WO2014057589A1 - Multi-shaft press device and imprint device using same - Google Patents

Multi-shaft press device and imprint device using same Download PDF

Info

Publication number
WO2014057589A1
WO2014057589A1 PCT/JP2012/076545 JP2012076545W WO2014057589A1 WO 2014057589 A1 WO2014057589 A1 WO 2014057589A1 JP 2012076545 W JP2012076545 W JP 2012076545W WO 2014057589 A1 WO2014057589 A1 WO 2014057589A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
movement control
drive shaft
drive shafts
drive
Prior art date
Application number
PCT/JP2012/076545
Other languages
French (fr)
Japanese (ja)
Inventor
正治 長谷川
渚 神谷
治則 岡
Original Assignee
アイトリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイトリックス株式会社 filed Critical アイトリックス株式会社
Priority to PCT/JP2012/076545 priority Critical patent/WO2014057589A1/en
Publication of WO2014057589A1 publication Critical patent/WO2014057589A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/22Control arrangements for fluid-driven presses controlling the degree of pressure applied by the ram during the pressing stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • B30B15/281Arrangements for preventing distortion of, or damage to, presses or parts thereof overload limiting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to a multi-axis press device that drives a slide, a ram, a table, or the like by a plurality of drive shafts, and more particularly to a multi-axis press device that controls each drive shaft independently and an imprint device using the multi-axis press device.
  • servo-driven multi-axis press devices such as a press device and a press brake device for driving a slide, a ram, a table or the like with a plurality of servo shafts to form or bend a workpiece such as a plate material are known.
  • the same target position is set for each drive shaft so that the pressing member such as a slide, a ram, or a table can be moved up and down substantially horizontally according to the processing type and the work type.
  • Each drive shaft is synchronously controlled by commanding. In this case, for example, when the target position and the actual workpiece position are misaligned due to a mistake in the mold installation, or when the bending position is biased to one of the multiple servo axes, the load is only applied to one of the drive shafts. When the load is applied, the shaft that is not overloaded is driven based on the same target position, so that an inclination such as a ram occurs.
  • one of a plurality of drive axes is preliminarily distinguished as a master axis, and the other axes are preliminarily distinguished as slave axes, and at the time of machining, the master axis reduces the deviation value between the position feedback value and a predetermined target position.
  • the slave axis Positioning to the target position by control, the slave axis is positioned by following the position feedback value of the master axis, and the load axis (in this case, the master axis) is overloaded and the position deviation from the target position Even if becomes larger, the no-load axis (in this case, the slave axis) is positioned at the same position as the current position of the load axis, so that the position accuracy of multiple servo axes can be kept high, and the inclination of the ram or table is prevented. There is something that can be done (for example, see Patent Document 1).
  • the above-described press apparatus is also used, for example, in a nanoimprint apparatus that transfers a nano-level fine concavo-convex structure pattern on a mold surface as a mold to a workpiece.
  • a position error at the nano level greatly affects the transfer result.
  • FIG. 6 showing the configuration in Patent Document 1, when the workpiece 210 is not parallel (FIG. 6A), the deviation of the master shaft 205 is pressed in parallel while feeding back the deviation of the master shaft 205 by the control method described above. (FIG.
  • the present invention has been made paying attention to such problems, and an object thereof is to provide a multi-axis press device that prevents an overload on a drive shaft and an imprint device using the same. To do.
  • the multi-axis press apparatus of the present invention is In a multi-axis press device that drives a pressing member by a plurality of drive shafts, Load detecting means for detecting the load of each drive shaft of the plurality of drive shafts; Load movement control means for performing movement control of the drive shaft for each drive shaft based on the load of the drive shaft detected by the load detection means and the target load of the drive shaft.
  • the load detection unit detects the load of each drive shaft of the plurality of drive shafts
  • the load movement control unit detects the load of the drive shaft detected by the load detection unit and the load of the drive shaft. Based on the target load, movement control of the drive shaft can be performed for each drive shaft.
  • the multi-axis press apparatus can control the movement of the drive shaft so that the target load is obtained in each drive shaft, and can apply a desired pressure to each drive shaft. For example, even when a certain drive shaft has reached the target position and other drive shafts have not reached the target position, the actual load is detected by the load detection means for each drive shaft and the position of the drive shaft is controlled. Therefore, even if only a certain drive shaft comes into contact with the workpiece, an unbalanced load is not applied, and it is possible to prevent a failure due to a mold breakage or shaft overload. Also, for example, when applying uniform pressure with a nanoimprinting device, etc., if the target load is specified to be the same, it is possible to apply uniform pressure to each drive shaft, so the pattern can be applied to the workpiece. Can be faithfully reproduced.
  • Position detecting means for detecting the position of each drive shaft of the plurality of drive shafts;
  • a position movement control means for performing movement control of the drive shaft for each drive axis based on the position of the drive shaft detected by the position detection means and the target position of the drive shaft;
  • the movement control by the load movement control means is performed when the movement control by the position movement control means satisfies a predetermined condition.
  • the position detection unit detects the position of each drive shaft of the plurality of drive shafts
  • the position movement control unit detects the position of the drive shaft detected by the position detection unit and the drive shaft.
  • the movement control of the drive shaft is performed for each drive shaft based on the target position, and the movement control by the load movement control means is performed when the movement control by the position movement control means satisfies a predetermined condition.
  • the position movement control means performs the movement control of the drive shaft according to the position of the drive shaft detected by the position detection means, and then the movement control by the position movement control means satisfies a predetermined condition.
  • the control is performed by switching from the movement control by the position movement control means to the movement control by the load movement control means. For example, even when a certain drive shaft has reached the target position and other drive shafts have not reached the target position, the position of the drive shaft is detected by the position detection means.
  • the movement control of each drive shaft is performed by the position movement control means until the value reaches, and the control is performed by switching to the movement control by the load movement control means under a predetermined condition that all the drive shafts have reached the target position. After that, the actual load for each drive shaft can be detected by the load detection means and the position of the drive shaft can be controlled, so even if only a certain drive shaft contacts the workpiece, an unbalanced load is applied. Therefore, it is possible to prevent failure due to mold breakage or shaft overload.
  • the load movement control unit When the movement control by the load movement control unit satisfies a predetermined condition, the load movement control unit includes a load holding control unit that performs a movement control for each driving shaft so as to hold a target load of the driving shaft.
  • the load holding control means performs movement control for each drive shaft so as to hold the target load of the drive shaft when the movement control by the load movement control means satisfies a predetermined condition.
  • control is performed by switching from the movement control by the load movement control means to the movement control by the load holding control means.
  • the position of the drive shaft can be controlled so as to be held by the motor. For example, when it is desired to press with a target load for a certain time with a nanoimprint apparatus or the like, a pressure can be applied for a certain time with a target load for each drive shaft, and the pattern can be faithfully reproduced.
  • the load movement control means has a difference between a maximum and a minimum exceeding a predetermined tolerance for the load of the drive shaft detected by the load detection means for each drive shaft. It is characterized by judging that it is abnormal. According to this feature, since the load movement control means performs movement control for each drive axis, an error due to movement control in each drive axis may occur, but the load movement control means does not change the load for each drive axis. When the difference between the maximum and minimum of the difference between the load on the drive shaft detected by the detection means and the target load on the drive shaft exceeds a predetermined tolerance, the emergency stop is made. You can
  • the position movement control means has a difference between a maximum and a minimum exceeding a predetermined tolerance for the position of the drive shaft detected by the position detection means for each drive shaft. It is characterized by judging that it is abnormal. According to this feature, since the position movement control means performs movement control for each drive axis, an error due to movement control in each drive axis may occur. However, the position movement control means does not change the position for each drive axis. An emergency stop can be made by determining that the position of the drive shaft detected by the detection means is abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance.
  • An imprint apparatus including any of the multi-axis press apparatuses described above, A pressing member moved by the plurality of drive shafts; A receiving unit for receiving a desired load desired for the pressing member, The load movement control means performs movement control of the drive shaft based on the target load received by the receiving unit.
  • the receiving unit receives a desired target load for the pressing member, and the load movement control unit performs movement control of the drive shaft based on the target load received by the receiving unit. Since it can be performed, it can press according to a target load.
  • it is desired to apply a uniform pressure if the target loads are specified to be the same, it is possible to apply a uniform pressure to each drive shaft, so that the pattern can be reproduced faithfully to the workpiece.
  • a mode for carrying out an imprint apparatus using a multi-axis press apparatus according to the present invention will be described below based on examples.
  • FIG. 1 shows a configuration diagram of an imprint apparatus 100 using the multi-axis press apparatus in the embodiment, and FIGS. 2 to 5 show control flow charts in the imprint apparatus 100.
  • FIG. FIG. 1 conceptually shows a configuration diagram including a control unit based on a front view in a vertical section of the imprint apparatus 100.
  • an imprint apparatus 100 using a multi-axis press device that drives a pressing member by a plurality of driving shafts includes an upper table 108A and a lower table 108B as pressing members such as a slide, a ram, or a table.
  • An upper mold 109A serving as a mold is mounted on the table 108A
  • a lower mold 109B serving as a mold is mounted on the lower table 108B, and the workpiece 110 to be transferred is placed at a predetermined position.
  • the imprint apparatus 100 includes a plurality of drive shafts 104 and 105, sensors 106 and 107 of load detection means for detecting the load values of the drive shafts 104 and 105, and drive units 102 and 103 that drive the drive shafts 104 and 105. And at least a CPU 101 of control means for controlling the drive units 102 and 103. Further, the imprint apparatus 100 can include a position detector as a position detection unit that detects the positions of the plurality of drive shafts 104 and 105. The position detector can be provided by sensors 106 and 107. In this case, the sensors 106 and 107 include a load cell that detects load values of the drive shafts 104 and 105 and a position detection sensor that detects positions of the drive shafts 104 and 105 in the vertical direction.
  • the plurality of drive shafts 104 and 105 are shown as two drive shafts in FIG. 1, but two or more, three shafts, four shafts, five shafts,... N-axis, depending on the size and shape of the pressing member. Can be provided as appropriate.
  • the upper table 108A is pressed by the drive shafts 104 and 105 from above, but may be pressed by the drive shafts 104 and 105 from below the lower table 108B. You may make it press from upper direction and the downward direction with the drive shafts 104 and 105 with which the upper table 108A and the lower table 108B are provided, respectively.
  • the drive units 102 and 103 are instructed by the CPU 101 of the control means as to command signals such as movement amounts or target positions of the drive shafts 104 and 105, and move the positions of the drive shafts 104 and 105 in the vertical direction according to the instructions.
  • command signals such as movement amounts or target positions of the drive shafts 104 and 105, and move the positions of the drive shafts 104 and 105 in the vertical direction according to the instructions.
  • the CPU 101 of the control means Based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105, the CPU 101 of the control means is connected to the drive shafts 104 and 105. This movement control is performed for each of the drive shafts 104 and 105. Further, the CPU 101 of the control means performs the movement control for each drive shaft so as to hold the target load of the drive shafts 104 and 105 when the load movement control satisfies a predetermined holding switching condition.
  • the CPU 101 of the control means moves the drive shafts 104 and 105 based on the positions of the drive shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107 and the target positions of the drive shafts 104 and 105. Control is performed for each drive shaft. In this case, the movement control based on the load value and the target load value of the drive shafts 104 and 105 is performed based on the predetermined load control switching condition based on the movement control based on the position of the drive shafts 104 and 105 and the target position of the drive shafts 104 and 105. When you meet.
  • feedforward control may be performed so that the detection value from the sensor follows a specified value (target load value, target position) indicating the target signal, or the specified value indicating the target signal and the sensor. If there is a difference between the specified value and the detected value from the sensor by feeding back the detected value from the sensor so that it matches the detected value from the Alternatively, control may be performed by a so-called servo motor mechanism in which feedback is continued until the specified value is reached or the allowable range is entered, or control combining these may be performed. In this embodiment, a case where control is performed by a servo motor mechanism is taken as an example.
  • Fig. 2 shows the overall control flow diagram of the multi-axis press machine.
  • the CPU 101 when the CPU 101 starts pressing in the imprint apparatus, first, as position movement control (subroutine T1), the CPU 101 detects the driving shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107. Based on the position and the target position of the drive shafts 104 and 105, movement control of the drive shafts 104 and 105 is performed for each drive shaft. Specifically, the control is performed according to the control flowchart shown in FIG. Next, the CPU 101 switches to load movement control (subroutine T2) when a predetermined load control switching condition is satisfied.
  • the CPU 101 performs load movement control (subroutine T2) based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105.
  • load movement control (subroutine T2) based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105.
  • movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105.
  • the control is performed according to the control flowchart shown in FIG.
  • the CPU 101 switches to load holding control (subroutine T3) when a predetermined condition is satisfied.
  • the CPU 101 performs load holding control (subroutine T3) based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105.
  • load holding control subroutine T3
  • movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105 so as to hold the target load value.
  • the control is performed according to the control flowchart shown in FIG.
  • the position movement control (subroutine T1) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example.
  • the position movement control first, the moving speed: S of the drive shaft 104 and the target coordinate value: Z indicating the target position are input from the outside (step S1).
  • the target coordinate value: Z is set, for example, by a receiving unit (not shown) provided in the imprint apparatus 100 for each drive axis at a position where the upper mold 109A contacts the workpiece 110.
  • the current coordinate value Z 'of the drive shaft 104 is detected by the position detector of the sensor 106 (step S2).
  • a difference ZZ ′ ⁇ Z between the current coordinate value Z ′ and the target coordinate value Z is calculated (step S3). If the current coordinate value Z ′ is equal to the target coordinate value Z (step S4), It is determined that the drive shaft 104 has reached the target position, the position movement control is terminated (step S7), and the process proceeds to the next step. If the current coordinate value Z ′ is not equal to the target coordinate value Z in step S 4, the drive shaft 104 is moved by ⁇ Z at the moving speed S, and then the current coordinate value Z ′ of the drive shaft 104 is changed to the sensor 106. The process of step S2 to step S4 is repeated until the current coordinate value Z ′ becomes equal to the target coordinate value Z. The other drive shafts are similarly processed.
  • the current coordinate value Z ′ of the drive shaft 104 and the other drive shaft is detected by the position detector of the sensor 106, the current coordinate value Z ′ of the 1st axis to the nth axis in the monitoring subroutine T4. It is determined whether the difference between the MAX value and the MIN value does not exceed the permissible error G. If the permissible error G is exceeded, the emergency stop is determined. If the permissible error G is not reached, the monitoring subroutine is continued. Monitoring is continued at T4. The monitoring subroutine T4 may periodically perform interrupt processing as timer interrupt processing, or may perform processing when the current coordinate values Z ′ of all the drive axes are detected. . When the current coordinate value Z ′ is equal to the target coordinate value Z in all the drive axes 1 to n, the CPU 101 switches to load holding control (subroutine T2) assuming that a predetermined condition is satisfied.
  • the current coordinate value Z ′ can be controlled so as to reach the target coordinate value Z on the 1st axis to the nth axis of all the drive axes.
  • the predetermined condition may be set so that the load holding control (subroutine T2) is switched when the current coordinate value Z ′ reaches the target coordinate value Z on at least one specific drive axis. Good.
  • feedback control can be performed according to the target position for each drive shaft by the servo motor mechanism.
  • the next load movement control (subroutine T2) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example.
  • the load movement control first, the moving speed: S of the drive shaft 104 and the target load value P indicating the target load are input from the outside (step S11).
  • the target load value P is, for example, a receiving unit (not shown) provided in the imprint apparatus 100 with a load value that can transfer the pattern of the upper mold 109A and the lower mold 109B to the workpiece 110 for each drive axis. )).
  • the current load value P 'of the drive shaft 104 is detected by the load cell of the sensor 106 (step S12).
  • a difference load PP ⁇ P ′ ⁇ P between the current load value P ′ and the target load value P is calculated (step S13), and if the current load value P ′ is equal to the target load value P (step S13).
  • step S14 It is determined that the drive shaft 104 has reached the target position, the position movement control is terminated (step S17), and the process proceeds to the next step. If the current load value P ′ is not equal to the target load value P in step S14, a movement amount ⁇ D corresponding to the deviation load ⁇ P is obtained, and the drive shaft 104 is moved at the movement speed S.
  • the current load value P ′ is detected by the position detector of the sensor 106, and the processing of steps S12 to S14 is repeated until the current load value P ′ becomes equal to the target load value P.
  • the other drive shafts are similarly processed.
  • the MAX of the current load value P ′ of the 1st axis to the nth axis is monitored in the monitoring subroutine T5. It is determined whether or not the difference between the value and the MIN value is larger than the allowable error G. If it is larger than the allowable error G, it is determined to make an emergency stop. If it is smaller than the allowable error G, the monitoring subroutine T5 is continued. And continue monitoring.
  • the monitoring subroutine T5 may periodically perform interrupt processing as timer interrupt processing, or may perform processing when the current load value P ′ of all the drive shafts is detected. .
  • the CPU 101 switches to load holding control (subroutine T3) assuming that a predetermined condition is satisfied.
  • the current load value P ′ can be controlled so as to reach the target load value P in all the drive shafts 1 to n.
  • the predetermined condition may be set to switch to the load holding control (subroutine T3) when the current load value P ′ reaches the target load value P on at least one specific drive shaft. Good.
  • feedback control can be performed on each drive shaft according to the target load by the servo motor mechanism.
  • the next load holding control (subroutine T3) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example.
  • the current load value B of the drive shaft 104 is detected by the load cell of the sensor 106, the current load value B is compared with the target load value A, and the current load value B is determined as the target load value A.
  • the amount of movement is set to 0 (step S31), the load is maintained as it is, and ⁇ T of the process processing time is added to the process processing stacking time Tx.
  • the process processing lamination time Tx indicates the total time during which the load is held since the load holding control (subroutine T3) is started, and ⁇ T of the process processing time is one step from step S21 to step 32. The processing time required for this process is shown. Then, it is determined whether or not the process processing stacking time Tx has reached the desired holding time T. When the processing time has reached the holding time T, the process is terminated, and when the desired holding time T has not been reached, Returning to step S21 again, the current load value B is acquired, and the process proceeds to the next step. In step S21, the current load value B is compared with the target load value A.
  • the current load value B is larger than the target load value A, the current load value B is decreased in order to decrease the load value.
  • Is calculated as a deviation load AB ⁇ P difference load ⁇ P (step S22).
  • ⁇ D is larger than a predetermined threshold E of the deviation moving distance (step S23). If ⁇ D> E, the driving is performed so that the moving amount is ⁇ E.
  • the axis is moved (step S24), and ⁇ T of the process processing time is added to the process processing stacking time Tx (step S31).
  • step S21 the current load value B is compared with the target load value A. If the target load value A is larger than the current load value B, the current load value B is increased to increase the load value.
  • step S27 it is determined whether or not ⁇ D is larger than a predetermined threshold E of the deviation movement distance (step S27). If ⁇ D> E, the drive shaft is moved so as to move by + E as the movement amount. (Step S29), and ⁇ T of the process processing time is added to the process processing stacking time Tx (step S31).
  • the drive shaft is moved so as to move by + D as the movement amount (step S28), and ⁇ T of the process processing time is added to the process processing stacking time Tx (step S31). .
  • the process processing lamination time Tx reaches a desired holding time T, the processing is ended.
  • the process processing stacking time Tx reaches the desired holding time T for all the drive axes 1 to n, the CPU 101 ends the load holding control and finishes the pressing process assuming that a predetermined condition is satisfied. To do.
  • the load holding control If the load holding control is not performed, it may be pushed too much when the workpiece expands, or if the workpiece contracts, pattern loss may occur. Pressure can be applied for a certain period of time with a load, and the pattern can be faithfully reproduced on the workpiece.
  • the load holding control (subroutine T3) may be ended when the process processing lamination time Tx reaches the desired holding time T on at least one specific drive shaft.
  • feedback control can be performed according to the target load and the desired load time for each drive shaft by the servo motor mechanism.
  • the multi-axis press device that drives the upper table 108A and the lower table 108B of the pressing member by the plurality of drive shafts 104, 105, the respective loads of the plurality of drive shafts 104, 105.
  • load cells of the sensors 106 and 107 as load detecting means for detecting the load
  • the target loads of the drive shafts 104 and 105 Load movement control means (subroutine T2) that performs movement control of the shafts 104 and 105 for each of the drive shafts 104 and 105.
  • the load cells of the sensors 106 and 107 detect the loads of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the load movement control means (subroutine T2) Based on the current load of the drive shafts 104 and 105 detected by the load cell and the target load of the drive shafts 104 and 105, movement control of the drive shafts 104 and 105 can be performed for each of the drive shafts 104 and 105.
  • the multi-axis press device can control the movement of the drive shafts 104 and 105 so that the drive shafts 104 and 105 have target loads, and applies a desired pressure to each of the drive shafts 104 and 105. Can do.
  • the actual load is detected by the load detection means for each drive shaft 104, 105.
  • the positions of the drive shafts 104 and 105 can be controlled, so that even if only one drive shaft 104 or 105 comes into contact with the workpiece, an offset load is not applied. It can be prevented from causing a failure.
  • the nanoimprinting device when you want to apply a uniform pressure, you can apply a uniform pressure to each of the drive shafts 104 and 105 by specifying the target loads to be the same. Can be faithfully reproduced.
  • the load movement control means (subroutine T2) for each drive shaft may control each drive shaft in synchronization so that the target loads are the same.
  • each drive shaft can be controlled with synchronized timing so that each load value does not deviate even in the process of adding the load value to the target load value.
  • each drive shaft always has the same load at the same timing.For example, even when a fluid resin or the like is disposed on a tilted workpiece, Uniform pressure can be applied without bias, and the pattern can be faithfully reproduced on the workpiece.
  • control is performed so that each subroutine is sequentially performed, but load control may be performed only by the load movement control means (subroutine T2).
  • the position detection sensors of the position detection means 106 and 107 for detecting the positions of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the sensors 106 and 107, respectively.
  • Position movement for controlling the movement of the drive shafts 104 and 105 for each of the drive shafts 104 and 105 based on the current positions of the drive shafts 104 and 105 detected by the position detection sensors and the target positions of the drive shafts 104 and 105.
  • the movement control by the load movement control means (subroutine T2) is performed when the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition.
  • the position detection sensors of the sensors 106 and 107 detect the positions of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the position movement control means (subroutine T1) Based on the current position of the drive shafts 104 and 105 detected by the position detection sensor 107 and the target position of the drive shafts 104 and 105, the movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105.
  • the movement control by the load movement control means (subroutine T2) can be performed when the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition.
  • the movement control of the drive shafts 104 and 105 is performed by the position movement control means (subroutine T1) according to the current positions of the drive shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107, and then When the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition, the movement control by the position movement control means (subroutine T1) is switched to the movement control by the load movement control means (subroutine T2). Control will be performed.
  • the position movement control means controls the movement of each of the drive shafts 104 and 105 until each of the drive shafts 104 and 105 reaches the target position.
  • the load movement control means (subroutine T2) using the fact that the position has been reached as a predetermined load control switching condition, the actual load is then detected for each of the drive shafts 104 and 105.
  • control is performed so that each subroutine is sequentially performed, but the movement control may be performed only by the position movement control means (subroutine T1). Further, the position movement control means (subroutine T1) for each drive axis may control each drive axis in synchronization so that the target position is the same.
  • each drive shaft can be controlled in synchronization so that the position of each drive shaft does not shift even in the process of moving to the target position.
  • the drive shafts According to the synchronized position movement control, the drive shafts always move in parallel. For example, when a fluid resin or the like is unevenly arranged on a flat workpiece, it is forcibly flat. Can be.
  • the movement control by the load movement control means (subroutine T2) satisfies a predetermined holding switching condition, the movement control is performed so as to hold the target load of the drive shafts 104 and 105.
  • Load holding control means (subroutine T3) is provided for each of the drive shafts 104 and 105.
  • the load holding control means (subroutine T3) holds the target load of the drive shafts 104 and 105 when the movement control by the load movement control means (subroutine T2) satisfies a predetermined holding switching condition.
  • the movement control can be performed for each of the drive shafts 104 and 105. For example, using a predetermined holding switching condition that all the drive shafts 104 and 105 have reached the target load, the movement control by the load movement control means (subroutine T2) is switched to the movement control by the load holding control means (subroutine T3).
  • the positions of the drive shafts 104 and 105 can be controlled so that the drive shafts 104 and 105 are held at the target loads.
  • a pressure can be applied for a certain time with the target load for each of the drive shafts 104 and 105, and the pattern can be reproduced faithfully to the workpiece.
  • the load movement control means (subroutine T2) is the maximum and minimum of the current loads of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 for each of the drive shafts 104 and 105. Is determined to be abnormal (subroutine T5).
  • the load movement control means performs movement control for each of the drive shafts 104 and 105, errors due to movement control in the respective drive shafts 104 and 105 may occur, but the load movement control means Regarding the difference between the current load of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 for each of the drive shafts 104 and 105 and the target load of the drive shafts 104 and 105, the difference between the maximum and the minimum is a predetermined allowable value. If the difference is exceeded, an emergency stop can be made by determining that there is an abnormality.
  • the position movement control means determines the maximum and minimum values of the current positions of the drive shafts 104 and 105 detected by the position detection sensors 106 and 107 for each of the drive shafts 104 and 105. When the difference exceeds a predetermined tolerance, it is determined that there is an abnormality (subroutine T4).
  • the position movement control unit performs movement control for each of the drive shafts 104 and 105, an error due to movement control in each of the drive shafts 104 and 105 may occur.
  • the position detection sensors 106 and 107 for each of the drive shafts 104 and 105 as abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance. Can be emergency stop.
  • the imprint apparatus 100 including the multi-axis press apparatus in the present embodiment, desired targets for the upper table 108A and the lower table 108B and the upper table 108A and the lower table 108B that are moved by the plurality of drive shafts 104 and 105.
  • a load movement control means (subroutine T3) that controls the movement of the drive shafts 104 and 105 based on the target load received by the reception section.
  • the receiving unit receives desired target loads for the upper table 108A and the lower table 108B, and the movement control of the drive shafts 104 and 105 is performed based on the target loads received by the receiving unit. Therefore, it can press according to a target load. If you want to apply a uniform pressure, you can apply a uniform pressure to each of the drive shafts 104 and 105 by specifying the target loads to be the same, so that the pattern can be faithfully reproduced on the workpiece. .
  • an imprint apparatus using a multi-axis press apparatus is shown as an example.
  • An axial press device may be used.
  • the servo motor mechanism is used as an example.
  • feedforward control is performed so that the detection value from the sensor follows the specified value (target load value, target position) indicating the target signal. It may be.
  • the position movement control (subroutine T1), the load movement control (subroutine T2), and the load holding control (subroutine T3) are controlled independently for each drive shaft.
  • the drive axes are controlled in synchronization so that the target values are the same, and in load holding control (subroutine T3), each drive axis is controlled.
  • Independent control is also possible.
  • each drive shaft is controlled with the timing synchronized so that the position of each drive shaft does not shift so that the target position is the same, and then synchronized.
  • each axis is Since the target load value A can be maintained following the change in the state of the workpiece, even if the state of the workpiece changes, it can be kept pressed with the same load value, and the pattern can be reproduced faithfully to the workpiece.

Abstract

Provided are a multi-shaft press device that prevents overloading of a drive shaft and an imprint device using the same. An imprint device (100) that uses a multi-shaft press device that drives a pressing member by a plurality of drive shafts is provided with: a plurality of drive shafts (104, 105); sensors (106, 107) for a load detection means that detects a load value for the drive shafts (104, 105); drive parts (102, 103) that drives the drive shafts (104, 105); and a CPU (101) for a control means that controls the drive parts (102, 103). The CPU (101) carries out motion control of the drive shafts (104, 105) for each of the drive shafts (104, 105) on the basis of load values for the drive shafts (104, 105) detected by the load cells of the sensors (106, 107) and target load values indicated in advance for the drive shafts (104, 105). In addition, the CPU (101) carries out motion control for each of the drive shafts such that the target load is maintained for the drive shafts (104, 105) when the load motion control satisfies prescribed conditions.

Description

多軸プレス装置及びそれを利用したインプリント装置Multi-axis press apparatus and imprint apparatus using the same
 本発明は、スライド、ラム又はテーブル等を複数の駆動軸により駆動する多軸プレス装置に関し、特に、各駆動軸を独立させて制御する多軸プレス装置及びそれを利用したインプリント装置に関する。 The present invention relates to a multi-axis press device that drives a slide, a ram, a table, or the like by a plurality of drive shafts, and more particularly to a multi-axis press device that controls each drive shaft independently and an imprint device using the multi-axis press device.
 従来、スライド、ラム又はテーブル等を複数のサーボ軸で駆動して、板材等のワークを成形加工又は曲げ加工するプレス装置やプレスブレーキ装置等のサーボ駆動の多軸プレス装置が知られている。 Conventionally, servo-driven multi-axis press devices such as a press device and a press brake device for driving a slide, a ram, a table or the like with a plurality of servo shafts to form or bend a workpiece such as a plate material are known.
 この多軸プレス装置においては、加工種別及びワーク種別に応じてスライド、ラム又はテーブル等の押圧部材を略水平に維持して上下動させるように、各駆動軸に対して、同一の目標位置を指令することにより各駆動軸を同期制御している。この場合、例えば金型設置ミスによる目標位置と実際のワーク位置とがずれた場合や、曲げ位置が複数サーボ軸のいずれかの軸に偏っている場合など、いずれかの駆動軸のみに偏荷重がかかった場合に、過負荷のかかっていない軸も同一の目標位置に基づいて駆動されているので、ラム等の傾きが発生してしまう。このため、複数の駆動軸のうち1つをマスタ軸に、その他の軸をスレーブ軸に予め区別し、加工時に、マスタ軸は、その位置フィードバック値と所定の目標位置との偏差値を小さくする制御により目標位置に位置決めをし、スレーブ軸は、マスタ軸の位置フィードバック値に追従させて位置決めをする方法により、負荷軸(この場合はマスタ軸)に過負荷がかかって目標位置との位置偏差が大きくなっても、無負荷軸(この場合はスレーブ軸)は負荷軸の現在位置と等しい位置に位置決めされることで、複数サーボ軸の位置精度を高く維持でき、ラム又はテーブルの傾きを防止できるようにしているものがある(例えば、特許文献1参照)。 In this multi-axis press device, the same target position is set for each drive shaft so that the pressing member such as a slide, a ram, or a table can be moved up and down substantially horizontally according to the processing type and the work type. Each drive shaft is synchronously controlled by commanding. In this case, for example, when the target position and the actual workpiece position are misaligned due to a mistake in the mold installation, or when the bending position is biased to one of the multiple servo axes, the load is only applied to one of the drive shafts. When the load is applied, the shaft that is not overloaded is driven based on the same target position, so that an inclination such as a ram occurs. For this reason, one of a plurality of drive axes is preliminarily distinguished as a master axis, and the other axes are preliminarily distinguished as slave axes, and at the time of machining, the master axis reduces the deviation value between the position feedback value and a predetermined target position. Positioning to the target position by control, the slave axis is positioned by following the position feedback value of the master axis, and the load axis (in this case, the master axis) is overloaded and the position deviation from the target position Even if becomes larger, the no-load axis (in this case, the slave axis) is positioned at the same position as the current position of the load axis, so that the position accuracy of multiple servo axes can be kept high, and the inclination of the ram or table is prevented. There is something that can be done (for example, see Patent Document 1).
特開2003-230996号公報(段落0020~0030、図6)Japanese Unexamined Patent Publication No. 2003-230996 (paragraphs 0020 to 0030, FIG. 6)
 上述したプレス装置は、例えば、型となるモールド表面にあるナノレベルの微細な凹凸構造のパターンを、ワークに転写するナノインプリント装置にも利用される。ナノインプリント装置におけるプレス装置では、ナノレベルの位置誤差が転写結果に大きく影響してしまうこととなる。例えば、上記特許文献1における構成を示した図6において、ワーク210が平行でない場合に(図6(a))、上述した制御方法により、マスタ軸205の偏差をフィードバックしながら平行にプレスするように制御すると(図6(b))、マスタ軸205が目標位置に達しない場合、スレーブ軸204側にワーク210が接触していても認識できず(図6(c))、無理やり押圧を続けると、スレーブ軸204側に偏荷重がかかり、金型209A・209Bの破損や軸過負荷で故障の原因となることがある(図6(d))。また、テーブル208A・208Bを平行にプレスしても、均等な圧力がかからないため、転写結果に影響を及ぼし、パターンをワークに忠実に再現することできないおそれがある。 The above-described press apparatus is also used, for example, in a nanoimprint apparatus that transfers a nano-level fine concavo-convex structure pattern on a mold surface as a mold to a workpiece. In a press device in a nanoimprint apparatus, a position error at the nano level greatly affects the transfer result. For example, in FIG. 6 showing the configuration in Patent Document 1, when the workpiece 210 is not parallel (FIG. 6A), the deviation of the master shaft 205 is pressed in parallel while feeding back the deviation of the master shaft 205 by the control method described above. (FIG. 6B), if the master axis 205 does not reach the target position, it cannot be recognized even if the workpiece 210 is in contact with the slave axis 204 side (FIG. 6C), and the pressing is continued forcibly. Then, an unbalanced load is applied to the slave shaft 204 side, which may cause failure due to damage to the molds 209A and 209B or shaft overload (FIG. 6D). Further, even if the tables 208A and 208B are pressed in parallel, no uniform pressure is applied, so that the transfer result is affected and the pattern may not be reproduced faithfully to the workpiece.
 本発明は、このような問題点に着目してなされたもので、駆動軸に対して過負荷となることを防止する多軸プレス装置及びそれを利用したインプリント装置を提供することを目的とする。 The present invention has been made paying attention to such problems, and an object thereof is to provide a multi-axis press device that prevents an overload on a drive shaft and an imprint device using the same. To do.
 前記課題を解決するために、本発明の多軸プレス装置は、
 複数の駆動軸により押圧部材を駆動する多軸プレス装置において、
 前記複数の駆動軸の各駆動軸の荷重を検出する荷重検出手段と、
 前記荷重検出手段により検出された当該駆動軸の荷重と、当該駆動軸の目標荷重とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行う荷重移動制御手段と、を有することを特徴とする。
 この特徴によれば、荷重検出手段は、複数の駆動軸の各駆動軸の荷重を検出し、荷重移動制御手段は、前記荷重検出手段により検出された当該駆動軸の荷重と、当該駆動軸の目標荷重とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行うことができる。これにより、多軸プレス装置は、各駆動軸において目標荷重となるように、駆動軸の移動制御を行うことができ、駆動軸ごとに所望の圧力をかけることができる。例えば、ある駆動軸が目標位置に達しており、他の駆動軸が目標位置に達していない場合などでも、駆動軸ごとに実際の荷重を荷重検出手段により検出して駆動軸の位置を制御することができるので、ある駆動軸だけがワークに接触しても偏荷重がかかるようなことがなく、金型の破損や軸過負荷で故障の原因となることを防ぐことができる。また、例えば、ナノインプリント装置などで、均等な圧力をかけたいときには、目標荷重をそれぞれ同一となるように指定しておけば、駆動軸ごとに均等な圧力をかけることができるので、パターンをワークに忠実に再現することできる。
In order to solve the above problems, the multi-axis press apparatus of the present invention is
In a multi-axis press device that drives a pressing member by a plurality of drive shafts,
Load detecting means for detecting the load of each drive shaft of the plurality of drive shafts;
Load movement control means for performing movement control of the drive shaft for each drive shaft based on the load of the drive shaft detected by the load detection means and the target load of the drive shaft. To do.
According to this feature, the load detection unit detects the load of each drive shaft of the plurality of drive shafts, and the load movement control unit detects the load of the drive shaft detected by the load detection unit and the load of the drive shaft. Based on the target load, movement control of the drive shaft can be performed for each drive shaft. Thereby, the multi-axis press apparatus can control the movement of the drive shaft so that the target load is obtained in each drive shaft, and can apply a desired pressure to each drive shaft. For example, even when a certain drive shaft has reached the target position and other drive shafts have not reached the target position, the actual load is detected by the load detection means for each drive shaft and the position of the drive shaft is controlled. Therefore, even if only a certain drive shaft comes into contact with the workpiece, an unbalanced load is not applied, and it is possible to prevent a failure due to a mold breakage or shaft overload. Also, for example, when applying uniform pressure with a nanoimprinting device, etc., if the target load is specified to be the same, it is possible to apply uniform pressure to each drive shaft, so the pattern can be applied to the workpiece. Can be faithfully reproduced.
 本発明の多軸プレス装置において、
 前記複数の駆動軸の各駆動軸の位置を検出する位置検出手段と、
 前記位置検出手段により検出された当該駆動軸の位置と、当該駆動軸の目標位置とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行う位置移動制御手段とを有し、
 前記荷重移動制御手段による前記移動制御は、前記位置移動制御手段による移動制御が所定の条件を満たしたときに行うことを特徴とする。
 この特徴によれば、位置検出手段は、前記複数の駆動軸の各駆動軸の位置を検出し、位置移動制御手段は、前記位置検出手段により検出された当該駆動軸の位置と、当該駆動軸の目標位置とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行い、前記荷重移動制御手段による前記移動制御は、前記位置移動制御手段による移動制御が所定の条件を満たしたときに行うことができる。これにより、まず、位置移動制御手段により、前記位置検出手段により検出された当該駆動軸の位置に従って、当該駆動軸の移動制御を行い、その後、位置移動制御手段による移動制御が所定の条件を満たしたときに、位置移動制御手段による移動制御から荷重移動制御手段による移動制御に切り替えて制御を行うことになる。例えば、ある駆動軸が目標位置に達しており、他の駆動軸が目標位置に達していない場合などでも、位置検出手段により当該駆動軸の位置が検出されるので、それぞれの駆動軸が目標位置に達するまで、位置移動制御手段により各駆動軸の移動制御を行い、全ての駆動軸が目標位置に達していることを所定の条件として、荷重移動制御手段による前記移動制御に切り替えて制御を行うことで、その後は駆動軸ごとに実際の荷重を荷重検出手段により検出して駆動軸の位置を制御することができるので、ある駆動軸だけがワークに接触しても偏荷重がかかるようなことがなく、金型の破損や軸過負荷で故障の原因となることを防ぐことができる。
In the multi-axis press device of the present invention,
Position detecting means for detecting the position of each drive shaft of the plurality of drive shafts;
A position movement control means for performing movement control of the drive shaft for each drive axis based on the position of the drive shaft detected by the position detection means and the target position of the drive shaft;
The movement control by the load movement control means is performed when the movement control by the position movement control means satisfies a predetermined condition.
According to this feature, the position detection unit detects the position of each drive shaft of the plurality of drive shafts, and the position movement control unit detects the position of the drive shaft detected by the position detection unit and the drive shaft. The movement control of the drive shaft is performed for each drive shaft based on the target position, and the movement control by the load movement control means is performed when the movement control by the position movement control means satisfies a predetermined condition. be able to. Thereby, first, the position movement control means performs the movement control of the drive shaft according to the position of the drive shaft detected by the position detection means, and then the movement control by the position movement control means satisfies a predetermined condition. In this case, the control is performed by switching from the movement control by the position movement control means to the movement control by the load movement control means. For example, even when a certain drive shaft has reached the target position and other drive shafts have not reached the target position, the position of the drive shaft is detected by the position detection means. The movement control of each drive shaft is performed by the position movement control means until the value reaches, and the control is performed by switching to the movement control by the load movement control means under a predetermined condition that all the drive shafts have reached the target position. After that, the actual load for each drive shaft can be detected by the load detection means and the position of the drive shaft can be controlled, so even if only a certain drive shaft contacts the workpiece, an unbalanced load is applied. Therefore, it is possible to prevent failure due to mold breakage or shaft overload.
 本発明の多軸プレス装置において、
 前記荷重移動制御手段による移動制御が所定の条件を満たしたときに、前記駆動軸の目標荷重を保持するように移動制御を駆動軸ごとに行う荷重保持制御手段を有することを特徴とする。
 この特徴によれば、荷重保持制御手段は、前記荷重移動制御手段による移動制御が所定の条件を満たしたときに、前記駆動軸の目標荷重を保持するように移動制御を駆動軸ごとに行うことができる。例えば、全ての駆動軸が目標荷重に達したことを所定の条件として、荷重移動制御手段による前記移動制御から荷重保持制御手段による移動制御に切り替えて制御を行うことで、駆動軸ごとに目標荷重に保持させるように駆動軸の位置を制御することができる。例えば、ナノインプリント装置などで、一定時間、目標荷重で押圧させたいときには、駆動軸ごとに目標荷重で一定時間圧力をかけることができ、パターンをワークに忠実に再現することできる。
In the multi-axis press device of the present invention,
When the movement control by the load movement control unit satisfies a predetermined condition, the load movement control unit includes a load holding control unit that performs a movement control for each driving shaft so as to hold a target load of the driving shaft.
According to this feature, the load holding control means performs movement control for each drive shaft so as to hold the target load of the drive shaft when the movement control by the load movement control means satisfies a predetermined condition. Can do. For example, on a predetermined condition that all drive shafts have reached the target load, control is performed by switching from the movement control by the load movement control means to the movement control by the load holding control means. The position of the drive shaft can be controlled so as to be held by the motor. For example, when it is desired to press with a target load for a certain time with a nanoimprint apparatus or the like, a pressure can be applied for a certain time with a target load for each drive shaft, and the pattern can be faithfully reproduced.
 本発明の多軸プレス装置において、前記荷重移動制御手段は、前記駆動軸ごとに前記荷重検出手段により検出された当該駆動軸の荷重について、最大と最小との差が所定の許容差を超えた場合に異常と判断することを特徴とする。
 この特徴によれば、荷重移動制御手段は、駆動軸ごと移動制御を行っているため、それぞれの駆動軸における移動制御による誤差が生じうるが、荷重移動制御手段が、前記駆動軸ごとの前記荷重検出手段により検出された当該駆動軸の荷重と、当該駆動軸の目標荷重との差について、最大と最小との差が所定の許容差を超えた場合に異常と判断することで、緊急停止するようにできる。
In the multi-axis press device according to the present invention, the load movement control means has a difference between a maximum and a minimum exceeding a predetermined tolerance for the load of the drive shaft detected by the load detection means for each drive shaft. It is characterized by judging that it is abnormal.
According to this feature, since the load movement control means performs movement control for each drive axis, an error due to movement control in each drive axis may occur, but the load movement control means does not change the load for each drive axis. When the difference between the maximum and minimum of the difference between the load on the drive shaft detected by the detection means and the target load on the drive shaft exceeds a predetermined tolerance, the emergency stop is made. You can
 本発明の多軸プレス装置において、前記位置移動制御手段は、前記駆動軸ごとに前記位置検出手段により検出された当該駆動軸の位置について、最大と最小との差が所定の許容差を超えた場合に異常と判断することを特徴とする。
 この特徴によれば、位置移動制御手段は、駆動軸ごと移動制御を行っているため、それぞれの駆動軸における移動制御による誤差が生じうるが、位置移動制御手段が、前記駆動軸ごとに前記位置検出手段により検出された当該駆動軸の位置について、最大と最小との差が所定の許容差を超えた場合に異常と判断することで、緊急停止するようにできる。
In the multi-axis press apparatus according to the present invention, the position movement control means has a difference between a maximum and a minimum exceeding a predetermined tolerance for the position of the drive shaft detected by the position detection means for each drive shaft. It is characterized by judging that it is abnormal.
According to this feature, since the position movement control means performs movement control for each drive axis, an error due to movement control in each drive axis may occur. However, the position movement control means does not change the position for each drive axis. An emergency stop can be made by determining that the position of the drive shaft detected by the detection means is abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance.
 上述した多軸プレス装置のいずれかを備えるインプリント装置であって、
 前記複数の駆動軸により移動される押圧部材と、
 前記押圧部材に対して所望する目標荷重を受け付ける受付部と、を備え、
 前記荷重移動制御手段は、前記受付部で受け付けた目標荷重に基づいて前記駆動軸の移動制御を行うことを特徴とする。
 この特徴によれば、インプリント装置において、受付部で押圧部材に対して所望する目標荷重を受け付け、荷重移動制御手段は、前記受付部で受け付けた目標荷重に基づいて前記駆動軸の移動制御を行うことができるので、目標荷重に従って、押圧することができる。均等な圧力をかけたいときには、目標荷重をそれぞれ同一となるように指定しておけば、駆動軸ごとに均等な圧力をかけることができるので、パターンをワークに忠実に再現することできる。
An imprint apparatus including any of the multi-axis press apparatuses described above,
A pressing member moved by the plurality of drive shafts;
A receiving unit for receiving a desired load desired for the pressing member,
The load movement control means performs movement control of the drive shaft based on the target load received by the receiving unit.
According to this feature, in the imprint apparatus, the receiving unit receives a desired target load for the pressing member, and the load movement control unit performs movement control of the drive shaft based on the target load received by the receiving unit. Since it can be performed, it can press according to a target load. When it is desired to apply a uniform pressure, if the target loads are specified to be the same, it is possible to apply a uniform pressure to each drive shaft, so that the pattern can be reproduced faithfully to the workpiece.
実施例における多軸プレス装置を利用したインプリント装置の構成図である。It is a block diagram of the imprint apparatus using the multi-axis press apparatus in an Example. 実施例における多軸プレス装置の全体制御フロー図である。It is a whole control flow figure of the multi-axis press apparatus in an example. 実施例における多軸プレス装置の位置移動制御手段による制御フロー図である。It is a control flowchart by the position movement control means of the multi-axis press apparatus in an Example. 実施例における多軸プレス装置の荷重移動制御手段による制御フロー図である。It is a control flowchart by the load movement control means of the multi-axis press apparatus in an Example. 実施例における多軸プレス装置の荷重保持制御手段による制御フロー図である。It is a control flow figure by the load maintenance control means of the multi-axis press apparatus in an example. 従来技術における課題を示す説明図である。It is explanatory drawing which shows the subject in a prior art.
 本発明に係る多軸プレス装置を利用したインプリント装置を実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out an imprint apparatus using a multi-axis press apparatus according to the present invention will be described below based on examples.
 実施例の多軸プレス装置を利用したインプリント装置につき、図1から図5を参照して説明する。 The imprint apparatus using the multi-axis press apparatus of the embodiment will be described with reference to FIGS.
 図1に、実施例における多軸プレス装置を利用したインプリント装置100の構成図を示し、図2~図5にインプリント装置100における制御フロー図を示している。なお、図1においては、インプリント装置100の垂直断面における正面視をもとに制御部も含めて概念的に構成図を示している。 FIG. 1 shows a configuration diagram of an imprint apparatus 100 using the multi-axis press apparatus in the embodiment, and FIGS. 2 to 5 show control flow charts in the imprint apparatus 100. FIG. FIG. 1 conceptually shows a configuration diagram including a control unit based on a front view in a vertical section of the imprint apparatus 100.
 図1において、複数の駆動軸により押圧部材を駆動する多軸プレス装置を利用したインプリント装置100は、スライド、ラム又はテーブル等の押圧部材として、上テーブル108A及び下テーブル108Bを備え、この上テーブル108Aに、型となる上金型109Aを装着し、下テーブル108Bに、型となる下金型109Bを装着し、転写対象であるワーク110を所定位置に配置する。インプリント装置100は、複数の駆動軸104、105と、駆動軸104、105の荷重値を検出する荷重検出手段のセンサ106、107と、駆動軸104、105を駆動させる駆動部102、103と、駆動部102、103を制御する制御手段のCPU101とを少なくとも備える。また、インプリント装置100は、複数の駆動軸104、105のそれぞれの位置を検出する位置検出手段としての位置検出器を備えることができる。位置検出器は、センサ106、107にて備えることができる。この場合、センサ106、107は、駆動軸104、105の荷重値を検出するロードセルと、駆動軸104、105の上下方向における位置を検出する位置検出センサとを備える。 In FIG. 1, an imprint apparatus 100 using a multi-axis press device that drives a pressing member by a plurality of driving shafts includes an upper table 108A and a lower table 108B as pressing members such as a slide, a ram, or a table. An upper mold 109A serving as a mold is mounted on the table 108A, and a lower mold 109B serving as a mold is mounted on the lower table 108B, and the workpiece 110 to be transferred is placed at a predetermined position. The imprint apparatus 100 includes a plurality of drive shafts 104 and 105, sensors 106 and 107 of load detection means for detecting the load values of the drive shafts 104 and 105, and drive units 102 and 103 that drive the drive shafts 104 and 105. And at least a CPU 101 of control means for controlling the drive units 102 and 103. Further, the imprint apparatus 100 can include a position detector as a position detection unit that detects the positions of the plurality of drive shafts 104 and 105. The position detector can be provided by sensors 106 and 107. In this case, the sensors 106 and 107 include a load cell that detects load values of the drive shafts 104 and 105 and a position detection sensor that detects positions of the drive shafts 104 and 105 in the vertical direction.
 複数の駆動軸104、105は、図1においては、二つの駆動軸を示しているが、二つ以上、三軸、四軸、五軸・・n軸と、押圧部材の大きさや形状に応じて適宜備えることができる。また、本実施例においては、上テーブル108Aを上方から駆動軸104、105により押圧する例を示しているが、下テーブル108Bの下方から駆動軸104、105により押圧するようにしてもよいし、上テーブル108A及び下テーブル108Bの上下にそれぞれ備える駆動軸104、105で上方および下方より押圧するようにしてもよい。 The plurality of drive shafts 104 and 105 are shown as two drive shafts in FIG. 1, but two or more, three shafts, four shafts, five shafts,... N-axis, depending on the size and shape of the pressing member. Can be provided as appropriate. In this embodiment, the upper table 108A is pressed by the drive shafts 104 and 105 from above, but may be pressed by the drive shafts 104 and 105 from below the lower table 108B. You may make it press from upper direction and the downward direction with the drive shafts 104 and 105 with which the upper table 108A and the lower table 108B are provided, respectively.
 駆動部102、103は、制御手段のCPU101より駆動軸104、105の移動量または目標位置等の指令信号が指示され、指示に従って駆動軸104、105の位置を上下方向に移動させる。なお、移動方向としては、上下方向(Z方向)以外に、X方向、Y方向に移動可能してもよい。 The drive units 102 and 103 are instructed by the CPU 101 of the control means as to command signals such as movement amounts or target positions of the drive shafts 104 and 105, and move the positions of the drive shafts 104 and 105 in the vertical direction according to the instructions. In addition, as a moving direction, you may move to a X direction and a Y direction other than an up-down direction (Z direction).
 制御手段のCPU101は、各センサ106、107のロードセルにより検出された駆動軸104、105の荷重値と、駆動軸104、105の予め指定した目標荷重値とに基づいて、当該駆動軸104、105の移動制御を駆動軸104、105ごとに行う。また、制御手段のCPU101は、荷重移動制御が所定の保持切替条件を満たしたときに、駆動軸104、105の目標荷重を保持するように移動制御を駆動軸ごとに行う。さらに、制御手段のCPU101は、各センサ106、107の位置検出センサにより検出された駆動軸104、105の位置と、駆動軸104、105の目標位置とに基づいて、駆動軸104、105の移動制御を駆動軸ごとに行う。この場合、駆動軸104、105の荷重値と目標荷重値とに基づく移動制御は、駆動軸104、105の位置と駆動軸104、105の目標位置とに基づく移動制御が所定の荷重制御切替条件を満たしたときに行う。CPU101における制御は、センサからの検出値が目標信号を示す指定値(目標荷重値、目標位置)に追従するようにフィードフォワード制御を行うようにしてもよいし、目標信号を示す指定値とセンサからの検出値とを一致させるように、センサからの検出値をフィードバックさせて、指定値とセンサからの検出値との差がある場合、差分を減少させる方向に移動させていくことで、最終的に指定値に到達するか、許容範囲に入るまでフィードバックを続けるように制御する、いわゆるサーボモータ機構による制御を行うようにしてもよいし、これらを組み合わせた制御をおこなってもよい。本実施例においては、サーボモータ機構により制御する場合を例にする。 Based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105, the CPU 101 of the control means is connected to the drive shafts 104 and 105. This movement control is performed for each of the drive shafts 104 and 105. Further, the CPU 101 of the control means performs the movement control for each drive shaft so as to hold the target load of the drive shafts 104 and 105 when the load movement control satisfies a predetermined holding switching condition. Further, the CPU 101 of the control means moves the drive shafts 104 and 105 based on the positions of the drive shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107 and the target positions of the drive shafts 104 and 105. Control is performed for each drive shaft. In this case, the movement control based on the load value and the target load value of the drive shafts 104 and 105 is performed based on the predetermined load control switching condition based on the movement control based on the position of the drive shafts 104 and 105 and the target position of the drive shafts 104 and 105. When you meet. In the control in the CPU 101, feedforward control may be performed so that the detection value from the sensor follows a specified value (target load value, target position) indicating the target signal, or the specified value indicating the target signal and the sensor. If there is a difference between the specified value and the detected value from the sensor by feeding back the detected value from the sensor so that it matches the detected value from the Alternatively, control may be performed by a so-called servo motor mechanism in which feedback is continued until the specified value is reached or the allowable range is entered, or control combining these may be performed. In this embodiment, a case where control is performed by a servo motor mechanism is taken as an example.
 つぎに、CPU101における制御フローを図2~図5を参照して詳細に説明する。 Next, the control flow in the CPU 101 will be described in detail with reference to FIGS.
 図2に、多軸プレス装置の全体制御フロー図を示している。図2に示すように、CPU101は、インプリント装置における押圧を開始する場合、まず、位置移動制御(サブルーチンT1)として、各センサ106、107の位置検出センサにより検出された駆動軸104、105の位置と、駆動軸104、105の目標位置とに基づいて、駆動軸104、105の移動制御を駆動軸ごとに行う。具体的には、図3に示す制御フロー図に従って制御する。つぎに、CPU101は、所定の荷重制御切替条件を満たしたときに、荷重移動制御(サブルーチンT2)に切り替える。その後、CPU101は、荷重移動制御(サブルーチンT2)として、各センサ106、107のロードセルにより検出された駆動軸104、105の荷重値と、駆動軸104、105の予め指定した目標荷重値とに基づいて、当該駆動軸104、105の移動制御を駆動軸104、105ごとに行う。具体的には、図4に示す制御フロー図に従って制御する。つぎに、CPU101は、所定の条件を満たしたときに、荷重保持制御(サブルーチンT3)に切り替える。その後、CPU101は、荷重保持制御(サブルーチンT3)として、各センサ106、107のロードセルにより検出された駆動軸104、105の荷重値と、駆動軸104、105の予め指定した目標荷重値とに基づいて、目標荷重値を保持するように駆動軸104、105の移動制御を駆動軸104、105ごとに行う。具体的には、図5に示す制御フロー図に従って制御する。 Fig. 2 shows the overall control flow diagram of the multi-axis press machine. As shown in FIG. 2, when the CPU 101 starts pressing in the imprint apparatus, first, as position movement control (subroutine T1), the CPU 101 detects the driving shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107. Based on the position and the target position of the drive shafts 104 and 105, movement control of the drive shafts 104 and 105 is performed for each drive shaft. Specifically, the control is performed according to the control flowchart shown in FIG. Next, the CPU 101 switches to load movement control (subroutine T2) when a predetermined load control switching condition is satisfied. Thereafter, the CPU 101 performs load movement control (subroutine T2) based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105. Thus, movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105. Specifically, the control is performed according to the control flowchart shown in FIG. Next, the CPU 101 switches to load holding control (subroutine T3) when a predetermined condition is satisfied. Thereafter, the CPU 101 performs load holding control (subroutine T3) based on the load values of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 and the target load values designated in advance of the drive shafts 104 and 105. Thus, movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105 so as to hold the target load value. Specifically, the control is performed according to the control flowchart shown in FIG.
 位置移動制御(サブルーチンT1)は、図3に示すように、駆動軸ごとに制御される。各駆動軸は、同様の制御が行われるため、駆動軸104の第1軸の制御を例にして説明する。位置移動制御では、まず、駆動軸104の移動速度:Sと、目標位置を示す目標座標値:Zとが外部から入力される(ステップS1)。この場合、目標座標値:Zは、例えば、上金型109Aがワーク110に接触する位置が駆動軸毎に、インプリント装置100に備える受付部(図示せず)により設定される。つぎに、駆動軸104の現在の座標値Z’がセンサ106の位置検出器で検出される(ステップS2)。この現在の座標値Z’と目標の座標値Zとの差分Z-Z’=ΔZが演算され(ステップS3)、現在の座標値Z’が目標の座標値Zと等しければ(ステップS4)、駆動軸104が目標位置に到達したと判断し、位置移動制御を終了し(ステップS7)、次のステップへ進む。ステップS4において、現在の座標値Z’が目標の座標値Zと等しくなければ、駆動軸104を移動速度SでΔZ分移動させ、その後、駆動軸104の現在の座標値Z’をセンサ106の位置検出器で検出させ、現在の座標値Z’が目標の座標値Zと等しくなるまで、ステップS2~ステップS4の処理を繰り返す。他の駆動軸についても、同様に処理される。また、駆動軸104と他の駆動軸の現在の座標値Z’をセンサ106の位置検出器で検出させた際には、監視用サブルーチンT4において、1軸~n軸の現在の座標値Z’のMAX値とMIN値の差分が許容誤差Gを越えないか判定し、許容誤差Gを越えた場合には、緊急停止するように判断し、許容誤差Gをえていない場合には引き続き監視用サブルーチンT4にて監視を続ける。監視用サブルーチンT4は、タイマ割り込み処理として、定期的に割込み処理をするようにしてもよいし、全ての駆動軸の現在の座標値Z’が検出された段階で処理を行うようにしてもよい。全ての駆動軸の1軸~n軸において、現在の座標値Z’が目標の座標値Zと等しくなると、CPU101は、所定の条件を満たしたとして荷重保持制御(サブルーチンT2)に切り替える。 The position movement control (subroutine T1) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example. In the position movement control, first, the moving speed: S of the drive shaft 104 and the target coordinate value: Z indicating the target position are input from the outside (step S1). In this case, the target coordinate value: Z is set, for example, by a receiving unit (not shown) provided in the imprint apparatus 100 for each drive axis at a position where the upper mold 109A contacts the workpiece 110. Next, the current coordinate value Z 'of the drive shaft 104 is detected by the position detector of the sensor 106 (step S2). A difference ZZ ′ = ΔZ between the current coordinate value Z ′ and the target coordinate value Z is calculated (step S3). If the current coordinate value Z ′ is equal to the target coordinate value Z (step S4), It is determined that the drive shaft 104 has reached the target position, the position movement control is terminated (step S7), and the process proceeds to the next step. If the current coordinate value Z ′ is not equal to the target coordinate value Z in step S 4, the drive shaft 104 is moved by ΔZ at the moving speed S, and then the current coordinate value Z ′ of the drive shaft 104 is changed to the sensor 106. The process of step S2 to step S4 is repeated until the current coordinate value Z ′ becomes equal to the target coordinate value Z. The other drive shafts are similarly processed. Further, when the current coordinate value Z ′ of the drive shaft 104 and the other drive shaft is detected by the position detector of the sensor 106, the current coordinate value Z ′ of the 1st axis to the nth axis in the monitoring subroutine T4. It is determined whether the difference between the MAX value and the MIN value does not exceed the permissible error G. If the permissible error G is exceeded, the emergency stop is determined. If the permissible error G is not reached, the monitoring subroutine is continued. Monitoring is continued at T4. The monitoring subroutine T4 may periodically perform interrupt processing as timer interrupt processing, or may perform processing when the current coordinate values Z ′ of all the drive axes are detected. . When the current coordinate value Z ′ is equal to the target coordinate value Z in all the drive axes 1 to n, the CPU 101 switches to load holding control (subroutine T2) assuming that a predetermined condition is satisfied.
 この図3に示す制御フローにより、全ての駆動軸の1軸~n軸において、現在の座標値Z’が目標の座標値Zに到達するように制御できる。なお、所定の条件としては、少なくとも1つの特定の駆動軸において、現在の座標値Z’が目標の座標値Zに到達したときに、荷重保持制御(サブルーチンT2)に切り替えるように設定してもよい。このように、図3に示す制御フローによれば、サーボモータ機構により各駆動軸について目標位置に従ってフィードバック制御を行うことができる。 With the control flow shown in FIG. 3, the current coordinate value Z ′ can be controlled so as to reach the target coordinate value Z on the 1st axis to the nth axis of all the drive axes. The predetermined condition may be set so that the load holding control (subroutine T2) is switched when the current coordinate value Z ′ reaches the target coordinate value Z on at least one specific drive axis. Good. As described above, according to the control flow shown in FIG. 3, feedback control can be performed according to the target position for each drive shaft by the servo motor mechanism.
 つぎの荷重移動制御(サブルーチンT2)は、図4に示すように、駆動軸ごとに制御される。各駆動軸は、同様の制御が行われるため、駆動軸104の第1軸の制御を例にして説明する。荷重移動制御では、まず、駆動軸104の移動速度:Sと、目標荷重を示す目標荷重値:Pとが外部から入力される(ステップS11)。この場合、目標荷重値:Pは、例えば、上金型109A及び下金型109Bのパターンがワーク110に対して転写可能な荷重値が駆動軸毎にインプリント装置100に備える受付部(図示せず)により設定される。つぎに、駆動軸104の現在の荷重値P’がセンサ106のロードセルで検出される(ステップS12)。この現在の荷重値P’と目標の荷重値Pとの差分の偏差荷重P-P’=ΔPが演算され(ステップS13)、現在の荷重値P’が目標の荷重値Pと等しければ(ステップS14)、駆動軸104が目標位置に到達したと判断し、位置移動制御を終了し(ステップS17)、次のステップへ進む。ステップS14において、現在の荷重値P’が目標の荷重値Pと等しくなければ、偏差荷重ΔP分に相当する移動量ΔDを求め、駆動軸104を移動速度Sで移動させ、その後、駆動軸104の現在の荷重値P’をセンサ106の位置検出器で検出させ、現在の荷重値P’が目標の荷重値Pと等しくなるまで、ステップS12~ステップS14の処理を繰り返す。ΔP分に相当する移動量ΔDとしては、あらかじめ設定しておいた関数ΔP×C=ΔD(Cは所定の係数値)により求めることができる。さらに、移動量ΔDは、ステップS12~ステップS14の処理においてΔPに対応する移動量ΔDの履歴により学習機能を持たせておき、関数の係数値Cを変更したり、校正値を加算したりしてもよい。他の駆動軸についても、同様に処理される。また、駆動軸104と他の駆動軸の現在の荷重値P’をセンサ106のロードセルで検出させた際には、監視用サブルーチンT5において、1軸~n軸の現在の荷重値P’のMAX値とMIN値の差分が、許容誤差Gより大きいか否かを判定し、許容誤差Gより大きい場合には緊急停止するように判断し、許容誤差Gより小さい場合には引き続き監視用サブルーチンT5にて監視を続ける。監視用サブルーチンT5は、タイマ割り込み処理として、定期的に割込み処理をするようにしてもよいし、全ての駆動軸の現在の荷重値P’が検出された段階で処理を行うようにしてもよい。全ての駆動軸の1軸~n軸において、現在の荷重値P’が目標の荷重値Pと等しくなると、CPU101は、所定の条件を満たしたとして荷重保持制御(サブルーチンT3)に切り替える。 The next load movement control (subroutine T2) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example. In the load movement control, first, the moving speed: S of the drive shaft 104 and the target load value P indicating the target load are input from the outside (step S11). In this case, the target load value P is, for example, a receiving unit (not shown) provided in the imprint apparatus 100 with a load value that can transfer the pattern of the upper mold 109A and the lower mold 109B to the workpiece 110 for each drive axis. )). Next, the current load value P 'of the drive shaft 104 is detected by the load cell of the sensor 106 (step S12). A difference load PP−P ′ = ΔP between the current load value P ′ and the target load value P is calculated (step S13), and if the current load value P ′ is equal to the target load value P (step S13). S14) It is determined that the drive shaft 104 has reached the target position, the position movement control is terminated (step S17), and the process proceeds to the next step. If the current load value P ′ is not equal to the target load value P in step S14, a movement amount ΔD corresponding to the deviation load ΔP is obtained, and the drive shaft 104 is moved at the movement speed S. The current load value P ′ is detected by the position detector of the sensor 106, and the processing of steps S12 to S14 is repeated until the current load value P ′ becomes equal to the target load value P. The movement amount ΔD corresponding to ΔP can be obtained by a function ΔP × C = ΔD (C is a predetermined coefficient value) set in advance. Further, the movement amount ΔD is provided with a learning function based on the history of the movement amount ΔD corresponding to ΔP in the processing of step S12 to step S14, and the coefficient value C of the function is changed or a calibration value is added. May be. The other drive shafts are similarly processed. Further, when the current load value P ′ of the drive shaft 104 and the other drive shaft is detected by the load cell of the sensor 106, the MAX of the current load value P ′ of the 1st axis to the nth axis is monitored in the monitoring subroutine T5. It is determined whether or not the difference between the value and the MIN value is larger than the allowable error G. If it is larger than the allowable error G, it is determined to make an emergency stop. If it is smaller than the allowable error G, the monitoring subroutine T5 is continued. And continue monitoring. The monitoring subroutine T5 may periodically perform interrupt processing as timer interrupt processing, or may perform processing when the current load value P ′ of all the drive shafts is detected. . When the current load value P ′ becomes equal to the target load value P in all the drive axes 1 to n, the CPU 101 switches to load holding control (subroutine T3) assuming that a predetermined condition is satisfied.
 この図4に示す制御フローにより、全ての駆動軸の1軸~n軸において、現在の荷重値P’が目標の荷重値Pに到達するように制御できる。なお、所定の条件としては、少なくとも1つの特定の駆動軸において、現在の荷重値P’が目標の荷重値Pに到達したときに、荷重保持制御(サブルーチンT3)に切り替えるように設定してもよい。このように、図4に示す制御フローによれば、サーボモータ機構により各駆動軸について目標荷重に従ってフィードバック制御を行うことができる。 With the control flow shown in FIG. 4, the current load value P ′ can be controlled so as to reach the target load value P in all the drive shafts 1 to n. Note that the predetermined condition may be set to switch to the load holding control (subroutine T3) when the current load value P ′ reaches the target load value P on at least one specific drive shaft. Good. As described above, according to the control flow shown in FIG. 4, feedback control can be performed on each drive shaft according to the target load by the servo motor mechanism.
 つぎの荷重保持制御(サブルーチンT3)は、図5に示すように、駆動軸ごとに制御される。各駆動軸は、同様の制御が行われるため、駆動軸104の第1軸の制御を例にして説明する。荷重保持制御では、駆動軸104の現在の荷重値Bがセンサ106のロードセルで検出され、現在の荷重値Bと目標の荷重値Aとを比較して現在の荷重値Bが目標の荷重値Aと等しければ(ステップS21)、移動量を0として(ステップS31)、そのままの荷重状態で保持されるとともに、プロセス処理時間のΔTがプロセス処理積層時間Txに加算される。ここで、プロセス処理積層時間Txは、荷重保持制御(サブルーチンT3)を開始してからの荷重を保持している合計時間を示し、プロセス処理時間のΔTは、ステップS21~ステップ32までの1ステップの処理に要する処理時間を示している。そして、プロセス処理積層時間Txが所望する保持時間Tに達したか否かを判断し、保持時間Tに到達したときに処理を終了し、所望する保持時間Tに到達していない場合には、再度、ステップS21に戻り、現在の荷重値Bを取得して次のステップに移行する。ステップS21において、現在の荷重値Bと目標の荷重値Aとを比較して、現在の荷重値Bが目標の荷重値Aより大きければ、荷重値を減少させるために、この現在の荷重値Bと目標の荷重値Aとの差分の偏差荷重A-B=ΔPが演算され、偏差荷重ΔP分に相当する移動量ΔDを求める(ステップS22)。ΔP分に相当する移動量ΔDとしては、あらかじめ設定しておいた関数(A-B)×C=ΔD(Cは所定の係数値)により求めることができる。荷重保持制御においては、ΔDが、偏差移動距離のあらかじめ定めた閾値Eより大きいか否かが判定され(ステップS23)、ΔD>Eの場合には、移動量として-E分移動するように駆動軸を移動させ(ステップS24)、プロセス処理時間のΔTをプロセス処理積層時間Txに加算させる(ステップS31)。ΔD<=Eの場合には(ステップS23)、移動量として-D分移動するように駆動軸を移動させ(ステップS25)、プロセス処理時間のΔTをプロセス処理積層時間Txに加算させる(ステップS31)。また、ステップS21において、現在の荷重値Bと目標の荷重値Aとを比較して、目標の荷重値Aが現在の荷重値Bより大きければ、荷重値を増加させるために、この現在の荷重値Bと目標の荷重値Aとの差分の偏差荷重A-B=ΔPが演算され、偏差荷重ΔP分に相当する移動量(A-B)×C=ΔDを求める(ステップS26)。荷重保持制御においては、ΔDが、偏差移動距離のあらかじめ定めた閾値Eより大きいか否かが判定され(ステップS27)、ΔD>Eの場合には、移動量として+E分移動するように駆動軸を移動させ(ステップS29)、プロセス処理時間のΔTをプロセス処理積層時間Txに加算させる(ステップS31)。ΔD<=Eの場合には(ステップS27)、移動量として+D分移動するように駆動軸を移動させ(ステップS28)、プロセス処理時間のΔTをプロセス処理積層時間Txに加算させる(ステップS31)。その後、プロセス処理積層時間Txが所望する保持時間Tに到達したときに処理を終了する。全ての駆動軸の1軸~n軸において、プロセス処理積層時間Txが所望する保持時間Tに到達したときに、CPU101は、所定の条件を満たしたとして荷重保持制御を終了し、押圧処理を終了する。 The next load holding control (subroutine T3) is controlled for each drive shaft as shown in FIG. Since the same control is performed for each drive shaft, control of the first axis of the drive shaft 104 will be described as an example. In the load holding control, the current load value B of the drive shaft 104 is detected by the load cell of the sensor 106, the current load value B is compared with the target load value A, and the current load value B is determined as the target load value A. (Step S21), the amount of movement is set to 0 (step S31), the load is maintained as it is, and ΔT of the process processing time is added to the process processing stacking time Tx. Here, the process processing lamination time Tx indicates the total time during which the load is held since the load holding control (subroutine T3) is started, and ΔT of the process processing time is one step from step S21 to step 32. The processing time required for this process is shown. Then, it is determined whether or not the process processing stacking time Tx has reached the desired holding time T. When the processing time has reached the holding time T, the process is terminated, and when the desired holding time T has not been reached, Returning to step S21 again, the current load value B is acquired, and the process proceeds to the next step. In step S21, the current load value B is compared with the target load value A. If the current load value B is larger than the target load value A, the current load value B is decreased in order to decrease the load value. Is calculated as a deviation load AB−ΔP = difference load ΔP (step S22). The movement amount ΔD corresponding to ΔP can be obtained by a function (AB) × C = ΔD (C is a predetermined coefficient value) set in advance. In the load holding control, it is determined whether or not ΔD is larger than a predetermined threshold E of the deviation moving distance (step S23). If ΔD> E, the driving is performed so that the moving amount is −E. The axis is moved (step S24), and ΔT of the process processing time is added to the process processing stacking time Tx (step S31). When ΔD <= E (step S23), the drive shaft is moved so as to move by −D as the moving amount (step S25), and ΔT of the process processing time is added to the process processing stacking time Tx (step S31). ). In step S21, the current load value B is compared with the target load value A. If the target load value A is larger than the current load value B, the current load value B is increased to increase the load value. The difference load AB−ΔP, which is the difference between the value B and the target load value A, is calculated, and a movement amount (AB) × C = ΔD corresponding to the difference load ΔP is obtained (step S26). In the load holding control, it is determined whether or not ΔD is larger than a predetermined threshold E of the deviation movement distance (step S27). If ΔD> E, the drive shaft is moved so as to move by + E as the movement amount. (Step S29), and ΔT of the process processing time is added to the process processing stacking time Tx (step S31). When ΔD <= E (step S27), the drive shaft is moved so as to move by + D as the movement amount (step S28), and ΔT of the process processing time is added to the process processing stacking time Tx (step S31). . Thereafter, when the process processing lamination time Tx reaches a desired holding time T, the processing is ended. When the process processing stacking time Tx reaches the desired holding time T for all the drive axes 1 to n, the CPU 101 ends the load holding control and finishes the pressing process assuming that a predetermined condition is satisfied. To do.
 この図5に示す制御フローにより、全ての駆動軸の1軸~n軸において、目標の荷重値Aにほぼ等しい荷重値で、所望する保持時間、荷重を継続することができる。このように、荷重保持制御(サブルーチンT3)によれば、駆動軸ごとに目標荷重で一定時間圧力をかけることができ、パターンをワークに忠実に再現することできる。例えば、インプリントの加圧中に、ワークの状態が熱膨張や硬化収縮等により変化することがあっても、各軸が各場所でそのワークの状態変化に追従して、目標の荷重値Aに保持できるので、ワークの状態が変化しても同じ荷重値で押し続けることができる。荷重保持制御を行わない場合には、ワークが膨張した時に押しすぎることや、ワークが収縮した場合にはパターンの抜けが発生することがあるが、本実施例によれば、駆動軸ごとに目標荷重で一定時間圧力をかけることができ、パターンをワークに忠実に再現することできる。なお、所定の条件としては、少なくとも1つの特定の駆動軸において、プロセス処理積層時間Txが所望する保持時間Tに到達したときに、荷重保持制御(サブルーチンT3)を終了するようにしてもよい。このように、図5に示す制御フローによれば、サーボモータ機構により各駆動軸について目標荷重と所望する荷重時間に従ってフィードバック制御を行うことができる。 With the control flow shown in FIG. 5, it is possible to continue the desired holding time and load with a load value substantially equal to the target load value A on all the drive shafts 1 to n. As described above, according to the load holding control (subroutine T3), it is possible to apply pressure with a target load for each drive shaft for a certain period of time, and to reproduce the pattern faithfully to the workpiece. For example, even if the state of the workpiece may change due to thermal expansion or curing shrinkage during imprinting, each axis follows the change in the state of the workpiece at each location, and the target load value A Therefore, even if the state of the work changes, it can be kept pushing with the same load value. If the load holding control is not performed, it may be pushed too much when the workpiece expands, or if the workpiece contracts, pattern loss may occur. Pressure can be applied for a certain period of time with a load, and the pattern can be faithfully reproduced on the workpiece. As a predetermined condition, the load holding control (subroutine T3) may be ended when the process processing lamination time Tx reaches the desired holding time T on at least one specific drive shaft. Thus, according to the control flow shown in FIG. 5, feedback control can be performed according to the target load and the desired load time for each drive shaft by the servo motor mechanism.
 以上説明したように、本実施例においては、複数の駆動軸104、105により押圧部材の上テーブル108A及び下テーブル108Bを駆動する多軸プレス装置において、複数の駆動軸104、105のそれぞれの荷重を検出する荷重検出手段としてのセンサ106、107のロードセルと、センサ106、107のロードセルにより検出された駆動軸104、105の現在荷重と、駆動軸104、105の目標荷重とに基づいて、駆動軸104、105の移動制御を駆動軸104、105ごとに行う荷重移動制御手段(サブルーチンT2)と、を有する。 As described above, in the present embodiment, in the multi-axis press device that drives the upper table 108A and the lower table 108B of the pressing member by the plurality of drive shafts 104, 105, the respective loads of the plurality of drive shafts 104, 105. Based on the load cells of the sensors 106 and 107 as load detecting means for detecting the load, the current loads of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107, and the target loads of the drive shafts 104 and 105 Load movement control means (subroutine T2) that performs movement control of the shafts 104 and 105 for each of the drive shafts 104 and 105.
 本実施例によれば、センサ106、107のロードセルは、複数の駆動軸104、105の各駆動軸104、105の荷重を検出し、荷重移動制御手段(サブルーチンT2)は、センサ106、107のロードセルにより検出された駆動軸104、105の現在荷重と、駆動軸104、105の目標荷重とに基づいて、駆動軸104、105の移動制御を駆動軸104、105ごとに行うことができる。これにより、多軸プレス装置は、各駆動軸104、105において目標荷重となるように、駆動軸104、105の移動制御を行うことができ、駆動軸104、105ごとに所望の圧力をかけることができる。例えば、ある駆動軸104、105が目標位置に達しており、他の駆動軸104、105が目標位置に達していない場合などでも、駆動軸104、105ごとに実際の荷重を荷重検出手段により検出して駆動軸104、105の位置を制御することができるので、ある駆動軸104、105だけがワークに接触しても偏荷重がかかるようなことがなく、金型の破損や軸過負荷で故障の原因となることを防ぐことができる。また、ナノインプリント装置において、均等な圧力をかけたいときには、目標荷重をそれぞれ同一となるように指定しておけば、駆動軸104、105ごとに均等な圧力をかけることができるので、パターンをワークに忠実に再現することできる。この場合駆動軸毎の荷重移動制御手段(サブルーチンT2)は、目標荷重が同一となるように、各駆動軸を同期させて制御するようにしてもよい。同期制御を行う場合、各駆動軸は、目標荷重値まで荷重値を追加していく過程においても、各荷重値がずれないようにタイミングを同期させて制御することができる。同期させた荷重移動制御によれば、常に各駆動軸が同一タイミングで同じ荷重になるため、例えば、傾いているワーク上に、流動性のある樹脂などが配置されている場合であっても、偏ることなく均一に加圧することができ、パターンをワークに忠実に再現することできる。さらに、上記実施例においては、図2に示すように、各サブルーチンを順次行うように制御しているが、荷重移動制御手段(サブルーチンT2)のみで、荷重制御を行うようにしてもよい。 According to the present embodiment, the load cells of the sensors 106 and 107 detect the loads of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the load movement control means (subroutine T2) Based on the current load of the drive shafts 104 and 105 detected by the load cell and the target load of the drive shafts 104 and 105, movement control of the drive shafts 104 and 105 can be performed for each of the drive shafts 104 and 105. As a result, the multi-axis press device can control the movement of the drive shafts 104 and 105 so that the drive shafts 104 and 105 have target loads, and applies a desired pressure to each of the drive shafts 104 and 105. Can do. For example, even when a certain drive shaft 104, 105 has reached the target position and other drive shafts 104, 105 have not reached the target position, the actual load is detected by the load detection means for each drive shaft 104, 105. As a result, the positions of the drive shafts 104 and 105 can be controlled, so that even if only one drive shaft 104 or 105 comes into contact with the workpiece, an offset load is not applied. It can be prevented from causing a failure. Also, in the nanoimprinting device, when you want to apply a uniform pressure, you can apply a uniform pressure to each of the drive shafts 104 and 105 by specifying the target loads to be the same. Can be faithfully reproduced. In this case, the load movement control means (subroutine T2) for each drive shaft may control each drive shaft in synchronization so that the target loads are the same. When performing synchronous control, each drive shaft can be controlled with synchronized timing so that each load value does not deviate even in the process of adding the load value to the target load value. According to the synchronized load movement control, each drive shaft always has the same load at the same timing.For example, even when a fluid resin or the like is disposed on a tilted workpiece, Uniform pressure can be applied without bias, and the pattern can be faithfully reproduced on the workpiece. Further, in the above embodiment, as shown in FIG. 2, control is performed so that each subroutine is sequentially performed, but load control may be performed only by the load movement control means (subroutine T2).
 また、本実施例の多軸プレス装置においては、複数の駆動軸104、105の各駆動軸104、105の位置を検出する位置検出手段のセンサ106、107の位置検出センサと、センサ106、107の位置検出センサにより検出された駆動軸104、105の現在位置と、駆動軸104、105の目標位置とに基づいて、駆動軸104、105の移動制御を駆動軸104、105ごとに行う位置移動制御手段(サブルーチンT1)とを有し、荷重移動制御手段(サブルーチンT2)による移動制御は、位置移動制御手段(サブルーチンT1)による移動制御が所定の荷重制御切替条件を満たしたときに行う。 Further, in the multi-axis press device of the present embodiment, the position detection sensors of the position detection means 106 and 107 for detecting the positions of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the sensors 106 and 107, respectively. Position movement for controlling the movement of the drive shafts 104 and 105 for each of the drive shafts 104 and 105 based on the current positions of the drive shafts 104 and 105 detected by the position detection sensors and the target positions of the drive shafts 104 and 105. The movement control by the load movement control means (subroutine T2) is performed when the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition.
 本実施例によれば、センサ106、107の位置検出センサは、複数の駆動軸104、105の各駆動軸104、105の位置を検出し、位置移動制御手段(サブルーチンT1)は、センサ106、107の位置検出センサにより検出された駆動軸104、105の現在位置と、駆動軸104、105の目標位置とに基づいて、駆動軸104、105の移動制御を駆動軸104、105ごとに行い、荷重移動制御手段(サブルーチンT2)による移動制御は、位置移動制御手段(サブルーチンT1)による移動制御が所定の荷重制御切替条件を満たしたときに行うことができる。これにより、まず、位置移動制御手段(サブルーチンT1)により、センサ106、107の位置検出センサで検出された駆動軸104、105の現在位置に従って、駆動軸104、105の移動制御を行い、その後、位置移動制御手段(サブルーチンT1)による移動制御が所定の荷重制御切替条件を満たしたときに、位置移動制御手段(サブルーチンT1)による移動制御から荷重移動制御手段(サブルーチンT2)による移動制御に切り替えて制御を行うことになる。例えば、ある駆動軸104、105が目標位置に達しており、他の駆動軸104、105が目標位置に達していない場合などでも、センサ106、107の位置検出センサにより駆動軸104、105の位置が検出されるので、それぞれの駆動軸104、105が目標位置に達するまで、位置移動制御手段(サブルーチンT1)により各駆動軸104、105の移動制御を行い、全ての駆動軸104、105が目標位置に達していることを所定の荷重制御切替条件として、荷重移動制御手段(サブルーチンT2)による移動制御に切り替えて制御を行うことで、その後は、駆動軸104、105ごとに実際の荷重をセンサ106、107のロードセルにより検出して駆動軸104、105の位置を制御することができるので、ある駆動軸104、105だけがワークに接触しても偏荷重がかかるようなことがなく、金型の破損や軸過負荷で故障の原因となることを防ぐことができる。なお、上記実施例においては、図2に示すように、各サブルーチンを順次行うように制御しているが、位置移動制御手段(サブルーチンT1)のみで、移動制御を行うようにしてもよい。また、駆動軸毎の位置移動制御手段(サブルーチンT1)は、目標位置が同一となるように、各駆動軸を同期させて制御するようにしてもよい。この場合、各駆動軸は、目標位置まで移動していく過程においても、各駆動軸の位置がずれないように同期させて制御することができる。同期させた位置移動制御によれば、常に各駆動軸が平行して動くので、例えば、平らなワーク上において、流動性のある樹脂などが偏って配置されている場合などに、強制的に平らにすることができる。 According to the present embodiment, the position detection sensors of the sensors 106 and 107 detect the positions of the drive shafts 104 and 105 of the plurality of drive shafts 104 and 105, and the position movement control means (subroutine T1) Based on the current position of the drive shafts 104 and 105 detected by the position detection sensor 107 and the target position of the drive shafts 104 and 105, the movement control of the drive shafts 104 and 105 is performed for each of the drive shafts 104 and 105. The movement control by the load movement control means (subroutine T2) can be performed when the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition. Thereby, first, the movement control of the drive shafts 104 and 105 is performed by the position movement control means (subroutine T1) according to the current positions of the drive shafts 104 and 105 detected by the position detection sensors of the sensors 106 and 107, and then When the movement control by the position movement control means (subroutine T1) satisfies a predetermined load control switching condition, the movement control by the position movement control means (subroutine T1) is switched to the movement control by the load movement control means (subroutine T2). Control will be performed. For example, even when a certain drive shaft 104, 105 has reached the target position and other drive shafts 104, 105 have not reached the target position, the positions of the drive shafts 104, 105 are detected by the position detection sensors of the sensors 106, 107. Therefore, the position movement control means (subroutine T1) controls the movement of each of the drive shafts 104 and 105 until each of the drive shafts 104 and 105 reaches the target position. By switching to the movement control by the load movement control means (subroutine T2) using the fact that the position has been reached as a predetermined load control switching condition, the actual load is then detected for each of the drive shafts 104 and 105. Since the positions of the drive shafts 104 and 105 can be controlled by detection by the load cells 106 and 107, a certain drive shaft 10 , Without only 105 such that an unbalanced load consuming and in contact with the workpiece, it is possible to prevent causing malfunction in the mold breakage or axial overload. In the above embodiment, as shown in FIG. 2, control is performed so that each subroutine is sequentially performed, but the movement control may be performed only by the position movement control means (subroutine T1). Further, the position movement control means (subroutine T1) for each drive axis may control each drive axis in synchronization so that the target position is the same. In this case, each drive shaft can be controlled in synchronization so that the position of each drive shaft does not shift even in the process of moving to the target position. According to the synchronized position movement control, the drive shafts always move in parallel. For example, when a fluid resin or the like is unevenly arranged on a flat workpiece, it is forcibly flat. Can be.
 本実施例の多軸プレス装置においては、荷重移動制御手段(サブルーチンT2)による移動制御が所定の保持切替条件を満たしたときに、駆動軸104、105の目標荷重を保持するように移動制御を駆動軸104、105ごとに行う荷重保持制御手段(サブルーチンT3)を有する。 In the multi-axis press apparatus of this embodiment, when the movement control by the load movement control means (subroutine T2) satisfies a predetermined holding switching condition, the movement control is performed so as to hold the target load of the drive shafts 104 and 105. Load holding control means (subroutine T3) is provided for each of the drive shafts 104 and 105.
 本実施例によれば、荷重保持制御手段(サブルーチンT3)は、荷重移動制御手段(サブルーチンT2)による移動制御が所定の保持切替条件を満たしたときに、駆動軸104、105の目標荷重を保持するように移動制御を駆動軸104、105ごとに行うことができる。例えば、全ての駆動軸104、105が目標荷重に達したことを所定の保持切替条件として、荷重移動制御手段(サブルーチンT2)による移動制御から荷重保持制御手段(サブルーチンT3)による移動制御に切り替えて制御を行うことで、駆動軸104、105ごとに目標荷重に保持させるように駆動軸104、105の位置を制御することができる。ナノインプリント装置においては、一定時間、目標荷重で押圧させたいときには、駆動軸104、105ごとに目標荷重で一定時間圧力をかけることができ、パターンをワークに忠実に再現することできる。 According to this embodiment, the load holding control means (subroutine T3) holds the target load of the drive shafts 104 and 105 when the movement control by the load movement control means (subroutine T2) satisfies a predetermined holding switching condition. Thus, the movement control can be performed for each of the drive shafts 104 and 105. For example, using a predetermined holding switching condition that all the drive shafts 104 and 105 have reached the target load, the movement control by the load movement control means (subroutine T2) is switched to the movement control by the load holding control means (subroutine T3). By performing the control, the positions of the drive shafts 104 and 105 can be controlled so that the drive shafts 104 and 105 are held at the target loads. In the nanoimprint apparatus, when it is desired to press with a target load for a certain time, a pressure can be applied for a certain time with the target load for each of the drive shafts 104 and 105, and the pattern can be reproduced faithfully to the workpiece.
 本実施例の多軸プレス装置において、荷重移動制御手段(サブルーチンT2)は、駆動軸104、105ごとにセンサ106、107のロードセルにより検出された駆動軸104、105の現在荷重について、最大と最小との差が所定の許容差を超えた場合に異常と判断する(サブルーチンT5)。 In the multi-axis press apparatus of the present embodiment, the load movement control means (subroutine T2) is the maximum and minimum of the current loads of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 for each of the drive shafts 104 and 105. Is determined to be abnormal (subroutine T5).
 本実施例によれば、荷重移動制御手段は、駆動軸104、105ごと移動制御を行っているため、それぞれの駆動軸104、105における移動制御による誤差が生じうるが、荷重移動制御手段が、駆動軸104、105ごとのセンサ106、107のロードセルにより検出された駆動軸104、105の現在荷重と、駆動軸104、105の目標荷重との差について、最大と最小との差が所定の許容差を超えた場合に異常と判断することで、緊急停止するようにできる。 According to the present embodiment, since the load movement control means performs movement control for each of the drive shafts 104 and 105, errors due to movement control in the respective drive shafts 104 and 105 may occur, but the load movement control means Regarding the difference between the current load of the drive shafts 104 and 105 detected by the load cells of the sensors 106 and 107 for each of the drive shafts 104 and 105 and the target load of the drive shafts 104 and 105, the difference between the maximum and the minimum is a predetermined allowable value. If the difference is exceeded, an emergency stop can be made by determining that there is an abnormality.
 本実施例の多軸プレス装置において、位置移動制御手段は、駆動軸104、105ごとにセンサ106、107の位置検出センサにより検出された駆動軸104、105の現在位置について、最大と最小との差が所定の許容差を超えた場合に異常と判断する(サブルーチンT4)。 In the multi-axis press apparatus of the present embodiment, the position movement control means determines the maximum and minimum values of the current positions of the drive shafts 104 and 105 detected by the position detection sensors 106 and 107 for each of the drive shafts 104 and 105. When the difference exceeds a predetermined tolerance, it is determined that there is an abnormality (subroutine T4).
 本実施例によれば、位置移動制御手段は、駆動軸104、105ごと移動制御を行っているため、それぞれの駆動軸104、105における移動制御による誤差が生じうるが、位置移動制御手段が、駆動軸104、105ごとにセンサ106、107の位置検出センサにより検出された駆動軸104、105の位置について、最大と最小との差が所定の許容差を超えた場合に異常と判断することで、緊急停止するようにできる。 According to the present embodiment, since the position movement control unit performs movement control for each of the drive shafts 104 and 105, an error due to movement control in each of the drive shafts 104 and 105 may occur. By determining the position of the drive shafts 104 and 105 detected by the position detection sensors 106 and 107 for each of the drive shafts 104 and 105 as abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance. Can be emergency stop.
 本実施例における多軸プレス装置を備えるインプリント装置100としては、複数の駆動軸104、105により移動される上テーブル108A及び下テーブル108Bと、上テーブル108A及び下テーブル108Bに対して所望する目標荷重を受け付ける受付部と、を備え、荷重移動制御手段(サブルーチンT3)は、受付部で受け付けた目標荷重に基づいて駆動軸104、105の移動制御を行う。 As the imprint apparatus 100 including the multi-axis press apparatus in the present embodiment, desired targets for the upper table 108A and the lower table 108B and the upper table 108A and the lower table 108B that are moved by the plurality of drive shafts 104 and 105. And a load movement control means (subroutine T3) that controls the movement of the drive shafts 104 and 105 based on the target load received by the reception section.
 本実施例によれば、インプリント装置において、受付部で上テーブル108A及び下テーブル108Bに対して所望する目標荷重を受け付け、受付部で受け付けた目標荷重に基づいて駆動軸104、105の移動制御を行うことができるので、目標荷重に従って、押圧することができる。均等な圧力をかけたいときには、目標荷重をそれぞれ同一となるように指定しておけば、駆動軸104、105ごとに均等な圧力をかけることができるので、パターンをワークに忠実に再現することできる。 According to the present embodiment, in the imprint apparatus, the receiving unit receives desired target loads for the upper table 108A and the lower table 108B, and the movement control of the drive shafts 104 and 105 is performed based on the target loads received by the receiving unit. Therefore, it can press according to a target load. If you want to apply a uniform pressure, you can apply a uniform pressure to each of the drive shafts 104 and 105 by specifying the target loads to be the same, so that the pattern can be faithfully reproduced on the workpiece. .
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.
 上記実施例においては、多軸プレス装置を利用したインプリント装置を例に示したが、ホットエンボス装置や、板材等のワークを成形加工、曲げ加工するプレス装置やプラスブレーキ装置等において上述した多軸プレス装置を利用するようにしてもよい。 In the above-described embodiments, an imprint apparatus using a multi-axis press apparatus is shown as an example. An axial press device may be used.
 上記実施例においては、サーボモータ機構を利用した場合を例にしたが、センサからの検出値が目標信号を示す指定値(目標荷重値、目標位置)に追従するようにフィードフォワード制御を行うようにしてもよい。 In the above embodiment, the servo motor mechanism is used as an example. However, feedforward control is performed so that the detection value from the sensor follows the specified value (target load value, target position) indicating the target signal. It may be.
 上記実施例においては、位置移動制御(サブルーチンT1)、荷重移動制御(サブルーチンT2)、荷重保持制御(サブルーチンT3)において、各駆動軸に対して、独立して制御しているが、位置移動制御(サブルーチンT1)、荷重移動制御(サブルーチンT2)においては、目標値が同一となるように、各駆動軸を同期させて制御し、荷重保持制御(サブルーチンT3)においては、各駆動軸に対して、独立して制御するようにしてもよい。すなわち、同期させた位置移動制御(サブルーチンT1)において、各駆動軸は、目標位置が同一となるように各駆動軸の位置がずれないようにタイミングを同期させて制御し、その後、同期させた荷重移動制御(サブルーチンT2)において、目標荷重が同一となるように各駆動軸の荷重値がずれないようにタイミングを同期させて制御し、その後、荷重保持制御(サブルーチンT3)においては、各駆動軸に対して、独立して制御することで、駆動軸毎に目標の荷重値となるようにそれぞれ制御することができる。これにより、同期させた位置移動制御により、常に各駆動軸が平行して動くので、例えば、平らなワーク上において、流動性のある樹脂などが偏って配置されている場合などに、強制的に平らにすることができ、また、同期させた荷重移動制御により、常に各駆動軸が同一タイミングで同じ荷重になるため、例えば、傾いているワーク上に、流動性のある樹脂などが配置されている場合であっても、偏ることなく均一に加圧することができ、その後、荷重保持制御により、ワークの状態が熱膨張や硬化収縮等により変化することがあっても、各軸が各場所でそのワークの状態変化に追従して、目標の荷重値Aに保持できるので、ワークの状態が変化しても同じ荷重値で押し続けることができ、パターンをワークに忠実に再現することできる。 In the above embodiment, the position movement control (subroutine T1), the load movement control (subroutine T2), and the load holding control (subroutine T3) are controlled independently for each drive shaft. In (subroutine T1) and load movement control (subroutine T2), the drive axes are controlled in synchronization so that the target values are the same, and in load holding control (subroutine T3), each drive axis is controlled. Independent control is also possible. In other words, in the synchronized position movement control (subroutine T1), each drive shaft is controlled with the timing synchronized so that the position of each drive shaft does not shift so that the target position is the same, and then synchronized. In the load movement control (subroutine T2), control is performed by synchronizing the timing so that the load value of each drive shaft does not shift so that the target load is the same, and then in the load holding control (subroutine T3) By independently controlling the shaft, it is possible to control each drive shaft so as to have a target load value. As a result, the respective drive shafts always move in parallel by the synchronized position movement control.For example, when a fluid resin or the like is unevenly arranged on a flat workpiece, forcibly. It can be flattened, and each drive shaft always has the same load at the same timing by synchronized load movement control. For example, fluid resin etc. is placed on a tilted workpiece Even if it is, it is possible to apply pressure evenly without bias, and after that, even if the state of the workpiece may change due to thermal expansion or shrinkage due to load holding control, each axis is Since the target load value A can be maintained following the change in the state of the workpiece, even if the state of the workpiece changes, it can be kept pressed with the same load value, and the pattern can be reproduced faithfully to the workpiece.
100      インプリント装置
101      CPU
102、103  駆動部
104、105  駆動軸
106、107  センサ
108A、208A 上テーブル
108B、208B 下テーブル
109A、209A 上金型
109B、209B 下金型
110、210   ワーク
204      スレーブ軸
205      マスタ軸
100 imprint apparatus 101 CPU
102, 103 Drive unit 104, 105 Drive shaft 106, 107 Sensor 108A, 208A Upper table 108B, 208B Lower table 109A, 209A Upper die 109B, 209B Lower die 110, 210 Work 204 Slave axis 205 Master axis

Claims (6)

  1.  複数の駆動軸により押圧部材を駆動する多軸プレス装置において、
     前記複数の駆動軸の各駆動軸の荷重を検出する荷重検出手段と、
     前記荷重検出手段により検出された当該駆動軸の荷重と、当該駆動軸の目標荷重とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行う荷重移動制御手段と、を有することを特徴とする多軸プレス装置。
    In a multi-axis press device that drives a pressing member by a plurality of drive shafts,
    Load detecting means for detecting the load of each drive shaft of the plurality of drive shafts;
    Load movement control means for performing movement control of the drive shaft for each drive shaft based on the load of the drive shaft detected by the load detection means and the target load of the drive shaft. Multi-axis press machine.
  2.  前記複数の駆動軸の各駆動軸の位置を検出する位置検出手段と、
     前記位置検出手段により検出された当該駆動軸の位置と、当該駆動軸の目標位置とに基づいて、当該駆動軸の移動制御を駆動軸ごとに行う位置移動制御手段とを有し、
     前記荷重移動制御手段による前記移動制御は、前記位置移動制御手段による移動制御が所定の条件を満たしたときに行うことを特徴とする請求項1に記載の多軸プレス装置。
    Position detecting means for detecting the position of each drive shaft of the plurality of drive shafts;
    A position movement control unit that performs movement control of the drive shaft for each drive axis based on the position of the drive shaft detected by the position detection unit and the target position of the drive shaft;
    The multi-axis press apparatus according to claim 1, wherein the movement control by the load movement control means is performed when the movement control by the position movement control means satisfies a predetermined condition.
  3.  前記荷重移動制御手段による移動制御が所定の条件を満たしたときに、前記駆動軸の目標荷重を保持するように移動制御を駆動軸ごとに行う荷重保持制御手段を有することを特徴とする請求項1または2に記載の多軸プレス装置。 The load holding control means for performing movement control for each drive shaft so as to hold the target load of the drive shaft when the movement control by the load movement control means satisfies a predetermined condition. The multi-axis press apparatus according to 1 or 2.
  4.  前記荷重移動制御手段は、前記駆動軸ごとに前記荷重検出手段により検出された当該駆動軸の荷重について、最大と最小との差が所定の許容差を超えた場合に異常と判断することを特徴とする請求項1ないし3のいずれかに記載の多軸プレス装置。 The load movement control means determines that the load on the drive shaft detected by the load detection means for each drive shaft is abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance. A multi-axis press apparatus according to any one of claims 1 to 3.
  5.  前記位置移動制御手段は、前記駆動軸ごとに前記位置検出手段により検出された当該駆動軸の位置について、最大と最小との差が所定の許容差を超えた場合に異常と判断することを特徴とする請求項2に記載の多軸プレス装置。 The position movement control means determines that the position of the drive shaft detected by the position detection means for each drive axis is abnormal when the difference between the maximum and minimum exceeds a predetermined tolerance. The multi-axis press apparatus according to claim 2.
  6.  請求項1ないし5のいずれかに記載の多軸プレス装置を備えるインプリント装置であって、
     前記複数の駆動軸により移動される押圧部材と、
     前記押圧部材に対して所望する目標荷重を受け付ける受付部と、を備え、
     前記荷重移動制御手段は、前記受付部で受け付けた目標荷重に基づいて前記駆動軸の移動制御を行うことを特徴とするインプリント装置。
    An imprint apparatus comprising the multi-axis press apparatus according to any one of claims 1 to 5,
    A pressing member moved by the plurality of drive shafts;
    A receiving unit for receiving a desired load desired for the pressing member,
    The imprint apparatus, wherein the load movement control means performs movement control of the drive shaft based on a target load received by the receiving unit.
PCT/JP2012/076545 2012-10-12 2012-10-12 Multi-shaft press device and imprint device using same WO2014057589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076545 WO2014057589A1 (en) 2012-10-12 2012-10-12 Multi-shaft press device and imprint device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076545 WO2014057589A1 (en) 2012-10-12 2012-10-12 Multi-shaft press device and imprint device using same

Publications (1)

Publication Number Publication Date
WO2014057589A1 true WO2014057589A1 (en) 2014-04-17

Family

ID=50477074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076545 WO2014057589A1 (en) 2012-10-12 2012-10-12 Multi-shaft press device and imprint device using same

Country Status (1)

Country Link
WO (1) WO2014057589A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230027A (en) * 2007-03-20 2008-10-02 Hitachi High-Technologies Corp Fine structure transfer device and manufacturing method of fine structure
JP2008279772A (en) * 2008-06-23 2008-11-20 Canon Inc Microfabricating method and microfabricating device
JP2009137286A (en) * 2007-11-08 2009-06-25 Ev Group E Thallner Gmbh System for uniform structuralization of substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230027A (en) * 2007-03-20 2008-10-02 Hitachi High-Technologies Corp Fine structure transfer device and manufacturing method of fine structure
JP2009137286A (en) * 2007-11-08 2009-06-25 Ev Group E Thallner Gmbh System for uniform structuralization of substrate
JP2008279772A (en) * 2008-06-23 2008-11-20 Canon Inc Microfabricating method and microfabricating device

Similar Documents

Publication Publication Date Title
US10906262B2 (en) Method for controlling a ceramic or metal powder press, and ceramic or metal powder press
JP5019250B2 (en) Servo press equipment and control method
CN100415402C (en) Die cushion mechanism, and device and method for controlling the same
US11331711B2 (en) Method for operating a fine blanking system
JP5002229B2 (en) Clamping device
JP6746686B2 (en) Injection molding machine
WO2017217222A1 (en) Positioning control device and mold-clamping apparatus
JP3853908B2 (en) Multi-point servo press controller
WO2014057589A1 (en) Multi-shaft press device and imprint device using same
KR0167825B1 (en) Emergency refuge device for transfer feeder
JP2001121297A (en) Slide inclination correction apparatus of press machine
JP2006212644A (en) Die cushion controller
US11297841B2 (en) Rotary dough molding machine
JP6249583B2 (en) Operation control device and operation control method for press line
EP1555116B1 (en) Press forming method
EP1795324B1 (en) System for positioning a laminating cylinder in a calender
JP2003230996A (en) Control method for multi-shaft servo drive press
TW200408532A (en) Press forming method
US20220388244A1 (en) Device for processing a body manufactured by means of an additive manufacturing
JP6067397B2 (en) Multi-axis servo press apparatus and control method for multi-axis servo press apparatus
JP2005211928A (en) Press system
JP2003117979A (en) Method for treating abnormality of electrically-driven injection molding machine
CN108227635B (en) Numerical controller
KR101898174B1 (en) Servo press system with multi-driving axis and synchronous control method using thereof
JPH01150500A (en) Operation of hydraulic type press machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP