WO2014057735A1 - Metal powder manufacturing method - Google Patents

Metal powder manufacturing method Download PDF

Info

Publication number
WO2014057735A1
WO2014057735A1 PCT/JP2013/072862 JP2013072862W WO2014057735A1 WO 2014057735 A1 WO2014057735 A1 WO 2014057735A1 JP 2013072862 W JP2013072862 W JP 2013072862W WO 2014057735 A1 WO2014057735 A1 WO 2014057735A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrazine
nickel
solution
metal
metal powder
Prior art date
Application number
PCT/JP2013/072862
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 石田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014057735A1 publication Critical patent/WO2014057735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/16Hydrazine; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a method for producing metal powder, and more particularly, for example, to a method for producing metal powder used as an electrode material for electronic parts.
  • a conductive paste is used to form internal electrodes of a multilayer ceramic capacitor.
  • the conductive paste contains metal powder such as nickel powder as a conductive component.
  • metal powder such as nickel powder as a conductive component.
  • a strong alkali is added to the nickel salt aqueous solution to adjust the pH to 10 or more, the temperature of the nickel salt aqueous solution is set to 55 to 70 ° C., and the temperature is 0 to 70 ° C.
  • 2 to 10 mol of a reducing agent is added to 1 mol and nickel powder is precipitated by a reduction reaction. According to this method, a nickel powder having a narrow particle size distribution with an average primary particle size in the range of 0.4 to 0.6 ⁇ m can be obtained (see Patent Document 1).
  • an organic compound composed of N, C, O and H and having an OH group in the molecule is added to a nickel salt solution and / or a hydrazine compound solution containing copper ions, and a nickel salt solution and a hydrazine compound solution Are mixed to obtain nickel powder by oxidation-reduction reaction.
  • nickel powder having a particle size of 100 to 300 nm can be obtained (see Patent Document 2).
  • a nickel chloride solution and 1.2 to 2.5 mol of hydrazine are mixed with 1 mol of nickel in the nickel chloride solution to form a complex salt composed of nickel and hydrazine, and the pH of the solution is set to 12 or more.
  • a method for producing nickel powder that is adjusted to cause hydrolysis at a reaction temperature in the range of 80 to 100 ° C. According to this method, the amount of hydrazine used per 1 mol of nickel can be reduced to 1.2 to 2.5 mol, and the particle diameter of the obtained nickel powder can be set to 0.1 to 1 ⁇ m. Yes (see Patent Document 3).
  • a method of reducing TOC in a hydrated hydrazine aqueous solution with activated carbon is also disclosed (see Patent Document 6).
  • Patent Document 1 The method described in Patent Document 1 is not suitable as a conductive paste for internal electrodes of a small-sized and large-capacity multilayer ceramic capacitor because the resulting nickel powder has a large particle size of 0.4 to 0.6 ⁇ m. Further, when producing nickel powder, 2 to 10 mol of hydrazine is required per 1 mol of nickel ions, and a large amount of hydrazine is required for producing nickel powder.
  • nickel powder having a particle size of 100 to 300 nm can be obtained.
  • the amount of hydrazine needs to be 2 to 10 mol per mol of nickel ions. A large amount of hydrazine is required for the production of nickel powder.
  • the obtained nickel powder has a fine particle size of 0.1 to 1 ⁇ m, and the amount of hydrazine to be used can be reduced.
  • the particle diameter of the obtained nickel powder is 0.1 to 1 ⁇ m, the amount of hydrazine used is small, and the reaction can be performed at a low temperature up to 60 ° C. Since an alkali salt is used, the obtained nickel powder forms a lump of 50 ⁇ m or more derived from nickel carbonate.
  • the amount of hydrazine used can be reduced when nickel powder is produced by removing pyrazoles in hydrazine.
  • an adsorption resin having pores having an average pore diameter of 50 nm or more is used.
  • the pore diameter of the adsorption resin is large and the adsorption energy is low.
  • adsorbent resin it takes time for the pyrazole to diffusely adsorb in the pores, and therefore it is necessary to limit the contact rate between hydrazine and the adsorbing resin to 0.6 g / h or less per mL of adsorbing resin.
  • a large amount of adsorbent resin is required for processing. For example, 167 L of adsorbent resin is required to process 100 L of hydrazine in 1 hour. Therefore, it is uneconomical to remove pyrazole in hydrazine on an industrial scale using an adsorbent resin.
  • Patent Document 6 discloses a method of removing organic impurities containing pyrazole in hydrazine with activated carbon, but it is described that the efficiency is poor as in the case of the adsorption resin.
  • the present invention includes a step of removing impurities in hydrazine using fibrous activated carbon, a step of preparing a hydrazine solution using hydrazine from which impurities are removed, a step of adjusting a metal salt solution using a metal salt,
  • a method for producing a metal powder comprising mixing a metal salt solution and a hydrazine solution and precipitating the metal powder by a reduction reaction. Since the pores on the surface of the fibrous activated carbon have a small average pore diameter, the adsorption energy for adsorbing impurities in hydrazine is high. Therefore, it is possible to diffuse and adsorb impurities in the pores of the fibrous activated carbon in a short time. Thus, by using hydrazine from which impurities have been removed, metal powder can be deposited without hindering metal reduction.
  • the pyrazole compound as an impurity is removed.
  • the impurity that hinders the reaction between the metal salt and hydrazine is a pyrazole compound, and by removing this pyrazole compound, the above-described effects can be obtained.
  • the metal salt solution can use what was prepared using water-soluble nickel salt, and the metal powder to precipitate in this case is nickel powder.
  • the metal salt solution nickel powder can be obtained.
  • the nickel powder is useful as a material for a conductive paste for an internal electrode of a multilayer ceramic capacitor, for example.
  • Copper ions can be added when preparing a metal salt solution using a water-soluble nickel salt. By adding copper ions when preparing the metal salt solution, the copper is first reduced to become nuclei and the effect of atomizing the nickel powder can be obtained.
  • the average pore radius of the fibrous activated carbon is preferably in the range of 0.84 to 1.54 nm. Further, the specific surface area of the fibrous activated carbon is preferably 850 to 1300 m 2 / g. The pore volume of the fibrous activated carbon is preferably 0.35 to 0.97 mL / g. When the average pore radius, specific surface area, and pore volume of the fibrous activated carbon are within such ranges, impurities in hydrazine can be efficiently removed.
  • hydrazine from which impurities have been removed on an industrial scale can be obtained.
  • a metal powder can be obtained by reacting a metal salt and hydrazine at a low temperature using a small amount of hydrazine. Therefore, it is not necessary to add a carbonic acid compound that causes coarsening of the metal powder particles, and a metal powder having a small particle size can be obtained.
  • the metal salt and hydrazine can be reacted at a low temperature, the particle size of the metal powder can be controlled well, and a metal powder with small variation in particle size can be obtained.
  • a conductive paste is used for forming an electrode of an electronic component such as a multilayer ceramic capacitor.
  • the conductive paste contains metal powder as a conductive material.
  • a metal salt solution and a hydrazine solution are mixed, and the metal powder is precipitated by a reduction reaction.
  • a reaction in which a nickel salt and a hydrazine solution are mixed and nickel powder is precipitated by a reduction reaction is expressed as follows.
  • the present invention relates to a method for producing such a metal powder, and can be applied to metals that can be reduced with hydrazine such as nickel, cobalt, copper, platinum, palladium, silver, and gold as the metal species.
  • hydrazine there are many organic impurities in hydrazine such as alcohols, ketones, amines, amides, oximes, hydrazones, hydrazides, pyrazines, pyrazoles, pyrazolines, pyrroles, pyridines, pyridazines, triazoles, and imidazoles due to production by-products.
  • organic impurities in hydrazine such as alcohols, ketones, amines, amides, oximes, hydrazones, hydrazides, pyrazines, pyrazoles, pyrazolines, pyrroles, pyridines, pyridazines, triazoles, and imidazoles due to production by-products.
  • a compound having a lone electron pair may coordinate with a metal ion and hinder its reduction.
  • a heterocyclic compound having two or more lone electron pairs having N as an element such as pyrazine, pyrazole, pyridazine, triazole, and imidazole, cross-links with a metal ion to make reduction more difficult.
  • hydrazine Due to the presence of such a compound in hydrazine, for example, when nickel ions are made into nickel powder, hydrazine needs to be added in a large amount of 2 to 10 mol per mol of nickel. In order to reduce 1 mol of nickel, it can theoretically be reduced with 1 mol of hydrazine, so in practice, 2 to 10 times the theoretical amount of hydrazine is added.
  • the nickel powder can be atomized by adding copper ions to the nickel salt and reducing the copper first to make it a core. Therefore, it is difficult to atomize the nickel powder.
  • fibrous activated carbon having pores with an average pore radius of 1.6 nm or less (diameter of 3.2 nm or less). To be removed by adsorption. Note that most of the organic impurities that crosslink and coordinate with metal ions present in hydrazine are considered to have a radius of 1.5 nm or less. In order to remove such organic impurities, it is preferable to use fibrous activated carbon having pores having an average pore radius in the range of 0.84 to 1.54 nm.
  • the specific surface area of the fibrous activated carbon is preferably in the range of 850 to 1300 m 2 / g. Further, the pore volume of the fibrous activated carbon is preferably in the range of 0.35 to 0.97 mL / g.
  • the conventional granular activated carbon has macropores of 50 nm or more, small-diameter trajectory pores are formed therein, and micro-pores of smaller diameters are further formed therein. It has a configuration.
  • the macropores on the surface of the granular activated carbon use an adsorbent resin that has a pore diameter that is too large to adsorb organic impurities having a radius of 1.5 nm or less and that has a pore diameter of 50 nm or more.
  • the removal efficiency of organic impurities is poor as in the case of As shown in FIG. 2, the fibrous activated carbon has a large number of micropores having an optimal size of 1 to 2 nm (10 to 20 angstroms) in radius on the fiber surface. Can be removed.
  • a hydrazine solution is prepared using hydrazine from which organic impurities such as pyrazole and its compounds are removed using fibrous activated carbon.
  • a metal salt solution is prepared using a metal salt such as a water-soluble nickel salt. Then, the metal salt solution and the hydrazine solution can be mixed and the metal powder can be precipitated by a reduction reaction.
  • a water-soluble nickel salt is used as the metal salt, nickel powder useful as a material for a conductive paste for an electrode such as a multilayer ceramic capacitor can be obtained.
  • copper ions that act as a atomizing agent can be added.
  • the amount of hydrazine used per mole of nickel ions is reduced to 1.3-2 moles by removing hydrazine from which organic impurities that hinder the reduction of metal ions, such as nickel ions and copper ions, which are atomizing agents, are removed. can do. Moreover, since reduction of copper ions is not hindered, a nucleation effect by copper ions appears and a metal powder having a small particle size can be obtained. Furthermore, by removing organic impurities that hinder the reduction of metal ions, it is not necessary to react the metal salt solution with the hydrazine solution at a high temperature. Therefore, the metal salt solution and the hydrazine solution can be reacted at a low temperature of 50 to 70 ° C., and the particle size can be controlled, so that a metal powder having a small particle size and small particle size variation can be obtained.
  • Example 1 The amount of TOC (total organic carbon) was 98 ppm, and quantitative analysis using the peak area of the GC-MS (gas chromatography) spectrum revealed that it contained 65 ppm of 1,3,5-trimethylpyrazole. 10 L of hydrazine (this hydrazine is referred to as hydrazine A) was prepared.
  • hydrazine A was applied to a 1 L activated carbon filter filled with fibrous activated carbon A-10 manufactured by Unitika Ltd. having a specific surface area of 1300 m 2 / g, a pore volume of 0.55 mL / g, and an average pore radius of 0.86 nm.
  • the passing treatment was carried out at a flow rate of 19650 g / h.
  • the obtained hydrazine had a TOC amount of 20 ppm, and a peak of 1,3,5-trimethylpyrazole could not be confirmed by GC-MS.
  • the hydrazine thus obtained is designated as hydrazine C.
  • the passing treatment was carried out at a flow rate of 19650 g / h.
  • the obtained hydrazine had a TOC amount of 20 ppm, and a peak of 1,3,5-trimethylpyrazole could not be confirmed by GC-MS.
  • the hydrazine thus obtained is designated as hydrazine D.
  • 1,3,5-trimethylpyrazole was removed by fibrous activated carbon. If the pore diameter of the activated carbon is larger than the molecular size of the impurity to be removed, 1 Not only, 3,5-trimethylpyrazole, but also other impurities can be removed.
  • hydrazine A was passed through a 1 L activated carbon filter filled with commercially available coconut shell activated carbon at a flow rate of 19650 g / h.
  • the obtained hydrazine had a TOC amount of 60 ppm, and GC-MS contained 43 ppm of 1,3,5-trimethylpyrazole.
  • the hydrazine thus obtained is designated as hydrazine E.
  • hydrazine A was passed through a 1 L column packed with adsorption resin Diaion HP20 at a flow rate of 19650 g / h.
  • the obtained hydrazine had a TOC content of 50 ppm, and GC-MS contained 35 ppm of 1,3,5-trimethylpyrazole.
  • the hydrazine thus obtained is designated as hydrazine F.
  • Table 1 shows data on specific surface area, pore volume and average pore radius for the adsorbent used in the filter used in the above-described hydrazine treatment.
  • nickel sulfate 253 g of nickel sulfate, 23.3 g of trisodium citrate, and copper sulfate pentahydrate were dissolved in 620 mL of pure water to prepare a nickel salt aqueous solution.
  • the amount of copper ions in the copper sulfate pentahydrate was 20 ppm relative to the amount of nickel.
  • 108 g of hydrazine B, 104 g of sodium hydroxide and 17 g of triethanolamine were dissolved in 670 mL of pure water to prepare a hydrazine solution. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 1.3 mol.
  • the nickel salt solution and the hydrazine solution were heated to a liquid temperature of 60 ° C., and then the two liquids were mixed and stirred for 60 minutes to obtain a nickel powder slurry.
  • the supernatant was collected after stirring the two liquids and the remaining nickel ions were confirmed by an ion checker, no nickel ions were detected.
  • the obtained nickel powder slurry is filtered and washed until the filtrate has a conductivity of 10 ⁇ S / cm or less, and then water is replaced with acetone, followed by drying in an oven set at a temperature of 80 ° C. Got.
  • the obtained nickel powder was observed at a magnification of 5000 to 10,000 times using an electrolytic emission scanning electron microscope.
  • the particle size of nickel powder was calculated
  • the particle size variation is a CV value, which is calculated based on an equation of (standard deviation / average value) ⁇ 100 (%).
  • An average particle size of 0.4 ⁇ m or less and a CV value of 25% or less are preferable as nickel powder for use in a multilayer ceramic capacitor having a small maximum capacity.
  • the average particle diameter of the obtained nickel powder was 0.15 ⁇ m, and the CV value was 20%.
  • Example 1 even if the amount of hydrazine is as small as 1.3 mol of hydrazine with respect to 1 mol of nickel ions, nickel ions do not remain after the reaction, the average particle size is 0.15 ⁇ m, and the CV value is 25% or less. Nickel powder having a uniform particle size can be obtained.
  • Example 2 Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was 135 g. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 1.6 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 ⁇ m and a CV value of 20%. In Example 2, the same effect as in Example 1 could be obtained.
  • Example 3 Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was 158 g. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 2 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 ⁇ m and a CV value of 20%. In Example 3, the same effect as in Example 1 could be obtained.
  • Example 4 Nickel powder was obtained in the same manner as in Example 3 except that the amount of copper ions was changed to 0 ppm. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.24 ⁇ m and a CV value of 24%. In Example 4, since no copper ion was added, a nickel powder controlled to have a larger particle size than that of Example 3 was obtained.
  • Example 5 Nickel powder was obtained in the same manner as in Example 1 except that the amount of copper ions was 1 ppm. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.35 ⁇ m and a CV value of 15%. In Example 5, since the copper ion was reduced to 1 ppm, a nickel powder controlled to have a larger particle size than that of Example 1 was obtained.
  • Example 6 Nickel powder was obtained in the same manner as in Example 1 except that the reaction temperature was 50 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.20 ⁇ m and a CV value of 19%. In Example 6, since the reaction temperature was 50 ° C., nickel powder controlled to have a larger particle size than that of Example 1 was obtained.
  • Example 7 Nickel powder was obtained in the same manner as in Example 1 except that the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had a particle size of 0.15 ⁇ m and a CV value of 20%. In Example 7, the same effect as in Example 1 was obtained at a reaction temperature of 70 ° C.
  • Example 8 Nickel powder was obtained in the same manner as in Example 1 except that hydrazine C was used and the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 ⁇ m and a CV value of 20%. In Example 8, the same effect as Example 1 was able to be acquired with the reaction temperature of 70 degreeC.
  • Example 9 Nickel powder was obtained in the same manner as in Example 1 except that hydrazine D was used and the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 ⁇ m and a CV value of 20%. In Example 9, the same effect as in Example 1 could be obtained at a reaction temperature of 70 ° C.
  • Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was changed to 158 g using hydrazine A. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 2 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.6 ⁇ m and a CV value of 20%. In Comparative Example 1, the amount of hydrazine was sufficient, but since the pyrazole was not removed, the nickel particle size exceeded 0.4 ⁇ m.
  • Nickel powder was obtained in the same manner as in Example 1 except that hydrazine E was used. Nickel ions were detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.6 ⁇ m and a CV value of 18%. Hydrazine E used in Comparative Example 2 is obtained by treating hydrazine A with coconut shell activated carbon, and since pyrazole has not been removed, nickel ions remain in the liquid after the reaction, and the nickel particle size is 0.1. It exceeded 4 ⁇ m.
  • Nickel powder was obtained in the same manner as in Example 1 except that hydrazine F was used. Nickel ions were detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had a particle size of 0.5 ⁇ m and a CV value of 20%. Hydrazine F used in Comparative Example 3 is obtained by treating hydrazine A with an adsorbent resin, and since pyrazole is not removed, nickel ions remain in the liquid after the reaction, and the nickel particle size exceeds 0.4 ⁇ m. It was. The above results are shown in Table 2.
  • nickel powder when hydrazine from which pyrazole has not been removed is used, the particle size of nickel powder exceeds 0.4 ⁇ m, but by using hydrazine from which pyrazole has been removed, the particle size can be reduced.
  • Nickel powder having a CV value of 25% or less can be obtained at 0.4 ⁇ m or less.
  • nickel powder with a small average particle diameter can be obtained by adding a copper ion when mixing a nickel salt solution and a hydrazine solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a metal powder manufacturing method capable of removing impurities in hydrazine, which is used as a reducing agent, on an industrial scale and with which, as a result, metal can be reduced with a small amount of hydrazine. Impurities in the hydrazine are removed using fibrous activated carbon. A hydrazine solution is prepared using the hydrazine from which impurities have been removed. A metal salt solution is prepared using a metal salt. Said metal salt solution and hydrazine solution are mixed and metal powder is deposited by a reduction reaction.

Description

金属粉末の製造方法Method for producing metal powder
 この発明は、金属粉末の製造方法に関し、特にたとえば、電子部品の電極材料として用いられる金属粉末の製造方法に関する。 The present invention relates to a method for producing metal powder, and more particularly, for example, to a method for producing metal powder used as an electrode material for electronic parts.
 たとえば、積層セラミックコンデンサの内部電極を形成するため、導電ペーストが用いられている。導電ペーストには、導電成分として、例えばニッケル粉末などの金属粉末が含有されている。このような金属粉末を得るために、ニッケル塩水溶液に強アルカリを加えてpHを10以上とし、ニッケル塩水溶液の温度を55~70℃とした後、温度0~70℃の、かつ、ニッケルイオン1モルに対して2~10モルの還元剤を加えて、還元反応によりニッケル粉末を析出させる方法がある。この方法によれば、1次粒子の平均粒径が0.4~0.6μmの範囲内にあって、粒度分布が狭いニッケル粉末を得ることができる(特許文献1参照)。 For example, a conductive paste is used to form internal electrodes of a multilayer ceramic capacitor. The conductive paste contains metal powder such as nickel powder as a conductive component. In order to obtain such a metal powder, a strong alkali is added to the nickel salt aqueous solution to adjust the pH to 10 or more, the temperature of the nickel salt aqueous solution is set to 55 to 70 ° C., and the temperature is 0 to 70 ° C. There is a method in which 2 to 10 mol of a reducing agent is added to 1 mol and nickel powder is precipitated by a reduction reaction. According to this method, a nickel powder having a narrow particle size distribution with an average primary particle size in the range of 0.4 to 0.6 μm can be obtained (see Patent Document 1).
 また、銅イオンを含有するニッケル塩溶液および/またはヒドラジン化合物溶液に、N、C、OおよびHから構成されかつ分子内にOH基を有する有機化合物を添加し、ニッケル塩溶液とヒドラジン化合物溶液とを混合して、酸化還元反応により、ニッケル粉末を得る方法が開示されている。この方法によれば、100~300nmの粒径を有するニッケル粉末を得ることができる(特許文献2参照)。 Further, an organic compound composed of N, C, O and H and having an OH group in the molecule is added to a nickel salt solution and / or a hydrazine compound solution containing copper ions, and a nickel salt solution and a hydrazine compound solution Are mixed to obtain nickel powder by oxidation-reduction reaction. According to this method, nickel powder having a particle size of 100 to 300 nm can be obtained (see Patent Document 2).
 また、塩化ニッケル溶液と、塩化ニッケル溶液中のニッケル1モルに対して1.2~2.5モルのヒドラジンとを混合してニッケルとヒドラジンからなる錯塩を形成し、溶液のpHを12以上に調整して、反応温度80~100℃の範囲で加水分解を行わせるニッケル粉末の製造方法が開示されている。この方法によれば、ニッケル1モルに対して使用するヒドラジンの量を1.2~2.5モルと少なくすることができ、得られるニッケル粉末の粒径を0.1~1μmとすることができる(特許文献3参照)。 Further, a nickel chloride solution and 1.2 to 2.5 mol of hydrazine are mixed with 1 mol of nickel in the nickel chloride solution to form a complex salt composed of nickel and hydrazine, and the pH of the solution is set to 12 or more. There is disclosed a method for producing nickel powder that is adjusted to cause hydrolysis at a reaction temperature in the range of 80 to 100 ° C. According to this method, the amount of hydrazine used per 1 mol of nickel can be reduced to 1.2 to 2.5 mol, and the particle diameter of the obtained nickel powder can be set to 0.1 to 1 μm. Yes (see Patent Document 3).
 また、ニッケルの硫酸塩溶液にナトリウムあるいはカリウムの炭酸化合物を添加し、その存在下においてヒドラジンもしくはヒドラジン化合物を添加混合した後、100℃以下の温度に加熱して還元反応させるニッケル粉末の製造方法が開示されている。この方法によれば、ヒドラジンの還元効率を上げて、ニッケル1モルに対して使用するヒドラジンの量を1.3~2.0モルと少なくすることができる(特許文献4参照)。 In addition, there is a method for producing nickel powder in which a sodium or potassium carbonate compound is added to a nickel sulfate solution, hydrazine or a hydrazine compound is added and mixed in the presence, and then heated to a temperature of 100 ° C. or lower to cause a reduction reaction. It is disclosed. According to this method, the reduction efficiency of hydrazine can be increased, and the amount of hydrazine used with respect to 1 mol of nickel can be reduced to 1.3 to 2.0 mol (see Patent Document 4).
 また、水溶性ニッケル塩の水溶液に水加ヒドラジンを添加して金属ニッケルに還元させる方法において、水加ヒドラジンを製造する際に生じるピラゾール類を吸着樹脂で除去することを特徴とするニッケル粉末の製造方法が開示されている。この方法によれば、ニッケルの還元を妨げるピラゾール類を除去することにより、ヒドラジンの使用量を低減することができる(特許文献5参照)。 Further, in a method of adding hydrated hydrazine to an aqueous solution of a water-soluble nickel salt and reducing it to metallic nickel, the production of nickel powder characterized by removing pyrazoles produced when producing hydrated hydrazine with an adsorption resin A method is disclosed. According to this method, the amount of hydrazine used can be reduced by removing pyrazoles that hinder the reduction of nickel (see Patent Document 5).
 また、水加ヒドラジン水溶液のピラゾールを含むTOC(全有機炭素)を蒸留により低減させる方法が開示されている。ここには、活性炭により水加ヒドラジン水溶液中のTOCを低減させる方法も開示されている(特許文献6参照)。 Also disclosed is a method of reducing TOC (total organic carbon) containing pyrazole in a hydrated hydrazine aqueous solution by distillation. Here, a method of reducing TOC in a hydrated hydrazine aqueous solution with activated carbon is also disclosed (see Patent Document 6).
特開平07-278619号公報Japanese Patent Application Laid-Open No. 07-278619 特開2005-97729号公報JP-A-2005-97729 特開平6-336601号公報JP-A-6-336601 特開平3-257106号公報JP-A-3-257106 特開2004-263288号公報JP 2004-263288 A 特開昭63-295408号公報JP 63-295408 A
 特許文献1に記載の方法では、得られるニッケル粉末の粒径が0.4~0.6μmと大きく、小型大容量の積層セラミックコンデンサの内部電極用導電ペーストには適していない。さらに、ニッケル粉末を製造する際に、ニッケルイオン1モルに対してヒドラジンの量が2~10モル必要であり、ニッケル粉末の製造のために大量のヒドラジンが必要である。 The method described in Patent Document 1 is not suitable as a conductive paste for internal electrodes of a small-sized and large-capacity multilayer ceramic capacitor because the resulting nickel powder has a large particle size of 0.4 to 0.6 μm. Further, when producing nickel powder, 2 to 10 mol of hydrazine is required per 1 mol of nickel ions, and a large amount of hydrazine is required for producing nickel powder.
 特許文献2に記載の方法では、粒径100~300nmのニッケル粉末を得ることができるが、ニッケル粉末を製造する際に、ニッケルイオン1モルに対してヒドラジンの量が2~10モル必用であり、ニッケル粉末の製造のために大量のヒドラジンが必要である。 In the method described in Patent Document 2, nickel powder having a particle size of 100 to 300 nm can be obtained. However, when nickel powder is produced, the amount of hydrazine needs to be 2 to 10 mol per mol of nickel ions. A large amount of hydrazine is required for the production of nickel powder.
 特許文献3に記載の方法では、得られるニッケル粉末の粒径が0.1~1μmと微粒であり、使用するヒドラジンの量を少なくすることができるが、少ないヒドラジン量を補うために、80℃以上の温度でニッケルとヒドラジンの錯塩を加水分解しているため、得られるニッケル粉末の粒径の制御が困難である。そのため、この方法では、ニッケル粉末の粒径ばらつきが大きくなってしまう。 In the method described in Patent Document 3, the obtained nickel powder has a fine particle size of 0.1 to 1 μm, and the amount of hydrazine to be used can be reduced. However, in order to compensate for the small amount of hydrazine, 80 ° C. Since the complex salt of nickel and hydrazine is hydrolyzed at the above temperature, it is difficult to control the particle diameter of the resulting nickel powder. Therefore, in this method, the particle size variation of the nickel powder becomes large.
 特許文献4に記載の方法では、得られるニッケル粉末の粒径が0.1~1μmであり、使用するヒドラジンの量が少なく、60℃までの低い温度で反応させることができるが、材料として炭酸アルカリ塩が使用されるため、得られるニッケル粉末は炭酸ニッケル由来の50μm以上の塊状物を形成してしまう。 In the method described in Patent Document 4, the particle diameter of the obtained nickel powder is 0.1 to 1 μm, the amount of hydrazine used is small, and the reaction can be performed at a low temperature up to 60 ° C. Since an alkali salt is used, the obtained nickel powder forms a lump of 50 μm or more derived from nickel carbonate.
 特許文献5に記載の方法では、ヒドラジン中のピラゾール類を除去することにより、ニッケル粉末を製造する際に、ヒドラジンの使用量を低減することができる。ヒドラジン中のピラゾール類を除去するために、平均細孔直径が50nm以上の細孔を有する吸着樹脂が使用されている。しかしながら、1nm以下の大きさであるピラゾール類を吸着するには、吸着樹脂の細孔の径が大きく、吸着エネルギーが低い。そのため、細孔内にピラゾールが拡散吸着するのに時間を要し、それゆえヒドラジンと吸着樹脂の接触速度を吸着樹脂1mL当たり0.6g/h以下に制限する必要があり、ヒドラジンを工業的に処理しようとすると大量の吸着樹脂が必要となる。たとえば、100Lのヒドラジンを1時間で処理するのに、167Lの吸着樹脂が必要である。したがって、吸着樹脂を用いて工業的な規模でヒドラジン中のピラゾールを除去することは不経済である。 In the method described in Patent Document 5, the amount of hydrazine used can be reduced when nickel powder is produced by removing pyrazoles in hydrazine. In order to remove pyrazoles in hydrazine, an adsorption resin having pores having an average pore diameter of 50 nm or more is used. However, in order to adsorb pyrazoles having a size of 1 nm or less, the pore diameter of the adsorption resin is large and the adsorption energy is low. Therefore, it takes time for the pyrazole to diffusely adsorb in the pores, and therefore it is necessary to limit the contact rate between hydrazine and the adsorbing resin to 0.6 g / h or less per mL of adsorbing resin. A large amount of adsorbent resin is required for processing. For example, 167 L of adsorbent resin is required to process 100 L of hydrazine in 1 hour. Therefore, it is uneconomical to remove pyrazole in hydrazine on an industrial scale using an adsorbent resin.
 特許文献6には、ヒドラジン中のピラゾールを含む有機不純物を活性炭で除去する方法が開示されているが、吸着樹脂と同様に、効率が悪いことが記載されている。 Patent Document 6 discloses a method of removing organic impurities containing pyrazole in hydrazine with activated carbon, but it is described that the efficiency is poor as in the case of the adsorption resin.
 それゆえに、この発明の主たる目的は、還元剤として用いられるヒドラジン中の不純物を工業的なスケールで除去することができ、それにより少ない量のヒドラジンで金属を還元することができる金属粉末の製造方法を提供することである。
 また、この発明の他の目的は、特に水溶性ニッケル塩とヒドラジンとを用いてニッケル粉末を製造する際に、ヒドラジン中の不純物であるピラゾール化合物を除去することにより、少ない量のヒドラジンでニッケル粉末を得ることができる金属粉末の製造方法を提供することである。
Therefore, a main object of the present invention is to produce a metal powder that can remove impurities in hydrazine used as a reducing agent on an industrial scale, thereby reducing metal with a small amount of hydrazine. Is to provide.
Another object of the present invention is to remove a pyrazole compound, which is an impurity in hydrazine, particularly when a nickel powder is produced using a water-soluble nickel salt and hydrazine. It is providing the manufacturing method of the metal powder which can obtain.
 この発明は、繊維状活性炭を用いてヒドラジン中の不純物を除去する工程と、不純物を除去したヒドラジンを用いてヒドラジン溶液を調製する工程と、金属塩を用いて金属塩溶液を調整する工程と、金属塩溶液とヒドラジン溶液とを混合し、還元反応により金属粉末を析出させる工程とを含む、金属粉末の製造方法である。
 繊維状活性炭表面の細孔は小さい平均細孔径を有するため、ヒドラジン中の不純物を吸着する吸着エネルギーが高い。そのため、短時間で繊維状活性炭の細孔内に不純物を拡散吸着することができる。このように、不純物を除去したヒドラジンを用いることにより、金属の還元が妨げられることなく、金属粉末を析出させることができる。
The present invention includes a step of removing impurities in hydrazine using fibrous activated carbon, a step of preparing a hydrazine solution using hydrazine from which impurities are removed, a step of adjusting a metal salt solution using a metal salt, A method for producing a metal powder, comprising mixing a metal salt solution and a hydrazine solution and precipitating the metal powder by a reduction reaction.
Since the pores on the surface of the fibrous activated carbon have a small average pore diameter, the adsorption energy for adsorbing impurities in hydrazine is high. Therefore, it is possible to diffuse and adsorb impurities in the pores of the fibrous activated carbon in a short time. Thus, by using hydrazine from which impurities have been removed, metal powder can be deposited without hindering metal reduction.
 このような金属粉末の製造方法において、不純物としてのピラゾール化合物が除去される。
 このような製造方法において、金属塩とヒドラジンとの反応を妨げる不純物はピラゾール化合物であり、このピラゾール化合物を除去することにより、上述のような作用効果を得ることができる。
In such a method for producing metal powder, the pyrazole compound as an impurity is removed.
In such a production method, the impurity that hinders the reaction between the metal salt and hydrazine is a pyrazole compound, and by removing this pyrazole compound, the above-described effects can be obtained.
 また、金属塩溶液は水溶性ニッケル塩を用いて調製されたものを用いることができ、この場合、析出する金属粉末はニッケル粉末である。
 金属塩溶液として水溶性ニッケル塩を用いて調製された溶液を用いた場合、ニッケル粉末を得ることができる。ニッケル粉末は、例えば、積層セラミックコンデンサの内部電極用の導電ペーストの材料として有用である。
Moreover, the metal salt solution can use what was prepared using water-soluble nickel salt, and the metal powder to precipitate in this case is nickel powder.
When a solution prepared using a water-soluble nickel salt is used as the metal salt solution, nickel powder can be obtained. The nickel powder is useful as a material for a conductive paste for an internal electrode of a multilayer ceramic capacitor, for example.
 水溶性ニッケル塩を用いて金属塩溶液を調整する際に、銅イオンを添加することができる。
 金属塩溶液を調製する際に銅イオンを添加することにより、銅が先に還元されて核となり、ニッケル粉末を微粒化する効果を得ることができる。
Copper ions can be added when preparing a metal salt solution using a water-soluble nickel salt.
By adding copper ions when preparing the metal salt solution, the copper is first reduced to become nuclei and the effect of atomizing the nickel powder can be obtained.
 また、繊維状活性炭の平均細孔半径が0.84~1.54nmの範囲にあることが好ましい。
 さらに、繊維状活性炭の比表面積が850~1300m2/gであることが好ましい。
 また、繊維状活性炭の細孔容積が0.35~0.97mL/gであることが好ましい。
 繊維状活性炭の平均細孔半径、比表面積、細孔容積がこのような範囲にあることにより、効率よくヒドラジン中の不純物を除去することができる。
The average pore radius of the fibrous activated carbon is preferably in the range of 0.84 to 1.54 nm.
Further, the specific surface area of the fibrous activated carbon is preferably 850 to 1300 m 2 / g.
The pore volume of the fibrous activated carbon is preferably 0.35 to 0.97 mL / g.
When the average pore radius, specific surface area, and pore volume of the fibrous activated carbon are within such ranges, impurities in hydrazine can be efficiently removed.
 この発明によれば、繊維状活性炭を用いることにより、効率よくヒドラジン中の不純物を除去することができ、工業的なスケールで不純物を除去したヒドラジンを得ることができる。不純物を除去したヒドラジンを用いることにより、少ない量のヒドラジンを用いて、低い温度で金属塩とヒドラジンとを反応させて、金属粉末を得ることができる。そのため、金属粉末の粒子粗大化の原因となる炭酸化合物を添加する必用がなく、粒径の小さい金属粉末を得ることができる。また、低い温度で金属塩とヒドラジンとを反応させることができるため、金属粉末の粒径を良好に制御することができ、粒径ばらつきの小さい金属粉末を得ることができる。 According to this invention, by using fibrous activated carbon, impurities in hydrazine can be efficiently removed, and hydrazine from which impurities have been removed on an industrial scale can be obtained. By using hydrazine from which impurities are removed, a metal powder can be obtained by reacting a metal salt and hydrazine at a low temperature using a small amount of hydrazine. Therefore, it is not necessary to add a carbonic acid compound that causes coarsening of the metal powder particles, and a metal powder having a small particle size can be obtained. In addition, since the metal salt and hydrazine can be reacted at a low temperature, the particle size of the metal powder can be controlled well, and a metal powder with small variation in particle size can be obtained.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
粒状活性炭の表面を示す概念図である。It is a conceptual diagram which shows the surface of granular activated carbon. 繊維状活性炭の表面を示す概念図である。It is a conceptual diagram which shows the surface of fibrous activated carbon.
 たとえば、積層セラミックコンデンサなどの電子部品の電極形成のために、導電ペーストが用いられる。導電ペーストには、導電材料として金属粉末が含まれている。金属粉末を得るために、金属塩溶液とヒドラジン溶液とを混合し、還元反応により金属粉末が析出される。たとえば、ニッケル塩とヒドラジン溶液とを混合して、還元反応によりニッケル粉末を析出させる反応は、次のように表される。
   Ni2++2e-→Ni
   N24+2OH-→N2+2H2O+H2+2e-
 この発明は、このような金属粉末の製造方法に関するものであり、金属種としては、ニッケル、コバルト、銅、プラチナ、パラジウム、銀、金などのヒドラジンで還元可能な金属に適用可能である。
For example, a conductive paste is used for forming an electrode of an electronic component such as a multilayer ceramic capacitor. The conductive paste contains metal powder as a conductive material. In order to obtain a metal powder, a metal salt solution and a hydrazine solution are mixed, and the metal powder is precipitated by a reduction reaction. For example, a reaction in which a nickel salt and a hydrazine solution are mixed and nickel powder is precipitated by a reduction reaction is expressed as follows.
Ni 2+ + 2e - → Ni
N 2 H 4 + 2OH → N 2 + 2H 2 O + H 2 + 2e
The present invention relates to a method for producing such a metal powder, and can be applied to metals that can be reduced with hydrazine such as nickel, cobalt, copper, platinum, palladium, silver, and gold as the metal species.
 ヒドラジンの中には、製造時の副生成物に起因するアルコール、ケトン、アミン、アミド、オキシム、ヒドラゾン、ヒドラジド、ピラジン、ピラゾール、ピラゾリン、ピロール、ピリジン、ピリダジン、トリアゾール、イミダゾールといった多くの有機不純物が存在する。その中でも、孤立電子対をもつ化合物は、金属イオンと配位し、その還元を妨げる場合がある。特に、ピラジン、ピラゾール、ピリダジン、トリアゾール、イミダゾールのようなNを元素とした孤立電子対を2個以上もつ複素環化合物は、金属イオンと架橋配位し、還元をさらに困難にさせる。 There are many organic impurities in hydrazine such as alcohols, ketones, amines, amides, oximes, hydrazones, hydrazides, pyrazines, pyrazoles, pyrazolines, pyrroles, pyridines, pyridazines, triazoles, and imidazoles due to production by-products. Exists. Among them, a compound having a lone electron pair may coordinate with a metal ion and hinder its reduction. In particular, a heterocyclic compound having two or more lone electron pairs having N as an element, such as pyrazine, pyrazole, pyridazine, triazole, and imidazole, cross-links with a metal ion to make reduction more difficult.
 ヒドラジン中のこのような化合物の存在により、例えばニッケルイオンをニッケル粉末にする際には、ニッケル1モル当たりヒドラジンを2~10モルと大量に加える必要があった。なお、1モルのニッケルを還元するには、理論的には1モルのヒドラジンで還元することができるので、実際には、理論量の2~10倍のヒドラジンを加えていることになる。 Due to the presence of such a compound in hydrazine, for example, when nickel ions are made into nickel powder, hydrazine needs to be added in a large amount of 2 to 10 mol per mol of nickel. In order to reduce 1 mol of nickel, it can theoretically be reduced with 1 mol of hydrazine, so in practice, 2 to 10 times the theoretical amount of hydrazine is added.
 ヒドラジンの使用量を理論量に近付けるには、80℃以上の反応温度で反応させることや、炭酸化合物を加えることが挙げられるが、これらの方法では、ニッケル粉末の粒径ばらつきが大きくなってしまう。また、ニッケル粉末の製造時において、ニッケル塩に銅イオンを加えて、銅を先に還元させそれを核とすることで、ニッケル粉末を微粒化することができるが、炭酸化合物は銅イオンの還元も妨げるので、ニッケル粉末の微粒化も困難である。 In order to bring the amount of hydrazine used close to the theoretical amount, it is possible to react at a reaction temperature of 80 ° C. or higher, or to add a carbonic acid compound, but these methods increase the particle size variation of nickel powder. . In addition, during the production of nickel powder, the nickel powder can be atomized by adding copper ions to the nickel salt and reducing the copper first to make it a core. Therefore, it is difficult to atomize the nickel powder.
 そこで、平均細孔半径が1.6nm以下(直径で3.2nm以下)の細孔を有する繊維状活性炭を用いたフィルタにヒドラジンを通すことにより、金属イオンの還元を妨げる有機不純物が繊維状活性炭に吸着されて除去される。なお、ヒドラジンに存在する金属イオンと架橋配位するような有機不純物のほとんどが、半径1.5nm以下の大きさであると考えられる。このような有機不純物を除去するためには、平均細孔半径が0.84~1.54nmの範囲にある細孔を有する繊維状活性炭を用いることが好ましい。また、繊維状活性炭の比表面積は850~1300m2/gの範囲にあることが好ましい。さらに、繊維状活性炭の細孔容積は0.35~0.97mL/gの範囲にあることが好ましい。 Therefore, by passing hydrazine through a filter using fibrous activated carbon having pores with an average pore radius of 1.6 nm or less (diameter of 3.2 nm or less), organic impurities that prevent reduction of metal ions are caused by fibrous activated carbon. To be removed by adsorption. Note that most of the organic impurities that crosslink and coordinate with metal ions present in hydrazine are considered to have a radius of 1.5 nm or less. In order to remove such organic impurities, it is preferable to use fibrous activated carbon having pores having an average pore radius in the range of 0.84 to 1.54 nm. The specific surface area of the fibrous activated carbon is preferably in the range of 850 to 1300 m 2 / g. Further, the pore volume of the fibrous activated carbon is preferably in the range of 0.35 to 0.97 mL / g.
 なお、従来の粒状活性炭では、図1に示すように、どんなものでも50nm以上のマクロポアをもち、その内部に小径のトラジェクショナルポアが形成され、さらにその内部にもっと小径のミクロポアが形成された構成を有している。このように、粒状活性炭の表面にあるマクロポアでは、半径1.5nm以下の大きさの有機不純物を吸着するには細孔径が大きすぎ、50nm以上の細孔径を有するとされている吸着樹脂を用いた場合と同様に、有機不純物の除去効率が悪い。繊維状活性炭は、図2に示すように、半径1~2nm(10~20オングストローム)の最適なサイズのミクロポアを繊維表面に多数有しているので、大きな流量でヒドラジンを通しても、効率よく有機不純物を除去することができる。 In addition, as shown in FIG. 1, the conventional granular activated carbon has macropores of 50 nm or more, small-diameter trajectory pores are formed therein, and micro-pores of smaller diameters are further formed therein. It has a configuration. In this way, the macropores on the surface of the granular activated carbon use an adsorbent resin that has a pore diameter that is too large to adsorb organic impurities having a radius of 1.5 nm or less and that has a pore diameter of 50 nm or more. The removal efficiency of organic impurities is poor as in the case of As shown in FIG. 2, the fibrous activated carbon has a large number of micropores having an optimal size of 1 to 2 nm (10 to 20 angstroms) in radius on the fiber surface. Can be removed.
 このように繊維状活性炭を用いてピラゾールやその化合物などの有機不純物を除去したヒドラジンを用いて、ヒドラジン溶液が調製される。また、水溶性ニッケル塩などの金属塩を用いて、金属塩溶液が調製される。そして、金属塩溶液とヒドラジン溶液とを混合して、還元反応により金属粉末を析出させることができる。ここで、金属塩として水溶性ニッケル塩を使用すれば、積層セラミックコンデンサなどの電極用導電ペーストの材料として有用なニッケル粉末を得ることができる。水溶性ニッケル塩を用いて金属塩溶液を調製する際に、微粒化剤として働く銅イオンを添加することができる。 Thus, a hydrazine solution is prepared using hydrazine from which organic impurities such as pyrazole and its compounds are removed using fibrous activated carbon. A metal salt solution is prepared using a metal salt such as a water-soluble nickel salt. Then, the metal salt solution and the hydrazine solution can be mixed and the metal powder can be precipitated by a reduction reaction. Here, if a water-soluble nickel salt is used as the metal salt, nickel powder useful as a material for a conductive paste for an electrode such as a multilayer ceramic capacitor can be obtained. When preparing a metal salt solution using a water-soluble nickel salt, copper ions that act as a atomizing agent can be added.
 金属イオン、例えばニッケルイオンや微粒化剤である銅イオンの還元を妨げるような有機不純物を除去したヒドラジンによって、ニッケルイオン1モル当たりに使用するヒドラジンの量を1.3~2モルという少ない量にすることができる。また、銅イオンの還元が妨げられないため、銅イオンによる核形成効果が現われ、粒径の小さい金属粉末を得ることができる。さらに、金属イオンの還元を妨げる有機不純物を除去することにより、高温で金属塩溶液とヒドラジン溶液を反応させる必用がなくなる。そのため、50~70℃という低い温度で金属塩溶液とヒドラジン溶液を反応させることができ、粒径制御が可能であるため、粒径が小さく、粒径ばらつきの小さい金属粉末を得ることができる。 The amount of hydrazine used per mole of nickel ions is reduced to 1.3-2 moles by removing hydrazine from which organic impurities that hinder the reduction of metal ions, such as nickel ions and copper ions, which are atomizing agents, are removed. can do. Moreover, since reduction of copper ions is not hindered, a nucleation effect by copper ions appears and a metal powder having a small particle size can be obtained. Furthermore, by removing organic impurities that hinder the reduction of metal ions, it is not necessary to react the metal salt solution with the hydrazine solution at a high temperature. Therefore, the metal salt solution and the hydrazine solution can be reacted at a low temperature of 50 to 70 ° C., and the particle size can be controlled, so that a metal powder having a small particle size and small particle size variation can be obtained.
 また、ヒドラジン中の有機不純物を除去することにより、金属塩とヒドラジンとの反応時に炭酸化合物を加える必要がなく、金属粉末の粒子粗大化を防止することができ、塊状物がなく粒径ばらつきの小さい金属粉末を得ることができる。ヒドラジンに含まれる有機不純物を除去するために、表面に多数の細孔を有する繊維状活性炭を用いることにより、短時間で大量のヒドラジンを処理することができ、工業的なスケールで有機不純物が除去されたヒドラジンを得ることができる。 In addition, by removing organic impurities in hydrazine, it is not necessary to add a carbonic acid compound during the reaction between the metal salt and hydrazine, it is possible to prevent coarsening of the metal powder, there is no lump, and there is no variation in particle size. Small metal powder can be obtained. In order to remove organic impurities contained in hydrazine, a large amount of hydrazine can be treated in a short time by using fibrous activated carbon with many pores on the surface, and organic impurities are removed on an industrial scale. Hydrazine can be obtained.
(実施例1)
 TOC(全有機炭素)量が98ppmであり、GC-MS(ガスクロマトグラフィ)スペクトルのピーク面積を用いた定量分析から1,3,5-トリメチルピラゾールを65ppm含有していることがわかった60%加水ヒドラジン(このヒドラジンをヒドラジンAとする)10Lを準備した。
(Example 1)
The amount of TOC (total organic carbon) was 98 ppm, and quantitative analysis using the peak area of the GC-MS (gas chromatography) spectrum revealed that it contained 65 ppm of 1,3,5-trimethylpyrazole. 10 L of hydrazine (this hydrazine is referred to as hydrazine A) was prepared.
 このヒドラジンAを、比表面積1250m2/g、細孔容積0.97mL/g、平均細孔半径1.54nmのユニチカ株式会社製繊維状活性炭W-15Wを充填した1Lの活性炭フィルタに対して19650g/hの流量で通過処理した。得られたヒドラジンのTOC量は20ppmであり、GC-MSでは、1,3,5-トリメチルピラゾールのピークは確認できなかった。このようにして得られたヒドラジンをヒドラジンBとする。 19650 g of this hydrazine A was applied to a 1 L activated carbon filter filled with unitary carbon fiber W-15W manufactured by Unitika Co., Ltd. having a specific surface area of 1250 m 2 / g, a pore volume of 0.97 mL / g and an average pore radius of 1.54 nm Passing treatment was performed at a flow rate of / h. The obtained hydrazine had a TOC amount of 20 ppm, and a peak of 1,3,5-trimethylpyrazole could not be confirmed by GC-MS. The hydrazine thus obtained is designated as hydrazine B.
 また、ヒドラジンAを、比表面積1300m2/g、細孔容積0.55mL/g、平均細孔半径0.86nmのユニチカ株式会社製繊維状活性炭A-10を充填した1Lの活性炭フィルタに対して19650g/hの流量で通過処理した。得られたヒドラジンのTOC量は20ppmであり、GC-MSでは、1,3,5-トリメチルピラゾールのピークは確認できなかった。このようにして得られたヒドラジンをヒドラジンCとする。 In addition, hydrazine A was applied to a 1 L activated carbon filter filled with fibrous activated carbon A-10 manufactured by Unitika Ltd. having a specific surface area of 1300 m 2 / g, a pore volume of 0.55 mL / g, and an average pore radius of 0.86 nm. The passing treatment was carried out at a flow rate of 19650 g / h. The obtained hydrazine had a TOC amount of 20 ppm, and a peak of 1,3,5-trimethylpyrazole could not be confirmed by GC-MS. The hydrazine thus obtained is designated as hydrazine C.
 また、ヒドラジンAを、比表面積850m2/g、細孔容積0.35mL/g、平均細孔半径0.84nmのユニチカ株式会社製繊維状活性炭A-7を充填した1Lの活性炭フィルタに対して19650g/hの流量で通過処理した。得られたヒドラジンのTOC量は20ppmであり、GC-MSでは、1,3,5-トリメチルピラゾールのピークは確認できなかった。このようにして得られたヒドラジンをヒドラジンDとする。 In addition, a 1 L activated carbon filter filled with hydrazine A filled with fibrous activated carbon A-7 manufactured by Unitika Ltd. having a specific surface area of 850 m 2 / g, a pore volume of 0.35 mL / g, and an average pore radius of 0.84 nm. The passing treatment was carried out at a flow rate of 19650 g / h. The obtained hydrazine had a TOC amount of 20 ppm, and a peak of 1,3,5-trimethylpyrazole could not be confirmed by GC-MS. The hydrazine thus obtained is designated as hydrazine D.
 以上のように、繊維状活性炭によって、1,3,5-トリメチルピラゾールが除去されていることを確認したが、活性炭が持っている細孔の直径が除去したい不純物の分子サイズより大きければ、1,3,5-トリメチルピラゾールに限らず、他の不純物も除去することは可能である。 As described above, it was confirmed that 1,3,5-trimethylpyrazole was removed by fibrous activated carbon. If the pore diameter of the activated carbon is larger than the molecular size of the impurity to be removed, 1 Not only, 3,5-trimethylpyrazole, but also other impurities can be removed.
 また、ヒドラジンAを、市販のやし殻活性炭を充填した1Lの活性炭フィルタに対して19650g/hの流量で通過処理した。得られたヒドラジンのTOC量は60ppmであり、GC-MSでは、1,3,5-トリメチルピラゾールが43ppm含まれていた。このようにして得られたヒドラジンをヒドラジンEとする。 Further, hydrazine A was passed through a 1 L activated carbon filter filled with commercially available coconut shell activated carbon at a flow rate of 19650 g / h. The obtained hydrazine had a TOC amount of 60 ppm, and GC-MS contained 43 ppm of 1,3,5-trimethylpyrazole. The hydrazine thus obtained is designated as hydrazine E.
 また、ヒドラジンAを、吸着樹脂ダイヤイオンHP20を充填した1Lのカラムに対して19650g/hの流量で通過処理した。得られたヒドラジンのTOC量は50ppmであり、GC-MSでは、1,3,5-トリメチルピラゾールが35ppm含まれていた。このようにして得られたヒドラジンをヒドラジンFとする。 Further, hydrazine A was passed through a 1 L column packed with adsorption resin Diaion HP20 at a flow rate of 19650 g / h. The obtained hydrazine had a TOC content of 50 ppm, and GC-MS contained 35 ppm of 1,3,5-trimethylpyrazole. The hydrazine thus obtained is designated as hydrazine F.
 上述のヒドラジンの処理において用いられたフィルタに使用される吸着材について、比表面積、細孔容積、平均細孔半径のデータを表1に示す。 Table 1 shows data on specific surface area, pore volume and average pore radius for the adsorbent used in the filter used in the above-described hydrazine treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、硫酸ニッケル253g、クエン酸三ナトリウム23.3g、硫酸銅5水和物を純水620mLに溶解して、ニッケル塩水溶液を調整した。ここで、硫酸銅5水和物は、ニッケル量に対して銅イオン量が20ppmとなるようにした。その一方で、ヒドラジンB108g、水酸化ナトリウム104g、トリエタノールアミン17gを純水670mLに溶解して、ヒドラジン溶液を調整した。このとき、ニッケルイオン1モルに対するヒドラジン量は1.3モルであった。 Next, 253 g of nickel sulfate, 23.3 g of trisodium citrate, and copper sulfate pentahydrate were dissolved in 620 mL of pure water to prepare a nickel salt aqueous solution. Here, the amount of copper ions in the copper sulfate pentahydrate was 20 ppm relative to the amount of nickel. Meanwhile, 108 g of hydrazine B, 104 g of sodium hydroxide and 17 g of triethanolamine were dissolved in 670 mL of pure water to prepare a hydrazine solution. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 1.3 mol.
 次に、上述のニッケル塩溶液とヒドラジン溶液を、液温60℃になるように加熱した後、二液を60分混合撹拌し、ニッケルの粉末スラリーを得た。二液を撹拌した後の上澄みを採取し、イオンチェッカーで残存ニッケルイオンを確認したところ、ニッケルイオンは検出されなかった。得られたニッケル粉末スラリーを、ろ液の導電率が10μS/cm以下になるまでろ過洗浄した後、アセトンで水を置換して、80℃の温度に設定したオーブンの中で乾燥し、ニッケル粉末を得た。 Next, the nickel salt solution and the hydrazine solution were heated to a liquid temperature of 60 ° C., and then the two liquids were mixed and stirred for 60 minutes to obtain a nickel powder slurry. When the supernatant was collected after stirring the two liquids and the remaining nickel ions were confirmed by an ion checker, no nickel ions were detected. The obtained nickel powder slurry is filtered and washed until the filtrate has a conductivity of 10 μS / cm or less, and then water is replaced with acetone, followed by drying in an oven set at a temperature of 80 ° C. Got.
 次に、得られたニッケル粉末を、電解放射走査型電子顕微鏡を用いて、5000~10000倍の倍率で観察した。そして、その観察像を画像解析することによってニッケル粉末の粒径を求め、その結果から平均粒径と粒径ばらつきを算出した。粒径ばらつきとはCV値であり、(標準偏差/平均値)×100(%)の式に基づいて算出したものである。平均粒径は0.4μm以下であること、CV値は25%以下であることが、小型最大容量の積層セラミックコンデンサ用途のニッケル粉末として好ましい。得られたニッケル粉末の平均粒径は0.15μmであり、CV値は20%であった。 Next, the obtained nickel powder was observed at a magnification of 5000 to 10,000 times using an electrolytic emission scanning electron microscope. And the particle size of nickel powder was calculated | required by image-analyzing the observed image, and the average particle size and the particle size dispersion | variation were computed from the result. The particle size variation is a CV value, which is calculated based on an equation of (standard deviation / average value) × 100 (%). An average particle size of 0.4 μm or less and a CV value of 25% or less are preferable as nickel powder for use in a multilayer ceramic capacitor having a small maximum capacity. The average particle diameter of the obtained nickel powder was 0.15 μm, and the CV value was 20%.
 この実施例1では、ニッケルイオン1モルに対してヒドラジン1.3モルという少ないヒドラジン量でも、反応後にニッケルイオンが残存することなく、平均粒径0.15μmと微粒で、CV値25%以下の粒径が揃ったニッケル粉末を得ることができる。 In Example 1, even if the amount of hydrazine is as small as 1.3 mol of hydrazine with respect to 1 mol of nickel ions, nickel ions do not remain after the reaction, the average particle size is 0.15 μm, and the CV value is 25% or less. Nickel powder having a uniform particle size can be obtained.
(実施例2)
 ヒドラジン量を135gにした以外は実施例1と同様にしてニッケル粉末を得た。このとき、ニッケルイオン1モルに対するヒドラジン量は1.6モルであった。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.15μm、CV値は20%であった。実施例2においても、実施例1と同様の効果を得ることができた。
(Example 2)
Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was 135 g. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 1.6 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 μm and a CV value of 20%. In Example 2, the same effect as in Example 1 could be obtained.
(実施例3)
 ヒドラジン量を158gにした以外は実施例1と同様にしてニッケル粉末を得た。このとき、ニッケルイオン1モルに対するヒドラジン量は2モルであった。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.15μm、CV値は20%であった。実施例3においても、実施例1と同様の効果を得ることができた。
(Example 3)
Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was 158 g. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 2 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 μm and a CV value of 20%. In Example 3, the same effect as in Example 1 could be obtained.
(実施例4)
 銅イオン量を0ppmにした以外は実施例3と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.24μm、CV値は24%であった。実施例4においては、銅イオンを添加しなかったため、実施例3と比較して粒径が大きくなるように制御されたニッケル粉末が得られた。
Example 4
Nickel powder was obtained in the same manner as in Example 3 except that the amount of copper ions was changed to 0 ppm. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.24 μm and a CV value of 24%. In Example 4, since no copper ion was added, a nickel powder controlled to have a larger particle size than that of Example 3 was obtained.
(実施例5)
 銅イオン量を1ppmにした以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.35μm、CV値は15%であった。実施例5においては、銅イオンを1ppmに減少させたので、実施例1と比較して粒径が大きくなるように制御されたニッケル粉末が得られた。
(Example 5)
Nickel powder was obtained in the same manner as in Example 1 except that the amount of copper ions was 1 ppm. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.35 μm and a CV value of 15%. In Example 5, since the copper ion was reduced to 1 ppm, a nickel powder controlled to have a larger particle size than that of Example 1 was obtained.
(実施例6)
 反応温度を50℃にした以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.20μm、CV値は19%であった。実施例6においては、反応温度を50℃にしたので、実施例1と比較して粒径が大きくなるように制御されたニッケル粉末が得られた。
(Example 6)
Nickel powder was obtained in the same manner as in Example 1 except that the reaction temperature was 50 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.20 μm and a CV value of 19%. In Example 6, since the reaction temperature was 50 ° C., nickel powder controlled to have a larger particle size than that of Example 1 was obtained.
(実施例7)
 反応温度を70℃にした以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の粒径は0.15μm、CV値は20%であった。実施例7においては、反応温度70℃で実施例1と同様の効果が得られた。
(Example 7)
Nickel powder was obtained in the same manner as in Example 1 except that the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had a particle size of 0.15 μm and a CV value of 20%. In Example 7, the same effect as in Example 1 was obtained at a reaction temperature of 70 ° C.
(実施例8)
 ヒドラジンCを使用し、反応温度を70℃にした以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.15μm、CV値は20%であった。実施例8においては、反応温度70℃で実施例1と同様の効果を得ることができた。
(Example 8)
Nickel powder was obtained in the same manner as in Example 1 except that hydrazine C was used and the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 μm and a CV value of 20%. In Example 8, the same effect as Example 1 was able to be acquired with the reaction temperature of 70 degreeC.
(実施例9)
 ヒドラジンDを使用し、反応温度を70℃にした以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.15μm、CV値は20%であった。実施例9においては、反応温度70℃で実施例1と同様の効果を得ることができた。
Example 9
Nickel powder was obtained in the same manner as in Example 1 except that hydrazine D was used and the reaction temperature was 70 ° C. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.15 μm and a CV value of 20%. In Example 9, the same effect as in Example 1 could be obtained at a reaction temperature of 70 ° C.
(比較例1)
 ヒドラジンAを用いてヒドラジン量を158gにした以外は実施例1と同様にしてニッケル粉末を得た。このとき、ニッケルイオン1モルに対するヒドラジン量は2モルであった。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンは検出されなかった。得られたニッケル粉末の平均粒径は0.6μm、CV値は20%であった。比較例1においては、ヒドラジン量は十分であるが、ピラゾールが除去されていないため、ニッケル粒径が0.4μmを超えた。
(Comparative Example 1)
Nickel powder was obtained in the same manner as in Example 1 except that the amount of hydrazine was changed to 158 g using hydrazine A. At this time, the amount of hydrazine with respect to 1 mol of nickel ions was 2 mol. Nickel ions were not detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had an average particle size of 0.6 μm and a CV value of 20%. In Comparative Example 1, the amount of hydrazine was sufficient, but since the pyrazole was not removed, the nickel particle size exceeded 0.4 μm.
(比較例2)
 ヒドラジンEを使用した以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンが検出された。得られたニッケル粉末の平均粒径は0.6μm、CV値は18%であった。比較例2に用いられるヒドラジンEは、ヒドラジンAをやし殻活性炭で処理したものであって、ピラゾールが除去されていないため、反応後の液体中にニッケルイオンが残り、ニッケル粒径が0.4μmを超えた。
(Comparative Example 2)
Nickel powder was obtained in the same manner as in Example 1 except that hydrazine E was used. Nickel ions were detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The resulting nickel powder had an average particle size of 0.6 μm and a CV value of 18%. Hydrazine E used in Comparative Example 2 is obtained by treating hydrazine A with coconut shell activated carbon, and since pyrazole has not been removed, nickel ions remain in the liquid after the reaction, and the nickel particle size is 0.1. It exceeded 4 μm.
(比較例3)
 ヒドラジンFを使用した以外は実施例1と同様にしてニッケル粉末を得た。ニッケル塩溶液とヒドラジン溶液とを60分撹拌した後の上澄みからは、ニッケルイオンが検出された。得られたニッケル粉末の粒径は0.5μm、CV値は20%であった。比較例3に用いられるヒドラジンFは、ヒドラジンAを吸着樹脂で処理したものであって、ピラゾールが除去されていないため、反応後の液体にニッケルイオンが残り、ニッケル粒径が0.4μmを超えた。
 以上の結果を表2に示した。
(Comparative Example 3)
Nickel powder was obtained in the same manner as in Example 1 except that hydrazine F was used. Nickel ions were detected from the supernatant after stirring the nickel salt solution and the hydrazine solution for 60 minutes. The obtained nickel powder had a particle size of 0.5 μm and a CV value of 20%. Hydrazine F used in Comparative Example 3 is obtained by treating hydrazine A with an adsorbent resin, and since pyrazole is not removed, nickel ions remain in the liquid after the reaction, and the nickel particle size exceeds 0.4 μm. It was.
The above results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの実施例および比較例からわかるように、ピラゾールが除去されていないヒドラジンを用いた場合、ニッケル粉末の粒径が0.4μmを超えるが、ピラゾールを除去したヒドラジンを用いることにより、粒径が0.4μm以下で、CV値が25%以下のニッケル粉末を得ることができる。また、ニッケル塩溶液とヒドラジン溶液とを混合する際に、銅イオンを添加することにより、平均粒径の小さいニッケル粉末を得ることができる。 As can be seen from these examples and comparative examples, when hydrazine from which pyrazole has not been removed is used, the particle size of nickel powder exceeds 0.4 μm, but by using hydrazine from which pyrazole has been removed, the particle size can be reduced. Nickel powder having a CV value of 25% or less can be obtained at 0.4 μm or less. Moreover, nickel powder with a small average particle diameter can be obtained by adding a copper ion when mixing a nickel salt solution and a hydrazine solution.

Claims (7)

  1.  繊維状活性炭を用いてヒドラジン中の不純物を除去する工程、
     不純物を除去した前記ヒドラジンを用いてヒドラジン溶液を調製する工程、
     金属塩を用いて金属塩溶液を調整する工程、および
     前記金属塩溶液と前記ヒドラジン溶液とを混合し、還元反応により金属粉末を析出させる工程を含む、金属粉末の製造方法。
    Removing impurities in hydrazine using fibrous activated carbon,
    A step of preparing a hydrazine solution using the hydrazine from which impurities have been removed,
    A method for producing a metal powder, comprising a step of adjusting a metal salt solution using a metal salt, and a step of mixing the metal salt solution and the hydrazine solution and depositing a metal powder by a reduction reaction.
  2.  前記不純物はピラゾール化合物である、請求項1に記載の金属粉末の製造方法。 The method for producing a metal powder according to claim 1, wherein the impurity is a pyrazole compound.
  3.  前記金属塩溶液は水溶性ニッケル塩を用いて調製されたものであり、析出する前記金属粉末はニッケル粉末である、請求項1または請求項2に記載の金属粉末の製造方法。 The method for producing a metal powder according to claim 1 or 2, wherein the metal salt solution is prepared using a water-soluble nickel salt, and the deposited metal powder is a nickel powder.
  4.  前記前記水溶性ニッケル塩を用いて前記金属塩溶液を調整する際に、銅イオンを添加することを特徴とする、請求項3に記載の金属粉末の製造方法。 The method for producing a metal powder according to claim 3, wherein copper ions are added when the metal salt solution is prepared using the water-soluble nickel salt.
  5.  前記繊維状活性炭の平均細孔半径が0.84~1.54nmの範囲にあることを特徴とする、請求項1ないし請求項4のいずれかに記載の金属粉末の製造方法。 The method for producing metal powder according to any one of claims 1 to 4, wherein an average pore radius of the fibrous activated carbon is in a range of 0.84 to 1.54 nm.
  6.  前記繊維状活性炭の比表面積が850~1300m2/gであることを特徴とする、請求項1ないし請求項5のいずれかに記載の金属粉末の製造方法。 6. The method for producing metal powder according to claim 1, wherein the specific surface area of the fibrous activated carbon is 850 to 1300 m 2 / g.
  7.  前記繊維状活性炭の細孔容積が0.35~0.97mL/gであることを特徴とする、請求項1ないし請求項6のいずれかに記載の金属粉末の製造方法。 The method for producing metal powder according to any one of claims 1 to 6, wherein the pore volume of the fibrous activated carbon is 0.35 to 0.97 mL / g.
PCT/JP2013/072862 2012-10-11 2013-08-27 Metal powder manufacturing method WO2014057735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012226352 2012-10-11
JP2012-226352 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057735A1 true WO2014057735A1 (en) 2014-04-17

Family

ID=50477208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072862 WO2014057735A1 (en) 2012-10-11 2013-08-27 Metal powder manufacturing method

Country Status (1)

Country Link
WO (1) WO2014057735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976905A (en) * 2016-03-18 2022-01-28 住友金属矿山株式会社 Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295408A (en) * 1987-05-28 1988-12-01 Mitsubishi Gas Chem Co Inc Method for purifying aqueous hydrazine hydrate solution
JPH07330318A (en) * 1994-05-31 1995-12-19 Sumitomo Chem Co Ltd Production of high-purity anhydrous hydrazine
JP2004263288A (en) * 2003-03-04 2004-09-24 Mitsubishi Gas Chem Co Inc Chemical for producing metal powder
JP2005097729A (en) * 2003-08-26 2005-04-14 Murata Mfg Co Ltd Method for preparation of nickel powder
JP2007227567A (en) * 2006-02-22 2007-09-06 Nippon Zeon Co Ltd Method of forming metal thin film layer and method of manufacturing multilayer printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295408A (en) * 1987-05-28 1988-12-01 Mitsubishi Gas Chem Co Inc Method for purifying aqueous hydrazine hydrate solution
JPH07330318A (en) * 1994-05-31 1995-12-19 Sumitomo Chem Co Ltd Production of high-purity anhydrous hydrazine
JP2004263288A (en) * 2003-03-04 2004-09-24 Mitsubishi Gas Chem Co Inc Chemical for producing metal powder
JP2005097729A (en) * 2003-08-26 2005-04-14 Murata Mfg Co Ltd Method for preparation of nickel powder
JP2007227567A (en) * 2006-02-22 2007-09-06 Nippon Zeon Co Ltd Method of forming metal thin film layer and method of manufacturing multilayer printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976905A (en) * 2016-03-18 2022-01-28 住友金属矿山株式会社 Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder
US20220274162A1 (en) * 2016-03-18 2022-09-01 Sumitomo Metal Mining Co., Ltd. Nickel powder, method for manufacturing nickel powder, internal electrode paste using nickel powder, and electronic component
US11772160B2 (en) * 2016-03-18 2023-10-03 Sumitomo Metal Mining Co., Ltd. Nickel powder, method for manufacturing nickel powder, internal electrode paste using nickel powder, and electronic component

Similar Documents

Publication Publication Date Title
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
WO2007004649A1 (en) Highly crystalline silver powder and process for production of the same
JP5305789B2 (en) Silver powder manufacturing method
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
WO2005009652A1 (en) Fine-grain silver powder and process for producing the same
KR102051321B1 (en) A method for preparing silver-copper mixture powder of core-shell structure using wet process
JP6885589B2 (en) Manufacturing method of metal particles
JP5764294B2 (en) Silver-coated nickel powder and method for producing the same
JP5421339B2 (en) Nickel powder direct manufacturing method using hydrothermal synthesis method
JP4100244B2 (en) Nickel powder and method for producing the same
WO2014057735A1 (en) Metal powder manufacturing method
JP5803830B2 (en) Silver powder manufacturing method
JPH0557324B2 (en)
JP5163843B2 (en) Method for producing silver fine particles
JPH0372683B2 (en)
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
KR102031753B1 (en) A method for preparing copper nano powder improved in oxidation stability
KR100713662B1 (en) Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
JP2991700B2 (en) Method for producing nickel fine powder
JPH02294415A (en) Production of fine copper powder
KR20090021005A (en) Preparation of silver colloid from impure silver salt
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
JP2009126759A (en) Method of preparing high-purity solution containing nickel sulfate and cobalt sulfate, and method of producing high-purity nickel with use of the same solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP