WO2014057811A1 - Vane-type compressor - Google Patents

Vane-type compressor Download PDF

Info

Publication number
WO2014057811A1
WO2014057811A1 PCT/JP2013/076007 JP2013076007W WO2014057811A1 WO 2014057811 A1 WO2014057811 A1 WO 2014057811A1 JP 2013076007 W JP2013076007 W JP 2013076007W WO 2014057811 A1 WO2014057811 A1 WO 2014057811A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
coil spring
type compressor
guide pin
rotor
Prior art date
Application number
PCT/JP2013/076007
Other languages
French (fr)
Japanese (ja)
Inventor
士津真 金子
博匡 島口
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2014057811A1 publication Critical patent/WO2014057811A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0881Construction of vanes or vane holders the vanes consisting of two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/123Attachments or mountings characterised by the ends of the spring being specially adapted, e.g. to form an eye for engagement with a radial insert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the present invention relates to a vane type compressor.
  • a general vane type compressor has a rotor in which a vane groove is formed and a vane disposed in the vane groove so as to be freely projectable from the vane groove.
  • the vane jumps out of the vane groove and contacts the inner wall of the vane compressor, and the rotor rotates to compress the refrigerant.
  • a part of the compressed refrigerant is supplied to the back pressure chamber that is the bottom of the vane so that the vane jumps out of the vane groove, and the vane jumps out of the vane groove by pressing the bottom of the vane.
  • Patent Document 2 a coil spring is disposed in a vane groove formed in the rotor, and in addition to centrifugal force, the vane is urged in the direction of pushing out the vane groove by the urging force of the coil spring. It has been proposed.
  • the vane may be tilted in the vane groove due to the operation of the compressor, and the guide pin for preventing the coil spring from buckling is provided on the inner periphery of the coil spring.
  • the coil spring was slid and damaged especially in the vicinity of the tip of the guide pin.
  • an object of the present invention is to provide a vane type compressor that can prevent a coil spring from being damaged.
  • the present invention is a vane type compressor 1 including a cylindrical housing 2 and a compression mechanism 3 accommodated in the housing 2, and the compression mechanism 3 has an elliptical shape inside.
  • a cylinder block 7 having a cylinder chamber 25 having a shape, a rotor 13 rotatably disposed in the cylinder chamber 25, a vane 11 which is accommodated in a vane groove 31 formed in the rotor 13, and a vane groove
  • a coil spring 37 that is housed in 31 and biases the vane 11 in a projecting direction, and a guide pin 17 disposed on the inner periphery of the coil spring 37, and the coil spring 37 near the insertion end 20 of the guide pin 17. Is a tightly wound portion 44.
  • the present invention is characterized in that a reduced diameter portion 50 is provided in which a part of the tightly wound portion 44 formed on the coil spring 37 is smaller in diameter than the other tightly wound portions 44.
  • the end of the coil spring 37 is processed in a direction orthogonal to the length direction of the coil spring 37.
  • the vane type compressor 1 includes a cylindrical housing 2 and a compression mechanism 3 accommodated in the housing 2, and the compression mechanism 3 has an elliptical shape inside.
  • the cylinder block 7 having the cylinder chamber 25, the rotor 13 rotatably disposed in the cylinder chamber 25, the vane 11 accommodated in the vane groove 31 formed in the rotor 13, and the vane groove 31.
  • a guide pin 17 disposed on the inner periphery of the coil spring 37, and the sliding between the guide pin 17 and the coil spring 37.
  • the contact winding portion 44 is provided at a place where the moving speed is fastest.
  • FIG. 1 is an overall cross-sectional view of the vane type compressor of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a compression mechanism when the coil spring is contracted in the vane type compressor of the present invention.
  • FIG. 3 is an enlarged sectional view showing a compression mechanism when the coil spring is extended in the vane type compressor of the present invention.
  • FIG. 4A is a front view showing the contraction of the coil spring in the vane compressor of the present invention
  • FIG. 4B is a front view showing the extension of the coil spring in the vane compressor of the present invention.
  • the vane compressor 1 includes a cylindrical housing 2, a compression mechanism 3 accommodated in the housing 2, an electric motor unit 4 that transmits a driving force to the compression mechanism 3, and an electric motor. And an inverter unit 5 for controlling the unit 4.
  • the cylindrical housing 2 includes a front housing 2 a that houses the inverter unit 5, a middle housing 2 b that houses the compression mechanism 3, and a rear housing 2 c that houses the electric motor unit 4.
  • the front housing 2a and the middle housing 2b are connected by a bolt or the like (not shown).
  • the middle housing 2b and the rear housing 2c are also connected by bolts or the like.
  • the inverter unit 5 accommodated in the front housing 2a controls driving of an electric motor unit 4 described later.
  • the compression mechanism 3 accommodated in the middle housing 2b includes a cylinder block 7, a side block 9 arranged so as to sandwich the cylinder block 7, a rotor 13 arranged rotatably inside the cylinder block 7,
  • the drive shaft 15 formed integrally with the rotor 13, a plurality of plate-shaped vanes 11, a coil spring 37 disposed on the rear end portion 29 side of the vane 11, and buckling of the coil spring 37 are regulated.
  • a guide pin 17 to be used.
  • a cylinder chamber 25 having an elliptical shape in a cross section perpendicular to the rotation axis of the rotor 13 is formed inside the cylinder block 7, and the rotor 13 is rotatably disposed in the cylinder chamber 25.
  • a drive shaft 15 is integrally connected to the center of the rotor 13, and a motor shaft 23 is connected to one end of the drive shaft 15. Further, the cylinder chamber 25 is hermetically sealed by sandwiching both ends of the cylinder block 7 by the side blocks 9 (the front side block 9a and the rear side block 9b).
  • the rotor 13 disposed in the cylinder chamber 25 is provided with a vane groove 31, and the vane 11 described later is accommodated in the vane groove 31 so as to protrude freely.
  • a vane back pressure chamber 33 that applies a protruding pressure to the vane 11 is formed.
  • a relief hole 35 is formed at the bottom of the vane groove 31 so that one end of a guide pin 17 to be described later can protrude.
  • the vane 11 accommodated in the vane groove 31 is formed in a plate shape, and the tip portion 27 of the vane 11 is slidably contacted along the inner wall 39 of the cylinder block 7 when the rotor 13 rotates.
  • the refrigerant is compressed.
  • a guide pin press-fit portion 41 and a coil spring contact recess 43 are formed at the rear end portion 29 of the vane 11.
  • the coil spring contact recess 43 is provided so as to be recessed from the rear end of the vane 11, and one end of the coil spring 37 contacts the bottom of the coil spring contact recess 43 and the outside of the coil spring 37. It is provided larger than the diameter.
  • a recess having the same diameter as a guide pin 17 described later is formed, and a guide pin press-fit portion 41 into which the press-fit end 18 of the guide pin 17 is press-fit is formed.
  • the coil spring 37 is formed with a coil portion 45 formed with a constant pitch between the springs, and a tightly wound portion 44 formed with a close pitch between the springs.
  • the tightly wound portion 44 includes a tightly coiled portion 47 formed to have the same outer diameter as the coil portion 45, and a tapered portion 49 that expands toward the end. And are formed. Further, a reduced diameter portion 50 having a diameter smaller than that of the other close contact coil portions 47 is provided in a part of the close contact coil portion 47.
  • the inner diameter of the reduced diameter portion 50 is formed to be substantially the same as the outer diameter of the guide pin 17 and is in sliding contact with the inner diameter of the reduced diameter portion 50 and the outer periphery of the guide pin 17.
  • the tightly wound portion 44 is provided at a place where the sliding speed between the guide pin 17 and the coil spring 37 is the fastest. Furthermore, both end portions of the coil spring 37 are processed in a direction orthogonal to the length direction of the coil spring 37 or in a vertical direction.
  • the coil spring 37 since one end of the coil spring 37 contacts the bottom of the coil spring contact recess 43, the coil spring 37 is vertically attached to the rear end 29 of the vane 11. Further, since the other end of the coil spring 37 contacts the bottom of the vane groove 31, the coil spring 37 is attached perpendicularly to the bottom of the vane groove 31.
  • the guide pin 17 disposed on the inner periphery of the coil spring 37 to prevent buckling of the coil spring 37 has a press-fit end 18 for press-fitting one end side into the guide pin press-fit portion 41, and the escape hole 35 on the other end side.
  • a protruding insertion end 20 is formed.
  • the inner diameter of the escape hole 35 is formed smaller than the length of the bottom of the vane groove 31 in the vane thickness direction, and the inner diameter of the escape hole 35 is formed larger than the outer diameter of the insertion end 20.
  • the inner diameter of the escape hole 35 is smaller than the outer diameter of the other end of the coil spring 37. Therefore, the other end portion of the coil spring 37 does not protrude into the escape hole 35, and the other end portion of the coil spring 37 contacts the bottom portion of the vane groove 31.
  • the electric motor unit 4 accommodated in the rear housing 2 c includes a stator 19 having a coil wound around a core, a motor rotor 21 formed of a magnetic material, and a motor shaft 23 connected to the drive shaft 15. ing.
  • a plurality of stators 19 are arranged along the inner periphery of the rear housing 2c.
  • the motor rotor 21 is press-fitted and connected to the motor shaft 23.
  • One end side of the motor shaft 23 is connected to the drive shaft 15.
  • drive control of the electric motor unit 4 is performed by the inverter unit 5.
  • a current flows through the stator 19, thereby generating a magnetic force around the stator 19, and the motor rotor 21 is rotated by this magnetic force.
  • the motor rotor 21 rotates, the motor shaft 23 connected to the motor rotor rotates and the drive shaft 15 connected to the motor shaft 23 rotates.
  • the guide pin 17 press-fitted into the vane 11 moves on the inner periphery of the coil spring 37, but the reduced diameter portion 50 provided on the tightly wound portion 44 of the coil spring 37 is positive.
  • the sliding contact with the guide pin 17 prevents the guide pin 17 from tilting, and prevents the tip end portion of the guide pin 17, that is, the coil spring 37 near the insertion end 20 from being damaged.
  • the refrigerant is compressed between the distal end portion 27 of the vane 11 protruding from the vane groove 31 by the centrifugal force and the biasing force of the coil spring 37 and the inner wall 39 of the cylinder block 7, and the compressed refrigerant is discharged into a discharge chamber (not shown).
  • the coil spring 37 in the vicinity of the insertion end 20 of the guide pin 17 is used as the close contact winding portion 44, so that even if the inner periphery of the coil spring 37 is worn by the insertion end 20 of the guide pin 17, the close contact winding is performed. Since no shear stress is generated in the portion 44, the tightly wound portion 44 can be prevented from being damaged.
  • the reduced diameter portion 50 in the tightly wound portion 44, the reduced diameter portion 50 positively comes into sliding contact with the guide pin 17, so that the inner periphery of the coil spring 37 and the guide pin 17 are prevented from contacting each other. be able to.
  • the coil spring 37 can be vertically attached to the rear end portion 29 of the vane 11, and interference with the guide pin 17 can be reduced. The amount of wear on the inner circumference can be reduced.
  • the taper portion 49 and the coil portion 45 are continuously wound tightly, but the taper portion 49 and the coil portion 45 are not necessarily continuously wound.
  • the present invention can be used for a vane type compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A vane-type compressor (1) equipped with a cylindrical housing (2) and a compression mechanism (3) housed within the housing (2), the vane-type compressor being characterized in that the compression mechanism (3) comprises a cylinder block (7) having in its interior an elliptical cylinder chamber (25), a rotor (13) rotatably arranged within the cylinder chamber (25), a vane (11) housed so as to be capable of protruding freely in a vane groove (31) formed in the rotor (13), a coil spring (37) that is housed in the vane groove (31) and biases the vane (11) in the protruding direction, and a guide pin (17) arranged at the inner circumference of the coil spring (37), with the coil spring (37) in the vicinity of the insertion end (20) of the guide pin (17) forming a tightly wound part (44).

Description

ベーン型圧縮機Vane type compressor
 本発明は、ベーン型圧縮機に関するものである。 The present invention relates to a vane type compressor.
 特許文献1に示すように、一般的なベーン型圧縮機は、ベーン溝が形成されるロータと、ベーン溝から突出自在であるように、ベーン溝に配置されるベーンとを有している。ロータが回転することによって、ベーンがベーン溝から飛び出してベーン型圧縮機の内壁に当接し、ロータが回転することによって冷媒を圧縮している。また、ベーンをベーン溝から飛び出させるために圧縮した冷媒の一部をベーンの底部である背圧室に供給し、冷媒がベーンの底部を押圧することによりベーンをベーン溝から飛び出させていた。 As shown in Patent Document 1, a general vane type compressor has a rotor in which a vane groove is formed and a vane disposed in the vane groove so as to be freely projectable from the vane groove. As the rotor rotates, the vane jumps out of the vane groove and contacts the inner wall of the vane compressor, and the rotor rotates to compress the refrigerant. Further, a part of the compressed refrigerant is supplied to the back pressure chamber that is the bottom of the vane so that the vane jumps out of the vane groove, and the vane jumps out of the vane groove by pressing the bottom of the vane.
 しかし、圧縮機の起動直後では、圧縮した冷媒を背圧室に十分に供給することができず、また、ロータが回転することによって生じる遠心力も小さいため、ベーンをベーン溝から飛び出させてベーンをベーン型圧縮機の内壁に当接させることができないという問題があった。 However, immediately after the start of the compressor, the compressed refrigerant cannot be sufficiently supplied to the back pressure chamber, and the centrifugal force generated by the rotation of the rotor is small, so that the vane is ejected from the vane groove to remove the vane. There has been a problem that it cannot be brought into contact with the inner wall of the vane compressor.
 そこで、特許文献2に示すように、ロータに形成されたベーン溝の中にコイルスプリングを配置し、遠心力に加えて、コイルスプリングの付勢力によってベーンをベーン溝から押し出す方向に付勢するということが提案されている。 Therefore, as shown in Patent Document 2, a coil spring is disposed in a vane groove formed in the rotor, and in addition to centrifugal force, the vane is urged in the direction of pushing out the vane groove by the urging force of the coil spring. It has been proposed.
特開2007-100602号公報JP 2007-100602 A 実公平8-538号公報No. 8-538
 しかしながら、特許文献2に示すような従来の圧縮機では、圧縮機が動作することでベーンがベーン溝内で傾くことがあり、コイルスプリングの座屈を防止するガイドピンがコイルスプリングの内周に摺接し、特にガイドピンの先端部付近のコイルスプリングが破損するという課題があった。 However, in the conventional compressor as shown in Patent Document 2, the vane may be tilted in the vane groove due to the operation of the compressor, and the guide pin for preventing the coil spring from buckling is provided on the inner periphery of the coil spring. There was a problem that the coil spring was slid and damaged especially in the vicinity of the tip of the guide pin.
 そこで、本発明は、コイルスプリングの破損を防止することのできるベーン型圧縮機の提供を目的としている。 Therefore, an object of the present invention is to provide a vane type compressor that can prevent a coil spring from being damaged.
 上記の課題を解決するために本発明は、円筒状のハウジング2と、ハウジング2内に収容される圧縮機構3と、を備えるベーン型圧縮機1であって、圧縮機構3は、内部に楕円形状のシリンダ室25を有するシリンダブロック7と、シリンダ室25内に回転自在に配置されるロータ13と、ロータ13に形成されるベーン溝31に、突出自在に収容されるベーン11と、ベーン溝31に収容されてベーン11を突出する方向に付勢するコイルスプリング37と、コイルスプリング37の内周に配置されるガイドピン17と、からなり、ガイドピン17の挿入端20近傍のコイルスプリング37を密着巻部44としたことを特徴とする。 In order to solve the above problems, the present invention is a vane type compressor 1 including a cylindrical housing 2 and a compression mechanism 3 accommodated in the housing 2, and the compression mechanism 3 has an elliptical shape inside. A cylinder block 7 having a cylinder chamber 25 having a shape, a rotor 13 rotatably disposed in the cylinder chamber 25, a vane 11 which is accommodated in a vane groove 31 formed in the rotor 13, and a vane groove A coil spring 37 that is housed in 31 and biases the vane 11 in a projecting direction, and a guide pin 17 disposed on the inner periphery of the coil spring 37, and the coil spring 37 near the insertion end 20 of the guide pin 17. Is a tightly wound portion 44.
 また、コイルスプリング37に形成される密着巻部44の一部を他の密着巻部44よりも縮径した縮径部50を設けたことを特徴とする。 Further, the present invention is characterized in that a reduced diameter portion 50 is provided in which a part of the tightly wound portion 44 formed on the coil spring 37 is smaller in diameter than the other tightly wound portions 44.
 さらに、コイルスプリング37の端部をコイルスプリング37の長さ方向に対して直交する方向に加工したことを特徴とする。 Furthermore, the end of the coil spring 37 is processed in a direction orthogonal to the length direction of the coil spring 37.
 また、上記の課題を解決するために、円筒状のハウジング2と、ハウジング2内に収容される圧縮機構3と、を備えるベーン型圧縮機1であって、圧縮機構3は、内部に楕円形状のシリンダ室25を有するシリンダブロック7と、シリンダ室25内に回転自在に配置されるロータ13と、ロータ13に形成されるベーン溝31に、突出自在に収容されるベーン11と、ベーン溝31に収容されてベーン11を突出する方向に付勢するコイルスプリング37と、コイルスプリング37の内周に配置されるガイドピン17と、からなり、ガイドピン17とコイルスプリング37との間での摺動速度が最も速い箇所に密着巻部44を設けることを特徴とする。 In order to solve the above problems, the vane type compressor 1 includes a cylindrical housing 2 and a compression mechanism 3 accommodated in the housing 2, and the compression mechanism 3 has an elliptical shape inside. The cylinder block 7 having the cylinder chamber 25, the rotor 13 rotatably disposed in the cylinder chamber 25, the vane 11 accommodated in the vane groove 31 formed in the rotor 13, and the vane groove 31. And a guide pin 17 disposed on the inner periphery of the coil spring 37, and the sliding between the guide pin 17 and the coil spring 37. The contact winding portion 44 is provided at a place where the moving speed is fastest.
図1は、本発明のベーン型圧縮機の全体断面図である。FIG. 1 is an overall cross-sectional view of the vane type compressor of the present invention. 図2は、本発明のベーン型圧縮機において、コイルスプリング収縮時における圧縮機構を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a compression mechanism when the coil spring is contracted in the vane type compressor of the present invention. 図3は、本発明のベーン型圧縮機において、コイルスプリング伸長時における圧縮機構を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing a compression mechanism when the coil spring is extended in the vane type compressor of the present invention. 図4(a)は、本発明のベーン型圧縮機において、コイルスプリングの収縮時を示す正面図、図4(b)は、本発明のベーン型圧縮機において、コイルスプリングの伸長時を示す正面図である。FIG. 4A is a front view showing the contraction of the coil spring in the vane compressor of the present invention, and FIG. 4B is a front view showing the extension of the coil spring in the vane compressor of the present invention. FIG.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 なお、以下に示す実施例はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は各構成部品の配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。 The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the arrangement of each component as described below. It is not what you do. The technical idea of the present invention can be variously modified within the scope of the claims.
 図1に示すように、ベーン型圧縮機1は、円筒状のハウジング2と、ハウジング2内に収容される圧縮機構3と、圧縮機構3に駆動力を伝達する電動モータ部4と、電動モータ部4を制御するインバータ部5と、を備えている。 As shown in FIG. 1, the vane compressor 1 includes a cylindrical housing 2, a compression mechanism 3 accommodated in the housing 2, an electric motor unit 4 that transmits a driving force to the compression mechanism 3, and an electric motor. And an inverter unit 5 for controlling the unit 4.
 円筒状のハウジング2は、インバータ部5を収容するフロントハウジング2aと、圧縮機構3を収容するミドルハウジング2bと、電動モータ部4を収容するリアハウジング2cと、から構成されている。フロントハウジング2aとミドルハウジング2b間は、図示しないボルト等によって連結されている。また、ミドルハウジング2bとリアハウジング2c間もボルト等によって連結されている。 The cylindrical housing 2 includes a front housing 2 a that houses the inverter unit 5, a middle housing 2 b that houses the compression mechanism 3, and a rear housing 2 c that houses the electric motor unit 4. The front housing 2a and the middle housing 2b are connected by a bolt or the like (not shown). The middle housing 2b and the rear housing 2c are also connected by bolts or the like.
 フロントハウジング2aに収容されているインバータ部5は、後述する電動モータ部4の駆動を制御している。 The inverter unit 5 accommodated in the front housing 2a controls driving of an electric motor unit 4 described later.
 ミドルハウジング2bに収容される圧縮機構3は、シリンダブロック7と、シリンダブロック7を狭持するように配置されるサイドブロック9と、シリンダブロック7の内側に回転自在に配置されるロータ13と、ロータ13と一体に形成される駆動軸15と、複数枚配置される板状のベーン11と、ベーン11の後端部29側に配置されるコイルスプリング37と、コイルスプリング37の座屈を規制するガイドピン17と、を備えている。 The compression mechanism 3 accommodated in the middle housing 2b includes a cylinder block 7, a side block 9 arranged so as to sandwich the cylinder block 7, a rotor 13 arranged rotatably inside the cylinder block 7, The drive shaft 15 formed integrally with the rotor 13, a plurality of plate-shaped vanes 11, a coil spring 37 disposed on the rear end portion 29 side of the vane 11, and buckling of the coil spring 37 are regulated. And a guide pin 17 to be used.
 シリンダブロック7の内側には、ロータ13の回転軸に垂直な断面において楕円形状であるシリンダ室25が形成されており、このシリンダ室25内にロータ13が回転自在に配置されている。このロータ13の中心には、駆動軸15が一体に連結されるとともに、駆動軸15の一端にはモータ軸23が連結されている。また、シリンダブロック7の両端部をサイドブロック9(フロントサイドブロック9a及びリアサイドブロック9b)によって狭持することで、シリンダ室25が密閉される。 A cylinder chamber 25 having an elliptical shape in a cross section perpendicular to the rotation axis of the rotor 13 is formed inside the cylinder block 7, and the rotor 13 is rotatably disposed in the cylinder chamber 25. A drive shaft 15 is integrally connected to the center of the rotor 13, and a motor shaft 23 is connected to one end of the drive shaft 15. Further, the cylinder chamber 25 is hermetically sealed by sandwiching both ends of the cylinder block 7 by the side blocks 9 (the front side block 9a and the rear side block 9b).
 図2または図3に示すように、シリンダ室25内に配置されるロータ13にはベーン溝31が設けられており、後述するベーン11が、ベーン溝31に突出自在に収容されている。また、ベーン溝31には、ベーン11に突出圧力を付与するベーン背圧室33が形成されている。さらに、ベーン溝31の底部には逃げ孔35が形成されており、後述するガイドピン17の一端が突出できるようになっている。 As shown in FIG. 2 or FIG. 3, the rotor 13 disposed in the cylinder chamber 25 is provided with a vane groove 31, and the vane 11 described later is accommodated in the vane groove 31 so as to protrude freely. In the vane groove 31, a vane back pressure chamber 33 that applies a protruding pressure to the vane 11 is formed. Furthermore, a relief hole 35 is formed at the bottom of the vane groove 31 so that one end of a guide pin 17 to be described later can protrude.
 ベーン溝31に収容されるベーン11は、板状に形成されており、ロータ13の回転時にベーン11の先端部27がシリンダブロック7の内壁39に沿って摺接することにより、シリンダ室25内で冷媒を圧縮している。また、ベーン11の後端部29には、ガイドピン圧入部41とコイルスプリング当接凹部43と、が形成されている。このコイルスプリング当接凹部43は、ベーン11の後端部から凹設して設けられており、コイルスプリング37の一端部がコイルスプリング当接凹部43の底部に当接するとともに、コイルスプリング37の外径よりも大きく設けられている。コイルスプリング当接凹部43の底部には、後述するガイドピン17と同径の凹部が形成されてガイドピン17の圧入端18が圧入されるガイドピン圧入部41が形成されている。 The vane 11 accommodated in the vane groove 31 is formed in a plate shape, and the tip portion 27 of the vane 11 is slidably contacted along the inner wall 39 of the cylinder block 7 when the rotor 13 rotates. The refrigerant is compressed. Further, a guide pin press-fit portion 41 and a coil spring contact recess 43 are formed at the rear end portion 29 of the vane 11. The coil spring contact recess 43 is provided so as to be recessed from the rear end of the vane 11, and one end of the coil spring 37 contacts the bottom of the coil spring contact recess 43 and the outside of the coil spring 37. It is provided larger than the diameter. At the bottom of the coil spring contact recess 43, a recess having the same diameter as a guide pin 17 described later is formed, and a guide pin press-fit portion 41 into which the press-fit end 18 of the guide pin 17 is press-fit is formed.
 コイルスプリング37は、スプリング間が一定のピッチに形成されるコイル部45と、スプリング間のピッチが密着して形成される密着巻部44と、が形成されている。密着巻部44は、図4(a)、図4(b)に示すように、コイル部45と同じ外径に形成される密着コイル部47と、端部に向けて拡径するテーパ部49と、が形成されている。また、密着コイル部47の一部には、他の密着コイル部47よりも縮径された縮径部50が設けられている。 The coil spring 37 is formed with a coil portion 45 formed with a constant pitch between the springs, and a tightly wound portion 44 formed with a close pitch between the springs. As shown in FIGS. 4A and 4B, the tightly wound portion 44 includes a tightly coiled portion 47 formed to have the same outer diameter as the coil portion 45, and a tapered portion 49 that expands toward the end. And are formed. Further, a reduced diameter portion 50 having a diameter smaller than that of the other close contact coil portions 47 is provided in a part of the close contact coil portion 47.
 この縮径部50の内径は、ガイドピン17の外径とほぼ同径に形成されて、縮径部50の内径とガイドピン17の外周とで摺接している。なお、密着巻部44は、ガイドピン17とコイルスプリング37との間での摺動速度が最も速い箇所に設けている。さらに、コイルスプリング37の両端部は、コイルスプリング37の長さ方向に対して、直交する方向、または垂直方向に加工している。 The inner diameter of the reduced diameter portion 50 is formed to be substantially the same as the outer diameter of the guide pin 17 and is in sliding contact with the inner diameter of the reduced diameter portion 50 and the outer periphery of the guide pin 17. The tightly wound portion 44 is provided at a place where the sliding speed between the guide pin 17 and the coil spring 37 is the fastest. Furthermore, both end portions of the coil spring 37 are processed in a direction orthogonal to the length direction of the coil spring 37 or in a vertical direction.
 このときコイルスプリング37の一端部がコイルスプリング当接凹部43の底部に当接するため、コイルスプリング37はベーン11の後端部29に垂直に取り付けられる。またコイルスプリング37の他端部がベーン溝31の底部に当接するため、コイルスプリング37はベーン溝31の底部に対して垂直に取り付けられる。 At this time, since one end of the coil spring 37 contacts the bottom of the coil spring contact recess 43, the coil spring 37 is vertically attached to the rear end 29 of the vane 11. Further, since the other end of the coil spring 37 contacts the bottom of the vane groove 31, the coil spring 37 is attached perpendicularly to the bottom of the vane groove 31.
 コイルスプリング37の内周に配置されてコイルスプリング37の座屈を防止するガイドピン17には、一端側をガイドピン圧入部41に圧入する圧入端18と、他端側で逃げ孔35内に突出する挿入端20と、が構成されている。 The guide pin 17 disposed on the inner periphery of the coil spring 37 to prevent buckling of the coil spring 37 has a press-fit end 18 for press-fitting one end side into the guide pin press-fit portion 41, and the escape hole 35 on the other end side. A protruding insertion end 20 is formed.
 逃げ孔35の内径は、ベーン溝31の底部の、ベーン厚み方向の長さより小さく形成されており、また逃げ孔35の内径は、挿入端20の外径よりも大きく形成されている。また逃げ孔35の内径はコイルスプリング37の他端部の外径よりも小さく形成されている。そのため逃げ孔35内にコイルスプリング37の他端部が突出することはなく、コイルスプリング37の他端部がベーン溝31の底部に当接する。 The inner diameter of the escape hole 35 is formed smaller than the length of the bottom of the vane groove 31 in the vane thickness direction, and the inner diameter of the escape hole 35 is formed larger than the outer diameter of the insertion end 20. The inner diameter of the escape hole 35 is smaller than the outer diameter of the other end of the coil spring 37. Therefore, the other end portion of the coil spring 37 does not protrude into the escape hole 35, and the other end portion of the coil spring 37 contacts the bottom portion of the vane groove 31.
 リアハウジング2cに収容される電動モータ部4は、コアにコイルを巻線した固定子19と、磁性材料によって形成されたモータロータ21と、駆動軸15と連結されているモータ軸23と、を備えている。 The electric motor unit 4 accommodated in the rear housing 2 c includes a stator 19 having a coil wound around a core, a motor rotor 21 formed of a magnetic material, and a motor shaft 23 connected to the drive shaft 15. ing.
 固定子19は、リアハウジング2cの内周に沿って複数個配置されている。モータロータ21は、モータ軸23に圧入して連結されている。また、モータ軸23の一端側が駆動軸15に連結されている。 A plurality of stators 19 are arranged along the inner periphery of the rear housing 2c. The motor rotor 21 is press-fitted and connected to the motor shaft 23. One end side of the motor shaft 23 is connected to the drive shaft 15.
 次に、本実施例のベーン型圧縮機1の動作について説明する。 Next, the operation of the vane type compressor 1 of this embodiment will be described.
 まず、インバータ部5によって、電動モータ部4の駆動制御を行う。インバータ部5からの制御によって、固定子19に電流が流れることにより固定子19の周囲に磁力が発生し、この磁力によってモータロータ21が回転する。このモータロータ21が回転することにより、モータロータに連結されたモータ軸23が回転するとともに、モータ軸23に連結されている駆動軸15が回転する。 First, drive control of the electric motor unit 4 is performed by the inverter unit 5. Under the control of the inverter unit 5, a current flows through the stator 19, thereby generating a magnetic force around the stator 19, and the motor rotor 21 is rotated by this magnetic force. As the motor rotor 21 rotates, the motor shaft 23 connected to the motor rotor rotates and the drive shaft 15 connected to the motor shaft 23 rotates.
 駆動軸15が回転することにより、駆動軸15と一体に形成されたロータ13が回転し、ロータ13に形成されたベーン溝31からベーン11が遠心力とコイルスプリング37の付勢力によってベーン11が飛び出す。すなわち、図2に示すコイルスプリング37が収縮した状態から図3に示すコイルスプリング37が伸長した状態となる。 By rotating the drive shaft 15, the rotor 13 formed integrally with the drive shaft 15 rotates, and the vane 11 is rotated by the centrifugal force and the biasing force of the coil spring 37 from the vane groove 31 formed in the rotor 13. Jump out. That is, the coil spring 37 shown in FIG. 3 is extended from the contracted state shown in FIG.
 ベーン11がベーン溝31から飛び出すことにより、ベーン11に圧入されたガイドピン17がコイルスプリング37の内周を移動するが、コイルスプリング37の密着巻部44に設けた縮径部50が、積極的にガイドピン17と摺接することにより、ガイドピン17が傾くことが防止され、ガイドピン17の先端部、つまり挿入端20付近のコイルスプリング37が破損することが防止されている。 When the vane 11 jumps out of the vane groove 31, the guide pin 17 press-fitted into the vane 11 moves on the inner periphery of the coil spring 37, but the reduced diameter portion 50 provided on the tightly wound portion 44 of the coil spring 37 is positive. In particular, the sliding contact with the guide pin 17 prevents the guide pin 17 from tilting, and prevents the tip end portion of the guide pin 17, that is, the coil spring 37 near the insertion end 20 from being damaged.
 遠心力とコイルスプリング37の付勢力によってベーン溝31から飛び出したベーン11の先端部27とシリンダブロック7の内壁39との間で冷媒が圧縮され、図示しない吐出室へ圧縮された冷媒が吐出される。 The refrigerant is compressed between the distal end portion 27 of the vane 11 protruding from the vane groove 31 by the centrifugal force and the biasing force of the coil spring 37 and the inner wall 39 of the cylinder block 7, and the compressed refrigerant is discharged into a discharge chamber (not shown). The
 このように、ガイドピン17の挿入端20近傍のコイルスプリング37を密着巻部44としたことにより、コイルスプリング37の内周がガイドピン17の挿入端20によって摩耗してしまっても、密着巻部44は剪断応力が発生しないので、密着巻部44の破損を防止することができる。 As described above, the coil spring 37 in the vicinity of the insertion end 20 of the guide pin 17 is used as the close contact winding portion 44, so that even if the inner periphery of the coil spring 37 is worn by the insertion end 20 of the guide pin 17, the close contact winding is performed. Since no shear stress is generated in the portion 44, the tightly wound portion 44 can be prevented from being damaged.
 また、密着巻部44に縮径部50を設けることにより、縮径部50が積極的にガイドピン17と摺接するため、コイルスプリング37の内周とガイドピン17とが接触することを防止することができる。 Further, by providing the reduced diameter portion 50 in the tightly wound portion 44, the reduced diameter portion 50 positively comes into sliding contact with the guide pin 17, so that the inner periphery of the coil spring 37 and the guide pin 17 are prevented from contacting each other. be able to.
 さらに、コイルスプリング37の端部を加工することにより、コイルスプリング37をベーン11の後端部29に垂直に取り付けることができ、ガイドピン17との干渉を減らすことができるため、コイルスプリング37の内周の摩耗量を減らすことができる。 Further, by machining the end portion of the coil spring 37, the coil spring 37 can be vertically attached to the rear end portion 29 of the vane 11, and interference with the guide pin 17 can be reduced. The amount of wear on the inner circumference can be reduced.
 ガイドピン17とコイルスプリング37との間での摺動速度が最も速い箇所に密着巻部44を設けたことにより、上記効果と同様の効果を得ることができる。 By providing the tightly wound portion 44 at a place where the sliding speed between the guide pin 17 and the coil spring 37 is the fastest, an effect similar to the above effect can be obtained.
 なお、本実施例のコイルスプリング37では、テーパ部49とコイル部45が連続して密着巻きとなっているが、必ずしも連続してテーパ部49とコイル部45を密着巻きとしなくてもよい。 In the coil spring 37 of this embodiment, the taper portion 49 and the coil portion 45 are continuously wound tightly, but the taper portion 49 and the coil portion 45 are not necessarily continuously wound.
 本出願は、2012年10月11日に出願された日本国特許願第2012-225908号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-225908 filed on Oct. 11, 2012, the entire contents of which are incorporated herein by reference.
 本発明は、ベーン型圧縮機に利用することができる。 The present invention can be used for a vane type compressor.
1 ベーン型圧縮機
2 ハウジング
3 圧縮機構
11 ベーン
13 ロータ
17 ガイドピン
20 挿入端
25 シリンダ室
31 ベーン溝
37 コイルスプリング
44 密着巻部
DESCRIPTION OF SYMBOLS 1 Vane type compressor 2 Housing 3 Compression mechanism 11 Vane 13 Rotor 17 Guide pin 20 Insertion end 25 Cylinder chamber 31 Vane groove 37 Coil spring 44 Close winding part

Claims (4)

  1.  円筒状のハウジングと、前記ハウジング内に収容される圧縮機構と、を備えるベーン型圧縮機であって、
     前記圧縮機構は、内部に楕円形状のシリンダ室を有するシリンダブロックと、シリンダ室内に回転自在に配置されるロータと、ロータに形成されるベーン溝に、突出自在に収容されるベーンと、ベーン溝に収容されて前記ベーンを突出する方向に付勢するコイルスプリングと、前記コイルスプリングの内周に配置されるガイドピンと、からなり、
     前記ガイドピンの挿入端近傍の前記コイルスプリングを密着巻部としたことを特徴とするベーン型圧縮機。
    A vane-type compressor comprising a cylindrical housing and a compression mechanism accommodated in the housing,
    The compression mechanism includes a cylinder block having an elliptical cylinder chamber therein, a rotor that is rotatably disposed in the cylinder chamber, a vane that is protruded into a vane groove formed in the rotor, and a vane groove A coil spring that is housed in the coil spring and biases the vane in a protruding direction, and a guide pin that is disposed on the inner periphery of the coil spring.
    A vane type compressor characterized in that the coil spring in the vicinity of the insertion end of the guide pin is a tightly wound portion.
  2.  請求項1記載のベーン型圧縮機であって、
     前記コイルスプリングに形成される密着巻部の一部を他の密着巻部よりも縮径した縮径部を設けたことを特徴とするベーン型圧縮機。
    The vane type compressor according to claim 1,
    A vane type compressor having a reduced diameter portion in which a part of a tightly wound portion formed in the coil spring is smaller in diameter than other tightly wound portions.
  3.  請求項1または請求項2に記載のベーン型圧縮機であって、
     前記コイルスプリングの端部をコイルスプリングの長さ方向に対して直交する方向に加工したことを特徴とするベーン型圧縮機。
    The vane type compressor according to claim 1 or 2, wherein
    A vane type compressor, wherein an end portion of the coil spring is processed in a direction orthogonal to a length direction of the coil spring.
  4.  円筒状のハウジングと、前記ハウジング内に収容される圧縮機構と、を備えるベーン型圧縮機であって、
     前記圧縮機構は、内部に楕円形状のシリンダ室を有するシリンダブロックと、シリンダ室内に回転自在に配置されるロータと、ロータに形成されるベーン溝に、突出自在に収容されるベーンと、ベーン溝に収容されて前記ベーンを突出する方向に付勢するコイルスプリングと、前記コイルスプリングの内周に配置されるガイドピンと、からなり、
     前記ガイドピンと前記コイルスプリングとの間での摺動速度が最も速い箇所に密着巻部を設けることを特徴とするベーン型圧縮機。
    A vane-type compressor comprising a cylindrical housing and a compression mechanism accommodated in the housing,
    The compression mechanism includes a cylinder block having an elliptical cylinder chamber therein, a rotor that is rotatably disposed in the cylinder chamber, a vane that is protruded into a vane groove formed in the rotor, and a vane groove A coil spring that is housed in the coil spring and biases the vane in a protruding direction, and a guide pin that is disposed on the inner periphery of the coil spring.
    A vane type compressor characterized in that a tightly wound portion is provided at a place where the sliding speed between the guide pin and the coil spring is fastest.
PCT/JP2013/076007 2012-10-11 2013-09-26 Vane-type compressor WO2014057811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225908A JP5890292B2 (en) 2012-10-11 2012-10-11 Vane type compressor
JP2012-225908 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057811A1 true WO2014057811A1 (en) 2014-04-17

Family

ID=50477281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076007 WO2014057811A1 (en) 2012-10-11 2013-09-26 Vane-type compressor

Country Status (2)

Country Link
JP (1) JP5890292B2 (en)
WO (1) WO2014057811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645173A (en) * 2019-11-15 2020-01-03 深圳市创智联科技发展有限公司 Rotary vane vacuum pump with pressure spring convenient to replace
GB2581845A (en) * 2019-03-01 2020-09-02 Delphi Tech Ip Ltd Vane pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522994B1 (en) 2021-10-28 2023-04-19 엘지전자 주식회사 Rotary compressor
JP7038249B1 (en) * 2021-11-17 2022-03-17 日立ジョンソンコントロールズ空調株式会社 Compressor
JP2023183450A (en) * 2022-06-16 2023-12-28 日本ピラー工業株式会社 mechanical seal device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628443U (en) * 1985-07-01 1987-01-19
JPH03122286U (en) * 1990-03-24 1991-12-13
JPH04109490U (en) * 1991-03-07 1992-09-22 光洋精工株式会社 vane pump
JP2003148531A (en) * 2001-11-09 2003-05-21 Showa Corp Multi-stage coil spring
JP2006044561A (en) * 2004-08-06 2006-02-16 Kobelco Contstruction Machinery Ltd Track spring for crawler traveling body
US20090087334A1 (en) * 2007-09-28 2009-04-02 Robert Whitesell Sliding Vane Compression and Expansion Device
JP2009209702A (en) * 2008-02-29 2009-09-17 Calsonic Kansei Corp Compressor
JP2009221967A (en) * 2008-03-17 2009-10-01 Calsonic Kansei Corp Compressor
JP2009250063A (en) * 2008-04-02 2009-10-29 Calsonic Kansei Corp Compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628443U (en) * 1985-07-01 1987-01-19
JPH03122286U (en) * 1990-03-24 1991-12-13
JPH04109490U (en) * 1991-03-07 1992-09-22 光洋精工株式会社 vane pump
JP2003148531A (en) * 2001-11-09 2003-05-21 Showa Corp Multi-stage coil spring
JP2006044561A (en) * 2004-08-06 2006-02-16 Kobelco Contstruction Machinery Ltd Track spring for crawler traveling body
US20090087334A1 (en) * 2007-09-28 2009-04-02 Robert Whitesell Sliding Vane Compression and Expansion Device
JP2009209702A (en) * 2008-02-29 2009-09-17 Calsonic Kansei Corp Compressor
JP2009221967A (en) * 2008-03-17 2009-10-01 Calsonic Kansei Corp Compressor
JP2009250063A (en) * 2008-04-02 2009-10-29 Calsonic Kansei Corp Compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2581845A (en) * 2019-03-01 2020-09-02 Delphi Tech Ip Ltd Vane pump
GB2581845B (en) * 2019-03-01 2021-07-21 Delphi Tech Ip Ltd Vane pump
CN110645173A (en) * 2019-11-15 2020-01-03 深圳市创智联科技发展有限公司 Rotary vane vacuum pump with pressure spring convenient to replace
CN110645173B (en) * 2019-11-15 2021-01-26 世晃(上海)机电工业有限公司 Rotary vane vacuum pump with pressure spring convenient to replace

Also Published As

Publication number Publication date
JP2014077402A (en) 2014-05-01
JP5890292B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
WO2014057811A1 (en) Vane-type compressor
JP4221607B2 (en) Fuel pump
US9039388B2 (en) Hermetic compressor
EP2075405B1 (en) Vane-type compressor
EP2385255A2 (en) Hermetic compressor and manufacturing method thereof
KR102168628B1 (en) Electromotive compressor motor
EP1956697A1 (en) Motor for injection molding machine, rotor of buried magnet motor
KR20100068972A (en) Interior permanent magnet type brushless direct current motor and compressor having the same
JP2010259318A (en) Insulator, motor, and compressor
JP4382853B2 (en) compressor
US20170284396A1 (en) Electric compressor
WO2014030397A1 (en) Electric compressor
JP2007205203A (en) Rotary compressor and refrigeration cycle device using same
JP6680360B2 (en) Rotating machinery
CN104832435B (en) Hermetic type compressor
CN212717165U (en) Compressor
JP4459275B2 (en) compressor
KR101886729B1 (en) ElECTRIC COMPRESSOR
JP2009250063A (en) Compressor
JP2008271616A (en) Enclosed compressor and refrigeration cycle device using the same
JP7166117B2 (en) Electric motors, compressors, and refrigeration cycle equipment
WO2013001993A1 (en) Connecting terminal device and compressor
KR20160026121A (en) Scroll compressor
JP6036405B2 (en) Electric compressor
JP5589975B2 (en) Vane type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845906

Country of ref document: EP

Kind code of ref document: A1