oxide group and Ar 1 in the molecule, strong fluorescence emission, high electron affinity, thin film stability, It also has features such as electrochemical stability. Due to these characteristics, when a light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) of the present invention is used in any layer constituting the light-emitting element, high light emission efficiency, low driving voltage, and durability are achieved. An organic thin film light emitting device having excellent properties can be obtained.
  • Ar 1 is represented by the following general formula (3) or (4), it is preferable because charge transport properties are further improved. Further, since the ⁇ -electron conjugated system of Ar 1 spreads moderately and exhibits strong blue to green fluorescent light emission, it is preferable when used as a fluorescent light-emitting material because the light emission efficiency is improved.
  • R 13 to R 24 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, A group consisting of an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, and a silyl group (hereinafter referred to as “substitution of R 13 to R 24 ” Group ”or the like. However, it is connected to L 1 at at least one position among R 13 to R 24 .
  • R 19 and R 24 are preferably a substituted or unsubstituted aryl group.
  • R 19 and R 24 are substituted or unsubstituted aryl groups, it is possible to moderately reduce the overlap of ⁇ conjugate planes between molecules. Moreover, heat resistance improves by being an aryl group.
  • R 19 and R 24 are more preferably a substituted or unsubstituted phenyl group. When R 19 and R 24 are substituted or unsubstituted phenyl groups, it is possible to reduce the overlap of ⁇ conjugate planes between molecules to a more appropriate range. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
  • Ar 1 represented by the general formula (3) is preferably linked to L 1 at any position of R 15 , R 16 , R 19 , R 21 , R 22 , R 24 , particularly R 15 or R 16. It is preferable to connect at the position.
  • conjugation easily spreads at the positions of R 15 and R 16 , and conjugation efficiently spreads by connecting to L 3 . Thereby, the phosphine oxide derivative represented by the general formula (1) becomes more electrochemically stable, and the light emission efficiency is further improved.
  • R 25 to R 38 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, A group consisting of aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group (hereinafter referred to as “substitution of R 25 to R 38 ” Group ”or the like. However, at least one of R 25 to R 38 is linked to L 1 .
  • R 25 is preferably a substituted or unsubstituted aryl group.
  • R 25 is a substituted or unsubstituted aryl group, it is possible to moderately reduce the overlap of ⁇ conjugate planes between molecules. Moreover, heat resistance improves by being an aryl group.
  • R 25 in the general formula (4) is more preferably a substituted or unsubstituted phenyl group.
  • R 25 is a substituted or unsubstituted phenyl group, it is possible to reduce the overlap of ⁇ conjugate planes between molecules to a more appropriate range. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
  • Ar 1 represented by the general formula (4) is preferably linked to L 1 at any of the positions of R 25 , R 27 , R 35 or R 36 .
  • the phosphine oxide derivative represented by the general formula (1) is not particularly limited, but specific examples include the following.
  • a substituted or unsubstituted aryl halide under a palladium catalyst or a nickel catalyst and an aryl boronic acid substituted with phosphine oxide or hetero A coupling reaction with an aryl boronic acid can be used. Moreover, it can replace with said various boronic acid and can also use boronic acid ester.
  • the phosphine oxide derivative represented by the general formula (1) is used as a light emitting element material.
  • the light emitting element is a light emitting element in which an organic layer exists between an anode and a cathode and emits light by electric energy
  • the light emitting element material refers to a material used in any of the organic layers.
  • the organic layer of such a light-emitting element includes a hole transport layer, a light-emitting layer, an electron transport layer, a hole injection layer, and an electron injection layer, and also includes a cathode protective film layer.
  • the light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) for any layer that is at least part of the organic layer of the light-emitting element, high luminous efficiency can be obtained and low A light emitting element excellent in driving voltage and durability can be obtained.
  • the light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) has high electron affinity and fluorescence quantum yield, it is preferably used for the light-emitting layer or the electron transport layer.
  • the phosphine oxide derivative represented by the general formula (1) is used as a dopant material of the light emitting layer, excessive electron is trapped in the light emitting layer due to the strength of the electron affinity, and the hole transport layer is prevented from deteriorating. It is preferable because the durability of the element is improved.
  • any one of the compounds represented by the general formulas (5) to (8) is used as the material for the electron transport layer. More electrons can be injected into the light emitting layer, which is preferable because driving voltage and light emission efficiency of the light emitting element are improved.
  • R 39 to R 48 may be the same or different and each represents hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, A group consisting of arylthioether group, aryl group, heteroaryl group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group and —P ( ⁇ O) R 49 R 50 (hereinafter referred to as “R 39- R 48 substituents etc. ”may also be abbreviated.
  • L 2 is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group
  • Ar 2 is an aromatic heterocyclic group containing an electron-accepting nitrogen.
  • n 2 is an integer of 1 or more. When n 2 is 2 or more, L 2 and Ar 2 may be the same or different.
  • R 49 and R 50 can independently apply the substituents listed as the substituents of R 1 and R 2 or the like.
  • Ar 2 is an aromatic heterocyclic group containing electron-accepting nitrogen.
  • Aromatic heterocyclic groups containing electron-accepting nitrogen are pyridyl group, quinolinyl group, isoquinolinyl group, quinoxalinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, phenanthrolinyl group, imidazopyridyl group, triazyl group, acridyl group , A benzoimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, and the like, as a non-carbon atom, a cyclic aromatic group having at least one electron-accepting nitrogen atom in the ring.
  • an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity.
  • carbon number of the aromatic heterocyclic group containing electron-accepting nitrogen is not specifically limited, Usually, it is the range of 2-30.
  • the connecting position of the aromatic heterocyclic group containing an electron-accepting nitrogen may be any part.
  • a pyridyl group it may be any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group.
  • the pyrene compound represented by the general formula (5) has an aromatic heterocycle containing a pyrene skeleton and electron-accepting nitrogen in the molecule. As a result, it is possible to achieve both high electron transportability and electrochemical stability of the pyrene skeleton and high electron acceptability of the aromatic heterocycle containing electron accepting nitrogen, and high electron injecting and transporting ability is exhibited.
  • Ar 2 is preferably a pyridyl group, a quinolinyl group, a quinoxalinyl group, a pyrimidyl group, a phenanthrolinyl group, a benzo [d] imidazolyl group, an imidazo [1,2-a] pyridyl group, or the like.
  • L 2 is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group, and these definitions are the same as L 1 .
  • L 2 is preferably an arylene group. Since aromatic heterocycles containing electron-accepting nitrogen are vulnerable to oxidation, bonding via an arylene group is more electrochemically stable than bonding directly to a pyrene skeleton. This creates a synergistic effect with the high electron transport property of the pyrene skeleton, and expresses higher electron injecting and transporting ability.
  • R 39 is used for linking with L 2 and R 44 is an aryl group or a heteroaryl group
  • R 39 is used for linking with L 2 , and R 41 is An aryl group or a heteroaryl group, and R 44 , R 45 , and R 46 are all hydrogen atoms
  • R 39 is used for linking with L 2 , and R 41 is an aryl group or When it is a heteroaryl group and R 45 is an alkyl group, an aryl group or a heteroaryl group, the interaction between the pyrene skeletons is moderately suppressed due to the steric hindrance of the substituent on the pyrene skeleton, and the glass transition temperature is high. Become. This effect improves the stability of the thin film state and improves the durability of the light emitting element.
  • the compound represented by the general formula (5) is not particularly limited, but specifically, compounds described in Chemical Formulas 3 to 14 of International Publication No. 2010/113743, Japanese Patent Laid-Open No. 2011-204844 And the compounds described in Chemical Formulas 9 to 24. Moreover, the following compounds can also be mentioned.
  • R 51 to R 58 may be the same as or different from each other, and may be hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and a group consisting of —P ( ⁇ O) R 59 R 60 (hereinafter referred to as “substituents of R 51 to R 58 , etc.”) (It may be abbreviated).
  • R 59 and R 60 are an aryl group or a heteroaryl group. R 59 and R 60 may be condensed to form a ring. However, at least one of R 51 to R 58 itself has a three-dimensional structure, or has a three-dimensional structure by steric repulsion with a phenanthroline skeleton or an adjacent substituent.
  • R 61 to R 68 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and a group consisting of —P ( ⁇ O) R 69 R 70 (hereinafter referred to as “substituents of R 61 to R 68 , etc.”) (It may be abbreviated).
  • R 69 and R 70 are an aryl group or a heteroaryl group. R 69 and R 70 may be condensed to form a ring. However, n 3 phenanthroline skeletons are each linked to X at at least one of R 61 to R 68 . n 3 represents an integer of 2 or more. X is a connecting unit that connects a single bond or a plurality of phenanthroline skeletons.
  • R 51 to R 58 the same as the corresponding ones of the substituents of R 1 and R 2 can be applied.
  • R 59 and R 60 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 .
  • R 61 to R 68 the same ones as the corresponding ones of the substituents of R 1 and R 2 can be applied.
  • R 69 and R 70 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 and the like.
  • R 51 to R 58 having a three-dimensional structure per se means a structure in which atoms constituting a group are not in the same plane and have an effect of preventing overlapping of molecules by steric repulsion.
  • substituent having a particularly remarkable steric repulsion effect include isopropyl group, t-butyl group, cyclohexyl group, adamantyl group, norbornyl group, 9,9′-dimethylfluorenyl group, 9,9′-diphenylfluorene. Nyl group, spirofluorenyl group, etc. are mentioned. These groups may be unsubstituted or may have a substituent.
  • substituents that give a three-dimensional structure by steric repulsion with the phenanthroline skeleton or adjacent substituents are substituents such as phenyl, naphthyl, phenanthryl, anthryl, pyrenyl, and fluoranthenyl groups. Even if it is a planar structure itself, the steric repulsion between the substituent and the phenanthroline skeleton, or the substituent and the adjacent substituent indicates that the substituent plane is different from the phenanthroline skeleton plane.
  • substituent that causes steric repulsion with the phenanthroline skeleton include a 1-naphthyl group, 9-phenanthryl group, 9-anthryl group, 1-pyrenyl group, and 3-fluoranthenyl group.
  • substituents include 2-methylphenyl group, 2,6-dimethylphenyl group, mesityl group, 2-t-butylphenyl group, 2-biphenyl group, 2- (1-methyl) naphthyl group, Examples include 2- (1-t-butyl) naphthyl group and 2- (1-phenyl) naphthyl group.
  • a compound containing a phenanthroline skeleton has low planarity and can be crystallized because the substituent itself has a three-dimensional steric structure, or a steric repulsion with the phenanthroline skeleton or a neighboring substituent brings about a three-dimensional steric structure. It is difficult to occur and a good amorphous thin film state can be maintained.
  • a compound containing the phenanthroline skeleton has a high molecular weight and a glass transition temperature rises, so that crystallization hardly occurs and a good amorphous thin film state can be maintained.
  • N 3 in the general formula (7) is an integer of 2 or more.
  • n 3 in the general formula (7) is more preferably 2.
  • X is a connecting unit that connects a single bond or a plurality of phenanthroline skeletons.
  • Such X is not particularly limited, but from the viewpoint of thermal stability and chemical stability, an arylene group or a heteroarylene group is preferable, and at least selected from a benzene ring, a substituent having a terphenyl skeleton, and a naphthalene ring.
  • a connecting unit that connects a single bond or a plurality of phenanthroline skeletons.
  • Such X is not particularly limited, but from the viewpoint of thermal stability and chemical stability, an arylene group or a heteroarylene group is preferable, and at least selected from a benzene ring, a substituent having a terphenyl skeleton, and a naphthalene ring.
  • a benzene ring a substituent having a terphenyl skeleton, and a naphthalene ring
  • X is a benzene ring
  • X is preferably a 1,4-phenylene group or a 1,3-phenylene group for ease of synthesis.
  • at least one of R 61 to R 68 is from the viewpoint of heat resistance.
  • aryl group an unsubstituted or substituted phenyl group, p-tolyl group, m-tolyl group, 3,5-dimethylphenyl group, 4-t-butylphenyl group, etc.
  • X in the general formula (7) is a naphthalene ring
  • X is a 1,6-naphthylene group, 1,7-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group because of ease of synthesis. Groups are more preferred.
  • X in the general formula (7) is a substituent having a terphenyl skeleton, it is preferably a substituent having the following structure.
  • the structure has the following structure in which at least one benzene ring is linked at the ortho position.
  • the compound represented by the general formula (6) or (7) is not particularly limited, but specifically, the compounds described in Chemical formulas 6 to 9 of JP-A No. 2001-267080, Examples include compounds described in Chemical Formulas 3 to 7 and Chemical Formulas 13 to 14 of Japanese Patent No. 281390.
  • Ar 3 represents an aryl group or a heteroaryl group
  • L 3 represents a single bond, an arylene group, or a heteroarylene group.
  • Z is represented by the following general formula (9). n 4 is 1 or 2. When n 4 is 2, two Zs may be the same or different.
  • each of ring A and ring B represents a benzene ring, a condensed aromatic hydrocarbon ring, a monocyclic aromatic heterocyclic ring, or a condensed aromatic heterocyclic ring.
  • ring A and / or ring B contains at least one electron-accepting nitrogen.
  • R 71 are each an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Selected from the group consisting of a group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P ( ⁇ O) R 72 R 73 .
  • R 71 may be hydrogen.
  • R 72 and R 73 are an aryl group or a heteroaryl group.
  • R 72 and R 73 may be condensed to form a ring. However, it is connected to L 3 at any position among R 71 , ring A and ring B.
  • n 4 is 2, the positions at which two Z are linked to L 3 may be the same or different.
  • Ar 3 represents an aryl group or a heteroaryl group.
  • the definitions of the aryl group and heteroaryl group are the same as those listed as the substituents for R 1 and R 2 and the like.
  • L 3 represents a single bond, an arylene group or a heteroarylene group.
  • a single bond means that L 3 does not exist as a bonding group, and Ar 3 and Z are directly bonded.
  • the definitions of the arylene group and the heteroarylene group are the same as those in L 1 described above.
  • n 4 is 1 or 2. Since the compound represented by the general formula (8) has one or two groups represented by Z, the crystallinity is lowered or the glass transition temperature is increased, so that the stability of the film is improved. improves. When n 4 is 2, two Zs may be the same or different.
  • Z represented by the general formula (9) ring A and ring B each represent a benzene ring, a condensed aromatic hydrocarbon ring, a monocyclic aromatic heterocyclic ring, or a condensed aromatic heterocyclic ring. However, ring A and / or ring B contains at least one electron-accepting nitrogen. The electron-accepting nitrogen represents a nitrogen atom forming a multiple bond with an adjacent atom as described.
  • R 71 are each an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and —P ( ⁇ O) R 72 R 73 (hereinafter referred to as “Z Or the like.
  • R 71 may be hydrogen.
  • R 72 and R 73 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 .
  • ring A and ring B Connecting to L 3 at any position of R 71 , ring A and ring B means the following.
  • the coupling with L 3 at the position of R 71 refers to the nitrogen atom and L 3 which R 71 is linked directly binds.
  • L 3 when linked to L 3 at any position of ring A and ring B, for example, when ring A is a benzene ring, L 3 is directly bonded to any of the carbon atoms constituting the benzene ring.
  • Z has electron donating nitrogen.
  • the nitrogen atom to which R 71 is bonded corresponds to this.
  • Electron-donating nitrogen has high stability against holes and can be smoothly and repeatedly oxidized by holes. Therefore, when the compound of the general formula (8) is used for the electron transport layer, deterioration of the electron transport layer due to holes leaking from the light emitting layer can be prevented, and the lifetime of the light emitting element is extended as compared with the conventional one. be able to.
  • Ar 3 is preferably a group containing a fluoranthene skeleton or a group containing a benzofluoranthene skeleton. Since the fluoranthene skeleton or benzofluoranthene skeleton has a 5 ⁇ -electron five-membered ring structure as described above, it has a strong electron affinity and exhibits good electron injection from the electrode when used in an electron transport layer. The driving voltage of the light emitting element can be lowered. As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
  • the fluoranthene skeleton and the benzofluoranthene skeleton have high planarity and have high charge transport properties because the molecules overlap each other well. For this reason, when the compound represented by the general formula (8) is used in the electron transport layer, electrons generated from the cathode can be efficiently transported, so that the driving voltage of the device can be lowered. As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
  • the fluoranthene skeleton and the benzofluoranthene skeleton are highly stable against electric charges, and can be smoothly and repeatedly reduced by electrons and oxidized by holes. Therefore, when the compound represented by the general formula (8) is used for the electron transport layer, the lifetime can be improved.
  • the compound represented by the general formula (8) is preferably a compound represented by the following general formula (10).
  • the compound represented by the general formula (10) is a compound in which the 3-position of the fluoranthene skeleton is substituted with a substituent containing Z.
  • the electronic state of the fluoranthene skeleton is greatly changed, and conjugation is efficiently expanded, so that the charge transport property is improved.
  • the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved.
  • the conjugation spreads, the stability against charges is also improved.
  • each of R 74 to R 82 may be the same or different, and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter, sometimes abbreviated as “substituents for R 74 to R 82 ”, etc.) More selected. R 74 to R 82 may form a ring with adjacent substituents. L 3 , Z and n 4 are the same as those in the general formula (8).
  • substituents and the like listed in the substituents R 74 to R 82 in the general formula (10) the same ones as the corresponding ones among the substituents R 1 and R 2 can be applied.
  • it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen.
  • R 74 to R 82 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen, the glass transition temperature is increased and the thin film stability is improved.
  • the substituent is difficult to decompose even at high temperatures, the heat resistance is improved.
  • conjugation spreads, so that it becomes more electrochemically stable and charge transportability is improved.
  • Ar 3 is a group containing a benzofluoranthene skeleton
  • Ar 3 is preferably a group represented by the following general formula (11).
  • benzofluoranthene is represented by the general formula (11)
  • the conjugated system spreads moderately. Thereby, it becomes electrochemically stable and further the charge transport property is improved.
  • each of R 83 to R 94 may be the same or different and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter sometimes abbreviated as “substituents for R 83 to R 94 , etc.”) More selected.
  • R 83 to R 94 may form a ring with adjacent substituents. However, it is connected to L 3 at any one of R 83 to R 94 .
  • substituents and the like listed in the substituents R 83 to R 94 in the general formula (11) the same ones as the corresponding ones among the substituents R 1 and R 2 can be applied.
  • it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen.
  • R 83 to R 94 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen, the glass transition temperature is increased and the thin film stability is improved.
  • the thin film stability is improved, the deterioration of the film is suppressed even if the light emitting element is driven for a long time, so that the durability is improved.
  • the substituent is difficult to decompose even at high temperatures, the heat resistance is improved.
  • the heat resistance is improved, the decomposition of the material can be suppressed at the time of device fabrication, so that the durability is improved.
  • it is an aryl group or a heteroaryl group, conjugation spreads, so that it becomes more electrochemically stable and charge transportability is improved.
  • R 87 and R 92 are preferably a substituted or unsubstituted aryl group.
  • R 87 and R 92 are substituted or unsubstituted aryl groups, it is possible to moderately avoid overlapping of ⁇ conjugate planes between molecules.
  • heat resistance improves by being an aryl group.
  • R 87 and R 92 in general formula (11) are more preferably a substituted or unsubstituted phenyl group.
  • R 87 and R 92 are substituted or unsubstituted phenyl groups, it is possible to appropriately avoid overlapping of ⁇ -conjugated planes between molecules. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
  • the compound represented by the general formula (8) is preferably a compound represented by the following general formula (12).
  • conjugation easily spreads at the positions of R 83 and R 84 in the general formula (11), and conjugation efficiently spreads when R 83 is linked to L 3 .
  • the compound represented by the general formula (12) becomes more electrochemically stable, and the charge transport property is further improved.
  • each of R 95 to R 105 may be the same or different and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter, abbreviated as “substituents for R 95 to R 105 , etc.”) More selected. R 95 to R 105 may form a ring with adjacent substituents.
  • L 3 , Z and n 4 are the same as those in the general formula (8).
  • R 95 to R 105 the same as the corresponding ones of the substituents of R 1 and R 2 can be applied.
  • it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen.
  • R 95 to R 105 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen
  • the glass transition temperature is increased and the thin film stability is improved.
  • the substituent is difficult to decompose even at high temperatures, the heat resistance is improved.
  • conjugation spreads so that it becomes more electrochemically stable and charge transportability is improved.
  • n 4 is preferably 1. When n 4 is 1, sublimation property and deposition stability are improved.
  • Z is preferably a group represented by any one of the following general formulas (13) to (17).
  • Z is a group represented by any one of the following general formulas (13) to (17)
  • high electron mobility and high electron acceptability are exhibited, and the driving voltage of the light emitting element can be lowered.
  • the light emission efficiency of the light emitting element can be improved.
  • ring B represents a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic hydrocarbon ring, a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted condensed aromatic heterocyclic ring.
  • ring B is a substituted or unsubstituted monocyclic aromatic heterocyclic ring or a substituted or unsubstituted condensed aromatic heterocyclic ring, and ring B is at least one electron accepting ring. Contains nitrogen.
  • R 71 and R 106 to R 121 are the same as those in the general formula (8).
  • R 71 , R 106 to R 109 and ring B in the case of general formula (14), of R 71 , R 110 to R 112 and ring B
  • R 71 , R 113 to R 115 in any position of ring B
  • R 71 , R 116 to R 118 in the case of general formula (17) at any position in the ring B, R 71 , R 119 to R 121 and at any position in the ring B are connected to L 3 .
  • Ring B preferably has a structure represented by any of the following general formulas (18) to (21).
  • the ring B has a structure represented by any one of the following general formulas (18) to (21)
  • high carrier mobility and high electron acceptability are expressed.
  • the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved.
  • the sublimation property, deposition stability, crystallinity deterioration, and film stability due to high glass transition temperature are improved.
  • B 1 to B 22 represent a substituted or unsubstituted carbon atom or a nitrogen atom.
  • Z is a group represented by the general formula (13)
  • the substituents when B 1 to B 22 have a substituent are the same as those in the general formula (8).
  • Ring B is not particularly limited, but is preferably General Formulas (19) to (21).
  • ring B is represented by the general formulas (19) to (21)
  • conjugation is further expanded, and high carrier mobility and high electron acceptability are expressed.
  • the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved.
  • the compound represented by the general formula (8) is not particularly limited, but specific examples include the following compounds.
  • the light-emitting element of the present invention has an anode and a cathode, and an organic layer interposed between the anode and the cathode.
  • the organic layer has at least a light-emitting layer and an electron transport layer, and the light-emitting layer is formed by electric energy. Emits light.
  • the organic layer is composed of only the light emitting layer / electron transport layer, 1) hole transport layer / light emitting layer / electron transport layer and 2) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 3) Laminate structure such as hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer can be mentioned.
  • Each of the layers may be a single layer or a plurality of layers.
  • the light emitting device material containing the phosphine oxide derivative represented by the general formula (1) may be used for any layer in the above device configuration, but has a high electron injection / transport capability, a fluorescence quantum yield, and a thin film stability. Therefore, it is preferably used for a light emitting layer or an electron transport layer of a light emitting element. In particular, since it has an excellent fluorescence quantum yield, it is preferably used as a dopant material for the light emitting layer.
  • the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and at least one of them is preferably transparent or translucent in order to extract light.
  • the anode formed on the substrate is a transparent electrode.
  • the material used for the anode is a material that can efficiently inject holes into the organic layer and is transparent or translucent to extract light, tin oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) ), Etc., metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, etc. However, it is particularly preferable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the element, but it is preferably low resistance from the viewpoint of power consumption of the element.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as a device electrode, but since a substrate of about 10 ⁇ / ⁇ is now available, use a low resistance substrate of 20 ⁇ / ⁇ or less. Is particularly preferred.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the light emitting element is preferably formed over a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
  • soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
  • the substrate need not be glass, and for example, an anode may be formed on a plastic substrate.
  • the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred.
  • aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
  • magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and driving at a low voltage is possible.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride
  • an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer.
  • the phosphine oxide derivative represented by General formula (1) can also be utilized as this protective film layer.
  • the protective film layer is selected from materials that are light transmissive in the visible light region.
  • the production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
  • the hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder.
  • the hole transport material needs to efficiently transport holes from the anode between electrodes to which an electric field is applied, has high hole injection efficiency, and can efficiently transport injected holes. preferable.
  • the material has an appropriate ionization potential, has a high hole mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use.
  • a substance satisfying such conditions is not particularly limited.
  • a group of materials called triarylamine a material having a carbazole skeleton, especially a carbazole multimer, specifically a derivative of a carbazole dimer such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), a carbazole trimer Derivatives, carbazole tetramer derivatives, triphenylene compounds, pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives and thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives and other heterocyclic compounds, fullerene derivatives,
  • polycarbonate having a monomer in the side chain, styrene derivative, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, polysilane, and the like are preferable.
  • inorganic materials such as p-type Si and p-type SiC can also be
  • the phosphine oxide derivative represented by the general formula (1) can also be used as a hole transporting material because of its high hole mobility and excellent electrochemical stability.
  • the phosphine oxide derivative represented by the general formula (1) may be used as a hole injection material. However, since it has high hole mobility, it is preferably used as a hole transport material.
  • the phosphine oxide derivative represented by the general formula (1) has excellent electron injecting and transporting properties
  • a light emitting device material containing the phosphine oxide derivative is used for a light emitting layer or an electron transporting layer
  • electrons are recombined in the light emitting layer.
  • a part of the hole transport layer may leak. Therefore, it is preferable to use a compound having an excellent electron blocking property for the hole transport layer.
  • a compound containing a carbazole skeleton is preferable because it has excellent electron blocking properties and can contribute to the improvement in efficiency of the light-emitting element.
  • the compound containing a carbazole skeleton preferably contains a carbazole dimer, a carbazole trimer, or a carbazole tetramer skeleton. This is because they have both a good electron blocking property and a hole injection / transport property.
  • the compound containing a carbazole skeleton or the compound containing a triphenylene skeleton may be used alone as a hole transport layer, or may be used as a mixture with each other. Further, other materials may be mixed within a range not impairing the effects of the present invention.
  • the hole transport layer is composed of a plurality of layers, any one layer may contain a compound containing a carbazole skeleton or a compound containing a triphenylene skeleton.
  • a hole injection layer may be provided between the anode and the hole transport layer.
  • the hole injection layer By providing the hole injection layer, the light emitting element has a low driving voltage and the durability life is improved.
  • a material having a smaller ionization potential than that of the material normally used for the hole transport layer is preferably used.
  • a benzidine derivative such as TPD232 and a starburst arylamine material group can be used, and a phthalocyanine derivative can also be used.
  • the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped with another hole transport material.
  • acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide,
  • a charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used.
  • these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), 2, 3, 6, 7 , 10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN6), p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-Dicyanobenzoquinone, p-
  • metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained.
  • preferred metal oxides include molybdenum oxide, vanadium oxide, or ruthenium oxide.
  • cyano group-containing compounds (a) a compound having in the molecule at least one electron-accepting nitrogen other than the nitrogen atom of the cyano group, and (b) a compound having both a halogen and a cyano group in the molecule (C) a compound having both a carbonyl group and a cyano group in the molecule, or (d) at least one electron other than the nitrogen atom of the cyano group, having both a halogen and a cyano group in the molecule.
  • a compound having an accepting nitrogen is more preferable because it becomes a strong electron acceptor. Specific examples of such a compound include the following compounds.
  • the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound
  • the hole injection layer may be a single layer, A plurality of layers may be laminated.
  • the hole injection material used in combination when the acceptor compound is doped is the same compound as the compound used for the hole transport layer from the viewpoint that the hole injection barrier to the hole transport layer can be relaxed. Is more preferable.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, Either is acceptable. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material.
  • the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
  • the dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated or dispersed.
  • the emission color can be controlled by the dopant material. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 20% by weight or less, more preferably 10% by weight or less with respect to the host material.
  • the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
  • the light-emitting material includes fused ring derivatives such as anthracene and pyrene, which have been conventionally known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • fused ring derivatives such as anthracene and pyrene, which have been conventionally known as light emitters
  • metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
  • the phosphine oxide derivative represented by the general formula (1) can also be used as a light-emitting material because of its high fluorescence quantum yield and excellent electrochemical stability.
  • the phosphine oxide derivative represented by the general formula (1) may be used as a host material. However, since it has a strong electron affinity, it traps excess electrons injected into the light emitting layer when used as a dopant material. This is particularly preferable because the hole transport layer can be prevented from being deteriorated by the attack of electrons.
  • the host material contained in the light-emitting material is not particularly limited.
  • phosphine oxide derivative represented by the general formula (1) naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene
  • compounds having a condensed aryl ring such as, derivatives thereof, aromatic amine derivatives such as N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, tris (8- Quinolinato) metal chelated oxinoid compounds such as aluminum (III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivative
  • a phosphorescent material may be included in the light emitting layer.
  • a phosphorescent material is a material that exhibits phosphorescence even at room temperature. When a phosphorescent material is used as a dopant, it is basically necessary to obtain phosphorescence even at room temperature, but there is no particular limitation, and iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium It is preferably an organometallic complex compound containing at least one metal selected from the group consisting of (Pd), platinum (Pt), osmium (Os), and rhenium (Re).
  • an organometallic complex having iridium or platinum is more preferable.
  • Hosts used in combination with a phosphorescent dopant include indole derivatives, carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, nitrogen-containing aromatic compound derivatives having a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, Aromatic hydrocarbon compound derivatives such as truxene derivatives and triphenylene derivatives, compounds containing chalcogen elements such as dibenzofuran derivatives and dibenzothiophene derivatives, and organometallic complexes such as beryllium quinolinol complexes are preferably used.
  • triplet light-emitting dopants may be contained, or two or more host materials may be contained. Further, one or more triplet light emitting dopants and one or more fluorescent light emitting dopants may be contained.
  • Preferred phosphorescent host or dopant is not particularly limited, but specific examples include the following.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport layer is preferably made of a material having a high electron affinity, a high electron mobility, excellent stability, and impurities that are traps are less likely to be generated during manufacture and use.
  • the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
  • Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
  • An aromatic heterocycle containing electron-accepting nitrogen has high electron affinity.
  • An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage.
  • the number of electrons supplied to the light emitting layer increases and the recombination probability increases, the light emission efficiency is improved.
  • heteroaryl ring containing an electron-accepting nitrogen examples include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, Examples thereof include an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoins.
  • Preferred compounds include quinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives.
  • imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
  • a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
  • the condensed polycyclic aromatic skeleton is particularly preferably an anthracene skeleton, a pyrene skeleton or a phenanthroline skeleton.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material.
  • Preferred electron transport materials are not particularly limited, but specific examples include the following.
  • the phosphine oxide derivative represented by the general formula (1) also has a high electron injecting and transporting ability, so that it can be suitably used as an electron transporting material for an electron transporting layer.
  • the phosphine oxide derivative represented by the general formula (1) of the present invention may be mixed.
  • One or more other electron transport materials may be used in combination with the phosphine oxide derivative represented by the general formula (1) of the present invention as long as the effects of the present invention are not impaired.
  • the electron transport material that can be mixed is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof, or a styryl aromatic ring typified by 4,4′-bis (diphenylethenyl) biphenyl.
  • any one of the compounds represented by the general formulas (5) to (8) is used as the electron transport material.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material.
  • a donor material may be contained.
  • the donor material is a material that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
  • Preferred examples of the donor material in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic material, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal And a complex of organic substance.
  • Preferable types of alkali metals and alkaline earth metals include alkali metals such as lithium, sodium and cesium, which have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
  • inorganic salts include oxides such as LiO, Li 2 O, Ba (OH) 2 , nitrides, fluorides such as LiF, NaF, KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Carbonates such as Rb 2 CO 3 and Cs 2 CO 3 .
  • the alkali metal or alkaline earth metal include lithium, cesium, calcium, barium, and the like, but lithium is particularly preferable because it is inexpensive and easy to synthesize.
  • Preferred examples of the organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like. Among these, a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable. Two or more of these donor materials may be mixed and used.
  • the preferred doping concentration varies depending on the material and the film thickness of the doping region.
  • the deposition rate ratio between the electron transport material and the donor material is 10,000: It is preferable to use an electron transport layer by co-evaporation so as to be in the range of 1 to 2: 1.
  • the deposition rate ratio is more preferably 100: 1 to 5: 1, and further preferably 100: 1 to 10: 1.
  • the donor material is a complex of a metal and an organic material
  • the electron transport layer and the donor material are co-deposited so that the deposition rate ratio of the electron transport material and the donor material is in the range of 100: 1 to 1: 100. Is preferred.
  • the deposition rate ratio is more preferably 10: 1 to 1:10, and more preferably 7: 3 to 3: 7.
  • an electron transport layer in which a donor material is doped to the phosphine oxide derivative represented by the general formula (1) as described above is used as a charge generation layer in a tandem structure type element connecting a plurality of light emitting elements. May be.
  • the method for improving the electron transport ability by doping a donor material into the electron transport layer is particularly effective when the thin film layer is thick. It is particularly preferably used when the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light-emitting layer is 50 nm or more, and in the case of long-wavelength light emission such as red, the film thickness may be nearly 100 nm. .
  • the thickness of the electron transport layer to be doped may be a part or all of the electron transport layer.
  • the donor material is in direct contact with the light emitting layer, the light emission efficiency may be lowered. In that case, it is preferable to provide a non-doped region at the light emitting layer / electron transport layer interface.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • the electron injection layer is inserted for the purpose of assisting injection of electrons from the cathode to the electron transport layer, but in the case of insertion, a compound having a heteroaryl ring structure containing electron-accepting nitrogen may be used.
  • a layer containing the above donor material may be used. Since the phosphine oxide derivative represented by the general formula (1) has a high electron affinity, it is also preferably used as an electron injection layer. In this case, it is preferable that the above-mentioned donor material is included.
  • the above-mentioned alkali metal, inorganic salt containing alkali metal, complex of alkali metal and organic substance, alkaline earth metal, inorganic salt containing alkaline earth metal or alkaline earth metal and Organic complex is preferable, and alkali metal or alkaline earth metal is particularly preferable.
  • the alkali metal or alkaline earth metal include lithium, cesium, calcium, barium, etc. Among them, lithium is particularly preferable.
  • An insulator or a semiconductor inorganic substance can also be used for the electron injection layer. Use of these materials is preferable because a short circuit of the light emitting element can be effectively prevented and the electron injection property can be improved.
  • preferred alkali metal chalcogenides include, for example, Li 2 O, Na 2 S, and Na 2 Se
  • preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. Is mentioned.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • a complex of an organic substance and a metal is also preferably used. In the case where a complex of an organic substance and a metal is used for the electron injection layer, the film thickness can be easily adjusted.
  • organometallic complexes examples include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole, and the like as preferred examples of the organic substance in a complex with an organic substance.
  • a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
  • each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
  • the thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light emitting device of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
  • pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics.
  • the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
  • the matrix display and the segment display may coexist in the same panel.
  • the light-emitting element of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • Compound [1] was used as a light emitting device material after sublimation purification at about 290 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.12% before sublimation purification and 99.57% after sublimation purification.
  • Diphenylphosphine oxide 5.65 g, 4-bromoiodobenzene 4.04 g, triethylamine 2.02 g, and toluene 40 mL were mixed and purged with nitrogen. To this mixed solution was added 578 mg of tetrakis (triphenylphosphine) palladium, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, 40 ml of toluene and 40 ml of water were added for liquid separation, and the organic layer was dried over magnesium sulfate.
  • Compound [2] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.39% before sublimation purification and 99.72% after sublimation purification.
  • the obtained solid was heated and dissolved in 150 ml of toluene, and then purified by silica gel column chromatography (developed only with toluene), and the eluate was concentrated.
  • the obtained yellow solid was dissolved in 100 ml of THF by heating, 1.0 g of QuadrasilMP (registered trademark) was added thereto, the mixture was heated to reflux for 1 hour, filtered through celite, and then the solvent was distilled off. Drying under reduced pressure yielded 4.47 g of yellow solid intermediate [H] (yield 86%).
  • Compound [3] was used as a light emitting device material after sublimation purification at about 350 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.40% before sublimation purification and 99.92% after sublimation purification.
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method.
  • the compound (H-1) as a host material and the compound [1] of the present invention as a dopant material were deposited in a thickness of 30 nm on the light emitting layer so that the doping concentration was 3% by weight.
  • the compound (1E-1) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 2 to 7 A light emitting device was produced in the same manner as in Example 1 except that the materials listed in Table 1 were used as the dopant material. The results of each example are shown in Table 1.
  • Table 1 the compounds [1] to [3] are the compounds obtained by the above (Synthesis Example 1) to (Synthesis Example 3), and the compounds [4] to [7] are the compounds shown below. It is.
  • Example 8 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method.
  • the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight.
  • the compound (1E-2) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 5.4%, a driving voltage of 4.0 V, and a luminance half time of 8000 hours was obtained.
  • Example 9 A light emitting device was produced in the same manner as in Example 8 except that the materials described in Table 2 were used as the electron transport layer. The results of each example are shown in Table 2. (1E-3) to (1E-8) are the compounds shown below.
  • Example 21 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method.
  • the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight.
  • the compound (1E-2) and the donor material (2E-1) are used for the electron transport layer so that the deposition rate ratio of the compounds (1E-2) and (2E-1) is 1: 1.
  • the electron transport layer was deposited to a thickness of 25 nm and laminated.
  • this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 5.9%, a driving voltage of 3.8 V, and a luminance half time of 8800 hours was obtained.
  • Example 22 to 30 A light emitting device was produced in the same manner as in Example 21 except that the materials described in Table 3 were used as the electron transport layer. The results of each example are shown in Table 3.
  • Example 31 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was deposited as a hole injection layer by 5 nm and the compound (HT-1) as a first hole transport layer by 60 nm by a resistance heating method. Further, 10 nm of a compound (HT-2) was deposited as a second hole transport layer. Next, the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight. Next, the compound (1E-1) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 4.9%, a driving voltage of 4.5 V, and a luminance half time of 8100 hours was obtained.
  • (HT-2) is a compound shown below.
  • Examples 32 to 36 A light emitting device was produced in the same manner as in Example 31 except that the materials described in Table 4 were used as the second hole transport layer and the electron transport layer. The results of each example are shown in Table 4. The results of Examples 2 and 12 are also shown again for reference. (HT-3) and (HT-4) are the compounds shown below.
  • Example 37 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method.
  • the compound (H-1) as a host material and the compound (D-3) as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm with a doping concentration of 3% by weight.
  • the compound [1] of the present invention was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Example 38 A light emitting device was produced in the same manner as in Example 37 except that the materials described in Table 5 were used as the electron transport layer. The results of each example are shown in Table 5. Compound [8] and Compound [9] are the compounds shown below.
  • Example 46 The compound [1] and the donor material (2E-1) are used for the electron transport layer, and the electron transport layer is 25 nm so that the deposition rate ratio of the compounds [1] and (2E-1) is 1: 1.
  • a light emitting device was fabricated in the same manner as in Example 37 except that the thickness was evaporated and laminated. The results are shown in Table 5.
  • Example 47 A light emitting device was produced in the same manner as in Example 46 except that the materials described in Table 5 were used as the electron transport layer. The results of each example are shown in Table 5.
  • Example 55 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method.
  • the compound (H-1) as a host material and the compound (D-3) as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm with a doping concentration of 3% by weight.
  • the compound (1E-1) was deposited as an electron transport layer to a thickness of 15 nm.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Example 56 A light emitting device was produced in the same manner as in Example 55 except that the materials described in Table 6 were used as the electron injection layer. The results of each example are shown in Table 6.
  • Example 64 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. This hole transport layer is shown in Table 6 as the first hole transport layer.
  • the compound (H-2) as a host material and the compound (D-4) as a dopant material were deposited on the light emitting layer in a thickness of 30 nm so that the doping concentration was 10 wt%.
  • Compound [2] was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • Example 65 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the compound (HI-1) was deposited as a hole injection layer by 5 nm and the compound (HT-1) as a first hole transport layer by 60 nm by a resistance heating method. Further, 10 nm of a compound (HT-2) was deposited as a second hole transport layer. Next, the compound (H-2) as a host material and the compound (D-4) as a dopant material were deposited on the light emitting layer in a thickness of 30 nm so that the doping concentration was 10 wt%. Next, Compound [2] was deposited as an electron transport layer to a thickness of 25 nm and laminated.
  • Example 66 to 75 A light emitting device was fabricated in the same manner as in Example 65 except that the materials described in Table 7 were used as the second hole transport layer and the electron transport layer. The results of each example are shown in Table 7.

Abstract

The present invention addresses the problem of providing a phosphine oxide derivative compound of exceptional electron affinity, the phosphine oxide derivative compound having a specific fluoranthene backbone and a phosphine oxide structure; and of providing a light-emitting element such as an organic thin-film light-emitting element of greater light-emitting efficiency, drive voltage, and durability. The light-emitting element contains the aforementioned compound.

Description

ホスフィンオキサイド誘導体およびそれを有する発光素子Phosphine oxide derivative and light emitting device having the same
 本発明は、発光素子などに利用可能な電子親和性に優れたホスフィンオキサイド化合物に関する。本発明は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能である。 The present invention relates to a phosphine oxide compound having excellent electron affinity that can be used for a light-emitting element. The present invention can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators.
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、蛍光材料を選ぶことによる多色発光が特徴であり、注目を集めている。 In recent years, research on organic thin-film light emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
 この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多数の実用化検討がなされており、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の高効率化と長寿命化の両立は大きな課題のひとつである。 This research was conducted by Kodak's C.I. W. Since Tang et al. Showed that organic thin film devices emit light with high brightness, many practical studies have been made, and organic thin film light emitting devices have been steadily put into practical use, such as being used in mobile phone main displays. Is progressing. However, there are still many technical issues. Above all, it is one of the major issues to achieve both high efficiency and long life of the device.
 有機薄膜発光素子は、発光効率の向上、駆動電圧の低下、耐久寿命の向上を満たす必要がある。発光効率を向上させるためにホスフィンオキサイド誘導体を用いる技術が特許文献1~3に開示されているが、耐久寿命が不十分であった。また、青色発光材料としてフルオランテン誘導体を用いる技術が特許文献4に開示されているが、駆動電圧と耐久寿命の両立という点で満足するものではなかった。 Organic thin-film light-emitting elements must satisfy improved luminous efficiency, lower drive voltage, and improved durable life. Although techniques using a phosphine oxide derivative to improve the luminous efficiency are disclosed in Patent Documents 1 to 3, the durability life is insufficient. Moreover, although the technique which uses a fluoranthene derivative as a blue light-emitting material is disclosed by patent document 4, it was not satisfied at the point of coexistence of a drive voltage and a durable life.
特開2002-63989号公報Japanese Patent Laid-Open No. 2002-63989 特開2006-73581号公報JP 2006-73581 A 特開2008-244012号公報Japanese Patent Application Laid-Open No. 2008-244012 国際公開第2007/100010号International Publication No. 2007/100010
 上記のように従来の技術では、素子の発光効率を向上させると、もしくは駆動電圧を低下させると、耐久寿命が低下するという問題があり、高い発光効率、低駆動電圧、さらに耐久寿命も両立させる技術は未だ見出されていない。 As described above, in the conventional technology, there is a problem that if the light emission efficiency of the element is improved or the drive voltage is lowered, the durability life is reduced, and both high light emission efficiency, low drive voltage, and durability life are compatible. Technology has not yet been found.
 本発明は、かかる従来の技術の問題を解決し、発光効率、駆動電圧、耐久寿命に優れた有機薄膜発光素子を提供することを目的とするものである。 An object of the present invention is to solve the problems of the conventional technology and to provide an organic thin film light emitting device excellent in luminous efficiency, driving voltage and durability life.
 本発明は、下記一般式(1)で表されるホスフィンオキサイド誘導体である。 The present invention is a phosphine oxide derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、RおよびRは同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および隣接置換基との間に形成される縮合環の中から選ばれる。Lは単結合、アリーレン基、またはヘテロアリーレン基である。Arは下記一般式(2)で表される縮合多環芳香族基である。nは1以上の整数である。nが2以上の場合、L、R、Rはそれぞれ同じでも異なっていてもよい。) (In the formula, R 1 and R 2 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group, and a condensed ring formed between adjacent substituents L 1 is a single bond, an arylene group, or a heteroarylene group, Ar 1 is a condensed polycyclic aromatic group represented by the following general formula (2), and n 1 is 1 or more. (When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R~R12は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群より選ばれる。ただしR~R12のうち、少なくとも一組の隣接する置換基は縮合環を形成している。ただし、R~R12のうち少なくとも一つの位置でLと連結する。) (Wherein R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group, provided that R 3 to R 12 are selected. Of which at least one pair of adjacent substituents forms a condensed ring, provided that it is linked to L 1 at at least one of R 3 to R 12. )
 本発明により、電子親和性に優れたホスフィンオキサイド化合物を提供できる。さらに、それを発光素子の各層の材料として用いることで、発光効率、駆動電圧、耐久寿命の要求特性を同時に満足する有機薄膜発光素子を提供することができる。 According to the present invention, a phosphine oxide compound having excellent electron affinity can be provided. Furthermore, by using it as a material for each layer of the light emitting element, it is possible to provide an organic thin film light emitting element that simultaneously satisfies the required characteristics of luminous efficiency, driving voltage, and durability life.
 一般式(1)で表されるホスフィンオキサイド誘導体について詳細に説明する。 The phosphine oxide derivative represented by the general formula (1) will be described in detail.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、RおよびRは同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および隣接置換基との間に形成される縮合環の中から選ばれる。Lは単結合、アリーレン基、またはヘテロアリーレン基である。Arは下記一般式(2)で表される縮合多環芳香族基である。nは1以上の整数である。nが2以上の場合、L、R、Rはそれぞれ同じでも異なっていてもよい。 In the formula, R 1 and R 2 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, An aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and an adjacent substituent. Choose from the inside. L 1 is a single bond, an arylene group, or a heteroarylene group. Ar 1 is a condensed polycyclic aromatic group represented by the following general formula (2). n 1 is an integer of 1 or more. When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、R~R12は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群より選ばれる。ただしR~R12のうち、少なくとも一組の隣接する置換基は縮合環を形成している。また、R~R12のうち少なくとも一つの位置でLと連結する。 In the formula, R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, It is selected from the group consisting of aryl ether groups, aryl thioether groups, aryl groups, heteroaryl groups, cyano groups, carbonyl groups, carboxyl groups, oxycarbonyl groups, carbamoyl groups, amino groups, and silyl groups. However, at least one pair of adjacent substituents among R 3 to R 12 forms a condensed ring. In addition, it is connected to L 1 at at least one position among R 3 to R 12 .
 [RおよびR
 RおよびRは、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および隣接置換基との間に形成される縮合環(以降、RおよびRの説明において、「置換基等」と略記することもある)の中から選ばれる。以下、置換基等について説明する。
[R 1 and R 2 ]
R 1 and R 2 are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group , A heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group and a condensed ring formed between adjacent substituents (hereinafter, in the description of R 1 and R 2 And may be abbreviated as “substituent etc.”). Hereinafter, a substituent etc. are demonstrated.
 上記の置換基等において、水素は重水素であってもよい。なお、本発明における全てのRおよびR以外においても、水素は重水素であってもよい。 In the above substituents, etc., hydrogen may be deuterium. It should be noted that deuterium may be used for hydrogen other than all R 1 and R 2 in the present invention.
 上記の置換基等において、ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。 In the above substituents and the like, halogen represents an atom selected from fluorine, chlorine, bromine and iodine.
 上記の置換基等において、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アリール基、ヘテロアリール基等を挙げることができる。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。なお、アルキル基の炭素数とは、置換基の炭素数は含まないものとする。 In the above substituents and the like, the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. This may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an aryl group, heteroaryl group, etc. can be mentioned. The number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost. The carbon number of the alkyl group does not include the carbon number of the substituent.
 上記の置換基等において、シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、シクロアルキル基におけるアルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。なお、シクロアルキル基におけるアルキル基部分の炭素数とは、シクロアルキル基および置換基として含まれるアルキル基の炭素数を示すものとする。 In the above substituents and the like, the cycloalkyl group means, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, etc., which may have a substituent. You don't have to. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms in the alkyl group portion in the cycloalkyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less. In addition, the carbon number of the alkyl group part in a cycloalkyl group shall show the carbon number of the alkyl group contained as a cycloalkyl group and a substituent.
 上記の置換基等において、複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。なお、複素環基の炭素数とは、複素環基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the heterocyclic group refers to, for example, an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may have a substituent. It may not have. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less. The carbon number of the heterocyclic group includes the carbon number of an additional substituent when the heterocyclic group has a substituent.
 上記の置換基等において、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。なお、アルケニル基の炭素数とは、アルケニル基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the alkenyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may have a substituent. You don't have to. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less. The carbon number of the alkenyl group includes the carbon number of an additional substituent when the alkenyl group has a substituent.
 上記の置換基等において、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。 In the above substituents and the like, the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, and the like. It may or may not have. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned.
 上記の置換基等において、アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。なお、アルキニル基の炭素数とは、アルキニル基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less. In addition, the carbon number of an alkynyl group shall include the carbon number of an additional substituent, when an alkynyl group has a substituent.
 上記の置換基等において、アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。なお、アルコキシ基の炭素数とは、アルコキシ基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents, etc., the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group is substituted. It may or may not have a group. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. The carbon number of the alkoxy group includes the carbon number of an additional substituent when the alkoxy group has a substituent.
 上記の置換基等において、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。なお、アルキルチオ基の炭素数とは、アルキルチオ基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. In addition, the carbon number of the alkylthio group includes the carbon number of an additional substituent when the alkylthio group has a substituent.
 上記の置換基等において、アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。なお、アリールエーテル基の炭素数とは、アリールエーテル基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group has a substituent. May not be included. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less. The carbon number of the aryl ether group includes the carbon number of an additional substituent when the aryl ether group has a substituent.
 上記の置換基等において、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アリールチオエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。なお、アリールチオエーテル基の炭素数とは、アリールチオエーテル基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the aryl thioether group is a group in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the aryl thioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less. The carbon number of the aryl thioether group includes the carbon number of an additional substituent when the aryl thioether group has a substituent.
 上記の置換基等において、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基、フルオランテニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、アリール基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。なお、アリール基の炭素数とは、アリール基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents and the like, the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, a pyrenyl group, or a fluoranthenyl group. The aryl group may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 to 40. The carbon number of the aryl group includes the carbon number of an additional substituent when the aryl group has a substituent.
 上記の置換基等において、ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換基を有していてもかまわない。置換基を有する場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができる。また、ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上30以下の範囲である。なお、ヘテロアリール基の炭素数とは、ヘテロアリール基が置換基を有する場合には追加の置換基の炭素数も含むものとする。 In the above substituents, etc., the heteroaryl group is a furanyl group, thiophenyl group, pyridyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuran group. A cyclic aromatic group having one or more atoms other than carbon in the ring, such as an nyl group, a dibenzothiophenyl group, and a carbazolyl group, which may be unsubstituted or substituted. There is no restriction | limiting in particular in the additional substituent in the case of having a substituent, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned. The number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 to 30. The carbon number of the heteroaryl group includes the carbon number of an additional substituent when the heteroaryl group has a substituent.
 上記の置換基等において、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基は、置換基を有していても有していなくてもよい。ここで、置換基を有する場合の追加の置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換基を有してもよい。さらに置換基を有する場合の置換基は、上記に挙げた通りである。 In the above substituents and the like, the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group may or may not have a substituent. Here, examples of the additional substituent in the case of having a substituent include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and the like, and these substituents may further have a substituent. Furthermore, the substituent in the case of having a substituent is as described above.
 上記の置換基等において、隣接置換基との間に形成される縮合環とは、前記一般式(1)で説明すると、RとR、または、RもしくはRとL、の間で共役または非共役の縮合環を形成するものである。Lが単結合の場合、RとArもしくはRとArの間で縮合環を形成してもよい。これら縮合環は環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。なお、Lが単結合の場合における、単結合の意味については後述する。 In the above-mentioned substituents and the like, the condensed ring formed between adjacent substituents is, for example, R 1 and R 2 , or R 1 or R 2 and L 1 . A conjugated or non-conjugated fused ring is formed between them. When L 1 is a single bond, a condensed ring may be formed between R 1 and Ar 1 or R 2 and Ar 1 . These fused rings may contain nitrogen, oxygen, sulfur atoms in the ring structure, or may be condensed with another ring. The meaning of the single bond when L 1 is a single bond will be described later.
 また、RおよびRがアリール基またはヘテロアリール基の場合、後述する電気化学的安定性が増し、発光素子の耐久性が向上するため好ましい。 In addition, when R 1 and R 2 are an aryl group or a heteroaryl group, the electrochemical stability described later is increased, and the durability of the light-emitting element is improved, which is preferable.
 [L
 Lは単結合、アリーレン基、またはヘテロアリーレン基である。
[L 1 ]
L 1 is a single bond, an arylene group, or a heteroarylene group.
 単結合とは、Lが結合基としては存在せず、一般式(1)において、Arとリンが直接結合していることをいう。 A single bond means that L 1 does not exist as a bonding group, and Ar 1 and phosphorus are directly bonded in the general formula (1).
 アリーレン基とは、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。一般式(1)のLがアリーレン基の場合、核炭素数は6以上30以下の範囲が好ましい。アリーレン基としては、具体的には、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、4,4’-ビフェニレン基、4,3’-ビフェニレン基、3,3’-ビフェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基などが挙げられる。より好ましくは1,4-フェニレン基、1,3-フェニレン基である。 An arylene group refers to a divalent or trivalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or a biphenyl group, which may or may not have a substituent. . When L 1 in the general formula (1) is an arylene group, the number of nuclear carbon atoms is preferably in the range of 6 to 30. Specific examples of the arylene group include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 4,4′-biphenylene group, 4,3′-biphenylene group, 3,3 Examples include '-biphenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group and the like. More preferred are a 1,4-phenylene group and a 1,3-phenylene group.
 ヘテロアリーレン基とは、ピリジル基、キノリニル基、ピリミジニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する芳香族基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリーレン基の炭素数は特に限定されないが、核炭素数が2以上30以下の範囲が好ましい。 A heteroarylene group is an aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a pyrimidinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group. A divalent or trivalent group derived from a group is shown, which may or may not have a substituent. The number of carbon atoms of the heteroarylene group is not particularly limited, but a range of 2 to 30 nuclear carbon atoms is preferable.
 また、Lがアリーレン基またはヘテロアリーレン基の場合、一般式(1)で表されるホスフィンオキサイド誘導体の蛍光量子収率が向上し、発光素子の効率が向上するため好ましい。 In addition, when L 1 is an arylene group or a heteroarylene group, the fluorescence quantum yield of the phosphine oxide derivative represented by the general formula (1) is improved, and the efficiency of the light-emitting element is preferably improved.
 [R~R12
 R~R12は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群(以降、「R~R12の置換基等」と略記することもある)より選ばれる。ただしR~R12のうち、少なくとも一組の隣接する置換基は縮合環を形成している。また、R~R12のうち少なくとも一つの位置でLと連結する。
[R 3 to R 12 ]
R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group , An arylthioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, and a silyl group (hereinafter referred to as “substituents for R 3 to R 12 etc.”) May be abbreviated as). However, at least one pair of adjacent substituents among R 3 to R 12 forms a condensed ring. In addition, it is connected to L 1 at at least one position among R 3 to R 12 .
 R~R12の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。 As the substituents and the like listed in the substituents of R 3 to R 12 , the same as the corresponding ones of the substituents of R 1 and R 2 can be applied.
 R~R12の隣接する置換基とは、具体的にはRとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R12とRのいずれかの組み合わせを指す。 The adjacent substituents of R 3 to R 12 are specifically R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and It refers to any combination of R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 3 .
 これらの隣接する置換基のうち、少なくとも一組の隣接する置換基は縮合環を形成している。このとき形成された縮合環の大きさについては特に限定されないが、分子構造の安定性の観点から5員環もしくは6員環が好ましい。また、形成される縮合環は脂肪族環でも芳香族環でもよい。隣接する置換基で形成された縮合環はさらに置換基を有していてもよく、もしくはさらに縮環されていてもよい。かかる場合の置換基としては、RおよびRの置換基等を挙げることができる。 Of these adjacent substituents, at least one set of adjacent substituents forms a condensed ring. The size of the condensed ring formed at this time is not particularly limited, but a 5-membered ring or a 6-membered ring is preferable from the viewpoint of the stability of the molecular structure. The condensed ring formed may be an aliphatic ring or an aromatic ring. The condensed ring formed by the adjacent substituent may further have a substituent, or may be further condensed. Examples of the substituent in such a case include the substituents of R 1 and R 2 .
 また、一般式(2)で表される縮合多環芳香族基に電子供与性窒素が含まれると電子親和性が低下する場合があるため、一般式(2)で表される縮合多環芳香族基が電子供与性窒素を環に含まないのが好ましい。従って、形成される縮合環には炭素以外のヘテロ原子が含まれていてもよいが、電子供与性窒素を環に含まないのが好ましい。なお電子供与性窒素とは、隣接原子との間の結合がすべて単結合である窒素原子を表す。特に、炭素および水素のみで環が構成されていると電気化学的安定性が増し、素子の耐久性向上に寄与するため好ましい。また形成される環に電子受容性窒素が含まれている場合は、電子による還元がスムーズに行なわれるようになり、電子親和性が高くなる。これにより、駆動電圧と発光効率が向上するため好ましい。なお電子受容性窒素とは隣接原子との間に多重結合を形成している窒素原子を表す。 In addition, if the condensed polycyclic aromatic group represented by the general formula (2) contains an electron-donating nitrogen, the electron affinity may be lowered. Therefore, the condensed polycyclic aromatic represented by the general formula (2) It is preferred that the group does not contain electron donating nitrogen in the ring. Therefore, the formed condensed ring may contain a heteroatom other than carbon, but it is preferable that no electron-donating nitrogen is contained in the ring. The electron donating nitrogen represents a nitrogen atom in which all the bonds between adjacent atoms are single bonds. In particular, it is preferable that the ring is composed of only carbon and hydrogen because the electrochemical stability is increased and the durability of the device is improved. In addition, when the ring formed contains electron-accepting nitrogen, reduction by electrons is performed smoothly, and the electron affinity is increased. This is preferable because drive voltage and light emission efficiency are improved. The electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom.
 [Ar
 上記を満たすArは、特に限定されるものではないが、以下のような例が挙げられる。
[Ar 1 ]
Ar 1 satisfying the above is not particularly limited, but examples include the following.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 R~R12のうち少なくとも一つの位置でLと連結するとは、R~R12が結合している炭素原子とLとが直接連結することをいう。なお、R~R12のうち隣接する置換基で環が形成されている場合、その環状のいずれかの位置でLと連結することも含むものとする(後述するR13~R24、R25~R38についても同様とする)。 R 3 is to be connected to the L 1 at least one position of the ~ R 12, means that the carbon atom to which R 3 ~ R 12 is attached and L 1 is directly connected. In addition, when a ring is formed by an adjacent substituent among R 3 to R 12 , it includes connection to L 1 at any position of the ring (R 13 to R 24 , R 25 described later). The same applies to .about.R 38 ).
 [ホスフィンオキサイド基]
 一般式(1)で表されるホスフィンオキサイド誘導体はホスフィンオキサイド基を有する。ホスフィンオキサイド基は三方錐形の嵩高い立体構造を取るために立体障害が大きく、分子間の相互作用を抑制する効果を持つ。この効果によって材料のアモルファス性やガラス転位温度が高くなるため、本発明のホスフィンオキサイド誘導体の薄膜を形成して発光素子等に用いた場合に、薄膜の安定性が向上し、発光素子等の耐久寿命が従来のものに比べて向上する。また分子間の相互作用が抑制されることにより、濃度消光を低減することができるため、ホスフィンオキサイド基を有することは発光素子に用いた場合に発光効率の向上にも寄与する。さらにホスフィンオキサイド基は強い電子求引性基であることから、一般式(1)の化合物は電子親和性に優れた材料であり、発光素子に用いた場合にその駆動電圧を下げることができる。
[Phosphine oxide group]
The phosphine oxide derivative represented by the general formula (1) has a phosphine oxide group. Since the phosphine oxide group has a three-dimensional pyramid bulky steric structure, the phosphine oxide group has a large steric hindrance and has an effect of suppressing intermolecular interaction. This effect increases the amorphous nature of the material and the glass transition temperature. Therefore, when a thin film of the phosphine oxide derivative of the present invention is formed and used for a light emitting device, the stability of the thin film is improved and the durability of the light emitting device is improved. The service life is improved compared to the conventional one. Moreover, since concentration quenching can be reduced by suppressing the interaction between molecules, having a phosphine oxide group also contributes to an improvement in luminous efficiency when used in a light emitting element. Furthermore, since the phosphine oxide group is a strong electron-attracting group, the compound of the general formula (1) is a material having excellent electron affinity, and its driving voltage can be lowered when used in a light-emitting element.
 [n1
 本発明のホスフィンオキサイド誘導体において、n1は1以上の整数である。nが2以上の場合、L、R、Rはそれぞれ同じでも異なっていてもよい。
[N 1 ]
In the phosphine oxide derivative of the present invention, n 1 is an integer of 1 or more. When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.
 なお、ホスフィンオキサイド誘導体の分子量が大きすぎると昇華性が低下して薄膜を形成する際の真空蒸着時に熱分解する確率が大きくなる。従ってn1は1または2が好ましく、特にn=1が好ましい。 Note that if the molecular weight of the phosphine oxide derivative is too large, the sublimation property is lowered, and the probability of thermal decomposition during vacuum deposition when forming a thin film increases. Accordingly, n 1 is preferably 1 or 2, and particularly preferably n 1 = 1.
 [ホスフィンオキサイド誘導体]
 また一般式(1)で表されるホスフィンオキサイド誘導体はフルオランテンに、脂肪族炭化水素環、芳香族炭化水素環、脂肪族、および芳香族複素環からなる群の1以上が縮合した構造Arを有する。この骨格は5π電子系の5員環構造を有する。5π電子系の5員環構造は、電子が1つ入る(還元される)と、6π電子系となり芳香族安定化が起こる(ヒュッケル則)。このため、5π電子系の5員環構造は高い電子親和性を示す。
[Phosphine oxide derivatives]
The phosphine oxide derivative represented by the general formula (1) has a structure Ar 1 in which at least one of the group consisting of an aliphatic hydrocarbon ring, an aromatic hydrocarbon ring, an aliphatic group and an aromatic heterocyclic ring is condensed to fluoranthene. Have. This skeleton has a 5-membered 5-membered ring structure. The 5π-electron five-membered ring structure becomes a 6π-electron system when one electron enters (reduced), and aromatic stabilization occurs (Hückel rule). For this reason, the 5-membered ring structure of the 5π electron system exhibits high electron affinity.
 このため一般式(1)で表されるホスフィンオキサイド誘導体を含有する発光素子材料を発光素子に用いることで駆動電圧を下げることができる。さらにArはフルオランテン骨格に脂肪族または芳香族の炭化水素環もしくは脂肪族または芳香族の複素環が縮合しているため、フルオランテンよりも広いπ共役平面を有する。この平面性によって分子同士がうまく重なるため、Arは高い電荷輸送性を有し、発光素子の駆動電圧を下げることができる。 For this reason, a drive voltage can be lowered | hung by using the light emitting element material containing the phosphine oxide derivative represented by General formula (1) for a light emitting element. Further, Ar 1 has a π-conjugated plane wider than that of fluoranthene because an aliphatic or aromatic hydrocarbon ring or an aliphatic or aromatic heterocyclic ring is condensed to the fluoranthene skeleton. Since the molecules overlap each other well due to this planarity, Ar 1 has a high charge transporting property and can reduce the driving voltage of the light emitting element.
 またArで表される骨格は電子による還元や、正孔による酸化をスムーズに繰り返し行うことができるため、発光素子の耐久性向上に寄与する。またフルオランテン骨格は発光スペクトルのピークが紫外領域に存在するが、フルオランテンに環を縮合させてπ共役平面を広げると発光スペクトルのピークが可視光領域にシフトし、強い青色~緑色の蛍光を示す。従って、Arを有する一般式(1)で表されるホスフィンオキサイド誘導体は青色~緑色の蛍光発光材料として特に好適に用いることができる。 In addition, since the skeleton represented by Ar 1 can smoothly and repeatedly perform reduction by electrons and oxidation by holes, it contributes to improvement in durability of the light-emitting element. The fluoranthene skeleton has an emission spectrum peak in the ultraviolet region, but when the π-conjugate plane is expanded by condensing a ring with fluoranthene, the emission spectrum peak shifts to the visible light region and exhibits strong blue to green fluorescence. Therefore, the phosphine oxide derivative represented by the general formula (1) having Ar 1 can be particularly suitably used as a blue to green fluorescent material.
 以上により、本発明の一般式(1)で表されるホスフィンオキサイド誘導体は、分子中にホスフィンオキサイド基とArを有していることから、強い蛍光発光、高い電子親和性、薄膜安定性、電気化学的安定性などの特長を併せ持っている。これらの特性により、本発明の一般式(1)で表されるホスフィンオキサイド誘導体を含有する発光素子材料を発光素子を構成するいずれかの層に用いると、高発光効率、低駆動電圧、および耐久性に優れた有機薄膜発光素子を得ることができる。 As described above, since the phosphine oxide derivative represented by the general formula (1) of the present invention has a phosphine oxide group and Ar 1 in the molecule, strong fluorescence emission, high electron affinity, thin film stability, It also has features such as electrochemical stability. Due to these characteristics, when a light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) of the present invention is used in any layer constituting the light-emitting element, high light emission efficiency, low driving voltage, and durability are achieved. An organic thin film light emitting device having excellent properties can be obtained.
 [Arの好ましい態様]
 Arが下記一般式(3)もしくは(4)で表される場合、電荷輸送性がさらに向上するため好ましい。またArのπ電子共役系が適度に広がり、強い青色~緑色の蛍光発光を示すことから、蛍光発光材料として用いた場合に発光効率が向上するため好ましい。
[Preferred embodiment of Ar 1 ]
When Ar 1 is represented by the following general formula (3) or (4), it is preferable because charge transport properties are further improved. Further, since the π-electron conjugated system of Ar 1 spreads moderately and exhibits strong blue to green fluorescent light emission, it is preferable when used as a fluorescent light-emitting material because the light emission efficiency is improved.
 ・Arが下記一般式(3)の場合 When Ar 1 is the following general formula (3)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、R13~R24は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群(以降、「R13~R24の置換基等」と略記することもある)より選ばれる。ただしR13~R24のうち、少なくとも一つの位置でLと連結する。 In the formula, R 13 to R 24 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, A group consisting of an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, and a silyl group (hereinafter referred to as “substitution of R 13 to R 24 ” Group ”or the like. However, it is connected to L 1 at at least one position among R 13 to R 24 .
 一般式(3)において、R13~R24の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。中でも、R19およびR24は、置換もしくは無置換のアリール基であることが好ましい。R19およびR24が置換もしくは無置換のアリール基であることで、分子間におけるπ共役平面の重なりを適度に減少させることが可能となる。また、アリール基であることで耐熱性が向上する。その結果、一般式(3)で表される骨格の高い電荷輸送性を損なうことなく、昇華性の向上、蒸着安定性の向上、結晶性の低下及び高いガラス転移温度による薄膜安定性の向上が可能となる。また発光材料として用いる際には、分子間の相互作用による濃度消光の抑制にも寄与する。さらに、R19およびR24は置換もしくは無置換のフェニル基であることがより好ましい。R19およびR24が置換もしくは無置換のフェニル基であることで、分子間におけるπ共役平面の重なりをより適度な範囲に減少させることが可能となる。また、適度な分子量になるため、昇華性、蒸着安定性がさらに向上する。 In the general formula (3), as the substituents listed in the substituents of R 13 to R 24 and the like, the same ones as the corresponding ones of the substituents of R 1 and R 2 can be applied. Among these, R 19 and R 24 are preferably a substituted or unsubstituted aryl group. When R 19 and R 24 are substituted or unsubstituted aryl groups, it is possible to moderately reduce the overlap of π conjugate planes between molecules. Moreover, heat resistance improves by being an aryl group. As a result, without impairing the high charge transport property of the skeleton represented by the general formula (3), the sublimation property is improved, the deposition stability is improved, the crystallinity is lowered, and the thin film stability is improved by the high glass transition temperature. It becomes possible. Further, when used as a light emitting material, it also contributes to suppression of concentration quenching due to interaction between molecules. Further, R 19 and R 24 are more preferably a substituted or unsubstituted phenyl group. When R 19 and R 24 are substituted or unsubstituted phenyl groups, it is possible to reduce the overlap of π conjugate planes between molecules to a more appropriate range. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
 一般式(3)で表されるArはR15、R16、R19、R21、R22、R24のいずれかの位置でLと連結するのが好ましく、特にR15またはR16の位置で連結するのが好ましい。一般式(3)で表される骨格はR15およびR16の位置で共役が広がりやすく、Lと連結することで、効率的に共役が広がる。これにより、一般式(1)で表されるホスフィンオキサイド誘導体は、電気化学的により安定になり、さらに発光効率が向上する。 Ar 1 represented by the general formula (3) is preferably linked to L 1 at any position of R 15 , R 16 , R 19 , R 21 , R 22 , R 24 , particularly R 15 or R 16. It is preferable to connect at the position. In the skeleton represented by the general formula (3), conjugation easily spreads at the positions of R 15 and R 16 , and conjugation efficiently spreads by connecting to L 3 . Thereby, the phosphine oxide derivative represented by the general formula (1) becomes more electrochemically stable, and the light emission efficiency is further improved.
 ・Arが下記一般式(4)の場合 When Ar 1 is the following general formula (4)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、R25~R38は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群(以降、「R25~R38の置換基等」と略記することもある)より選ばれる。ただしR25~R38のうち、少なくとも一つの位置でLと連結する。 In the formula, R 25 to R 38 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, A group consisting of aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group (hereinafter referred to as “substitution of R 25 to R 38 ” Group ”or the like. However, at least one of R 25 to R 38 is linked to L 1 .
 一般式(4)において、R25~R38の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。中でも、R25は置換もしくは無置換のアリール基であることが好ましい。R25が置換もしくは無置換のアリール基であることで、分子間におけるπ共役平面の重なりを適度に減少させることが可能となる。また、アリール基であることで耐熱性が向上する。その結果、一般式(4)で表される骨格の高い電荷輸送性を損なうことなく、昇華性の向上、蒸着安定性の向上、結晶性の低下及び高いガラス転移温度による薄膜安定性の向上が可能となる。また発光材料として用いる際には、分子間の相互作用による濃度消光の抑制にも寄与する。さらに、一般式(4)におけるR25は置換もしくは無置換のフェニル基であることがより好ましい。R25が置換もしくは無置換のフェニル基であることで、分子間におけるπ共役平面の重なりをより適度な範囲に減少させることが可能となる。また、適度な分子量になるため、昇華性、蒸着安定性がさらに向上する。 In the general formula (4), as the substituents and the like listed in the substituents of R 25 to R 38 , the same as the corresponding ones of the substituents of R 1 and R 2 can be applied. Among these, R 25 is preferably a substituted or unsubstituted aryl group. When R 25 is a substituted or unsubstituted aryl group, it is possible to moderately reduce the overlap of π conjugate planes between molecules. Moreover, heat resistance improves by being an aryl group. As a result, without impairing the high charge transport property of the skeleton represented by the general formula (4), the sublimation property is improved, the deposition stability is improved, the crystallinity is lowered, and the thin film stability is improved by a high glass transition temperature. It becomes possible. Further, when used as a light emitting material, it also contributes to suppression of concentration quenching due to interaction between molecules. Furthermore, R 25 in the general formula (4) is more preferably a substituted or unsubstituted phenyl group. When R 25 is a substituted or unsubstituted phenyl group, it is possible to reduce the overlap of π conjugate planes between molecules to a more appropriate range. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
 一般式(4)で表されるArはR25、R27、R35またはR36の位置のいずれかでLと連結するのが好ましい。特にR27またはR35の位置で連結すると分子間の相互作用抑制効果が高く、発光効率の向上に寄与するため好ましい。 Ar 1 represented by the general formula (4) is preferably linked to L 1 at any of the positions of R 25 , R 27 , R 35 or R 36 . In particular, it is preferable to link at the position of R 27 or R 35 because the intermolecular interaction suppression effect is high and contributes to the improvement of the light emission efficiency.
 一般式(1)で表されるホスフィンオキサイド誘導体は特に限定されるものではないが、具体的には以下のような例が挙げられる。 The phosphine oxide derivative represented by the general formula (1) is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 [ホスフィンオキサイド誘導体の合成]
 一般式(1)で表されるホスフィンオキサイド誘導体の合成には、公知の方法を使用することができる。Arにホスフィンオキサイド基を導入する方法としては、例えば、置換もしくは無置換のハロゲン化したArに低温下でアルキルリチウム試薬を加え、さらにクロロホスフィンオキサイドを滴下する方法が挙げられるが、これに限定されるものではない。なお、ホスフィンオキサイドをアリーレン基やヘテロアリーレン基を介してArへ導入する場合は、パラジウム触媒やニッケル触媒下で置換もしくは無置換のハロゲン化アリールと、ホスフィンオキサイドで置換されたアリールボロン酸やヘテロアリールボロン酸とのカップリング反応を用いることができる。また、上記の各種ボロン酸に代えて、ボロン酸エステルを用いることもできる。
[Synthesis of phosphine oxide derivatives]
A known method can be used for the synthesis of the phosphine oxide derivative represented by the general formula (1). Examples of the method for introducing a phosphine oxide group into Ar 1 include a method in which an alkyl lithium reagent is added to substituted or unsubstituted halogen Ar 1 at a low temperature and chlorophosphine oxide is further added dropwise. It is not limited. In addition, when introducing phosphine oxide into Ar 1 via an arylene group or heteroarylene group, a substituted or unsubstituted aryl halide under a palladium catalyst or a nickel catalyst and an aryl boronic acid substituted with phosphine oxide or hetero A coupling reaction with an aryl boronic acid can be used. Moreover, it can replace with said various boronic acid and can also use boronic acid ester.
 [ホスフィンオキサイド誘導体の用途]
 一般式(1)で表されるホスフィンオキサイド誘導体は、発光素子材料として用いられる。ここでいう発光素子とは、陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であり、発光素子材料とは、前記有機層のいずれかに用いられる材料をいう。かかる発光素子の有機層は、後述するように、正孔輸送層、発光層、電子輸送層、正孔注入層および電子注入層が挙げられるほか、陰極の保護膜層も含むものとする。一般式(1)で表されるホスフィンオキサイド誘導体を含有する発光素子材料を、発光素子の有機層の少なくとも一部であるいずれかの層に使用することにより、高い発光効率が得られ、かつ低駆動電圧および耐久性に優れた発光素子が得られる。
[Uses of phosphine oxide derivatives]
The phosphine oxide derivative represented by the general formula (1) is used as a light emitting element material. Here, the light emitting element is a light emitting element in which an organic layer exists between an anode and a cathode and emits light by electric energy, and the light emitting element material refers to a material used in any of the organic layers. As described later, the organic layer of such a light-emitting element includes a hole transport layer, a light-emitting layer, an electron transport layer, a hole injection layer, and an electron injection layer, and also includes a cathode protective film layer. By using the light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) for any layer that is at least part of the organic layer of the light-emitting element, high luminous efficiency can be obtained and low A light emitting element excellent in driving voltage and durability can be obtained.
 一般式(1)で表されるホスフィンオキサイド誘導体を含有する発光素子材料は、高い電子親和性と蛍光量子収率を有するため、発光層もしくは電子輸送層に用いるのが好ましい。特に一般式(1)で表されるホスフィンオキサイド誘導体を発光層のドーパント材料として用いると、その電子親和性の強さにより発光層内で過剰の電子をトラップし、正孔輸送層の劣化を防ぎ、素子の耐久性が向上するため好ましい。 Since the light-emitting element material containing the phosphine oxide derivative represented by the general formula (1) has high electron affinity and fluorescence quantum yield, it is preferably used for the light-emitting layer or the electron transport layer. In particular, when the phosphine oxide derivative represented by the general formula (1) is used as a dopant material of the light emitting layer, excessive electron is trapped in the light emitting layer due to the strength of the electron affinity, and the hole transport layer is prevented from deteriorating. It is preferable because the durability of the element is improved.
 また、一般式(1)で表されるホスフィンオキサイド誘導体を発光層のドーパント材料として用いる場合、電子輸送層の材料として一般式(5)~(8)で表される化合物のいずれかを用いると、より多くの電子を発光層に注入でき、発光素子の駆動電圧と発光効率が向上するため好ましい。一般に電子輸送層の材料により発光層への電子注入性を上げると、正孔輸送層への電子アタックの影響が大きくなり、素子の耐久性が低下するが、電子親和性が高い一般式(1)で表されるホスフィンオキサイド誘導体を発光層のドーパント材料として組み合わせることで、駆動電圧・発光効率・耐久寿命の全てを満足する発光素子を得ることができる。 Further, when the phosphine oxide derivative represented by the general formula (1) is used as the dopant material of the light emitting layer, any one of the compounds represented by the general formulas (5) to (8) is used as the material for the electron transport layer. More electrons can be injected into the light emitting layer, which is preferable because driving voltage and light emission efficiency of the light emitting element are improved. In general, when the electron injecting property to the light emitting layer is increased by the material of the electron transporting layer, the influence of the electron attack on the hole transporting layer is increased and the durability of the device is lowered, but the general formula (1 In combination with a phosphine oxide derivative represented by (2) as a dopant material of the light emitting layer, a light emitting element satisfying all of drive voltage, light emission efficiency, and durability life can be obtained.
 [電子輸送層の材料]
 一般式(5)~(8)で表される化合物について詳細に説明する。
[Material of electron transport layer]
The compounds represented by the general formulas (5) to (8) will be described in detail.
 <一般式(5)で表される化合物> <Compound represented by formula (5)>
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 R39~R48はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R4950からなる群(以降、「R39~R48の置換基等」と略記することもある)より選ばれる。ただしR39~R48のうち少なくとも一つの位置でLと連結する。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基であり、Arは電子受容性窒素を含む芳香族複素環基である。nは1以上の整数である。nが2以上の場合、LおよびArはそれぞれ同じでも異なっていてもよい。 R 39 to R 48 may be the same or different and each represents hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, A group consisting of arylthioether group, aryl group, heteroaryl group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group and —P (═O) R 49 R 50 (hereinafter referred to as “R 39- R 48 substituents etc. ”may also be abbreviated. However, it is connected to L 2 at at least one position among R 39 to R 48 . L 2 is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group, and Ar 2 is an aromatic heterocyclic group containing an electron-accepting nitrogen. n 2 is an integer of 1 or more. When n 2 is 2 or more, L 2 and Ar 2 may be the same or different.
 R39~R48の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。また、R49およびR50はそれぞれ独立して、RおよびRの置換基等として列挙された置換基を適用できる。 As the substituents and the like listed in the substituents of R 39 to R 48 , the same as the corresponding ones of the substituents of R 1 and R 2 can be applied. In addition, R 49 and R 50 can independently apply the substituents listed as the substituents of R 1 and R 2 or the like.
 Arは電子受容性窒素を含む芳香族複素環基である。電子受容性窒素を含む芳香族複素環基とは、ピリジル基、キノリニル基、イソキノリニル基、キノキサリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、フェナントロリニル基、イミダゾピリジル基、トリアジル基、アクリジル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基など、ヘテロアリール基のうち、炭素以外の原子として、少なくとも電子受容性の窒素原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換基を有していてもかまわない。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を含む芳香族複素環基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。電子受容性窒素を含む芳香族複素環基の連結位置はどの部分でもよく、例えばピリジル基の場合、2-ピリジル基、3-ピリジル基または4-ピリジル基のいずれでもよい。 Ar 2 is an aromatic heterocyclic group containing electron-accepting nitrogen. Aromatic heterocyclic groups containing electron-accepting nitrogen are pyridyl group, quinolinyl group, isoquinolinyl group, quinoxalinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, phenanthrolinyl group, imidazopyridyl group, triazyl group, acridyl group , A benzoimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, and the like, as a non-carbon atom, a cyclic aromatic group having at least one electron-accepting nitrogen atom in the ring. May be unsubstituted or may have a substituent. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity. Although carbon number of the aromatic heterocyclic group containing electron-accepting nitrogen is not specifically limited, Usually, it is the range of 2-30. The connecting position of the aromatic heterocyclic group containing an electron-accepting nitrogen may be any part. For example, in the case of a pyridyl group, it may be any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group.
 一般式(5)で表されるピレン化合物は、分子中にピレン骨格と電子受容性窒素を含む芳香族複素環を有している。これにより、ピレン骨格の高い電子輸送性、電気化学的安定性と電子受容性窒素を含む芳香族複素環の高い電子受容性を両立することが可能となり、高い電子注入輸送能を発現する。Arは好ましくはピリジル基、キノリニル基、キノキサリニル基、ピリミジル基、フェナントロリニル基、ベンゾ[d]イミダゾリル基、イミダゾ[1,2-a]ピリジル基などである。より具体的には2-ピリジル基、3-ピリジル基、4-ピリジル基、2-キノリニル基、3-キノリニル基、6-キノリニル基、1-イソキノリニル基、3-イソキノリニル基、2-キノキサニル基、5-ピリミジル基、2-フェナントロリニル基、1-ベンゾ[d]イミダゾリル基、2-ベンゾ[d]イミダゾリル基、2-イミダゾ[1,2-a]ピリジル基、3-イミダゾ[1,2-a]ピリジル基などが挙げられ、より好ましくは2-ピリジル基、3-ピリジル基、4-ピリジル基などが挙げられる。 The pyrene compound represented by the general formula (5) has an aromatic heterocycle containing a pyrene skeleton and electron-accepting nitrogen in the molecule. As a result, it is possible to achieve both high electron transportability and electrochemical stability of the pyrene skeleton and high electron acceptability of the aromatic heterocycle containing electron accepting nitrogen, and high electron injecting and transporting ability is exhibited. Ar 2 is preferably a pyridyl group, a quinolinyl group, a quinoxalinyl group, a pyrimidyl group, a phenanthrolinyl group, a benzo [d] imidazolyl group, an imidazo [1,2-a] pyridyl group, or the like. More specifically, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-quinolinyl group, 3-quinolinyl group, 6-quinolinyl group, 1-isoquinolinyl group, 3-isoquinolinyl group, 2-quinoxanyl group, 5-pyrimidyl group, 2-phenanthrolinyl group, 1-benzo [d] imidazolyl group, 2-benzo [d] imidazolyl group, 2-imidazol [1,2-a] pyridyl group, 3-imidazolo [1, 2-a] pyridyl group and the like, more preferably 2-pyridyl group, 3-pyridyl group, 4-pyridyl group and the like.
 Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基であり、これらの定義は、Lと同様である。Lについてはアリーレン基であることが好ましい。電子受容性窒素を含む芳香族複素環は酸化に弱いため、ピレン骨格に直接結合するよりもアリーレン基を介して結合する方が、電気化学的により安定となる。このことがピレン骨格の高い電子輸送性と相乗効果を生み出し、より高い電子注入輸送能を発現する。 L 2 is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group, and these definitions are the same as L 1 . L 2 is preferably an arylene group. Since aromatic heterocycles containing electron-accepting nitrogen are vulnerable to oxidation, bonding via an arylene group is more electrochemically stable than bonding directly to a pyrene skeleton. This creates a synergistic effect with the high electron transport property of the pyrene skeleton, and expresses higher electron injecting and transporting ability.
 またnは1以上の整数であるが、材料の分子量が大きすぎると昇華性が低下して真空蒸着時に熱分解する確率が大きくなる。従ってnは4以下が好ましく、さらに好ましくはn=1または2である。 N 2 is an integer of 1 or more, but if the molecular weight of the material is too large, the sublimation property is lowered and the probability of thermal decomposition during vacuum deposition increases. Therefore, n 2 is preferably 4 or less, more preferably n 2 = 1 or 2.
 さらに、(a)R39がLとの連結に用いられ、かつR44がアリール基もしくはヘテロアリール基であるか、(b)R39がLとの連結に用いられ、かつR41がアリール基もしくはヘテロアリール基であり、かつR44、R45、R46がいずれも水素原子であるか、もしくは(c)R39がLとの連結に用いられ、かつR41がアリール基もしくはヘテロアリール基であり、かつR45がアルキル基、アリール基もしくはヘテロアリール基である場合、ピレン骨格上の置換基の立体障害によりピレン骨格同士の相互作用が適度に抑制され、ガラス転位温度が高くなる。この効果により薄膜状態の安定性が向上し、発光素子の耐久性が向上する。 Further, (a) R 39 is used for linking with L 2 and R 44 is an aryl group or a heteroaryl group, or (b) R 39 is used for linking with L 2 , and R 41 is An aryl group or a heteroaryl group, and R 44 , R 45 , and R 46 are all hydrogen atoms, or (c) R 39 is used for linking with L 2 , and R 41 is an aryl group or When it is a heteroaryl group and R 45 is an alkyl group, an aryl group or a heteroaryl group, the interaction between the pyrene skeletons is moderately suppressed due to the steric hindrance of the substituent on the pyrene skeleton, and the glass transition temperature is high. Become. This effect improves the stability of the thin film state and improves the durability of the light emitting element.
 一般式(5)で表される化合物は特に限定されるものではないが、具体的には国際公開第2010/113743号の化3~化14に記載の化合物、特開2011-204844号公報の化9~化24に記載の化合物などが挙げられる。また以下のような化合物も挙げることができる。 The compound represented by the general formula (5) is not particularly limited, but specifically, compounds described in Chemical Formulas 3 to 14 of International Publication No. 2010/113743, Japanese Patent Laid-Open No. 2011-204844 And the compounds described in Chemical Formulas 9 to 24. Moreover, the following compounds can also be mentioned.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 <一般式(6)および(7)で表される化合物> <Compounds represented by general formulas (6) and (7)>
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 R51~R58はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、カルボニル基、カルボキシル基、カルバモイル基、アミノ基、シリル基および-P(=O)R5960からなる群(以降、「R51~R58の置換基等」と略記することもある)より選ばれる。R59およびR60はアリール基またはヘテロアリール基である。またR59およびR60が縮合して環を形成していてもよい。ただし、R51~R58のうち少なくとも1つはそれ自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により、三次元的立体構造を有するものである。 R 51 to R 58 may be the same as or different from each other, and may be hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and a group consisting of —P (═O) R 59 R 60 (hereinafter referred to as “substituents of R 51 to R 58 , etc.”) (It may be abbreviated). R 59 and R 60 are an aryl group or a heteroaryl group. R 59 and R 60 may be condensed to form a ring. However, at least one of R 51 to R 58 itself has a three-dimensional structure, or has a three-dimensional structure by steric repulsion with a phenanthroline skeleton or an adjacent substituent.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 R61~R68はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、カルボニル基、カルボキシル基、カルバモイル基、アミノ基、シリル基および-P(=O)R6970からなる群(以降、「R61~R68の置換基等」と略記することもある)より選ばれる。R69およびR70はアリール基またはヘテロアリール基である。またR69およびR70が縮合して環を形成していてもよい。ただし、n個のフェナントロリン骨格はそれぞれR61~R68のうち少なくとも一つの位置でXと連結する。nは2以上の整数を表す。Xは単結合または複数のフェナントロリン骨格を連結する連結ユニットである。 R 61 to R 68 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and a group consisting of —P (═O) R 69 R 70 (hereinafter referred to as “substituents of R 61 to R 68 , etc.”) (It may be abbreviated). R 69 and R 70 are an aryl group or a heteroaryl group. R 69 and R 70 may be condensed to form a ring. However, n 3 phenanthroline skeletons are each linked to X at at least one of R 61 to R 68 . n 3 represents an integer of 2 or more. X is a connecting unit that connects a single bond or a plurality of phenanthroline skeletons.
 R51~R58の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。また、R59およびR60はそれぞれ独立して、RおよびRの置換基等のうち対応するものと同様のものが適用できる。同様に、R61~R68の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。また、R69およびR70はそれぞれ独立して、RおよびRの置換基等のうち対応するものと同様のものが適用できる。 As the substituents and the like listed in the substituents of R 51 to R 58 , the same as the corresponding ones of the substituents of R 1 and R 2 can be applied. R 59 and R 60 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 . Similarly, as the substituents and the like listed in the substituents of R 61 to R 68 , the same ones as the corresponding ones of the substituents of R 1 and R 2 can be applied. R 69 and R 70 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 and the like.
 R51~R58について、それ自身が三次元的立体構造を有するとは、基を構成する原子が同一の平面状に無く、分子同士の重なりを立体反発によって妨げる効果を有する構造のことを指す。特に顕著な立体反発効果を有する置換基として、例えば、イソプロピル基、t-ブチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、9,9’-ジメチルフルオレニル基、9,9’-ジフェニルフルオレニル基、スピロフルオレニル基、などが挙げられる。これらの基は無置換でも置換基を有していても構わない。 R 51 to R 58 having a three-dimensional structure per se means a structure in which atoms constituting a group are not in the same plane and have an effect of preventing overlapping of molecules by steric repulsion. . Examples of the substituent having a particularly remarkable steric repulsion effect include isopropyl group, t-butyl group, cyclohexyl group, adamantyl group, norbornyl group, 9,9′-dimethylfluorenyl group, 9,9′-diphenylfluorene. Nyl group, spirofluorenyl group, etc. are mentioned. These groups may be unsubstituted or may have a substituent.
 また、フェナントロリン骨格とのあるいは隣接置換基との立体反発により、三次元的立体構造をもたらす置換基とは、フェニル基、ナフチル基、フェナントリル基、アントリル基、ピレニル基、フルオランテニル基など置換基自身は平面構造だとしても、その置換基とフェナントロリン骨格、あるいはその置換基と隣接置換基との立体反発により、置換基平面がフェナントロリン骨格平面と異なる平面にあることを示す。フェナントロリン骨格との立体反発を生じる置換基として具体的には1-ナフチル基、9-フェナントリル基、9-アントリル基、1-ピレニル基、3-フルオランテニル基などが挙げられる。 In addition, substituents that give a three-dimensional structure by steric repulsion with the phenanthroline skeleton or adjacent substituents are substituents such as phenyl, naphthyl, phenanthryl, anthryl, pyrenyl, and fluoranthenyl groups. Even if it is a planar structure itself, the steric repulsion between the substituent and the phenanthroline skeleton, or the substituent and the adjacent substituent indicates that the substituent plane is different from the phenanthroline skeleton plane. Specific examples of the substituent that causes steric repulsion with the phenanthroline skeleton include a 1-naphthyl group, 9-phenanthryl group, 9-anthryl group, 1-pyrenyl group, and 3-fluoranthenyl group.
 またフェニル基や2-ナフチル基など、置換基単体ではフェナントロリン骨格との立体反発効果が乏しい置換基であっても、置換基自身のオルト位にさらに置換基を有していると同様の立体反発効果が得られる。このような置換基として具体的には2-メチルフェニル基、2,6-ジメチルフェニル基、メシチル基、2-t-ブチルフェニル基、2-ビフェニル基、2-(1-メチル)ナフチル基、2-(1-t-ブチル)ナフチル基、2-(1-フェニル)ナフチル基などが挙げられる。またオルト位に置換基を持たない場合であっても、フェナントロリン骨格上の隣接する位置にフェニル基などの置換基を有する場合、隣接置換基との立体反発効果を得ることができる。 In addition, even if the substituent itself has a poor steric repulsion effect with the phenanthroline skeleton, such as a phenyl group or a 2-naphthyl group, the same steric repulsion may be obtained if the substituent further has a substituent at the ortho position. An effect is obtained. Specific examples of such substituents include 2-methylphenyl group, 2,6-dimethylphenyl group, mesityl group, 2-t-butylphenyl group, 2-biphenyl group, 2- (1-methyl) naphthyl group, Examples include 2- (1-t-butyl) naphthyl group and 2- (1-phenyl) naphthyl group. Even when there is no substituent at the ortho position, a steric repulsion effect with the adjacent substituent can be obtained when the adjacent position on the phenanthroline skeleton has a substituent such as a phenyl group.
 置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により、三次元的立体構造をもたらすことによって、フェナントロリン骨格を含む化合物は平面性が低く結晶化が起こりにくくなり、良好なアモルファス薄膜状態を維持することができる。 A compound containing a phenanthroline skeleton has low planarity and can be crystallized because the substituent itself has a three-dimensional steric structure, or a steric repulsion with the phenanthroline skeleton or a neighboring substituent brings about a three-dimensional steric structure. It is difficult to occur and a good amorphous thin film state can be maintained.
 また、複数のフェナントロリン骨格を連結することによって、フェナントロリン骨格を含む化合物は高分子量化してガラス転移温度が上昇し、やはり結晶化が起こりにくくなり、良好なアモルファス薄膜状態を維持することができる。 In addition, by linking a plurality of phenanthroline skeletons, a compound containing the phenanthroline skeleton has a high molecular weight and a glass transition temperature rises, so that crystallization hardly occurs and a good amorphous thin film state can be maintained.
 本発明における一般式(6)および(7)のフェナントロリン骨格を有する化合物の中では、フェナントロリン骨格の2、4、7、9位に置換基を導入することがさらに好適である。これらの置換基については、<一般式(6)および(7)で表される化合物>の項にて記載したものと同様の置換基が適用できる。 Among the compounds having the phenanthroline skeletons of the general formulas (6) and (7) in the present invention, it is more preferable to introduce substituents at the 2, 4, 7, and 9 positions of the phenanthroline skeleton. For these substituents, the same substituents as those described in the section <Compounds represented by formulas (6) and (7)> can be applied.
 一般式(7)のnは2以上の整数であるが、材料の分子量が大きすぎると昇華性が低下して真空蒸着時に熱分解する確率が大きくなる。このため一般式(7)のnは2がより好ましい。 N 3 in the general formula (7) is an integer of 2 or more. However, if the molecular weight of the material is too large, the sublimation property is lowered and the probability of thermal decomposition during vacuum deposition increases. For this reason, n 3 in the general formula (7) is more preferably 2.
 また一般式(7)において、Xは単結合または複数のフェナントロリン骨格を連結する連結ユニットである。かかるXは特に限定されないが、熱的安定性および化学的安定性の観点から、アリーレン基もしくはヘテロアリーレン基が好ましく、特にベンゼン環、ターフェニル骨格を有する置換基、ナフタレン環の中から選ばれる少なくとも1種であることが好ましい。 In the general formula (7), X is a connecting unit that connects a single bond or a plurality of phenanthroline skeletons. Such X is not particularly limited, but from the viewpoint of thermal stability and chemical stability, an arylene group or a heteroarylene group is preferable, and at least selected from a benzene ring, a substituent having a terphenyl skeleton, and a naphthalene ring. One type is preferable.
 Xがベンゼン環である場合、このXは合成の容易さから1,4-フェニレン基、1,3-フェニレン基が好ましく、この場合、R61~R68のうち少なくとも一つは耐熱性の観点からアリール基であることが好ましい。このアリール基としては、合成の容易さ、及び昇華性の観点からフェニル基、p-トリル基、m-トリル基、3,5-ジメチルフェニル基、4-t-ブチルフェニル基などの無置換または置換フェニル基や、1-ナフチル基、2-ナフチル基、1-(2-メチル)ナフチル基などの無置換または置換ナフチル基がより好ましい。また、一般式(7)のXがナフタレン環である場合、このXは合成の容易さから1 , 6-ナフチレン基、1,7-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基がより好ましい。また、一般式(7)のXがターフェニル骨格を有する置換基である場合、以下の構造の置換基であると好ましい。 When X is a benzene ring, X is preferably a 1,4-phenylene group or a 1,3-phenylene group for ease of synthesis. In this case, at least one of R 61 to R 68 is from the viewpoint of heat resistance. To an aryl group. As the aryl group, an unsubstituted or substituted phenyl group, p-tolyl group, m-tolyl group, 3,5-dimethylphenyl group, 4-t-butylphenyl group, etc. from the viewpoint of ease of synthesis and sublimation An unsubstituted or substituted naphthyl group such as a substituted phenyl group, 1-naphthyl group, 2-naphthyl group, and 1- (2-methyl) naphthyl group is more preferable. In addition, when X in the general formula (7) is a naphthalene ring, X is a 1,6-naphthylene group, 1,7-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group because of ease of synthesis. Groups are more preferred. Further, when X in the general formula (7) is a substituent having a terphenyl skeleton, it is preferably a substituent having the following structure.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 さらに、昇華性の観点から少なくとも1つのベンゼン環がオルト位で連結している以下の構造であることがより好ましい。 Further, from the viewpoint of sublimability, it is more preferable that the structure has the following structure in which at least one benzene ring is linked at the ortho position.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 一般式(6)もしくは(7)で表される化合物は特に限定されるものではないが、具体的には特開2001-267080号公報の化6~化9に記載の化合物、特開2004-281390号公報の化3~化7および化13~化14に記載の化合物などを挙げることができる。 The compound represented by the general formula (6) or (7) is not particularly limited, but specifically, the compounds described in Chemical formulas 6 to 9 of JP-A No. 2001-267080, Examples include compounds described in Chemical Formulas 3 to 7 and Chemical Formulas 13 to 14 of Japanese Patent No. 281390.
 <一般式(8)で表される化合物> <Compound represented by formula (8)>
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式中、Arはアリール基もしくはヘテロアリール基を表し、Lは単結合、アリーレン基またはヘテロアリーレン基を表す。Zは下記一般式(9)で表される。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。 In the formula, Ar 3 represents an aryl group or a heteroaryl group, and L 3 represents a single bond, an arylene group, or a heteroarylene group. Z is represented by the following general formula (9). n 4 is 1 or 2. When n 4 is 2, two Zs may be the same or different.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 式中、環Aおよび環Bは、それぞれ、ベンゼン環、縮合芳香族炭化水素環、単環芳香族複素環、または縮合芳香族複素環を表す。ただし、環Aおよび/または環Bは少なくとも1つの電子受容性窒素を含んでいる。環Aおよび環Bが置換基を有している場合の置換基、ならびにR71は、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R7273からなる群より選ばれる。R71は水素であってもよい。R72およびR73はアリール基またはヘテロアリール基である。またR72およびR73が縮合して環を形成していてもよい。ただし、R71、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。 In the formula, each of ring A and ring B represents a benzene ring, a condensed aromatic hydrocarbon ring, a monocyclic aromatic heterocyclic ring, or a condensed aromatic heterocyclic ring. However, ring A and / or ring B contains at least one electron-accepting nitrogen. The substituent in the case where ring A and ring B have a substituent, and R 71 are each an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Selected from the group consisting of a group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P (═O) R 72 R 73 . R 71 may be hydrogen. R 72 and R 73 are an aryl group or a heteroaryl group. R 72 and R 73 may be condensed to form a ring. However, it is connected to L 3 at any position among R 71 , ring A and ring B. When n 4 is 2, the positions at which two Z are linked to L 3 may be the same or different.
 一般式(8)において、Arはアリール基もしくはヘテロアリール基を表す。アリール基およびヘテロアリール基の定義はRおよびRの置換基等として列挙されているものと同様である。 In the general formula (8), Ar 3 represents an aryl group or a heteroaryl group. The definitions of the aryl group and heteroaryl group are the same as those listed as the substituents for R 1 and R 2 and the like.
 一般式(8)において、Lは単結合、アリーレン基またはヘテロアリーレン基を表す。単結合とは、Lが結合基としては存在せず、ArとZが直接結合していることをいう。アリーレン基およびヘテロアリーレン基の定義は前述のLにおけるものと同様である。 In the general formula (8), L 3 represents a single bond, an arylene group or a heteroarylene group. A single bond means that L 3 does not exist as a bonding group, and Ar 3 and Z are directly bonded. The definitions of the arylene group and the heteroarylene group are the same as those in L 1 described above.
 一般式(8)において、nは1もしくは2である。一般式(8)で表される化合物は、Zで表される基を1もしくは2個有していることで、結晶性が低下したりガラス転移温度が高くなったりするため膜の安定性が向上する。なお、nが2のとき2つのZは同じでも異なっていてもよい。 また一般式(9)で表されるZにおいて、環Aおよび環Bは、それぞれ、ベンゼン環、縮合芳香族炭化水素環、単環芳香族複素環、または縮合芳香族複素環を表す。ただし、環Aおよび/または環Bは少なくとも1つの電子受容性窒素を含んでいる。なお電子受容性窒素とは記述の通り隣接原子との間に多重結合を形成している窒素原子を表す。かかる窒素原子は高い電気陰性度を有することから、隣接原子との間に形成される多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するZは、高い電子親和性をもつ。このため一般式(8)の化合物を電子輸送層に用いた場合には、電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。 In the general formula (8), n 4 is 1 or 2. Since the compound represented by the general formula (8) has one or two groups represented by Z, the crystallinity is lowered or the glass transition temperature is increased, so that the stability of the film is improved. improves. When n 4 is 2, two Zs may be the same or different. In Z represented by the general formula (9), ring A and ring B each represent a benzene ring, a condensed aromatic hydrocarbon ring, a monocyclic aromatic heterocyclic ring, or a condensed aromatic heterocyclic ring. However, ring A and / or ring B contains at least one electron-accepting nitrogen. The electron-accepting nitrogen represents a nitrogen atom forming a multiple bond with an adjacent atom as described. Since such a nitrogen atom has a high electronegativity, a multiple bond formed between adjacent atoms has an electron-accepting property. Therefore, Z having electron-accepting nitrogen has a high electron affinity. For this reason, when the compound of General formula (8) is used for an electron carrying layer, the favorable electron injection property from an electrode is shown, and the drive voltage of a light emitting element can be made low. As a result, the light emission efficiency of the light emitting element can be improved.
 環Aおよび環Bが置換基を有している場合の置換基、ならびにR71は、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R7273からなる群(以降、「Zの置換基等」と略記することもある)より選ばれる。R71は水素であってもよい。Zの置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。また、R72およびR73はそれぞれ独立して、RおよびRの置換基等のうち対応するものと同様のものが適用できる。 The substituent in the case where ring A and ring B have a substituent, and R 71 are each an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and —P (═O) R 72 R 73 (hereinafter referred to as “Z Or the like. R 71 may be hydrogen. As the substituents and the like listed in the substituent for Z and the like, the same ones as those corresponding to the substituents for R 1 and R 2 can be applied. R 72 and R 73 are each independently the same as the corresponding ones of the substituents of R 1 and R 2 .
 R71、環Aおよび環Bのうちいずれかの位置でLと連結するとは次のようなことをいう。まず、R71の位置でLと連結するとは、R71が連結している窒素原子とLが直接結合することをいう。また、環Aおよび環Bのうちいずれかの位置でLと連結するとは、例えば環Aがベンゼン環であるとすると、そのベンゼン環を構成する炭素原子のいずれかとLが直接結合することをいう。 Connecting to L 3 at any position of R 71 , ring A and ring B means the following. First, the coupling with L 3 at the position of R 71 refers to the nitrogen atom and L 3 which R 71 is linked directly binds. In addition, when linked to L 3 at any position of ring A and ring B, for example, when ring A is a benzene ring, L 3 is directly bonded to any of the carbon atoms constituting the benzene ring. Say.
 また、Zは、電子供与性窒素を有している。ZにおいてはR71が結合している窒素原子がこれに該当する。電子供与性窒素は正孔に対する安定性が高く、正孔による酸化をスムーズに繰り返し行うことができる。従って一般式(8)の化合物を電子輸送層に用いた場合、発光層から漏れ出た正孔による電子輸送層の劣化を防ぐことができ、発光素子の寿命を従来のものに比べて延長することができる。 Z has electron donating nitrogen. In Z, the nitrogen atom to which R 71 is bonded corresponds to this. Electron-donating nitrogen has high stability against holes and can be smoothly and repeatedly oxidized by holes. Therefore, when the compound of the general formula (8) is used for the electron transport layer, deterioration of the electron transport layer due to holes leaking from the light emitting layer can be prevented, and the lifetime of the light emitting element is extended as compared with the conventional one. be able to.
 また一般式(8)において、Arがフルオランテン骨格を含む基もしくはベンゾフルオランテン骨格を含む基であると好ましい。フルオランテン骨格もしくはベンゾフルオランテン骨格は、前述のように5π電子系の5員環構造を有するため、電子親和性が強く、電子輸送層に用いた場合に電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。 In the general formula (8), Ar 3 is preferably a group containing a fluoranthene skeleton or a group containing a benzofluoranthene skeleton. Since the fluoranthene skeleton or benzofluoranthene skeleton has a 5π-electron five-membered ring structure as described above, it has a strong electron affinity and exhibits good electron injection from the electrode when used in an electron transport layer. The driving voltage of the light emitting element can be lowered. As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
 また、フルオランテン骨格およびベンゾフルオランテン骨格は、高い平面性を有し、分子同士がうまく重なるため、高い電荷輸送性を有する。このため一般式(8)で表される化合物を電子輸送層に用いた場合に、陰極から発生した電子を効率よく輸送できるので、素子の駆動電圧を低下させることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。 Further, the fluoranthene skeleton and the benzofluoranthene skeleton have high planarity and have high charge transport properties because the molecules overlap each other well. For this reason, when the compound represented by the general formula (8) is used in the electron transport layer, electrons generated from the cathode can be efficiently transported, so that the driving voltage of the device can be lowered. As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
 また、フルオランテン骨格およびベンゾフルオランテン骨格は電荷に対する安定性が高く、電子による還元や、正孔による酸化をスムーズに繰り返し行うことができる。従って一般式(8)で表される化合物を電子輸送層に用いた場合に、寿命の向上が可能となる。 In addition, the fluoranthene skeleton and the benzofluoranthene skeleton are highly stable against electric charges, and can be smoothly and repeatedly reduced by electrons and oxidized by holes. Therefore, when the compound represented by the general formula (8) is used for the electron transport layer, the lifetime can be improved.
 <一般式(8)で表される化合物の好ましい態様>
 Arがフルオランテン骨格を含む基である場合、一般式(8)で表される化合物は下記一般式(10)で表される化合物であることが好ましい。一般式(10)で表される化合物は、フルオランテン骨格の3位がZを含有する置換基で置換された化合物である。フルオランテン誘導体において、3位が芳香族性の置換基で置換されるとフルオランテン骨格の電子状態は大きく変化し、効率的に共役が拡張するため、電荷輸送性が向上する。この結果、発光素子を低電圧で駆動させることができ、発光効率を向上させることができる。さらに、共役が広がることで、電荷に対する安定性も向上する。
<Preferred embodiment of the compound represented by the general formula (8)>
When Ar 3 is a group containing a fluoranthene skeleton, the compound represented by the general formula (8) is preferably a compound represented by the following general formula (10). The compound represented by the general formula (10) is a compound in which the 3-position of the fluoranthene skeleton is substituted with a substituent containing Z. In the fluoranthene derivative, when the 3-position is substituted with an aromatic substituent, the electronic state of the fluoranthene skeleton is greatly changed, and conjugation is efficiently expanded, so that the charge transport property is improved. As a result, the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved. Furthermore, since the conjugation spreads, the stability against charges is also improved.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式中、R74~R82はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群(以降、「R74~R82の置換基等」と略記することもある)より選ばれる。R74~R82は隣接する置換基同士で環を形成していてもよい。L、Zおよびnは前記一般式(8)と同様である。 In the formula, each of R 74 to R 82 may be the same or different, and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter, sometimes abbreviated as “substituents for R 74 to R 82 ”, etc.) More selected. R 74 to R 82 may form a ring with adjacent substituents. L 3 , Z and n 4 are the same as those in the general formula (8).
 一般式(10)におけるR74~R82の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。それらの中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R74~R82が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、ハロゲンであることで、ガラス転移温度が高くなり薄膜安定性が向上する。また、高温下でも分解しにくい置換基であるため、耐熱性が向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性が向上する。 As the substituents and the like listed in the substituents R 74 to R 82 in the general formula (10), the same ones as the corresponding ones among the substituents R 1 and R 2 can be applied. Among these, it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen. When R 74 to R 82 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen, the glass transition temperature is increased and the thin film stability is improved. In addition, since the substituent is difficult to decompose even at high temperatures, the heat resistance is improved. Furthermore, when it is an aryl group or a heteroaryl group, conjugation spreads, so that it becomes more electrochemically stable and charge transportability is improved.
 またArがベンゾフルオランテン骨格を含む基である場合、Arは下記一般式(11)で表される基であることが好ましい。ベンゾフルオランテンが一般式(11)で表される場合、適度に共役系が広がる。これにより、電気化学的に安定になり、さらに電荷輸送性が向上する。 When Ar 3 is a group containing a benzofluoranthene skeleton, Ar 3 is preferably a group represented by the following general formula (11). When benzofluoranthene is represented by the general formula (11), the conjugated system spreads moderately. Thereby, it becomes electrochemically stable and further the charge transport property is improved.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 式中、R83~R94はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群(以降、「R83~R94の置換基等」と略記することもある)より選ばれる。R83~R94は隣接する置換基同士で環を形成していてもよい。ただし、R83~R94のうちいずれか一つの位置でLと連結する。 In the formula, each of R 83 to R 94 may be the same or different and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter sometimes abbreviated as “substituents for R 83 to R 94 , etc.”) More selected. R 83 to R 94 may form a ring with adjacent substituents. However, it is connected to L 3 at any one of R 83 to R 94 .
 一般式(11)におけるR83~R94の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。それらの中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R83~R94が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、ハロゲンであることで、ガラス転移温度が高くなり薄膜安定性が向上する。薄膜安定性が向上すると、発光素子において長時間駆動しても膜の変質が抑制されるため、耐久性が向上する。また、高温下でも分解しにくい置換基であるため、耐熱性が向上する。耐熱性が向上すると、素子作製時に材料の分解を抑制できるため、耐久性が向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性が向上する。 As the substituents and the like listed in the substituents R 83 to R 94 in the general formula (11), the same ones as the corresponding ones among the substituents R 1 and R 2 can be applied. Among these, it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen. When R 83 to R 94 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen, the glass transition temperature is increased and the thin film stability is improved. When the thin film stability is improved, the deterioration of the film is suppressed even if the light emitting element is driven for a long time, so that the durability is improved. In addition, since the substituent is difficult to decompose even at high temperatures, the heat resistance is improved. When the heat resistance is improved, the decomposition of the material can be suppressed at the time of device fabrication, so that the durability is improved. Furthermore, when it is an aryl group or a heteroaryl group, conjugation spreads, so that it becomes more electrochemically stable and charge transportability is improved.
 一般式(11)におけるR87およびR92は置換もしくは無置換のアリール基であることが好ましい。R87およびR92が置換もしくは無置換のアリール基であることで、分子間におけるπ共役平面の重なりを適度に回避することが可能となる。また、アリール基であることで耐熱性が向上する。その結果、ベンゾフルオランテン化合物の高い電荷輸送性を損なうことなく、昇華性の向上、蒸着安定性の向上、結晶性の低下及び高いガラス転移温度による薄膜安定性の向上が可能となる。 In the general formula (11), R 87 and R 92 are preferably a substituted or unsubstituted aryl group. When R 87 and R 92 are substituted or unsubstituted aryl groups, it is possible to moderately avoid overlapping of π conjugate planes between molecules. Moreover, heat resistance improves by being an aryl group. As a result, it is possible to improve sublimation, improve deposition stability, decrease crystallinity, and improve thin film stability due to a high glass transition temperature without impairing the high charge transport property of the benzofluoranthene compound.
 一般式(11)におけるR87およびR92は置換もしくは無置換のフェニル基であることがより好ましい。R87およびR92が置換もしくは無置換のフェニル基であることで、分子間におけるπ共役平面の重なりを適度に回避することが可能となる。また、適度な分子量になるため、昇華性、蒸着安定性がさらに向上する。 R 87 and R 92 in general formula (11) are more preferably a substituted or unsubstituted phenyl group. When R 87 and R 92 are substituted or unsubstituted phenyl groups, it is possible to appropriately avoid overlapping of π-conjugated planes between molecules. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
 一般式(8)で表される化合物は下記一般式(12)で表される化合物であることが好ましい。ベンゾフルオランテンは前記一般式(11)のR83およびR84の位置で共役が広がりやすく、R83がLと連結することで、効率的に共役が広がる。これにより、一般式(12)で表される化合物は、電気化学的により安定になり、さらに電荷輸送性が向上する。 The compound represented by the general formula (8) is preferably a compound represented by the following general formula (12). In benzofluoranthene, conjugation easily spreads at the positions of R 83 and R 84 in the general formula (11), and conjugation efficiently spreads when R 83 is linked to L 3 . Thereby, the compound represented by the general formula (12) becomes more electrochemically stable, and the charge transport property is further improved.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 式中、R95~R105はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群(以降、「R95~R105の置換基等」と略記することもある)より選ばれる。R95~R105は隣接する置換基同士で環を形成していてもよい。L、Zおよびnは前記一般式(8)と同様である。 In the formula, each of R 95 to R 105 may be the same or different and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, and a carbamoyl group (hereinafter, abbreviated as “substituents for R 95 to R 105 , etc.”) More selected. R 95 to R 105 may form a ring with adjacent substituents. L 3 , Z and n 4 are the same as those in the general formula (8).
 一般式(12)におけるR95~R105の置換基等に列挙されている各置換基等は、RおよびRの置換基等のうち対応するものと同様のものが適用できる。それらの中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R95~R105が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、ハロゲンであることで、ガラス転移温度が高くなり薄膜安定性が向上する。また、高温下でも分解しにくい置換基であるため、耐熱性が向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性が向上する。 As the substituents and the like listed in the substituents of R 95 to R 105 in the general formula (12), the same as the corresponding ones of the substituents of R 1 and R 2 can be applied. Among these, it is preferably selected from the group consisting of hydrogen, alkyl group, cycloalkyl group, aryl group, heteroaryl group and halogen. When R 95 to R 105 are hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a halogen, the glass transition temperature is increased and the thin film stability is improved. In addition, since the substituent is difficult to decompose even at high temperatures, the heat resistance is improved. Furthermore, when it is an aryl group or a heteroaryl group, conjugation spreads, so that it becomes more electrochemically stable and charge transportability is improved.
 一般式(8)で表される化合物において、nは1であることが好ましい。nが1であることで、昇華性、蒸着安定性が向上する。 In the compound represented by the general formula (8), n 4 is preferably 1. When n 4 is 1, sublimation property and deposition stability are improved.
 Zは下記一般式(13)~(17)のいずれかで表される基であることが好ましい。Zが下記一般式(13)~(17)のいずれかで表される基であると、高い電子移動度および高い電子受容性を発現し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。 Z is preferably a group represented by any one of the following general formulas (13) to (17). When Z is a group represented by any one of the following general formulas (13) to (17), high electron mobility and high electron acceptability are exhibited, and the driving voltage of the light emitting element can be lowered. As a result, the light emission efficiency of the light emitting element can be improved.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 式中、環Bは置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、一般式(13)の場合は、環Bは置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環であり、かつ、環Bは少なくとも1つの電子受容性窒素を含む。環Bが置換基を有している場合の置換基、R71およびR106~R121(前述のZの置換基等)は、前記一般式(8)の場合と同様である。ただし、一般式(13)の場合はR71、R106~R109、環Bのうちいずれかの位置で、一般式(14)の場合はR71、R110~R112、環Bのうちいずれかの位置で、一般式(15)の場合はR71、R113~R115、環Bのうちいずれかの位置で、一般式(16)の場合はR71、R116~R118、環Bのうちいずれかの位置で、一般式(17)の場合はR71、R119~R121、環Bのうちいずれかの位置で、Lと連結する。 In the formula, ring B represents a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic hydrocarbon ring, a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted condensed aromatic heterocyclic ring. To express. However, in the case of general formula (13), ring B is a substituted or unsubstituted monocyclic aromatic heterocyclic ring or a substituted or unsubstituted condensed aromatic heterocyclic ring, and ring B is at least one electron accepting ring. Contains nitrogen. The substituents in the case where ring B has a substituent, R 71 and R 106 to R 121 (the substituents of Z described above, etc.) are the same as those in the general formula (8). However, in the case of general formula (13), in any position of R 71 , R 106 to R 109 and ring B, in the case of general formula (14), of R 71 , R 110 to R 112 and ring B In any position, in the case of general formula (15), R 71 , R 113 to R 115 , and in any position of ring B, in the case of general formula (16), R 71 , R 116 to R 118 , In the general formula (17) at any position in the ring B, R 71 , R 119 to R 121 and at any position in the ring B are connected to L 3 .
 環Bは下記一般式(18)~(21)のいずれかで表される構造であることが好ましい。環Bが下記一般式(18)~(21)のいずれかで表される構造であると、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子の低電圧での駆動が可能となり、発光効率を向上させることができる。また、昇華性、蒸着安定性及び結晶性の低下や高いガラス転移温度による膜の安定性が向上する。 Ring B preferably has a structure represented by any of the following general formulas (18) to (21). When the ring B has a structure represented by any one of the following general formulas (18) to (21), high carrier mobility and high electron acceptability are expressed. As a result, the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved. In addition, the sublimation property, deposition stability, crystallinity deterioration, and film stability due to high glass transition temperature are improved.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 式中、B~B22は置換もしくは無置換の炭素原子、または窒素原子を表す。但し、Zが一般式(13)で表される基の場合は、環Bに含まれるB(k=1~22)の少なくとも1つは電子受容性窒素である。B~B22が置換基を有している場合の置換基は前記一般式(8)の場合と同様である。 In the formula, B 1 to B 22 represent a substituted or unsubstituted carbon atom or a nitrogen atom. However, when Z is a group represented by the general formula (13), at least one of B k (k = 1 to 22) contained in the ring B is electron-accepting nitrogen. The substituents when B 1 to B 22 have a substituent are the same as those in the general formula (8).
 環Bは特に限定されないが、一般式(19)~(21)であると好ましい。環Bが一般式(19)~(21)であることで、共役がより広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子の低電圧での駆動が可能となり、発光効率を向上させることができる。 Ring B is not particularly limited, but is preferably General Formulas (19) to (21). When ring B is represented by the general formulas (19) to (21), conjugation is further expanded, and high carrier mobility and high electron acceptability are expressed. As a result, the light emitting element can be driven at a low voltage, and the light emission efficiency can be improved.
 一般式(8)で表される化合物は、特に限定されるものではないが、具体的には以下のような化合物を挙げることができる。 The compound represented by the general formula (8) is not particularly limited, but specific examples include the following compounds.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 [発光素子]
 次に、本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層は少なくとも発光層と電子輸送層を有し、該発光層が電気エネルギーにより発光する。
[Light emitting element]
Next, embodiments of the light emitting device of the present invention will be described in detail. The light-emitting element of the present invention has an anode and a cathode, and an organic layer interposed between the anode and the cathode. The organic layer has at least a light-emitting layer and an electron transport layer, and the light-emitting layer is formed by electric energy. Emits light.
 有機層は、発光層/電子輸送層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および2)正孔輸送層/発光層/電子輸送層/電子注入層、3)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。 The organic layer is composed of only the light emitting layer / electron transport layer, 1) hole transport layer / light emitting layer / electron transport layer and 2) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 3) Laminate structure such as hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer can be mentioned. Each of the layers may be a single layer or a plurality of layers.
 一般式(1)で表されるホスフィンオキサイド誘導体を含有する発光素子材料は、上記の素子構成において、いずれの層に用いられてもよいが、高い電子注入輸送能、蛍光量子収率および薄膜安定性を有しているため、発光素子の発光層もしくは電子輸送層に用いることが好ましい。特に、優れた蛍光量子収率を有していることから、発光層のドーパント材料に用いることが好ましい。 The light emitting device material containing the phosphine oxide derivative represented by the general formula (1) may be used for any layer in the above device configuration, but has a high electron injection / transport capability, a fluorescence quantum yield, and a thin film stability. Therefore, it is preferably used for a light emitting layer or an electron transport layer of a light emitting element. In particular, since it has an excellent fluorescence quantum yield, it is preferably used as a dopant material for the light emitting layer.
 [陽極および陰極]
 本発明の発光素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが好ましい。通常、基板上に形成される陽極を透明電極とする。
[Anode and cathode]
In the light emitting device of the present invention, the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and at least one of them is preferably transparent or translucent in order to extract light. Usually, the anode formed on the substrate is a transparent electrode.
 陽極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に好ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが好ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の入手も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に好ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100~300nmの間で用いられることが多い。 If the material used for the anode is a material that can efficiently inject holes into the organic layer and is transparent or translucent to extract light, tin oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) ), Etc., metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, etc. However, it is particularly preferable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed. The resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the element, but it is preferably low resistance from the viewpoint of power consumption of the element. For example, an ITO substrate of 300Ω / □ or less functions as a device electrode, but since a substrate of about 10Ω / □ is now available, use a low resistance substrate of 20Ω / □ or less. Is particularly preferred. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
 また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。 In order to maintain the mechanical strength of the light emitting element, the light emitting element is preferably formed over a substrate. As the substrate, a glass substrate such as soda glass or non-alkali glass is preferably used. As the thickness of the glass substrate, it is sufficient that the thickness is sufficient to maintain the mechanical strength. As for the glass material, alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass. Alternatively, soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used. Furthermore, if the first electrode functions stably, the substrate need not be glass, and for example, an anode may be formed on a plastic substrate. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
 陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧での駆動が可能になるため好ましい。 The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer. Generally, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred. Among these, aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like. In particular, magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and driving at a low voltage is possible.
 さらに、陰極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として陰極上に積層することが好ましい例として挙げられる。また、一般式(1)で表されるホスフィンオキサイド誘導体もこの保護膜層として利用できる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。 Furthermore, for cathode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride As a preferred example, an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer. Moreover, the phosphine oxide derivative represented by General formula (1) can also be utilized as this protective film layer. However, in the case of an element structure (top emission structure) that extracts light from the cathode side, the protective film layer is selected from materials that are light transmissive in the visible light region. The production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
 [正孔輸送層]
 正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料は、電界を与えられた電極間において陽極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが好ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質は、特に限定されるものではないが、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、カルバゾール骨格を有する材料、中でもカルバゾール多量体、具体的にはビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのカルバゾール2量体の誘導体、カルバゾール3量体の誘導体、カルバゾール4量体の誘導体、トリフェニレン化合物、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、フラーレン誘導体、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。さらにp型Si、p型SiC等の無機材料も使用できる。
[Hole transport layer]
The hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder. In addition, the hole transport material needs to efficiently transport holes from the anode between electrodes to which an electric field is applied, has high hole injection efficiency, and can efficiently transport injected holes. preferable. For this purpose, it is required that the material has an appropriate ionization potential, has a high hole mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use. A substance satisfying such conditions is not particularly limited. For example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4 ′ -Bis (N- (1-naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N Benzidine derivatives such as '-diphenyl-4-aminophenyl) -N, N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), 4,4', 4 "-tris (3-methylphenyl) (Phenyl) amino) triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris (1-naphthyl (phenyl) amino) triphenylamine (1-TNATA), etc. A group of materials called triarylamine, a material having a carbazole skeleton, especially a carbazole multimer, specifically a derivative of a carbazole dimer such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), a carbazole trimer Derivatives, carbazole tetramer derivatives, triphenylene compounds, pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives and thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives and other heterocyclic compounds, fullerene derivatives, In the polymer system, polycarbonate having a monomer in the side chain, styrene derivative, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, polysilane, and the like are preferable. Furthermore, inorganic materials such as p-type Si and p-type SiC can also be used.
 一般式(1)で表されるホスフィンオキサイド誘導体も、正孔移動度が大きく、さらに電気化学的安定性に優れているため、正孔輸送材料として用いることができる。一般式(1)で表されるホスフィンオキサイド誘導体は、正孔注入材料として用いてもよいが、高い正孔移動度をもつことから、正孔輸送材料として好適に用いられる。 The phosphine oxide derivative represented by the general formula (1) can also be used as a hole transporting material because of its high hole mobility and excellent electrochemical stability. The phosphine oxide derivative represented by the general formula (1) may be used as a hole injection material. However, since it has high hole mobility, it is preferably used as a hole transport material.
 また一般式(1)で表されるホスフィンオキサイド誘導体は電子注入輸送特性が優れているので、これを含有する発光素子材料を発光層もしくは電子輸送層に用いた場合、電子が発光層で再結合せず、一部正孔輸送層までもれてしまう懸念がある。そのため正孔輸送層には電子ブロック性の優れた化合物を用いるのが好ましい。中でも、カルバゾール骨格を含有する化合物は電子ブロック性に優れ、発光素子の高効率化に寄与できるので好ましい。さらに上記カルバゾール骨格を含有する化合物が、カルバゾール2量体、カルバゾール3量体、またはカルバゾール4量体骨格を含有することが好ましい。これらは良好な電子ブロック性と、正孔注入輸送特性を併せ持っているためである。また高い正孔移動度を有する点で優れているトリフェニレン骨格を含有する化合物を正孔輸送層に用いると、キャリアバランスが向上し、発光効率向上、耐久寿命向上といった効果が得られるので好ましい。トリフェニレン骨格を含有する化合物が2つ以上のジアリールアミノ基を有していると、さらに好ましい。上記カルバゾール骨格を含有する化合物、またはトリフェニレン骨格を含有する化合物はそれぞれ単独で正孔輸送層として用いてもよいし、互いに混合して用いてもよい。また本発明の効果を損なわない範囲で他の材料が混合されていてもよい。また正孔輸送層が複数層で構成されている場合は、いずれか1層にカルバゾール骨格を含有する化合物、あるいは、トリフェニレン骨格を含有する化合物が含まれていればよい。 In addition, since the phosphine oxide derivative represented by the general formula (1) has excellent electron injecting and transporting properties, when a light emitting device material containing the phosphine oxide derivative is used for a light emitting layer or an electron transporting layer, electrons are recombined in the light emitting layer. There is a concern that a part of the hole transport layer may leak. Therefore, it is preferable to use a compound having an excellent electron blocking property for the hole transport layer. Among these, a compound containing a carbazole skeleton is preferable because it has excellent electron blocking properties and can contribute to the improvement in efficiency of the light-emitting element. Further, the compound containing a carbazole skeleton preferably contains a carbazole dimer, a carbazole trimer, or a carbazole tetramer skeleton. This is because they have both a good electron blocking property and a hole injection / transport property. In addition, it is preferable to use a compound containing a triphenylene skeleton, which is excellent in having high hole mobility, in the hole transport layer because the effects of improving the carrier balance and improving the light emission efficiency and durability are obtained. More preferably, the compound containing a triphenylene skeleton has two or more diarylamino groups. The compound containing a carbazole skeleton or the compound containing a triphenylene skeleton may be used alone as a hole transport layer, or may be used as a mixture with each other. Further, other materials may be mixed within a range not impairing the effects of the present invention. In the case where the hole transport layer is composed of a plurality of layers, any one layer may contain a compound containing a carbazole skeleton or a compound containing a triphenylene skeleton.
 [正孔注入層]
 陽極と正孔輸送層の間には正孔注入層を設けてもよい。正孔注入層を設けることで発光素子が低駆動電圧化し、耐久寿命も向上する。正孔注入層には通常正孔輸送層に用いる材料よりもイオン化ポテンシャルの小さい材料が好ましく用いられる。具体的には、上記TPD232のようなベンジジン誘導体、スターバーストアリールアミン材料群が挙げられる他、フタロシアニン誘導体等も用いることができる。また正孔注入層がアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が別の正孔輸送材料にドープされて用いられていることも好ましい。アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4-TCNQ)、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT-CN6)、p-フルオラニル、p-クロラニル、p-ブロマニル、p-ベンゾキノン、2,6-ジクロロベンゾキノン、2,5-ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5-テトラシアノベンゼン、o-ジシアノベンゼン、p-ジシアノベンゼン、1,4-ジシアノテトラフルオロベンゼン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、p-ジニトロベンゼン、m-ジニトロベンゼン、o-ジニトロベンゼン、p-シアノニトロベンゼン、m-シアノニトロベンゼン、o-シアノニトロベンゼン、1,4-ナフトキノン、2,3-ジクロロナフトキノン、1-ニトロナフタレン、2-ニトロナフタレン、1,3-ジニトロナフタレン、1,5-ジニトロナフタレン、9-シアノアントラセン、9-ニトロアントラセン、9,10-アントラキノン、1,3,6,8-テトラニトロカルバゾール、2,4,7-トリニトロ-9-フルオレノン、2,3,5,6-テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
[Hole injection layer]
A hole injection layer may be provided between the anode and the hole transport layer. By providing the hole injection layer, the light emitting element has a low driving voltage and the durability life is improved. For the hole injection layer, a material having a smaller ionization potential than that of the material normally used for the hole transport layer is preferably used. Specifically, a benzidine derivative such as TPD232 and a starburst arylamine material group can be used, and a phthalocyanine derivative can also be used. It is also preferred that the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped with another hole transport material. Examples of acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH). In addition, organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used. Specific examples of these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), 2, 3, 6, 7 , 10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN6), p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-Dicyanobenzoquinone, p-dinitrobenzene, m-dini Lobenzene, o-dinitrobenzene, p-cyanonitrobenzene, m-cyanonitrobenzene, o-cyanonitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1-nitronaphthalene, 2-nitronaphthalene, 1,3-dinitro Naphthalene, 1,5-dinitronaphthalene, 9-cyanoanthracene, 9-nitroanthracene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, 2,4,7-trinitro-9-fluorenone, 2 , 3,5,6-tetracyanopyridine, maleic anhydride, phthalic anhydride, C60, and C70.
 これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。好ましい金属酸化物の例としては酸化モリブデン、酸化バナジウム、または酸化ルテニウムがあげられる。シアノ基含有化合物の中では、(a)分子内に、シアノ基の窒素原子以外に少なくとも1つの電子受容性窒素有する化合物、(b)分子内にハロゲンとシアノ基の両方を有している化合物、(c)分子内にカルボニル基とシアノ基の両方を有している化合物、または(d)分子内にハロゲンとシアノ基の両方を有し、さらにシアノ基の窒素原子以外に少なくとも1つの電子受容性窒素を有する化合物が強い電子アクセプターとなるためより好ましい。このような化合物として具体的には以下のような化合物があげられる。 Among these, metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained. Examples of preferred metal oxides include molybdenum oxide, vanadium oxide, or ruthenium oxide. Among the cyano group-containing compounds, (a) a compound having in the molecule at least one electron-accepting nitrogen other than the nitrogen atom of the cyano group, and (b) a compound having both a halogen and a cyano group in the molecule (C) a compound having both a carbonyl group and a cyano group in the molecule, or (d) at least one electron other than the nitrogen atom of the cyano group, having both a halogen and a cyano group in the molecule. A compound having an accepting nitrogen is more preferable because it becomes a strong electron acceptor. Specific examples of such a compound include the following compounds.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されていてもよい。またアクセプター化合物がドープされている場合に組み合わせて用いる正孔注入材料は、正孔輸送層への正孔注入障壁が緩和できるという観点から、正孔輸送層に用いる化合物と同一の化合物であることがより好ましい。 In any case where the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated. Moreover, the hole injection material used in combination when the acceptor compound is doped is the same compound as the compound used for the hole transport layer from the viewpoint that the hole injection barrier to the hole transport layer can be relaxed. Is more preferable.
 [発光層]
 発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料により発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
[Light emitting layer]
The light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, Either is acceptable. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively. The dopant material may be included in the entire host material or may be partially included. The dopant material may be laminated or dispersed. The emission color can be controlled by the dopant material. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 20% by weight or less, more preferably 10% by weight or less with respect to the host material. The doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
 発光材料は、具体的には、従来から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。 Specifically, the light-emitting material includes fused ring derivatives such as anthracene and pyrene, which have been conventionally known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters. Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole In derivatives, indolocarbazole derivatives, and polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
 一般式(1)で表されるホスフィンオキサイド誘導体も、蛍光量子収率が高く、さらに電気化学的安定性に優れているため、発光材料として用いることができる。一般式(1)で表されるホスフィンオキサイド誘導体は、ホスト材料として用いてもよいが、強い電子親和性を持っていることから、ドーパント材料として用いると発光層に注入された過剰の電子をトラップする効果があるため、正孔輸送層が電子のアタックにより劣化するのを防ぐことができるので特に好ましい。 The phosphine oxide derivative represented by the general formula (1) can also be used as a light-emitting material because of its high fluorescence quantum yield and excellent electrochemical stability. The phosphine oxide derivative represented by the general formula (1) may be used as a host material. However, since it has a strong electron affinity, it traps excess electrons injected into the light emitting layer when used as a dopant material. This is particularly preferable because the hole transport layer can be prevented from being deteriorated by the attack of electrons.
 発光材料に含有されるホスト材料は、特に限定されないが、一般式(1)で表されるホスフィンオキサイド誘導体以外にナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。 The host material contained in the light-emitting material is not particularly limited. In addition to the phosphine oxide derivative represented by the general formula (1), naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene Compounds having a condensed aryl ring such as, derivatives thereof, aromatic amine derivatives such as N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, tris (8- Quinolinato) metal chelated oxinoid compounds such as aluminum (III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives , Cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, in polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, Although a polythiophene derivative etc. can be used, it is not specifically limited.
 発光材料に含有されるドーパント材料には、特に限定されないが、一般式(1)で表されるホスフィンオキサイド誘導体以外にナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ボラン誘導体、ジスチリルベンゼン誘導体、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などを用いることができる。 Although it does not specifically limit in the dopant material contained in a luminescent material, In addition to the phosphine oxide derivative represented by General formula (1), naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene, etc. Compounds having a fused aryl ring or derivatives thereof (for example, 2- (benzothiazol-2-yl) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene , Silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxa , Pyrrolopyridine, thioxanthene and other heteroaryl ring compounds and derivatives thereof, borane derivatives, distyrylbenzene derivatives, 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4 Aminostyryl derivatives such as' -bis (N- (stilben-4-yl) -N-phenylamino) stilbene, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, pyromethene derivatives, diketopyrrolo [3,4] -C] pyrrole derivatives, 2,3,5,6-1H, 4H-tetrahydro-9- (2'-benzothiazolyl) quinolidino [9,9a, 1-gh] coumarin derivatives, such as imidazole, thiazole, thiadiazole, Carbazole, oxazole, oxa Azole derivatives such as azole and triazole and metal complexes thereof, and fragrances represented by N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine Group amine derivatives and the like can be used.
 また発光層にリン光発光材料が含まれていてもよい。リン光発光材料とは、室温でもリン光発光を示す材料である。ドーパントとしてリン光発光材料を用いる場合は基本的に室温でもリン光発光が得られる必要があるが、特に限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む有機金属錯体化合物であることが好ましい。中でも室温でも高いリン光発光収率を有するという観点から、イリジウム、もしくは白金を有する有機金属錯体がより好ましい。リン光発光性のドーパントと組み合わせて用いられるホストとしては、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン骨格を有する含窒素芳香族化合物誘導体、ポリアリールベンゼン誘導体、スピロフルオレン誘導体、トルキセン誘導体、トリフェニレン誘導体といった芳香族炭化水素化合物誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体といったカルコゲン元素を含有する化合物、ベリリウムキノリノール錯体といった有機金属錯体などが好適に用いられるが、基本的に用いるドーパントよりも三重項エネルギーが大きく、電子、正孔がそれぞれの輸送層から円滑に注入され、また輸送するものであればこれらに限定されるものではない。また2種以上の三重項発光ドーパントが含有されていてもよいし、2種以上のホスト材料が含有されていてもよい。さらに1種以上の三重項発光ドーパントと1種以上の蛍光発光ドーパントが含有されていてもよい。 Further, a phosphorescent material may be included in the light emitting layer. A phosphorescent material is a material that exhibits phosphorescence even at room temperature. When a phosphorescent material is used as a dopant, it is basically necessary to obtain phosphorescence even at room temperature, but there is no particular limitation, and iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium It is preferably an organometallic complex compound containing at least one metal selected from the group consisting of (Pd), platinum (Pt), osmium (Os), and rhenium (Re). Among these, from the viewpoint of having a high phosphorescence emission yield even at room temperature, an organometallic complex having iridium or platinum is more preferable. Hosts used in combination with a phosphorescent dopant include indole derivatives, carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, nitrogen-containing aromatic compound derivatives having a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, Aromatic hydrocarbon compound derivatives such as truxene derivatives and triphenylene derivatives, compounds containing chalcogen elements such as dibenzofuran derivatives and dibenzothiophene derivatives, and organometallic complexes such as beryllium quinolinol complexes are preferably used. It is not limited to these as long as the energy is high and electrons and holes are smoothly injected and transported from the respective transport layers. Two or more triplet light-emitting dopants may be contained, or two or more host materials may be contained. Further, one or more triplet light emitting dopants and one or more fluorescent light emitting dopants may be contained.
 好ましいリン光発光性ホストまたはドーパントは、特に限定されるものではないが、具体的には以下のような例が挙げられる。 Preferred phosphorescent host or dopant is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 [電子輸送層]
 本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で構成されることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
[Electron transport layer]
In the present invention, the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons. The electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport layer is preferably made of a material having a high electron affinity, a high electron mobility, excellent stability, and impurities that are traps are less likely to be generated during manufacture and use. However, considering the transport balance between holes and electrons, if the electron transport layer mainly plays a role of effectively preventing the holes from the anode from recombining and flowing to the cathode side, the electron transport Even if it is made of a material that does not have a high capability, the effect of improving the luminous efficiency is equivalent to that of a material that has a high electron transport capability. Therefore, the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
 電子輸送層に用いられる電子輸送材料としては、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられるが、駆動電圧を低減し、高効率発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。 Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes. A compound having a heteroaryl ring structure composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus and containing electron-accepting nitrogen, because driving voltage is reduced and high-efficiency light emission is obtained. Is preferably used.
 電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧での駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率が向上する。 An aromatic heterocycle containing electron-accepting nitrogen has high electron affinity. An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage. In addition, since the number of electrons supplied to the light emitting layer increases and the recombination probability increases, the light emission efficiency is improved.
 電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。 Examples of the heteroaryl ring containing an electron-accepting nitrogen include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, Examples thereof include an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
 これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子の耐久寿命が向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はアントラセン骨格、ピレン骨格またはフェナントロリン骨格であることが特に好ましい。上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。 Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoins. Preferred compounds include quinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives. Among them, imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′ A benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 ′: 6′2 ″ -ta Terpyridine derivatives such as pyridinyl)) benzene, naphthyridine derivatives such as bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenylphosphine oxide are preferably used from the viewpoint of electron transporting capability. In addition, it is more preferable that these derivatives have a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is increased, and the effect of lowering the voltage of the light-emitting element is increased. Further, considering that the durability life of the device is improved, the synthesis is easy, and the availability of raw materials is easy, the condensed polycyclic aromatic skeleton is particularly preferably an anthracene skeleton, a pyrene skeleton or a phenanthroline skeleton. The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material.
 好ましい電子輸送材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。 Preferred electron transport materials are not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 これら以外にも、国際公開第2004-63159号、国際公開第2003-60956号、Appl. Phys. Lett. 74, 865、Org. Electron. 4, 113 (2003)、国際公開第2010-113743号、国際公開第2010-1817号等に開示された電子輸送材料も用いることができる。 Other than these, International Publication No. 2004-63159, International Publication No. 2003-60956, Appl. Phys. Lett. 74, 865, Org. Electron. 4, 113 (2003), International Publication No. 2010-113743, An electron transport material disclosed in International Publication No. 2010-1817 and the like can also be used.
 また、一般式(1)で表されるホスフィンオキサイド誘導体も高い電子注入輸送能を有することから電子輸送材料として電子輸送層に好適に用いられる。一般式(1)で表されるホスフィンオキサイド誘導体が用いられる場合には、その各一種のみに限る必要はなく、本発明の複数の一般式(1)で表されるホスフィンオキサイド誘導体を混合して用いたり、その他の電子輸送材料の一種類以上を本発明の効果を損なわない範囲で本発明の一般式(1)で表されるホスフィンオキサイド誘導体と混合して用いてもよい。 In addition, the phosphine oxide derivative represented by the general formula (1) also has a high electron injecting and transporting ability, so that it can be suitably used as an electron transporting material for an electron transporting layer. When the phosphine oxide derivative represented by the general formula (1) is used, the phosphine oxide derivative represented by the general formula (1) of the present invention may be mixed. One or more other electron transport materials may be used in combination with the phosphine oxide derivative represented by the general formula (1) of the present invention as long as the effects of the present invention are not impaired.
 混合しうる電子輸送材料は、特に限定されないが、ナフタレン、アントラセン、ピレンなどの縮合アリール環を有する化合物やその誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体が挙げられる。 The electron transport material that can be mixed is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof, or a styryl aromatic ring typified by 4,4′-bis (diphenylethenyl) biphenyl. Derivatives, perylene derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, quinone derivatives such as anthraquinone and diphenoquinone, carbazole derivatives and indole derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), and hydroxyphenyloxazole complexes Examples include hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
 また前述のように、一般式(1)で表されるホスフィンオキサイド誘導体を発光層のドーパント材料として用いる場合、電子輸送材料として一般式(5)~(8)で表される化合物のいずれかを用いると、より多くの電子を発光層に注入でき、発光素子の駆動電圧と発光効率が向上するため特に好ましい。 As described above, when the phosphine oxide derivative represented by the general formula (1) is used as the dopant material of the light emitting layer, any one of the compounds represented by the general formulas (5) to (8) is used as the electron transport material. When used, it is particularly preferable because more electrons can be injected into the light emitting layer and the driving voltage and light emission efficiency of the light emitting element are improved.
 上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、ドナー性材料を含有してもよい。ここで、ドナー性材料とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる材料である。 The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Further, a donor material may be contained. Here, the donor material is a material that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
 本発明におけるドナー性材料の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、セシウムといったアルカリ金属や、マグネシウム、カルシウムといったアルカリ土類金属が挙げられる。 Preferred examples of the donor material in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic material, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal And a complex of organic substance. Preferable types of alkali metals and alkaline earth metals include alkali metals such as lithium, sodium and cesium, which have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
 無機塩の例としては、LiO、Li2O、Ba(OH)2等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、リチウム、セシウム、カルシウム、バリウムなどが挙げられるが、原料が安価で合成が容易な点から、リチウムが特に好ましい。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。これらのドナー性材料を2種以上混合して用いてもよい。 Examples of inorganic salts include oxides such as LiO, Li 2 O, Ba (OH) 2 , nitrides, fluorides such as LiF, NaF, KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Carbonates such as Rb 2 CO 3 and Cs 2 CO 3 . In addition, preferable examples of the alkali metal or alkaline earth metal include lithium, cesium, calcium, barium, and the like, but lithium is particularly preferable because it is inexpensive and easy to synthesize. Preferred examples of the organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like. Among these, a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable. Two or more of these donor materials may be mixed and used.
 好適なドーピング濃度は材料やドーピング領域の膜厚によっても異なるが、例えばドナー性材料がアルカリ金属、アルカリ土類金属といった無機材料の場合は、電子輸送材料とドナー性材料の蒸着速度比が10000:1~2:1の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は100:1~5:1がより好ましく、100:1~10:1がさらに好ましい。またドナー性材料が金属と有機物との錯体である場合は、電子輸送材料とドナー性材料の蒸着速度比が100:1~1:100の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は10:1~1:10がより好ましく、7:3~3:7がより好ましい。 The preferred doping concentration varies depending on the material and the film thickness of the doping region. For example, when the donor material is an inorganic material such as an alkali metal or alkaline earth metal, the deposition rate ratio between the electron transport material and the donor material is 10,000: It is preferable to use an electron transport layer by co-evaporation so as to be in the range of 1 to 2: 1. The deposition rate ratio is more preferably 100: 1 to 5: 1, and further preferably 100: 1 to 10: 1. When the donor material is a complex of a metal and an organic material, the electron transport layer and the donor material are co-deposited so that the deposition rate ratio of the electron transport material and the donor material is in the range of 100: 1 to 1: 100. Is preferred. The deposition rate ratio is more preferably 10: 1 to 1:10, and more preferably 7: 3 to 3: 7.
 また、上記のような一般式(1)で表されるホスフィンオキサイド誘導体にドナー性材料がドープされた電子輸送層は、複数の発光素子を連結するタンデム構造型素子における電荷発生層として用いられていてもよい。 In addition, an electron transport layer in which a donor material is doped to the phosphine oxide derivative represented by the general formula (1) as described above is used as a charge generation layer in a tandem structure type element connecting a plurality of light emitting elements. May be.
 電子輸送層にドナー性材料をドーピングして電子輸送能を向上させる方法は、薄膜層の膜厚が厚い場合に特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に特に好ましく用いられる。例えば、発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させるものである。この最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となり、赤色などの長波長発光の場合には100nm近くの厚膜になる場合がある。 The method for improving the electron transport ability by doping a donor material into the electron transport layer is particularly effective when the thin film layer is thick. It is particularly preferably used when the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more. For example, there is a method of using the interference effect to improve the light emission efficiency, but this improves the light extraction efficiency by matching the phase of the light directly emitted from the light emitting layer and the light reflected by the cathode. Is. This optimum condition varies depending on the light emission wavelength, but the total film thickness of the electron transport layer and the light-emitting layer is 50 nm or more, and in the case of long-wavelength light emission such as red, the film thickness may be nearly 100 nm. .
 ドーピングする電子輸送層の膜厚は、電子輸送層の一部分または全部のどちらでも構わない。一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング領域を設けることが望ましく、陰極界面付近にドーピングするだけでも低電圧化の効果は得られる。一方、ドナー性材料が発光層に直接接していると発光効率を低下させる場合があり、その場合には発光層/電子輸送層界面にノンドープ領域を設けることが好ましい。 The thickness of the electron transport layer to be doped may be a part or all of the electron transport layer. In the case of partial doping, it is desirable to provide a doping region at least at the electron transport layer / cathode interface, and the effect of lowering the voltage can be obtained only by doping in the vicinity of the cathode interface. On the other hand, when the donor material is in direct contact with the light emitting layer, the light emission efficiency may be lowered. In that case, it is preferable to provide a non-doped region at the light emitting layer / electron transport layer interface.
 [電子注入層]
 本発明において、陰極と電子輸送層の間に電子注入層を設けてもよい。一般的に電子注入層は陰極から電子輸送層への電子の注入を助ける目的で挿入されるが、挿入する場合は、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いてもよいし、上記のドナー性材料を含有する層を用いてもよい。一般式(1)で表されるホスフィンオキサイド誘導体は高い電子親和性を有することから電子注入層としても好適に用いられる。この場合、上述のドナー性材料が含まれているのが好ましい。混合されるドナー性材料としては、上述のアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物の錯体が好ましく、アルカリ金属またはアルカリ土類金属であると特に好ましい。アルカリ金属またはアルカリ土類金属の好ましい例としては、リチウム、セシウム、カルシウム、バリウムなどが挙げられ、中でもリチウムが特に好ましい。また電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることで発光素子の短絡を有効に防止して、かつ電子注入性を向上させることができるので好ましい。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点でより好ましい。具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、NaS及びNaSeが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。さらに有機物と金属の錯体も好適に用いられる。電子注入層に有機物と金属の錯体を用いる場合は膜厚調整が容易であるのでより好ましい。このような有機金属錯体の例としては有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。
[Electron injection layer]
In the present invention, an electron injection layer may be provided between the cathode and the electron transport layer. In general, the electron injection layer is inserted for the purpose of assisting injection of electrons from the cathode to the electron transport layer, but in the case of insertion, a compound having a heteroaryl ring structure containing electron-accepting nitrogen may be used. Alternatively, a layer containing the above donor material may be used. Since the phosphine oxide derivative represented by the general formula (1) has a high electron affinity, it is also preferably used as an electron injection layer. In this case, it is preferable that the above-mentioned donor material is included. As the donor material to be mixed, the above-mentioned alkali metal, inorganic salt containing alkali metal, complex of alkali metal and organic substance, alkaline earth metal, inorganic salt containing alkaline earth metal or alkaline earth metal and Organic complex is preferable, and alkali metal or alkaline earth metal is particularly preferable. Preferable examples of the alkali metal or alkaline earth metal include lithium, cesium, calcium, barium, etc. Among them, lithium is particularly preferable. An insulator or a semiconductor inorganic substance can also be used for the electron injection layer. Use of these materials is preferable because a short circuit of the light emitting element can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is more preferable because the electron injection property can be further improved. Specifically, preferred alkali metal chalcogenides include, for example, Li 2 O, Na 2 S, and Na 2 Se, and preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. Is mentioned. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides. Furthermore, a complex of an organic substance and a metal is also preferably used. In the case where a complex of an organic substance and a metal is used for the electron injection layer, the film thickness can be easily adjusted. Examples of such organometallic complexes include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole, and the like as preferred examples of the organic substance in a complex with an organic substance. Among these, a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
 [各層の形成方法]
 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
[Method for forming each layer]
The method of forming each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
 有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 The thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm. The film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。 The light emitting element of the present invention has a function of converting electrical energy into light. Here, a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used. The current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
 [ディスプレイ]
 本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
[display]
The light emitting device of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが好ましい。 In the matrix method, pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics.
 本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned. The matrix display and the segment display may coexist in the same panel.
 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。 The light-emitting element of the present invention is also preferably used as a backlight for various devices. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 (合成例1)
 化合物[1]の合成
(Synthesis Example 1)
Synthesis of compound [1]
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 アセナフチレン14.0g、ジフェニルイソベンゾフラン25.0gおよびo-キシレン200mlを混合し、窒素気流下で2時間加熱還流した。室温まで冷却した後、溶媒を留去し、エーテル300mLを加えた。析出物をろ過し、真空乾燥することにより、中間体[A]27.7g(収率71%)を得た。 Acenaphthylene (14.0 g), diphenylisobenzofuran (25.0 g) and o-xylene (200 ml) were mixed and heated to reflux for 2 hours under a nitrogen stream. After cooling to room temperature, the solvent was distilled off and 300 mL of ether was added. The precipitate was filtered and vacuum-dried to obtain 27.7 g of intermediate [A] (yield 71%).
 次に、中間体[A]27.7g、酢酸200mLを混合し、48%臭化水素水20mLを加え、3時間加熱還流した。反応混合物を室温まで冷却した後、析出物をろ過し、水とメタノールで洗浄した。得られた固体を真空乾燥することにより、中間体[B]25.8g(収率96%)を得た。 Next, 27.7 g of the intermediate [A] and 200 mL of acetic acid were mixed, 20 mL of 48% aqueous hydrogen bromide was added, and the mixture was heated to reflux for 3 hours. After cooling the reaction mixture to room temperature, the precipitate was filtered and washed with water and methanol. The obtained solid was vacuum-dried to obtain 25.8 g of intermediate [B] (yield 96%).
 次に、中間体[B]25.8g、N-ブロモスクシイミド11.3g、クロロホルム318mLを混合し、1時間加熱還流した。N-ブロモスクシイミド3.4gを追加し、さらに2時間加熱還流した。室温まで冷却した後、クロロホルム溶液を水とチオ硫酸ナトリウム水溶液で洗浄した。有機層を硫酸マグネシウムで乾燥し、活性炭3gを加えた後、ろ過し、溶媒を留去した。得られた固体を、酢酸ブチル800mLで再結晶し、ろ過した後、真空乾燥することにより、中間体[C]26.9g(収率87%)を得た。 Next, 25.8 g of the intermediate [B], 11.3 g of N-bromosuccinimide, and 318 mL of chloroform were mixed and heated to reflux for 1 hour. An additional 3.4 g of N-bromosuccinimide was added, and the mixture was further heated to reflux for 2 hours. After cooling to room temperature, the chloroform solution was washed with water and an aqueous sodium thiosulfate solution. The organic layer was dried over magnesium sulfate, added with 3 g of activated carbon, filtered, and the solvent was distilled off. The obtained solid was recrystallized with 800 mL of butyl acetate, filtered, and vacuum-dried to obtain 26.9 g of intermediate [C] (yield 87%).
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 次に、中間体[C]2.00g、脱水THF40mlを混合し、窒素置換した後、-78℃に冷却した。続いて1.6Mのn-ブチルリチウム/ヘキサン溶液2.8mlを滴下し、-78℃で1時間攪拌した。次にジフェニルホスフィン酸クロリド1.08gを脱水THF1mlに溶かしたものを滴下し、室温で3時間攪拌した。その後、水とトルエンを加えて分液し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエン/酢酸エチル=3:1)、溶出液を濃縮した。得られた黄色のフォーム状固体にメタノールを加えて1時間、加熱還流し、結晶化した固体を濾取した。得られた固体を真空乾燥することにより、黄色固体1.28g(収率51%)を得た。得られた粉末のH-NMRの分析結果は次の通りであり、上記で得られた黄色結晶が化合物[1]であることが確認された。
H-NMR(CDCl(δ=ppm))δ 8.18(d,1H),7.80-7.56(m,24H),7.38(t,1H),7.19(dd,1H),6.50(t,2H)。
Next, 2.00 g of intermediate [C] and 40 ml of dehydrated THF were mixed, purged with nitrogen, and then cooled to −78 ° C. Subsequently, 2.8 ml of 1.6M n-butyllithium / hexane solution was added dropwise, and the mixture was stirred at -78 ° C. for 1 hour. Next, 1.08 g of diphenylphosphinic chloride dissolved in 1 ml of dehydrated THF was added dropwise and stirred at room temperature for 3 hours. Then, water and toluene were added and liquid-separated and the organic layer was dried with magnesium sulfate. After the solvent was distilled off, purification was performed by silica gel column chromatography (toluene / ethyl acetate = 3: 1), and the eluate was concentrated. Methanol was added to the obtained yellow foam-like solid and heated under reflux for 1 hour, and the crystallized solid was collected by filtration. The obtained solid was vacuum-dried to obtain 1.28 g (yield 51%) of a yellow solid. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellow crystals obtained above were the compound [1].
1 H-NMR (CDCl 3 (δ = ppm)) δ 8.18 (d, 1H), 7.80-7.56 (m, 24H), 7.38 (t, 1H), 7.19 (dd , 1H), 6.50 (t, 2H).
 なお、化合物[1]は、油拡散ポンプを用いて1×10-3Paの圧力下、約290℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.12%、昇華精製後が99.57%であった。 Compound [1] was used as a light emitting device material after sublimation purification at about 290 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.12% before sublimation purification and 99.57% after sublimation purification.
 (合成例2)
 化合物[2]の合成
(Synthesis Example 2)
Synthesis of compound [2]
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 ジフェニルホスフィンオキシド5.65g、4-ブロモヨードベンゼン4.04g、トリエチルアミン2.02g、トルエン40mLを混合し、窒素置換した。この混合溶液にテトラキス(トリフェニルホスフィン)パラジウム578mgを加え、3時間加熱還流した。室温まで冷却した後、トルエン40mlと水40mlを加え分液し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(ヘプタン/酢酸エチル/メタノール=1:2:1)、溶出液を濃縮した。得られたオイル状の液体に酢酸エチルを加えて結晶化した後、さらにヘプタンを加えて濾過した。得られた固体を真空乾燥することにより、黄褐色固体状の中間体[D]6.06g(収率85%)を得た。 Diphenylphosphine oxide 5.65 g, 4-bromoiodobenzene 4.04 g, triethylamine 2.02 g, and toluene 40 mL were mixed and purged with nitrogen. To this mixed solution was added 578 mg of tetrakis (triphenylphosphine) palladium, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, 40 ml of toluene and 40 ml of water were added for liquid separation, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, purification was performed by silica gel column chromatography (heptane / ethyl acetate / methanol = 1: 2: 1), and the eluate was concentrated. The obtained oily liquid was crystallized by adding ethyl acetate, and further heptane was added and filtered. The obtained solid was vacuum-dried to obtain 6.06 g (yield 85%) of an intermediate [D] as a tan solid.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 次に、中間体[C]6.18g、ビスピナコラートジボロン4.87g、酢酸カリウム3.46g、DMF64mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)74mg、ビス(ジフェニルホスフィノ)フェロセン142mgを加え、3時間加熱還流した。室温まで冷却した後、トルエン64mlと水64mlを加え分液し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエン/ヘプタン=1:1)、溶出液を濃縮した。得られた固体にメタノールを加えて濾過した後、得られた固体を真空乾燥することにより、黄褐色固体状の中間体[E]4.69g(収率69%)を得た。 Next, 6.18 g of intermediate [C], 4.87 g of bispinacolatodiboron, 3.46 g of potassium acetate, and 64 mL of DMF were mixed and purged with nitrogen. To this mixed solution were added 74 mg of bis (dibenzylideneacetone) palladium (0) and 142 mg of bis (diphenylphosphino) ferrocene, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, 64 ml of toluene and 64 ml of water were added for liquid separation, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, purification was performed by silica gel column chromatography (toluene / heptane = 1: 1), and the eluate was concentrated. After adding methanol to the obtained solid and filtering, the obtained solid was vacuum-dried to obtain 4.69 g (yield 69%) of an intermediate [E] as a tan solid.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 次に、中間体[D]1.61g、中間体[E]2.00g、1,2-ジメトキシエタン19ml、2.0M炭酸ナトリウム水溶液3.8mlを混合し、窒素置換した。この混合溶液にビス(トリフェニルホスフィン)パラジウムジクロリド26mgを加え、3時間、加熱還流した。室温まで冷却した後、トルエン20mlと水20mlを加え分液し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエン/酢酸エチル=1:1)、溶出液を濃縮した。得られた黄褐色オイルにTHF40mlとQuadrasilMP(登録商標)1.0gを加えて1時間加熱還流した。この溶液を室温まで冷却した後、セライト濾過し、溶媒を留去した。得られた黄褐色オイルにメタノールを加えて1時間加熱還流し、結晶化した固体を濾取した。得られた固体を真空乾燥することにより、黄色固体1.80g(収率70%)を得た。得られた粉末のH-NMRの分析結果は次の通りであり、上記で得られた黄色結晶が化合物[2]であることが確認された。
化合物[2]: H-NMR (CDCl(δ=ppm)) δ 7.81-7.43(m,32H),6.62(dd,1H)。
Next, 1.61 g of intermediate [D], 2.00 g of intermediate [E], 19 ml of 1,2-dimethoxyethane, and 3.8 ml of 2.0 M aqueous sodium carbonate solution were mixed and purged with nitrogen. To this mixed solution was added 26 mg of bis (triphenylphosphine) palladium dichloride, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, 20 ml of toluene and 20 ml of water were added for liquid separation, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, purification was performed by silica gel column chromatography (toluene / ethyl acetate = 1: 1), and the eluate was concentrated. To the obtained tan oil, 40 ml of THF and 1.0 g of QuadrasilMP (registered trademark) were added and heated under reflux for 1 hour. The solution was cooled to room temperature, filtered through celite, and the solvent was distilled off. Methanol was added to the resulting tan oil and heated to reflux for 1 hour, and the crystallized solid was collected by filtration. The obtained solid was vacuum-dried to obtain 1.80 g (yield 70%) of a yellow solid. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellow crystals obtained above were the compound [2].
Compound [2]: 1 H-NMR (CDCl 3 (δ = ppm)) δ 7.81-7.43 (m, 32H), 6.62 (dd, 1H).
 なお、化合物[2]は、油拡散ポンプを用いて1×10-3Paの圧力下、約320℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.39%、昇華精製後が99.72%であった。 Compound [2] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.39% before sublimation purification and 99.72% after sublimation purification.
 (合成例3)
 化合物[3]の合成
(Synthesis Example 3)
Synthesis of compound [3]
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 アセナフテンキノン18.2g、1,3-ジフェニル-2-プロパノン21.0g、エタノール400mlを混合し、窒素置換した。60℃まで加熱した後、5M水酸化ナトリウム水溶液40mlを滴下した。滴下終了後、80℃に加熱して2時間還流した後、室温まで冷却し、析出した黒色固体を濾取した。水とエタノールで洗浄した後、減圧乾燥を行い、黒色固体状の中間体[F]を31.2g得た(収率88%)。 Acenaphthenequinone 18.2 g, 1,3-diphenyl-2-propanone 21.0 g, and ethanol 400 ml were mixed and purged with nitrogen. After heating to 60 ° C., 40 ml of 5M aqueous sodium hydroxide solution was added dropwise. After completion of dropping, the mixture was heated to 80 ° C. and refluxed for 2 hours, then cooled to room temperature, and the precipitated black solid was collected by filtration. After washing with water and ethanol, drying under reduced pressure was performed to obtain 31.2 g of a black solid intermediate [F] (yield 88%).
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 次に、中間体[F]11.9g、2-アミノ-3-ブロモ-5-クロロ安息香酸10.0g、o-キシレン166mlを混合し、80℃に過熱した後、亜硝酸イソアミル4.68gを滴下した。その後100℃に昇温し、5時間攪拌した。室温まで冷却後、セライト濾過により固体を濾別した。濾液の溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエン/ヘプタン=1:2)、溶出液を濃縮した。得られた固体を真空乾燥することにより、黄色固体状の中間体[G]を6.13g得た(収率36%)。 Next, 11.9 g of the intermediate [F], 10.0 g of 2-amino-3-bromo-5-chlorobenzoic acid, and 166 ml of o-xylene were mixed, heated to 80 ° C., and then 4.68 g of isoamyl nitrite. Was dripped. Thereafter, the temperature was raised to 100 ° C. and stirred for 5 hours. After cooling to room temperature, the solid was separated by Celite filtration. After evaporating the solvent of the filtrate, purification was performed by silica gel column chromatography (toluene / heptane = 1: 2), and the eluate was concentrated. The obtained solid was vacuum-dried to obtain 6.13 g of a yellow solid intermediate [G] (yield 36%).
 次に、中間体[G]6.13g、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン9.01g、DMF59mlを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム340mg、トリシクロヘキシルホスフィンテトラフルオロボレート343mgを加え、2時間加熱還流した。室温まで冷却した後、メタノール100mlを加えて析出した固体を濾取し、水とメタノールで洗浄した。得られた固体をトルエン150mlに加熱溶解した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエンのみで展開)、溶出液を濃縮した。得られた黄色固体をTHF100mlに加熱溶解した後、QuadrasilMP(登録商標)1.0gを加えて1時間加熱還流し、セライト濾過した後、溶媒を留去した。減圧乾燥し、黄色固体状の中間体[H]を4.47g得た(収率86%)。 Next, 6.13 g of the intermediate [G], 9.01 g of 1,8-diazabicyclo [5.4.0] undec-7-ene and 59 ml of DMF were mixed and purged with nitrogen. To this mixed solution were added 340 mg of bis (dibenzylideneacetone) palladium and 343 mg of tricyclohexylphosphine tetrafluoroborate, and the mixture was heated to reflux for 2 hours. After cooling to room temperature, 100 ml of methanol was added and the precipitated solid was collected by filtration and washed with water and methanol. The obtained solid was heated and dissolved in 150 ml of toluene, and then purified by silica gel column chromatography (developed only with toluene), and the eluate was concentrated. The obtained yellow solid was dissolved in 100 ml of THF by heating, 1.0 g of QuadrasilMP (registered trademark) was added thereto, the mixture was heated to reflux for 1 hour, filtered through celite, and then the solvent was distilled off. Drying under reduced pressure yielded 4.47 g of yellow solid intermediate [H] (yield 86%).
 次に、中間体[H]2.00g、ビスピナコラートジボロン1.39g、酢酸カリウム1.35g、1,4-ジオキサン23mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)26mg、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル44mgを加え、加熱還流した。3時間後、室温まで冷却した後、水50mlを加えて析出した固体を濾取し、水とメタノールで洗浄した。得られた固体を真空乾燥することにより、黄色固体状の中間体[I]を2.38g得た(収率99%)。 Next, 2.00 g of the intermediate [H], 1.39 g of bispinacolatodiboron, 1.35 g of potassium acetate and 23 mL of 1,4-dioxane were mixed and purged with nitrogen. To this mixed solution were added 26 mg of bis (dibenzylideneacetone) palladium (0) and 44 mg of 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl, and the mixture was heated to reflux. After 3 hours, after cooling to room temperature, 50 ml of water was added and the precipitated solid was collected by filtration and washed with water and methanol. The obtained solid was vacuum-dried to obtain 2.38 g of a yellow solid intermediate [I] (yield 99%).
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 中間体[I]2.38g、中間体[D]1.79g、1,2-ジメトキシエタン23ml、2.0M炭酸ナトリウム水溶液4.6mlを混合し、窒素置換した。この混合溶液にビス(トリフェニルホスフィン)パラジウムジクロリド32mgを加え、3時間加熱還流した。室温まで冷却した後、トルエン20mlと水20mlを加え分液し、有機層を硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い(トルエン/酢酸エチル=2:1)、溶出液を濃縮した。得られた黄色フォーム状固体にメタノール50mlを加え、1時間加熱還流した。その後、結晶化した固体を濾取し、真空乾燥することにより、黄色固体1.99g(収率64%)を得た。得られた粉末のH-NMRの分析結果は次の通りであり、上記で得られた黄色結晶が化合物[3]であることが確認された。
化合物[3]: H-NMR(CDCl(δ=ppm))δ 8.75(d,1H),8.67(d,1H),8.20(s,1H),8.08(d,1H),7.96(d,1H),7.81-7.46(m,24H),7.38(t,1H),6.73(d,1H)。
Intermediate [I] 2.38 g, intermediate [D] 1.79 g, 1,2-dimethoxyethane 23 ml, 2.0 M sodium carbonate aqueous solution 4.6 ml were mixed and purged with nitrogen. To this mixed solution, 32 mg of bis (triphenylphosphine) palladium dichloride was added and heated to reflux for 3 hours. After cooling to room temperature, 20 ml of toluene and 20 ml of water were added for liquid separation, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, purification was performed by silica gel column chromatography (toluene / ethyl acetate = 2: 1), and the eluate was concentrated. To the obtained yellow foam-like solid, 50 ml of methanol was added and heated under reflux for 1 hour. Thereafter, the crystallized solid was collected by filtration and vacuum-dried to obtain 1.99 g (yield 64%) of a yellow solid. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellow crystals obtained above were the compound [3].
Compound [3]: 1 H-NMR (CDCl 3 (δ = ppm)) δ 8.75 (d, 1H), 8.67 (d, 1H), 8.20 (s, 1H), 8.08 ( d, 1H), 7.96 (d, 1H), 7.81-7.46 (m, 24H), 7.38 (t, 1H), 6.73 (d, 1H).
 なお、化合物[3]は、油拡散ポンプを用いて1×10-3Paの圧力下、約350℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.40%、昇華精製後が99.92%であった。 Compound [3] was used as a light emitting device material after sublimation purification at about 350 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.40% before sublimation purification and 99.92% after sublimation purification.
 (実施例1)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として本発明の化合物[1]をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、化合物(1E-1)を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 1)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. Next, the compound (H-1) as a host material and the compound [1] of the present invention as a dopant material were deposited in a thickness of 30 nm on the light emitting layer so that the doping concentration was 3% by weight. Next, the compound (1E-1) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.3%、駆動電圧5.0V、輝度半減時間8400時間の耐久性に優れた青色発光素子が得られた。 Next, after depositing compound (2E-1) by 1 nm, a co-evaporated film of magnesium and silver was deposited by 100 nm with a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). As a cathode, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 4.3%, a driving voltage of 5.0 V, and a luminance half-life time of 8400 hours was obtained.
 なお、(HI-1)、(HT-1)、(H-1)、(1E-1)、(2E-1)は以下に示す化合物である。 Note that (HI-1), (HT-1), (H-1), (1E-1), and (2E-1) are the compounds shown below.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 (実施例2~7)
 ドーパント材料として表1に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。各実施例の結果は表1に示した。なお、表1中、化合物[1]~化合物[3]は前述の(合成例1)~(合成例3)により得た化合物であり、化合物[4]~化合物[7]は以下に示す化合物である。
(Examples 2 to 7)
A light emitting device was produced in the same manner as in Example 1 except that the materials listed in Table 1 were used as the dopant material. The results of each example are shown in Table 1. In Table 1, the compounds [1] to [3] are the compounds obtained by the above (Synthesis Example 1) to (Synthesis Example 3), and the compounds [4] to [7] are the compounds shown below. It is.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 (比較例1~3)
 ドーパント材料として表1に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。結果は表1に示した。なお、表1中、(D-1)~(D-3)は以下に示す化合物である。
(Comparative Examples 1 to 3)
A light emitting device was produced in the same manner as in Example 1 except that the materials listed in Table 1 were used as the dopant material. The results are shown in Table 1. In Table 1, (D-1) to (D-3) are the compounds shown below.
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 (実施例8)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物[2]をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、化合物(1E-2)を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 8)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. Next, the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight. Next, the compound (1E-2) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を電子注入層として1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子を10mA/cmで直流駆動したところ、外部量子効率5.4%、駆動電圧4.0V、輝度半減時間8000時間の耐久性に優れた青色発光素子が得られた。 Next, after depositing the compound (2E-1) as an electron injection layer to a thickness of 1 nm, a co-deposition film of magnesium and silver has a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). Then, a 5 × 5 mm square element was produced by depositing 100 nm as a cathode. When this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 5.4%, a driving voltage of 4.0 V, and a luminance half time of 8000 hours was obtained.
 なお、(1E-2)は以下に示す化合物である。 (1E-2) is a compound shown below.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 (実施例9~20)
 電子輸送層として表2に記載した材料を用いた以外は、実施例8と同様にして発光素子を作製した。各実施例の結果は表2に示した。なお、(1E-3)~(1E-8)は以下に示す化合物である。
(Examples 9 to 20)
A light emitting device was produced in the same manner as in Example 8 except that the materials described in Table 2 were used as the electron transport layer. The results of each example are shown in Table 2. (1E-3) to (1E-8) are the compounds shown below.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 (比較例4~6)
 ドーパント材料および電子輸送層として表2に記載した材料を用いた以外は、実施例8と同様にして発光素子を作製した。結果は表2に示した。
(Comparative Examples 4 to 6)
A light emitting device was produced in the same manner as in Example 8 except that the materials described in Table 2 were used as the dopant material and the electron transport layer. The results are shown in Table 2.
 (実施例21)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物[2]をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、電子輸送層に化合物(1E-2)と、ドナー性材料(2E-1)を用い、化合物(1E-2)と(2E-1)の蒸着速度比が1:1になるようにして電子輸送層を25nmの厚さに蒸着して積層した。
(Example 21)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. Next, the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight. Next, the compound (1E-2) and the donor material (2E-1) are used for the electron transport layer so that the deposition rate ratio of the compounds (1E-2) and (2E-1) is 1: 1. Then, the electron transport layer was deposited to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を電子注入層として1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子を10mA/cmで直流駆動したところ、外部量子効率5.9%、駆動電圧3.8V、輝度半減時間8800時間の耐久性に優れた青色発光素子が得られた。 Next, after depositing the compound (2E-1) as an electron injection layer to a thickness of 1 nm, a co-deposition film of magnesium and silver has a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). Then, a 5 × 5 mm square element was produced by depositing 100 nm as a cathode. When this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 5.9%, a driving voltage of 3.8 V, and a luminance half time of 8800 hours was obtained.
 (実施例22~30)
 電子輸送層として表3に記載した材料を用いた以外は、実施例21と同様にして発光素子を作製した。各実施例の結果は表3に示した。
(Examples 22 to 30)
A light emitting device was produced in the same manner as in Example 21 except that the materials described in Table 3 were used as the electron transport layer. The results of each example are shown in Table 3.
 (比較例7~9)
 ドーパント材料および電子輸送層として表3に記載した材料を用いた以外は、実施例21と同様にして発光素子を作製した。結果は表3に示した。
(Comparative Examples 7 to 9)
A light emitting device was fabricated in the same manner as in Example 21 except that the materials described in Table 3 were used as the dopant material and the electron transport layer. The results are shown in Table 3.
 (実施例31)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、第1正孔輸送層として、化合物(HT-1)を60nm蒸着した。さらに第2正孔輸送層として化合物(HT-2)を10nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物[2]をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、化合物(1E-1)を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 31)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was deposited as a hole injection layer by 5 nm and the compound (HT-1) as a first hole transport layer by 60 nm by a resistance heating method. Further, 10 nm of a compound (HT-2) was deposited as a second hole transport layer. Next, the compound (H-1) as a host material and the compound [2] as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm so as to have a doping concentration of 3% by weight. Next, the compound (1E-1) was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を電子注入層として1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.9%、駆動電圧4.5V、輝度半減時間8100時間の耐久性に優れた青色発光素子が得られた。なお、(HT-2)は以下に示す化合物である。 Next, after depositing the compound (2E-1) as an electron injection layer to a thickness of 1 nm, a co-deposition film of magnesium and silver has a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). Then, a 5 × 5 mm square element was produced by depositing 100 nm as a cathode. When this light-emitting element was DC-driven at 10 mA / cm 2 , a blue light-emitting element excellent in durability with an external quantum efficiency of 4.9%, a driving voltage of 4.5 V, and a luminance half time of 8100 hours was obtained. (HT-2) is a compound shown below.
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 (実施例32~36)
 第2正孔輸送層および電子輸送層として表4に記載した材料を用いた以外は、実施例31と同様にして発光素子を作製した。各実施例の結果は表4に示した。参考のため実施例2および12の結果も再掲した。なお、(HT-3)、(HT-4)は以下に示す化合物である。
(Examples 32 to 36)
A light emitting device was produced in the same manner as in Example 31 except that the materials described in Table 4 were used as the second hole transport layer and the electron transport layer. The results of each example are shown in Table 4. The results of Examples 2 and 12 are also shown again for reference. (HT-3) and (HT-4) are the compounds shown below.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 (比較例10~15)
 ドーパント材料および電子輸送層として表4に記載した材料を用いた以外は、実施例31と同様にして発光素子を作製した。結果は表4に示した。
(Comparative Examples 10 to 15)
A light emitting device was fabricated in the same manner as in Example 31 except that the materials described in Table 4 were used as the dopant material and the electron transport layer. The results are shown in Table 4.
 (実施例37)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物(D-3)をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、本発明の化合物[1]を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 37)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. Next, the compound (H-1) as a host material and the compound (D-3) as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm with a doping concentration of 3% by weight. Next, the compound [1] of the present invention was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を電子注入層として1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.3%、駆動電圧4.5V、輝度半減時間5200時間の耐久性に優れた青色発光素子が得られた。 Next, after depositing the compound (2E-1) as an electron injection layer to a thickness of 1 nm, a co-deposition film of magnesium and silver has a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). Then, a 5 × 5 mm square element was produced by depositing 100 nm as a cathode. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , a blue light emitting device excellent in durability with an external quantum efficiency of 4.3%, a driving voltage of 4.5 V, and a luminance half time of 5200 hours was obtained.
 (実施例38~45)
 電子輸送層として表5に記載した材料を用いた以外は、実施例37と同様にして発光素子を作製した。各実施例の結果は表5に示した。なお、化合物[8]、化合物[9]は以下に示す化合物である。
(Examples 38 to 45)
A light emitting device was produced in the same manner as in Example 37 except that the materials described in Table 5 were used as the electron transport layer. The results of each example are shown in Table 5. Compound [8] and Compound [9] are the compounds shown below.
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 (実施例46)
 電子輸送層に化合物[1]と、ドナー性材料(2E-1)とを用い、化合物[1]と(2E-1)の蒸着速度比が1:1になるようにして電子輸送層を25nmの厚さに蒸着して積層した以外は実施例37と同様にして発光素子を作製した。結果は表5に示した。
(Example 46)
The compound [1] and the donor material (2E-1) are used for the electron transport layer, and the electron transport layer is 25 nm so that the deposition rate ratio of the compounds [1] and (2E-1) is 1: 1. A light emitting device was fabricated in the same manner as in Example 37 except that the thickness was evaporated and laminated. The results are shown in Table 5.
 (実施例47~54)
 電子輸送層として表5に記載した材料を用いた以外は、実施例46と同様にして発光素子を作製した。各実施例の結果は表5に示した。
(Examples 47 to 54)
A light emitting device was produced in the same manner as in Example 46 except that the materials described in Table 5 were used as the electron transport layer. The results of each example are shown in Table 5.
 (比較例16~17)
 電子輸送層として表5に記載した材料を用いた以外は、実施例37と同様にして発光素子を作製した。結果は表5に示した。
(Comparative Examples 16 to 17)
A light emitting device was produced in the same manner as in Example 37 except that the materials described in Table 5 were used as the electron transport layer. The results are shown in Table 5.
 (比較例18~19)
 電子輸送層として表5に記載した材料を用いた以外は、実施例46と同様にして発光素子を作製した。結果は表5に示した。
(Comparative Examples 18-19)
A light emitting device was produced in the same manner as in Example 46 except that the materials described in Table 5 were used as the electron transport layer. The results are shown in Table 5.
 (実施例55)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。次に、発光層に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物(D-3)をドープ濃度が3重量%になるようにして30nmの厚さに蒸着した。次に、化合物(1E-1)を電子輸送層として15nmの厚さに蒸着した。さらに本発明の化合物[1]と、ドナー性材料としてリチウムとを用い、化合物[1]とリチウムの蒸着速度比が化合物[1]:リチウム=99:1になるようにして電子注入層を10nmの厚さに蒸着して積層した。
(Example 55)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. Next, the compound (H-1) as a host material and the compound (D-3) as a dopant material were vapor-deposited on the light emitting layer to a thickness of 30 nm with a doping concentration of 3% by weight. Next, the compound (1E-1) was deposited as an electron transport layer to a thickness of 15 nm. Furthermore, the compound [1] of the present invention and lithium as a donor material are used, and the electron injection layer is made 10 nm so that the deposition rate ratio of the compound [1] and lithium is compound [1]: lithium = 99: 1. Vapor deposited to a thickness of
 次に、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.9%駆動電圧4.2V輝度半減時間5500時間の耐久性に優れた青色発光素子が得られた。 Next, a co-deposited film of magnesium and silver is deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 100 nm to form a cathode, thereby producing a 5 × 5 mm square device. did. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , a blue light emitting device having an external quantum efficiency of 4.9%, a driving voltage of 4.2 V, and a luminance half time of 5500 hours was obtained.
 (実施例56~63)
 電子注入層として表6に記載した材料を用いた以外は、実施例55と同様にして発光素子を作製した。各実施例の結果は表6に示した。
(Examples 56 to 63)
A light emitting device was produced in the same manner as in Example 55 except that the materials described in Table 6 were used as the electron injection layer. The results of each example are shown in Table 6.
 (比較例20~21)
 電子注入層として表6に記載した材料を用いた以外は、実施例55と同様にして発光素子を作製した。結果は表6に示した。
(Comparative Examples 20 to 21)
A light emitting device was produced in the same manner as in Example 55 except that the materials described in Table 6 were used as the electron injection layer. The results are shown in Table 6.
 (実施例64)
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、正孔輸送層として、化合物(HT-1)を70nm蒸着した。この正孔輸送層は表6では第1正孔輸送層として示す。次に、発光層に、ホスト材料として化合物(H-2)を、ドーパント材料として化合物(D-4)をドープ濃度が10重量%になるようにして30nmの厚さに蒸着した。次に、化合物[2]を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 64)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was vapor-deposited as a hole injection layer by 5 nm and the compound (HT-1) as a hole-transport layer by 70 nm by a resistance heating method. This hole transport layer is shown in Table 6 as the first hole transport layer. Next, the compound (H-2) as a host material and the compound (D-4) as a dopant material were deposited on the light emitting layer in a thickness of 30 nm so that the doping concentration was 10 wt%. Next, Compound [2] was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を電子注入層として1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。この緑色発光素子の4000cd/m時の特性は、外部量子効率11.1%、駆動電圧4.8Vであった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は7100時間であった。なお(H-2)、(D-4)は以下に示す化合物である。 Next, after depositing the compound (2E-1) as an electron injection layer to a thickness of 1 nm, a co-deposition film of magnesium and silver has a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). Then, a 5 × 5 mm square element was produced by depositing 100 nm as a cathode. The characteristics of this green light emitting device at 4000 cd / m 2 were an external quantum efficiency of 11.1% and a driving voltage of 4.8V. When the initial luminance was set to 4000 cd / m 2 and driven at a constant current, the luminance half time was 7100 hours. (H-2) and (D-4) are the compounds shown below.
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 (実施例65)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、化合物(HI-1)を5nm、第1正孔輸送層として、化合物(HT-1)を60nm蒸着した。さらに第2正孔輸送層として化合物(HT-2)を10nm蒸着した。次に、発光層に、ホスト材料として化合物(H-2)を、ドーパント材料として化合物(D-4)をドープ濃度が10重量%になるようにして30nmの厚さに蒸着した。次に、化合物[2]を電子輸送層として25nmの厚さに蒸着して積層した。
(Example 65)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, the compound (HI-1) was deposited as a hole injection layer by 5 nm and the compound (HT-1) as a first hole transport layer by 60 nm by a resistance heating method. Further, 10 nm of a compound (HT-2) was deposited as a second hole transport layer. Next, the compound (H-2) as a host material and the compound (D-4) as a dopant material were deposited on the light emitting layer in a thickness of 30 nm so that the doping concentration was 10 wt%. Next, Compound [2] was deposited as an electron transport layer to a thickness of 25 nm and laminated.
 次に、化合物(2E-1)を1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。この緑色発光素子の4000cd/m時の特性は、外部量子効率14.0%、駆動電圧4.5Vであった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は7500時間であった。 Next, after depositing compound (2E-1) by 1 nm, a co-evaporated film of magnesium and silver was deposited by 100 nm with a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s). As a cathode, a 5 × 5 mm square element was produced. The characteristics of this green light emitting device at 4000 cd / m 2 were an external quantum efficiency of 14.0% and a driving voltage of 4.5V. When the initial luminance was set to 4000 cd / m 2 and driven at a constant current, the luminance half time was 7500 hours.
 (実施例66~75)
 第2正孔輸送層および電子輸送層として表7に記載した材料を用いた以外は、実施例65と同様にして発光素子を作製した。各実施例の結果は表7に示した。
(Examples 66 to 75)
A light emitting device was fabricated in the same manner as in Example 65 except that the materials described in Table 7 were used as the second hole transport layer and the electron transport layer. The results of each example are shown in Table 7.
 (比較例22~25)
 第2正孔輸送層および電子輸送層として表7に記載した材料を用いた以外は、実施例65と同様にして発光素子を作製した。結果は表7に示した。
(Comparative Examples 22 to 25)
A light emitting device was fabricated in the same manner as in Example 65 except that the materials described in Table 7 were used as the second hole transport layer and the electron transport layer. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115

Claims (18)

  1. 下記一般式(1)で表されるホスフィンオキサイド誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRは同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および隣接置換基との間に形成される縮合環からなる群より選ばれる。Lは単結合、アリーレン基、またはヘテロアリーレン基である。Arは下記一般式(2)で表される縮合多環芳香族基である。nは1以上の整数である。nが2以上の場合、L、R、Rはそれぞれ同じでも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~R12は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群より選ばれる。ただしR~R12のうち、少なくとも一組の隣接する置換基は縮合環を形成している。ただし、R~R12のうち少なくとも一つの位置でLと連結する。)
    A phosphine oxide derivative represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group, and a condensed ring formed between adjacent substituents L 1 is a single bond, an arylene group, or a heteroarylene group, Ar 1 is a condensed polycyclic aromatic group represented by the following general formula (2), and n 1 is 1 or more. When n 1 is 2 or more, L 1 , R 1 and R 2 may be the same or different.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 3 to R 12 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group, provided that R 3 to R 12 are selected. Of which at least one pair of adjacent substituents forms a condensed ring, provided that it is linked to L 1 at at least one of R 3 to R 12. )
  2. 一般式(2)で表される縮合多環芳香族基が電子供与性窒素を環に含まない請求項1に記載のホスフィンオキサイド誘導体。 The phosphine oxide derivative according to claim 1, wherein the condensed polycyclic aromatic group represented by the general formula (2) does not contain electron-donating nitrogen in the ring.
  3. がアリーレン基またはヘテロアリーレン基である請求項1または2に記載のホスフィンオキサイド誘導体。 The phosphine oxide derivative according to claim 1 or 2, wherein L 1 is an arylene group or a heteroarylene group.
  4. およびRがアリール基またはヘテロアリール基である請求項1~3のいずれかに記載のホスフィンオキサイド誘導体。 The phosphine oxide derivative according to any one of claims 1 to 3, wherein R 1 and R 2 are an aryl group or a heteroaryl group.
  5. Arが下記一般式(3)または(4)で表される請求項1~4のいずれかに記載のホスフィンオキサイド誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R13~R24は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群より選ばれる。ただしR13~R24のうち、少なくとも一つの位置でLと連結する。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R25~R38は同じでも異なっていてもよく、それぞれ、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基およびシリル基からなる群より選ばれる。ただしR25~R38のうち、少なくとも一つの位置でLと連結する。)
    The phosphine oxide derivative according to any one of claims 1 to 4, wherein Ar 1 is represented by the following general formula (3) or (4).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 13 to R 24 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group, provided that R 13 to R 24 are selected. among and ligated with L 1 at least one position.)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 25 to R 38 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group and silyl group, provided that R 25 to R 38 are selected. among and ligated with L 1 at least one position.)
  6. 請求項1~5のいずれかに記載のホスフィンオキサイド誘導体を含有する発光素子材料。 A light emitting device material containing the phosphine oxide derivative according to any one of claims 1 to 5.
  7. 陽極と陰極の間に少なくとも発光層と電子輸送層とを有する有機層が存在し、電気エネルギーにより発光する発光素子であって、前記有機層のうち少なくとも1層が請求項6に記載の発光素子材料を用いる発光素子。 The light emitting device according to claim 6, wherein an organic layer having at least a light emitting layer and an electron transport layer exists between the anode and the cathode, and emits light by electric energy, wherein at least one of the organic layers is a light emitting device. A light-emitting element using a material.
  8. 陽極と陰極の間に発光層を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、前記発光層に請求項6に記載の発光素子材料を用いる発光素子。 An organic layer including a light emitting layer exists between an anode and a cathode, and is a light emitting element that emits light by electric energy, wherein the light emitting element uses the light emitting element material according to claim 6.
  9. 陽極と陰極の間にホスト材料とドーパント材料を有する発光層を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、該ドーパント材料が請求項1~5のいずれかに記載のホスフィンオキサイド誘導体を含有する発光素子。 An organic layer including a light emitting layer having a host material and a dopant material between an anode and a cathode, wherein the light emitting element emits light by electric energy, and the dopant material is a phosphine according to any one of claims 1 to 5. A light-emitting element containing an oxide derivative.
  10. 陽極と陰極の間に電子輸送層を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、該電子輸送層に請求項6に記載の発光素子材料を用いる発光素子。 An organic layer including an electron transport layer is present between an anode and a cathode, and is a light emitting element that emits light by electric energy, wherein the light emitting element material according to claim 6 is used for the electron transport layer.
  11. 陽極と陰極の間に電子輸送層を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、前記電子輸送層と陰極との間に電子注入層が存在し、該電子注入層に請求項6に記載の発光素子材料を用いる発光素子。 An organic layer including an electron transport layer exists between an anode and a cathode, and emits light by electric energy, wherein an electron injection layer exists between the electron transport layer and the cathode, and the electron injection layer includes The light emitting element using the light emitting element material of Claim 6.
  12. 陽極と陰極の間に電子輸送層を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、前記電子輸送層と陰極との間に電子注入層が存在し、前記電子輸送層および/または前記電子注入層が請求項6に記載の発光素子材料とドナー性材料とを含有する発光素子。 An organic layer including an electron transport layer is present between an anode and a cathode, and is a light emitting device that emits light by electric energy, wherein an electron injection layer is present between the electron transport layer and the cathode, and the electron transport layer and A light emitting device wherein the electron injection layer contains the light emitting device material according to claim 6 and a donor material.
  13. 前記ドナー性材料がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩およびアルカリ土類金属と有機物の錯体からなる群より選ばれた少なくとも1の化合物である請求項12に記載の発光素子。 The donor material is composed of an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, and a complex of an alkaline earth metal and an organic substance. The light emitting device according to claim 12, wherein the light emitting device is at least one compound selected from the above.
  14. 陽極と陰極の間に、ホスト材料とドーパント材料を有する発光層と、電子輸送層と、を含む有機層が存在し、電気エネルギーにより発光する発光素子であって、発光層のドーパント材料が請求項1~5のいずれかに記載のホスフィンオキサイド誘導体を含有し、かつ電子輸送層が下記一般式(5)~(8)のいずれかで表される化合物を含有する発光素子。
    Figure JPOXMLDOC01-appb-C000005
    (R39~R48はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R4950からなる群より選ばれる。ただしR39~R48のうち少なくとも一つの位置でLと連結する。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基であり、Arは電子受容性窒素を含む芳香族複素環基である。nは1以上の整数である。nが2以上の場合、LおよびArはそれぞれ同じでも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (R51~R58はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、カルボニル基、カルボキシル基、カルバモイル基、アミノ基、シリル基および-P(=O)R5960からなる群より選ばれる。R59およびR60はアリール基またはヘテロアリール基である。またR59およびR60が縮合して環を形成していてもよい。ただし、R51~R58のうち少なくとも1つはそれ自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により、三次元的立体構造を有するものである。)
    Figure JPOXMLDOC01-appb-C000007
    (R61~R68はそれぞれ同じでも異なっていてもよく、水素、ハロゲン、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、カルボニル基、カルボキシル基、カルバモイル基、アミノ基、シリル基および-P(=O)R6970からなる群より選ばれる。R69およびR70はアリール基またはヘテロアリール基である。またR69およびR70が縮合して環を形成していてもよい。ただし、n個のフェナントロリン骨格はそれぞれR61~R68のうち少なくとも一つの位置でXと連結する。nは2以上の整数である。Xは単結合または複数のフェナントロリン骨格を連結する連結ユニットである。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Arはアリール基もしくはヘテロアリール基を表し、Zは下記一般式(9)で表される。Lは単結合、アリーレン基またはヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、環Aおよび環Bは、それぞれ、ベンゼン環、縮合芳香族炭化水素環、単環芳香族複素環、または縮合芳香族複素環を表す。ただし、環Aおよび/または環Bは少なくとも1つの電子受容性窒素を含んでいる。環Aおよび環Bが置換基を有している場合の置換基、ならびにR71は、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R7273からなる群より選ばれる。R71は水素であってもよい。R72およびR73はアリール基またはヘテロアリール基である。またR72およびR73が縮合して環を形成していてもよい。ただし、R71、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。)
    An organic layer including a light-emitting layer having a host material and a dopant material and an electron transport layer is present between the anode and the cathode, and is a light-emitting element that emits light by electric energy, wherein the dopant material of the light-emitting layer is claimed. A light emitting device comprising the phosphine oxide derivative according to any one of 1 to 5, and an electron transport layer comprising a compound represented by any one of the following general formulas (5) to (8).
    Figure JPOXMLDOC01-appb-C000005
    (R 39 to R 48 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a heteroaryl group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and —P (═O) R 49 R 50, provided that R L 2 is linked to L 2 at at least one position among 39 to R 48. L 2 is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group, and Ar 2 is an electron-accepting nitrogen. the .n 2 is an aromatic heterocyclic group containing an integer of 1 or more .n 2 is 2 or more field , L 2 and Ar 2 may be the same or different.)
    Figure JPOXMLDOC01-appb-C000006
    (R 51 to R 58 may be the same or different from each other, and may be hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and —P (═O) R 59 R 60. R 59 and R 60 are an aryl group or hetero R 59 and R 60 may be condensed to form a ring, provided that at least one of R 51 to R 58 itself has a three-dimensional structure or phenanthroline. It has a three-dimensional structure by steric repulsion with the skeleton or with adjacent substituents. )
    Figure JPOXMLDOC01-appb-C000007
    (R 61 to R 68 may be the same or different and are each hydrogen, halogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , An arylthioether group, an aryl group, a carbonyl group, a carboxyl group, a carbamoyl group, an amino group, a silyl group, and —P (═O) R 69 R 70, where R 69 and R 70 are an aryl group or hetero R 69 and R 70 may be condensed to form a ring, provided that n 3 phenanthroline skeletons are linked to X at at least one of R 61 to R 68. .n 3 is an integer of 2 or more .X is to connect the single bond or phenanthroline skeleton A consolidated unit.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Ar 3 represents an aryl group or a heteroaryl group, and Z is represented by the following general formula (9). L 3 represents a single bond, an arylene group or a heteroarylene group. N 4 represents 1 or 2 When n 4 is 2, the two Zs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, each of ring A and ring B represents a benzene ring, a condensed aromatic hydrocarbon ring, a monocyclic aromatic heterocyclic ring, or a condensed aromatic heterocyclic ring, provided that ring A and / or ring B is at least One electron-accepting nitrogen, the substituent in the case where ring A and ring B have a substituent, and R 71 are each an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, Cycloalkenyl, alkynyl, alkoxy, alkylthio, arylether, arylthioether, aryl, heteroaryl, halogen, carbonyl, carboxyl, oxycarbonyl, carbamoyl and -P (= O) R 72 R 73 is selected from the group consisting of R 73. R 71 may be hydrogen R 72 and R 73 may be an aryl group or a heteroa R 72 and R 73 may be condensed to form a ring, but linked to L 3 at any position of R 71 , ring A and ring B. n 4 is In the case of 2, the positions at which two Z are linked to L 3 may be the same or different.
  15. 一般式(5)が、下記条件(a)~(c)のいずれかを満たす請求項14に記載の発光素子。
    (a)R39がLとの連結に用いられ、かつR44がアリール基もしくはヘテロアリール基である。
    (b)R39がLとの連結に用いられ、かつR41がアリール基もしくはヘテロアリール基であり、かつR44、R45、R46がいずれも水素原子である。
    (c)R39がLとの連結に用いられ、かつR41がアリール基もしくはヘテロアリール基であり、かつR45がアルキル基、アリール基もしくはヘテロアリール基である。
    The light emitting device according to claim 14, wherein the general formula (5) satisfies any of the following conditions (a) to (c).
    (A) R 39 is used for linking with L 2 , and R 44 is an aryl group or a heteroaryl group.
    (B) R 39 is used for linking with L 2 , R 41 is an aryl group or heteroaryl group, and R 44 , R 45 , and R 46 are all hydrogen atoms.
    (C) R 39 is used for linking with L 2 , R 41 is an aryl group or a heteroaryl group, and R 45 is an alkyl group, an aryl group or a heteroaryl group.
  16. 電子輸送層が一般式(7)で表される化合物を含有し、かつArがフルオランテン骨格を含む基もしくはベンゾフルオランテン骨格を含む基である請求項14に記載の発光素子。 The light-emitting element according to claim 14, wherein the electron transport layer contains a compound represented by the general formula (7), and Ar 3 is a group containing a fluoranthene skeleton or a group containing a benzofluoranthene skeleton.
  17. 陽極と陰極の間にさらに正孔輸送層を含み、該正孔輸送層がカルバゾール骨格を有する材料を含有する請求項7~14のいずれかに記載の発光素子。 The light emitting device according to claim 7, further comprising a hole transport layer between the anode and the cathode, wherein the hole transport layer contains a material having a carbazole skeleton.
  18. 前記カルバゾール骨格を有する材料がカルバゾール多量体である請求項17に記載の発光素子。 The light-emitting element according to claim 17, wherein the material having a carbazole skeleton is a carbazole multimer.
PCT/JP2013/077045 2012-10-10 2013-10-04 Phosphine oxide derivative and light-emitting element provided with same WO2014057873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547034A JPWO2014057873A1 (en) 2012-10-10 2013-10-04 Phosphine oxide derivative and light emitting device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224754 2012-10-10
JP2012-224754 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057873A1 true WO2014057873A1 (en) 2014-04-17

Family

ID=50477340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077045 WO2014057873A1 (en) 2012-10-10 2013-10-04 Phosphine oxide derivative and light-emitting element provided with same

Country Status (3)

Country Link
JP (1) JPWO2014057873A1 (en)
TW (1) TW201414743A (en)
WO (1) WO2014057873A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115529A1 (en) * 2014-01-31 2015-08-06 出光興産株式会社 Compound, material for organic electroluminescent elements, organic electroluminescent element and electronic device
JP2016505507A (en) * 2012-11-21 2016-02-25 エルジー・ケム・リミテッド Fluoranthene compound and organic electronic device containing the same
WO2017047993A1 (en) * 2015-09-16 2017-03-23 주식회사 엘지화학 Compound and organic light emitting device containing same
KR20170033231A (en) * 2015-09-16 2017-03-24 주식회사 엘지화학 Compound and organic light emitting device comprising the same
WO2017115577A1 (en) * 2015-12-28 2017-07-06 大電株式会社 Organic electron transport material and organic electroluminescent element using same
KR101793784B1 (en) 2014-09-22 2017-11-06 주식회사 엘지화학 Heterocyclic compound including nitrogen and organic light emitting device using the same
CN107922357A (en) * 2015-09-11 2018-04-17 株式会社Lg化学 Heterocyclic compound and use its organic luminescent device
KR20190053563A (en) * 2017-11-10 2019-05-20 주식회사 진웅산업 benzo(b)fluoranthene compounds and organic light emitting diode comprising the same
CN112585141A (en) * 2018-11-05 2021-03-30 株式会社Lg化学 Compound and organic light emitting diode comprising same
US11884668B1 (en) 2023-08-02 2024-01-30 King Faisal University Substituted pyrido[3′,4′:4,5]pyrrolo[2,3-c]quinolines as CK2 inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063989A (en) * 2000-06-08 2002-02-28 Toray Ind Inc Light emitting element
JP2006073581A (en) * 2004-08-31 2006-03-16 Toray Ind Inc Light emitting device and material therefor
WO2007100010A1 (en) * 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2008244012A (en) * 2007-03-26 2008-10-09 Fujifilm Corp Organic electroluminescent element
KR20120020816A (en) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 Novel compounds for organic electronic material and organic electroluminescent device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063989A (en) * 2000-06-08 2002-02-28 Toray Ind Inc Light emitting element
JP2006073581A (en) * 2004-08-31 2006-03-16 Toray Ind Inc Light emitting device and material therefor
WO2007100010A1 (en) * 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2008244012A (en) * 2007-03-26 2008-10-09 Fujifilm Corp Organic electroluminescent element
KR20120020816A (en) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 Novel compounds for organic electronic material and organic electroluminescent device using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505507A (en) * 2012-11-21 2016-02-25 エルジー・ケム・リミテッド Fluoranthene compound and organic electronic device containing the same
WO2015115529A1 (en) * 2014-01-31 2015-08-06 出光興産株式会社 Compound, material for organic electroluminescent elements, organic electroluminescent element and electronic device
KR101793784B1 (en) 2014-09-22 2017-11-06 주식회사 엘지화학 Heterocyclic compound including nitrogen and organic light emitting device using the same
CN107922357A (en) * 2015-09-11 2018-04-17 株式会社Lg化学 Heterocyclic compound and use its organic luminescent device
US10323006B2 (en) 2015-09-11 2019-06-18 Lg Chem, Ltd. Heterocyclic compound and organic light emitting element using same
JP2018534237A (en) * 2015-09-11 2018-11-22 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device using the same
EP3327008A4 (en) * 2015-09-11 2018-10-31 LG Chem, Ltd. Heterocyclic compound and organic light emitting element using same
US10651411B2 (en) 2015-09-16 2020-05-12 Lg Chem, Ltd. Compound and organic light emitting device containing same
JP2018511572A (en) * 2015-09-16 2018-04-26 エルジー・ケム・リミテッド Compound and organic light emitting device including the same
KR101934470B1 (en) * 2015-09-16 2019-03-25 주식회사 엘지화학 Compound and organic light emitting device comprising the same
KR20170033231A (en) * 2015-09-16 2017-03-24 주식회사 엘지화학 Compound and organic light emitting device comprising the same
WO2017047993A1 (en) * 2015-09-16 2017-03-23 주식회사 엘지화학 Compound and organic light emitting device containing same
JP2017120845A (en) * 2015-12-28 2017-07-06 大電株式会社 Organic electron transport material and organic electroluminescent element using the same
WO2017115577A1 (en) * 2015-12-28 2017-07-06 大電株式会社 Organic electron transport material and organic electroluminescent element using same
US20180375032A1 (en) * 2015-12-28 2018-12-27 Dyden Corporation Organic electron transport material and organic electroluminescent element using same
US11063223B2 (en) 2015-12-28 2021-07-13 Dyden Corporation Organic electron transport material and organic electroluminescent element using same
KR20190053563A (en) * 2017-11-10 2019-05-20 주식회사 진웅산업 benzo(b)fluoranthene compounds and organic light emitting diode comprising the same
KR102148239B1 (en) * 2017-11-10 2020-08-27 주식회사 진웅산업 benzo(b)fluoranthene compounds and organic light emitting diode comprising the same
CN112585141A (en) * 2018-11-05 2021-03-30 株式会社Lg化学 Compound and organic light emitting diode comprising same
US11884668B1 (en) 2023-08-02 2024-01-30 King Faisal University Substituted pyrido[3′,4′:4,5]pyrrolo[2,3-c]quinolines as CK2 inhibitors

Also Published As

Publication number Publication date
TW201414743A (en) 2014-04-16
JPWO2014057873A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6769303B2 (en) Phenanthroline derivatives, electronic devices containing them, light emitting devices and photoelectric conversion devices
JP6183214B2 (en) Fluoranthene derivative, light emitting device material containing the same, and light emitting device
JP6123679B2 (en) Benzoindolocarbazole derivative, light emitting device material and light emitting device using the same
JP6627507B2 (en) Fluoranthene derivative, electronic device, light emitting element and photoelectric conversion element containing the same
JP6051864B2 (en) Light emitting device material and light emitting device
JP6183211B2 (en) Light emitting device material and light emitting device
WO2014057873A1 (en) Phosphine oxide derivative and light-emitting element provided with same
JP6020173B2 (en) Light emitting device material and light emitting device
WO2016009823A1 (en) Monoamine derivative, luminescent element material comprising same, and luminescent element
JP6269060B2 (en) Light emitting device material and light emitting device
JP2014138006A (en) Light-emitting element material and light-emitting element
JP6318617B2 (en) Light emitting device material and light emitting device
WO2016152855A1 (en) Compound, and electronic device, luminescent element, photoelectric conversion element, and image sensor containing same
JP2016160208A (en) Chemical compound, luminous element containing the same, photoelectric conversion element and image sensor
WO2014024750A1 (en) Light emitting element material and light emitting element
JP2014175590A (en) Organic electroluminescent element
JP2014093501A (en) Light-emitting element material and light emitting element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547034

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845829

Country of ref document: EP

Kind code of ref document: A1