WO2014056332A1 - 用于聚焦同步辐射光源的光学器件 - Google Patents

用于聚焦同步辐射光源的光学器件 Download PDF

Info

Publication number
WO2014056332A1
WO2014056332A1 PCT/CN2013/077687 CN2013077687W WO2014056332A1 WO 2014056332 A1 WO2014056332 A1 WO 2014056332A1 CN 2013077687 W CN2013077687 W CN 2013077687W WO 2014056332 A1 WO2014056332 A1 WO 2014056332A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
capillary
synchrotron radiation
outer diameter
peripheral region
Prior art date
Application number
PCT/CN2013/077687
Other languages
English (en)
French (fr)
Inventor
李玉德
林晓燕
何金龙
刘志国
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京师范大学 filed Critical 北京师范大学
Priority to US14/434,515 priority Critical patent/US9583227B2/en
Publication of WO2014056332A1 publication Critical patent/WO2014056332A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings

Definitions

  • This invention relates to the field of materials and optics, and more particularly to an optical device for focusing a synchrotron radiation source.
  • synchrotron radiation sources Due to its unique properties such as high brightness, collimation and continuous energy adjustment, synchrotron radiation sources have become an important tool for revealing material structure and life phenomena. They are widely used in materials, geology, biology, environment and archaeology. With the development of synchrotron radiation technology, X-ray microbeam analysis technology using X-ray focusing optics has become the mainstream analysis technology for synchrotron radiation applications.
  • Synchrotron radiation devices have evolved from construction, performance and use and have evolved over three generations. Characteristics of the first and second generation synchrotron devices: The source point size and divergence are large. At present, the international first-generation and second-generation synchrotron radiation devices usually use a toroidal mirror to "focus once" a beam of several tens of millimeters in the horizontal direction and several millimeters in the vertical direction. The focused beam is horizontally and vertically. The straight direction is sub-millimeter. Among them, the light intensity distribution after "one focus” is a Gaussian distribution with strong center and weak edges. However, when performing research and analysis such as X-ray diffraction and fluorescence, the intensity of incident light is required to be as uniform as possible.
  • High pressure absorption spectroscopy is an important development direction of X-ray absorption spectroscopy experiments. It applies pressure to the sample by diamond to the top anvil, studies the local structure and electronic structure of the sample, and dynamically reveals some of the dynamic properties of the sample in situ. Because diamond is a crystal structure, the diffraction signal generated by diamond seriously affects the normal measurement of the absorption spectrum when performing high-pressure absorption spectroscopy.
  • Embodiments of the present invention provide an optical device for concentrating X-rays for improving the uniformity of light intensity of an outgoing light, increasing the divergence of an outgoing beam, and suppressing harmonics of a synchronous radiation.
  • An optical device for focusing a synchrotron radiation source wherein an outer bus bar of the optical device is a combination of a quadratic curve segment or a plurality of quadratic curve segments, wherein the plurality of quadratic curve segments have the same opening direction, and the optical device comprises: a capillary body made of a plurality of transparent materials; wherein the capillary body located in the central region is a solid structure; and the capillary body located in the peripheral region outside the central region is a hollow structure.
  • the optical device by using a solid capillary body in the central region and a hollow capillary body in the peripheral region, that is, an optical device of a "primary focusing" synchrotron radiation source, not only can the intensity of the synchrotron radiation device be "one focus"
  • the Gaussian distribution becomes an approximate uniform hook distribution, and at the same time increases the divergence of the outgoing beam, and weakens the normal measurement of the high-pressure absorption spectrum by the diffraction signal introduced by crystals such as diamond.
  • the optical device has a function of suppressing harmonic radiation higher harmonics.
  • the outer diameter of the capillary of the central zone is larger than the outer diameter of the capillary of the peripheral zone; or, the outer diameters of all the capillaries are equal.
  • the outer diameter of the capillary of the central region is larger than the outer diameter of the capillary of the peripheral region, the number of the capillary can be reduced while the volume of the optical device is constant, and the manufacturing process can be simplified. The process of producing a single capillary can be simplified if the outer diameters of all the capillaries are equal.
  • the wall thickness of the capillary closer to the edge of the optic is smaller. This further improves the uniformity of the concentrated X-rays.
  • the transparent material is glass.
  • the capillary produced by the material has a good smoothness.
  • the glass material comprises one or more of Li, Be and B.
  • the vitreous body of the glass of this component has a good smoothness.
  • the capillary of the peripheral zone comprises a film of opaque material.
  • the opaque material is a metal.
  • the reflective film composed of a metal material has a good reflection effect.
  • the metal comprises one or more of tungsten, gold and platinum. The material has a good reflection effect.
  • the film of opaque material is located on the outer surface of the capillary. This can not only have a better reflection effect, but also reduce the difficulty of coating.
  • FIG. 1A is a schematic diagram showing light intensity distribution of concentrated X-rays in the prior art
  • FIG. 1B is a structural view of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an optical device in an embodiment of the present invention.
  • FIG. 3 is a structural view of a capillary body in a peripheral region according to an embodiment of the present invention.
  • 4 to 7 are schematic views showing light intensity distribution of concentrated X-rays in an embodiment of the present invention. detailed description
  • the inventors of the present application found that the optical device currently composed of a glass capillary has a Gaussian distribution of the intensity of the emitted light after the convergence of the X-rays, that is, the intensity of the central region is significantly higher than that of the edge region. In practical applications and research, it is more desirable to obtain X-rays with relatively uniform light intensity. Therefore, in the present embodiment, the concentrated X-rays are more evenly smeared by using the solid bristles in the central region and the hollow bristles in the peripheral region, that is, an optical device that focuses the synchrotron radiation source.
  • the optical device can also be used to converge the X-rays emitted by the toroidal mirror, so that the intensity of the synchrotron radiation device after "one focus” is divided into Gaussian points.
  • the cloth becomes approximately uniform hook distribution, achieving "secondary focus", and at the same time increasing the divergence of the outgoing beam, and weakening the normal measurement of the high-pressure absorption spectrum by the diffraction signal introduced by crystals such as diamond.
  • the optical device has a function of suppressing harmonic radiation higher harmonics.
  • the optical device in this embodiment is an axisymmetric structure, and in particular, the cross section at any point thereof is approximately circular.
  • One of the two sets of opposite sides of the longitudinal section is a parallel line, and the other set of opposite sides is an open arc, which follows a quadratic curve equation.
  • the outer bus bar 101 of the optical device is a quadratic curve segment or a combination of a plurality of quadratic curve segments, wherein the plurality of quadratic curve segments have the same opening direction.
  • the outer bus bar 101 is a parabola or an elliptical arc.
  • the optical device comprises: a capillary 102 made of a single transparent material.
  • the capillary 102 located in the central portion 201 is a solid structure.
  • the capillary 102 of the peripheral zone 202 located outside the central zone 201 is a hollow structure, and the capillary 102 of the peripheral zone 202 comprises a film of opaque material.
  • the capillary 102 of the peripheral region 202 includes two portions, one portion being a hollow tube 301 made of a transparent material, and the other portion being a film 302 of an opaque material plated on the outer layer of the hollow tube 301.
  • the outer layer of the capillary 102 of the central region 201 can also be coated with a film 302 of opaque material.
  • the transparent material is glass.
  • the glass material is a lighter glass having a lower density, and the glass material includes at least one or more of lithium Li, ⁇ Be and boron B.
  • the composition of glass includes:
  • the opaque material is a metal.
  • the total glancing angle of total reflection is increased, that is, the ability to converge high-energy X-rays is improved, and the density is used in this embodiment.
  • a higher heavy metal comprising at least one or more of tungsten W, gold Au, and platinum Pb.
  • tungsten is used.
  • One end of the optical device is used to receive X-rays and the other end is used to output X-rays.
  • the critical surface of the glass material and the metal material constitutes a reflecting surface for total reflection when X-rays are transmitted to the reflecting surface in the optical device and converge outside the other end.
  • the diameter of the capillary of the central zone is larger than the outer diameter of the capillary of the peripheral zone; or, the outer diameters of all the capillaries are equal.
  • the diameter of the capillary of the central region is larger than the outer diameter of the capillary of the peripheral region, the number of the capillary can be reduced while the volume of the optical device is constant, and the manufacturing process can be simplified. The process of producing a single capillary can be simplified if the outer diameters of all the capillaries are equal.
  • the wall thickness of the capillary closer to the edge of the optic is smaller.
  • the inner diameter of the capillary 102 closer to the edge is larger. This further improves the uniformity of the concentrated X-rays.
  • the outer diameter is 6.25 um
  • the outlet is 2.5 um
  • the inner diameter of the capillary 102 of the peripheral zone 202 is 5 um
  • the outlet is 2 um
  • the central axis of the optical device is 65 mm
  • the light intensity distribution diagrams of the capillary 102 of the central region 201 are 10, 20, 30, and 35, respectively.
  • the horizontal axis represents the length of the exit of the optical device
  • the vertical axis represents the light intensity.
  • the larger the number of turns of the capillary 102 of the central portion 201 the larger the focal spot that is concentrated, that is, the better the average.
  • the number of laps has an optimal range. If the number of laps exceeds the range, the concentrated light intensity platform will be concave, that is, the light intensity corresponding to the central area 201 will be lower than the corresponding light intensity of the peripheral area 202, and the average is lowered. degree.
  • Table 1 shows the divergence of the concentrated X-rays, and the larger the number of turns of the capillary 102 of the central region 201, the greater the divergence of the concentrated X-rays.
  • this embodiment also has a good effect in suppressing higher harmonics.
  • E represents a fundamental wave 3E represents higher harmonics.
  • the inner diameter inlet of the capillary 102 in the peripheral region 202 is 12.6 ⁇ m
  • the inner diameter outlet is 6 ⁇ m
  • the axial length of the optical device is 40 mm
  • the capillary 102 of the central region 201 is 15 turns.
  • Table 2 The transmission efficiency is shown in Table 2:
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • a computer-usable storage medium including but not limited to disk storage and optical storage, etc.
  • the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention.
  • the flow chart can be implemented by computer program instructions And/or a combination of the processes and/or blocks in the block diagrams, and the flowcharts and/or blocks in the flowcharts and/or block diagrams.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种用于聚焦同步辐射光源的光学器件,用于提高出射光的光强均匀程度,增大出射光束的发散度以及抑制同步辐射高次谐波。该光学器件的外侧母线为二次曲线段或多个二次曲线段的组合,其中多个二次曲线段开口方向相同,该光学器件包括:多根透明材料制成的毛细体(102);其中,位于中心区(201)的毛细体(102)为实心结构;位于中心区(201)以外的外围区(202)的毛细体(102)为中空结构。

Description

用于聚焦同歩辐射光源的光学器件 本申请要求在 2012年 10月 9日提交中国专利局、申请号为 201220513794.8、 发明名称为"用于聚焦同步辐射光源的光学器件"的中国专利申请的优先权,其 全部内容通过引用结合在本申请中。 技术领域
本发明涉及材料和光学技术领域, 尤其涉及一种用于聚焦同步辐射光源 的光学器件。
背景技术
同步辐射光源因其高亮度、 准直性及能量连续可调等独特的性质, 成为 揭示物质结构和生命现象的重要工具, 广泛应用于材料、 地质、 生物、 环境 以及考古等学科领域。 随着同步辐射技术的发展, 使用 X射线聚焦光学元件 的 X射线微束分析技术已成为同步辐射应用的主流分析技术。
同步辐射装置从建造、 性能和用途来区分, 已经经历了三代的发展。 第 一代和第二代同步辐射装置的特点: 光源点尺寸和发散度都较大。 目前, 国 际第一代和第二代同步辐射装置通常釆用超环面镜, 将水平方向几十毫米和 竖直方向几个毫米的光束 "一次聚焦", 聚焦后的光束在水平方向和竖直方向 都为亚毫米。其中, "一次聚焦"后的光强分布为中心强、边缘弱的高斯分布。 但是, 进行 X射线衍射和荧光等研究和分析时, 需要入射光的光强尽可能为 均匀分布。
高压吸收谱是 X射线吸收谱学实验的一个重要发展方向。 它是通过金刚 石对顶砧对样品施加压力, 研究样品的局域结构和电子结构变化, 动态原位 地揭示样品的一些动力学性质。 因为金刚石是晶体结构, 在进行高压吸收谱 测量时, 金刚石产生的衍射信号严重影响了吸收谱的正常测量。
另外, 连续光谱的同步辐射通过单色器后出射的单色光中含有高次谐波, 而高次谐波严重影响光源、 探测器和光学元件的定标精度, 实验数据会因谐 波干扰而增大误差, 甚至导致错误的实验结论。 因此, 抑制光源中的高次谐 波, 提高光源品质, 对提高实验结果的精度具有重要意义。 发明内容
本发明实施例提供一种会聚 X射线的光学器件, 用于提高出射光的光强 均匀程度, 增大出射光束的发散度以及抑制同步辐射高次谐波。
一种用于聚焦同步辐射光源的光学器件, 该光学器件的外侧母线为为二 次曲线段或多个二次曲线段的组合, 其中多个二次曲线段开口方向相同, 该 光学器件包括: 多根透明材料制成的毛细体; 其中, 位于中心区的毛细体为 实心结构; 位于中心区以外的外围区的毛细体为中空结构。 本实施例通过中 心区域釆用实心毛细体以及外围区域釆用空心毛细体, 即一种 "一次聚焦" 同步辐射光源的光学器件, 不仅可以使同步辐射装置 "一次聚焦" 后的光强 分由高斯分布变为近似均勾分布, 同时增大出射光束的发散度, 削弱如金刚 石等晶体引入的衍射信号对高压吸收谱的正常测量。 此外, 该光学器件具有 抑制同步辐射高次谐波的作用。
优选的, 中心区的毛细体的外径大于外围区的毛细体的外径; 或者, 所 有毛细体的外径相等。 其中, 若中心区的毛细体的外径大于外围区的毛细体 的外径, 则可以在光学器件体积不变的情况下减少毛细体的数量, 以及简化 制作工艺。 若所有毛细体的外径相等则可以简化生产单个毛细体的工艺。
优选的, 越靠近光学器件边缘的毛细体的管壁厚度越小。 这样可进一步 提高会聚 X射线的均匀度。
优选的, 透明材料为玻璃。 该材料制出的毛细体光滑度较好。
优选的, 玻璃材料包括 Li、 Be和 B中的一种或多种元素。 该成分的玻璃 制出的毛细体光滑度较好。
优选的, 外围区的毛细体包括不透明材料的膜。
优选的, 不透明材料为金属。 金属材料构成的反射膜具有较好的反射效 果。 优选的, 金属包括钨、 金和铂中的一种或多种元素。 该材料的反射效果 较好。
优选的, 不透明材料的膜位于毛细体的外表面。 这样既可以有较好的反 射效果, 且降低镀膜难度。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1A为现有技术中会聚 X射线的光强分布示意图;
图 1B为本发明实施例中光学器件的结构图;
图 2为本发明实施例中光学器件的横截面示意图;
图 3为本发明实施例中外围区毛细体的结构图;
图 4-图 7为本发明实施例中会聚 X射线的光强分布示意图。 具体实施方式
以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
本申请的发明人发现, 目前由玻璃毛细管构成的光学器件, 在会聚 X射 线后的出射光的光强呈高斯分布, 也就是中心区域的光强明显高于边缘区域 的光强。 而在实际应用和研究中, 更希望获得光强较均匀的 X射线。 因此, 本实施例通过中心区域釆用实心毛细体以及外围区域釆用空心毛细体, 即一 种聚焦同步辐射光源的光学器件, 使会聚的 X射线更均勾。 还可以用于会聚 超环面镜射出的 X射线, 使同步辐射装置 "一次聚焦" 后的光强分由高斯分 布变为近似均勾分布, 实现 "二次聚焦", 同时增大出射光束的发散度, 削弱 如金刚石等晶体引入的衍射信号对高压吸收谱的正常测量。 此外, 该光学器 件具有抑制同步辐射高次谐波的作用。
参见图 1 , 本实施例中光学器件为轴对称结构, 尤其是其任一点的横截面 都近似为圓。 纵向截面的两组对边中一组对边为平行线, 另一组对边为开口 相对的弧形, 该弧形遵循二次曲线方程。 也就是说, 光学器件的外侧母线 101 为二次曲线段或多个二次曲线段的组合, 其中多个二次曲线段开口方向相同。 较佳的, 外侧母线 101为抛物线或椭圓弧。
该光学器件包括: 单根透明材料制成的毛细体 102。 参见图 2所示, 位于 中心区 201的毛细体 102为实心结构。 位于中心区 201以外的外围区 202的 毛细体 102为中空结构, 且外围区 202的毛细体 102包括不透明材料的膜。
参见图 3所示, 外围区 202的毛细体 102包括两部分, 一部分是透明材 料制成的中空管 301 , 另一部分是在中空管 301 外层镀上的不透明材料的膜 302。
当然, 中心区 201的毛细体 102外层也可以镀上不透明材料的膜 302。 较佳的,透明材料为玻璃。特别的,该玻璃材料为密度较低的轻质玻璃, 玻璃材料至少包括锂 Li、 铍 Be和硼 B中的一种或多种元素。 例如, 玻璃的 成分包括:
成分 含量 (重量 )
Si02 75.5%
B 203 15.5%
A1203 3.4%
Fe203 0.08%
Na20 4.7%
K20 0.6%
较佳的, 不透明材料为金属。 为了进一步提高玻璃与金属的折射率差, 增大全反射临界掠射角, 即提高会聚高能 X射线的能力, 本实施例釆用密度 较高的重金属,该重金属至少包括钨 W、金 Au和铂 Pb中的一种或多种元素。 从制作工艺和成本方面考虑, 较佳的方案是釆用钨。 光学器件两端中的一端用于接收 X射线, 另一端用于输出 X射线。 玻璃 材料与金属材料的临界面构成反射面, 该反射面用于 X射线在光学器件中传 输到反射面时发生全反射, 并在所述另一端外会聚。
较佳的, 中心区的毛细体的直径大于外围区的毛细体的外径; 或者, 所 有毛细体的外径相等。 其中, 若中心区的毛细体的直径大于外围区的毛细体 的外径, 则可以在光学器件体积不变的情况下减少毛细体的数量, 以及简化 制作工艺。 若所有毛细体的外径相等则可以简化生产单个毛细体的工艺。
较佳的, 越靠近光学器件边缘的毛细体的管壁厚度越小。 尤其是外围区 202的毛细管 102在外径相同的情况下,越靠近边缘的毛细管 102的内径越大。 这样可进一步提高会聚 X射线的均匀度。
例如, 在在所有毛细管 102的入口外直径为 6.25um, 出口为 2.5um, 外 围区 202的毛细管 102的内直径为 5um, 出口为 2um, 光学器件的中轴长度 为 65mm, 光学器件的外侧母线为 y=-0.0012x2+0.0025x+5.2813 , 毛细管总圈 数 kk=80的条件下, 中心区 201的毛细管 102为 25-40圈时, 出现较明显的平 台: 宽度约 40-50 um。 可以参见图 4-图 7所示的示意图, 分别是中心区 201 的毛细管 102为 10、 20、 30、 35时的光强分布示意图。 其中, 图中横轴表示 距离光学器件出口的长度, 纵轴表示光强。 从图中可知, 中心区 201 的毛细 管 102 的圈数越大, 会聚的焦斑也越大, 也就是说平均度越好。 但是该圈数 有个最佳范围, 超过该范围的圈数, 会聚的光强平台会出现凹陷, 也就是说 中心区 201对应的光强会低于外围区 202对应的光强, 反而降低平均度。
在该条件下, 会聚 X射线的发散度参见图表 1所示:
表 1
k k=0 k=15 k=25 k=40
发散度 /mrad 5.05 5.325 5.82 6.75 表 1展示了会聚 X射线的发散度,中心区 201的毛细管 102的圈数越大, 会聚 X射线的发散度也越大。其中, k=0表示中心区 201的毛细管 102数为 0, 也就是说所有毛细体均为中空管, 即为现有技术的光学器件, 由此可知本实 施例中的光学器件在会聚的光强均勾性和发散度方面都优于现有技术。 同样, 与完全实心的光学器件相比, 本实施例中的光学器件在会聚的光强均勾性和 发散度方面都优于现有技术。
另外, 本实施例在抑制高次谐波方面也有艮好的效果, 通常 X射线能区 内存在基波与三次倍频; 也就是存在 E与 3E 两种能量的光; 其中, E表示基 波, 3E表示高次谐波。通过计算,在外围区 202的毛细管 102内径入口为 12.6um, 内径出口 6um, 光学器件中轴长度为 40mm, 光学器件总圈数 kk=30, 中心区 201的毛细管 102为 15圈的条件下, 传输效率如表 2所示:
表 2
Figure imgf000007_0001
由表 2可知, 本实施例对抑制高次谐波(E=15kev )有明显的效果, 使用 现有技术中的完全空心的光学器件时的高次谐波传输效率为 34%, 使用本实 施例中的光学器件时的高次谐波传输效率被抑制为 12%, 而 E=5kev时, 传输 效率也有变化。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等 )上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种用于聚焦同步辐射光源的光学器件, 其特征在于, 该光学器件的 外侧母线为二次曲线段或多个二次曲线段的组合, 其中多个二次曲线段开口 方向相同, 该光学器件包括:
多根透明材料制成的毛细体;
其中, 位于中心区的毛细体为实心结构;
位于中心区以外的外围区的毛细体为中空结构。
2、 如权利要求 1所述的光学器件, 其特征在于, 中心区的毛细体的外径 大于外围区的毛细体的外径; 或者
所有毛细体的外径相等。
3、 如权利要求 1所述的光学器件, 其特征在于, 越靠近光学器件边缘的 毛细体的管壁厚度越小。
4、 如权利要求 1所述的光学器件, 其特征在于, 透明材料为玻璃。
5、 如权利要求 4 所述的光学器件, 其特征在于, 玻璃材料包括 Li、 Be 和 B中的一种或多种元素。
6、 如权利要求 1所述的光学器件, 其特征在于, 外围区的毛细体包括不 透明材料的膜。
7、 如权利要求 6所述的光学器件, 其特征在于, 不透明材料为金属。
8、 如权利要求 7所述的光学器件, 其特征在于, 金属包括钨、 金和铂中 的一种或多种元素。
9、 如权利要求 1所述的光学器件, 其特征在于, 不透明材料的膜位于毛 细体的外表面。
PCT/CN2013/077687 2012-10-09 2013-06-21 用于聚焦同步辐射光源的光学器件 WO2014056332A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/434,515 US9583227B2 (en) 2012-10-09 2013-06-21 Optical device for focusing synchrotron radiation light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220513794.8 2012-10-09
CN2012205137948U CN202905197U (zh) 2012-10-09 2012-10-09 用于聚焦同步辐射光源的光学器件

Publications (1)

Publication Number Publication Date
WO2014056332A1 true WO2014056332A1 (zh) 2014-04-17

Family

ID=48125836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077687 WO2014056332A1 (zh) 2012-10-09 2013-06-21 用于聚焦同步辐射光源的光学器件

Country Status (3)

Country Link
US (1) US9583227B2 (zh)
CN (1) CN202905197U (zh)
WO (1) WO2014056332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202905197U (zh) 2012-10-09 2013-04-24 北京师范大学 用于聚焦同步辐射光源的光学器件
CN102890975B (zh) * 2012-10-09 2015-05-20 北京师范大学 用于聚焦同步辐射光源的光学器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749300B2 (en) * 2001-03-12 2004-06-15 IFG Institut für Gerätebau GmbH Capillary optical element with a complex structure of capillaries and a method for its manufacture
CN101661807A (zh) * 2009-09-21 2010-03-03 北京师范大学 一种组合式x射线微会聚光学器件
CN101667468A (zh) * 2009-09-21 2010-03-10 北京师范大学 一种组合式x射线会聚光学器件
US20100296629A1 (en) * 2007-12-10 2010-11-25 Unisantis Fze Graded lenses
CN102890975A (zh) * 2012-10-09 2013-01-23 北京师范大学 用于聚焦同步辐射光源的光学器件
CN202905197U (zh) * 2012-10-09 2013-04-24 北京师范大学 用于聚焦同步辐射光源的光学器件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638554A (en) * 1949-10-05 1953-05-12 Bartow Beacons Inc Directivity control of x-rays
US3997794A (en) * 1974-12-23 1976-12-14 York Richard N Collimator
FR2706132B1 (fr) * 1993-06-07 1995-09-01 Atea Dispositif de traitement de lésions cérébrales par rayonnement gamma, et appareil de traitement correspondant.
US5745547A (en) * 1995-08-04 1998-04-28 X-Ray Optical Systems, Inc. Multiple channel optic
AU7137500A (en) * 1999-07-21 2001-02-13 Jmar Research, Inc. High collection angle short wavelength radiation collimator and focusing optic
RU2164361C1 (ru) * 1999-10-18 2001-03-20 Кумахов Мурадин Абубекирович Линза для управления излучением в виде потока нейтральных или заряженных частиц, способ изготовления таких линз и содержащее такие линзы аналитическое устройство, устройство для лучевой терапии и устройства для контактной и проекционной литографии
CA2510996C (en) * 2004-06-29 2012-02-07 Chantal Blanchetiere Waveguiding structures with embedded microchannels and method for fabrication thereof
WO2008054378A2 (en) * 2005-10-25 2008-05-08 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
US7933383B2 (en) * 2008-04-11 2011-04-26 Rigaku Innovative Technologies, Inc. X-ray generator with polycapillary optic
DE102008055921B4 (de) * 2008-11-05 2010-11-11 Siemens Aktiengesellschaft Modulierbarer Strahlenkollimator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749300B2 (en) * 2001-03-12 2004-06-15 IFG Institut für Gerätebau GmbH Capillary optical element with a complex structure of capillaries and a method for its manufacture
US20100296629A1 (en) * 2007-12-10 2010-11-25 Unisantis Fze Graded lenses
CN101661807A (zh) * 2009-09-21 2010-03-03 北京师范大学 一种组合式x射线微会聚光学器件
CN101667468A (zh) * 2009-09-21 2010-03-10 北京师范大学 一种组合式x射线会聚光学器件
CN102890975A (zh) * 2012-10-09 2013-01-23 北京师范大学 用于聚焦同步辐射光源的光学器件
CN202905197U (zh) * 2012-10-09 2013-04-24 北京师范大学 用于聚焦同步辐射光源的光学器件

Also Published As

Publication number Publication date
US20150279492A1 (en) 2015-10-01
US9583227B2 (en) 2017-02-28
CN202905197U (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
Caciuffo et al. Monochromators for x-ray synchrotron radiation
EP0555376B1 (en) Device for controlling radiation and uses thereof
KR100432511B1 (ko) 고에너지입자선류용 집적렌즈와 이의 제조방법 및방사선치료 및 리소그라피용 분석장치에서의 그 용도
Polikarpov et al. X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses
US7439492B1 (en) Nondispersive neutron focusing method beyond the critical angle of mirrors
KR102133912B1 (ko) 회전체 미러를 사용한 x선 집광시스템의 광학설계방법 및 x선 집광시스템
Lamperti et al. Invited Article: Filamentary deposition of laser energy in glasses with Bessel beams
Grigorieva et al. HOPG as powerful x‐ray optics
WO2014056332A1 (zh) 用于聚焦同步辐射光源的光学器件
Wu et al. Study of a nested neutron-focusing supermirror system for small-angle neutron scattering
JP3830908B2 (ja) 高光度の平行ビーム生成装置
Morawe et al. Curved graded multilayers for X-ray nano-focusing optics
Tang et al. Laser-induced shock inside a cylindrical water column
Jagodziński et al. Properties of polycapillary optics dedicated to low-energy parallel-beam wavelength-dispersive spectrometers for synchrotron-based X-ray fluorescence study
Chubar et al. Analysis of hard x-ray focusing by 2D diamond CRL
US11875910B2 (en) Off-axis capillary x-ray optics
CN102890975B (zh) 用于聚焦同步辐射光源的光学器件
Korotkikh Total reflection x‐ray fluorescence spectrometer with parallel primary beam
Arndt et al. New developments in X-ray optics for macromolecular crystallography using laboratory X-ray sources
York et al. Application of a multifiber collimating lens to thin film structure analysis
Patommel Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses
Bilderback et al. Optimizing Monocapillary Optics for Synchrotron X‐ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications
Arndt et al. X-ray crystallography with microfocus x-ray sources
JP3650154B2 (ja) レーザプラズマ光源
JP6116407B2 (ja) X線集光装置およびx線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14434515

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13844814

Country of ref document: EP

Kind code of ref document: A1