WO2014057825A1 - Engine control device, and engine control method - Google Patents

Engine control device, and engine control method Download PDF

Info

Publication number
WO2014057825A1
WO2014057825A1 PCT/JP2013/076464 JP2013076464W WO2014057825A1 WO 2014057825 A1 WO2014057825 A1 WO 2014057825A1 JP 2013076464 W JP2013076464 W JP 2013076464W WO 2014057825 A1 WO2014057825 A1 WO 2014057825A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
period
fuel
engine
divided
Prior art date
Application number
PCT/JP2013/076464
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 緒方
岡本 多加志
西田 茂
儀信 有原
木原 裕介
助川 義寛
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014057825A1 publication Critical patent/WO2014057825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device and an engine control method for performing fuel injection by a fuel injection device in a plurality of times in an intake stroke.
  • Patent Document 1 discloses that in a cylinder direct injection engine, in a situation where the cylinder bore inner wall temperature is below a threshold value, the fuel injection timing is advanced as the cylinder bore temperature increases. Further, in Patent Document 2, in a cylinder direct injection type engine, when the engine temperature is lower than a predetermined temperature, the fuel is divided into multiple injections in the intake stroke, and the fuel is divided into multiple injections. Is set according to the engine temperature. Further, in Patent Document 3, in a direct injection type cylinder engine, fuel injection is performed a plurality of times during one cycle during homogeneous operation, and the time interval of each injection is determined according to the engine speed and the engine load. It is disclosed that the injection amount ratio is variable.
  • JP 2009-102997 A Japanese Patent Laid-Open No. 11-62680 JP 2002-161790 A
  • split injection that injects fuel in multiple times weakens the fuel spray penetration (shortens the reach of the spray), and is used in engines and intake ports equipped with injectors that inject fuel directly into the cylinder.
  • the amount of fuel adhering to the inner wall of the cylinder bore and the crown of the piston is reduced, the number of particles PN of particulate matter (PM) PM, and engine oil
  • the amount of oil dilution in which the fuel dissolves can be suppressed.
  • the fuel temperature also rises and vaporization is promoted.
  • the fuel vapor penetration is weakened by improving the vaporization performance of the fuel itself (spray reach is short). That need is less than when cold.
  • split injection is performed after the warm-up as in the cool-down, the power consumption increases due to the increase in the drive current of the injector, the resulting deterioration in fuel consumption, the increase in the drive sound of the injector, the injection of the injector It may cause deterioration.
  • excessive split injection may deteriorate the mixing state of fuel and intake air in the combustion chamber, and may deteriorate the combustion performance.
  • the present invention has been made in view of the above problems, and provides an engine control apparatus and control method capable of suppressing deterioration in fuel consumption, combustion performance, and the like due to excessive divided injection while reducing the amount of adhered fuel by divided injection.
  • the purpose is to provide.
  • the engine control device of the present invention determines the total injection period from the start of the first injection to the completion of the final injection in the intake stroke divided injection in which the fuel injection by the fuel injection device is performed in a plurality of times in the intake stroke.
  • the engine was shortened as the engine temperature increased.
  • the engine temperature is detected in an engine equipped with a fuel injection device that directly injects fuel into the combustion chamber, and fuel injection is performed multiple times in the intake stroke.
  • the total injection period from the start of the first injection to the completion of the final injection is shortened as the engine temperature rises, and the fuel injection by the fuel injection device is performed in a plurality of times during the total injection period of the intake stroke I made it.
  • the present invention by shortening the total injection period in accordance with the increase in engine temperature, it is possible to weaken the penetration by split injection at the time of cold, and to reduce the PN and oil dilution amount by reducing the amount of attached fuel, After the warm-up, it is possible to suppress a decrease in fuel consumption and combustion performance by reducing the number of injections and shortening the pause period.
  • FIG. 1 is a system configuration diagram of an automobile engine system in an embodiment of the present invention. It is a system block diagram which shows the structure of ECU in embodiment of this invention. It is a characteristic view which shows an example of the injection command value of multiple times in embodiment of this invention. It is a figure which shows the control map which calculates the command value of injection start time IT1_A in embodiment of this invention. It is a figure which shows the control map which calculates the frequency
  • FIG. 1 shows an example of an engine (internal combustion engine) to which a control device according to the present invention is applied.
  • an engine 100 is an automobile engine that performs spark ignition combustion
  • an intake pipe 9 of the engine 100 includes an airflow sensor 3 that measures an intake air amount and an intake pipe pressure (intake air amount).
  • An electronically controlled throttle 5 for adjustment and an intake air temperature sensor 4 for measuring the temperature of intake air are provided.
  • an intake air pressure sensor boost sensor
  • the engine 100 also includes an injector (fuel injection valve) 6 that is a fuel injection device that directly injects fuel into the combustion chamber 14, and an ignition plug 16 that performs spark ignition in the combustion chamber 14.
  • a variable intake / exhaust valve 10 for adjusting the inflow of intake air into the chamber 14 and the exhaust from the combustion chamber 14 is provided.
  • a common rail 8 for supplying fuel to the injector 6 by being connected to the injector 6 and a fuel pump 7 for pumping fuel to the common rail 8 are provided.
  • the common rail 8 detects the temperature of the fuel.
  • a fuel temperature sensor 21 is provided.
  • the exhaust pipe 17 of the engine 100 includes a three-way catalyst 18 that is an exhaust gas purification device that purifies the exhaust, an exhaust gas temperature sensor 19 that measures the temperature of the exhaust gas upstream of the three-way catalyst 18, and a three-way battery.
  • An air-fuel ratio sensor 20 for detecting the air-fuel ratio of the exhaust is provided upstream of the catalyst 18.
  • an oxygen concentration sensor that detects rich and lean of the exhaust air-fuel ratio with respect to the stoichiometric air-fuel ratio can be provided.
  • the crankshaft 12 of the engine 100 is provided with a crank angle sensor 13 that detects the angular position of the crankshaft 12.
  • a cooling water temperature sensor 15 that detects the cooling water temperature of the engine 100 is also provided.
  • the cooling water temperature is a temperature representative of the temperature of the engine 100, but the temperature representative of the engine temperature is not limited to the cooling water temperature, and the temperature of the engine 100 such as lubricating oil, cylinder block, intake air temperature, in-cylinder gas temperature, etc.
  • the temperature that changes in correlation with can be set to a temperature representative of the temperature of engine 100.
  • a signal from the opening sensor 2 is sent to an engine control unit (hereinafter referred to as ECU) 1 having a microcomputer.
  • the ECU 1 calculates the required torque based on the output signal of the accelerator opening sensor 2, that is, the accelerator opening, and determines the position of the piston 11 and the engine speed based on the output signal of the crank angle sensor 13. Calculate.
  • the ECU 1 then opens the throttle 5, the injection pulse period of the injector 6, the ignition timing of the spark plug 16, the valve of the variable intake / exhaust valve 10 based on the operating state of the engine 100 detected from the outputs of the various sensors. An operation amount of the engine 100 such as an opening / closing timing is calculated.
  • the ECU 1 converts the calculated injection pulse period into a valve opening pulse signal of the injector 6 and sends it to the injector 6, and sends the spark plug drive signal to the spark plug 16 (energization to the ignition coil) so that ignition is performed at the calculated ignition timing.
  • the calculated throttle opening is sent to the throttle 5 as a throttle drive signal, and a drive signal corresponding to the calculated valve opening / closing timing is sent to the variable intake / exhaust valve 10.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the ECU 1.
  • the output signals of the accelerator opening sensor 2, the airflow sensor 3, the intake air temperature sensor 4, the crank angle sensor 13, the cooling water temperature sensor 15, the exhaust gas temperature sensor 19, the air-fuel ratio sensor 20, and the fuel temperature sensor 21 are sent to the input circuit 30a of the ECU 1. Entered.
  • the input signal to the input circuit 30a is not limited to the output signal from the sensor.
  • the input signal of each sensor input to the input circuit 30a is sent to the input port of the input / output port 30b, and the input signal sent to the input port of the input / output port 30b is stored in the RAM 30c for arithmetic processing by the CPU 30e.
  • a control program describing the arithmetic processing contents in the CPU 30e is written in advance in the ROM 30d.
  • a value indicating the operation amount of each actuator calculated according to the control program is stored in the RAM 30c, then sent to the output port of the input / output port 30b, and sent to each actuator via each drive circuit.
  • the drive circuit includes a throttle drive circuit 30f, an injector drive circuit 30g, an ignition output circuit 30h, and a variable valve drive circuit 30i. These drive circuits include the throttle 5, the injector 6, and the ignition plug. 16.
  • the variable intake / exhaust valve 10 is driven.
  • the ECU 1 of the present embodiment includes a drive circuit, the present invention is not limited to such a configuration, and the drive circuit can be provided separately from the ECU 1.
  • the drive circuit is provided integrally with the throttle 5 or the like. be able to.
  • FIG. 3 shows an example of the injection pulse signal in the divided injection in which the fuel injection per cycle by the injector 6 is performed in a plurality of times as the injection pulse signal (valve opening pulse signal) sent to the injector 6.
  • the vertical axis represents the injection pulse voltage IT (valve opening drive voltage)
  • the horizontal axis represents the elapsed time.
  • BDC indicates the bottom dead center of the piston 11
  • TDC indicates the top dead center of the piston 11
  • the strokes of the engine 100 exhaust stroke, intake stroke, compression stroke, expansion stroke
  • the ECU 1 can cause the fuel injection by the injector 6 to be performed in a plurality of times from the intake stroke to the compression stroke of the engine 100. In the example shown in FIG. In each stroke, three injection pulses are shown. Further, the ECU 1 performs from the first injection start to the completion of the final injection in the divided injection in the intake stroke (the divided injection performed from the intake TDC to the intake BDC, hereinafter referred to as the intake stroke divided injection). A process of shortening the total injection period (intake stroke total injection period) IT1 in accordance with the increase in engine temperature is performed, and the control of the divided injection will be described in detail below. Note that the length of the total injection period IT1 depending on the engine temperature indicates a difference in the total injection period IT1 under the same engine load and engine speed.
  • the rising timing of the initial pulse of the multiple injection pulses in the intake stroke divided injection is the injection start timing IT1_A
  • the ON period from the rising timing to the falling timing that follows is the initial injection pulse period IT1_SP (1)
  • the off period from the falling time to the rising time of the next pulse that follows is the injection suspension period IT1_RES (1).
  • the falling timing of the final pulse in the intake stroke divided injection is set as the injection completion timing IT1_B
  • the ON period between the injection completion timing IT1_B and the rising timing of the final pulse is set as the final injection pulse period IT1_SP
  • a period between the first injection start timing IT1_A and the final injection completion timing IT1_B is defined as a total injection period IT1 of the intake stroke divided injection.
  • the first injection start timing (rise timing of the first pulse) and the final injection among the plurality of injection pulses.
  • a period between the completion timings (falling timing of the last pulse) is defined as a total injection period IT2 of the compression stroke division injection.
  • the penetration of the fuel spray becomes weak (the spray reach distance is short), the amount of fuel adhering to the inner wall of the cylinder bore and the crown of the piston 11 is reduced, and the particulate form
  • the number of discharged particles PN of the substance (particulate matter) PM and the amount of oil dilution in which the fuel dissolves in the engine oil can be suppressed.
  • the ECU 1 refers to the control maps shown in FIGS. 4 and 5, and command values for the injection start timing IT1_A of the total injection period IT1 of the intake stroke divided injection and the number of injections I_TIMES (number of divisions) in the intake stroke divided injection. Is calculated.
  • FIG. 4 shows a control map for storing the injection start timing IT1_A of the total injection period IT1 of the intake stroke, using the intake air amount QA (engine load) and the engine speed NE as variables.
  • the injection start timing IT1_A is expressed as a crank angle (deg) from the intake TDC, for example.
  • the injection start timing IT1_A has a characteristic that the injection start timing IT1_A is later, that is, the crank angle position is more retarded and close to the intake BDC at the time of low rotation and low load with respect to high rotation and high load.
  • This control map is set, and the injection start timing IT1_A is advanced more as the engine load becomes higher and the engine rotation speed becomes higher.
  • the advance angle of the injection start timing IT1_A starts fuel injection in a state where the piston 11 is closer to the top dead center TDC, and increases the amount of fuel adhering to the crown surface of the piston 11.
  • the demand for the total injection time becomes long and the time for the total injection period IT1 becomes short, so that it is necessary to start fuel injection early.
  • FIG. 5 also stores the number of injection pulses, that is, the number of injections I_TIMES, during the total injection period IT1 of the intake stroke divided injection, using the intake air amount QA (engine load) and the engine speed NE as variables.
  • a control map is shown.
  • the number of injections of 1 to 5 is assigned to each operation region divided by the engine load and the engine rotational speed NE, but for example, the number of injections I_TIMES in all regions.
  • the number of injections I_TIMES can be increased as the engine load increases and the engine speed increases.
  • the number of injections I_TIMES can inject the required fuel in consideration of the requirement of the fuel injection amount, the condition of the intake flow velocity, etc., and can weaken the penetration under the condition that the fuel spray easily adheres to the piston crown surface. As previously adapted.
  • the ECU 1 calculates the command value of the required injection period IT_REQ and the injection completion timing IT1_B of the total injection period IT1 in the intake stroke divided injection with reference to the control maps shown in FIGS.
  • FIG. 6 shows a control map for storing the required injection period IT_REQ (ms) in the intake stroke with the intake air amount QA (engine load), fuel pressure FP, and air-fuel ratio AF as variables.
  • the required injection period IT_REQ is an injection time (a valve opening time of the injector 6) required to form an air-fuel ratio AF mixture by one injection without performing split injection, and the intake air amount
  • the required injection period IT_REQ is set longer as the QA (cylinder intake air amount) increases. Further, when the fuel pressure FP is low, the injection amount per unit valve opening time of the injector 6 decreases, so that the time for injecting the same amount of fuel becomes longer than when the fuel pressure FP is high. Therefore, even if the intake air amount QA is the same, the required injection period IT_REQ is made longer when the fuel pressure FP is low.
  • the required injection period IT_REQ is reduced. Make it longer.
  • FIG. 7 shows a control map (conversion table) for storing the injection completion timing IT1_B according to the coolant temperature TW representing the engine temperature.
  • the injection completion timing IT1_B is expressed as a crank angle (deg) from the intake TDC, for example.
  • the predetermined water temperature K_TW is set so that the injection completion timing IT1_B when the cooling water temperature TW is equal to or higher than the predetermined water temperature K_TW is advanced to the intake TDC side.
  • the injection completion timing IT1_B is set to a different value.
  • the injection completion timing IT1_B when the cooling water temperature TW is equal to or higher than the predetermined water temperature K_TW is advanced to thereby make the total injection period IT1 of the intake stroke divided injection the cooling water temperature. It shortens with respect to the rise of TW (engine temperature).
  • the predetermined water temperature K_TW is a threshold value for determining whether or not the fuel vaporization is sufficiently accelerated, and is a state after warm-up in which the fuel vaporization is sufficiently promoted, Whether or not the fuel vaporization is insufficient is determined based on a comparison between the cooling water temperature TW and the predetermined water temperature K_TW.
  • the predetermined water temperature K_TW can be set based on the distillation temperature of the fuel, and can be set to about 70 ° C. (50% distillation temperature T50), for example.
  • the injection completion timing IT1_B can be set based on the estimated value of the coolant temperature TW instead of the detected value of the coolant temperature TW. Further, as a representative temperature of the engine, the injection completion timing IT1_B can be set based on the detected value or estimated value of the lubricating oil temperature, the intake air temperature, and the fuel temperature instead of the cooling water temperature TW. Set to advance (accelerate) the injection completion timing IT1_B at high temperatures compared to low temperatures. Further, in the characteristic that the injection completion timing IT1_B at the high temperature is advanced as compared with the low temperature, the injection completion timing IT1_B can be changed in multiple stages with respect to the temperature change.
  • the injection start timing IT1_A is determined according to the intake air amount QA (engine load) and the engine speed NE as described above, whereas the injection completion timing IT1_B is changed according to the engine temperature as described above. Therefore, even when the intake air amount QA (engine load) and the engine rotational speed NE are the same, the total injection period IT1 of the intake stroke divided injection is shorter when the engine temperature is high than when the engine temperature is low. As the engine temperature rises, the fuel temperature also rises. As the fuel temperature rises, it becomes easier to vaporize, the fuel spray penetration becomes weaker (the spray reach distance is shorter), and the split injection to weaken the penetration relatively. Therefore, the total injection period IT1 is shortened with respect to the increase in the engine temperature, so that the pause period during the divided injection is shortened and the number of injections is reduced.
  • the fuel consumption can be improved by reducing the power consumption in the injector 6. That is, if the total injection period IT1 is shortened without reducing the number of injections, the pause period in the divided injection is shortened, and the mixed state of fuel and intake air is improved. Also, if the number of injections is reduced as the total injection period IT1 is shortened, power consumption is reduced due to a decrease in injector drive current, fuel efficiency is improved accordingly, and further, drive noise of the injector is reduced, and deterioration of the injector is suppressed. Can be achieved.
  • the total injection period IT1 is shortened by the advance angle of the injection completion timing IT1_B, the completion of the divided injection is accelerated, and in the subsequent intake stroke, fuel and intake air can be mixed, and the mixing state is improved.
  • the mixed state is improved, the combustibility is improved and the exhaust properties are improved.
  • the total injection period IT1 is shortened, so that at least one of the shortened divided injection suspension period and the reduced number of injections is performed and adhered by divided injection. While reducing the amount of fuel, the deterioration of fuel consumption and combustion performance due to excessive split injection is suppressed.
  • FIG. 8 is a functional block diagram showing split injection permission determination processing (split injection permission flag setting processing) in the ECU 1.
  • the split injection permission determination unit 41 is equipped with an accelerator opening signal APO obtained from the accelerator opening sensor 2, an engine rotational speed NE based on a signal obtained from the crank angle sensor 13, and the engine 100.
  • the vehicle speed VX which is the travel information of the automobile, the exhaust temperature TC obtained from the exhaust temperature sensor 19, the required exhaust temperature TC_K written in the ROM 30d of the ECU 1, and the like are input.
  • the split injection permission determination unit 41 determines whether or not it is in an operation state in which the split injection is permitted, and sets a split injection permission flag when the operation state in which the split injection is permitted.
  • FIG. 9 is a time chart showing an example of the operation of the split injection permission determination unit 41.
  • the accelerator opening signal APO with respect to the elapsed time when the crankshaft 12 starts to rotate, that is, when the time when the engine 100 starts is 0.
  • Changes in engine speed NE, vehicle speed VX, catalyst temperature TC, and split injection permission flag are shown.
  • the engine speed NE rises with the startup of the engine 100 and then enters a stable period.
  • the catalyst temperature TC rises, and the catalyst temperature TC becomes the required temperature TC_K at time t1.
  • the split injection permission flag is raised at the time t2 when an arbitrary delay time has elapsed from the time t1, and the split injection is permitted. Then, if the catalyst temperature TC maintains a state equal to or higher than the required temperature TC_K, the split injection permission state is maintained, and when the catalyst temperature TC falls below the required temperature TC_K, the split injection permission flag is dropped and the split injection permission flag is set. Prohibit implementation.
  • the exhaust temperature detected by the exhaust temperature sensor 19 and other values such as the accelerator opening signal APO, the engine rotational speed NE, the vehicle speed VX, etc. In consideration of the conditions, it can be determined whether or not the catalyst warm-up is completed. Further, instead of the exhaust temperature detected by the exhaust temperature sensor 19, the coolant temperature TW can be used for determining whether the catalyst is warmed up.
  • FIGS. 10 and 11 are diagrams for explaining the correction operation of the split injection permission determination (catalyst warm-up completion determination).
  • the horizontal axis in FIG. 10 indicates the time during which the injection command is executed during the total injection period of the compression stroke, and further indicates the time when the injection command is completed during the total injection period of the compression stroke as the end time.
  • injection is performed in the compression stroke
  • the time during which the injection command is executed during the total injection period of the compression stroke is as follows. This corresponds to the catalyst warm-up operation control time, and the end time indicates the timing at which the catalyst warm-up completion is determined based on the required temperature TC_K.
  • the vertical axis of FIG. 10 indicates the variation (hereinafter referred to as the rotation change amount) ⁇ NE of the engine rotation speed NE.
  • the rotation change amount ⁇ NE is, for example, a change amount during the detection period of the engine rotation speed NE.
  • SIGMA_K which is a threshold value for the rotation change amount ⁇ NE is a value written in the ROM 30d in the ECU 1.
  • the temperature TC_K (or the threshold value of the coolant temperature in the catalyst warm-up completion determination) is shifted to a higher temperature side to obtain a correction required temperature TC_K, and the permission determination for split injection is performed based on the correction request temperature TC_K.
  • the required temperature TC_K (or the threshold value of the cooling water temperature in the catalyst warm-up completion determination) is shifted to a higher temperature side so that the catalyst warm-up completion is determined at a higher temperature so that the catalyst warm-up operation is longer.
  • the intake stroke split injection is started relatively on the higher temperature side.
  • the catalyst can be sufficiently warmed up, and the emission characteristics can be improved by permitting the split injection as early as possible while suppressing the occurrence of large rotational fluctuations.
  • the amount of shift of the required temperature TC_K to the higher temperature side can be increased as the rotational change amount ⁇ NE during the catalyst warm-up operation increases.
  • FIG. 12 is a functional block diagram showing calculation processing of the injection start timing IT1_A, the number of injections I_TIMES, the required injection period IT_REQ, and the injection completion timing IT1_B in the ECU 1.
  • the ECU 1 includes an injection start timing calculation unit 51, a divided injection number calculation unit 52, a required injection period calculation unit 53, and an injection completion timing calculation unit 54 as calculation logic units, and inputs to these calculation logic units.
  • the intake air amount QA, engine speed NE, fuel pressure FP, air-fuel ratio AF, required air-fuel ratio AF_K, cooling water temperature TW, and predetermined water temperature TW_K are set.
  • the required air-fuel ratio AF_K and the predetermined water temperature TW_K are values written in advance in the ROM 30d.
  • the injection start timing calculation unit 51 calculates and outputs the injection start timing IT1_A of the total injection period IT1 of the intake stroke based on the intake air amount QA and the engine speed NE according to the control map shown in FIG.
  • the divided injection number calculation unit 52 calculates and outputs the divided injection number I_TIMES based on the intake air amount QA and the engine speed NE according to the control map shown in FIG.
  • the required injection period calculation unit 53 calculates and outputs the required injection period IT_REQ based on the intake air amount QA, the fuel pressure FP, the air-fuel ratio AF, and the required air-fuel ratio AF_K according to the control map shown in FIG.
  • the injection completion timing calculation unit 54 calculates and outputs the injection completion timing IT1_B of the total injection period IT1 of the intake stroke based on the cooling water temperature TW and the predetermined water temperature TW_K according to the control map shown in FIG.
  • FIG. 13 is a time chart for explaining the operation of the logic for calculating the injection start timing IT1_A, the number of injections I_TIMES, the required injection period IT_REQ, and the injection completion timing IT1_B.
  • the intake air amount QA decreases from time t1 to time t2
  • the engine rotational speed NE decreases as the intake air amount QA decreases
  • the intake air amount QA and the engine rotational speed NE decrease.
  • the injection start timing IT1_A of the total injection period IT1 of the intake stroke is retarded, the number of injections I_TIMES is decreased, and the required injection period IT_REQ is shortened.
  • the injection completion timing IT1_B is advanced as compared to the case where the cooling water temperature TW is below the predetermined water temperature TW_K.
  • the air-fuel ratio AF becomes lean between time t1 and time t2 due to the execution of the deceleration fuel cut.
  • FIG. 14 is a functional block diagram showing calculation processing of the divided injection pulse period IT1_SP (n), the divided injection suspension period IT1_RES (n), and the total injection period IT1 in the total injection period IT1 of the intake stroke in the ECU 1.
  • the divided injection control calculation unit 61 for calculating the divided injection pulse period IT1_SP (n), the divided injection suspension period IT1_RES (n), and the total injection period IT1 includes an injection start timing IT1_A, an injection completion timing IT1_B, and a required injection.
  • the period IT_REQ, the divided injection number I_TIMES, and the engine speed NE are input.
  • the divided injection control calculation unit 61 then performs the divided injection pulse period IT1_SP (n), the divided injection pause based on the following formula based on the injection start timing IT1_A, the injection completion timing IT1_B, the required injection period IT_REQ, and the divided injection number I_TIMES.
  • the period IT1_RES (n) and the total injection period IT1 are calculated and output.
  • n indicates the divided injection number I_TIMES.
  • the valve opening time (ms) of the injector 6 per divided injection is set as the divided injection pulse period IT1_SP (n). calculate. Further, in Expression (2), the total injection time (ms) of the injector 6 for each injection of the divided injection is subtracted from the total injection period IT1 (ms) calculated in Expression (3) to obtain the total injection.
  • the divided injection suspension period IT1_RES (n) which is the time (ms) until the start, that is, the time during which the injector 6 is closed during the divided injection, is obtained. Further, the expression (3) converts the crank angle between the injection start timing IT1_A and the injection completion timing IT1_B into the total injection period IT1 (ms) based on the engine rotational speed NE (rpm) at that time.
  • FIG. 15 is a time chart for explaining an example of the operation of the divided injection calculation unit 61.
  • the divided injection pulse period IT1_SP decreases. Furthermore, when the cooling water temperature TW becomes equal to or higher than the predetermined water temperature TW_K at time t3 and the injection completion timing IT1_B of the total injection period of the intake stroke is advanced to the intake TDC side, the total injection period IT1 of the intake stroke is shortened, so that the division is performed.
  • the divided injection suspension period IT1_RES (1) between the injection pulse periods IT1_SP (1) and IT1_SP (2) is shortened.
  • FIG. 16 is a functional block diagram showing calculation processing of the divided injection command value, the divided injection number correction command value, and the fuel pressure control command value in the ECU 1.
  • the divided injection determination unit 71 shown in FIG. 16 receives the divided injection number I_TIMES, the divided injection suspension period IT1_RES (n), the requested suspension period RES_K written in the ROM 30d, and the total injection period IT1 of the intake stroke, and the divided injection command value The divided injection number correction command value and the fuel pressure control command value are calculated and output.
  • the required fuel amount is injected by opening the injector 6 only once in the total injection period IT1, that is, in order to inject the required fuel amount.
  • the injection amount per unit valve opening time is set such that the pulse period of time is not longer than the total injection period IT1, and the command value of the fuel pressure that obtains the injection amount per unit valve opening time is calculated and output.
  • the divided injection frequency I_TIMES is decreased to set the divided injection suspension period IT1_RES (n) that exceeds the requested suspension period RES_K. To be.
  • the divided injection suspension period IT1_RES (n) becomes less than the requested suspension period RES_K, the next injection command is output within the valve closing operation period of the injector 6, and the fuel measurement accuracy is lowered. To do. Therefore, when the divided injection suspension period IT1_RES (n) is less than the requested suspension period RES_K, the divided injection suspension period IT1_RES (n) is extended to exceed the requested suspension period RES_K by reducing the number of divided injections I_TIMES. . As a result, the amount of fuel injected from the injector 6 is set to an amount proportional to the divided injection pulse period IT1_SP (n), and a decrease in control accuracy of the air-fuel ratio can be suppressed. When the divided injection frequency I_TIMES and the divided injection suspension period IT1_RES (n) are determined, a divided injection control command value corresponding to the determination is output.
  • FIG. 17 is a time chart illustrating an operation example when the divided injection determination unit 71 outputs a divided injection control command value.
  • the divided injection suspension period IT1_RES (1), the divided injection suspension period IT1_RES (1), the divided injection suspension period IT1_RES (1), IT1_RES (2), IT1_RES (3), and the requested suspension period RES_K are input. Both IT1_RES (2) and IT1_RES (3) are longer than the requested suspension period RES_K.
  • both the division number determination flag and the pause period error flag are turned off (OFF), and the divided injection pulse periods IT1_SP (1), IT1_SP (2), IT1_SP (3), IT1_SP (4), and the divided injection pause
  • the periods IT1_RES (1), IT1_RES (2), and IT1_RES (3) are output as they are as the divided injection control command values without change.
  • FIG. 18 is a time chart showing an operation example when the divided injection determination unit 71 outputs the divided injection number correction command value (changes the divided injection number), and the solid line does not perform the divided injection number correction.
  • the dotted line indicates the case where the division injection number correction is performed.
  • the divided injection suspension period IT1_RES (1), IT1_RES (2), IT1_RES (3), and the requested suspension period RES_K are set to twice.
  • the divided injection suspension period IT1_RES (1) which is a suspension period between the first injection and the second injection, is less than the required suspension period RES_K.
  • the injector 6 lacks the divided injection suspension period IT1_RES (1).
  • the responsiveness to the divided injection pulse periods IT1_SP (1) and IT1_SP (2) cannot be compensated, and the exhaust becomes worse due to variations in the actual injection amount. Therefore, when the divided injection suspension period IT1_RES (1) becomes less than the required suspension period RES_K, the suspension period error flag is raised, and the divided injection count I_TIMES is set so that the divided injection suspension period IT1_RES (1) is equal to or greater than the requested suspension period RES_K. Reduce from 2 times to 1 time. Then, the divided injection pulse period IT1_SP (1) is recalculated using the reduced divided injection frequency I_TIMES, and a divided injection control command value is output based on the value of the divided injection pulse period IT1_SP (1).
  • the requested suspension period RES_K is set in advance as a minimum suspension period in which the actual injection amount variation can be within an allowable level.
  • the example shown in FIG. 18 shows an example in which the divided injection number I_TIMES is reduced to one under the condition of two times, but the same correction is performed even if the divided injection number I_TIMES is three times or more. Further, since the example shown in FIG. 18 shows a case where the divided injection number I_TIMES is corrected to one, the divided number determination flag is ON, and the required fuel amount is obtained by one injection without performing the divided injection. Indicates that this is to be injected.
  • FIG. 19 is a time chart illustrating an operation example in the case where the split injection determination unit 71 outputs the fuel pressure control command value. If the split count determination flag is ON and the pause period error flag is ON, the split injection count I_TIMES is 1, and if the total injection period IT1 and the split injection pulse period IT1_SP (1) in the intake stroke are different, the split injection pulse A command value for correcting the fuel pressure is output so that the period IT1_SP (1) is within the total injection period IT1 of the intake stroke.
  • fuel injection is not performed in an injection pulse period longer than the total injection period IT1, and one fuel injection is performed within the total injection period IT1, thereby suppressing the amount of adhesion, fuel mixing, etc.
  • the fuel injection can be carried out in an optimum period, and the increase in PM, PN emission amount and oil dilution amount can be suppressed, and the deterioration of fuel consumption and exhaust performance can be suppressed.
  • step S101 state quantities indicating the operating state of the engine 100 such as the engine rotation speed NE, the intake air amount QA, and the cooling water temperature TW are read, and further, the threshold value SIGMA_K, the required temperature TC_K, and the predetermined water temperature written in the ROM 30d. Read a constant such as TW_K.
  • step S102 it is determined whether or not a condition for permitting split injection is satisfied. If a permit condition such as the catalyst temperature TC is equal to or higher than the required temperature TC_K is satisfied, the split injection permission flag is set. And go to step S103 and subsequent steps.
  • the temperature condition for permitting the split injection is set higher than the standard to delay the start of the split injection.
  • the split injection permission condition is not satisfied (during the catalyst warm-up operation)
  • the process returns to step S101 and the state quantity is read again.
  • step S103 the injection start time IT1_A obtained by referring to the control map of FIG. 4 is read.
  • step S104 the injection completion time IT1_B obtained by referring to the control map of FIG. 7 is read.
  • step S105 the total injection period IT1 (ms) obtained by converting the crank angle between the injection start timing IT1_A and the injection completion timing IT1_B into time is read according to the above equation (3).
  • step S106 a required injection period IT_REQ (ms) for injecting the required fuel amount at the standard fuel pressure is read.
  • step S107 the divided injection number I_TIMES obtained by referring to the control map of FIG. 5 is read. .
  • step S108 based on the required injection period IT_REQ (ms) and the divided injection frequency I_TIMES, the divided injection pulse period IT1_SP (n) calculated according to the above-described equation (1) is read.
  • step S109 based on the total injection period IT1, the divided injection pulse period IT1_SP (n), and the number of divided injections I_TIMES, the divided injection suspension period IT1_RES (n) calculated according to the above equation (2) is read.
  • step S110 it is determined whether or not the divided injection number I_TIMES is 2 or more. If the divided injection number I_TIMES is 2 or more, the process proceeds to step S111, and the divided injection suspension period IT1_RES (n) is the required suspension period. Judge whether it is longer than RES_K.
  • step S112 the process proceeds to step S112 as it is from the injection start timing IT1_A to the injection completion timing IT1_B. In the meantime, the divided injection of the divided injection frequency I_TIMES is performed.
  • step S107 When the correction for reducing the divided injection number I_TIMES by one is performed, in order to calculate the divided injection pulse period IT1_SP (n) and the divided injection suspension period IT1_RES (n) based on the divided injection number I_TIMES after the subtraction, step S107. Return to. If the number of divided injections I_TIMES after the reduction is two or more and the divided injection number of times I_TIMES is reduced, the divided injection suspension period IT1_RES (n) becomes longer than the requested suspension period RES_K, step S115. Proceed to, and split injection is performed.
  • step S114 the fuel pressure is increased when the divided injection pulse period IT1_SP (1) is not within the total injection period IT1, so that the required fuel amount can be injected by one injection within the total injection period IT1.
  • step S115 the required fuel amount is injected by one injection within the total injection period IT1 under the fuel pressure controlled in step S114.
  • an in-cylinder direct injection type engine in which the injector 6 as the fuel injection device directly injects fuel into the combustion chamber is exemplified.
  • the fuel is directed into the combustion chamber through the opening of the intake valve.
  • the intake stroke split injection is performed, and the first injection is performed in the same manner as in the above embodiment.
  • the total injection period from the start to the completion of the final injection can be shortened as the engine temperature increases, and the total injection period can be shortened to increase the final injection completion time. In this case, similar effects can be obtained.
  • SYMBOLS 1 Engine control unit (ECU), 2 ... Accelerator opening sensor, 3 ... Air flow sensor, 4 ... Intake temperature sensor, 5 ... Throttle, 6 ... Injector, 7 ... Fuel pump, 8 ... Common rail, 9 ... Intake pipe, 10 ... Variable intake / exhaust valve, 11 ... piston, 12 ... crankshaft, 13 ... crank angle sensor, 14 ... combustion chamber, 15 ... cooling water temperature sensor, 16 ... ignition plug, 17 ... exhaust pipe, 18 ... three-way catalyst

Abstract

Deterioration in fuel economy, combustion performance, and the like due to excessive split injection is suppressed while the amount of attached fuel is decreased by split injection. A split injection start timing (IT1_A) in the intake stroke is determined in accordance with the amount of intake air and the engine rotation speed (S103). Meanwhile, a completion timing (IT1_B) is advanced (S104) when the coolant temperature (TW) is not less than a predetermined water temperature (K_TW) compared with when the coolant temperature (TW) is less than the predetermined water temperature (K_TW), and a total injection period (IT1) is calculated from the start timing (IT1_A) and the completion timing (IT1_B)(S105). On the basis of a required injection period (IT_REQ)(S106) and the number of times of split injection (I_TIMES)(S107), a split injection pulse period (IT1_SP(n)) is calculated (S108) and further a split injection rest period (IT1_RES(n)) is calculated (S109). When the split injection rest period (IT1_RES(n)) is shorter than a required rest period (RES_K), the number of times of split injection (I_TIMES) is decreased (S111→S113).

Description

エンジンの制御装置及びエンジンの制御方法ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD
 本発明は、燃料噴射装置による燃料噴射を吸気行程において複数回に分けて行わせる、エンジンの制御装置及びエンジンの制御方法に関する。 The present invention relates to an engine control device and an engine control method for performing fuel injection by a fuel injection device in a plurality of times in an intake stroke.
 特許文献1には、筒内直接噴射式エンジンにおいて、シリンダボア内壁温度が閾値を下回る状況において、シリンダボア温度が高くなるほど燃料噴射時期を進角させることが開示されている。
 また、特許文献2には、筒内直接噴射式エンジンにおいて、エンジン温度が所定温度未満のときに、燃料を吸気行程で複数回に分割して噴射する構成とし、かつ、複数回に分割する燃料の分割比をエンジン温度に応じて設定することが開示されている。
 更に、特許文献3には、筒内直接噴射式エンジンにおいて、均質運転時に1サイクル中複数回の燃料噴射を実施することとし、かつ、エンジン回転速度及びエンジン負荷に応じて各噴射の時間間隔及び噴射量割合を可変とすることが開示されている。
Patent Document 1 discloses that in a cylinder direct injection engine, in a situation where the cylinder bore inner wall temperature is below a threshold value, the fuel injection timing is advanced as the cylinder bore temperature increases.
Further, in Patent Document 2, in a cylinder direct injection type engine, when the engine temperature is lower than a predetermined temperature, the fuel is divided into multiple injections in the intake stroke, and the fuel is divided into multiple injections. Is set according to the engine temperature.
Further, in Patent Document 3, in a direct injection type cylinder engine, fuel injection is performed a plurality of times during one cycle during homogeneous operation, and the time interval of each injection is determined according to the engine speed and the engine load. It is disclosed that the injection amount ratio is variable.
特開2009-102997号公報JP 2009-102997 A 特開平11-62680号公報Japanese Patent Laid-Open No. 11-62680 特開2002-161790号公報JP 2002-161790 A
 ところで、燃料を複数回に分けて噴射する分割噴射は、燃料噴霧のペネトレーションを弱く(噴霧の到達距離を短く)することになり、筒内に直接燃料を噴射するインジェクタを備えるエンジンや吸気ポートに設けたインジェクタから吸気バルブの開口を狙って噴射するエンジンでは、シリンダボア内壁やピストン冠面への燃料付着量が低減し、粒子状物質(パティキュレートマター)PMの排出粒子数PN、及び、エンジンオイルに燃料が溶けるオイル希釈量を抑制することができる。 By the way, split injection that injects fuel in multiple times weakens the fuel spray penetration (shortens the reach of the spray), and is used in engines and intake ports equipped with injectors that inject fuel directly into the cylinder. In an engine that injects from the installed injector to the opening of the intake valve, the amount of fuel adhering to the inner wall of the cylinder bore and the crown of the piston is reduced, the number of particles PN of particulate matter (PM) PM, and engine oil The amount of oil dilution in which the fuel dissolves can be suppressed.
 しかし、エンジンの暖機後は燃料温度も上昇し気化が促進され、係る燃料自体の気化性能の向上によって燃料噴霧のペネトレーションが弱く(噴霧の到達距離が短く)なり、分割噴射によるペネトレーションの低下は、冷機時に比べてその必要性が低下する。
 ここで、暖機後にも冷機時と同様に分割噴射を行うと、インジェクタの駆動電流が増加することによる消費電力の増加、これに伴う燃費の悪化、また、インジェクタの駆動音の増大、インジェクタの劣化などを招く可能性がある。更に、過度の分割噴射は、燃焼室内における燃料と吸入空気の混合状態を悪化させ、燃焼性能を悪化させる可能性もある。
However, after the engine is warmed up, the fuel temperature also rises and vaporization is promoted. The fuel vapor penetration is weakened by improving the vaporization performance of the fuel itself (spray reach is short). That need is less than when cold.
Here, if split injection is performed after the warm-up as in the cool-down, the power consumption increases due to the increase in the drive current of the injector, the resulting deterioration in fuel consumption, the increase in the drive sound of the injector, the injection of the injector It may cause deterioration. Furthermore, excessive split injection may deteriorate the mixing state of fuel and intake air in the combustion chamber, and may deteriorate the combustion performance.
 本発明は上記課題を鑑みてなされたものであり、分割噴射によって付着燃料量の低減を図りつつ、過度な分割噴射による燃費、燃焼性能などの悪化を抑制できる、エンジンの制御装置及び制御方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an engine control apparatus and control method capable of suppressing deterioration in fuel consumption, combustion performance, and the like due to excessive divided injection while reducing the amount of adhered fuel by divided injection. The purpose is to provide.
 そのため、本願発明のエンジンの制御装置は、燃料噴射装置による燃料噴射を吸気行程において複数回に分けて行わせる吸気行程分割噴射における、初回の噴射開始から最終回の噴射完了までの総噴射期間を、エンジン温度の上昇に応じて短縮するようにした。
 また、本発明のエンジンの制御方法は、燃焼室内に直接燃料を噴射する燃料噴射装置を備えたエンジンにおいて、エンジン温度を検出し、吸気行程において燃料噴射を複数回に分けて行わせるときの初回の噴射開始から最終回の噴射完了までの総噴射期間を、エンジン温度の上昇に応じて短縮し、吸気行程の前記総噴射期間で前記燃料噴射装置による燃料噴射を複数回に分けて行わせるようにした。
Therefore, the engine control device of the present invention determines the total injection period from the start of the first injection to the completion of the final injection in the intake stroke divided injection in which the fuel injection by the fuel injection device is performed in a plurality of times in the intake stroke. The engine was shortened as the engine temperature increased.
In the engine control method of the present invention, the engine temperature is detected in an engine equipped with a fuel injection device that directly injects fuel into the combustion chamber, and fuel injection is performed multiple times in the intake stroke. The total injection period from the start of the first injection to the completion of the final injection is shortened as the engine temperature rises, and the fuel injection by the fuel injection device is performed in a plurality of times during the total injection period of the intake stroke I made it.
 本発明によれば、エンジン温度の上昇に応じて総噴射期間を短縮することにより、冷機時には分割噴射によってペネトレーションを弱め、付着燃料量の低減によるPN、オイル希釈量低減を図ることができると共に、暖機後には、噴射回数の低下や、休止期間の短縮などによって、燃費、燃焼性能の低下を抑制できる。 According to the present invention, by shortening the total injection period in accordance with the increase in engine temperature, it is possible to weaken the penetration by split injection at the time of cold, and to reduce the PN and oil dilution amount by reducing the amount of attached fuel, After the warm-up, it is possible to suppress a decrease in fuel consumption and combustion performance by reducing the number of injections and shortening the pause period.
本発明の実施形態における自動車用エンジンシステムのシステム構成図である。1 is a system configuration diagram of an automobile engine system in an embodiment of the present invention. 本発明の実施形態におけるECUの構成を示すシステムブロック図である。It is a system block diagram which shows the structure of ECU in embodiment of this invention. 本発明の実施形態における複数回の噴射指令値の一例を示す特性図である。It is a characteristic view which shows an example of the injection command value of multiple times in embodiment of this invention. 本発明の実施形態における噴射開始時期IT1_Aの指令値を演算する制御マップを示す図である。It is a figure which shows the control map which calculates the command value of injection start time IT1_A in embodiment of this invention. 本発明の実施形態における噴射回数I_TIMESを演算する制御マップを示す図である。It is a figure which shows the control map which calculates the frequency | count of injection I_TIMES in embodiment of this invention. 本発明の実施形態における要求噴射期間IT_REQを演算する制御マップを示す図である。It is a figure which shows the control map which calculates the request | requirement injection period IT_REQ in embodiment of this invention. 本発明の実施形態における噴射完了時期IT1_Bを演算する制御マップを示す図である。It is a figure which shows the control map which calculates injection completion time IT1_B in embodiment of this invention. 本発明の実施形態における分割噴射許可判定部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the division | segmentation injection permission determination part in embodiment of this invention. 本発明の実施形態における分割噴射許可判定部の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the division | segmentation injection permission determination part in embodiment of this invention. 本発明の実施形態における回転変動の判定処理を説明するための図である。It is a figure for demonstrating the determination process of the rotation fluctuation | variation in embodiment of this invention. 本発明の実施形態における回転変動に基づく分割噴射許可判定の補正動作を示す図である。It is a figure which shows the correction | amendment operation | movement of the division | segmentation injection permission determination based on the rotation fluctuation | variation in embodiment of this invention. 本発明の実施形態における吸気行程の総噴射期間の噴射開始、完了時期などを算出する処理を示す機能ブロック図である。It is a functional block diagram which shows the process which calculates the injection start of the total injection period of an intake stroke, completion time, etc. in embodiment of this invention. 本発明の実施形態における吸気行程の総噴射期間の噴射開始、完了時期などの算出動作を示すタイムチャートである。It is a time chart which shows calculation operations, such as injection start of the total injection period of an intake stroke, and completion time in an embodiment of the present invention. 本発明の実施形態における分割噴射制御演算部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the division | segmentation injection control calculating part in embodiment of this invention. 本発明の実施形態における分割噴射制御演算部の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the division | segmentation injection control calculating part in embodiment of this invention. 本発明の実施形態における分割噴射判定部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the division | segmentation injection determination part in embodiment of this invention. 本発明の実施形態における分割噴射判定部が分割噴射制御指令値を出力する場合の動作を示すタイムチャートである。It is a time chart which shows operation | movement in case the division | segmentation injection determination part in embodiment of this invention outputs a division | segmentation injection control command value. 本発明の実施形態における分割噴射判定部が分割噴射回数補正指令値を出力する場合の動作を示すタイムチャートである。It is a time chart which shows operation | movement when the division | segmentation injection determination part in embodiment of this invention outputs division | segmentation injection frequency correction command value. 本発明の実施形態における分割噴射判定部が燃圧制御指令値を出力する場合の動作を示すタイムチャートである。It is a time chart which shows operation | movement in case the division | segmentation injection determination part in embodiment of this invention outputs a fuel pressure control command value. 本発明の実施形態におけるECUによる制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control by ECU in embodiment of this invention.
 以下に、本発明の実施の形態を、図面を用いて説明する。
 図1は、本発明に係る制御装置を適用するエンジン(内燃機関)の一例を示す。
 図1において、エンジン100は、火花点火式燃焼を実施する自動車用エンジンであり、エンジン100の吸気管9には、吸入空気量を計測するエアフロセンサ3と、吸気管圧力(吸入空気量)を調整する電子制御式のスロットル5と、吸入空気の温度を計測する吸気温センサ4とを配設してある。
 尚、エアフロセンサ3に代えて、吸気管内圧を検出する吸入空気圧力センサ(ブーストセンサ)を備えることができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of an engine (internal combustion engine) to which a control device according to the present invention is applied.
In FIG. 1, an engine 100 is an automobile engine that performs spark ignition combustion, and an intake pipe 9 of the engine 100 includes an airflow sensor 3 that measures an intake air amount and an intake pipe pressure (intake air amount). An electronically controlled throttle 5 for adjustment and an intake air temperature sensor 4 for measuring the temperature of intake air are provided.
Instead of the airflow sensor 3, an intake air pressure sensor (boost sensor) for detecting the intake pipe internal pressure can be provided.
 また、エンジン100には、燃焼室14内に燃料を直接噴射する燃料噴射装置であるインジェクタ(燃料噴射弁)6と、燃焼室14内で火花点火を行う点火プラグ16が備えられ、更に、燃焼室14への吸入空気の流入、及び、燃焼室14からの排気を調整する可変吸気排気動弁10が設けられている。
 また、上記インジェクタ6と連結することでインジェクタ6に燃料を供給するコモンレール8と、該コモンレール8に燃料を圧送するための燃料ポンプ7が設けられており、コモンレール8には、燃料の温度を検出する燃料温度センサ21を設けてある。
The engine 100 also includes an injector (fuel injection valve) 6 that is a fuel injection device that directly injects fuel into the combustion chamber 14, and an ignition plug 16 that performs spark ignition in the combustion chamber 14. A variable intake / exhaust valve 10 for adjusting the inflow of intake air into the chamber 14 and the exhaust from the combustion chamber 14 is provided.
Further, a common rail 8 for supplying fuel to the injector 6 by being connected to the injector 6 and a fuel pump 7 for pumping fuel to the common rail 8 are provided. The common rail 8 detects the temperature of the fuel. A fuel temperature sensor 21 is provided.
 更に、エンジン100の排気管17には、排気を浄化する排気浄化装置である三元触媒18と、三元触媒18の上流側にて排気の温度を計測する排気温センサ19と、同じく三元触媒18の上流側にて排気の空燃比を検出する空燃比センサ20とを設けてある。
 尚、空燃比センサ20に代えて、排気空燃比の理論空燃比に対するリッチ、リーンを検出する酸素濃度センサを設けることができる。
Further, the exhaust pipe 17 of the engine 100 includes a three-way catalyst 18 that is an exhaust gas purification device that purifies the exhaust, an exhaust gas temperature sensor 19 that measures the temperature of the exhaust gas upstream of the three-way catalyst 18, and a three-way battery. An air-fuel ratio sensor 20 for detecting the air-fuel ratio of the exhaust is provided upstream of the catalyst 18.
Instead of the air-fuel ratio sensor 20, an oxygen concentration sensor that detects rich and lean of the exhaust air-fuel ratio with respect to the stoichiometric air-fuel ratio can be provided.
 また、エンジン100のクランクシャフト12には、該クランクシャフト12の角度位置を検出するクランク角センサ13が備えられている。
 また、エンジン100の冷却水温を検出する冷却水温センサ15が設けられている。
 尚、冷却水温はエンジン100の温度を代表する温度であるが、エンジン温度の代表する温度は冷却水温に限定されず、潤滑オイル、シリンダブロック、吸気温、筒内ガス温度などのエンジン100の温度に相関して変化する温度を、エンジン100の温度を代表する温度とすることができる。
The crankshaft 12 of the engine 100 is provided with a crank angle sensor 13 that detects the angular position of the crankshaft 12.
A cooling water temperature sensor 15 that detects the cooling water temperature of the engine 100 is also provided.
The cooling water temperature is a temperature representative of the temperature of the engine 100, but the temperature representative of the engine temperature is not limited to the cooling water temperature, and the temperature of the engine 100 such as lubricating oil, cylinder block, intake air temperature, in-cylinder gas temperature, etc. The temperature that changes in correlation with can be set to a temperature representative of the temperature of engine 100.
 上記の排気温センサ19、空燃比センサ20、冷却水温センサ15、クランク角センサ13、吸気温センサ4、エアフロセンサ3の信号、更に、アクセルペダルの踏み込み量、即ち、アクセル開度を検出するアクセル開度センサ2の信号は、マイクロコンピュータを備えるエンジンコントロールユニット(以下、ECUという)1に送られる。
 ECU1は、アクセル開度センサ2の出力信号、つまり、アクセル開度に基いて要求トルクを演算し、また、クランク角センサ13の出力信号に基づいて、ピストン11の位置、及び、エンジン回転速度を演算する。
The exhaust temperature sensor 19, air-fuel ratio sensor 20, cooling water temperature sensor 15, crank angle sensor 13, intake air temperature sensor 4, airflow sensor 3 signal, and accelerator pedal depression amount, that is, an accelerator position for detecting an accelerator opening degree. A signal from the opening sensor 2 is sent to an engine control unit (hereinafter referred to as ECU) 1 having a microcomputer.
The ECU 1 calculates the required torque based on the output signal of the accelerator opening sensor 2, that is, the accelerator opening, and determines the position of the piston 11 and the engine speed based on the output signal of the crank angle sensor 13. Calculate.
 そして、ECU1は、前記各種センサの出力から検出されるエンジン100の運転状態に基づき、スロットル5の開度、インジェクタ6の噴射パルス期間、点火プラグ16の点火時期、可変吸気排気動弁10の弁開閉時期などのエンジン100の作動量を演算する。
 ECU1は、演算した噴射パルス期間を、インジェクタ6の開弁パルス信号に変換してインジェクタ6に送り、演算した点火時期で点火されるように点火プラグ駆動信号を点火プラグ16(点火コイルへの通電を制御するパワートランジスタ)に送り、演算したスロットル開度を、スロットル駆動信号としてスロットル5に送り、演算した弁開閉時期に応じた駆動信号を可変吸気排気動弁10に送る。
The ECU 1 then opens the throttle 5, the injection pulse period of the injector 6, the ignition timing of the spark plug 16, the valve of the variable intake / exhaust valve 10 based on the operating state of the engine 100 detected from the outputs of the various sensors. An operation amount of the engine 100 such as an opening / closing timing is calculated.
The ECU 1 converts the calculated injection pulse period into a valve opening pulse signal of the injector 6 and sends it to the injector 6, and sends the spark plug drive signal to the spark plug 16 (energization to the ignition coil) so that ignition is performed at the calculated ignition timing. The calculated throttle opening is sent to the throttle 5 as a throttle drive signal, and a drive signal corresponding to the calculated valve opening / closing timing is sent to the variable intake / exhaust valve 10.
 そして、吸気管9から可変吸気排気動弁10を経て燃焼室14内に流入した空気に対し、インジェクタ6から燃料を噴射して混合気を形成し、混合気は、所定の点火時期で点火プラグ16から発生される火花により爆発し、その燃焼圧によりピストン11を押し下げてエンジン100の駆動力となる。
 爆発後の排気は、燃焼室14から可変吸気排気動弁10及び排気管17を経て三元触媒18に送られ、排気成分は三元触媒18内で浄化された後、排出される。
Then, fuel is injected from the injector 6 to the air flowing into the combustion chamber 14 from the intake pipe 9 through the variable intake / exhaust valve 10 to form an air-fuel mixture, and the air-fuel mixture is ignited at a predetermined ignition timing. Explosion is caused by a spark generated from the engine 16, and the piston 11 is pushed down by the combustion pressure to become a driving force of the engine 100.
The exhaust after the explosion is sent from the combustion chamber 14 to the three-way catalyst 18 through the variable intake exhaust valve 10 and the exhaust pipe 17, and the exhaust components are purified in the three-way catalyst 18 and then discharged.
 図2は、ECU1の構成の一例を示すブロック図である。
 アクセル開度センサ2、エアフロセンサ3、吸気温センサ4、クランク角センサ13、冷却水温センサ15、排気温センサ19、空燃比センサ20、燃料温度センサ21の出力信号は、ECU1の入力回路30aに入力される。但し、入力回路30aに対する入力信号は、上記センサからの出力信号に限られない。
FIG. 2 is a block diagram illustrating an example of the configuration of the ECU 1.
The output signals of the accelerator opening sensor 2, the airflow sensor 3, the intake air temperature sensor 4, the crank angle sensor 13, the cooling water temperature sensor 15, the exhaust gas temperature sensor 19, the air-fuel ratio sensor 20, and the fuel temperature sensor 21 are sent to the input circuit 30a of the ECU 1. Entered. However, the input signal to the input circuit 30a is not limited to the output signal from the sensor.
 入力回路30aに入力された各センサの入力信号は入出力ポート30bの入力ポートに送られ、入出力ポート30bの入力ポートに送られた入力信号は、RAM30cに保管されてCPU30eでの演算処理に供される。
 CPU30eにおける演算処理内容を記述した制御プログラムは、ROM30dに予め書き込まれている。
 制御プログラムに従って演算した各アクチュエータの作動量を示す値は、RAM30cに保管された後、入出力ポート30bの出力ポートに送られ、各駆動回路を経て各アクチュエータに送られる。
The input signal of each sensor input to the input circuit 30a is sent to the input port of the input / output port 30b, and the input signal sent to the input port of the input / output port 30b is stored in the RAM 30c for arithmetic processing by the CPU 30e. Provided.
A control program describing the arithmetic processing contents in the CPU 30e is written in advance in the ROM 30d.
A value indicating the operation amount of each actuator calculated according to the control program is stored in the RAM 30c, then sent to the output port of the input / output port 30b, and sent to each actuator via each drive circuit.
 本実施形態では、上記駆動回路として、スロットル駆動回路30f、インジェクタ駆動回路30g、点火出力回路30h、可変動弁駆動回路30iを備えており、これらの駆動回路は、スロットル5、インジェクタ6、点火プラグ16、可変吸気排気動弁10を駆動する。
 尚、本実施形態のECU1は駆動回路を内蔵するが、係る構成に限るものではなく、ECU1とは別体に駆動回路を設けることができ、例えば、スロットル5などに駆動回路を一体的に設けることができる。
In this embodiment, the drive circuit includes a throttle drive circuit 30f, an injector drive circuit 30g, an ignition output circuit 30h, and a variable valve drive circuit 30i. These drive circuits include the throttle 5, the injector 6, and the ignition plug. 16. The variable intake / exhaust valve 10 is driven.
Although the ECU 1 of the present embodiment includes a drive circuit, the present invention is not limited to such a configuration, and the drive circuit can be provided separately from the ECU 1. For example, the drive circuit is provided integrally with the throttle 5 or the like. be able to.
 図3は、インジェクタ6に送られる噴射パルス信号(開弁パルス信号)として、インジェクタ6による1サイクル当たりの燃料噴射を複数回に分けて行わせる分割噴射における噴射パルス信号の一例を示す。
 図3において、縦軸は噴射パルスの電圧IT(開弁駆動電圧)を示し、横軸は経過時間を示している。また、BDCはピストン11の下死点を示し、TDCはピストン11の上死点を示し、経過時間に対応するエンジン100の各行程(排気行程,吸気行程,圧縮行程,膨張行程)を図下に示してある。
FIG. 3 shows an example of the injection pulse signal in the divided injection in which the fuel injection per cycle by the injector 6 is performed in a plurality of times as the injection pulse signal (valve opening pulse signal) sent to the injector 6.
In FIG. 3, the vertical axis represents the injection pulse voltage IT (valve opening drive voltage), and the horizontal axis represents the elapsed time. Further, BDC indicates the bottom dead center of the piston 11, TDC indicates the top dead center of the piston 11, and the strokes of the engine 100 (exhaust stroke, intake stroke, compression stroke, expansion stroke) corresponding to the elapsed time are illustrated below. It is shown in
 図3に示すように、ECU1は、エンジン100の吸気行程から圧縮行程にかけて、インジェクタ6による燃料噴射を複数回に分けて行わせることが可能であり、図3に示す例では、吸気行程と圧縮行程とでそれぞれに3回の噴射パルスを示している。
 更に、ECU1は、吸気行程での分割噴射(吸気TDCから吸気BDCまでの間で行われる分割噴射であり、以下では、吸気行程分割噴射という)における初回の噴射開始から最終回の噴射完了までの総噴射期間(吸気行程総噴射期間)IT1を、エンジン温度の上昇に応じて短縮する処理を行うようになっており、以下では、係る分割噴射の制御を詳細に説明する。
 尚、エンジン温度による総噴射期間IT1の長短は、エンジン負荷及びエンジン回転速度が同一の条件での総噴射期間IT1の違いを示すものとする。
As shown in FIG. 3, the ECU 1 can cause the fuel injection by the injector 6 to be performed in a plurality of times from the intake stroke to the compression stroke of the engine 100. In the example shown in FIG. In each stroke, three injection pulses are shown.
Further, the ECU 1 performs from the first injection start to the completion of the final injection in the divided injection in the intake stroke (the divided injection performed from the intake TDC to the intake BDC, hereinafter referred to as the intake stroke divided injection). A process of shortening the total injection period (intake stroke total injection period) IT1 in accordance with the increase in engine temperature is performed, and the control of the divided injection will be described in detail below.
Note that the length of the total injection period IT1 depending on the engine temperature indicates a difference in the total injection period IT1 under the same engine load and engine speed.
 ここで、吸気行程分割噴射における複数回の噴射パルスのうちの初回パルスの立ち上がり時期を噴射開始時期IT1_Aとし、該立ち上がり時期から続く立ち下り時期までのオン期間を初回の噴射パルス期間IT1_SP(1)とし、該立ち下り時期から続く次のパルスの立ち上がり時期までのオフ期間を噴射休止期間IT1_RES(1)とする。更に、吸気行程分割噴射における最終回パルスの立ち下り時期を噴射完了時期IT1_Bとし、該噴射完了時期IT1_Bと前記最終回パルスの立ち上がり時期の間のオン期間を、最終回の噴射パルス期間IT1_SP(n)とし、更に、初回の噴射開始時期IT1_Aと最終回の噴射完了時期IT1_Bの間の期間を、吸気行程分割噴射の総噴射期間IT1とする。 Here, the rising timing of the initial pulse of the multiple injection pulses in the intake stroke divided injection is the injection start timing IT1_A, and the ON period from the rising timing to the falling timing that follows is the initial injection pulse period IT1_SP (1) And the off period from the falling time to the rising time of the next pulse that follows is the injection suspension period IT1_RES (1). Further, the falling timing of the final pulse in the intake stroke divided injection is set as the injection completion timing IT1_B, and the ON period between the injection completion timing IT1_B and the rising timing of the final pulse is set as the final injection pulse period IT1_SP (n In addition, a period between the first injection start timing IT1_A and the final injection completion timing IT1_B is defined as a total injection period IT1 of the intake stroke divided injection.
 同様に、圧縮行程(吸気BDCから圧縮TDCまでの間)において実施される圧縮行程分割噴射において、複数回の噴射パルスのうちの初回の噴射開始時期(初回パルスの立ち上がり時期)と最終回の噴射完了時期(最終回パルスの立ち下り時期)の間の期間を、圧縮行程分割噴射の総噴射期間IT2とする。
 上記のように、燃料を複数回に分けて噴射すれば、燃料噴霧のペネトレーションが弱く(噴霧の到達距離が短く)なり、シリンダボア内壁やピストン11冠面への燃料付着量が低減し、粒子状物質(パティキュレートマター)PMの排出粒子数PN、及び、エンジンオイルに燃料が溶けるオイル希釈量を抑制することができる。
Similarly, in the compression stroke division injection performed in the compression stroke (between intake BDC and compression TDC), the first injection start timing (rise timing of the first pulse) and the final injection among the plurality of injection pulses. A period between the completion timings (falling timing of the last pulse) is defined as a total injection period IT2 of the compression stroke division injection.
As described above, if the fuel is injected in a plurality of times, the penetration of the fuel spray becomes weak (the spray reach distance is short), the amount of fuel adhering to the inner wall of the cylinder bore and the crown of the piston 11 is reduced, and the particulate form The number of discharged particles PN of the substance (particulate matter) PM and the amount of oil dilution in which the fuel dissolves in the engine oil can be suppressed.
 以下では、ECU1による吸気行程分割噴射の制御を詳細に説明する。
 ECU1は、図4、図5に示す制御マップを参照して、吸気行程分割噴射の総噴射期間IT1の噴射開始時期IT1_A、及び、吸気行程分割噴射での噴射回数I_TIMES(分割回数)の指令値を演算する。
 図4は、吸入空気量QA(エンジン負荷)とエンジン回転速度NEとを変数として、吸気行程の総噴射期間IT1の噴射開始時期IT1_Aを記憶する制御マップを示す。
 尚、噴射開始時期IT1_Aは、例えば、吸気TDCからのクランク角度(deg)として表される。
Below, control of intake stroke division injection by ECU1 is explained in detail.
The ECU 1 refers to the control maps shown in FIGS. 4 and 5, and command values for the injection start timing IT1_A of the total injection period IT1 of the intake stroke divided injection and the number of injections I_TIMES (number of divisions) in the intake stroke divided injection. Is calculated.
FIG. 4 shows a control map for storing the injection start timing IT1_A of the total injection period IT1 of the intake stroke, using the intake air amount QA (engine load) and the engine speed NE as variables.
The injection start timing IT1_A is expressed as a crank angle (deg) from the intake TDC, for example.
 ここで、高回転、高負荷時に対して低回転、低負荷時には、噴射開始時期IT1_Aがより遅い時期、つまり、より遅角して吸気BDCに近いクランク角位置とする特性に、噴射開始時期IT1_Aの制御マップが設定されていて、エンジン負荷が高くなるほど、また、エンジン回転速度が高くなるほど、噴射開始時期IT1_Aをより進角させるようになっている。
 噴射開始時期IT1_Aの進角は、ピストン11がより上死点TDCに近い状態で燃料噴射を開始させることになり、ピストン11冠面への燃料付着量を増加させることになってしまう。一方、高回転、高負荷時には、総噴射時間の要求が長くなり、かつ、総噴射期間IT1の時間が短くなるので、早めに燃料噴射を開始させる必要が生じる。
Here, the injection start timing IT1_A has a characteristic that the injection start timing IT1_A is later, that is, the crank angle position is more retarded and close to the intake BDC at the time of low rotation and low load with respect to high rotation and high load. This control map is set, and the injection start timing IT1_A is advanced more as the engine load becomes higher and the engine rotation speed becomes higher.
The advance angle of the injection start timing IT1_A starts fuel injection in a state where the piston 11 is closer to the top dead center TDC, and increases the amount of fuel adhering to the crown surface of the piston 11. On the other hand, at the time of high rotation and high load, the demand for the total injection time becomes long and the time for the total injection period IT1 becomes short, so that it is necessary to start fuel injection early.
 そこで、ピストン11が下死点BDCになるべく近い位置で燃料噴射を開始させることができるように、吸入空気量QA(エンジン負荷)とエンジン回転速度NEとに応じて噴射開始時期IT1_Aを変更する。
 また、図5は、吸入空気量QA(エンジン負荷)とエンジン回転速度NEとを変数として、吸気行程分割噴射の総噴射期間IT1中の複数回の噴射パルスの数、つまり噴射回数I_TIMESを記憶する制御マップを示す。
Therefore, the injection start timing IT1_A is changed according to the intake air amount QA (engine load) and the engine speed NE so that the fuel injection can be started at a position as close as possible to the bottom dead center BDC.
FIG. 5 also stores the number of injection pulses, that is, the number of injections I_TIMES, during the total injection period IT1 of the intake stroke divided injection, using the intake air amount QA (engine load) and the engine speed NE as variables. A control map is shown.
 ここで、図5では、代表例として、1回から5回の噴射回数を、エンジン負荷とエンジン回転速度NEとで区分される各運転領域に割り付けているが、例えば、全領域で噴射回数I_TIMESを2回以上とすることができ、更に、エンジン負荷が高くなるほど、また、エンジン回転速度が高くなるほど、噴射回数I_TIMESをより多くする特性とすることができる。
 前記噴射回数I_TIMESは、燃料噴射量の要求や、吸気流速の条件などを考慮し、要求される燃料を噴射でき、また、燃料噴霧がピストン冠面に付着し易い条件でペネトレーションを弱めることができるように、予め適合される。
Here, in FIG. 5, as a representative example, the number of injections of 1 to 5 is assigned to each operation region divided by the engine load and the engine rotational speed NE, but for example, the number of injections I_TIMES in all regions. The number of injections I_TIMES can be increased as the engine load increases and the engine speed increases.
The number of injections I_TIMES can inject the required fuel in consideration of the requirement of the fuel injection amount, the condition of the intake flow velocity, etc., and can weaken the penetration under the condition that the fuel spray easily adheres to the piston crown surface. As previously adapted.
 また、ECU1は、図6、図7に示す制御マップを参照して、吸気行程分割噴射における、要求噴射期間IT_REQ、及び、総噴射期間IT1の噴射完了時期IT1_Bの指令値を演算する。
 図6は、吸入空気量QA(エンジン負荷)、燃圧FP、空燃比AFを変数として、吸気行程での要求噴射期間IT_REQ(ms)を記憶する制御マップを示す。
Further, the ECU 1 calculates the command value of the required injection period IT_REQ and the injection completion timing IT1_B of the total injection period IT1 in the intake stroke divided injection with reference to the control maps shown in FIGS.
FIG. 6 shows a control map for storing the required injection period IT_REQ (ms) in the intake stroke with the intake air amount QA (engine load), fuel pressure FP, and air-fuel ratio AF as variables.
 ここで、要求噴射期間IT_REQは、分割噴射を行わずに1回の噴射で空燃比AFの混合気を形成するために要求される噴射時間(インジェクタ6の開弁時間)であり、吸入空気量QA(シリンダ吸入空気量)が多いほど、要求噴射期間IT_REQをより長く設定する。
 また、燃圧FPが低いと、インジェクタ6の単位開弁時間当たりの噴射量が低下するので、同じ量の燃料を噴射するための時間が、燃圧FPが高い場合に比べてより長くなる。そのため、同じ吸入空気量QAであっても、燃圧FPが低い場合には要求噴射期間IT_REQをより長くする。
Here, the required injection period IT_REQ is an injection time (a valve opening time of the injector 6) required to form an air-fuel ratio AF mixture by one injection without performing split injection, and the intake air amount The required injection period IT_REQ is set longer as the QA (cylinder intake air amount) increases.
Further, when the fuel pressure FP is low, the injection amount per unit valve opening time of the injector 6 decreases, so that the time for injecting the same amount of fuel becomes longer than when the fuel pressure FP is high. Therefore, even if the intake air amount QA is the same, the required injection period IT_REQ is made longer when the fuel pressure FP is low.
 また、空燃比AFの設定がよりリッチであれば、吸入空気量QAが同じであっても、より多くの燃料を噴射させるので、空燃比AFの設定がよりリッチになるほど、要求噴射期間IT_REQをより長くする。
 上記のようにして要求噴射期間IT_REQを設定することで、目標空燃比の混合気を形成するのに必要な燃料量に見合った要求噴射期間IT_REQを設定できる。
Also, if the air-fuel ratio AF setting is richer, more fuel is injected even if the intake air amount QA is the same.Therefore, as the air-fuel ratio AF setting becomes richer, the required injection period IT_REQ is reduced. Make it longer.
By setting the required injection period IT_REQ as described above, it is possible to set the required injection period IT_REQ corresponding to the amount of fuel necessary to form the target air-fuel ratio mixture.
 図7は、エンジン温度を代表する冷却水温TWに応じて噴射完了時期IT1_Bを記憶する制御マップ(変換テーブル)を示す。
 尚、噴射完了時期IT1_Bは、例えば、吸気TDCからのクランク角度(deg)として表される。
FIG. 7 shows a control map (conversion table) for storing the injection completion timing IT1_B according to the coolant temperature TW representing the engine temperature.
The injection completion timing IT1_B is expressed as a crank angle (deg) from the intake TDC, for example.
 ここで、冷却水温TWが所定水温K_TW未満の場合の噴射完了時期IT1_Bに比べ、冷却水温TWが所定水温K_TW以上の場合の噴射完了時期IT1_Bを吸気TDC側へ進角するように、所定水温K_TWを境に、噴射完了時期IT1_Bが異なる値に設定されている。
 つまり、冷却水温TWが所定水温K_TW未満の場合に比べて、冷却水温TWが所定水温K_TW以上の場合の噴射完了時期IT1_Bを進角させることで、吸気行程分割噴射の総噴射期間IT1を冷却水温TW(エンジン温度)の上昇に対して短縮するようにしてある。
Here, compared with the injection completion timing IT1_B when the cooling water temperature TW is lower than the predetermined water temperature K_TW, the predetermined water temperature K_TW is set so that the injection completion timing IT1_B when the cooling water temperature TW is equal to or higher than the predetermined water temperature K_TW is advanced to the intake TDC side. As a boundary, the injection completion timing IT1_B is set to a different value.
In other words, compared with the case where the cooling water temperature TW is lower than the predetermined water temperature K_TW, the injection completion timing IT1_B when the cooling water temperature TW is equal to or higher than the predetermined water temperature K_TW is advanced to thereby make the total injection period IT1 of the intake stroke divided injection the cooling water temperature. It shortens with respect to the rise of TW (engine temperature).
 前記所定水温K_TWは、燃料の気化が十分に促進される温度条件であるか否かを判定するための閾値であって、燃料の気化が十分に促進される暖機後の状態であるか、燃料の気化が不十分な冷機状態であるかを、冷却水温TWと所定水温K_TWとの比較に基づいて判断する。所定水温K_TWは、燃料の留出温度を基準に設定することができ、例えば、70℃程度(50%留出温度T50)に設定することができる。 The predetermined water temperature K_TW is a threshold value for determining whether or not the fuel vaporization is sufficiently accelerated, and is a state after warm-up in which the fuel vaporization is sufficiently promoted, Whether or not the fuel vaporization is insufficient is determined based on a comparison between the cooling water temperature TW and the predetermined water temperature K_TW. The predetermined water temperature K_TW can be set based on the distillation temperature of the fuel, and can be set to about 70 ° C. (50% distillation temperature T50), for example.
 尚、冷却水温TWの検出値に代えて、冷却水温TWの推定値に基づいて噴射完了時期IT1_Bを設定することができる。また、エンジン温度を代表する温度として、冷却水温TWに代えて、潤滑オイル温度、吸気温度、燃料温度の検出値或いは推定値に基づいて噴射完了時期IT1_Bを設定することができ、この場合も、低温時に比べて高温時の噴射完了時期IT1_Bを進角させる(早める)設定を行う。
 更に、低温時に比べて高温時の噴射完了時期IT1_Bを進角させる特性において、温度の変化に対してより多段に噴射完了時期IT1_Bを変化させることができる。
Note that the injection completion timing IT1_B can be set based on the estimated value of the coolant temperature TW instead of the detected value of the coolant temperature TW. Further, as a representative temperature of the engine, the injection completion timing IT1_B can be set based on the detected value or estimated value of the lubricating oil temperature, the intake air temperature, and the fuel temperature instead of the cooling water temperature TW. Set to advance (accelerate) the injection completion timing IT1_B at high temperatures compared to low temperatures.
Further, in the characteristic that the injection completion timing IT1_B at the high temperature is advanced as compared with the low temperature, the injection completion timing IT1_B can be changed in multiple stages with respect to the temperature change.
 噴射開始時期IT1_Aは、前述のように吸入空気量QA(エンジン負荷)とエンジン回転速度NEとに応じて決定されるのに対し、噴射完了時期IT1_Bは上記のようにエンジン温度に応じて変更されるので、吸入空気量QA(エンジン負荷)及びエンジン回転速度NEが同一の条件でも、エンジン温度が高い場合には低い場合に比べて、吸気行程分割噴射の総噴射期間IT1が短くなる。
 エンジン温度の上昇に伴って燃料温度も上昇し、燃料温度が上昇すると気化し易くなり、燃料噴霧のペネトレーションが弱く(噴霧の到達距離が短く)なり、相対的に、ペネトレーションを弱めるための分割噴射の要求が低下するので、エンジン温度の上昇に対して総噴射期間IT1を短縮して、分割噴射途中での休止期間の短縮や噴射回数の減少を図る。
The injection start timing IT1_A is determined according to the intake air amount QA (engine load) and the engine speed NE as described above, whereas the injection completion timing IT1_B is changed according to the engine temperature as described above. Therefore, even when the intake air amount QA (engine load) and the engine rotational speed NE are the same, the total injection period IT1 of the intake stroke divided injection is shorter when the engine temperature is high than when the engine temperature is low.
As the engine temperature rises, the fuel temperature also rises. As the fuel temperature rises, it becomes easier to vaporize, the fuel spray penetration becomes weaker (the spray reach distance is shorter), and the split injection to weaken the penetration relatively. Therefore, the total injection period IT1 is shortened with respect to the increase in the engine temperature, so that the pause period during the divided injection is shortened and the number of injections is reduced.
 これにより、エンジン温度の上昇に伴って燃料温度も上昇したときに、ピストン冠面などに対する燃料付着を抑えつつ、過度に分割噴射がなされることを抑制でき、燃料と吸入空気の混合状態の改善や、インジェクタ6での消費電力を低下させて燃費性能を改善できる。
 即ち、噴射回数を減らすことなく総噴射期間IT1を短縮すれば、分割噴射における休止期間が短くなり、燃料と吸入空気の混合状態が改善される。また、総噴射期間IT1の短縮に伴って噴射回数を減じれば、インジェクタの駆動電流の減少による消費電力の低下、これに伴う燃費の改善、更に、インジェクタの駆動音の低下、インジェクタの劣化抑止を図ることができる。
As a result, when the fuel temperature rises as the engine temperature rises, the fuel can be prevented from adhering to the piston crown surface, etc., and excessive split injection can be suppressed, improving the mixed state of fuel and intake air In addition, the fuel consumption can be improved by reducing the power consumption in the injector 6.
That is, if the total injection period IT1 is shortened without reducing the number of injections, the pause period in the divided injection is shortened, and the mixed state of fuel and intake air is improved. Also, if the number of injections is reduced as the total injection period IT1 is shortened, power consumption is reduced due to a decrease in injector drive current, fuel efficiency is improved accordingly, and further, drive noise of the injector is reduced, and deterioration of the injector is suppressed. Can be achieved.
 また、総噴射期間IT1を噴射完了時期IT1_Bの進角によって短縮すれば、分割噴射の完了が早まり、その後の吸気行程において、燃料と吸入空気との混合を図ることができ、混合状態が改善される。そして、混合状態が改善されれば、燃焼性が向上し、排気性状が改善される。
 換言すれば、エンジン温度(燃料温度)の上昇に対して、総噴射期間IT1を短縮することで、分割噴射休止期間の短縮と、噴射回数の減少との少なくとも一方を実施し、分割噴射によって付着燃料量の低減を図りつつ、過度な分割噴射による燃費、燃焼性能などの悪化を抑制する。
Further, if the total injection period IT1 is shortened by the advance angle of the injection completion timing IT1_B, the completion of the divided injection is accelerated, and in the subsequent intake stroke, fuel and intake air can be mixed, and the mixing state is improved. The If the mixed state is improved, the combustibility is improved and the exhaust properties are improved.
In other words, in response to the increase in engine temperature (fuel temperature), the total injection period IT1 is shortened, so that at least one of the shortened divided injection suspension period and the reduced number of injections is performed and adhered by divided injection. While reducing the amount of fuel, the deterioration of fuel consumption and combustion performance due to excessive split injection is suppressed.
 図8は、ECU1における、分割噴射の許可判定処理(分割噴射許可フラグの設定処理)を示す機能ブロック図である。
 図8において、分割噴射許可判定部41には、アクセル開度センサ2から得られたアクセル開度信号APOと、クランク角センサ13から得られた信号に基づくエンジン回転速度NEと、エンジン100が搭載された自動車の走行情報である車速VXと、排気温センサ19から得られた排気温度TC、ECU1のROM30dに書き込まれている要求排気温度TC_Kなどが入力される。そして、分割噴射許可判定部41は、これらの信号に基づいて、分割噴射を許可できる運転状態であるか否かを判定し、分割噴射を許可できる運転状態になると分割噴射許可フラグを立てる。
FIG. 8 is a functional block diagram showing split injection permission determination processing (split injection permission flag setting processing) in the ECU 1.
In FIG. 8, the split injection permission determination unit 41 is equipped with an accelerator opening signal APO obtained from the accelerator opening sensor 2, an engine rotational speed NE based on a signal obtained from the crank angle sensor 13, and the engine 100. The vehicle speed VX, which is the travel information of the automobile, the exhaust temperature TC obtained from the exhaust temperature sensor 19, the required exhaust temperature TC_K written in the ROM 30d of the ECU 1, and the like are input. Then, based on these signals, the split injection permission determination unit 41 determines whether or not it is in an operation state in which the split injection is permitted, and sets a split injection permission flag when the operation state in which the split injection is permitted.
 図9は、分割噴射許可判定部41の動作例を示すタイムチャートであり、クランクシャフト12が回転し始める、つまり、エンジン100が起動する時点を0とする経過時間に対する、アクセル開度信号APO、エンジン回転速度NE、車速VX、触媒温度TC、及び、分割噴射許可フラグの変化を示す。
 図9に示す一例では、エンジン回転速度NEは、エンジン100の起動に伴い上昇した後に安定期に入り、前記安定期の間は触媒温度TCが上昇し、時刻t1で触媒温度TCが要求温度TC_K以上となると、つまり、触媒暖機が完了すると、時刻t1から任意のディレイ時間が経過した時刻t2の時点で、分割噴射許可フラグを立ち上げ、分割噴射を許可する状態とする。そして、触媒温度TCが要求温度TC_K以上の状態を保持していれば、分割噴射の許可状態を維持させ、触媒温度TCが要求温度TC_K未満に低下すると、分割噴射許可フラグを落とし、分割噴射の実施を禁止する。
FIG. 9 is a time chart showing an example of the operation of the split injection permission determination unit 41. The accelerator opening signal APO with respect to the elapsed time when the crankshaft 12 starts to rotate, that is, when the time when the engine 100 starts is 0. Changes in engine speed NE, vehicle speed VX, catalyst temperature TC, and split injection permission flag are shown.
In the example shown in FIG. 9, the engine speed NE rises with the startup of the engine 100 and then enters a stable period. During the stable period, the catalyst temperature TC rises, and the catalyst temperature TC becomes the required temperature TC_K at time t1. In other words, when the catalyst warm-up is completed, the split injection permission flag is raised at the time t2 when an arbitrary delay time has elapsed from the time t1, and the split injection is permitted. Then, if the catalyst temperature TC maintains a state equal to or higher than the required temperature TC_K, the split injection permission state is maintained, and when the catalyst temperature TC falls below the required temperature TC_K, the split injection permission flag is dropped and the split injection permission flag is set. Prohibit implementation.
 尚、触媒暖機の完了を判断して分割噴射許可フラグを設定する構成において、排気温センサ19で検出される排気温度と共に、アクセル開度信号APO、エンジン回転速度NE、車速VXなどの他の条件を加味して、触媒暖機が完了しているか否かを判定させることができる。
 また、排気温センサ19で検出される排気温度に代えて冷却水温度TWを、触媒暖機の完了判定に用いることができる。
In the configuration in which the split injection permission flag is set by determining completion of catalyst warm-up, the exhaust temperature detected by the exhaust temperature sensor 19 and other values such as the accelerator opening signal APO, the engine rotational speed NE, the vehicle speed VX, etc. In consideration of the conditions, it can be determined whether or not the catalyst warm-up is completed.
Further, instead of the exhaust temperature detected by the exhaust temperature sensor 19, the coolant temperature TW can be used for determining whether the catalyst is warmed up.
 図10及び図11は、分割噴射の許可判定(触媒暖機完了判定)の補正動作を説明する図である。
 図10の横軸は、圧縮行程の総噴射期間中に噴射指令を実施している時間を示し、更に、圧縮行程の総噴射期間中の噴射指令が完了した時期を終了時期として示している。
 尚、本実施形態においては、エンジン始動直後の触媒暖機運転の際に、圧縮行程で噴射を行わせるようになっており、圧縮行程の総噴射期間中に噴射指令を実施している時間は、触媒暖機運転制御の時間に相当し、終了時期とは、要求温度TC_Kに基づき触媒暖機完了が判定されるタイミングを示す。
FIGS. 10 and 11 are diagrams for explaining the correction operation of the split injection permission determination (catalyst warm-up completion determination).
The horizontal axis in FIG. 10 indicates the time during which the injection command is executed during the total injection period of the compression stroke, and further indicates the time when the injection command is completed during the total injection period of the compression stroke as the end time.
In the present embodiment, during the catalyst warm-up operation immediately after the engine is started, injection is performed in the compression stroke, and the time during which the injection command is executed during the total injection period of the compression stroke is as follows. This corresponds to the catalyst warm-up operation control time, and the end time indicates the timing at which the catalyst warm-up completion is determined based on the required temperature TC_K.
 また、図10の縦軸は、エンジン回転速度NEのばらつき(以下、回転変化量いう)σNEを示している。回転変化量σNEは、例えば、エンジン回転速度NEの検出周期間における変化量である。また、回転変化量σNEに対する閾値であるSIGMA_Kは、ECU1内のROM30dに書き込まれた値である。
 そして、圧縮行程の総噴射期間中に噴射指令を実施している時間(触媒暖機運転中)において、回転変化量σNEが閾値SIGMA_K以上の値となった場合、図11に示すように、要求温度TC_K(又は触媒暖機完了判定における冷却水温の閾値)をより高温度側にシフトさせて補正要求温度TC_Kとし、この補正要求温度TC_Kに基づき分割噴射の許可判定を行わせる。
In addition, the vertical axis of FIG. 10 indicates the variation (hereinafter referred to as the rotation change amount) σNE of the engine rotation speed NE. The rotation change amount σNE is, for example, a change amount during the detection period of the engine rotation speed NE. Further, SIGMA_K which is a threshold value for the rotation change amount σNE is a value written in the ROM 30d in the ECU 1.
When the rotation change amount σNE becomes a value equal to or greater than the threshold value SIGMA_K during the time when the injection command is executed during the total injection period of the compression stroke (during the catalyst warm-up operation), as shown in FIG. The temperature TC_K (or the threshold value of the coolant temperature in the catalyst warm-up completion determination) is shifted to a higher temperature side to obtain a correction required temperature TC_K, and the permission determination for split injection is performed based on the correction request temperature TC_K.
 即ち、要求温度TC_Kに基づき触媒暖機完了が判定されても、それまでの触媒暖機運転中の回転変化量σNEが閾値SIGMA_Kよりも大きかった場合には、要求温度TC_Kをより高温側にシフトさせることで分割噴射の開始を遅らせ、触媒暖機運転時間を延長させる。
 エンジン100の始動直後からの触媒暖機運転において、エンジン100の燃焼が不安定で回転変動が設定よりも大きい場合に、分割噴射を許可すると更に大きな回転変動が発生する可能性がある。そこで、要求温度TC_K(又は触媒暖機完了判定における冷却水温の閾値)をより高温度側にシフトさせ、触媒暖機完了がより高い温度で判定されるようにして、触媒暖機運転をより長く継続させ、相対的に、吸気行程分割噴射がより高温側で開始されるようにする。
That is, even if the catalyst warm-up completion is determined based on the required temperature TC_K, if the rotational change amount σNE during the previous catalyst warm-up operation is larger than the threshold value SIGMA_K, the required temperature TC_K is shifted to a higher temperature side. This delays the start of split injection and extends the catalyst warm-up operation time.
In the catalyst warm-up operation immediately after the start of the engine 100, if the combustion of the engine 100 is unstable and the rotational fluctuation is larger than the setting, there is a possibility that a larger rotational fluctuation may occur if the split injection is permitted. Therefore, the required temperature TC_K (or the threshold value of the cooling water temperature in the catalyst warm-up completion determination) is shifted to a higher temperature side so that the catalyst warm-up completion is determined at a higher temperature so that the catalyst warm-up operation is longer. The intake stroke split injection is started relatively on the higher temperature side.
 これにより、触媒暖機を十分に実施できると共に、大きな回転変動の発生を抑制しつつ、可及的に分割噴射の許可を早めて、排気性状を改善できる。
 尚、触媒暖機運転中の回転変化量σNEが大きくなるほど、要求温度TC_Kの高温側へのシフト量を増大させることができる。
As a result, the catalyst can be sufficiently warmed up, and the emission characteristics can be improved by permitting the split injection as early as possible while suppressing the occurrence of large rotational fluctuations.
Note that the amount of shift of the required temperature TC_K to the higher temperature side can be increased as the rotational change amount σNE during the catalyst warm-up operation increases.
 図12は、ECU1における、噴射開始時期IT1_A、噴射回数I_TIMES、要求噴射期間IT_REQ、及び、噴射完了時期IT1_Bの算出処理を示す機能ブロック図である。
 図12において、ECU1は、算出ロジック部として、噴射開始時期演算部51、分割噴射回数演算部52、要求噴射期間演算部53、噴射完了時期演算部54を備え、これらの算出ロジック部に対する入力として、吸入空気量QA、エンジン回転速度NE、燃圧FP、空燃比AF、要求空燃比AF_K、冷却水温TW、所定水温TW_Kを設定してある。
 尚、要求空燃比AF_K及び所定水温TW_Kは、ROM30dに予め書き込まれた値である。
FIG. 12 is a functional block diagram showing calculation processing of the injection start timing IT1_A, the number of injections I_TIMES, the required injection period IT_REQ, and the injection completion timing IT1_B in the ECU 1.
In FIG. 12, the ECU 1 includes an injection start timing calculation unit 51, a divided injection number calculation unit 52, a required injection period calculation unit 53, and an injection completion timing calculation unit 54 as calculation logic units, and inputs to these calculation logic units. The intake air amount QA, engine speed NE, fuel pressure FP, air-fuel ratio AF, required air-fuel ratio AF_K, cooling water temperature TW, and predetermined water temperature TW_K are set.
The required air-fuel ratio AF_K and the predetermined water temperature TW_K are values written in advance in the ROM 30d.
 そして、噴射開始時期演算部51は、前記図4に示す制御マップに従い、吸入空気量QAとエンジン回転速度NEに基いて吸気行程の総噴射期間IT1の噴射開始時期IT1_Aを算出して出力する。
 分割噴射回数演算部52は、前記図5に示す制御マップに従い、吸入空気量QAとエンジン回転数NEに基いて分割噴射回数I_TIMESを演算して出力する。
Then, the injection start timing calculation unit 51 calculates and outputs the injection start timing IT1_A of the total injection period IT1 of the intake stroke based on the intake air amount QA and the engine speed NE according to the control map shown in FIG.
The divided injection number calculation unit 52 calculates and outputs the divided injection number I_TIMES based on the intake air amount QA and the engine speed NE according to the control map shown in FIG.
 要求噴射期間演算部53は、前記図6に示す制御マップに従い、吸入空気量QAと燃圧FPと空燃比AFと要求空燃比AF_Kに基いて要求噴射期間IT_REQを算出して出力する。
 噴射完了時期演算部54は、前記図7に示す制御マップに従い、冷却水温TWと所定水温TW_Kに基いて吸気行程の総噴射期間IT1の噴射完了時期IT1_Bを算出して出力する。
The required injection period calculation unit 53 calculates and outputs the required injection period IT_REQ based on the intake air amount QA, the fuel pressure FP, the air-fuel ratio AF, and the required air-fuel ratio AF_K according to the control map shown in FIG.
The injection completion timing calculation unit 54 calculates and outputs the injection completion timing IT1_B of the total injection period IT1 of the intake stroke based on the cooling water temperature TW and the predetermined water temperature TW_K according to the control map shown in FIG.
 図13は、噴射開始時期IT1_A、噴射回数I_TIMES、要求噴射期間IT_REQ、及び、噴射完了時期IT1_Bを算出するロジックの動作を説明するためのタイムチャートである。
 図13において、時刻t1から時刻t2の間で吸入空気量QAが減少し、係る吸入空気量QAの減少に伴いエンジン回転速度NEが低下し、係る吸入空気量QA及びエンジン回転速度NEの低下によって、吸気行程の総噴射期間IT1の噴射開始時期IT1_Aが遅角され、噴射回数I_TIMESが減少され、要求噴射期間IT_REQが短くなる。
FIG. 13 is a time chart for explaining the operation of the logic for calculating the injection start timing IT1_A, the number of injections I_TIMES, the required injection period IT_REQ, and the injection completion timing IT1_B.
In FIG. 13, the intake air amount QA decreases from time t1 to time t2, and the engine rotational speed NE decreases as the intake air amount QA decreases, and the intake air amount QA and the engine rotational speed NE decrease. The injection start timing IT1_A of the total injection period IT1 of the intake stroke is retarded, the number of injections I_TIMES is decreased, and the required injection period IT_REQ is shortened.
 また、冷却水温度TWが上昇変化し、時刻t3で所定水温TW_Kを超えると、所定水温TW_Kを下回っていた場合に比べて噴射完了時期IT1_Bが進角される。
 尚、図13において、空燃比AFが時刻t1から時刻t2の間でリーンとなるのは、減速燃料カットの実施に因るものである。
Further, when the cooling water temperature TW rises and exceeds the predetermined water temperature TW_K at time t3, the injection completion timing IT1_B is advanced as compared to the case where the cooling water temperature TW is below the predetermined water temperature TW_K.
In FIG. 13, the air-fuel ratio AF becomes lean between time t1 and time t2 due to the execution of the deceleration fuel cut.
 図14は、ECU1における、吸気行程の総噴射期間IT1における分割噴射パルス期間IT1_SP(n)、分割噴射休止期間IT1_RES(n)、総噴射期間IT1の算出処理を示す機能ブロック図である。
 図14において、分割噴射パルス期間IT1_SP(n)、分割噴射休止期間IT1_RES(n)、総噴射期間IT1を算出する分割噴射制御演算部61には、噴射開始時期IT1_A、噴射完了時期IT1_B、要求噴射期間IT_REQ、分割噴射回数I_TIMES、及び、エンジン回転速度NEが入力される。
FIG. 14 is a functional block diagram showing calculation processing of the divided injection pulse period IT1_SP (n), the divided injection suspension period IT1_RES (n), and the total injection period IT1 in the total injection period IT1 of the intake stroke in the ECU 1.
In FIG. 14, the divided injection control calculation unit 61 for calculating the divided injection pulse period IT1_SP (n), the divided injection suspension period IT1_RES (n), and the total injection period IT1 includes an injection start timing IT1_A, an injection completion timing IT1_B, and a required injection. The period IT_REQ, the divided injection number I_TIMES, and the engine speed NE are input.
 そして、分割噴射制御演算部61は、噴射開始時期IT1_A、噴射完了時期IT1_B、要求噴射期間IT_REQ、分割噴射回数I_TIMESに基づき、以下の式を従って、分割噴射パルス期間IT1_SP(n)、分割噴射休止期間IT1_RES(n)、総噴射期間IT1を演算し出力する。
 尚、下式において、nは分割噴射回数I_TIMESを示している。
The divided injection control calculation unit 61 then performs the divided injection pulse period IT1_SP (n), the divided injection pause based on the following formula based on the injection start timing IT1_A, the injection completion timing IT1_B, the required injection period IT_REQ, and the divided injection number I_TIMES. The period IT1_RES (n) and the total injection period IT1 are calculated and output.
In the following formula, n indicates the divided injection number I_TIMES.
  IT1_SP(n)=(IT_REQ/I_TIMES)・・・式(1)
  IT1_RES(n)=(IT1-Σ(IT1_SP(n)))/(n-1)・・・式(2)
  IT1=(IT1_B-IT1_A)/(NE/60/1e-3*360)・・・式(3)
IT1_SP (n) = (IT_REQ / I_TIMES) Expression (1)
IT1_RES (n) = (IT1−Σ (IT1_SP (n))) / (n−1) (2)
IT1 = (IT1_B-IT1_A) / (NE / 60 / 1e-3 * 360) (3)
 式(1)では、要求噴射期間IT_REQ(ms)を分割噴射回数I_TIMESで除算することで、分割噴射の1回当たりのインジェクタ6の開弁時間(ms)を分割噴射パルス期間IT1_SP(n)として算出する。
 また、式(2)では、式(3)で算出される総噴射期間IT1(ms)から、分割噴射の噴射毎のインジェクタ6の開弁時間の総和(ms)を減算することで、総噴射期間IT1における休止期間の総計(ms)を求め、これを、分割噴射回数I_TIMESよりも1回だけ少ない回数で除算することで、ある回の分割噴射を終えてから次の回の分割噴射を開始するまでの時間(ms)、つまり、分割噴射の途中でインジェクタ6を閉じている時間である、分割噴射休止期間IT1_RES(n)を求める。
 更に、式(3)は、噴射開始時期IT1_Aと噴射完了時期IT1_Bとの間のクランク角を、その時のエンジン回転速度NE(rpm)に基づき、総噴射期間IT1(ms)に換算する。
In the equation (1), by dividing the required injection period IT_REQ (ms) by the divided injection number I_TIMES, the valve opening time (ms) of the injector 6 per divided injection is set as the divided injection pulse period IT1_SP (n). calculate.
Further, in Expression (2), the total injection time (ms) of the injector 6 for each injection of the divided injection is subtracted from the total injection period IT1 (ms) calculated in Expression (3) to obtain the total injection. Calculate the total pause time (ms) in period IT1, and divide this by one less than the number of split injections I_TIMES to start the next split injection after finishing one split injection The divided injection suspension period IT1_RES (n), which is the time (ms) until the start, that is, the time during which the injector 6 is closed during the divided injection, is obtained.
Further, the expression (3) converts the crank angle between the injection start timing IT1_A and the injection completion timing IT1_B into the total injection period IT1 (ms) based on the engine rotational speed NE (rpm) at that time.
 図15は、分割噴射演算部61の動作例を説明するタイムチャートであり、時刻t0から時刻t1の間では、分割噴射回数I_TIMES=4回、かつ、要求噴射期間IT_REQ=2.0(ms)であるため,初回の分割噴射パルス期間IT1_SP(1)から4回目の分割噴射パルス期間IT1_SP(4)は0.5ms程度の値となり、分割噴射休止期間IT1_RES(1)から分割噴射休止期間IT1_RES(3)までは一定値となる。
 上記の分割噴射回数I_TIMES=4回の状態から、時刻t1で分割噴射回数I_TIMESが3回に減ると、分割噴射パルス期間IT1_SP(4)を零とし、4回目の噴射で噴射していた燃料を初回から3回目までに振り分けることで、分割噴射パルス期間IT1_SP(1)から分割噴射パルス期間IT1_SP(3)までを増加させる。
FIG. 15 is a time chart for explaining an example of the operation of the divided injection calculation unit 61. Between time t0 and time t1, the number of divided injections I_TIMES = 4 and the required injection period IT_REQ = 2.0 (ms). Therefore, the first divided injection pulse period IT1_SP (1) to the fourth divided injection pulse period IT1_SP (4) have a value of about 0.5 ms, from the divided injection suspension period IT1_RES (1) to the divided injection suspension period IT1_RES (3). Is a constant value.
If the number of divided injections I_TIMES is reduced to 3 at time t1 from the state where the number of divided injections I_TIMES = 4, the divided injection pulse period IT1_SP (4) is made zero and the fuel injected in the fourth injection is reduced. By dividing from the first to the third time, the divided injection pulse period IT1_SP (1) to the divided injection pulse period IT1_SP (3) is increased.
 また、時刻t1から時刻t2の間で、要求噴射期間IT_REQ(ms)が減少すると、分割噴射パルス期間IT1_SP(n)は減る。
 更に、時刻t3で、冷却水温TWが所定水温TW_K以上となり吸気行程の総噴射期間の噴射完了時期IT1_Bが吸気TDC側へ進角されると、吸気行程の総噴射期間IT1が短くなることから分割噴射パルス期間IT1_SP(1)とIT1_SP(2)との間の分割噴射休止期間IT1_RES(1)が短縮される。
Further, when the required injection period IT_REQ (ms) decreases between time t1 and time t2, the divided injection pulse period IT1_SP (n) decreases.
Furthermore, when the cooling water temperature TW becomes equal to or higher than the predetermined water temperature TW_K at time t3 and the injection completion timing IT1_B of the total injection period of the intake stroke is advanced to the intake TDC side, the total injection period IT1 of the intake stroke is shortened, so that the division is performed. The divided injection suspension period IT1_RES (1) between the injection pulse periods IT1_SP (1) and IT1_SP (2) is shortened.
 図16は、ECU1における、分割噴射指令値、分割噴射回数補正指令値、燃圧制御指令値の算出処理を示す機能ブロック図である。
 図16に示す分割噴射判定部71は、分割噴射回数I_TIMES、分割噴射休止期間IT1_RES(n)、ROM30dに書き込まれた要求休止期間RES_K、吸気行程の総噴射期間IT1を入力し、分割噴射指令値、分割噴射回数補正指令値、燃圧制御指令値を算出して出力する。
FIG. 16 is a functional block diagram showing calculation processing of the divided injection command value, the divided injection number correction command value, and the fuel pressure control command value in the ECU 1.
The divided injection determination unit 71 shown in FIG. 16 receives the divided injection number I_TIMES, the divided injection suspension period IT1_RES (n), the requested suspension period RES_K written in the ROM 30d, and the total injection period IT1 of the intake stroke, and the divided injection command value The divided injection number correction command value and the fuel pressure control command value are calculated and output.
 ここで、分割噴射回数I_TIMESが1回であれば、総噴射期間IT1内において1回だけインジェクタ6を開弁させることで要求燃料量が噴射されるように、つまり、要求燃料量を噴射するためのパルス期間が総噴射期間IT1よりも長くならないような、単位開弁時間当たりの噴射量を設定し、係る単位開弁時間当たりの噴射量が得られる燃圧の指令値を演算して出力する。
 また、分割噴射休止期間IT1_RES(n)が、下限値である要求休止期間RES_Kを下回る場合には、分割噴射回数I_TIMESを減らして、要求休止期間RES_Kを上回る分割噴射休止期間IT1_RES(n)が設定されるようにする。
Here, if the number of divided injections I_TIMES is one, the required fuel amount is injected by opening the injector 6 only once in the total injection period IT1, that is, in order to inject the required fuel amount. The injection amount per unit valve opening time is set such that the pulse period of time is not longer than the total injection period IT1, and the command value of the fuel pressure that obtains the injection amount per unit valve opening time is calculated and output.
Also, when the divided injection suspension period IT1_RES (n) is below the lower limit required suspension period RES_K, the divided injection frequency I_TIMES is decreased to set the divided injection suspension period IT1_RES (n) that exceeds the requested suspension period RES_K. To be.
 即ち、分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kを下回るようになると、インジェクタ6の閉弁動作期間内で次の噴射の指令が出力されることになって、燃料の計量精度が低下する。そこで、分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kを下回る場合には、分割噴射回数I_TIMESを減らすことで、分割噴射休止期間IT1_RES(n)を延ばして要求休止期間RES_Kを上回るようにする。これにより、インジェクタ6から噴射される燃料量を、分割噴射パルス期間IT1_SP(n)に比例する量として、空燃比の制御精度の低下を抑制できる。
 そして、分割噴射回数I_TIMES、分割噴射休止期間IT1_RES(n)が決定すると、係る決定に対応する分割噴射制御指令値を出力する。
That is, when the divided injection suspension period IT1_RES (n) becomes less than the requested suspension period RES_K, the next injection command is output within the valve closing operation period of the injector 6, and the fuel measurement accuracy is lowered. To do. Therefore, when the divided injection suspension period IT1_RES (n) is less than the requested suspension period RES_K, the divided injection suspension period IT1_RES (n) is extended to exceed the requested suspension period RES_K by reducing the number of divided injections I_TIMES. . As a result, the amount of fuel injected from the injector 6 is set to an amount proportional to the divided injection pulse period IT1_SP (n), and a decrease in control accuracy of the air-fuel ratio can be suppressed.
When the divided injection frequency I_TIMES and the divided injection suspension period IT1_RES (n) are determined, a divided injection control command value corresponding to the determination is output.
 図17は、分割噴射判定部71において、分割噴射制御指令値を出力する場合の動作例を示すタイムチャートである。
 図17に示す例では、分割噴射回数I_TIMES、分割噴射休止期間IT1_RES(1),IT1_RES(2),IT1_RES(3)、要求休止期間RES_Kの入力に対して、分割噴射休止期間IT1_RES(1),IT1_RES(2),IT1_RES(3)のいずれもが要求休止期間RES_K以上となっている。従って、分割回数判定フラグと休止期間エラーフラグはいずれも落ちた状態(OFF)となり、分割噴射パルス期間IT1_SP(1),IT1_SP(2),IT1_SP(3),IT1_SP(4)と、分割噴射休止期間IT1_RES(1),IT1_RES(2),IT1_RES(3)とが変更なく分割噴射制御指令値としてそのまま出力される。
FIG. 17 is a time chart illustrating an operation example when the divided injection determination unit 71 outputs a divided injection control command value.
In the example shown in FIG. 17, the divided injection suspension period IT1_RES (1), the divided injection suspension period IT1_RES (1), the divided injection suspension period IT1_RES (1), IT1_RES (2), IT1_RES (3), and the requested suspension period RES_K are input. Both IT1_RES (2) and IT1_RES (3) are longer than the requested suspension period RES_K. Therefore, both the division number determination flag and the pause period error flag are turned off (OFF), and the divided injection pulse periods IT1_SP (1), IT1_SP (2), IT1_SP (3), IT1_SP (4), and the divided injection pause The periods IT1_RES (1), IT1_RES (2), and IT1_RES (3) are output as they are as the divided injection control command values without change.
 一方、図18は、分割噴射判定部71において、分割噴射回数補正指令値を出力する(分割噴射回数を変更する)場合の動作例を示すタイムチャートであり、実線は分割噴射回数補正を実施しない場合、点線は分割噴射回数補正を実施した場合を示している。
 図18において、分割噴射回数I_TIMES、分割噴射休止期間IT1_RES(1),IT1_RES(2),IT1_RES(3)、要求休止期間RES_Kの入力に対して、分割噴射回数I_TIMESが2回に設定されたときの1回目の噴射と2回目の噴射との間の休止期間である分割噴射休止期間IT1_RES(1)が要求休止期間RES_K未満となっている。
On the other hand, FIG. 18 is a time chart showing an operation example when the divided injection determination unit 71 outputs the divided injection number correction command value (changes the divided injection number), and the solid line does not perform the divided injection number correction. In this case, the dotted line indicates the case where the division injection number correction is performed.
In FIG. 18, when the divided injection number I_TIMES, the divided injection suspension period IT1_RES (1), IT1_RES (2), IT1_RES (3), and the requested suspension period RES_K are set to twice. The divided injection suspension period IT1_RES (1), which is a suspension period between the first injection and the second injection, is less than the required suspension period RES_K.
 この場合に、分割噴射回数補正を実施せず、要求休止期間RES_K未満の分割噴射休止期間IT1_RES(1)で分割噴射制御指令値を出力すると、インジェクタ6では分割噴射休止期間IT1_RES(1)が不足することで分割噴射パルス期間IT1_SP(1)とIT1_SP(2)に対する応答性が補償できず、実際の噴射量にばらつきが生じることで排気が悪化する。
 そこで、分割噴射休止期間IT1_RES(1)が要求休止期間RES_K未満となると、休止期間エラーフラグを立ち上げ、分割噴射休止期間IT1_RES(1)が要求休止期間RES_K以上となるように分割噴射回数I_TIMESを2回から1回に減じる。そして、減じた分割噴射回数I_TIMESを用いて分割噴射パルス期間IT1_SP(1)が再演算され、該分割噴射パルス期間IT1_SP(1)の値に基いて分割噴射制御指令値が出力される。
In this case, if the divided injection control command value is output in the divided injection suspension period IT1_RES (1) that is less than the requested suspension period RES_K without performing the division injection frequency correction, the injector 6 lacks the divided injection suspension period IT1_RES (1). As a result, the responsiveness to the divided injection pulse periods IT1_SP (1) and IT1_SP (2) cannot be compensated, and the exhaust becomes worse due to variations in the actual injection amount.
Therefore, when the divided injection suspension period IT1_RES (1) becomes less than the required suspension period RES_K, the suspension period error flag is raised, and the divided injection count I_TIMES is set so that the divided injection suspension period IT1_RES (1) is equal to or greater than the requested suspension period RES_K. Reduce from 2 times to 1 time. Then, the divided injection pulse period IT1_SP (1) is recalculated using the reduced divided injection frequency I_TIMES, and a divided injection control command value is output based on the value of the divided injection pulse period IT1_SP (1).
 これにより、インジェクタ6での分割噴射休止期間IT1_RES(n)の不足による実際の噴射量のばらつき(誤差)を抑制することができる。
 尚、要求休止期間RES_Kは、実際の噴射量のばらつきを許容レベル内とすることができる最小休止期間として予め設定されている。
Thereby, the variation (error) of the actual injection amount due to the shortage of the divided injection suspension period IT1_RES (n) in the injector 6 can be suppressed.
The requested suspension period RES_K is set in advance as a minimum suspension period in which the actual injection amount variation can be within an allowable level.
 図18に示した例では、分割噴射回数I_TIMESが2回の条件において1回に減じる例を示したが、分割噴射回数I_TIMESは3回以上でも同様の補正を実施する。また、図18に示した例では、分割噴射回数I_TIMESが1回に補正される場合を示しているため、分割回数判定フラグはONとなり、分割噴射を行わずに1回の噴射で要求燃料量を噴射することを示す。 The example shown in FIG. 18 shows an example in which the divided injection number I_TIMES is reduced to one under the condition of two times, but the same correction is performed even if the divided injection number I_TIMES is three times or more. Further, since the example shown in FIG. 18 shows a case where the divided injection number I_TIMES is corrected to one, the divided number determination flag is ON, and the required fuel amount is obtained by one injection without performing the divided injection. Indicates that this is to be injected.
 図19は、分割噴射判定部71において、燃圧制御指令値を出力する場合の動作例を示すタイムチャートである。
 分割回数判定フラグがONでかつ休止期間エラーフラグがONとなり、分割噴射回数I_TIMESが1回となり、更に、吸気行程の総噴射期間IT1と分割噴射パルス期間IT1_SP(1)が異なる場合、分割噴射パルス期間IT1_SP(1)が吸気行程の総噴射期間IT1内となるように燃圧を補正する指令値を出力する。
 これにより、総噴射期間IT1を超える長さの噴射パルス期間で燃料噴射が行われることが無く、総噴射期間IT1内で1回の燃料噴射が実施されるから、付着量の抑制や燃料混合などに最適な期間で燃料噴射を実施させることができ、PM,PN排出量及びオイル希釈量の増加を抑制すると共に、燃費と排気性能の悪化を抑制することができる。
FIG. 19 is a time chart illustrating an operation example in the case where the split injection determination unit 71 outputs the fuel pressure control command value.
If the split count determination flag is ON and the pause period error flag is ON, the split injection count I_TIMES is 1, and if the total injection period IT1 and the split injection pulse period IT1_SP (1) in the intake stroke are different, the split injection pulse A command value for correcting the fuel pressure is output so that the period IT1_SP (1) is within the total injection period IT1 of the intake stroke.
As a result, fuel injection is not performed in an injection pulse period longer than the total injection period IT1, and one fuel injection is performed within the total injection period IT1, thereby suppressing the amount of adhesion, fuel mixing, etc. The fuel injection can be carried out in an optimum period, and the increase in PM, PN emission amount and oil dilution amount can be suppressed, and the deterioration of fuel consumption and exhaust performance can be suppressed.
 以上説明したECU1による分割噴射制御の流れを、図20のフローチャートに従って説明する。
 図20のフローチャートに示されるルーチンは、ECU1によって所定の周期で繰り返し実行される。
 まず、ステップS101では、エンジン回転速度NE、吸入空気量QA、冷却水温TWなどのエンジン100の運転状態を示す状態量を読み込み、更に、ROM30dに書き込まれている閾値SIGMA_K、要求温度TC_K、所定水温TW_Kなどの定数を読み込む。
The flow of the split injection control by the ECU 1 described above will be described according to the flowchart of FIG.
The routine shown in the flowchart of FIG. 20 is repeatedly executed by the ECU 1 at a predetermined cycle.
First, in step S101, state quantities indicating the operating state of the engine 100 such as the engine rotation speed NE, the intake air amount QA, and the cooling water temperature TW are read, and further, the threshold value SIGMA_K, the required temperature TC_K, and the predetermined water temperature written in the ROM 30d. Read a constant such as TW_K.
 ステップS102では、分割噴射を許可する条件が成立しているか否かを判断し、例えば、触媒温度TCが要求温度TC_K以上であるなどの許可条件が成立していれば、分割噴射許可フラグを立ち上げて、ステップS103以降へ進む。ここで、触媒暖機運転中にエンジン100の回転変動が大きければ、分割噴射を許可する温度条件を標準よりも高くして、分割噴射の開始を遅らせる。
 一方、分割噴射の許可条件が成立していない場合(触媒暖機運転中)には、ステップS101に戻って、状態量の再読み込みを行う。
In step S102, it is determined whether or not a condition for permitting split injection is satisfied. If a permit condition such as the catalyst temperature TC is equal to or higher than the required temperature TC_K is satisfied, the split injection permission flag is set. And go to step S103 and subsequent steps. Here, if the rotational fluctuation of the engine 100 is large during the catalyst warm-up operation, the temperature condition for permitting the split injection is set higher than the standard to delay the start of the split injection.
On the other hand, when the split injection permission condition is not satisfied (during the catalyst warm-up operation), the process returns to step S101 and the state quantity is read again.
 ステップS103では、図4の制御マップを参照して求めた噴射開始時期IT1_Aを読み込み、ステップS104では、図7の制御マップを参照して求めた噴射完了時期IT1_Bを読み込む。
 ステップS105では、前述の式(3)に従って、噴射開始時期IT1_Aと噴射完了時期IT1_Bとの間のクランク角を時間に変換した総噴射期間IT1(ms)を読み込む。
In step S103, the injection start time IT1_A obtained by referring to the control map of FIG. 4 is read. In step S104, the injection completion time IT1_B obtained by referring to the control map of FIG. 7 is read.
In step S105, the total injection period IT1 (ms) obtained by converting the crank angle between the injection start timing IT1_A and the injection completion timing IT1_B into time is read according to the above equation (3).
 更に、ステップS106では、標準の燃圧で要求燃料量を噴射することになる要求噴射期間IT_REQ(ms)を読み込み、ステップS107では、図5の制御マップを参照して求めた分割噴射回数I_TIMESを読み込む。
 ステップS108では、要求噴射期間IT_REQ(ms)、及び、分割噴射回数I_TIMESに基づき、前述の式(1)に従って算出した分割噴射パルス期間IT1_SP(n)を読み込む。
Further, in step S106, a required injection period IT_REQ (ms) for injecting the required fuel amount at the standard fuel pressure is read. In step S107, the divided injection number I_TIMES obtained by referring to the control map of FIG. 5 is read. .
In step S108, based on the required injection period IT_REQ (ms) and the divided injection frequency I_TIMES, the divided injection pulse period IT1_SP (n) calculated according to the above-described equation (1) is read.
 ステップS109では、総噴射期間IT1、分割噴射パルス期間IT1_SP(n)、分割噴射回数I_TIMESに基づき、前述の式(2)に従って算出した分割噴射休止期間IT1_RES(n)を読み込む。
 そして、ステップS110では、分割噴射回数I_TIMESが2以上であるか否かを判断し、分割噴射回数I_TIMESが2以上であれば、ステップS111へ進み、分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kよりも長いか否かを判断する。
In step S109, based on the total injection period IT1, the divided injection pulse period IT1_SP (n), and the number of divided injections I_TIMES, the divided injection suspension period IT1_RES (n) calculated according to the above equation (2) is read.
In step S110, it is determined whether or not the divided injection number I_TIMES is 2 or more. If the divided injection number I_TIMES is 2 or more, the process proceeds to step S111, and the divided injection suspension period IT1_RES (n) is the required suspension period. Judge whether it is longer than RES_K.
 分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kよりも長い場合には、分割噴射回数I_TIMESの変更は不要であるので、そのままステップS112へ進んで、噴射開始時期IT1_Aから噴射完了時期IT1_Bまでの間で、分割噴射回数I_TIMESの分割噴射を行わせる。
 一方、分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kよりも短い場合には、そのままの設定で分割噴射を行わせると、噴射量のばらつきが大きく、空燃比制御精度が低下して排気性状を悪化させることになるので、分割噴射休止期間IT1_RES(n)を要求休止期間RES_Kよりも長くするために、ステップS113へ進んで、分割噴射回数I_TIMESを1回だけ減じる補正を行う。
When the divided injection suspension period IT1_RES (n) is longer than the requested suspension period RES_K, it is not necessary to change the divided injection number I_TIMES. Therefore, the process proceeds to step S112 as it is from the injection start timing IT1_A to the injection completion timing IT1_B. In the meantime, the divided injection of the divided injection frequency I_TIMES is performed.
On the other hand, when the divided injection suspension period IT1_RES (n) is shorter than the requested suspension period RES_K, if the divided injection is performed with the setting as it is, the variation in the injection amount is large, the air-fuel ratio control accuracy decreases, and the exhaust property Therefore, in order to make the divided injection suspension period IT1_RES (n) longer than the requested suspension period RES_K, the process proceeds to step S113 and correction is performed to reduce the number of divided injections I_TIMES by one.
 分割噴射回数I_TIMESを1回だけ減じる補正を行うと、係る減算後の分割噴射回数I_TIMESに基づき、分割噴射パルス期間IT1_SP(n)及び分割噴射休止期間IT1_RES(n)を算出させるために、ステップS107に戻る。
 そして、減じた後の分割噴射回数I_TIMESが2回以上であって、かつ、分割噴射回数I_TIMESを減じた結果、分割噴射休止期間IT1_RES(n)が要求休止期間RES_Kよりも長くなれば、ステップS115へ進み、分割噴射を行わせる。
When the correction for reducing the divided injection number I_TIMES by one is performed, in order to calculate the divided injection pulse period IT1_SP (n) and the divided injection suspension period IT1_RES (n) based on the divided injection number I_TIMES after the subtraction, step S107. Return to.
If the number of divided injections I_TIMES after the reduction is two or more and the divided injection number of times I_TIMES is reduced, the divided injection suspension period IT1_RES (n) becomes longer than the requested suspension period RES_K, step S115. Proceed to, and split injection is performed.
 一方、減じた後の分割噴射回数I_TIMESが1回である場合、及び、図5の制御マップを参照して求めた分割噴射回数I_TIMESが1回である場合は、ステップS110からステップS114へ進む。
 ステップS114では、総噴射期間IT1内での1回の噴射で要求燃料量を噴射できるように、分割噴射パルス期間IT1_SP(1)が総噴射期間IT1内とならない場合に燃圧を増加させて単位時間当たりの噴射量を増やす、燃圧制御を実施する。
 そして、ステップS115では、ステップS114で制御された燃圧下で、総噴射期間IT1内での1回の噴射で要求燃料量を噴射させる。
On the other hand, when the number of divided injections I_TIMES after the reduction is 1 and when the number of divided injections I_TIMES obtained with reference to the control map of FIG. 5 is 1, the process proceeds from step S110 to step S114.
In step S114, the fuel pressure is increased when the divided injection pulse period IT1_SP (1) is not within the total injection period IT1, so that the required fuel amount can be injected by one injection within the total injection period IT1. Implement fuel pressure control to increase the amount of fuel per hit.
In step S115, the required fuel amount is injected by one injection within the total injection period IT1 under the fuel pressure controlled in step S114.
 以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 本実施形態では、燃料噴射装置としてのインジェクタ6が燃焼室内に燃料を直接噴射する筒内直接噴射式エンジンを例示したが、例えば、吸気行程において、吸気弁の開口を介して燃焼室内を指向するように燃料を噴射する燃料噴射装置(インジェクタ)を吸気ポート(吸気通路)に備えたポート噴射式エンジンにおいて、吸気行程分割噴射を行わせるようにし、かつ、上記実施形態と同様に、初回の噴射開始から最終回の噴射完了までの総噴射期間を、エンジン温度の上昇に応じて短縮する構成とすることができ、かつ、総噴射期間の短縮を、最終回の噴射完了時期をエンジン温度の上昇に対して早めることで実施させることができ、この場合も同様な作用効果を得ることができる。
Although the contents of the present invention have been specifically described with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.
In the present embodiment, an in-cylinder direct injection type engine in which the injector 6 as the fuel injection device directly injects fuel into the combustion chamber is exemplified. However, for example, in the intake stroke, the fuel is directed into the combustion chamber through the opening of the intake valve. In a port injection type engine equipped with a fuel injection device (injector) for injecting fuel in the intake port (intake passage), the intake stroke split injection is performed, and the first injection is performed in the same manner as in the above embodiment. The total injection period from the start to the completion of the final injection can be shortened as the engine temperature increases, and the total injection period can be shortened to increase the final injection completion time. In this case, similar effects can be obtained.
 1…エンジンコントロールユニット(ECU)、2…アクセル開度センサ、3…エアフロセンサ、4…吸気温センサ、5…スロットル、6…インジェクタ、7…燃料ポンプ、8…コモンレール、9…吸気管、10…可変吸気排気動弁、11…ピストン、12…クランクシャフト、13…クランク角センサ、14…燃焼室、15…冷却水温センサ、16…点火プラグ、17…排気管、18…三元触媒 DESCRIPTION OF SYMBOLS 1 ... Engine control unit (ECU), 2 ... Accelerator opening sensor, 3 ... Air flow sensor, 4 ... Intake temperature sensor, 5 ... Throttle, 6 ... Injector, 7 ... Fuel pump, 8 ... Common rail, 9 ... Intake pipe, 10 ... Variable intake / exhaust valve, 11 ... piston, 12 ... crankshaft, 13 ... crank angle sensor, 14 ... combustion chamber, 15 ... cooling water temperature sensor, 16 ... ignition plug, 17 ... exhaust pipe, 18 ... three-way catalyst

Claims (8)

  1.  燃料噴射装置による燃料噴射を吸気行程において複数回に分けて行わせる吸気行程分割噴射における、初回の噴射開始から最終回の噴射完了までの総噴射期間を、エンジン温度の上昇に応じて短縮する、エンジンの制御装置。 The total injection period from the start of the first injection to the completion of the final injection in the intake stroke split injection in which the fuel injection by the fuel injection device is divided into a plurality of times in the intake stroke is shortened according to the increase in engine temperature. Engine control device.
  2.  前記最終回の噴射完了時期をエンジン温度の上昇に対して早める、請求項1記載のエンジンの制御装置。 The engine control device according to claim 1, wherein the final injection completion timing is advanced with respect to an increase in engine temperature.
  3.  前記初回の噴射開始時期及び前記複数回の噴射回数を、エンジン負荷及びエンジン回転速度に応じて変更する、請求項2記載のエンジンの制御装置。 The engine control device according to claim 2, wherein the first injection start timing and the plurality of injection times are changed according to an engine load and an engine speed.
  4.  前記吸気行程分割噴射の途中における噴射休止期間が設定期間を下回る場合に、噴射回数を減じる、請求項1に記載のエンジンの制御装置。 2. The engine control device according to claim 1, wherein the number of injections is reduced when an injection suspension period in the middle of the intake stroke divided injection is less than a set period.
  5.  前記噴射回数を1回にまで減じたときに、前記総噴射期間内で燃料噴射を完了するように燃圧を変更する、請求項4記載のエンジンの制御装置。 The engine control device according to claim 4, wherein when the number of injections is reduced to one, the fuel pressure is changed so that fuel injection is completed within the total injection period.
  6.  暖機運転中におけるエンジン回転速度の変動の増加に対して前記吸気行程分割噴射の開始を遅らせる請求項1に記載のエンジンの制御装置。 The engine control device according to claim 1, wherein the start of the intake stroke divided injection is delayed with respect to an increase in fluctuations in engine rotation speed during warm-up operation.
  7.  前記燃料噴射装置がエンジンの燃焼室内に直接燃料を噴射する装置である、請求項1に記載のエンジンの制御装置。 The engine control device according to claim 1, wherein the fuel injection device is a device that directly injects fuel into a combustion chamber of the engine.
  8.  燃焼室内に直接燃料を噴射する燃料噴射装置を備えたエンジンにおいて、
     エンジン温度を検出し、
     吸気行程において燃料噴射を複数回に分けて行わせるときの初回の噴射開始から最終回の噴射完了までの総噴射期間を、エンジン温度の上昇に応じて短縮し、
     吸気行程の前記総噴射期間で前記燃料噴射装置による燃料噴射を複数回に分けて行わせる、エンジンの制御方法。
    In an engine equipped with a fuel injection device that directly injects fuel into a combustion chamber,
    Detect engine temperature
    In the intake stroke, the total injection period from the start of the first injection to the completion of the final injection when performing fuel injection divided into a plurality of times is shortened as the engine temperature increases,
    An engine control method in which fuel injection by the fuel injection device is performed in a plurality of times during the total injection period of an intake stroke.
PCT/JP2013/076464 2012-10-12 2013-09-30 Engine control device, and engine control method WO2014057825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226821 2012-10-12
JP2012226821A JP2014077421A (en) 2012-10-12 2012-10-12 Engine control device and engine control method

Publications (1)

Publication Number Publication Date
WO2014057825A1 true WO2014057825A1 (en) 2014-04-17

Family

ID=50477294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076464 WO2014057825A1 (en) 2012-10-12 2013-09-30 Engine control device, and engine control method

Country Status (2)

Country Link
JP (1) JP2014077421A (en)
WO (1) WO2014057825A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561386A (en) * 2017-04-13 2018-10-17 Ford Global Tech Llc A method of controlling fuelling of an engine
WO2022021717A1 (en) * 2020-07-31 2022-02-03 重庆长安汽车股份有限公司 Fuel injection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397437B2 (en) 2016-02-24 2018-09-26 本田技研工業株式会社 Direct injection internal combustion engine
JP6555287B2 (en) * 2017-03-03 2019-08-07 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
WO2019150146A1 (en) * 2018-02-01 2019-08-08 日産自動車株式会社 Fuel injection control method for spark ignition-type combustion engine, and fuel injection device
JP7428151B2 (en) 2021-01-28 2024-02-06 トヨタ自動車株式会社 Internal combustion engine control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270388A (en) * 1998-01-26 1999-10-05 Denso Corp Fuel injection control device of internal combustion engine
JP2002130024A (en) * 2000-10-20 2002-05-09 Nissan Motor Co Ltd Controller for direct injection spark ignition type internal combustion engine
JP2006183537A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Fuel injection control device of direct injection type internal combustion engine
JP2009250194A (en) * 2008-04-10 2009-10-29 Hitachi Ltd Cylinder injection engine
JP2011052670A (en) * 2009-09-04 2011-03-17 Denso Corp Fuel injector of internal combustion engine
JP2012002066A (en) * 2010-05-17 2012-01-05 Isuzu Motors Ltd Exhaust emission control system
JP2012184661A (en) * 2011-03-03 2012-09-27 Toyota Motor Corp Internal combustion engine control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536724B2 (en) * 1999-05-21 2004-06-14 トヨタ自動車株式会社 Fuel injection control device for in-cylinder injection internal combustion engine
JP4240084B2 (en) * 2006-07-27 2009-03-18 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine control device
JP4297288B2 (en) * 2007-11-22 2009-07-15 株式会社日立製作所 Control method of ignition timing of premixed compression ignition engine
JP2009264332A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Fuel injection device
JP5047997B2 (en) * 2009-01-13 2012-10-10 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270388A (en) * 1998-01-26 1999-10-05 Denso Corp Fuel injection control device of internal combustion engine
JP2002130024A (en) * 2000-10-20 2002-05-09 Nissan Motor Co Ltd Controller for direct injection spark ignition type internal combustion engine
JP2006183537A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Fuel injection control device of direct injection type internal combustion engine
JP2009250194A (en) * 2008-04-10 2009-10-29 Hitachi Ltd Cylinder injection engine
JP2011052670A (en) * 2009-09-04 2011-03-17 Denso Corp Fuel injector of internal combustion engine
JP2012002066A (en) * 2010-05-17 2012-01-05 Isuzu Motors Ltd Exhaust emission control system
JP2012184661A (en) * 2011-03-03 2012-09-27 Toyota Motor Corp Internal combustion engine control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561386A (en) * 2017-04-13 2018-10-17 Ford Global Tech Llc A method of controlling fuelling of an engine
GB2561386B (en) * 2017-04-13 2019-12-04 Ford Global Tech Llc A method of controlling fuelling of an engine
WO2022021717A1 (en) * 2020-07-31 2022-02-03 重庆长安汽车股份有限公司 Fuel injection method

Also Published As

Publication number Publication date
JP2014077421A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5011413B2 (en) In-cylinder direct fuel injection internal combustion engine control device
US7747379B2 (en) Control device of direct injection internal combustion engine
US10890124B2 (en) Internal combustion engine control device and method
JP5396430B2 (en) In-cylinder injection internal combustion engine control device
WO2014057825A1 (en) Engine control device, and engine control method
WO2016084188A1 (en) Internal combustion engine control device and control method
JP2008025502A (en) Fuel injection control device of internal combustion engine
US9856845B2 (en) Control device for internal combustion engine
JP2012087708A (en) Control device for cylinder injection gasoline engine
US10495021B2 (en) Engine control device
JP6489085B2 (en) Engine control device
WO2012098661A1 (en) Control device for internal combustion engine
JP6361537B2 (en) Fuel property discrimination device
JP2018071485A (en) Device for controlling internal combustion engine
JP2008267293A (en) Control system of internal combustion engine
US9970382B2 (en) Direct injection internal combustion engine
JP5664483B2 (en) Fuel injection control device for internal combustion engine
JP2010248948A (en) Control device for internal combustion engine
JPWO2016084187A1 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2010242745A (en) Pressure estimating method and device of combustion chamber in internal combustion engine
JP5206652B2 (en) Fuel injection control device for internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
WO2016075784A1 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2006029194A (en) Controlling device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845081

Country of ref document: EP

Kind code of ref document: A1