WO2014055018A1 - Regulation of a temperature in an exhaust aftertreatment system - Google Patents

Regulation of a temperature in an exhaust aftertreatment system Download PDF

Info

Publication number
WO2014055018A1
WO2014055018A1 PCT/SE2013/051145 SE2013051145W WO2014055018A1 WO 2014055018 A1 WO2014055018 A1 WO 2014055018A1 SE 2013051145 W SE2013051145 W SE 2013051145W WO 2014055018 A1 WO2014055018 A1 WO 2014055018A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust
exhaust system
several
control
Prior art date
Application number
PCT/SE2013/051145
Other languages
English (en)
French (fr)
Inventor
Ola Stenlåås
Fredrik Roos
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to DE112013004543.5T priority Critical patent/DE112013004543T5/de
Publication of WO2014055018A1 publication Critical patent/WO2014055018A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T10/00Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
    • B60T10/02Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrodynamic brake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention pertains to a method for the regulation of a temperature in an exhaust system through control of a motor vehicle's driveline. Further, the invention pertains to a computer program, a computer program product, a system and a motor vehicle comprising such a system. Background of the invention
  • aftertreatment systems In order to meet such emission standards, the exhausts caused by the combustion in combustion engines are aftertreated (purified).
  • a so-called catalytic purification process may be used, which is why aftertreatment systems usually comprise a catalyst.
  • aftertreatment systems may alternatively, or in combination with one or several catalysts, comprise other components, for example one or several particulate filters.
  • Figure 1 shows the combustion engine 101 of a motor vehicle 100, where the exhaust stream generated by the combustion is led via a turbocharger 220.
  • the exhaust stream is subsequently led via a pipe 204 (indicated with arrows) to a particulate filter (Diesel Particulate Filter, DPF) 202 via a diesel oxidation catalyst (DOC) 205.
  • the aftertreatment system comprises an SCR catalyst 201 (Selective Catalytic Reduction, SCR), arranged downstream of the particulate filter 202, which uses ammonia (NH3), or a composition from which ammonia may be generated/formed, as an additive for the reduction of the quantity of nitrogen oxides NO x .
  • SCR catalyst 201 Selective Catalytic Reduction, SCR
  • NH3 ammonia
  • the particulate filter 202 may alternatively be arranged downstream of the SCR catalyst 201 .
  • the diesel oxidation catalyst DOC 205 has several functions and uses the surplus of air which the engine process generally creates in the exhaust stream as a chemical reactor jointly with a precious metal coating in the diesel oxidation catalyst.
  • the said diesel oxidation catalyst is normally primarily used to oxidise remaining hydrocarbons and carbon monoxide in the exhaust stream into carbon dioxide, water and heat, and conversion of nitrogen monoxide into nitrogen dioxide.
  • soot particles are formed.
  • the particulate filter is used to catch soot particles and thus functions so that the exhaust stream is led through a filter structure where soot particles are caught from the passing exhaust stream and stored in the particulate filter.
  • the particulate filter is filled with soot as the vehicle is driven and sooner or later the filter must be emptied of soot, which is usually achieved with the help of so-called regeneration.
  • the said regeneration entails that the soot particles (mainly carbon particles) are converted into carbon dioxide and/or carbon monoxide in one or several chemical processes. Regeneration may occur in various ways and may, for example, occur with the help of so- called NO:-based regeneration, often also called passive regeneration, or through so-called oxygen (02)-based regeneration, also called active regeneration.
  • nitrogen oxide and carbon oxide are formed in a reaction between carbon and nitrogen dioxide according to e.g. equation 1 :
  • the passive regeneration is heavily dependent on the availability of nitrogen dioxide. If the supply of nitrogen dioxide is reduced, the regeneration speed is also reduced.
  • the supply of nitrogen dioxide may e.g. be reduced if the formation of nitrogen dioxide is hampered, which may e.g. occur if one or several components in the aftertreatment system are contaminated by sulphur which normally occurs in at least some types of fuel, e.g. diesel. Competing chemical reactions also hamper the nitrogen dioxide transformation.
  • passive regeneration is that desired reaction speeds and thus the speed at which the filter is emptied are achieved at a lower temperature.
  • regeneration of the particulate filter during passive regeneration occurs at temperatures in the range of 200°C to 500°C, although temperatures in the higher part of this interval are normally preferable.
  • this thus constitutes a great advantage if e.g. an SCR catalyst is present, since there is no risk that such a high temperature level is achieved that there is a risk of damage to the SCR catalyst. Nevertheless, it is important that a relatively high temperature is achieved in order for an effective passive regeneration to take place.
  • the maximum temperature which may be used in active regeneration is limited by tolerances for some of the components comprised in the aftertreatment system/exhaust system.
  • the particulate filter 202 and/or (where applicable) a subsequent SCR catalyst have constructional limitations with regard to the maximum temperature they may be subjected to.
  • the active regeneration may have a maximum component temperature which is often undesirably low.
  • a very high minimum temperature is required in order for any usable reaction speed to arise at all.
  • the soot load is normally essentially totally burned in the particulate filter 202. This means that a total regeneration of the particulate filter is obtained, following which the soot level in the particulate filter is essentially 0%.
  • the temperature of the exhaust stream resulting from the combustion will vary. If the combustion engine works hard, the exhaust stream will maintain a higher temperature, and vice versa if the load of the combustion engine is relatively low, the temperature of the exhaust stream will be significantly lower. If the vehicle is driven for a longer period of time in such a manner that the temperature of the exhaust stream maintains relatively low temperatures, such as temperatures below 150°C to 300°C, a degradation of the function of the diesel oxidation catalyst 205 will occur because the reaction of the sulphur which is usually present in the fuel in various forms with the active coating of the diesel oxidation catalyst 205, usually comprising one or several precious metals or other applicable metals, such as aluminium.
  • an SCR catalyst will not function well.
  • the vehicle is driven for a longer period of time in such a manner that the exhaust stream's temperature maintains relatively high temperatures, this means that active regeneration may take place at the desired speed.
  • the temperature in the exhaust stream may not exceed a maximum permitted temperature so that heat sensit ive components in the aftertreatment system are damaged, as previously mentioned.
  • One objective of the present invention is to provide a solution which wholly or partly resolves problems and/or disadvantages with solutions for the regulation of a temperature in an exhaust system according to prior art.
  • the said objective is achieved with a method for the regulation of a temperature in an exhaust system in a motor vehicle through control of its driveline, the motor vehicle of which comprises: a driveline comprising a combustion engine which may be connected to a continuously variable gearbox via a clutch device, and an exhaust system arranged for the removal of an exhaust stream from the said combustion engine; where the said method comprises the step:
  • the above objective is achieved with a system arranged for the control of one or several funct ions in a motor vehicle, the motor vehicle of which comprises: a driveline comprising a combustion engine which may be connected to a continuously variable gearbox via a clutch device, and an exhaust system arranged for the removal of an exhaust stream from the said combustion engine; where the said system comprises a control device arranged to control the said continuously variable gearbox and an auxiliary brake mounted in the motor vehicle based on one or several first parameters P x for the regulation of a temperature T Ex in the said exhaust system, where at least one of the said one or several first parameters P x is a first temperature difference between the said first temperature 7 in the said exhaust system and a reference temperature T Re f .
  • the above mentioned system is preferably arranged in a motor vehicle, such as a bus, a truck or another simi lar motor vehicle.
  • the invention facilitates the regulation of the temperature in such operational cases where the regulat ion of the temperature has not been possible or sufficient with solutions according to prior art.
  • An example of a low load on the engine is e.g. on dragging (engine braking) of the vehicle when air is pumped through the exhaust system.
  • the invention provides a more fuel efficient method of reaching a desired temperature or of maintaining/keeping a current temperature in the exhaust system compared to prior art.
  • measures entailing a large fuel consumption may be avoided, for example activation of an external heater or engine regulation aimed at increasing the exhaust temperature by reducing the efficiency of the engine.
  • Another advantage of the invention is that it is not necessary to equip the vehicle with further parts/components in order to achieve the advantages of the invention, since already existing parts/components in the vehicle may be used, which entails a great cost saving.
  • Figure 1 is a schematic diagram of a system comprising a combustion engine and an exhaust system
  • Figure 2 is a schematic diagram of an example vehicle
  • FIG. 3 is a schematic diagram of a gas flow in an engine system
  • Figure 4 is a schematic diagram of a control device
  • Figure 5 shows a flow diagram of one embodiment of the invention.
  • Fig. 2 is a schematic diagram of a motor vehicle 100, such as a truck, bus or other similar motor vehicle.
  • the vehicle 100 schematically shown in Fig. 2 comprises a pair of front wheels 1 1 1, 1 12 and a pair of rear wheels with driving wheels 1 13, 1 14.
  • the vehicle also comprises a driveline with a combustion engine 101 (e.g. a diesel engine), which via an output shaft 102 on the combustion engine is connected to a gearbox 103, for example via a clutch device 106.
  • the clutch device may consist of an automatically controlled clutch and be controlled by the vehicle's control system via a control device 1 15, 208, which may also control the gearbox 103.
  • An output shaft 107 from the gearbox 103 drives the driving wheels 1 13, 1 14 via a final drive 108, such as a differential, and drive shafts 104, 105 connected to the said final drive 108.
  • the vehicle 100 also has an exhaust system arranged to remove an exhaust stream generated by the combustion engine 101 on a combustion in the same.
  • the exhaust system may comprise an aftertreatment system (exhaust purification system) for the treatment (purification) of exhaust emissions from the combustion engine 101.
  • the exhaust system may comprise other parts/components such as a turbo, a silencer system, and gas flow systems for EGR.
  • the gearbox 103 is usually a manual gearbox; an automatic gearbox, such as an automatic gearbox, automatic manual gearbox (Automatic Manual Transmission, AMT) or double clutch gearbox (Double Clutch Transmission, DCT); or a continuous variable gearbox (Continuous Variable Transmission/Infinitely Variable Transmission, C VT/1VT).
  • an automatic gearbox such as an automatic gearbox, automatic manual gearbox (Automatic Manual Transmission, AMT) or double clutch gearbox (Double Clutch Transmission, DCT); or a continuous variable gearbox (Continuous Variable Transmission/Infinitely Variable Transmission, C VT/1VT).
  • a manual gearbox 103 is a gearbox with a number of discrete gears and is arranged to be manoeuvred by the driver for engagement or disengagement of gears (e.g. forward and reverse gears).
  • An automatic gearbox also has a number of gears, i.e. it comprises several discrete gears. However, it differs from a manual gearbox in that it is controlled/manoeuvred by a control system comprising one or several control devices, also called ECUs (Electronic Control Unit).
  • the control device or ECU is arranged to control the gearbox 103, for example when shifting from gear selection at a certain speed with a certain running resistance.
  • the ECU may measure the speed and torque of the engine 101 and the condition of the gearbox.
  • Information from the engine or the gearbox may be sent to the ECU in the form of electric communications signals via, for example a so-called CAN (Controller Area Network) bus installed in the motor vehicle 100.
  • CAN Controller Area Network
  • the gearbox 103 has been illustrated schematically as one device. However, it should be noted that the gearbox may also physically consist of several cooperating gearboxes, for example a so-called range gearbox, a main gearbox and a split gearbox, which are arranged along the vehicle's driveline. Gearboxes according to the above may comprise any number of suitable discrete gears. Today's gearboxes for heavy goods vehicles usually have twelve forward gears, two reverse gears and one neutral gear. A continuously variable gearbox, also called a CVT gearbox or IVT gearbox, is another type of well known gearbox which differs from the previous gearbox types since it does not have a number of discrete gears corresponding to different gearings but instead has a continuously variable gearing. In this type of gearbox, gearing may thus within certain limits be controlled to the exact gearing desired.
  • CVT gearbox also called a CVT gearbox or IVT gearbox
  • an upshift means that a higher possible gear in the gearbox is selected, while a downshift means that a lower possible gear in the gearbox is selected.
  • gearboxes with several discrete gears "fictitious" gear steps may be defined and shifting gears may occur in the same manner as for a gearbox with discrete gear steps.
  • the usual way of controlling such a continuously variable gearbox is to let the gearing vary depending on other parameters, as described in more detail below.
  • the control of such a continuously variable gearbox is usually integrated with the control of the combustion engine's speed and torque, i.e. its operating point.
  • a common method is to let control of the continuously variable gearbox be based on a current driving power requirement, e.g. calculated based on a gas pedal position and a speed for the vehicle, and which operating point gives the best effect in order to achieve the said driving power requirement.
  • Gearing in the continuously variable gearbox thus becomes a result of which engine speed leads to the optimal operating point for the current driving power requirement.
  • Aspects other than efficiency may also be taken into account in the choice of operating point for the engine. These may be e.g. driveability-related aspects, such as torque response times, i.e. how long it would take to achieve a higher driving wheel torque, or how much torque may be obtained during a certain time period.
  • a so-called activation of coasting entails that the vehicle's engine 101 is mechanically disconnected from the vehicle's driving wheels 1 10, 1 1 1, i.e. that the driveline is opened, while deactivation of coasting entails that the driveline is closed.
  • Disconnection of the driving wheels from the engine may, for example, be achieved by putting the gearbox 103 in a neutral gear, or by opening the clutch device 106. In other words, essentially no power is transmitted through the gearbox from the engine to the driving wheels during coasting.
  • the motor vehicle's driveline comprises a continuously variable gearbox of the type described above. Further, it is assumed that the motor vehicle comprises a combustion engine and an exhaust system connected to the combustion engine for removal of an exhaust stream from the combustion engine.
  • One method according to the present invention for the regulation of a temperature in the exhaust system comprises the step: control of the said continuously variable gearbox and an auxiliary brake mounted in the said motor vehicle based on one or several first parameters P x for the regulation of a temperature T Ex in the said exhaust system, where at least one of the said one or several first parameters P x are a first temperature difference between a first temperature 7 ⁇ in the said exhaust system and a reference temperature T Ref .
  • the reference temperature T Re f is according to one embodiment of the invention a desired temperature, i.e. a so-called setpoint temperature.
  • auxiliary brake also called a secondary brake
  • auxiliary brakes are: a retarder (hydraulic brake) mounted before or after the gearbox; an exhaust brake which is a damper mounted in the exhaust pipe and which increases the "engine brake”; a decompression brake which is another type of engine brake; an electromagnetic brake (electric engine) which has the same function as a hybrid generator but which does not necessarily need a battery, but may burn the power generated in e.g. a resistor.
  • auxiliary brakes When any of these auxiliary brakes are activated when the vehicle is driven, the load (torque) on the engine increases, and thus the exhaust temperature is also increased.
  • the auxiliary brake is an exhaust brake, decompression brake or similar, a double effect is achieved since the braking device itself also heats the exhausts and thus the efficiency of the temperature regulating measure is increased compared to e.g. activation of a retarder, where the heat development mainly lands in the vehicle's cooling system.
  • the inventors have realised that it is advantageous to also control one or several auxiliary brakes based on one or several first parameters to regulate the temperature in the exhaust system.
  • the one or several first P 1 are preferably used as in-parameters for a control algorithm arranged to control the temperature in the exhaust system at a desired value through control of the driveline (e.g. gearbox and clutch) and the auxiliary brake.
  • the control algorithm may be of many different types and may be an algorithm which only looks at the first parameters and uses one or several threshold values (e.g. one higher and one lower threshold value) to determine which control measure should be taken.
  • a more advanced control algorithm also takes into account other variables as explained in the description below.
  • Preferred temperature intervals against which the temperature in the exhaust system is regulated are for example temperatures above 200°C to 2 0°C for a good NO x conversion in SCR catalysts depending on the flow and SCR volume, since a high flow and a low volume require higher temperatures.
  • the temperature must be above 250°C to 350°C depending on the NO x /PM quota (Particulate Matter), where a higher quota requires lower temperatures.
  • the temperature in the exhaust system should preferably be maintained lower than 550°C to 600°C in order to avoid damaging components in the exhaust system.
  • the one or several first parameters P t are selected from a group comprising:
  • a first temperature 7 which may be a temperature in an area of the exhaust stream or a surface, liquid or substrate temperature in any part or component of the exhaust system, such as a particulate filter, catalyst, silencer, sensor, etc.; and • a second temperature difference between the first temperature T 1 and a second temperature T 2 in the exhaust system.
  • the second temperature T 2 is another temperature in the exhaust system than the first temperature ⁇ .
  • this temperature T 2 may be a temperature in an area of the exhaust stream or a surface, liquid or substrate temperature in any part or component of the exhaust system, such as a particulate filter, catalyst, silencer, sensor, etc.
  • the said reference temperature T Re f is any of a temperature at/on a component in the said exhaust system, such as a temperature of a wall on an exhaust component; a temperature of a liquid injected in the said exhaust system, such as the temperature of injected urea, petrol or diesel; or a temperature in a component installed in connection with the said exhaust system, such as control devices, different types of sensors/indicators and actuators. This is in order to obtain a good function of the components or processes and/or to avoid damaging the comprised or connected parts and components.
  • a time derivative and/or a time integral of the first temperature difference and/or the second temperature difference is used.
  • the use of a time derivative is advantageous if the control system is to react quickly to a temperature change, while the use of a time integral instead entails that the control system takes into consideration long term trends in the temperature change, which is advantageous for long term control of the temperature in the exhaust stream.
  • the above mentioned current temperature and temperature differences and functions thereof may be based on sensor values obtained from one or several sensors arranged at, in connection with, or inside the exhaust system. Signals from sensors may be sent over, for example, a communications bus or a wireless link to one or several control devices for signal processing.
  • the temperature differences and functions thereof may also be based on so-called virtual sensors, i.e. sensor values which are calculated from other real sensor signals with the use of one or several sensor models, which provides so-called current values.
  • the one or several first parameters P 1 may be calculated (predicted) values, e.g. selected from the group comprising: a calculated first temperature T i which may be a calculated temperature in an area of the exhaust stream or a surface, liquid or substrate temperature in any part or component of the exhaust system such as a particulate filter, catalyst, silencer, sensor, etc.; a first calculated temperature difference between the first temperature T 2 and a reference temperature T Ref in the exhaust system; a second calculated temperature difference between the first temperature 7 and a second temperature T 2 in the exhaust system.
  • the second calculated temperature T 2 is another temperature in the exhaust system than the first calculated temperature 7 ⁇ .
  • the second calculated temperature T 2 may also be a temperature in an area of the exhaust stream or a surface, liquid or substrate temperature in any part or component of the exhaust system, such as a particulate filter, a catalyst, silencer, sensor etc.; and a time derivative and/or a time integral of the calculated first temperature 7 ⁇ . or the first calculated temperature difference, or the second calculated temperature difference.
  • the advantages of using time derivatives or time integrals of predicted values are the same as those when using time derivatives and time integrals of current values.
  • P information is obtained about how the relevant parameters will vary over time, which means that the system for the regulation of the temperature in the exhaust system may be controlled so that the desired temperatures may be obtained in the best possible manner in the future.
  • Calculated (predicted) parameters means that they are calculated or simulated in advance based on (mathematical) models of the vehicle and/or the components comprised in the vehicle. Based on one or several calculated first parameters ⁇ ⁇ , a control strategy for the control of the gear in the gearbox may be selected among several different possible control strategies. By calculating/simulating how the first parameter P 1 will vary over the road sections lying ahead for the vehicle, according to one or several different control strategies, the control strategy which meets certain requirements, e.g. that the temperature remains within a predefined limit value while being optimal from another perspective, for example fuel and/or urea consumption, may be selected.
  • the one or several first parameters P 1 may also be calculated based on one or several different future control strategies for the gearbox.
  • This embodiment thus pertains to a feedback method where one or several first parameters P 1 are used for the calculation of one or several control strategies based on one or several possible operating points, i.e. operating points which may possibly be used having regard to other requirements such as driveability or fuel consumption.
  • the said one or several control strategies are subsequently used in order to predict new one or several first parameters or in order to update the existing parameters.
  • control system may use information derived from this single control strategy to determine whether it may reasonably be used or whether it is better to let the vehicle be driven with the current operating point for the control of the gearbox.
  • the one or several calculated first parameters x may be calculated over a road section ahead of the vehicle, for example by simulation over the road section ahead.
  • the calculated first parameters P x may be determined based on one or several vehicle-specific and/or road- specific data for the vehicle. These may preferably be selected from the group comprising: inclination of the road ahead of the vehicle, curve radi i of the road section ahead, speed limits of the road section ahead; motor vehicle weight; rolling resistance of the motor vehicle; air resistance of the motor vehicle; engine-specific data such as maximum output, minimum output, maximum torque, minimum torque, exhaust flow, exhaust gas recirculation content and lambda values (i.e.
  • driver-interactive data which is related to the driver's driving style may be used in connection with the calculation of the one or several first parameters P l 5 so that the vehicle's future behaviour is taken into account when the calculation is made.
  • driver- interactive data include: the use of blinkers, gas pedal position, and use of brakes.
  • the first temperature T is a temperature in the exhaust stream and the second temperature T 2 is a surface, liquid or substrate temperature in the exhaust system.
  • a surface temperature is a temperature on a surface of the exhaust system or a part thereof, which impacts the heat conductivity (losses) from the exhausts and the heating of components in the exhaust system.
  • Liquid temperature means the temperature in a liquid present in the exhaust system, for example urea or water. This temperature impacts the heat conductivity to the liquid and thus the evaporation of the same.
  • the latter temperature, the substrate temperature means the temperature in a material in e.g. a catalyst, a particulate filter, or in a NO x trap.
  • the substrate temperature impacts the heat conductivity to the exhaust treatment system and the exhaust treatment system's function (i.e. the physical and chemical processes).
  • the first T and the second T 2 temperature may be a current or a calculated first T x or second T 2 temperature.
  • the one or first parameters P t used in the control of the gearbox and auxiliary brake may consist of only current values, or consist of only calculated values, or be a combination of current and calculated values depending on the application.
  • the control of the gearbox may, according to another preferred embodiment, take place by calculating an operating point for the combustion engine based on the one or several first parameters P t . Subsequently, the calculated operating point is used to control the gearing in the gearbox and thus to regulate the temperature T Ex in the exhaust stream.
  • a desired/optimal operating point is selected among several possible operating points, and subsequently the driveline is controlled, e.g. by control of the gearbox in this case, so that the engine achieves or approximates the optimal operating point.
  • a desired/optimal operating point means an operating point which is the best among all possible operating points for the purpose which the system wishes to achieve. In this case the best operating point is the operating point which causes the temperature in the exhaust system to approximate its corresponding reference temperature as much as possible. In other cases, it may relate to e.g. an operating point which leads to the lowest consumption of e.g. fuel or urea, having regard to the statutory emission requirements and driveability, etc.
  • a gearbox is controlled with an operating point to achieve the best total efficiency in the driveline, but driveability aspects are usually also taken into consideration.
  • the engine speed may be set higher than optimal in order for a torque reserve to be available if the driver accelerates before an uphill slope, for example.
  • the temperature in the exhaust system is used as a parameter in the calculation of an operating point for the engine, and thus the emission targets are also weighed into the choice of an operating point for the engine.
  • the emission target may be achieved without requiring any additional fuel demanding measures.
  • the following principles for control of the continuously variable gearbox are applicable in order for the engine to achieve a desired calculated operating point: if the gearing is increased the engine speed is increased, and thus the engine load is reduced which leads to a reduction of the temperature in the exhaust system and an increase of the exhaust flow; if on the other hand the gearing is reduced, the engine speed is reduced and thus the engine's load increases as well as the exhaust flow, which leads to an increased or maintained temperature T Ex in the exhaust system.
  • This embodiment may be realised by increasing the gearing if a value for the one or several first parameters P 1 exceeds a first threshold value, and the gearing is instead reduced if a value for the one or several first parameters P 1 is below a second threshold value.
  • the first and second threshold values may assume, or be dependent on a value within, or in the vicinity of the temperature range which was previously discussed, i.e. above 200°C to 250°C for NO x conversion; above 250°C to 350°C for passive regeneration; and below 550°C to 600°C to avoid damaging components in the exhaust system.
  • the calculation of the operating point may be based on additional parameters.
  • Such an additional parameter is related to a requested drive power requirement, which is usually used for the vehicle to be driveable, i.e. for it to have characteristics so that it may be driven in a comfortable manner and in a manner where the vehicle to the greatest extent possible behaves as requested by the driver, e.g. maintains a certain speed, delivers the torque requested by the driver with the gas pedal, etc.
  • This requested drive power requirement value may also be taken having regard to an offset value Vo set > which means that the offset value is added to or subtracted from the drive power requirement value in the calculation of the operating point.
  • the freedom in choosing an operating point increases as do the possibilities of achieving a desired temperature in the exhaust system, since the control system allows for the control to diverge from the vehicle's current drive power requirement, i.e. the control system may intentionally allow the vehicle to accelerate or decelerate in order to achieve a desired temperature in the exhaust system.
  • the offset value V 0 ff Set is subtracted from the drive power requirement value, which means that the vehicle decelerates, or at least that it does not accelerate since if a driver requests a drive power equivalent to an acceleration, a reduction of the drive power by VO set may lead to a reduced acceleration and not necessarily to a deceleration of the vehicle.
  • Other additional parameters which may be used in the calculation of the operating point are parameters related to:
  • external loads are auxiliaries such as a water pump, fan or compressor; generator; hybrid generator or similar energy recycling system.
  • the external load's power requirement may be controllable, so that the freedom in selecting an operating point for the engine is increased, which in turn means that also operating points which lie outside the vehicle's driving power requirement may be used for the regulation of the temperature in the exhaust system.
  • the external load is of the "on" or “off type, i.e. it is either activated or not, and in these cases the control and calculation of the operating point is limited to determining whether or not the external load should be activated. If the temperature T Ex in the exhaust system is to be increased, the external load must be increased according to one embodiment of the invention, which is suitable if the temperature in the exhaust system is too low so that particulate filters and catalysts work at too low temperatures.
  • the one or several first parameters P x are suitable for the control of other functions in the vehicle for regulation of the temperature T Ex in the exhaust system. These functions must have a direct or indirect impact on the temperature in the exhaust system T Ex . Thus, the regulation of the temperature in the exhaust system T Ex may be more efficient and quicker. Suitable functions are related to the conversion of exhaust heat into energy; external heating of the exhaust system; injection of fuel into the engine; and regulation of the exhaust flow. It should be realised that the one or several first parameters P 1 may be used to control such a function or a combination of two or several such functions. The one or several first parameters P t may be used for the control of a system arranged for conversion of exhaust heat into energy (Waste Heat Recovery, WHR).
  • WHR Wash Heat Recovery
  • the regulation of the temperature with the system for the conversion of exhaust heat into energy takes place, according to one embodiment, by maximum energy in relation to the input energy, or total converted energy, being taken out via the system.
  • This regulation is preferably aimed at maximising the heat conduction into the external system and is designed, for example, as a PID or MPC regulator (Proportional Integral Derivative. P1D: Model Predictive Control, MPC).
  • the system for conversion of exhaust heat into energy is installed upstream in the exhaust system in relation to an area in which a temperature is desired to be obtained.
  • the system When the system is installed according to this embodiment it is controlled so that the system acts in a normal mode if the temperature T Ex in the exhaust system is to be reduced, and in an opposite mode if the temperature in the exhaust system T Ex is to be increased.
  • Normal mode means that the system uses waste energy, e.g. heat from the exhausts, in order to generate electric or mechanic energy (and sometimes chemical energy).
  • the opposite (reverse) mode this means that the system is instead supplied with energy in order to increase the temperature of the exhausts.
  • the one or several first parameters P x may be used for the control of at least one external heater for the exhaust system.
  • the external heater's task is to increase the temperature in the exhaust flow or any part/component in the exhaust system.
  • the external heater is:
  • any other suitable external heater installed in, or in close connection with, the exhaust system.
  • the external heater is preferably controlled so that a maximum temperature increase is obtained in relation to the input energy or so that the temperature increase is maximised.
  • the external heater may instead be controlled so that the temperature increase speed is prioritised.
  • the control of the external heater may be configured as a PID or MPC regulator.
  • the one or several first parameters P 1 may also be used to control a fuel injection system arranged for the injection of fuel to the combustion engine. This may occur through control of the number of post-injections, the time (CAD) for the post-injections, the pressure of the post-injections, and the fuel amount per post-injection.
  • the control of the fuel injection system may be implemented as pre-controlled or feedback control with e.g. MAP (matrix based regulation structure), PID or MPC.
  • a temperature which is downstream of the engine as well as a component in the exhaust system, e.g. a diesel oxidation catalyst (DOC) or temperature difference over the said component in the exhaust system may be used.
  • the control of fuel injection compensates for the efficiency (in the DOC) in the transition between chemical energy tied in the fuel to heat energy emitted by the exhausts.
  • the one or several first parameters P 1 may also be used for the control of the exhaust flow, or one of the exhaust flows depending on the parameter, for example heat transfer coefficients.
  • Control of the exhaust flow may for example occur through control of a gas flow system for exhaust gas recirculation (EGR) and/or through control of an intake system for the engine.
  • Fig. 3 shows schematically a general gas flow in an engine system, where the engine system in this example comprises a diesel engine with a turbo and a number of pipes connected to the engine. Air is sucked in from the left in Fig. 3 with an intake system for the engine. The air which is sucked in passes through an intake pipe and is compressed in a turbocharger in order to be cooled subsequently by an intercooler before it passes, in certain cases, a throttle butterfly that regulates the amount of air into the diesel engine. The air is then mixed with recirculated exhausts with a gas flow system for exhaust gas recirculation (EGR) and this mixture is then sucked into the engine's cylinders in order to be mixed with diesel or another fuel before combustion occurs in the engine.
  • EGR exhaust gas recirculation
  • the exhausts from the combustion process then pass through a turbo turbine which sets the turbocharger into motion. Parts of the exhausts, however, enter into an EGR pipe and are led back to the intake pipe via an EGR damper and one or several EGR coolers.
  • the EGR damper's function is to regulate the amount of recirculated exhausts back to the combustion process.
  • the use of EGR will move heat energy from the exhausts to the engine's cooling system.
  • the exhausts pass through an aftertreatment system which may contain a diesel particulate filter and/or an SCR catalyst, as mentioned previously. If the engine is not heavily loaded, the exhausts will have a lower temperature than desired and thus cool the catalyst.
  • an aftertreatment system which may contain a diesel particulate filter and/or an SCR catalyst, as mentioned previously.
  • the exhausts will have a lower temperature than desired and thus cool the catalyst.
  • One way of limiting the amount of cooling exhausts is to use a damper arranged in an intake pipe for air to the engine.
  • the amount of air entering the engine may be limited, which in turn means the exhausts exiting the engine are also limited, which, with a given load, results in warmer exhausts.
  • This damper is usually called a throttle butterfly, as mentioned above.
  • the amount of air which the engine consumes is determined to a large extent by the speed of the engine, which in this case means that: the higher the engine speed, the more air flow is required to the engine.
  • the one or several parameters P x may be used to control the gas flow system for exhaust gas recirculation (EGR) and/or the air intake system arranged for the regulation of an air flow to the engine.
  • the control of the gas flow system for exhaust gas recirculation (EGR) and the intake system may be controlled with additional parameters related to a transferred output to a component installed in the said exhaust system and/or emissions produced by the said combustion engine.
  • Emissions in this context mean, for example, exhausts and noise.
  • a reduction of the exhaust flow may be combined with an increase of the engine load to increase the temperature in the exhaust system.
  • This embodiment may be realised with, for example, a pre-controlled or feedback control of an exhaust brake with the use of: a setpoint value for the temperature or a value which is a function of the said setpoint value for the temperature; or a setpoint value for the energy content of the exhausts or with a value as a function of the said setpoint value for energy content.
  • Fig. 5 shows a flow diagram of an exemplified embodiment of the method according to the invention:
  • the first parameter ⁇ ⁇ from other sensor signals is measured or calculated.
  • the first parameter P 1 may also be calculated over the road section ahead for the vehicle at A.
  • B Based on the value for the first parameter P l r it is decided at B whether a temperature regulating measure needs to be taken. This may. for example, take place by a comparison of the first parameter P 1 with a threshold value, or by comparing several calculations of the first parameter P a with related control strategies, and based on these selecting which temperature regulations measure(s) that need(s) to be taken.
  • the operating point for the engine is calculated which jointly with the use of the auxiliary brake in the best way (e.g. the fastest or most fuel efficient way) leads to a desired temperature in the exhaust system.
  • Other parameters may also be taken into consideration in the calculation of the operating point, such as the drive power requirement value, the torque/efficacy data for the external load, torque/efficacy data for the engine, etc.
  • the operating point calculated at C is weighed together with other operating points at D, which have been calculated having regard to other aspects, such as driveability. This may e.g. entail that the resulting engine speed becomes an average value for several input operating points. At D it is also decided how the operating point will be achieved, i.e. how the external load, engine and gearbox will be controlled.
  • the external heater is controlled following the decision at G. I. If the adjustment of the operating point is insufficient to achieve a desired temperature in the exhaust system, it is decided at I whether the exhaust flow needs to be controlled with e.g. the help of an EGR and/or a throttle butterfly.
  • the present invention may be implemented in a control system comprising, for example, a control device arranged to control the entire or parts of a driveline in a motor vehicle. Further, the system may comprise additional control devices arranged to control other functions, such as external loads, external heaters, etc. Control devices of the type displayed are normally arranged to receive sensor signals from different parts of the vehicle as well as from other control devices. These control devices are also usually arranged to emit control signals to different vehicle parts and vehicle components. The control devices may also comprise or be connected to a calculation device arranged for the calculation/simulation of predicted parameter values.
  • control systems in modern vehicles consist of a communications bus system consisting of one or several communications buses for the connection of a number of electronic control devices (ECUs) or controllers 1 15. 208 and different components arranged on the vehicle.
  • ECUs electronice control devices
  • controllers 1 15. 208 and different components arranged on the vehicle Such a control system may comprise a large number of control devices, and the responsibility for a specific function in the vehicle may be distributed among one or more control devices.
  • the control usually takes place with programmed instructions.
  • These programmed instructions typically consist of a computer program, which, when it is executed in a computer or control device, causes the computer/control device to carry out the desired control, such as methods according to the present invention.
  • the computer program usually consists of a computer program product, where the computer program product comprises an applicable storage medium 121 with the computer program 109 stored on the said storage medium.
  • the said digital storage medium may e.g. consist of any from the following group: ROM (Read- Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash.
  • EEPROM Electrical Erasable PROM
  • a hard disk unit etc.
  • An example control device (control device 208) is displayed in the diagram in Fig. 4, and the control device in turn may comprise a calculation device 120, which may consist of e.g. a suitable type of processor or microcomputer, e.g. a circuit for digital signal processing (Digital Signal Processor. DSP), or a circuit with a predetermined specific function (Application Specific Integrated Circuit, ASIC).
  • the calculation device is also connected to a memory device 121 , which provides the calculation device with e.g. the stored program code 109 and/or the stored data which the calculation device needs in order to be able to carry out calculations.
  • the calculation device is also arranged to store interim or final results of calculations in the memory device.
  • control device is equipped with elements/devices 122, 123, 124, 125 for receipt and sending of input and output signals, respectively.
  • These input and output signals may contain waveforms, pulses, or other attributes, which may be detected by the devices for the receipt of input signals as information for processing by the calculation device.
  • the devices 123, 124 for sending output signals are arranged to convert the calculation result from the calculation device into output signals for transfer to other parts of the vehicle's control system and/or the component(s) for which the signals are intended.
  • Each one of the connections to the devices for receipt and sending of input and output signals may consist of one or several of cables; a data bus, such as a CAN (Controller Area Network) bus, a MOST (Media Oriented Systems Transport), or any other suitable bus configuration; or of a wireless communications connection.
  • a data bus such as a CAN (Controller Area Network) bus, a MOST (Media Oriented Systems Transport), or any other suitable bus configuration
  • a wireless communications connection such as a Wi-Fi
  • a (control) system comprises: a control device arranged to control of a continuously variable gearbox and an auxiliary brake based on one or several first parameters P for the regulation of a temperature T Ex in an exhaust system, where at least one of the said one or several first parameters P x are a first temperature difference between a first temperature 7 in the said exhaust system and a reference temperature T Rej .
  • the present invention also pertains to a motor vehicle, such as a bus, a truck or a similar motor vehicle, comprising at least one system according to the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Gas After Treatment (AREA)
PCT/SE2013/051145 2012-10-02 2013-10-02 Regulation of a temperature in an exhaust aftertreatment system WO2014055018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013004543.5T DE112013004543T5 (de) 2012-10-02 2013-10-02 Regelung einer Temperatur in einem Abgasnachbehandlungssystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE1251101-0 2012-10-02
SE1251101 2012-10-02
SE1351153A SE539219C2 (sv) 2012-10-02 2013-10-02 Reglering av en temperatur i ett avgassystem
SE1351153-0 2013-10-02

Publications (1)

Publication Number Publication Date
WO2014055018A1 true WO2014055018A1 (en) 2014-04-10

Family

ID=50435243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2013/051145 WO2014055018A1 (en) 2012-10-02 2013-10-02 Regulation of a temperature in an exhaust aftertreatment system

Country Status (3)

Country Link
DE (1) DE112013004543T5 (de)
SE (1) SE539219C2 (de)
WO (1) WO2014055018A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846025A3 (de) * 2013-09-04 2015-07-15 Mitsubishi Jidosha Kogyo K.K. Motorsteuerungsgerät
US11339698B2 (en) 2020-05-27 2022-05-24 Cummins Inc. Multiple heater exhaust aftertreatment system architecture and methods of control thereof
US11365662B2 (en) 2020-03-25 2022-06-21 Cummins Inc. Systems and methods for coordinated exhaust temperature control with electric heater and engine
US11428133B2 (en) 2020-05-27 2022-08-30 Cummins Inc. Systems and methods for managing catalyst temperature based on location
US11920533B2 (en) 2020-05-27 2024-03-05 Cummins Inc. Systems and methods for coordination of skip-fire and aftertreatment heater operation to maintain exhaust gas temperature

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135917A (en) * 1998-07-24 2000-10-24 Nissan Motor Co., Ltd. Speed ratio controller and control method of automatic transmission
DE19926138A1 (de) * 1999-06-09 2000-12-14 Volkswagen Ag Verfahren und Vorrichtung zum Reinigen des Abgases einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
DE10001992A1 (de) * 2000-01-19 2001-07-26 Volkswagen Ag Verfahren zur temporären Erhöhung einer Abgastemperatur einer Verbrennungskraftmaschine
US20020107105A1 (en) * 2001-02-06 2002-08-08 Toyota Jidosha Kabushiki Kaisha Direct injection type engine
FR2820462A1 (fr) * 2001-02-06 2002-08-09 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur diesel de vehicule automobile
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
US20070079605A1 (en) * 2005-10-07 2007-04-12 Eaton Corporation Exhaust aftertreatment system with transmission control
US20070251220A1 (en) * 2006-04-27 2007-11-01 Kent Dawson Brake Torque Load Generation Process for Diesel Particulate Filter Regeneration and SOx Removal from Lean NOx Trap
US20090301451A1 (en) * 2001-03-30 2009-12-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135917A (en) * 1998-07-24 2000-10-24 Nissan Motor Co., Ltd. Speed ratio controller and control method of automatic transmission
DE19926138A1 (de) * 1999-06-09 2000-12-14 Volkswagen Ag Verfahren und Vorrichtung zum Reinigen des Abgases einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
DE10001992A1 (de) * 2000-01-19 2001-07-26 Volkswagen Ag Verfahren zur temporären Erhöhung einer Abgastemperatur einer Verbrennungskraftmaschine
US20020107105A1 (en) * 2001-02-06 2002-08-08 Toyota Jidosha Kabushiki Kaisha Direct injection type engine
FR2820462A1 (fr) * 2001-02-06 2002-08-09 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur diesel de vehicule automobile
US20090301451A1 (en) * 2001-03-30 2009-12-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
US20070079605A1 (en) * 2005-10-07 2007-04-12 Eaton Corporation Exhaust aftertreatment system with transmission control
US20070251220A1 (en) * 2006-04-27 2007-11-01 Kent Dawson Brake Torque Load Generation Process for Diesel Particulate Filter Regeneration and SOx Removal from Lean NOx Trap

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846025A3 (de) * 2013-09-04 2015-07-15 Mitsubishi Jidosha Kogyo K.K. Motorsteuerungsgerät
US11365662B2 (en) 2020-03-25 2022-06-21 Cummins Inc. Systems and methods for coordinated exhaust temperature control with electric heater and engine
US11898481B2 (en) 2020-03-25 2024-02-13 Cummins Inc. Systems and methods for coordinated exhaust temperature control with electric heater and engine
US11339698B2 (en) 2020-05-27 2022-05-24 Cummins Inc. Multiple heater exhaust aftertreatment system architecture and methods of control thereof
US11428133B2 (en) 2020-05-27 2022-08-30 Cummins Inc. Systems and methods for managing catalyst temperature based on location
US11920506B2 (en) 2020-05-27 2024-03-05 Cummins Inc. Multiple heater exhaust aftertreatment system architecture and methods of control thereof
US11920533B2 (en) 2020-05-27 2024-03-05 Cummins Inc. Systems and methods for coordination of skip-fire and aftertreatment heater operation to maintain exhaust gas temperature

Also Published As

Publication number Publication date
DE112013004543T5 (de) 2015-06-03
SE1351153A1 (sv) 2014-04-03
SE539219C2 (sv) 2017-05-23

Similar Documents

Publication Publication Date Title
US9863352B2 (en) Regulation of a temperature in an exhaust aftertreatment system
EP2917530B1 (de) Regelung einer temperatur in einem abgasnachbehandlungssystem
US10035500B2 (en) Regulation of concentration/fraction of substances in an exhaust stream
US9091191B2 (en) Method and system for diesel particle filter regeneration
US10352256B2 (en) Regulation of concentration/fraction of substances in an exhaust stream
US20090301061A1 (en) Limiting transmission function while in regeneration mode for a diesel particulate filter
WO2014055018A1 (en) Regulation of a temperature in an exhaust aftertreatment system
WO2014051496A1 (en) Method and system for the propulsion of a vehicle
EP2923050B1 (de) Regelung einer temperatur in einem abgasnachbehandlungssystem
EP2920442B1 (de) Regulierung der konzentration/fraktion von stoffen in einem abgasstrom
WO2014055022A1 (en) Regulation of concentration/fraction of substances in an exhaust stream
EP2090767B1 (de) Beurteilung der Rußlast eines Partikelfilters
EP2903873A1 (de) Regulierung der konzentration/fraktion von stoffen in einem abgasstrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843423

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120130045435

Country of ref document: DE

Ref document number: 112013004543

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843423

Country of ref document: EP

Kind code of ref document: A1