WO2014057861A1 - Method for cleaning glass substrate - Google Patents

Method for cleaning glass substrate Download PDF

Info

Publication number
WO2014057861A1
WO2014057861A1 PCT/JP2013/076940 JP2013076940W WO2014057861A1 WO 2014057861 A1 WO2014057861 A1 WO 2014057861A1 JP 2013076940 W JP2013076940 W JP 2013076940W WO 2014057861 A1 WO2014057861 A1 WO 2014057861A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
glass substrate
substrate
group
hydrogen peroxide
Prior art date
Application number
PCT/JP2013/076940
Other languages
French (fr)
Japanese (ja)
Inventor
公法 佐藤
毅 小川
山中 一広
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2014540821A priority Critical patent/JPWO2014057861A1/en
Publication of WO2014057861A1 publication Critical patent/WO2014057861A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • C11D2111/18
    • C11D2111/22

Definitions

  • the present invention relates to cleaning and removal of a cured polyorganosiloxane firmly adhered to the surface of a glass substrate.
  • an organic substance or an inorganic substance such as a silicone resin attached to a substrate such as glass contained in an adhesive or the like can be removed using a chemical solution such as an acid, an alkali, or an organic solvent.
  • a chemical solution such as an acid, an alkali, or an organic solvent.
  • organic solvents such as benzene, toluene, xylene, hydrocarbons, ethers, etc.
  • the peelability of the cured product is not sufficient, and in the waste liquid generated after peeling May contain highly toxic compounds and compounds that cause environmental pollution. Therefore, as a conventional cleaning solution, a hydrofluoric acid solution or an alkali metal hydroxide solution has been mainly used.
  • hydrofluoric acid salt corrodes glass, it must be used with care for a glass substrate.
  • RCA cleaning is performed by heating a mixed solution of ammonia water, hydrogen peroxide solution and ultrapure water (hereinafter sometimes referred to as APM) to 60 to 90 ° C. on a silicon wafer.
  • APM hydrogen peroxide solution and ultrapure water
  • HPM hydrochloric acid, hydrogen peroxide and ultrapure water
  • a cleaning solution obtained by heating a mixed solution of sulfuric acid and hydrogen peroxide solution (hereinafter sometimes referred to as SPM) to 80 to 150 ° C. is used to decompose and remove organic substances such as photoresist or metal impurities. Has been.
  • Patent Document 1 discloses a method of removing attached metal and organic substances by cleaning a glass substrate with heated SPM.
  • Patent Document 2 it is possible to dissolve and remove the cured product firmly adhered to the glass substrate by performing strong alkali cleaning, but at the same time, the glass substrate surface is slightly dissolved and damaged by alkali. There was a problem that. Further, in the case of strong alkali cleaning, a strong alkali metal oxide such as a potassium hydroxide solution or a sodium hydroxide solution is used. Therefore, in a non-alkali glass substrate used for manufacturing a semiconductor, the substrate surface is contaminated with an alkaline component. Therefore, even if the concentration is low, it is difficult to reuse the substrate cleaned and regenerated by those methods.
  • strong alkali cleaning a strong alkali metal oxide such as a potassium hydroxide solution or a sodium hydroxide solution is used. Therefore, in a non-alkali glass substrate used for manufacturing a semiconductor, the substrate surface is contaminated with an alkaline component. Therefore, even if the concentration is low, it is difficult to reuse the substrate cleaned and regenerated by those methods.
  • Patent Document 5 Patent Document 6
  • Patent Document 7 Patent Document 7
  • Patent Document 8 discloses a method for cleaning a modified silicone polymer having a hydrolyzable silyl group, but it is necessary to react with a cleaning agent before curing, and is suitable for removing a cured product. I can't say that.
  • the curing method is limited to moisture curing.
  • the limited method of cleaning with strong acid such as hydrofluoric acid or strong alkali such as metal oxide causes problems such as damage, corrosion or contamination of the glass substrate.
  • cleaning and regeneration were difficult. Therefore, if glass substrates for semiconductor devices that require high cleanliness can be washed and regenerated, manufacturing costs can be reduced.
  • the present invention provides a method for cleaning a substrate, in which a cured product of polyorganosiloxane adhering to the surface of a glass substrate is easily cleaned and removed without causing damage, corrosion or contamination of the substrate, and the substrate can be regenerated. I will provide a.
  • the present inventors have washed with a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide, and then washed with an aqueous solution containing nitric acid.
  • a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide washed with an aqueous solution containing nitric acid.
  • the substrate can be cleaned without causing damage, corrosion, or contamination, and the polyorganosiloxane cured product adhering to the glass substrate surface can be effectively removed, and the present invention has been completed. I let you.
  • the present invention includes the following inventions 1 to 6.
  • [Invention 1] A cleaning method for removing a cured product of polyorganosiloxane adhering to a glass substrate surface, the step of bringing a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide into contact with the substrate surface; A method for cleaning a glass substrate, comprising a step of bringing an aqueous solution containing the substrate into contact with the substrate surface.
  • a cured product of polyorganosiloxane that adheres firmly to the substrate surface can be removed without using an alkali component and without causing damage, corrosion and contamination of the substrate. Therefore, it is not necessary to perform washing with hydrofluoric acid, which is difficult to handle, or strong alkali washing using a metal hydroxide or the like that may be contaminated by alkali components.
  • chlorine ions and the like generated in the cleaning process using SPM and the cleaning process using HPM do not remain on the substrate surface, it is possible to clean and recycle a highly clean substrate, which leads to cost reduction. Therefore, the cleaning method of the present invention is extremely useful for manufacturing semiconductor devices.
  • the glass substrate to which the cleaning method of the present invention is applied is generally used for manufacturing semiconductor devices, and the specification is not particularly limited.
  • Examples of the mixed cleaning liquid containing sulfuric acid and hydrogen peroxide in the present invention include an SPM cleaning liquid used for removing organic substances such as resist and metal impurities, and examples of the mixed cleaning liquid containing hydrochloric acid and hydrogen peroxide include: And HPM cleaning liquid used for removing metal impurities.
  • the SPM cleaning is performed by heating the SPM cleaning liquid.
  • the conditions for washing are not particularly limited, but generally used compositions have a volume ratio of sulfuric acid to hydrogen peroxide in the range of 4: 1 to 8: 1, and the washing temperature is 80 to 150 ° C. A range is sufficient.
  • HPM cleaning is performed by heating a mixed solution of hydrochloric acid, hydrogen peroxide solution and ultrapure water.
  • the cleaning conditions are not particularly limited as in the SPM cleaning, and the composition generally used is that the volume ratio of hydrochloric acid, hydrogen peroxide solution and ultrapure water is 1: 1: 5 to 1: 4: 10. In the range of 50 to 100 ° C., the washing temperature is sufficient.
  • nitric acid cleaning is not clear, but components that cannot be removed by normal SPM cleaning or HPM cleaning, such as the cage-type silsesquioxane contained in the cured polyorganosiloxane attached to the surface, are the oxidizing power of nitric acid. Is peeled off from the glass surface. At the same time, when washing is performed in a subsequent process, a trace amount of chlorine ions remaining on the glass substrate surface when hydrochloric acid is used can be removed.
  • the concentration of nitric acid in the aqueous solution containing nitric acid is preferably in the range of 1 to 60% by mass, more preferably in the range of 10 to 40% by mass. When the concentration range is less than this range, the release property of the polyorganosiloxane is low, and when the concentration range is exceeded, it is not economical.
  • the quality of sulfuric acid, hydrochloric acid, hydrogen peroxide, and nitric acid used in the present invention is preferably as high as possible in order to avoid the problem that the glass substrate is contaminated with impurities in the chemical, specifically, It is desirable to use electronics industry grade chemicals.
  • ultrapure water rinsing is performed to wash away most of the chemical components adhering to the glass substrate surface.
  • the ultrapure water rinsing is performed for 1 minute or more in a general condition, for example, a method in which ultrapure water overflows from the washing tank at room temperature.
  • the glass substrate is immersed in a fluororesin cleaning tank containing an aqueous solution containing nitric acid and cleaned.
  • the washing temperature is not particularly limited, but it is preferably 20 to 100 ° C, more preferably 40 to 90 ° C.
  • the mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide and the aqueous solution containing nitric acid may be one solution.
  • the temperature of the cleaning liquid composition is less than 20 ° C., the rate of peeling the cured product from the glass substrate is slow, which is not practical.
  • the temperature of the cleaning liquid composition exceeds 100 ° C., the evaporation of moisture is intense and the nitric acid concentration may change. Further, the implementation procedure is not limited to this, and the order and conditions may be changed as appropriate.
  • Cleaning with an aqueous solution containing nitric acid can be performed by an immersion method, a spray method, or a spin method. It can also be performed by a batch type cleaning system or a single wafer type cleaning system. It is desirable that the washing time is appropriately changed depending on the cured polyorganosiloxane to be removed and the nitric acid concentration in the washing liquid.
  • the rinse method is generally an overflow method, but may be a spray method. Thereafter, the glass substrate is dried by a commonly used method such as spin drying.
  • water used in the present invention examples include city water, well water, pure water (water that has been desalted with an ion exchange resin, etc.), ultrapure water (not only inorganic ions, organic matter, viable bacteria, fine particles, Water from which dissolved gas has been removed), various functional waters proposed in recent years, etc., but pure water, ultrapure water, etc. from the point of low metal ion content that adversely affects electronic control circuits, etc. Is preferred.
  • Examples of a cured product of polyorganosiloxane as an object to be removed by the cleaning method in the present invention are shown below, but are not limited thereto.
  • each A is independently an organic group containing or not containing a photopolymerizable group
  • the number X of organic groups containing a photopolymerizable group is 1 to 8
  • a photopolymerizable group is contained.
  • the number Y of organic groups not present is 0 to 7, and the sum of X and Y is 8.
  • the photopolymerizable group represents an acryloyl group, a methacryloyl group, an aryl group, an epoxy group, an oxetane group, and a vinyl ether group.
  • a cured product of the same adhesive polyorganosiloxane a cured product of a modified polyorganosiloxane composed of a hydrolytic condensate of an alkoxysilane having a photopolymerizable group can also be mentioned.
  • the cured product is a condensate obtained by hydrolytic condensation using at least one or more of alkoxysilanes represented by the following general formula (2) or (3).
  • R 1 is independently a methyl group or a phenyl group
  • R 2 is independently a methyl group or an ethyl group
  • X is an integer of 0-3.
  • each R 3 is independently at least one group selected from the group consisting of acryloyl group, methacryloyl group, aryl group, epoxy group, oxetane group and vinyl ether group, and R 4 is each independently A methyl group or an ethyl group, and X is an integer of 1 to 3.
  • the decomposition condensate is considered to have the partial structure shown below.
  • the wavy line in a figure means that the coupling
  • the polyorganosiloxane cured product to be removed by the cleaning method of the present invention is not particularly limited in its structure, and is a cured product of an unmodified polyorganosiloxane, epoxy group, amino group, hydroxyl group, acryloyl group, methacryloyl.
  • a cured product of a polyorganosiloxane obtained from an organically modified siloxane compound having a functional group such as a group is also included.
  • Various additives such as a polymerization catalyst, an adhesion-imparting agent, a filler, a reinforcing agent, a pigment, a flame retardant, an antioxidant, an ultraviolet absorber, and a foaming agent may be blended in the polyorganosiloxane.
  • the shape of the composition may be a one-component curing type, a two-component curing type, an adhesive sheet, or the like, and any curing means such as room temperature curing, heat curing, and photocuring may be
  • silicone resin and resinous stains for general adhesives, it can also be used for cleaning soils containing inorganic fine particles, and as a resist stripper.
  • the cleaning target of the present invention is particularly suitable for glass substrates, but various substrates such as silicon wafers and ceramic substrates can also be cleaned.
  • an adhesive polyorganosiloxane composition was prepared in order to reproduce a cured product of polyorganosiloxane that adhered firmly to the substrate surface. Thereafter, the composition was cured on the substrate to form and adhere a cured product on the substrate. Using this as a model substrate, the cleaning performance by the cleaning method of the present invention was evaluated.
  • the reaction was performed by stirring for 6 hours at a stirring speed of 200 rpm. After allowing to stand to room temperature (20 ° C.), 200 ml of isopropyl ether and 200 ml of water were added, and the organic layer was separated with a separatory funnel. After dehydration using magnesium sulfate, the organic solvent was distilled off with an evaporator to obtain 85.34 g of a colorless transparent solid. In this way, an alkoxysilane hydrolyzed condensate having a photopolymerizable group was obtained.
  • ⁇ Preparation of adhesive polyorganosiloxane composition To 50 parts of the photopolymerizable cage silsesquioxane and 50 parts of the hydrolyzed condensate of alkoxysilane having a photopolymerizable group, pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name, biscoat # 300) was added, and 2 parts of radical photopolymerization initiator (Ciba Specialty Chemicals, trade name, Darocur 1173) was added to obtain an adhesive polyorganosiloxane composition.
  • pentaerythritol triacrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name, biscoat # 300
  • 2 parts of radical photopolymerization initiator Ciba Specialty Chemicals, trade name, Darocur 1173
  • the results are shown in Table 1.
  • the evaluation criteria for the state of the glass substrate surface are as follows. A: No deposits and re-adhesion, no damage, corrosion, or cloudiness. ⁇ : Damage, corrosion, or clouding occurred. X: Deposits could not be removed (Examples 1 to 7 having good cleaning properties) In regard to, the cycle of bonding, peeling, and washing was repeated three times.Reference Example 1 also had good cleaning properties, but the cycle was completed once for the reasons described later.)
  • Example 1 a series of cycles of bonding, peeling, and cleaning were repeated three times in the same process using the same glass substrate, but no damage, corrosion, or contamination of the glass substrate was observed. It was shown that the glass substrate can be regenerated. Moreover, regarding Reference Example 1 performed by heating to 120 ° C., the cycle was completed once because there was a concern that the cleaning liquid was volatile and the liquid composition might change.
  • glass substrates for semiconductor devices that require high cleanliness can be cleaned and regenerated, and can be widely used in semiconductor manufacturing processes.

Abstract

In this substrate cleaning method, a glass substrate is first cleaned with a cleaning liquid including sulfuric acid or hydrochloric acid, such as a mixed solution including sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide, and then the surface of the substrate is cleaned with an aqueous solution including nitric acid. With this cleaning method, cured products of polyorganosiloxanes firmly attached to the surface of the glass substrate can be removed effectively without using alkaline cleaning components and without damaging, corroding, or contaminating the substrate, and the glass substrate can be cleaned and recycled.

Description

ガラス基板の洗浄方法Glass substrate cleaning method
 本発明は、ガラス基板の表面に強固に付着したポリオルガノシロキサン硬化物の洗浄除去に関する。 The present invention relates to cleaning and removal of a cured polyorganosiloxane firmly adhered to the surface of a glass substrate.
 一般に接着剤などに含まれる、ガラスなどの基板に付着したシリコーン樹脂などの有機物または無機物は、酸、アルカリ、有機溶剤等の薬液を用いて除去することができる。例えば、有機物などをベンゼン、トルエン、キシレン、炭化水素、エーテルなどの有機溶剤を用いて除去することが知られているが、硬化物の剥離性が十分ではなく、また、剥離後に発生する廃液中に毒性の強い化合物や環境汚染の原因となる化合物を含有することがある。そのため、従来の洗浄液としては、フッ化水素酸塩液やアルカリ金属水酸化物の溶液が主に使用されてきた。しかし、フッ化水素酸塩はガラスを腐蝕するため、ガラス基板に使用するには注意を要する。そのため、シリコンウェハメーカーやデバイスメーカーでは、シリコンウェハなどの基板に付着した汚染物除去のために各種の洗浄が行われている。例えば、RCA洗浄と呼ばれる代表的な洗浄方法は、アンモニア水と過酸化水素水と超純水の混合液(以下、APMと呼ぶことがある。)を60~90℃に加熱してシリコンウェハ上の微粒子や有機物を除去した後、塩酸と過酸化水素水と超純水の混合液(以下、HPMと呼ぶことがある。)を50~100℃に加熱してシリコンウェハ上の金属不純物を除去する方法の組み合わせからなる。また、硫酸と過酸化水素水の混合液(以下、SPMと呼ぶことがある。)を80~150℃に加熱した洗浄液は、フォトレジストなどの有機物の分解除去または金属不純物を除去するために使用されている。 Generally, an organic substance or an inorganic substance such as a silicone resin attached to a substrate such as glass contained in an adhesive or the like can be removed using a chemical solution such as an acid, an alkali, or an organic solvent. For example, it is known to remove organic substances using organic solvents such as benzene, toluene, xylene, hydrocarbons, ethers, etc., but the peelability of the cured product is not sufficient, and in the waste liquid generated after peeling May contain highly toxic compounds and compounds that cause environmental pollution. Therefore, as a conventional cleaning solution, a hydrofluoric acid solution or an alkali metal hydroxide solution has been mainly used. However, since hydrofluoric acid salt corrodes glass, it must be used with care for a glass substrate. For this reason, silicon wafer manufacturers and device manufacturers perform various types of cleaning to remove contaminants attached to a substrate such as a silicon wafer. For example, a typical cleaning method called RCA cleaning is performed by heating a mixed solution of ammonia water, hydrogen peroxide solution and ultrapure water (hereinafter sometimes referred to as APM) to 60 to 90 ° C. on a silicon wafer. After removing fine particles and organic matter, the mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water (hereinafter sometimes referred to as HPM) is heated to 50 to 100 ° C. to remove metal impurities on the silicon wafer. It consists of a combination of methods. A cleaning solution obtained by heating a mixed solution of sulfuric acid and hydrogen peroxide solution (hereinafter sometimes referred to as SPM) to 80 to 150 ° C. is used to decompose and remove organic substances such as photoresist or metal impurities. Has been.
 ガラス基板の洗浄方法として、特許文献1では、加熱したSPMでガラス基板を洗浄することにより、付着した金属や有機物を除去する方法が開示されている。 As a glass substrate cleaning method, Patent Document 1 discloses a method of removing attached metal and organic substances by cleaning a glass substrate with heated SPM.
 その他、特許文献2に開示されているように、強アルカリ洗浄を行うことでも、ガラス基板に強固に付着した硬化物を溶解除去できるが、同時にガラス基板表面もアルカリによってわずかに溶解し、損傷してしまうという問題があった。さらに、強アルカリ洗浄の場合には、水酸化カリウム溶液または水酸化ナトリウム溶液といった強アルカリの金属酸化物を用いるため、半導体製造用として用いられる無アルカリガラス基板などでは、基板表面がアルカリ成分で汚染される懸念があるため、たとえ低濃度であったとしても、それらの方法で洗浄、再生した基板などを再利用することは困難であった。 In addition, as disclosed in Patent Document 2, it is possible to dissolve and remove the cured product firmly adhered to the glass substrate by performing strong alkali cleaning, but at the same time, the glass substrate surface is slightly dissolved and damaged by alkali. There was a problem that. Further, in the case of strong alkali cleaning, a strong alkali metal oxide such as a potassium hydroxide solution or a sodium hydroxide solution is used. Therefore, in a non-alkali glass substrate used for manufacturing a semiconductor, the substrate surface is contaminated with an alkaline component. Therefore, even if the concentration is low, it is difficult to reuse the substrate cleaned and regenerated by those methods.
 従来技術においても、接着剤などに含まれるシリコーン樹脂をガラス基板から除去することはできるが、そのほとんどは低分子シロキサンやシリコーンオイルなど未硬化な物が対象であった(特許文献5、特許文献6、特許文献7)。硬化物においては、RCA洗浄など通常の方法では洗浄することが困難な場合もある。例えば、特許文献8では、加水分解性シリル基を有する変性シリコーンポリマーを洗浄する方法が示されているが、硬化前に洗浄剤と反応させる必要があり、硬化物の除去に適しているとはいえない。さらに、硬化方法も湿気硬化に限られている。そのため、フッ化水素酸などの強酸、または金属酸化物などの強アルカリで洗浄するような限られた方法では、ガラス基板の損傷、腐食又は汚染などの問題が起こるため、特に半導体用途での基板の、洗浄、再生は困難であった。そのため、高清浄性が必要な半導体デバイス用のガラス基板などを洗浄、再生することが出来れば、製造コストの削減につなげることも出来る。 In the prior art, the silicone resin contained in the adhesive or the like can be removed from the glass substrate, but most of them are uncured materials such as low molecular siloxane and silicone oil (Patent Document 5, Patent Document). 6, Patent Document 7). In a cured product, it may be difficult to clean by a normal method such as RCA cleaning. For example, Patent Document 8 discloses a method for cleaning a modified silicone polymer having a hydrolyzable silyl group, but it is necessary to react with a cleaning agent before curing, and is suitable for removing a cured product. I can't say that. Furthermore, the curing method is limited to moisture curing. Therefore, the limited method of cleaning with strong acid such as hydrofluoric acid or strong alkali such as metal oxide causes problems such as damage, corrosion or contamination of the glass substrate. However, cleaning and regeneration were difficult. Therefore, if glass substrates for semiconductor devices that require high cleanliness can be washed and regenerated, manufacturing costs can be reduced.
特開平9-227170号公報JP-A-9-227170 特開平2-247650号公報JP-A-2-247650 特開2006-319282号公報JP 2006-319282 A 特開2005-181802号公報JP-A-2005-181802 特開2008-127492号公報JP 2008-127492 A 特開2011-57777号公報JP 2011-57777 A 特開2010-132713号公報JP 2010-132713 A 特開2002-35705号公報JP 2002-35705 A
 本発明は、ガラス基板表面に付着したポリオルガノシロキサンの硬化物を、基板の損傷、腐食、汚染を発生させずに簡便に洗浄除去し、該基板の再生を可能にする、該基板の洗浄方法を提供する。 The present invention provides a method for cleaning a substrate, in which a cured product of polyorganosiloxane adhering to the surface of a glass substrate is easily cleaned and removed without causing damage, corrosion or contamination of the substrate, and the substrate can be regenerated. I will provide a.
 本発明者らは、従来のガラス基板洗浄技術を向上させるために、鋭意検討した結果、硫酸と過酸化水素または塩酸と過酸化水素を含む混合洗浄液で洗浄した後に、硝酸を含む水溶液で洗浄することで、該基板の損傷、腐食、汚染を発生させることなく洗浄し、該基板表面に付着した効果的にガラス基板表面に付着したポリオルガノシロキサンの硬化物を除去できることを見出し、本発明を完成させた。 As a result of intensive studies to improve the conventional glass substrate cleaning technique, the present inventors have washed with a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide, and then washed with an aqueous solution containing nitric acid. Thus, the substrate can be cleaned without causing damage, corrosion, or contamination, and the polyorganosiloxane cured product adhering to the glass substrate surface can be effectively removed, and the present invention has been completed. I let you.
 すなわち、本発明は以下の発明1乃至6を含む。 That is, the present invention includes the following inventions 1 to 6.
 [発明1]
 ガラス基板表面に付着したポリオルガノシロキサンの硬化物を除去するための洗浄方法であって、硫酸と過酸化水素又は塩酸と過酸化水素を含む混合洗浄液を基板表面と接触させる工程、及び、硝酸を含む水溶液を基板表面と接触させる工程を含む、ガラス基板の洗浄方法。
[Invention 1]
A cleaning method for removing a cured product of polyorganosiloxane adhering to a glass substrate surface, the step of bringing a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide into contact with the substrate surface; A method for cleaning a glass substrate, comprising a step of bringing an aqueous solution containing the substrate into contact with the substrate surface.
 [発明2]
 硝酸を含む水溶液の全質量に対して、硝酸の濃度が1~60質量%である、発明1に記載の洗浄方法。
[Invention 2]
The cleaning method according to invention 1, wherein the concentration of nitric acid is 1 to 60% by mass relative to the total mass of the aqueous solution containing nitric acid.
 [発明3]
 さらに、水で洗浄した後、ガラス基板を乾燥する工程を含む、発明1または2に記載の洗浄方法。
[Invention 3]
Furthermore, the washing | cleaning method of invention 1 or 2 including the process of drying a glass substrate, after wash | cleaning with water.
 [発明4]
 硝酸を含む水溶液を20~100℃で基板表面と接触させる、発明1~3の何れか1つに記載の洗浄方法。
[Invention 4]
The cleaning method according to any one of Inventions 1 to 3, wherein an aqueous solution containing nitric acid is brought into contact with the substrate surface at 20 to 100 ° C.
 [発明5]
 ポリオルガノシロキサンの硬化物が、かご型シルセスキオキサン構造を含む、発明1~4の何れか1つに記載の洗浄方法。
[Invention 5]
The cleaning method according to any one of Inventions 1 to 4, wherein the cured product of polyorganosiloxane includes a cage-type silsesquioxane structure.
 [発明6]
 発明1~5の何れか1つに記載の方法で洗浄された、ガラス基板。
[Invention 6]
A glass substrate cleaned by the method according to any one of inventions 1 to 5.
 本発明の洗浄方法によれば、アルカリ成分を用いず、基板の損傷、腐食及び汚染を発生させることなく、基板表面に強固に付着したポリオルガノシロキサンの硬化物を除去できる。そのため、取り扱いの難しいフッ化水素酸での洗浄やアルカリ成分による汚染の懸念がある金属水酸化物などを用いた強アルカリ洗浄を行う必要がない。また、SPMを用いた洗浄やHPMを用いた洗浄工程で生じる塩素イオンなどが基板表面に残留しないため、高清浄な基板の洗浄、再生が可能であり、コストの削減にも繋げることが出来る。そのため、本発明の洗浄方法は、半導体デバイスの製造上極めて有用である。 According to the cleaning method of the present invention, a cured product of polyorganosiloxane that adheres firmly to the substrate surface can be removed without using an alkali component and without causing damage, corrosion and contamination of the substrate. Therefore, it is not necessary to perform washing with hydrofluoric acid, which is difficult to handle, or strong alkali washing using a metal hydroxide or the like that may be contaminated by alkali components. In addition, since chlorine ions and the like generated in the cleaning process using SPM and the cleaning process using HPM do not remain on the substrate surface, it is possible to clean and recycle a highly clean substrate, which leads to cost reduction. Therefore, the cleaning method of the present invention is extremely useful for manufacturing semiconductor devices.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の洗浄方法が適用されるガラス基板とは、一般に半導体デバイスの製造に供されているものであり、仕様は特に限定されない。 The glass substrate to which the cleaning method of the present invention is applied is generally used for manufacturing semiconductor devices, and the specification is not particularly limited.
 本発明における硫酸と過酸化水素を含む混合洗浄液としては、例えば、レジストなどの有機物や金属不純物の除去に使用されるSPM洗浄液が挙げられ、また塩酸と過酸化水素を含む混合洗浄液としては、例えば、金属不純物の除去に使用されるHPM洗浄液が挙げられる。SPM洗浄はSPM洗浄液を加熱して行う。洗浄の条件としては、特に限定するものではないが、一般によく使用される組成は硫酸と過酸化水素水の容量比が4:1から8:1までの範囲、洗浄温度は80~150℃の範囲で十分である。 Examples of the mixed cleaning liquid containing sulfuric acid and hydrogen peroxide in the present invention include an SPM cleaning liquid used for removing organic substances such as resist and metal impurities, and examples of the mixed cleaning liquid containing hydrochloric acid and hydrogen peroxide include: And HPM cleaning liquid used for removing metal impurities. The SPM cleaning is performed by heating the SPM cleaning liquid. The conditions for washing are not particularly limited, but generally used compositions have a volume ratio of sulfuric acid to hydrogen peroxide in the range of 4: 1 to 8: 1, and the washing temperature is 80 to 150 ° C. A range is sufficient.
 一方、HPM洗浄は塩酸と過酸化水素水と超純水の混合液を加熱して行う。洗浄条件はSPM洗浄と同様、特に限定されるものではなく、一般的に使用される組成は塩酸と過酸化水素水と超純水の容量比が1:1:5から1:4:10までの範囲、洗浄温度は50~100℃の範囲で十分である。 On the other hand, HPM cleaning is performed by heating a mixed solution of hydrochloric acid, hydrogen peroxide solution and ultrapure water. The cleaning conditions are not particularly limited as in the SPM cleaning, and the composition generally used is that the volume ratio of hydrochloric acid, hydrogen peroxide solution and ultrapure water is 1: 1: 5 to 1: 4: 10. In the range of 50 to 100 ° C., the washing temperature is sufficient.
 硝酸洗浄による作用は明確ではないが、表面に付着したポリオルガノシロキサンの硬化物に含まれるかご型シルセスキオキサンなど、通常のSPM洗浄やHPM洗浄で除去しきれない成分が、硝酸の酸化力により、ガラス表面から剥離される。同時に、後工程で洗浄した場合には、塩酸を用いた場合のガラス基板表面に残留する微量の塩素イオンを除去することが出来る。 The action of nitric acid cleaning is not clear, but components that cannot be removed by normal SPM cleaning or HPM cleaning, such as the cage-type silsesquioxane contained in the cured polyorganosiloxane attached to the surface, are the oxidizing power of nitric acid. Is peeled off from the glass surface. At the same time, when washing is performed in a subsequent process, a trace amount of chlorine ions remaining on the glass substrate surface when hydrochloric acid is used can be removed.
 硝酸を含む水溶液中の硝酸濃度は、好ましくは1~60質量%の範囲、さらに好ましくは10~40質量%の範囲が採用される。この濃度範囲未満の場合はポリオルガノシロキサンの剥離性が低く、またこの濃度範囲を越えると経済的ではない。 The concentration of nitric acid in the aqueous solution containing nitric acid is preferably in the range of 1 to 60% by mass, more preferably in the range of 10 to 40% by mass. When the concentration range is less than this range, the release property of the polyorganosiloxane is low, and when the concentration range is exceeded, it is not economical.
 本発明において使用される硫酸、塩酸、過酸化水素、及び硝酸の品質は、当該薬品中の不純物でガラス基板が汚染される不具合を避けるために極力高純度であることが望ましく、具体的には電子工業用グレードの薬品を使用することが望ましい。 The quality of sulfuric acid, hydrochloric acid, hydrogen peroxide, and nitric acid used in the present invention is preferably as high as possible in order to avoid the problem that the glass substrate is contaminated with impurities in the chemical, specifically, It is desirable to use electronics industry grade chemicals.
 本発明における洗浄手順の一例を以下に述べる。ガラス基板を硫酸と過酸化水素または塩酸と過酸化水素を含む混合洗浄液で洗浄後、ガラス基板表面に付着する薬液成分の大部分を洗い流すため超純水リンスを行う。超純水リンスは一般的な条件、例えば室温下で洗浄槽から超純水がオーバーフローする方式で1分間以上行う。その後、硝酸を含む水溶液を入れたフッ素樹脂製の洗浄槽にガラス基板を浸漬し、洗浄する。洗浄温度は特に制限ないが、好ましくは20~100℃、より好ましくは40~90℃であることが望ましい。硫酸と過酸化水素または塩酸と過酸化水素を含む混合洗浄液および硝酸を含む水溶液は一液であってもかまわない。洗浄液組成物の温度が20℃未満の場合は、ガラス基板から硬化物を剥離する速度が遅く、実用的ではない。また、洗浄液組成物の温度が100℃を越えると、水分の蒸発が激しく、硝酸濃度が変わってしまうことがある。また、実施の手順はこれに限定されるものではなく、順序や条件は適宜変更してもかまわない。 An example of the cleaning procedure in the present invention will be described below. After cleaning the glass substrate with a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide, ultrapure water rinsing is performed to wash away most of the chemical components adhering to the glass substrate surface. The ultrapure water rinsing is performed for 1 minute or more in a general condition, for example, a method in which ultrapure water overflows from the washing tank at room temperature. Thereafter, the glass substrate is immersed in a fluororesin cleaning tank containing an aqueous solution containing nitric acid and cleaned. The washing temperature is not particularly limited, but it is preferably 20 to 100 ° C, more preferably 40 to 90 ° C. The mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide and the aqueous solution containing nitric acid may be one solution. When the temperature of the cleaning liquid composition is less than 20 ° C., the rate of peeling the cured product from the glass substrate is slow, which is not practical. On the other hand, when the temperature of the cleaning liquid composition exceeds 100 ° C., the evaporation of moisture is intense and the nitric acid concentration may change. Further, the implementation procedure is not limited to this, and the order and conditions may be changed as appropriate.
 硝酸を含む水溶液による洗浄は、浸漬方式、スプレー方式、スピン方式でも行うことが可能である。また、バッチ式洗浄方式、枚葉式洗浄方式でも行うことができる。洗浄時間は除去したいポリオルガノシロキサンの硬化物と洗浄液中の硝酸濃度によって、適宜変更することが望ましい。 Cleaning with an aqueous solution containing nitric acid can be performed by an immersion method, a spray method, or a spin method. It can also be performed by a batch type cleaning system or a single wafer type cleaning system. It is desirable that the washing time is appropriately changed depending on the cured polyorganosiloxane to be removed and the nitric acid concentration in the washing liquid.
 硝酸を含む水溶液でガラス基板を洗浄した後、基板表面に付着した過剰な薬液を超純水でリンスして除去する。リンスはオーバーフロー方式が一般的であるが、スプレー方式でもよい。その後、ガラス基板をスピン乾燥などの通常に使用されている方法で乾燥させる。 After washing the glass substrate with an aqueous solution containing nitric acid, excess chemical solution adhering to the substrate surface is removed by rinsing with ultrapure water. The rinse method is generally an overflow method, but may be a spray method. Thereafter, the glass substrate is dried by a commonly used method such as spin drying.
 本発明に使用される水としては、市水、井水、純水(イオン交換樹脂などによって脱塩処理を行った水)、超純水(無機イオンのみではなく、有機物、生菌、微粒子、溶存気体等を除去した水)、近年提案されている各種機能水等が挙げられるが、電子制御回路等に悪影響を与える金属イオン分の含有量が少ないという点から、純水や超純水等が好ましい。 Examples of water used in the present invention include city water, well water, pure water (water that has been desalted with an ion exchange resin, etc.), ultrapure water (not only inorganic ions, organic matter, viable bacteria, fine particles, Water from which dissolved gas has been removed), various functional waters proposed in recent years, etc., but pure water, ultrapure water, etc. from the point of low metal ion content that adversely affects electronic control circuits, etc. Is preferred.
 本発明における洗浄方法で除去する対象としてのポリオルガノシロキサンの硬化物の例を下記に示すが、これに限るものではない。 Examples of a cured product of polyorganosiloxane as an object to be removed by the cleaning method in the present invention are shown below, but are not limited thereto.
 例えば、下記式(1)に示す、光重合性基を有するかご型シルセスキオキサンからなる接着性ポリオルガノシロキサンの硬化物が挙げられる。当該ポリオルガノシロキサンの硬化物は、実質的に元のかご型シルセスキオキサン構造を維持する。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Aはそれぞれ独立に、光重合性基を含むまたは含まない有機基であり、光重合性基を含む有機基の個数Xは1~8であり、光重合性基を含まない有機基の個数Yは0~7であり、XとYの和は8である。光重合性基とは、アクリロイル基、メタクリロイル基、アリール基、エポキシ基、オキセタン基およびビニルエーテル基を表す。
For example, the hardened | cured material of adhesive polyorganosiloxane which consists of cage-type silsesquioxane which has a photopolymerizable group shown to following formula (1) is mentioned. The cured product of the polyorganosiloxane substantially maintains the original cage silsesquioxane structure.
Figure JPOXMLDOC01-appb-C000001
In the formula (1), each A is independently an organic group containing or not containing a photopolymerizable group, the number X of organic groups containing a photopolymerizable group is 1 to 8, and a photopolymerizable group is contained. The number Y of organic groups not present is 0 to 7, and the sum of X and Y is 8. The photopolymerizable group represents an acryloyl group, a methacryloyl group, an aryl group, an epoxy group, an oxetane group, and a vinyl ether group.
 同様の接着性ポリオルガノシロキサンの硬化物として、光重合性基を有するアルコキシシランの加水分解縮合物からなる変性ポリオルガノシロキサンの硬化物も挙げられる。該硬化物は、以下の一般式(2)または(3)で表わされるアルコキシシランを、各々少なくとも1種類以上用い、加水分解縮合して得られる縮合物である。
Figure JPOXMLDOC01-appb-C000002
式(2)中、R1はそれぞれ独立にメチル基またはフェニル基であり、R2はそれぞれ独立にメチル基またはエチル基であり、Xは0~3の整数である。
Figure JPOXMLDOC01-appb-C000003
式(3)中、R3はそれぞれ独立に、アクリロイル基、メタクリロイル基、アリール基、エポキシ基、オキセタン基およびビニルエーテル基からなる群から選ばれる少なくとも1種の基であり、R4はそれぞれ独立にメチル基またはエチル基であり、Xは1~3の整数である。
As a cured product of the same adhesive polyorganosiloxane, a cured product of a modified polyorganosiloxane composed of a hydrolytic condensate of an alkoxysilane having a photopolymerizable group can also be mentioned. The cured product is a condensate obtained by hydrolytic condensation using at least one or more of alkoxysilanes represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000002
In formula (2), R 1 is independently a methyl group or a phenyl group, R 2 is independently a methyl group or an ethyl group, and X is an integer of 0-3.
Figure JPOXMLDOC01-appb-C000003
In formula (3), each R 3 is independently at least one group selected from the group consisting of acryloyl group, methacryloyl group, aryl group, epoxy group, oxetane group and vinyl ether group, and R 4 is each independently A methyl group or an ethyl group, and X is an integer of 1 to 3.
 例えば、式(2)で表わされるアルコキシシランとしてのフェニルトリメトキシシラン(R1=フェニル基、R2=メチル基、X=1)またはジメチルジエトキシシラン(R1=メチル基、R2=エチル基、X=2)、および式(3)で表わされるアルコキシシランとしての3-(トリメトキシシリル)プロピルメタクリレート(R3=プロピルメタクリレート基、R4=メチル基、X=1)から得られる加水分解縮合物は、以下に示した部分構造を有しているものと考えられる。なお、図中の波線は、その先も結合が連続していることを意味する。
Figure JPOXMLDOC01-appb-C000004
For example, phenyltrimethoxysilane (R 1 = phenyl group, R 2 = methyl group, X = 1) or dimethyldiethoxysilane (R 1 = methyl group, R 2 = ethyl) as the alkoxysilane represented by the formula (2) Group, X = 2), and water obtained from 3- (trimethoxysilyl) propyl methacrylate (R 3 = propyl methacrylate group, R 4 = methyl group, X = 1) as an alkoxysilane represented by formula (3) The decomposition condensate is considered to have the partial structure shown below. In addition, the wavy line in a figure means that the coupling | bonding is continuing.
Figure JPOXMLDOC01-appb-C000004
 本発明における洗浄方法で除去する対象としてのポリオルガノシロキサンの硬化物は、その構造に特に制限は無く、未変性のポリオルガノシロキサンの硬化物、エポキシ基、アミノ基、ヒドロキシル基、アクリロイル基、メタクリロイル基などの官能基を有する有機変性シロキサン化合物から得られるポリオルガノシロキサンの硬化物も含む。ポリオルガノシロキサンには、重合触媒、接着付与剤、充填剤、補強剤、色素、難燃剤、酸化防止剤、紫外線吸収剤、発泡剤等の各種添加剤が配合されていてもよい。また、該組成物の形状は、一液硬化型、二液硬化型、接着性シートなどであってもよく、室温硬化、加熱硬化、光硬化など、どのような硬化手段を用いても良い。 The polyorganosiloxane cured product to be removed by the cleaning method of the present invention is not particularly limited in its structure, and is a cured product of an unmodified polyorganosiloxane, epoxy group, amino group, hydroxyl group, acryloyl group, methacryloyl. A cured product of a polyorganosiloxane obtained from an organically modified siloxane compound having a functional group such as a group is also included. Various additives such as a polymerization catalyst, an adhesion-imparting agent, a filler, a reinforcing agent, a pigment, a flame retardant, an antioxidant, an ultraviolet absorber, and a foaming agent may be blended in the polyorganosiloxane. Further, the shape of the composition may be a one-component curing type, a two-component curing type, an adhesive sheet, or the like, and any curing means such as room temperature curing, heat curing, and photocuring may be used.
 その他、市販されているシリコーン樹脂や一般的な接着剤用の樹脂状汚れのほか、無機微粒子を含む汚れの洗浄、レジスト剥離液としても適用可能である。 In addition to commercially available silicone resin and resinous stains for general adhesives, it can also be used for cleaning soils containing inorganic fine particles, and as a resist stripper.
 本発明の洗浄対象としては、特にガラス基板に適するが、シリコンウェハ、セラミックス基板などの種々の基板も洗浄対象とすることができる。 The cleaning target of the present invention is particularly suitable for glass substrates, but various substrates such as silicon wafers and ceramic substrates can also be cleaned.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 まず、基板表面に強固に付着したポリオルガノシロキサンの硬化物を再現するために、接着性ポリオルガノシロキサン組成物を調製した。その後、該組成物を基板上で硬化させることで、基板上に硬化物を形成、付着させた。これをモデル基板として用いて、本発明の洗浄方法による洗浄性を評価した。 First, an adhesive polyorganosiloxane composition was prepared in order to reproduce a cured product of polyorganosiloxane that adhered firmly to the substrate surface. Thereafter, the composition was cured on the substrate to form and adhere a cured product on the substrate. Using this as a model substrate, the cleaning performance by the cleaning method of the present invention was evaluated.
 各工程について、以下に順を追って説明する。 Each process will be described in order below.
 [接着性ポリオルガノシロキサン組成物の調製]
 <光重合性かご型シルセスキオキサンの合成>
 100mlナスフラスコにオクタ(ジメチルシリル)オクタシルセスキオキサン(米国ハイブリッドプラスチックス社、商品名、SH1310)5.13g、メタクリル酸アリル5.40g(東京化成株式会社製)、トルエン50ml、白金触媒として1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金(0)錯体のキシレン溶液(白金濃度、2質量%)(アルドリッチ株式会社製)15mgを加え、室温(23℃)で終夜(24時間)撹拌した。その後、ロータリーエバポレーターを用いてトルエンと未反応のメタクリル酸アリルを留去し、メタクリロイル基含有かご型シルセスキオキサンを薄黄色の液体として、8.8g得た。
[Preparation of Adhesive Polyorganosiloxane Composition]
<Synthesis of photopolymerizable cage silsesquioxane>
In a 100 ml eggplant flask, octa (dimethylsilyl) octasilsesquioxane (Hybrid Plastics Inc., trade name, SH1310) 5.13 g, allyl methacrylate 5.40 g (manufactured by Tokyo Chemical Industry Co., Ltd.), toluene 50 ml, platinum catalyst Add 15 mg of xylene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum (0) complex (platinum concentration, 2 mass%) (manufactured by Aldrich Co.) at room temperature (23 ° C.) Stir overnight (24 hours). Thereafter, toluene and unreacted allyl methacrylate were distilled off using a rotary evaporator to obtain 8.8 g of a methacryloyl group-containing cage silsesquioxane as a light yellow liquid.
 <光重合性基を有するアルコキシシランの加水分解縮合物の合成>
 ジムロートと撹拌翼を具備した2Lフラスコ内にフェニルトリメトキシシラン(信越化学工業株式会社製、商品名、KBM-103)70.20g、ジメチルジエトキシシラン(信越化学工業株式会社製、商品名、KBE-22)65.57g、3-(トリメトキシシリル)プロピルメタクリレート(東京化成株式会社製)24.28g、イソプロピルアルコール106.66g、水80.48g、酢酸0.05gを採取した後、オイルバスにて90℃まで昇温した状態で、撹拌速度200rpmにて6時間撹拌し反応させた。静置し室温(20℃)にした後、イソプロピルエーテル200ml、水200mlを加えて、分液ロートにて有機層を分取した。硫酸マグネシウムを用いて脱水した後、エバポレーターにて有機溶媒を留去して、無色透明の固形物を85.34g得た。このようにして光重合性基を有するアルコキシシランの加水分解縮合物を得た。
<Synthesis of hydrolysis-condensation product of alkoxysilane having photopolymerizable group>
In a 2 L flask equipped with a Dimroth and a stirring blade, 70.20 g of phenyltrimethoxysilane (trade name, KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.), dimethyldiethoxysilane (trade name, KBE, manufactured by Shin-Etsu Chemical Co., Ltd.) -22) 65.57 g, 3- (trimethoxysilyl) propyl methacrylate (Tokyo Kasei Co., Ltd.) 24.28 g, isopropyl alcohol 106.66 g, water 80.48 g and acetic acid 0.05 g were collected and placed in an oil bath. In the state where the temperature was raised to 90 ° C., the reaction was performed by stirring for 6 hours at a stirring speed of 200 rpm. After allowing to stand to room temperature (20 ° C.), 200 ml of isopropyl ether and 200 ml of water were added, and the organic layer was separated with a separatory funnel. After dehydration using magnesium sulfate, the organic solvent was distilled off with an evaporator to obtain 85.34 g of a colorless transparent solid. In this way, an alkoxysilane hydrolyzed condensate having a photopolymerizable group was obtained.
 <接着性ポリオルガノシロキサン組成物の調製>
 上記の光重合性かご型シルセスキオキサン50部及び光重合性基を有するアルコキシシランの加水分解縮合物50部に対し、ペンタエリスリトールトリアクリレート(大阪有機化学工業株式会社製、商品名、ビスコート#300)を20部添加し、光ラジカル重合開始剤(チバ・スペシャリティ・ケミカルズ株式会社製、商品名、Darocur1173)を2部加え、接着性ポリオルガノシロキサン組成物を得た。
<Preparation of adhesive polyorganosiloxane composition>
To 50 parts of the photopolymerizable cage silsesquioxane and 50 parts of the hydrolyzed condensate of alkoxysilane having a photopolymerizable group, pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name, biscoat # 300) was added, and 2 parts of radical photopolymerization initiator (Ciba Specialty Chemicals, trade name, Darocur 1173) was added to obtain an adhesive polyorganosiloxane composition.
 [洗浄性評価用モデル基板の作製]
 表面を酸化セリウム(アルドリッチ株式会社製)の微粒子で研磨したφ100mm、厚み1.1ミリの無アルカリガラス基板(コーニング株式会社製、品番、7059)の基板表面に、各前記接着性組成物0.6gをスピンコーターで約50μmの厚さに塗布し、紫外線照射機(HOYA-SCHOTT製、商品名、UV LIGHT SOURCE EX250)で紫外線を5間照射して、接着性組成物層を硬化させた。次いで、ホットプレート上にて室温から150℃まで徐々に昇温し、その後約1時間加熱して、無アルカリガラス基板表面に接着剤層を形成した。
[Preparation of model board for cleaning performance evaluation]
Each of the above-mentioned adhesive compositions 0. 6 g was applied to a thickness of about 50 μm with a spin coater, and the adhesive composition layer was cured by irradiating with ultraviolet rays for 5 hours with an ultraviolet irradiation machine (trade name, UV LIGHT SOURCE EX250, manufactured by HOYA-SCHOTT). Next, the temperature was gradually raised from room temperature to 150 ° C. on a hot plate, and then heated for about 1 hour to form an adhesive layer on the surface of the alkali-free glass substrate.
 [洗浄性の評価]
 洗浄性を評価するため、実施例1~5および参考例1においては、濃硫酸および過酸化水素水の混合液を、実施例6および7においては、濃塩酸、過酸化水素水および超純水の混合液を表1に記載した質量部にて配合し、洗浄液とした。各洗浄液約300mlをフッ素樹脂製の浸漬槽に入れ、表1に記載の温度に加温した。その中に、該モデル基板を浸漬させ、マグネットスターラーとマグネット攪拌子を用いて洗浄液を攪拌しながら、12分間~9時間この状態を保持した。次いで純水で1分間すすぎ処理を行い、乾燥させた。その後、各洗浄液の代わりに30%濃硝酸を用いて、同様の方法で洗浄した。比較例1~5においては、表1に記載の洗浄液をそれぞれ調製し、洗浄液として用いて同様の方法で洗浄した。該ガラス基板表面を光学顕微鏡にて観察した。
[Evaluation of detergency]
In order to evaluate detergency, a mixed solution of concentrated sulfuric acid and hydrogen peroxide solution was used in Examples 1 to 5 and Reference Example 1, and concentrated hydrochloric acid, hydrogen peroxide solution and ultrapure water were used in Examples 6 and 7. Was mixed in the parts by mass shown in Table 1 to prepare a cleaning solution. About 300 ml of each cleaning solution was placed in a fluororesin dipping bath and heated to the temperature shown in Table 1. The model substrate was immersed therein, and this state was maintained for 12 minutes to 9 hours while stirring the cleaning solution using a magnetic stirrer and a magnetic stirring bar. Subsequently, it was rinsed with pure water for 1 minute and dried. Then, it wash | cleaned by the same method using 30% concentrated nitric acid instead of each washing | cleaning liquid. In Comparative Examples 1 to 5, the cleaning liquids shown in Table 1 were prepared and used as the cleaning liquid and cleaned in the same manner. The glass substrate surface was observed with an optical microscope.
 結果を表1に示す。尚、ガラス基板表面の状態の評価基準は以下の通りである。
 ◎:付着物および再付着がなく、損傷、腐食、および曇りもない
 △:損傷、腐食、または曇りが発生した
 ×:付着物を除去できなかった
(洗浄性が良好だった実施例1~7に関しては、接着、剥離、洗浄のサイクルを三回繰り返し行った。参考例1も洗浄性は良好であったが後述の理由により上記サイクルは一回で終了した。)
Figure JPOXMLDOC01-appb-T000005
The results are shown in Table 1. The evaluation criteria for the state of the glass substrate surface are as follows.
A: No deposits and re-adhesion, no damage, corrosion, or cloudiness. Δ: Damage, corrosion, or clouding occurred. X: Deposits could not be removed (Examples 1 to 7 having good cleaning properties) In regard to, the cycle of bonding, peeling, and washing was repeated three times.Reference Example 1 also had good cleaning properties, but the cycle was completed once for the reasons described later.)
Figure JPOXMLDOC01-appb-T000005
 表1の結果より、本発明の洗浄方法がポリオルガノシロキサン組成物の硬化物に対し、優れた洗浄性を示し、さらに、ガラス基板の損傷、腐食、または汚染が発生しないことを確認した。 From the results of Table 1, it was confirmed that the cleaning method of the present invention showed excellent cleaning properties for the cured product of the polyorganosiloxane composition, and further, the glass substrate was not damaged, corroded or contaminated.
 実施例1~7において、同じガラス基板を用いて同様の工程で、接着、剥離、そして洗浄を行う一連のサイクルを三回繰り返し行ったが、ガラス基板の損傷、腐食、または汚染は見られず、ガラス基板の再生が可能であることが示された。また、120℃に加温して行った参考例1に関しては、洗浄液の揮発が激しく、液組成が変わる懸念があったため、上記サイクルは一回で終了した。 In Examples 1 to 7, a series of cycles of bonding, peeling, and cleaning were repeated three times in the same process using the same glass substrate, but no damage, corrosion, or contamination of the glass substrate was observed. It was shown that the glass substrate can be regenerated. Moreover, regarding Reference Example 1 performed by heating to 120 ° C., the cycle was completed once because there was a concern that the cleaning liquid was volatile and the liquid composition might change.
 本発明に係る基板の洗浄方法によれば、高清浄性を必要とする半導体デバイス用ガラス基板などを洗浄、再生することができ、半導体製造工程において広く利用することができる。 According to the substrate cleaning method of the present invention, glass substrates for semiconductor devices that require high cleanliness can be cleaned and regenerated, and can be widely used in semiconductor manufacturing processes.

Claims (6)

  1. ガラス基板表面に付着したポリオルガノシロキサンの硬化物を除去するための洗浄方法であって、硫酸と過酸化水素又は塩酸と過酸化水素を含む混合洗浄液を基板表面と接触させる工程、及び、硝酸を含む水溶液を基板表面と接触させる工程を含む、ガラス基板の洗浄方法。 A cleaning method for removing a cured product of polyorganosiloxane adhering to the surface of a glass substrate, comprising a step of bringing a mixed cleaning solution containing sulfuric acid and hydrogen peroxide or hydrochloric acid and hydrogen peroxide into contact with the substrate surface; A method for cleaning a glass substrate, comprising a step of bringing an aqueous solution containing the substrate into contact with the substrate surface.
  2. 硝酸を含む水溶液の全質量に対して、硝酸の濃度が1~60質量%である、請求項1に記載の洗浄方法。 The cleaning method according to claim 1, wherein the concentration of nitric acid is 1 to 60 mass% with respect to the total mass of the aqueous solution containing nitric acid.
  3. さらに、水で洗浄した後、ガラス基板を乾燥する工程を含む、請求項1または2に記載の洗浄方法。 Furthermore, the washing | cleaning method of Claim 1 or 2 including the process of drying a glass substrate, after wash | cleaning with water.
  4. 硝酸を含む水溶液を20~100℃で基板表面と接触させる、請求項1~3の何れか1項に記載の洗浄方法。 The cleaning method according to any one of claims 1 to 3, wherein an aqueous solution containing nitric acid is brought into contact with the substrate surface at 20 to 100 ° C.
  5. ポリオルガノシロキサンの硬化物がかご型シルセスキオキサン構造を含む、請求項1~4の何れか1項に記載の洗浄方法。 The cleaning method according to any one of claims 1 to 4, wherein the cured product of the polyorganosiloxane contains a cage silsesquioxane structure.
  6. 請求項1~5の何れか1項に記載の方法で洗浄された、ガラス基板。 A glass substrate cleaned by the method according to any one of claims 1 to 5.
PCT/JP2013/076940 2012-10-11 2013-10-03 Method for cleaning glass substrate WO2014057861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540821A JPWO2014057861A1 (en) 2012-10-11 2013-10-03 Glass substrate cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225598 2012-10-11
JP2012-225598 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057861A1 true WO2014057861A1 (en) 2014-04-17

Family

ID=50477328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076940 WO2014057861A1 (en) 2012-10-11 2013-10-03 Method for cleaning glass substrate

Country Status (3)

Country Link
JP (1) JPWO2014057861A1 (en)
TW (1) TW201422806A (en)
WO (1) WO2014057861A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087184A (en) * 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 Cleaning reagent, method for cleaning etching residues in semiconductor device and making method for metal interconnection layer
CN105448815A (en) * 2014-09-02 2016-03-30 中芯国际集成电路制造(上海)有限公司 Contact hole cleaning method and semiconductor device
CN113603344A (en) * 2021-09-18 2021-11-05 蓝思科技股份有限公司 Pretreatment method before glass strengthening treatment and glass strengthening treatment method comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521595A (en) * 1991-07-10 1993-01-29 Sharp Corp Cleaning method of semiconductor substrate
JPH07321080A (en) * 1994-05-26 1995-12-08 Sumitomo Chem Co Ltd Method for cleaning silicon wafer
JPH09227170A (en) * 1996-02-19 1997-09-02 Fujitsu Ltd Cleaning of glass base board
JP2009073078A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Curable composition for photo-nanoimprint and member for liquid crystal display using the same
JP2010225936A (en) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd Method and device for processing substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521595A (en) * 1991-07-10 1993-01-29 Sharp Corp Cleaning method of semiconductor substrate
JPH07321080A (en) * 1994-05-26 1995-12-08 Sumitomo Chem Co Ltd Method for cleaning silicon wafer
JPH09227170A (en) * 1996-02-19 1997-09-02 Fujitsu Ltd Cleaning of glass base board
JP2009073078A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Curable composition for photo-nanoimprint and member for liquid crystal display using the same
JP2010225936A (en) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd Method and device for processing substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087184A (en) * 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 Cleaning reagent, method for cleaning etching residues in semiconductor device and making method for metal interconnection layer
CN105448815A (en) * 2014-09-02 2016-03-30 中芯国际集成电路制造(上海)有限公司 Contact hole cleaning method and semiconductor device
CN113603344A (en) * 2021-09-18 2021-11-05 蓝思科技股份有限公司 Pretreatment method before glass strengthening treatment and glass strengthening treatment method comprising same
CN113603344B (en) * 2021-09-18 2022-09-16 蓝思科技股份有限公司 Pretreatment method before glass strengthening treatment and glass strengthening treatment method comprising same

Also Published As

Publication number Publication date
JPWO2014057861A1 (en) 2016-09-05
TW201422806A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
TW594444B (en) Residue cleaning solution
CN1291281C (en) Cleaning liquid used in photolithography and a method for treating substrate therewith
EP2067800A1 (en) Polyorganosiloxane composition
KR101960542B1 (en) Surface treatment agent and surface treatment method
JP6412143B2 (en) Stripper composition for removing photoresist and method for stripping photoresist using the same
CN102449131A (en) Compositions and methods for removing organic substances
TW201039386A (en) Compositions and methods for removing organic substances
JP5863266B2 (en) Siloxane resin-containing coating composition
KR20160125966A (en) Polymer-containing coating liquid applied to resist pattern
WO2014057861A1 (en) Method for cleaning glass substrate
JP2007003617A (en) Stripper composition
TWI752903B (en) Compositions and methods that promote charge complexing copper protection during low pka driven polymer stripping
TW201500470A (en) Composition for insulating material
KR20160068917A (en) Photoresist stripping using intelligent liquids
WO2014057860A1 (en) Substrate cleaning method and cleaning liquid composition
JP2012246474A (en) Detergent composition for plate display device
US6007638A (en) Detergent composition and cleaning method using the same
TW201100979A (en) Resist remover composition and method for removing resist using same
US11852974B2 (en) Conductive polymer composition, coated product and patterning process
CN1799007A (en) Thinner composition for removing photosensitive resin
US9611451B2 (en) Metal-safe solid form aqueous-based compositions and methods to remove polymeric materials in electronics manufacturing
CN1615461A (en) A cleaning agent composition for a positive or a negative photoresist
CN101863624A (en) Little processing of synthetic quartz glass substrate
JP5143379B2 (en) Alkaline cleaning solution
KR20120029808A (en) A detergent composition for a substrate of flat panel display device and cleaning method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844817

Country of ref document: EP

Kind code of ref document: A1