WO2014054812A1 - Carrier-attached metal foil - Google Patents

Carrier-attached metal foil Download PDF

Info

Publication number
WO2014054812A1
WO2014054812A1 PCT/JP2013/077183 JP2013077183W WO2014054812A1 WO 2014054812 A1 WO2014054812 A1 WO 2014054812A1 JP 2013077183 W JP2013077183 W JP 2013077183W WO 2014054812 A1 WO2014054812 A1 WO 2014054812A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
carrier
group
metal
release agent
Prior art date
Application number
PCT/JP2013/077183
Other languages
French (fr)
Japanese (ja)
Inventor
晃正 森山
倫也 古曳
雅史 石井
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014539857A priority Critical patent/JP6373189B2/en
Publication of WO2014054812A1 publication Critical patent/WO2014054812A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]

Definitions

  • the present invention relates to a metal foil with a carrier. More specifically, the present invention relates to a metal foil with a carrier used in the production of a multilayer laminated board in which two or more layers are laminated on one side or both sides used for a printed wiring board or an ultrathin coreless substrate.
  • a printed wiring board uses, as a basic constituent material, a dielectric material called “prepreg” obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass nonwoven fabric, and paper with a synthetic resin. . Further, a sheet such as copper or copper alloy foil having electrical conductivity is bonded to the side facing the prepreg.
  • the laminated body thus assembled is generally called a CCL (CopperoppClad Laminate) material.
  • the surface of the copper foil in contact with the prepreg is usually a mat surface in order to increase the bonding strength.
  • a foil made of aluminum, nickel, zinc or the like may be used instead of the copper or copper alloy foil. Their thickness is about 5 to 200 ⁇ m. This commonly used CCL (Copper Clad Laminate) material is shown in FIG.
  • Patent Document 1 proposes a metal foil with a carrier composed of a synthetic resin plate-shaped carrier and a metal foil that is mechanically peelably adhered to at least one surface of the carrier. Describes that it can be used for the assembly of printed wiring boards. It was shown that the adhesive strength between the plate-like carrier and the metal foil is desirably 1 gf / cm to 1 kgf / cm. According to the metal foil with a carrier, since the copper foil is supported over the entire surface by the synthetic resin, generation of wrinkles on the copper foil during lamination can be prevented. In addition, since the metal foil with carrier is in close contact with the synthetic resin without gaps, when the surface of the metal foil is plated or etched, it can be put into the chemical solution for plating or etching. .
  • the linear expansion coefficient of the synthetic resin is at the same level as the copper foil that is a constituent material of the substrate and the prepreg after polymerization, the circuit is not misaligned, resulting in fewer defective products, It has the outstanding effect that a yield can be improved.
  • Patent Document 2 describes a method for manufacturing a wiring board in which a build-up wiring layer is formed in a state where the build-up wiring layer can be peeled off on a temporary substrate, as in Patent Document 1.
  • a step of preparing a temporary substrate in which a glass nonwoven fabric is impregnated with a resin is prepared, and an outer peripheral portion of a wiring formation region on the temporary substrate is selectively provided with an adhesive layer on a peripheral side of the metal foil.
  • a wiring member in which the build-up wiring layer is formed on the metal foil by separating the metal foil from the temporary substrate by cutting an inner portion of the structure in which the wiring layer is formed. And a step of obtaining.
  • Patent Document 3 describes a manufacturing method in which a required wiring layer is formed on a temporary substrate so as to be peeled off, and then the wiring layer is separated from the temporary substrate to obtain a wiring substrate.
  • a base layer metal foil, release film, or release agent
  • a metal foil larger than the size of the base layer is in contact with an outer peripheral portion of the wiring formation region.
  • the metal foil is separated from the temporary substrate by cutting a portion corresponding to the peripheral edge of the base layer, thereby obtaining a wiring member in which the build-up wiring layer is formed on the metal foil. And having a degree.
  • the metal foil with a carrier described in Patent Document 1 is an epoch-making invention that greatly contributes to the reduction of the manufacturing cost by simplifying the manufacturing process of the printed circuit board and increasing the yield.
  • the corner portion may collide with another member, and the plate-like carrier and the metal foil may be peeled off due to an external force applied at that time, resulting in a failure.
  • a chemical solution such as hydrochloric acid, sulfuric acid, hydrogen peroxide or permanganate may permeate from the interface between the copper foil with carrier and the plate carrier, and the metal foil may be peeled off from the plate carrier.
  • Patent Document 2 since the peripheral side of the metal foil is selectively bonded with the adhesive layer, the problem that the plate-like carrier is peeled off from the metal foil during handling can be alleviated. Is merely in contact with the plate-like carrier, there is a possibility that wrinkles will occur in the metal foil inside during handling. Considering the use of metal foil for wiring formation, the generation of wrinkles tends to lead to wiring defects, which is not preferable. Moreover, although the peripheral part of metal foil is adhere
  • Patent Document 3 the outer peripheral portion of the prepreg and the metal foil is bonded without specially using an adhesive layer. Moreover, there is no mention about the adhesive strength in that case. Therefore, the problem that the plate-like carrier and the metal foil are peeled off during handling cannot be solved.
  • an object of the present invention is to provide a metal foil with a carrier that can prevent peeling and wrinkle generation between a plate-like carrier and a metal foil during conveyance or processing (during handling).
  • the present inventors have effectively controlled peeling in handling by controlling the adhesive strengths in the plate carrier and the metal foil in the inner and outer peripheral parts to a certain range, respectively. It has been found that a metal foil with a carrier can be obtained, which can be prevented at the same time and the generation of wrinkles on the surface of the metal foil is also suppressed.
  • the present invention is as follows.
  • a metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil laminated on at least one surface of the carrier, wherein the interface between the carrier and the metal foil is at least in the outer peripheral region.
  • the carrier and the metal foil are bonded with an adhesive strength of 201 to 1000 gf / cm through the adhesive layer at the corner, and the carrier and the metal foil are temporarily bonded with an adhesive strength of 10 to 200 gf / cm using a release agent in the remaining region.
  • Metal foil with carrier bonded.
  • the mold release agent has the following formula:
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.
  • the mold release agent has the following formula:
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
  • the metal foil with a carrier according to (1) containing the aluminate compound, titanate compound, zirconate compound, hydrolysis products thereof, and condensates of the hydrolysis products shown in (1).
  • the metal release foil according to (1) wherein the release agent contains silicone and one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin.
  • the silane coupling agent used for forming the silane coupling agent layer has one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule.
  • Metal foil with carrier is one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule.
  • the ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the carrier is 0.4 ⁇ m or more and 10.0 ⁇ m or less, according to any one of (1) to (13) Metal foil with carrier.
  • the metal foil and the plate-like carrier after heating at 220 ° C.
  • a multilayer comprising laminating a resin on at least one metal foil side of the metal foil with a carrier according to any one of (1) to (19), and then repeating the resin or the metal foil one or more times A method for producing a metal-clad laminate.
  • a resin is laminated on the metal foil side of the metal foil with a carrier according to any one of (1) to (19), and then the resin, one-sided or double-sided metal-clad laminate, or the metal foil is once or more times A method for producing a multilayer metal-clad laminate comprising repeating.
  • a step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil in the inner part after cutting, and a step of removing a part or all of the metal foil exposed by peeling by etching (22) The manufacturing method of the multilayer metal-clad laminate as described in (22).
  • (24) A multilayer metal-clad laminate obtained by the production method according to any one of (20) to (23).
  • (25) A method for manufacturing a buildup substrate, comprising a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of (1) to (19).
  • the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal with carrier The manufacturing method of the buildup board
  • the method further includes a step of laminating the carrier side of another metal foil with a carrier according to any one of (1) to (19), wherein a metal foil is adhered to one surface on the surface on which the wiring is formed (27 )-(29).
  • the mold release agent has the following formula:
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.
  • the mold release agent has the following formula:
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
  • the metal according to any one of (37) to (42), comprising an aluminate compound, a titanate compound, a zirconate compound, a hydrolysis product thereof, and a condensate of the hydrolysis product shown in Foil.
  • the adhesive layer is at least one layer selected from a chromate layer and a silane coupling agent layer.
  • the silane coupling agent used for forming the silane coupling agent layer has one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule.
  • the metal foil with a carrier since the plate-like carrier and the metal foil are firmly bonded at the outer peripheral portion, peeling between the plate-like carrier and the metal foil during handling can be prevented. On the other hand, since the inside is appropriately bonded to such an extent that the plate-like carrier and the metal foil can be peeled off, wrinkles can be prevented from occurring in the metal foil during handling. Furthermore, according to a preferred embodiment of the present invention, since the plate-like carrier and the metal foil are firmly bonded to the entire outer peripheral portion, the effect of preventing the penetration of the chemical liquid into the interface is also high. Therefore, the handling property of the metal foil with carrier is improved, and the advantage that the productivity of the printed wiring board using the metal foil with carrier is improved is obtained.
  • CCL Configuration of CCL is shown. It is a typical top view of the metal foil in the previous stage which laminates
  • An assembly example of a four-layer metal-clad laminate using the carrier-attached copper foil according to the present invention is shown.
  • substrate using the copper foil with a carrier which concerns on this invention is shown.
  • a metal foil with a carrier is a metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil laminated on at least one surface of the carrier, the carrier and the metal foil.
  • the carrier and the metal foil are bonded to each other through the adhesive layer at least at the corners in the outer peripheral region, and the carrier and the metal foil are temporarily bonded using the release agent in the remaining region. It is a foil.
  • the outer peripheral area refers to an area to be cut and removed later.
  • the interface between the carrier and the metal foil is firmly bonded via an adhesive layer at least at the four corners in the outer peripheral region, but is peeled off at other portions. It is bonded with moderate adhesive strength as much as possible. Therefore, even when the metal foil with a carrier is transported or when a multilayer laminated board or a build-up board is manufactured using this, the corner portion does not easily peel off even if it collides with other members. .
  • the metal foil with a carrier can be cut in the thickness direction at a portion inside the portion (adhesion region) where the carrier and the metal foil are bonded via an adhesive layer at an appropriate time such as after the end of conveyance.
  • the multilayer laminated board or the build-up board may be cut in the thickness direction at a portion inside the adhesive area. it can.
  • the carrier can be peeled off from the metal foil in a timely manner.
  • the timing at which the carrier is peeled off from the metal foil is not limited, but is usually after the formation of the multilayer laminate or the build-up substrate.
  • the multilayer laminate or the build-up substrate can be peeled off as necessary during the formation.
  • the exposed metal foil can be used as a conductive material for wiring formation.
  • the entire surface can be removed by etching or the like.
  • FIG. 2 a plan view of the metal foil 200 in the previous stage of laminating the plate-like carrier is schematically depicted here.
  • two opposing sides of the outer peripheral area of the metal foil 200 are areas where the adhesive layer is provided (adhesive area: 220).
  • the carrier and the metal foil are firmly bonded via the adhesive layer.
  • the inner remaining region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent.
  • the four corners and the two opposite sides of the metal foil that are most likely to peel off are firmly bonded to the carrier by the adhesive layer, so that peeling during handling can be prevented.
  • the four sides of the outer peripheral region of the metal foil 200 are regions where the adhesive layer is provided (adhesive region: 220). In this region, the carrier and the metal foil are firmly bonded via the adhesive layer.
  • the inner remaining region surrounded by the adhesive layer region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent.
  • the width of the adhesive region is sufficient to obtain a peeling prevention effect and a chemical solution penetration prevention effect.
  • the thickness is preferably 0.1 mm or more, more preferably 1.0 mm or more, and even more preferably 3.0 mm or more.
  • the width of the bonding region may be increased and about 1 to 10 holes having a diameter of about 0.01 mm to 10 mm may be provided using a drill or the like.
  • the hole provided in such an adhesion region can be used as a means for fixing a positioning pin or the like in the production of a multi-layer laminate described later or the build-up substrate.
  • it is preferably 50 mm or less, more preferably 25 mm or less, and 5 mm or less. Even more preferred.
  • a mode as shown in the right figure (c) of FIG. 2 is also possible.
  • four corners of the outer peripheral region of the metal foil 200 are regions where the adhesive layer is provided (adhesive region: 220). In this region, the carrier and the metal foil are firmly bonded via the adhesive layer.
  • the inner remaining region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent. Even in this embodiment, the four corners of the metal foil that is most likely to peel off are firmly adhered to the carrier by the adhesive layer, and therefore peeling during handling can be prevented.
  • FIG. 3 schematically shows a side view according to an embodiment of the metal foil with carrier 230 according to the present invention.
  • the metal foil with carrier 230 according to the upper diagram (c) of FIG. 3 forms an adhesive layer on the entire bonding surface of the metal foil 200, and then coats a release agent on the inner temporary adhesive region to form a plate-like carrier. It can be produced by pasting the two sides of 240 by hot pressing or the like. Alternatively, a release agent is applied to the temporary adhesion regions 210 on both surfaces of the plate-like carrier 240, and then a metal foil 200 having an adhesive layer formed on the entire bonding surface is attached to both surfaces of the plate-like carrier 240 by hot pressing or the like. It can be produced by combining them.
  • the metal foil with carrier 230 forms an adhesive layer in the adhesion region 220 in the bonding surface of the metal foil 200, and applies a release agent to the temporary adhesion region, It can be manufactured by pasting the both sides of the plate-like carrier 240 by hot pressing or the like.
  • the outer bonded region (220) firmly bonded protects the inner temporary bonded region (210), so that the metal foil and the plate carrier in the temporary bonded region (210) can be separated. Infiltration of the chemical liquid into the interface between the metal foil and the plate carrier can be prevented.
  • the adhesive layer may be formed on any surface of the plate-like carrier and the metal foil.
  • the release agent may be applied to any surface of the plate-like carrier and the metal foil.
  • the adhesive layer may be formed on both the plate carrier and the metal foil.
  • the carrier and the metal foil are bonded via the adhesive layer, it is necessary to have a strong adhesive strength that does not easily peel off and also prevents the penetration of the chemical solution.
  • the carrier and the metal foil are bonded with an adhesive strength of 201 gf / cm or more, preferably 250 gf / cm or more, more preferably 350 gf / cm or more.
  • the carrier has an adhesive strength of 1000 gf / cm or less, preferably 750 gf / cm or less, more preferably 500 gf / cm or less. It is desirable that the metal foil is bonded.
  • the adhesive layer for realizing such adhesive strength examples include a chromate layer and a silane coupling agent layer. These may be used alone or in combination. Moreover, it is good also as a structure which laminated
  • the chromate layer can be formed by subjecting the bonding surface of the metal foil and / or plate-like carrier to chromate treatment. Since the chromate layer also has a rust prevention effect, it is preferable that at least the metal foil side be chromated. In order to increase the adhesive strength, the surface of the metal foil can be roughened.
  • the chromate layer when the chromate layer is immersed in an aqueous solution containing 0.1 to 10.0 g / L of hexavalent chromium ions for 1 to 60 seconds or the metal foil and the plate carrier are conductive These can be formed by electrolysis for 1 to 20 seconds using the above-mentioned aqueous solution as a cathode, and the silane coupling agent layer can be formed by, for example, using an aqueous solution containing 0.1 to 5.0% by volume of a silane coupling agent as a metal foil. Alternatively, it can be formed by spray coating on a plate-like carrier and then drying in air at 100 to 200 ° C.
  • silane coupling agent is not limited, but for example, the molecule has one or more of an epoxy group, amino group, methacryl group, or vinyl group as a reactive functional group, and methoxy as a hydrolyzable group. It is preferable to use a silane coupling agent having any one or more of a group, an ethoxy group, and a propoxy group.
  • the part where the carrier and the metal foil are temporarily bonded using a release agent must be peeled off, so it is inconvenient that the adhesiveness is excessively high. Adhesiveness that does not cause wrinkles or easily peel off in a chemical treatment process such as plating performed in the plate manufacturing process is necessary.
  • the carrier and the metal foil are bonded with an adhesive strength of 10 gf / cm or more, preferably 30 gf / cm or more, more preferably 50 gf / cm or more.
  • the carrier since it is not necessary to excessively increase the adhesive strength and the cost of the adhesive is increased, the carrier has an adhesive strength of 200 gf / cm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less. It is desirable that the metal foil is bonded.
  • the adjustment of the adhesive strength for realizing such adhesion can be easily realized by using, for example, the following release agents (1) to (4).
  • Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination. Then, by adhering the plate-like carrier and the metal foil, the adhesiveness is appropriately reduced, and the adhesive strength can be adjusted to a range as described later.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.
  • the silane compound must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a plate-shaped carrier and metal foil surface to fall too much.
  • the silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom.
  • the alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the silane compound has three alkoxy groups and the hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one).
  • both R 3 and R 4 are alkoxy groups.
  • Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl.
  • cycloalkyl group examples include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms.
  • An alkyl group is mentioned.
  • the aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms.
  • an alkyl group eg, tolyl group,
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl.
  • propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
  • the silane compound can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used.
  • By stirring the aqueous solution of the silane compound hydrolysis of the alkoxy group is promoted, and when the stirring time is long, condensation of the hydrolysis product is promoted.
  • the adhesive strength between the metal foil and the plate carrier tends to decrease when a silane compound that has undergone hydrolysis and condensation after a sufficient stirring time is used. Therefore, the adhesive strength can be adjusted by adjusting the stirring time.
  • the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
  • the concentration of the silane compound in the aqueous solution of the silane compound can be 0.01 to 10.0% by volume, and typically 0.1 to 5.0% by volume.
  • the pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from the above can be used.
  • Thiol has one mercapto group in the molecule and is represented by, for example, R-SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
  • the thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • the thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
  • Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiocarboxylic acid can also be used in the form of a salt.
  • a compound having two dithiocarboxylic acid groups can also be used.
  • the thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • thiosulfonic acid can be used in the form of a salt.
  • Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons.
  • Dithiosulfonic acid can also be used in the form of a salt.
  • examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • heterocyclic group suitable as R examples include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
  • Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
  • the metal foil with carrier can be manufactured by bringing a plate-like carrier and metal foil into close contact with each other by hot pressing. For example, after a metal foil and / or a plate-like carrier bonding surface is coated with a compound having two or less mercapto groups in the molecule, the metal foil bonding surface is made of a B-stage resin. This plate-shaped carrier can be manufactured by hot press lamination.
  • a compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water.
  • the addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
  • the adhesive strength can be adjusted by adjusting the concentration.
  • the concentration of the compound having 2 or less mercapto groups in the molecule in the aqueous solution can be 0.01 to 10.0% by weight, typically 0.1 to 5.0%. % By weight.
  • the pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the adhesive strength between the metal foil and the plate-like carrier is preferably 10 gf / cm or more, preferably 30 gf / cm. More preferably, it is more preferably 50 gf / cm or more, while it is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and 80 gf / cm or less. Even more preferred.
  • the adhesive strength between the metal foil and the plate-shaped carrier in such a range, the adhesive strength can be easily adjusted so that it can be easily removed manually while it is not peeled off during transportation or processing.
  • Metal alkoxide An aluminate compound, titanate compound, zirconate compound having a structure represented by the following formula, or a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a metal alkoxide) alone
  • a metal alkoxide aluminate compound, titanate compound, zirconate compound having a structure represented by the following formula, or a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a metal alkoxide) alone
  • a metal alkoxide an adhesive strength suitable for temporary bonding can be easily obtained.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group.
  • M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
  • the metal alkoxide must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a plate-shaped carrier and metal foil surface to fall too much.
  • the metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when three or more hydrocarbon groups are present, the adhesion between the plate-like carrier and the metal foil surface tends to be excessively lowered.
  • the alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldieth
  • titanate compounds examples include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso
  • zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltrie
  • Metal alkoxide can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water.
  • the addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
  • the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
  • the pH of the aqueous solution of metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the adhesive strength between the metal foil and the plate carrier is preferably 10 gf / cm or more, more preferably 30 gf / cm or more, and 50 gf / cm. While it is more preferably at least cm, it is preferably at most 200 gf / cm, more preferably at most 150 gf / cm, and even more preferably at most 80 gf / cm.
  • Silicone-containing release agent A release agent containing a plate-like carrier and a metal foil, silicone, and any one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin
  • the adhesive strength suitable for temporary bonding can also be easily obtained by using and laminating the plate-like carrier and the metal foil.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
  • the melamine-based resin examples include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin.
  • the melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
  • the number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000.
  • the resin can be made into a paint, and the adhesive strength of the resin coating film formed by the silicone-containing release agent can be easily adjusted to a predetermined range.
  • examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
  • silicone examples include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof.
  • the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification.
  • the resin coating film if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude
  • the resin coating silicone functions as a release agent for the resin coating. Therefore, if the total amount of epoxy resin and melamine resin is too much compared to silicone, the adhesive strength imparted by the resin coating between the plate carrier and the metal foil increases, so that the peelability of the resin coating is increased. May decrease and may not be easily removed by hand. On the other hand, if the total amount of the epoxy resin and the melamine resin is too small, the above-described adhesive strength is reduced, and therefore, the metal foil with a carrier may be peeled off during processing or processing. From this viewpoint, the total of the epoxy resin and the melamine resin is preferably contained in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
  • fluororesin functions as a release agent and has the effect of improving the heat resistance of the resin coating film. If the amount of fluororesin is too much compared to silicone, the aforementioned adhesive strength will be reduced, which may cause peeling during transportation or processing of the metal foil with carrier, and it will be uneconomical because the temperature required for the baking process described later will increase. It becomes. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
  • the resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH) 2 in addition to silicone and epoxy resin and / or melamine resin and, if necessary, fluororesin 1 You may contain the surface roughening particle
  • the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the plate-like carrier or metal foil to which the resin coating film is applied becomes uneven and becomes a matte surface.
  • the content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
  • the particle diameter of the surface roughened particles is preferably 15 nm to 4 ⁇ m.
  • the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like.
  • SEM scanning electron microscope
  • the amount of irregularities on the surface of the plate-like carrier or metal foil is about 4.0 ⁇ m in terms of the maximum height roughness Ry defined by JIS.
  • a temporary bonding method between the plate-like carrier and the metal foil when using the silicone-containing release agent will be described.
  • a temporary adhesion method using a silicone-containing release agent includes a step of applying a silicone-containing release agent to at least one surface of a plate-like carrier or a metal foil, and a baking step of curing the applied release agent. A step of hot pressing the metal foil and the plate-like carrier.
  • each step will be described.
  • the coating step is a step of forming a resin coating film by applying a silicone-containing release agent on one or both sides of the plate-like carrier.
  • the silicone-containing release agent can be obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol.
  • the blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone.
  • the fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  • the coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred.
  • the coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 ⁇ m.
  • the gravure coating method is a method in which a resin coating film is formed on the surface of a plate-like carrier by transferring a silicone-containing release agent filled in a recess (cell) provided on the roll surface to the plate-like carrier.
  • the lower part of the lower roll having the cell provided on the surface is immersed in a silicone-containing release agent, and the resin paint is pumped into the cell by the rotation of the lower roll.
  • the plate-like carrier is arranged between the lower roll and the upper roll arranged on the upper side of the lower roll, and the lower roll and the upper roll are held while pressing the plate-like carrier against the lower roll with the upper roll.
  • the plate-like carrier is conveyed, and the resin paint pumped into the cell is transferred (applied) to one side of the plate-like carrier.
  • a doctor blade on the side where the plate-shaped carrier is brought into contact with the surface of the lower roll, excess silicone-containing release agent pumped up on the roll surface other than the cell is removed, and the plate-like carrier is removed. A predetermined amount of a silicone-containing release agent is applied to the surface of the carrier.
  • a smoothing roll may be disposed on the carry-out side of the plate carrier to maintain the smoothness of the resin coating film.
  • the baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time).
  • the adhesive strength between the plate-like carrier provided by the resin coating film and the metal foil is in a predetermined range by subjecting the resin coating film formed of the resin coating of a predetermined blending amount to a baking process under predetermined conditions.
  • the baking temperature is the ultimate temperature of the plate carrier.
  • a conventionally well-known apparatus is used as a heating means used for a baking process.
  • the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the adhesive strength exceeds 200 gf / cm, The peelability is reduced.
  • baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film will deteriorate, the said adhesive strength will exceed 200 gf / cm, and workability
  • a plate-shaped carrier may change in quality by high temperature. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
  • Silicone-containing mold release agents include silicone as a main agent, epoxy resin and melamine resin as curing agents, fluororesin as a release agent, SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH). It may consist of one or more kinds of surface roughened particles selected from 2 .
  • the silicone-containing release agent By further adding such surface-roughening particles to the silicone-containing release agent, the surface of the resin coating becomes uneven, and this unevenness makes the plate-like carrier or metal foil uneven, resulting in a matte surface.
  • the compounding quantity (addition quantity) of the surface roughening particle in a silicone containing mold release agent is 1 with respect to 100 mass parts of silicone. It is preferably ⁇ 10 parts by mass. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 ⁇ m.
  • the surface of the metal foil or resin was measured with a scanning electron microscope or the like equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). If detected, it can be inferred that a silane compound is present on the surface of the metal foil or resin. If S is detected, the surface of the metal foil or resin has two or less mercapto groups in the molecule. It can be inferred that a compound is present, and if Al, Ti, Zr is detected, it can be inferred that the metal alkoxide is present on the surface of the metal foil or resin.
  • the method for producing a metal foil with a carrier according to the present invention is as described above. However, in carrying out the present invention, other processes may be performed between or before and after each process within a range that does not adversely affect each process. May be included. For example, you may perform the washing
  • the metal after assuming at least one of heating for 3 hours, 6 hours or 9 hours at 220 ° C., assuming heating conditions in the production process of the multilayer printed wiring board.
  • the adhesive strength in the temporary adhesion region between the foil and the plate-like carrier is preferably 30 gf / cm or more, and more preferably 50 gf / cm or more.
  • the adhesive strength is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and even more preferably 80 gf / cm or less.
  • the adhesive strength after heating at 220 ° C. is described above in both 3 hours and 6 hours, or in both 6 hours and 9 hours from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all the adhesive strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
  • the adhesive strength between the metal foil and the plate-like carrier in the temporary adhesive region is measured in accordance with the 90-degree adhesive strength measuring method defined in JIS C6481, after removing the outer peripheral region by cutting.
  • the adhesive strength between the metal foil and the plate-like carrier in the adhesive region is 90 ° adhesive strength defined in JIS C6481 with respect to a cut piece including the adhesive region in the outer peripheral region after cutting the outer peripheral region. Measure according to the measurement method.
  • the resin that serves as the plate-like carrier is not particularly limited, and phenol resin, polyimide resin, epoxy resin, natural rubber, pine resin, and the like can be used, but a thermosetting resin is preferable.
  • a prepreg can also be used. The prepreg before being bonded to the metal foil is preferably in a B-stage state.
  • the linear expansion coefficient of the prepreg (C stage) is 12 to 18 ( ⁇ 10 ⁇ 6 / ° C.), 16.5 ( ⁇ 10 ⁇ 6 / ° C.) of the copper foil as the constituent material of the substrate, or 17 of the SUS press plate .3 ( ⁇ 10 ⁇ 6 / ° C.) is advantageous in that it is difficult to cause circuit misalignment due to a phenomenon (scaling change) in which the substrate size before and after pressing differs from that at the time of design. Furthermore, as a synergistic effect of these merits, it becomes possible to produce a multilayer ultra-thin coreless substrate.
  • the prepreg used here may be the same as or different from the prepreg constituting the circuit board.
  • the plate-like carrier preferably has a high glass transition temperature Tg from the viewpoint of maintaining the adhesive strength after heating in an optimum range, for example, a glass transition temperature Tg of 120 to 320 ° C., preferably 170 to 240 ° C. .
  • the glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
  • the thermal expansion coefficient of the resin is within + 10% and ⁇ 30% of the thermal expansion coefficient of the metal foil. As a result, it is possible to effectively prevent circuit misalignment due to the difference in thermal expansion between the metal foil and the resin, thereby reducing the occurrence of defective products and improving the yield.
  • the thickness of the plate-like carrier is not particularly limited and may be rigid or flexible. However, if it is too thick, it will adversely affect the heat distribution during hot pressing, while if it is too thin, it will bend and will not flow through the printed wiring board manufacturing process. Therefore, it is usually 5 ⁇ m or more and 1000 ⁇ m or less, preferably 50 ⁇ m or more and 900 ⁇ m or less, and more preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the metal foil copper or copper alloy foil is a typical one, but foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used.
  • the metal foil generally has a thickness of 1 [mu] m or more, preferably 5 [mu] m or more, and 400 [mu] m or less, preferably 120 [mu] m or less, considering use as a wiring of a printed circuit board.
  • metal foils having the same thickness may be used, or metal foils having different thicknesses may be used.
  • the metal foil used may be subjected to various surface treatments.
  • metal plating for the purpose of imparting heat resistance Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc.
  • Chromate treatment including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc.
  • the chromate treatment liquid for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating).
  • the roughening treatment affects the adhesive strength between the metal foil and the plate carrier, and the chromate treatment also has a great influence.
  • Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but significantly increases the adhesive strength, and is therefore meaningful as a means for forming an adhesive layer.
  • the adhesive strength between the resin and the metal foil is high.
  • the matte surface (M surface) of the electrolytic copper foil is used as the bonding surface with the resin, and surface treatment such as roughening treatment is performed. It is possible to improve the adhesive force by the chemical and physical anchor effect.
  • various binders can also be added on the resin side in order to increase the adhesive strength with the metal foil. By masking the temporary adhesion region with a photosensitive resin or the like, it is possible to selectively roughen the adhesion region.
  • the surface roughness of the bonded surface was measured in accordance with JIS B 0601: 2001 in order to adjust the adhesive strength between the metal foil and the plate-like carrier to the preferred range described above.
  • the ten-point average roughness (Rz jis) is preferably 3.5 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • reducing the surface roughness indefinitely takes time and increases costs, so it is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more.
  • the metal foil When electrolytic copper foil is used as the metal foil, it is possible to use either a glossy surface (shiny surface, S surface) or a rough surface (matte surface, M surface) by adjusting to such a surface roughness. However, it is easier to adjust the surface roughness by using the S-plane. On the other hand, it is preferable that the ten-point average roughness (Rz jis) of the surface of the metal foil not contacting the carrier is 0.4 ⁇ m or more and 10.0 ⁇ m or less.
  • the surface treatment for improving the adhesive strength such as roughening treatment may not be performed on the bonding surface of the metal foil with the plate-like carrier.
  • the binder for improving the adhesive force with metal foil is not added in the plate-shaped carrier in the temporary adhesion
  • this invention provides the use of the metal foil with a carrier mentioned above.
  • production of a multilayer laminated board including laminating a resin on at least one metal foil side of the metal foil with a carrier described above, and then repeating the resin or the metal foil one or more times, for example, 1 to 10 times. A method is provided.
  • a multilayer including a step of laminating a resin on the metal foil side of the metal foil with carrier described above, and then repeating the resin, single-sided or double-sided metal-clad laminate, or metal foil one or more times, for example, 1 to 10 times A method for manufacturing a laminate is provided.
  • the carrier-attached metal foil may be cut in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via an adhesive layer. it can.
  • the cutting step is preferably performed after the completion of the lamination of the multilayer metal-clad laminate in order to sufficiently exhibit the effects of the present invention, but can also be performed before or during the lamination.
  • the cutting process is performed during or after the completion of lamination, not only the metal foil with carrier but also the laminated resin and substrate are usually cut together.
  • a step of removing a part or all of the metal foil exposed by the peeling by etching may be performed as necessary.
  • a method for manufacturing a buildup board including a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with carrier described above.
  • the build-up wiring layer can be formed using at least one of a full additive method and a semi-additive method.
  • the full additive method is a method of forming a conductor pattern by electroless plating and / or electrolytic plating without using a metal foil for the conductor layer.
  • the semi-additive method is an electroless method on a seed layer made of metal foil, for example.
  • a conductor pattern is formed by using metal deposition and electrolytic plating, etching, or a combination thereof, and then an unnecessary seed layer is removed by etching.
  • the resin is laminated on the metal foil side of the metal foil with carrier described above, and then the resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, or metal foil is repeatedly laminated at least once, for example, 1 to 10 times.
  • a method for manufacturing a build-up substrate including the step of:
  • a hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, or a resin.
  • the method may further include conducting conductive plating on the side surface and the bottom surface of the hole.
  • the step of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
  • the manufacturing method of the build-up board further includes the step of bringing the metal foil into close contact with one surface on the surface on which the wiring is formed, and further laminating the carrier side of another metal foil with a carrier according to the present invention. You can also. Moreover, it is possible to further include a step of laminating a metal foil with a carrier according to the present invention in which a resin is laminated on the surface on which the wiring is formed and the metal foil is adhered to both sides of the resin.
  • the “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
  • the metal foil with a carrier can be cut in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via an adhesive layer.
  • the cutting step is preferably performed after completion of the lamination of the build-up substrate in order to sufficiently exhibit the effects of the present invention, but can also be performed before or during the lamination.
  • the cutting process is performed during or after the completion of lamination, not only the metal foil with carrier but also the laminated resin and substrate are usually cut together.
  • the cutting location should be outside the wiring formation region so that the wiring formation is not hindered or the already formed wiring is not cut.
  • a step of peeling and separating the plate-like carrier and the metal foil and further removing a part or all of the exposed metal foil by etching may be further performed. it can.
  • each layer can be laminated
  • This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed collectively at the end.
  • the metal foil with carrier used here is the metal foil with carrier 11 in which the metal foil 11a is adhered to one surface of the plate-like carrier 11c by the method according to the present invention.
  • the metal foil with carrier 11 in which the metal foil 11a is adhered to one surface of the plate-like carrier 11c by the method according to the present invention.
  • a desired number of prepregs 12, then a two-layer metal-clad laminate called an inner core 13, then a prepreg 12, and then a metal foil 11 with a carrier are sequentially stacked to form a set of four layers.
  • a metal-clad laminate assembly unit is completed.
  • the unit 14 (referred to as “page”) is repeated about 10 times to form a press assembly 15 (referred to as “book”).
  • a large number of four-layer metal-clad laminates can be produced simultaneously by sandwiching the book 15 between the laminated molds 10 and setting the book 15 in a hot press machine, followed by pressure molding at a predetermined temperature and pressure.
  • a stainless plate can be used as the laminated mold 10.
  • the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used.
  • a metal-clad laminate having four or more layers can generally be produced in the same process by increasing the number of inner core layers.
  • a resin as an insulating layer, a two-layer circuit board, and a resin as an insulating layer are sequentially stacked, and the metal foil side is in contact with the resin on the metal foil side of the present invention.
  • a build-up substrate can be manufactured by sequentially stacking metal foils of the metal foil with a carrier to form a laminate.
  • a resin or conductor layer as an insulating layer is provided on at least one metal foil side of the metal foil with a carrier in which the metal foil is adhered to both surfaces or one surface of the resinous plate-like carrier 11c. Are laminated in order.
  • a step of half-etching the entire surface of the metal foil to adjust the thickness may be included.
  • Electroless plating is performed on the entire surface or a part of the substrate to form an interlayer connection, and further electrolytic plating is performed as necessary.
  • a plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating.
  • the surface of the metal foil may be chemically roughened in advance.
  • the plating resist is removed after plating.
  • wiring is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured.
  • the process from the lamination of the resin and the copper foil to the wiring formation may be repeated a plurality of times to form a multilayer build-up board.
  • the metal side of the metal foil with a carrier having the metal foil adhered to one side of the present invention may be contacted and laminated, or once the resin is laminated Alternatively, one metal foil of the metal foil with carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
  • a prepreg containing a thermosetting resin can be suitably used as the resin used for manufacturing the build-up substrate.
  • a resin for example, an insulating layer
  • Prepreg or photosensitive resin is laminated.
  • a via hole is formed at a predetermined position of the resin.
  • the via hole can be formed by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed.
  • the resin in the via hole forming portion can be removed by a photolithography method.
  • electroless plating is performed on the bottom and side surfaces of the via holes, the entire surface or a part of the resin to form interlayer connections, and further electrolytic plating is performed as necessary.
  • a plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, wiring is formed by removing unnecessary portions of the electroless plating portion or the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured.
  • the steps from resin lamination to wiring formation may be repeated a plurality of times to form a multilayered build-up substrate. Furthermore, on the outermost surface of this build-up substrate, the metal side of the metal foil with a carrier having the metal foil adhered to one side of the present invention may be contacted and laminated, or once the resin is laminated Alternatively, one metal foil of the metal foil with carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
  • a build-up wiring board is formed by forming wiring on the surface through a plating process and / or etching process, and further peeling the carrier from the metal foil with carrier. Is completed. You may form wiring by removing a part of metal foil with respect to the peeling surface of the metal foil exposed after peeling isolation
  • a plurality of electrolytic copper foils (550 mm ⁇ 550 mm ⁇ thickness 12 ⁇ m) were prepared, and nickel-zinc (Ni—Zn) alloy plating treatment and chromate were performed on the shiny (S) surface of each electrolytic copper foil under the following conditions.
  • (Cr—Zn chromate) treatment was performed, and then silane coupling treatment was performed according to the experimental example number.
  • a release agent is applied to the S surface or the prepreg surface, and a prepreg (FR-4 resin, 550 mm ⁇ 550 mm ⁇ thickness 200 ⁇ m) manufactured by Nanya Plastic Co., Ltd. is used as the resin with the S surface of the electrolytic copper foil. Bonding and hot pressing at 170 ° C. for 100 minutes were performed to prepare a copper foil with a carrier.
  • Nickel-zinc alloy plating Ni concentration 17g / L (added as NiSO 4 ) Zn concentration 4g / L (added as ZnSO 4 ) pH 3.1 Liquid temperature 40 °C Current density 0.1-10A / dm 2 Plating time 0.1 to 10 seconds
  • an aqueous solution of the mold release agent is applied using a spray coater, and then the copper foil surface is dried in air at 100 ° C. and then attached to the prepreg. Combined.
  • the use conditions of the release agent the type of release agent, the stirring time from when the release agent is dissolved in water to before application, the concentration of the release agent in the aqueous solution, the alcohol concentration in the aqueous solution, the pH of the aqueous solution Is shown in Table 1.
  • the formation of a resin coating using a silicone-containing release agent on the S-surface or prepreg is performed by applying a composition for a resin coating having the composition shown in Table 1 by a gravure coating method, and then a doctor blade. The thickness was adjusted to 2-4 ⁇ m using Moreover, the applied resin coating film was baked by heating at 150 ° C. for 30 seconds.
  • bisphenol A type epoxy resin was used as the epoxy resin shown in Table 1
  • methyl etherified melamine resin was used as the melamine resin.
  • the outer periphery of the copper foil and the prepreg, which do not require a release agent treatment, was appropriately masked according to the experimental example, and after completion of the release agent treatment, the masking was removed to obtain an adhesive region.
  • Table 1 shows the types of copper foil bonding surfaces, surface treatment conditions and surface roughness Rz jis, release agent usage conditions, prepreg types, and lamination conditions of copper foil and prepreg. .
  • the copper foil with a carrier was subjected to each heat treatment under the conditions shown in Table 1 assuming that a thermal history is applied to the copper foil with a carrier during further heat treatment such as circuit formation.
  • the copper foil with carrier is immersed in a commercially available desmear solution and the maximum value of the erosion width of the metal foil and the carrier interface is visually confirmed. did.
  • desmear liquid DS224 manufactured by Nihon McDermid Co., Ltd. was used and treated at a liquid temperature of 75 ° C. for 25 minutes. The results are shown in Table 3.
  • the adhesive strength of the outer peripheral region (adhesive layer) of the metal foil with a carrier produced under the above conditions was measured according to the 90-degree adhesive strength measurement method specified in JIS C6481. If the adhesive area is too narrow to measure the adhesive strength, the measurement is performed by appropriately adjusting the circuit width for measuring the adhesive strength according to the above-described method, and the adhesive strength is 90 degrees adhesive strength (gf / cm) at 10 mm width. Converted. Assuming that a thermal history is applied to the metal foil with a carrier during further heat treatment such as circuit formation, the adhesive strength after heat treatment under the conditions shown in Table 3 was also measured. The results are shown in Table 3.
  • the treatment region (temporary adhesion region) of the release agent in each experimental example, the treatment method of the adhesion region in the outer peripheral portion, and the adhesive strength of this portion will be described in detail.
  • ⁇ Experimental examples 1, 4 to 6> The treatment area of the release agent was set as shown in FIG.
  • the width of the adhesive region at both ends of the copper foil was 3 mm in Experimental Example 1, 1 mm in Experimental Example 4, 20 mm in Experimental Example 5, and 50 mm in Experimental Example 6. It is the aforementioned chromate layer formed on the copper foil that functions as an adhesive layer in the adhesive region.
  • the adhesive strength of this adhesive region was 360 gf / cm, and it had sufficient adhesive strength (corresponding to Experimental Example 12 where no release agent was treated).
  • Example 2 7 to 10 The treatment area (temporary adhesion area) of the release agent was as shown in FIG.
  • the width of the adhesion region of the copper foil and the prepreg outer peripheral part was 3 mm in Experimental Example 2, 1 mm in Experimental Example 7, 20 mm in Experimental Example 8, and 50 mm in Experimental Examples 9 and 10.
  • the chromate layer formed on the copper foil functions as the adhesive layer in the adhesion region.
  • silane coupling agent used in the adhesive layer examples include 3-glycidoxypropyltrimethoxysilane in Experimental Example 7, N-2-aminoethyl-3-aminopropyltrimethoxysilane in Experimental Example 8, and vinyl trimethyl in Experimental Example 9.
  • About all the silane coupling agents, what was stirred at room temperature for 12 hours at pH 7.0 using a 2.0 volume% aqueous solution was applied using a roll coater, and then dried in air at 100 ° C. for 5 minutes.
  • the adhesive strengths of the strong adhesion portions in Experimental Examples 7 to 10 are 330 to 550 gf / cm, which is sufficient.
  • the strong bonding portion has a bonding strength of 360 gf / cm and has a sufficient bonding strength.
  • the adhesive strength tends to decrease.
  • a carrier-attached copper foil was produced under the same conditions as in Experimental Example 2, except that the release agent was treated on the entire surface of the copper foil. That is, the adhesive strength of the outer peripheral portion is the same as that of the central portion.
  • the amount of the chemical solution soaked was as large as 20 mm or more in all the copper foil with carrier and after the heat treatment thereof, and it was found that the soaking of the chemical solution at the interface between the copper foil and the prepreg could not be prevented.
  • the release agent can be processed on the surface of the copper foil or the surface of the plate-like carrier (prepreg), and then the adhesive strength of the laminate, the adhesive strength after heating, and the peeling It can be seen that the same results were obtained in workability.
  • Treatment liquid 3-glycidoxypropyltrimethoxysilane 0.9 volume% aqueous solution pH 5.0 to 9.0 Stirred at room temperature for 12 hours
  • Treatment method After applying the treatment liquid using a spray coater, the treated surface is dried in air at 100 ° C. for 5 minutes.
  • a 100 ⁇ m diameter hole penetrating the copper foil on both surfaces of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine.
  • the copper foil surface on the copper foil with a carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate are electrolessly plated with copper and electroplated in order.
  • Plating was performed to form an electrical connection between the copper foil on the carrier-attached copper foil and the copper foil on the surface of the four-layer copper-clad laminate.
  • a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this manner, a four-layer buildup substrate can be produced.
  • Two sets of two-layer build-up wiring boards were obtained by mechanically peeling and separating the plate-like carrier and the copper foil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided is a carrier-attached metal foil with which the bonding strength between a resin, plate-like carrier, and a metal foil can be adjusted, and with which separation of the carrier from the metal foil during conveyance and processing (i.e. during handling) can also be inhibited. This carrier-attached metal foil (230) comprises: a resin, plate-like carrier (240); and a metal foil (200) stacked upon at least one surface of the carrier (240). In interfaces between the carrier (240) and the metal foil (200): the carrier and the metal foil are bonded with a bonding strength in the range of 201-1000 gf/cm via a bonding layer (220) provided at at least corners of an outer peripheral region; and a release agent is used at a residuary region (210) such that the carrier (240) and the metal foil (200) are temporarily bonded with a bonding strength in the range of 10-200 gf/cm.

Description

キャリア付金属箔Metal foil with carrier
 本発明は、キャリア付金属箔に関する。より詳細には、プリント配線板に使用される片面若しくは両面に2層以上積層した多層積層板又は極薄のコアレス基板の製造において用いられるキャリア付金属箔に関する。 The present invention relates to a metal foil with a carrier. More specifically, the present invention relates to a metal foil with a carrier used in the production of a multilayer laminated board in which two or more layers are laminated on one side or both sides used for a printed wiring board or an ultrathin coreless substrate.
 一般に、プリント配線板は、合成樹脂板、ガラス板、ガラス不織布、紙などの基材に合成樹脂を含浸させて得た「プリプレグ(Prepreg)」と称する誘電材を、基本的な構成材料としている。また、プリプレグと相対する側には電気伝導性を持った銅又は銅合金箔等のシートが接合されている。このように組み立てられた積層物を、一般にCCL(Copper Clad Laminate)材と呼んでいる。銅箔のプリプレグと接する面は、接合強度を高めるためにマット面とすることが通常である。銅又は銅合金箔の代わりに、アルミニウム、ニッケル、亜鉛などの箔を使用する場合もある。これらの厚さは5~200μm程度である。この一般的に用いられるCCL(Copper Clad Laminate)材を図1に示す。 In general, a printed wiring board uses, as a basic constituent material, a dielectric material called “prepreg” obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass nonwoven fabric, and paper with a synthetic resin. . Further, a sheet such as copper or copper alloy foil having electrical conductivity is bonded to the side facing the prepreg. The laminated body thus assembled is generally called a CCL (CopperoppClad Laminate) material. The surface of the copper foil in contact with the prepreg is usually a mat surface in order to increase the bonding strength. A foil made of aluminum, nickel, zinc or the like may be used instead of the copper or copper alloy foil. Their thickness is about 5 to 200 μm. This commonly used CCL (Copper Clad Laminate) material is shown in FIG.
 特許文献1には、合成樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に、機械的に剥離可能に密着させた金属箔からなるキャリア付金属箔が提案され、このキャリア付金属箔はプリント配線板の組み立てに供することができる旨記載されている。そして、板状キャリアと金属箔の接着強度は、1gf/cm~1kgf/cmであることが望ましいことを示した。当該キャリア付金属箔によれば、合成樹脂で銅箔を全面に亘って支持するので、積層中に銅箔に皺の発生を防止できる。また、このキャリア付金属箔は、金属箔と合成樹脂が隙間なく密着しているので、金属箔表面を鍍金又はエッチングする際に、これを鍍金又はエッチング用の薬液に投入することが可能となる。更に、合成樹脂の線膨張係数は、基板の構成材料である銅箔及び重合後のプリプレグと同等のレベルにあることから、回路の位置ずれを招くことがないので、不良品発生が少なくなり、歩留りを向上させることができるという優れた効果を有する。 Patent Document 1 proposes a metal foil with a carrier composed of a synthetic resin plate-shaped carrier and a metal foil that is mechanically peelably adhered to at least one surface of the carrier. Describes that it can be used for the assembly of printed wiring boards. It was shown that the adhesive strength between the plate-like carrier and the metal foil is desirably 1 gf / cm to 1 kgf / cm. According to the metal foil with a carrier, since the copper foil is supported over the entire surface by the synthetic resin, generation of wrinkles on the copper foil during lamination can be prevented. In addition, since the metal foil with carrier is in close contact with the synthetic resin without gaps, when the surface of the metal foil is plated or etched, it can be put into the chemical solution for plating or etching. . Furthermore, since the linear expansion coefficient of the synthetic resin is at the same level as the copper foil that is a constituent material of the substrate and the prepreg after polymerization, the circuit is not misaligned, resulting in fewer defective products, It has the outstanding effect that a yield can be improved.
 特許文献2には、特許文献1と同様に仮基板の上に剥離できる状態でビルドアップ配線層を形成する配線基板の製造方法が記載されている。特許文献3に記載の製造方法では、ガラス不織布に樹脂を含侵させた仮基板を用意する工程と、前記仮基板上の配線形成領域の外周部に金属箔の周縁側を接着層で選択的に接着することにより、前記仮基板の少なくとも片面に前記金属箔を仮固定する工程と、前記金属箔の上にビルドアップ配線層を形成する工程と、前記仮基板上に前記金属箔及びビルドアップ配線層が形成された構造体の前記接着層より内側部分を切断することにより、前記金属箔を前記仮基板から分離して、前記金属箔の上に前記ビルドアップ配線層が形成された配線部材を得る工程とを有することを特徴とする。 Patent Document 2 describes a method for manufacturing a wiring board in which a build-up wiring layer is formed in a state where the build-up wiring layer can be peeled off on a temporary substrate, as in Patent Document 1. In the manufacturing method described in Patent Document 3, a step of preparing a temporary substrate in which a glass nonwoven fabric is impregnated with a resin is prepared, and an outer peripheral portion of a wiring formation region on the temporary substrate is selectively provided with an adhesive layer on a peripheral side of the metal foil. A step of temporarily fixing the metal foil to at least one surface of the temporary substrate, a step of forming a build-up wiring layer on the metal foil, and a step of forming the metal foil and the build-up on the temporary substrate. A wiring member in which the build-up wiring layer is formed on the metal foil by separating the metal foil from the temporary substrate by cutting an inner portion of the structure in which the wiring layer is formed. And a step of obtaining.
 特許文献3には、仮基板の上に剥離できる状態で所要の配線層を形成した後に、配線層を仮基板から分離して配線基板を得る製造方法が記載されている。当該製造方法は、プリプレグ上の配線形成領域に下地層(金属箔、離型フィルム、又は離型剤)が配置され、前記下地層の大きさより大きな金属箔が前記配線形成領域の外周部に接するように、前記下地層を介して前記金属箔を前記プリプレグ上に配置し、加熱・加圧によってプリプレグを硬化させることにより、前記プリプレグから仮基板を得ると同時に、該仮基板の少なくとも片面に金属箔を部分的に接着する工程と、前記金属箔の上にビルドアップ配線層を形成する工程と、前記仮基板上に前記下地層、前記金属箔及び前記ビルドアップ配線層が形成された構造体の前記下地層の周縁に対応する部分を切断することにより、前記仮基板から前記金属箔を分離して、前記金属箔の上に前記ビルドアップ配線層が形成された配線部材を得る工程とを有することを特徴とする。 Patent Document 3 describes a manufacturing method in which a required wiring layer is formed on a temporary substrate so as to be peeled off, and then the wiring layer is separated from the temporary substrate to obtain a wiring substrate. In the manufacturing method, a base layer (metal foil, release film, or release agent) is disposed in a wiring formation region on a prepreg, and a metal foil larger than the size of the base layer is in contact with an outer peripheral portion of the wiring formation region. As described above, by placing the metal foil on the prepreg via the base layer and curing the prepreg by heating and pressing, a temporary substrate is obtained from the prepreg, and at the same time, a metal is provided on at least one side of the temporary substrate. A structure in which a foil is partially bonded, a build-up wiring layer is formed on the metal foil, and the base layer, the metal foil, and the build-up wiring layer are formed on the temporary substrate. The metal foil is separated from the temporary substrate by cutting a portion corresponding to the peripheral edge of the base layer, thereby obtaining a wiring member in which the build-up wiring layer is formed on the metal foil. And having a degree.
特開2009-272589号公報JP 2009-272589 A 特開2007-158150号公報JP 2007-158150 A 特開2007-158174号公報JP 2007-158174 A
 特許文献1に記載のキャリア付金属箔は、プリント回路板の製造工程を簡素化及び歩留まりアップにより製造コスト削減に大きく貢献する画期的な発明であるが、従来のキャリア付金属箔は、ハンドリング中に角の部分が他の部材とぶつかり、その時に加わる外力により板状キャリアと金属箔とが剥がれ、不良となる場合がある。また、配線基板の製造時に塩酸、硫酸、過酸化水素や過マンガン酸塩等の薬液がキャリア付銅箔と板状キャリアの界面から染み込んで、板状キャリアから金属箔が剥がれる場合がある。 The metal foil with a carrier described in Patent Document 1 is an epoch-making invention that greatly contributes to the reduction of the manufacturing cost by simplifying the manufacturing process of the printed circuit board and increasing the yield. The corner portion may collide with another member, and the plate-like carrier and the metal foil may be peeled off due to an external force applied at that time, resulting in a failure. Further, when manufacturing a wiring board, a chemical solution such as hydrochloric acid, sulfuric acid, hydrogen peroxide or permanganate may permeate from the interface between the copper foil with carrier and the plate carrier, and the metal foil may be peeled off from the plate carrier.
 特許文献2においては、金属箔の周縁側を接着層で選択的に接着しているので、ハンドリング中に金属箔から板状キャリアが剥離するという問題は軽減できるものの、この場合、内部の金属箔は板状キャリアの上に単に接触した状態になっているだけなので、ハンドリング中に内部の金属箔にシワが発生する可能性がある。金属箔を配線形成に利用することを考慮するとシワの発生は配線不良につながり易く、好ましくない。また、金属箔の周縁部を接着層で接着するというものの、如何なる接着層を用いてどの程度の接着強度で接着するのかという点については何ら記載がない。 In Patent Document 2, since the peripheral side of the metal foil is selectively bonded with the adhesive layer, the problem that the plate-like carrier is peeled off from the metal foil during handling can be alleviated. Is merely in contact with the plate-like carrier, there is a possibility that wrinkles will occur in the metal foil inside during handling. Considering the use of metal foil for wiring formation, the generation of wrinkles tends to lead to wiring defects, which is not preferable. Moreover, although the peripheral part of metal foil is adhere | attached with an adhesive layer, there is no description at all about what adhesive strength is used using what adhesive layer.
 特許文献3においては、接着層を特別に使用することなく、プリプレグと金属箔の外周部が接着される。また、その際の接着強度についても言及がない。そのため、ハンドリング中に板状キャリアと金属箔が剥がれてしまうという問題の解決には至らない。 In Patent Document 3, the outer peripheral portion of the prepreg and the metal foil is bonded without specially using an adhesive layer. Moreover, there is no mention about the adhesive strength in that case. Therefore, the problem that the plate-like carrier and the metal foil are peeled off during handling cannot be solved.
 そこで本発明は、搬送時や加工時(ハンドリング中)における板状キャリアと金属箔との剥がれ防止及びシワ発生防止に対応したキャリア付金属箔を提供することを課題の一つとする。 Accordingly, an object of the present invention is to provide a metal foil with a carrier that can prevent peeling and wrinkle generation between a plate-like carrier and a metal foil during conveyance or processing (during handling).
 本発明者等は、上記課題を解決するために鋭意検討した結果、板状キャリアと金属箔の内部と外周部における接着強度をそれぞれ一定の範囲に制御することで、ハンドリング中における剥離が効果的に防止でき、しかも金属箔表面へのシワの発生も抑制されたキャリア付金属箔が得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have effectively controlled peeling in handling by controlling the adhesive strengths in the plate carrier and the metal foil in the inner and outer peripheral parts to a certain range, respectively. It has been found that a metal foil with a carrier can be obtained, which can be prevented at the same time and the generation of wrinkles on the surface of the metal foil is also suppressed.
 すなわち、本発明は、以下のとおりである。
(1)樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に積層された金属箔とからなるキャリア付金属箔であって、キャリアと金属箔の間の界面は、外周領域のうち少なくとも角部において接着層を介して201~1000gf/cmの接着強度でキャリアと金属箔が接着されており、残部領域において剥離剤を用いて10~200gf/cmの接着強度でキャリアと金属箔が仮接着されているキャリア付金属箔。
That is, the present invention is as follows.
(1) A metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil laminated on at least one surface of the carrier, wherein the interface between the carrier and the metal foil is at least in the outer peripheral region. The carrier and the metal foil are bonded with an adhesive strength of 201 to 1000 gf / cm through the adhesive layer at the corner, and the carrier and the metal foil are temporarily bonded with an adhesive strength of 10 to 200 gf / cm using a release agent in the remaining region. Metal foil with carrier bonded.
(2)前記離型剤は、次式:
Figure JPOXMLDOC01-appb-C000005
(2) The mold release agent has the following formula:
Figure JPOXMLDOC01-appb-C000005
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、または一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する(1)に記載のキャリア付金属箔。
(3)前記離型剤は、分子内に2つ以下のメルカプト基を有する化合物を含有する(1)に記載のキャリア付金属箔。
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.)
(1) The metal foil with a carrier as described in (1) which contains the silane compound, its hydrolysis product, and the condensate of this hydrolysis product which are shown in 1 or more in combination.
(3) The metal mold with a carrier according to (1), wherein the release agent contains a compound having 2 or less mercapto groups in the molecule.
(4)前記離型剤は、次式:
Figure JPOXMLDOC01-appb-C000006
(4) The mold release agent has the following formula:
Figure JPOXMLDOC01-appb-C000006
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する(1)に記載のキャリア付金属箔。
(5)前記離型剤は、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択される一種以上の樹脂とを含有する(1)に記載のキャリア付金属箔。
(6)前記接着層は、クロメート層、シランカップリング剤層から選択される少なくとも一層である(1)~(5)の何れかに記載のキャリア付金属箔。
(7)前記シランカップリング剤層の形成に使用されるシランカップリング剤は、エポキシ基、アミノ基、メタクリル基、ビニル基のうちいずれか1つ以上を分子中に有する(6)に記載のキャリア付金属箔。
(8)キャリアと金属箔の間の界面は、外周全体が接着層を介してキャリアと金属箔が接着されている(1)~(7)の何れかに記載のキャリア付金属箔。
(9)接着層を介してキャリアと金属箔が接着されている部分が平面視帯状であり、当該部分の幅が0.1mm以上である(1)~(7)の何れかに記載のキャリア付金属箔。
(10)接着層を介してキャリアと金属箔が接着されている部分において、直径0.01mm~10mmの孔が1~10箇所設けられた(1)~(9)の何れかに記載のキャリア付金属箔。
(11)樹脂製の板状キャリアがプリプレグである(1)~(10)の何れかに記載のキャリア付金属箔。
(12)前記プリプレグは、120~320℃のガラス転移温度Tgを有する(11)に記載のキャリア付金属箔。
(13)キャリアと金属箔が仮接着されている残部領域において、前記金属箔の前記キャリアと接する側の表面の十点平均粗さ(Rz jis)が、3.5μm以下である(1)~(12)の何れかに記載のキャリア付金属箔。
(14)前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である(1)~(13)の何れかに記載のキャリア付金属箔。
(15)前記金属箔の厚みが1μm以上400μm以下である(1)~(14)の何れかに記載のキャリア付金属箔。
(16)前記板状キャリアの厚みが5μm以上1000μm以下である(1)~(15)の何れかに記載のキャリア付金属箔。
(17)剥離剤を用いてキャリアと金属箔が仮接着されている残部領域において、220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、金属箔と板状キャリアとの接着強度が、10gf/cm以上200gf/cm以下である(1)~(16)の何れかに記載のキャリア付金属箔。
(18)前記金属箔が銅箔である(1)~(17)の何れかに記載のキャリア付金属箔。
(19)四隅が面取り処理されている(1)~(18)の何れかに記載のキャリア付金属箔。
(20)(1)~(19)の何れかに記載のキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで樹脂又は金属箔を1回以上繰り返すことを含む多層金属張積層板の製造方法。
(21)(1)~(19)の何れかに記載のキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面金属張積層板、又は金属箔を1回以上回繰り返すことを含む多層金属張積層板の製造方法。
(22)接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断する工程を含む(20)又は(21)に記載の多層金属張積層板の製造方法。
(23)前記切断後の内側部分におけるキャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程と、剥離することにより露出した金属箔の一部または全部をエッチングにより除去する工程を更に含む(22)に記載の多層金属張積層板の製造方法。
(24)(20)~(23)の何れかに記載の製造方法により得られる多層金属張積層板。
(25)(1)~(19)の何れかに記載のキャリア付金属箔の金属箔側に、ビルドアップ配線層を一層以上積層する工程を含むビルドアップ基板の製造方法。
(26)ビルドアップ配線層はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される(25)に記載のビルドアップ基板の製造方法。
(27)(1)~(19)の何れかに記載のキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面配線基板、片面若しくは両面金属張積層板、又は金属箔を1回以上繰り返して積層する工程を含むビルドアップ基板の製造方法。
(28)(27)に記載のビルドアップ基板の製造方法において、片面若しくは両面配線基板、片面若しくは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、又は樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むビルドアップ基板の製造方法。
(29)(27)又は(28)に記載のビルドアップ基板の製造方法において、前記片面若しくは両面配線基板を構成する金属箔、片面若しくは両面金属張積層板を構成する金属箔、及びキャリア付金属箔を構成する金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むビルドアップ基板の製造方法。
(30)配線形成された表面上に、片面に金属箔を密着させた(1)~(19)の何れかに記載の別のキャリア付金属箔のキャリア側を積層する工程を更に含む(27)~(29)の何れかに記載のビルドアップ基板の製造方法。
(31)前記樹脂の少なくとも一つがプリプレグである(27)~(30)の何れかに記載のビルドアップ基板の製造方法。
(32)接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断する工程を更に含む(25)~(31)の何れかに記載のビルドアップ基板の製造方法。
(33)(32)に記載のビルドアップ基板の製造方法によって得られたビルドアップ基板について、ビルドアップ基板の製造に使用したキャリア付金属箔からキャリアを剥離する工程を含むビルドアップ配線板の製造方法。
(34)キャリアを剥離することにより露出した金属箔の一部または全部をエッチングにより除去する工程を更に含む(33)に記載のビルドアップ配線板の製造方法。
(35)(33)又は(34)に記載の方法により得られるビルドアップ配線板。
(36)(34)又は(35)に記載の方法によりビルドアップ配線板を製造する工程を含むプリント回路板の製造方法。
(37)一方の表面に離型剤処理領域と離型剤未処理領域を有する金属箔であって、離型剤未処理領域が金属箔の外周領域のうち少なくとも角部に存在する金属箔。
(38)離型剤未処理領域には接着層が最表面に露出している(37)に記載の金属箔。
(39)離型剤処理領域の下に接着層が形成されている(37)又は(38)に記載の金属箔。
(40)外周全体が離型剤未処理領域である(37)~(39)の何れかに記載の金属箔。
(41)離型剤未処理領域が平面視帯状であり、当該領域の幅が0.1mm以上である(37)~(40)の何れかに記載の金属箔。
(42)金属が銅である(37)~(41)の何れかに記載の金属箔。
(43)前記離型剤は、次式:
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
The metal foil with a carrier according to (1), containing the aluminate compound, titanate compound, zirconate compound, hydrolysis products thereof, and condensates of the hydrolysis products shown in (1).
(5) The metal release foil according to (1), wherein the release agent contains silicone and one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin.
(6) The metal foil with a carrier according to any one of (1) to (5), wherein the adhesive layer is at least one layer selected from a chromate layer and a silane coupling agent layer.
(7) The silane coupling agent used for forming the silane coupling agent layer has one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule. Metal foil with carrier.
(8) The metal foil with a carrier according to any one of (1) to (7), wherein the entire outer periphery of the interface between the carrier and the metal foil is bonded to the carrier and the metal foil via an adhesive layer.
(9) The carrier according to any one of (1) to (7), wherein a portion where the carrier and the metal foil are bonded via the adhesive layer has a band shape in plan view, and the width of the portion is 0.1 mm or more. With metal foil.
(10) The carrier according to any one of (1) to (9), wherein 1 to 10 holes having a diameter of 0.01 mm to 10 mm are provided in a portion where the carrier and the metal foil are bonded via an adhesive layer. With metal foil.
(11) The metal foil with a carrier according to any one of (1) to (10), wherein the resin plate carrier is a prepreg.
(12) The metal foil with a carrier according to (11), wherein the prepreg has a glass transition temperature Tg of 120 to 320 ° C.
(13) In the remaining region where the carrier and the metal foil are temporarily bonded, the ten-point average roughness (Rz jis) of the surface of the metal foil in contact with the carrier is 3.5 μm or less (1) to (12) Metal foil with a carrier in any one of.
(14) The ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the carrier is 0.4 μm or more and 10.0 μm or less, according to any one of (1) to (13) Metal foil with carrier.
(15) The metal foil with a carrier according to any one of (1) to (14), wherein the thickness of the metal foil is 1 μm or more and 400 μm or less.
(16) The metal foil with a carrier according to any one of (1) to (15), wherein the thickness of the plate-like carrier is 5 μm or more and 1000 μm or less.
(17) In the remaining region where the carrier and the metal foil are temporarily bonded using a release agent, the metal foil and the plate-like carrier after heating at 220 ° C. for 3 hours, 6 hours, or 9 hours, The metal foil with a carrier according to any one of (1) to (16), wherein the adhesive strength is from 10 gf / cm to 200 gf / cm.
(18) The metal foil with a carrier according to any one of (1) to (17), wherein the metal foil is a copper foil.
(19) The metal foil with a carrier according to any one of (1) to (18), wherein the four corners are chamfered.
(20) A multilayer comprising laminating a resin on at least one metal foil side of the metal foil with a carrier according to any one of (1) to (19), and then repeating the resin or the metal foil one or more times A method for producing a metal-clad laminate.
(21) A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of (1) to (19), and then the resin, one-sided or double-sided metal-clad laminate, or the metal foil is once or more times A method for producing a multilayer metal-clad laminate comprising repeating.
(22) The multilayer metal-clad laminate according to (20) or (21), including a step of cutting the metal foil with a carrier in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via an adhesive layer A manufacturing method of a board.
(23) A step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil in the inner part after cutting, and a step of removing a part or all of the metal foil exposed by peeling by etching (22) The manufacturing method of the multilayer metal-clad laminate as described in (22).
(24) A multilayer metal-clad laminate obtained by the production method according to any one of (20) to (23).
(25) A method for manufacturing a buildup substrate, comprising a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of (1) to (19).
(26) The buildup wiring layer manufacturing method according to (25), wherein the buildup wiring layer is formed by using at least one of a full additive method and a semiadditive method.
(27) A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of (1) to (19), and then a resin, a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, or a metal A method for producing a build-up substrate, comprising a step of repeatedly laminating a foil once or more.
(28) In the method for manufacturing a buildup board according to (27), a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, or a resin The manufacturing method of the buildup board | substrate which further includes the process of drilling a hole in and carrying out conductive plating to the side surface and bottom face of the said hole.
(29) In the method for manufacturing a buildup board according to (27) or (28), the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal with carrier The manufacturing method of the buildup board | substrate which further includes performing the process of forming wiring in at least 1 of the metal foil which comprises foil once or more.
(30) The method further includes a step of laminating the carrier side of another metal foil with a carrier according to any one of (1) to (19), wherein a metal foil is adhered to one surface on the surface on which the wiring is formed (27 )-(29).
(31) The method for manufacturing a buildup substrate according to any one of (27) to (30), wherein at least one of the resins is a prepreg.
(32) The method according to any one of (25) to (31), further including a step of cutting the metal foil with a carrier in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via the adhesive layer. Manufacturing method of build-up board.
(33) Manufacturing of a buildup wiring board including a step of peeling the carrier from the metal foil with a carrier used for manufacturing the buildup board, with respect to the buildup board obtained by the manufacturing method of the buildup board described in (32) Method.
(34) The method for manufacturing a build-up wiring board according to (33), further including a step of removing a part or all of the metal foil exposed by peeling the carrier by etching.
(35) A build-up wiring board obtained by the method according to (33) or (34).
(36) A method for producing a printed circuit board, comprising a step of producing a build-up wiring board by the method according to (34) or (35).
(37) A metal foil having a release agent-treated region and a release agent-untreated region on one surface, wherein the release agent-untreated region exists at least at a corner portion of the outer peripheral region of the metal foil.
(38) The metal foil according to (37), wherein an adhesive layer is exposed on the outermost surface in the untreated part of the release agent.
(39) The metal foil according to (37) or (38), wherein an adhesive layer is formed under the release agent treatment region.
(40) The metal foil according to any one of (37) to (39), wherein the entire outer periphery is a release agent untreated region.
(41) The metal foil according to any one of (37) to (40), wherein the release agent-untreated region has a band shape in plan view, and the width of the region is 0.1 mm or more.
(42) The metal foil according to any one of (37) to (41), wherein the metal is copper.
(43) The mold release agent has the following formula:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、または一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する(37)~(42)の何れかに記載の金属箔。
(44)前記離型剤は、分子内に2つ以下のメルカプト基を有する化合物を含有する(37)~(42)の何れか一項に記載の金属箔。
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.)
The metal foil according to any one of (37) to (42), containing the silane compound shown in the following, a hydrolysis product thereof, and a condensate of the hydrolysis product, alone or in combination.
(44) The metal release film according to any one of (37) to (42), wherein the release agent contains a compound having two or less mercapto groups in the molecule.
(45)前記離型剤は、次式:
Figure JPOXMLDOC01-appb-C000008
(45) The mold release agent has the following formula:
Figure JPOXMLDOC01-appb-C000008
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する(37)~(42)の何れかに記載の金属箔。
(46)前記離型剤は、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択される一種以上の樹脂とを含有する(37)~(42)の何れかに記載の金属箔。
(47)前記接着層は、クロメート層、シランカップリング剤層から選択される少なくとも一層である(38)~(42)の何れかに記載の金属箔。
(48)前記シランカップリング剤層の形成に使用されるシランカップリング剤は、エポキシ基、アミノ基、メタクリル基、ビニル基のうちいずれか1つ以上を分子中に有する(47)に記載の金属箔。
(49)離型剤で処理される前の表面の十点平均粗さ(Rz jis)が、3.5μm以下である(37)~(48)の何れかに記載の金属箔。
(50)離型剤で処理されない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である(37)~(49)の何れかに記載の金属箔。
(51)前記金属箔の厚みが1μm以上400μm以下である(37)~(50)の何れかに記載の金属箔。
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
The metal according to any one of (37) to (42), comprising an aluminate compound, a titanate compound, a zirconate compound, a hydrolysis product thereof, and a condensate of the hydrolysis product shown in Foil.
(46) The metal foil according to any one of (37) to (42), wherein the release agent contains silicone and one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin.
(47) The metal foil according to any one of (38) to (42), wherein the adhesive layer is at least one layer selected from a chromate layer and a silane coupling agent layer.
(48) The silane coupling agent used for forming the silane coupling agent layer has one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule. Metal foil.
(49) The metal foil according to any one of (37) to (48), wherein the ten-point average roughness (Rz cis) of the surface before being treated with the release agent is 3.5 μm or less.
(50) The metal foil according to any one of (37) to (49), wherein the ten-point average roughness (Rz jis) of the surface not treated with the release agent is 0.4 μm or more and 10.0 μm or less.
(51) The metal foil according to any one of (37) to (50), wherein the thickness of the metal foil is 1 μm or more and 400 μm or less.
 本発明に係るキャリア付金属箔では、外周部において板状キャリアと金属箔が強固に接着していることからハンドリング中における板状キャリアと金属箔との間剥がれが防止できる。一方で、内部は板状キャリアと金属箔が剥離可能な程度に適度に接着していることからハンドリング中に金属箔にシワが発生するのを抑制できる。更に、本発明の好ましい実施態様によれば、外周部全体において板状キャリアと金属箔が強固に接着されるため、界面への薬液の染み込みの防止効果も高い。そのため、キャリア付金属箔のハンドリング性が向上し、キャリア付金属箔を利用したプリント配線板の生産性が向上するという利点が得られる。 In the metal foil with a carrier according to the present invention, since the plate-like carrier and the metal foil are firmly bonded at the outer peripheral portion, peeling between the plate-like carrier and the metal foil during handling can be prevented. On the other hand, since the inside is appropriately bonded to such an extent that the plate-like carrier and the metal foil can be peeled off, wrinkles can be prevented from occurring in the metal foil during handling. Furthermore, according to a preferred embodiment of the present invention, since the plate-like carrier and the metal foil are firmly bonded to the entire outer peripheral portion, the effect of preventing the penetration of the chemical liquid into the interface is also high. Therefore, the handling property of the metal foil with carrier is improved, and the advantage that the productivity of the printed wiring board using the metal foil with carrier is improved is obtained.
CCLの一構成例を示す。An example of the configuration of CCL is shown. 板状キャリアを積層する前段階における金属箔の模式的な平面図である。It is a typical top view of the metal foil in the previous stage which laminates | stacks a plate-shaped carrier. 本発明に係るキャリア付金属箔の一実施形態に係る模式的な側面図である。It is a typical side view concerning one embodiment of metal foil with a carrier concerning the present invention. 本発明に係るキャリア付銅箔を利用した4層金属張積層板の組み立て例を示す。An assembly example of a four-layer metal-clad laminate using the carrier-attached copper foil according to the present invention is shown. 本発明に係るキャリア付銅箔を利用したビルドアップ基板の組み立て例を示す。The assembly example of the buildup board | substrate using the copper foil with a carrier which concerns on this invention is shown.
 本発明に係るキャリア付金属箔は一実施形態において、樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に積層された金属箔とからなるキャリア付金属箔であって、キャリアと金属箔の間の界面は、外周領域のうち少なくとも角部において接着層を介してキャリアと金属箔が接着されており、残部領域において剥離剤を用いてキャリアと金属箔が仮接着されているキャリア付金属箔である。外周領域とは、後に切断除去される領域を指す。 In one embodiment, a metal foil with a carrier according to the present invention is a metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil laminated on at least one surface of the carrier, the carrier and the metal foil. In the interface between the carrier and the metal foil, the carrier and the metal foil are bonded to each other through the adhesive layer at least at the corners in the outer peripheral region, and the carrier and the metal foil are temporarily bonded using the release agent in the remaining region. It is a foil. The outer peripheral area refers to an area to be cut and removed later.
 本発明に係るキャリア付金属箔においては、キャリアと金属箔の間の界面が外周領域のうち少なくとも四隅において接着層を介して強固に接着されているのに対して、それ以外の部分においては剥離可能な程度に適度な接着強度で接着されている。そのため、キャリア付金属箔を搬送する時や、これを利用して多層積層板やビルドアップ基板を製造加工する時など、角の部分が他の部材とぶつかりあっても容易に剥離することはなくなる。そして、搬送終了後などの適時において、接着層を介してキャリアと金属箔が接着されている箇所(接着領域)よりも内側部分でキャリア付金属箔を厚み方向に切断することができる。また、接着領域を残した状態で仮の多層積層板、更には仮のビルドアップ基板を製造した上で、接着領域よりも内側部分で多層積層板又はビルドアップ基板を厚み方向に切断することもできる。 In the metal foil with a carrier according to the present invention, the interface between the carrier and the metal foil is firmly bonded via an adhesive layer at least at the four corners in the outer peripheral region, but is peeled off at other portions. It is bonded with moderate adhesive strength as much as possible. Therefore, even when the metal foil with a carrier is transported or when a multilayer laminated board or a build-up board is manufactured using this, the corner portion does not easily peel off even if it collides with other members. . The metal foil with a carrier can be cut in the thickness direction at a portion inside the portion (adhesion region) where the carrier and the metal foil are bonded via an adhesive layer at an appropriate time such as after the end of conveyance. Moreover, after manufacturing a temporary multilayer laminated board and further a temporary build-up board with the adhesive region left, the multilayer laminated board or the build-up board may be cut in the thickness direction at a portion inside the adhesive area. it can.
 また、外周領域を切断後には、適時において、金属箔からキャリアを剥がすことができる。金属箔からキャリアを剥がすタイミングとしては、限定的ではないが、多層積層板又はビルドアップ基板を形成後とするのが通常である。多層積層板又はビルドアップ基板を形成途中に必要に応じて剥がすこともできる。露出した金属箔は、配線形成のための導電材料として使用することができる。エッチング等で全面除去することもできる。本発明に係るキャリア付金属箔を用いた多層積層板及びビルドアップ基板の製造法については後に詳述する。 Also, after cutting the outer peripheral region, the carrier can be peeled off from the metal foil in a timely manner. The timing at which the carrier is peeled off from the metal foil is not limited, but is usually after the formation of the multilayer laminate or the build-up substrate. The multilayer laminate or the build-up substrate can be peeled off as necessary during the formation. The exposed metal foil can be used as a conductive material for wiring formation. The entire surface can be removed by etching or the like. The manufacturing method of the multilayer laminated board using the metal foil with a carrier which concerns on this invention, and a buildup board | substrate is explained in full detail behind.
 さて、図2を参照すると、ここには板状キャリアを積層する前段階における金属箔200の平面図が模式的に描かれている。図2の左図(a)の態様においては、金属箔200の外周領域のうち対向する二辺が接着層が設けられる領域(接着領域:220)である。この領域は、接着層を介してキャリアと金属箔が強固に接着される。一方、内側の残部領域は剥離剤を用いてキャリアと金属箔が仮接着される領域(仮接着領域:210)である。この態様によれば、剥離の最も生じやすい金属箔の四隅及び対向する二辺が接着層で強固にキャリアと接着することから、ハンドリング中の剥離が防止可能である。 Now, referring to FIG. 2, a plan view of the metal foil 200 in the previous stage of laminating the plate-like carrier is schematically depicted here. In the mode of the left figure (a) of FIG. 2, two opposing sides of the outer peripheral area of the metal foil 200 are areas where the adhesive layer is provided (adhesive area: 220). In this region, the carrier and the metal foil are firmly bonded via the adhesive layer. On the other hand, the inner remaining region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent. According to this aspect, the four corners and the two opposite sides of the metal foil that are most likely to peel off are firmly bonded to the carrier by the adhesive layer, so that peeling during handling can be prevented.
 図2の中央図(b)の態様においては、金属箔200の外周領域のうち四辺が接着層が設けられる領域(接着領域:220)である。この領域は、接着層を介してキャリアと金属箔が強固に接着される。一方、接着層領域で囲まれた内側の残部領域は剥離剤を用いてキャリアと金属箔が仮接着される領域(仮接着領域:210)である。この態様によれば、金属箔の四隅のみならず四辺が接着層で強固にキャリアと接着しているので、更に剥離防止効果がより高い上に、金属箔とキャリアの界面の間への薬液の染み込み防止効果も高い。 2, the four sides of the outer peripheral region of the metal foil 200 are regions where the adhesive layer is provided (adhesive region: 220). In this region, the carrier and the metal foil are firmly bonded via the adhesive layer. On the other hand, the inner remaining region surrounded by the adhesive layer region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent. According to this aspect, since not only the four corners of the metal foil but also the four sides are firmly bonded to the carrier by the adhesive layer, the peeling prevention effect is further higher, and the chemical solution between the interface of the metal foil and the carrier Highly effective in preventing penetration.
 図2の左図(a)や中央図(b)のように接着領域が平面視帯状に設けられている場合、接着領域の幅は、剥離防止効果や薬液染み込み防止効果を十分に得るために、0.1mm以上であることが好ましく、1.0mm以上であることがより好ましく、3.0mm以上であることが更により好ましい。また、接着領域の幅を太くして、ドリルなどを用いて、直径0.01mm~10mm程度の孔を1~10箇所程度設けてもよい。このような接着領域に設けられた孔は、後述する多層積層板の製造や、ビルドアップ基板の製造に際して、位置決めピンなどを固定するための手段として用いることができる。但し、過度に接着領域の幅を太くしても、当該領域は後で除去されることから無駄となるので、50mm以下であることが好ましく、25mm以下であることがより好ましく、5mm以下であることが更により好ましい。 When the adhesive region is provided in a planar view as shown in the left diagram (a) and the central diagram (b) of FIG. 2, the width of the adhesive region is sufficient to obtain a peeling prevention effect and a chemical solution penetration prevention effect. The thickness is preferably 0.1 mm or more, more preferably 1.0 mm or more, and even more preferably 3.0 mm or more. Also, the width of the bonding region may be increased and about 1 to 10 holes having a diameter of about 0.01 mm to 10 mm may be provided using a drill or the like. The hole provided in such an adhesion region can be used as a means for fixing a positioning pin or the like in the production of a multi-layer laminate described later or the build-up substrate. However, even if the width of the adhesive region is excessively widened, the region is wasted because it will be removed later. Therefore, it is preferably 50 mm or less, more preferably 25 mm or less, and 5 mm or less. Even more preferred.
 また、図2の右図(c)のような態様も可能である。ここでは、金属箔200の外周領域のうち四隅が接着層が設けられる領域(接着領域:220)である。この領域は、接着層を介してキャリアと金属箔が強固に接着される。一方、内側の残部領域は剥離剤を用いてキャリアと金属箔が仮接着される領域(仮接着領域:210)である。この態様によっても、剥離の最も生じやすい金属箔の四隅が接着層で強固にキャリアと接着することから、ハンドリング中の剥離は防止可能である。 Also, a mode as shown in the right figure (c) of FIG. 2 is also possible. Here, four corners of the outer peripheral region of the metal foil 200 are regions where the adhesive layer is provided (adhesive region: 220). In this region, the carrier and the metal foil are firmly bonded via the adhesive layer. On the other hand, the inner remaining region is a region (temporary bonding region: 210) where the carrier and the metal foil are temporarily bonded using a release agent. Even in this embodiment, the four corners of the metal foil that is most likely to peel off are firmly adhered to the carrier by the adhesive layer, and therefore peeling during handling can be prevented.
 なお、上記の実施形態においてはキャリア付金属箔を平面視したときの形状が四角形である場合を示したが、これ以外の多角形としてもよい。また、角部を面取り(R面取り又はC面取り)することにより、剥離防止効果を強化することもできる。 In addition, in said embodiment, although the case where the shape when planarly viewing metal foil with a carrier was shown square was shown, it is good also as a polygon other than this. Moreover, the peeling prevention effect can also be strengthened by chamfering the corner (R chamfering or C chamfering).
 図3には本発明に係るキャリア付金属箔230の一実施形態に係る側面図が模式的に描かれている。図3の上図(c)に係るキャリア付金属箔230は、金属箔200の貼り合わせ面全体に接着層を形成し、その後に剥離剤を内側の仮接着領域に塗工し、板状キャリア240の両面にホットプレスなどにより貼り合わせることによって作製することができる。或いは、板状キャリア240の両面の仮接着領域210に剥離剤を塗工し、次いで、貼り合わせ面全体に接着層が形成された金属箔200を板状キャリア240の両面にホットプレスなどにより貼り合わせることによって作製することができる。 FIG. 3 schematically shows a side view according to an embodiment of the metal foil with carrier 230 according to the present invention. The metal foil with carrier 230 according to the upper diagram (c) of FIG. 3 forms an adhesive layer on the entire bonding surface of the metal foil 200, and then coats a release agent on the inner temporary adhesive region to form a plate-like carrier. It can be produced by pasting the two sides of 240 by hot pressing or the like. Alternatively, a release agent is applied to the temporary adhesion regions 210 on both surfaces of the plate-like carrier 240, and then a metal foil 200 having an adhesive layer formed on the entire bonding surface is attached to both surfaces of the plate-like carrier 240 by hot pressing or the like. It can be produced by combining them.
 図3の下図(d)に係るキャリア付金属箔230は、金属箔200の貼り合わせ面の内、接着領域220には接着層を形成するとともに、仮接着領域には剥離剤を塗工し、板状キャリア240の両面にホットプレスなどにより貼り合わせることによって作製することができる。 The metal foil with carrier 230 according to the lower drawing (d) of FIG. 3 forms an adhesive layer in the adhesion region 220 in the bonding surface of the metal foil 200, and applies a release agent to the temporary adhesion region, It can be manufactured by pasting the both sides of the plate-like carrier 240 by hot pressing or the like.
 図3から分かるように、強固に接着された外側の接着領域(220)が内側の仮接着領域(210)を保護することによって、仮接着領域(210)における金属箔と板状キャリアの剥離や、金属箔と板状キャリアの間の界面への薬液の染み込みが防止できる。 As can be seen from FIG. 3, the outer bonded region (220) firmly bonded protects the inner temporary bonded region (210), so that the metal foil and the plate carrier in the temporary bonded region (210) can be separated. Infiltration of the chemical liquid into the interface between the metal foil and the plate carrier can be prevented.
 図3においては、本発明に係るキャリア付金属箔の特定の実施形態について説明したが、接着層は板状キャリアと金属箔の何れの表面に形成してもよい。また、剥離剤も板状キャリアと金属箔の何れの表面に塗工してもよい。例えば、接着層を板状キャリア及び金属箔の両方に形成してもよい。 In FIG. 3, although the specific embodiment of the metal foil with a carrier according to the present invention has been described, the adhesive layer may be formed on any surface of the plate-like carrier and the metal foil. Further, the release agent may be applied to any surface of the plate-like carrier and the metal foil. For example, the adhesive layer may be formed on both the plate carrier and the metal foil.
 接着層を介してキャリアと金属箔が接着されている箇所においては、容易に剥離せず、更には薬液の染み込みも防止可能な強固な接着強度が必要である。具体的には、201gf/cm以上、好ましくは250gf/cm以上、より好ましくは350gf/cm以上の接着強度でキャリアと金属箔が接着されていることが望ましい。但し、過度に接着強度を高くする必要はなく、また、接着剤のコストも高くなることから、1000gf/cm以下、好ましくは750gf/cm以下、より好ましくは500gf/cm以下の接着強度でキャリアと金属箔が接着されていることが望ましい。 In the part where the carrier and the metal foil are bonded via the adhesive layer, it is necessary to have a strong adhesive strength that does not easily peel off and also prevents the penetration of the chemical solution. Specifically, it is desirable that the carrier and the metal foil are bonded with an adhesive strength of 201 gf / cm or more, preferably 250 gf / cm or more, more preferably 350 gf / cm or more. However, since it is not necessary to excessively increase the adhesive strength and the cost of the adhesive is increased, the carrier has an adhesive strength of 1000 gf / cm or less, preferably 750 gf / cm or less, more preferably 500 gf / cm or less. It is desirable that the metal foil is bonded.
 このような接着強度を実現するための接着層としては、例えばクロメート層及びシランカップリング剤層が挙げられる。これらは単独で使用しても良いし、組み合わせて使用しても良い。また、これらを任意の順、好ましくはクロメート層、シランカップリング剤層の順序で積層した構成としてもよい。クロメート層は金属箔及び/又は板状キャリアの貼り合わせ面をクロメート処理することにより形成可能である。クロメート層は防錆効果もあることから、少なくとも金属箔側はクロメート処理することが好ましい。接着強度を高めるために、金属箔の表面に粗化処理をすることもできる。クロメート層は例えば、6価クロムイオンを0.1~10.0g/L含む水溶液中に金属箔または板状キャリアを1~60秒間浸漬するか、金属箔および板状キャリアに導電性がある場合はこれらを前述の水溶液中で陰極として1~20秒間電解することにより形成可能であり、シランカップリング剤層は例えば、シランカップリング剤を0.1~5.0体積%含む水溶液を金属箔または板状キャリアにスプレーコーティングした後、100~200℃の空気中で乾燥させることにより形成可能である。シランカップリング剤の種類としては、限定的ではないが例えば分子中に反応性官能基としてエポキシ基、アミノ基、メタクリル基、又はビニル基の何れか一種以上を有し、加水分解性基としてメトキシ基、エトキシ基、又はプロポキシ基の何れか一種以上を有するシランカップリング剤を用いるのが好適である。 Examples of the adhesive layer for realizing such adhesive strength include a chromate layer and a silane coupling agent layer. These may be used alone or in combination. Moreover, it is good also as a structure which laminated | stacked these in arbitrary orders, Preferably the order of a chromate layer and a silane coupling agent layer. The chromate layer can be formed by subjecting the bonding surface of the metal foil and / or plate-like carrier to chromate treatment. Since the chromate layer also has a rust prevention effect, it is preferable that at least the metal foil side be chromated. In order to increase the adhesive strength, the surface of the metal foil can be roughened. For example, when the chromate layer is immersed in an aqueous solution containing 0.1 to 10.0 g / L of hexavalent chromium ions for 1 to 60 seconds or the metal foil and the plate carrier are conductive These can be formed by electrolysis for 1 to 20 seconds using the above-mentioned aqueous solution as a cathode, and the silane coupling agent layer can be formed by, for example, using an aqueous solution containing 0.1 to 5.0% by volume of a silane coupling agent as a metal foil. Alternatively, it can be formed by spray coating on a plate-like carrier and then drying in air at 100 to 200 ° C. The type of silane coupling agent is not limited, but for example, the molecule has one or more of an epoxy group, amino group, methacryl group, or vinyl group as a reactive functional group, and methoxy as a hydrolyzable group. It is preferable to use a silane coupling agent having any one or more of a group, an ethoxy group, and a propoxy group.
 一方、剥離剤を用いてキャリアと金属箔が仮接着されている箇所は、いずれ剥がさなければならないので過度に密着性が高いのは不都合であるが、板状キャリアと金属箔とは、プリント回路板作製過程で行われるめっき等の薬液処理工程においてシワが発生したり簡単に剥離したりしない程度の密着性は必要である。 On the other hand, the part where the carrier and the metal foil are temporarily bonded using a release agent must be peeled off, so it is inconvenient that the adhesiveness is excessively high. Adhesiveness that does not cause wrinkles or easily peel off in a chemical treatment process such as plating performed in the plate manufacturing process is necessary.
 具体的には、10gf/cm以上、好ましくは30gf/cm以上、より好ましくは50gf/cm以上の接着強度でキャリアと金属箔が接着されていることが望ましい。但し、過度に接着強度を高くする必要はなく、また、接着剤のコストも高くなることから、200gf/cm以下、好ましくは150gf/cm以下、より好ましくは80gf/cm以下の接着強度でキャリアと金属箔が接着されていることが望ましい。 Specifically, it is desirable that the carrier and the metal foil are bonded with an adhesive strength of 10 gf / cm or more, preferably 30 gf / cm or more, more preferably 50 gf / cm or more. However, since it is not necessary to excessively increase the adhesive strength and the cost of the adhesive is increased, the carrier has an adhesive strength of 200 gf / cm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less. It is desirable that the metal foil is bonded.
 このような密着性を実現するための接着強度の調節は、例えば以下に示す(1)~(4)の離型剤を使用することで容易に実現することができる。 The adjustment of the adhesive strength for realizing such adhesion can be easily realized by using, for example, the following release agents (1) to (4).
(1)シラン化合物
 次式に示す構造を有するシラン化合物、またはその加水分解生成物質、または該加水分解生成物質の縮合体(以下、単にシラン化合物と記述する)を単独でまたは複数混合して使用して、板状キャリアと金属箔を貼り合わせることで、適度に密着性が低下し、接着強度を後述するような範囲に調節できる。
(1) Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination. Then, by adhering the plate-like carrier and the metal foil, the adhesiveness is appropriately reduced, and the adhesive strength can be adjusted to a range as described later.
 式:
Figure JPOXMLDOC01-appb-C000009
formula:
Figure JPOXMLDOC01-appb-C000009
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。) Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
 当該シラン化合物はアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、板状キャリアと金属箔表面の密着性が低下し過ぎる傾向がある。また、当該シラン化合物はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を少なくとも一つ有していることが必要である。当該炭化水素基が存在しない場合、板状キャリアと金属箔表面の密着性が上昇する傾向があるからである。なお、本願発明に係るアルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。 The silane compound must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a plate-shaped carrier and metal foil surface to fall too much. The silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have at least one. This is because when the hydrocarbon group does not exist, the adhesion between the plate-like carrier and the metal foil surface tends to increase. The alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
 板状キャリアと金属箔の接着強度を上述した範囲に調節する上では、当該シラン化合物はアルコキシ基を三つ、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つ有していることが好ましい。これを上の式でいえば、R3及びR4の両方がアルコキシ基ということになる。 In adjusting the adhesive strength between the plate-like carrier and the metal foil to the above-described range, the silane compound has three alkoxy groups and the hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one). In terms of the above formula, both R 3 and R 4 are alkoxy groups.
 アルコキシ基としては、限定的ではないが、メトキシ基、エトキシ基、n-又はiso-プロポキシ基、n-、iso-又はtert-ブトキシ基、n-、iso-又はneo-ペントキシ基、n-ヘキソキシ基、シクロヘキシソキシ基、n-ヘプトキシ基、及びn-オクトキシ基等の直鎖状、分岐状、又は環状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシ基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl. A linear or branched alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as a group, n-octyl group and n-decyl group.
 シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Examples of the cycloalkyl group include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms. An alkyl group is mentioned.
 アリール基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられる。 The aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms. An aryl group is mentioned.
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいシラン化合物の例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、n-又はiso-プロピルトリメトキシシラン、n-、iso-又はtert-ブチルトリメトキシシラン、n-、iso-又はneo-ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン;アルキル置換フェニルトリメトキシシラン(例えば、p-(メチル)フェニルトリメトキシシラン)、メチルトリエトキシシラン、エチルトリエトキシシラン、n-又はiso-プロピルトリエトキシシラン、n-、iso-又はtert-ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、フェニルトリエトキシシラン、アルキル置換フェニルトリエトキシシラン(例えば、p-(メチル)フェニルトリエトキシシラン)、(3,3,3-トリフルオロプロピル)トリメトキシシラン、及びトリデカフルオロオクチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、トリメチルフルオロシラン、ジメチルジブロモシラン、ジフェニルジブロモシラン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、プロピルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシランが好ましい。 Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl. Trimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane; alkyl-substituted phenyltrimethoxysilane (eg, p- (methyl) phenyltrimethoxysilane), methyltriethoxysilane, ethyl Triethoxysilane, n- or iso-propyltriethoxysilane, n-, iso- or tert-butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, octyltriethoxy Silane, decyltriethoxysilane, phenyltriethoxysilane, alkyl-substituted phenyltriethoxysilane (eg, p- (methyl) phenyltriethoxysilane), (3,3,3-trifluoropropyl) trimethoxysilane, and trideca Fluorooctyltriethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, trimethylfluorosilane, dimethyldibromosilane, diphenyldibromosilane, their hydrolysis products, and condensates of these hydrolysis products Etc. Among these, propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
 シラン化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高いシラン化合物を使用するときに有効である。シラン化合物の水溶液は、撹拌することでアルコキシ基の加水分解が促進され、撹拌時間が長いと加水分解生成物の縮合が促進される。一般には、十分な撹拌時間を経て加水分解および縮合が進んだシラン化合物を用いた方が金属箔と板状キャリアの接着強度は低下する傾向にある。従って、撹拌時間の調整によって接着強度を調整可能である。限定的ではないが、シラン化合物を水に溶解させた後の撹拌時間としては例えば1~100時間とすることができ、典型的には1~30時間とすることができる。当然ながら、撹拌せずに用いる方法もある。 The silane compound can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used. By stirring the aqueous solution of the silane compound, hydrolysis of the alkoxy group is promoted, and when the stirring time is long, condensation of the hydrolysis product is promoted. In general, the adhesive strength between the metal foil and the plate carrier tends to decrease when a silane compound that has undergone hydrolysis and condensation after a sufficient stirring time is used. Therefore, the adhesive strength can be adjusted by adjusting the stirring time. Although not limited, the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
 シラン化合物の水溶液中のシラン化合物の濃度は高い方が金属箔と板状キャリアの接着強度は低下する傾向にあり、シラン化合物の濃度調整によって接着強度を調整可能である。限定的ではないが、シラン化合物の水溶液中の濃度は0.01~10.0体積%とすることができ、典型的には0.1~5.0体積%とすることができる。 The higher the concentration of the silane compound in the aqueous solution of the silane compound, the lower the adhesive strength between the metal foil and the plate carrier, and the adhesive strength can be adjusted by adjusting the concentration of the silane compound. Although not limited, the concentration of the silane compound in the aqueous solution can be 0.01 to 10.0% by volume, and typically 0.1 to 5.0% by volume.
 シラン化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(2)分子内に2つ以下のメルカプト基を有する化合物
 分子内に2つ以下のメルカプト基を有する化合物を使用して、板状キャリアと金属箔を貼り合わせることによっても、仮接着に適した接着強度を容易に得ることができる。但し、分子内に3つ以上のメルカプト基を有する化合物またはその塩を板状キャリアと金属箔との間に介在させて貼り合わせた場合、本願記載の接着強度低減の目的には適さない。これは、分子内にメルカプト基が過剰に存在するとメルカプト基同士、またはメルカプト基と板状キャリア、またはメルカプト基と金属箔との化学反応によってスルフィド結合、ジスルフィド結合またはポリスルフィド結合が過剰に生成し、板状キャリアと金属箔の間に強固な3次元架橋構造が形成されることで接着強度が上昇することがあると考えられるからである。このような事例は特開2000-196207号公報に開示されている。
(2) Compound having two or less mercapto groups in the molecule Using a compound having two or less mercapto groups in the molecule, it is also suitable for temporary bonding by laminating a plate carrier and metal foil. Adhesive strength can be easily obtained. However, when a compound having three or more mercapto groups in the molecule or a salt thereof is bonded between the plate-like carrier and the metal foil, it is not suitable for the purpose of reducing the adhesive strength described in the present application. This is because when there is an excessive amount of mercapto groups in the molecule, an excessive amount of sulfide bonds, disulfide bonds or polysulfide bonds are generated by the chemical reaction between the mercapto groups, or the mercapto group and the plate carrier, or the mercapto group and the metal foil, This is because it is considered that the adhesive strength may be increased by forming a strong three-dimensional crosslinked structure between the plate-like carrier and the metal foil. Such a case is disclosed in Japanese Patent Laid-Open No. 2000-196207.
 分子内に2つ以下のメルカプト基を有する化合物としては、チオール、ジチオール、チオカルボン酸またはその塩、ジチオカルボン酸またはその塩、チオスルホン酸またはその塩、およびジチオスルホン酸またはその塩が挙げられ、これらの中から選択される少なくとも一種を用いることができる。 Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from the above can be used.
 チオールは、分子内に一つのメルカプト基を有するものであり、例えばR-SHで表される。ここで、Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。 Thiol has one mercapto group in the molecule and is represented by, for example, R-SH. Here, R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
 ジチオールは、分子内に二つのメルカプト基を有するものであり、例えばR(SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのメルカプト基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素または窒素に結合してもよい。 Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
 チオカルボン酸は、有機カルボン酸の水酸基がメルカプト基に置換されたものであり、例えばR-CO-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオカルボン酸は、塩の形態でも使用することが可能である。なお、チオカルボン酸基を、二つ有する化合物も使用可能である。 The thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. The thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
 ジチオカルボン酸は、有機カルボン酸のカルボキシ基中の2つの酸素原子が硫黄原子に置換されたものであり、例えばR-(CS)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、ジチオカルボン酸は、塩の形態でも使用することが可能である。なお、ジチオカルボン酸基を、二つ有する化合物も使用可能である。 Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Dithiocarboxylic acid can also be used in the form of a salt. A compound having two dithiocarboxylic acid groups can also be used.
 チオスルホン酸は、有機スルホン酸の水酸基がメルカプト基に置換されたものであり、例えばR(SO2)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオスルホン酸は、塩の形態でも使用することが可能である。 The thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Further, thiosulfonic acid can be used in the form of a salt.
 ジチオスルホン酸は、有機ジスルホン酸の二つの水酸基がそれぞれメルカプト基に置換されたものであり、例えばR-((SO2)-SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのチオスルホン酸基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素に結合してもよい。また、ジチオスルホン酸は、塩の形態でも使用することが可能である。 Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons. Dithiosulfonic acid can also be used in the form of a salt.
 ここで、Rとして好適な脂肪族系炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Here, examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、Rとして好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 In addition, examples of suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、Rとして好適な複素環基としては、イミダゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾールが挙げられ、水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Also, examples of the heterocyclic group suitable as R include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
 分子内に2つ以下のメルカプト基を有する化合物の好ましい例としては、3-メルカプト-1,2プロパンジオール、2-メルカプトエタノール、1,2-エタンジチオール、6-メルカプト-1-ヘキサノール、1-オクタンチオール、1-ドデカンチオール、10-ヒドロキシ-1-ドデカンチオール、10-カルボキシ-1-ドデカンチオール、10-アミノ-1-ドデカンチオール、1-ドデカンチオールスルホン酸ナトリウム、チオフェノール、チオ安息香酸、4-アミノ-チオフェノール、p-トルエンチオール、2,4-ジメチルベンゼンチオール、3-メルカプト-1,2,4トリアゾール、2-メルカプト-ベンゾチアゾールが挙げられる。これらの中でも水溶性と廃棄物処理上の観点から、3-メルカプト-1,2プロパンジオールが好ましい。 Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
 キャリア付金属箔は板状キャリアと金属箔をホットプレスで密着させて製造可能である。例えば、金属箔及び/又は板状キャリアの貼り合わせ面に前記分子内に2つ以下のメルカプト基を有する化合物を被覆処理した上で、金属箔の貼り合わせ面に対して、Bステージの樹脂製の板状キャリアをホットプレス積層することで製造可能である。 The metal foil with carrier can be manufactured by bringing a plate-like carrier and metal foil into close contact with each other by hot pressing. For example, after a metal foil and / or a plate-like carrier bonding surface is coated with a compound having two or less mercapto groups in the molecule, the metal foil bonding surface is made of a B-stage resin. This plate-shaped carrier can be manufactured by hot press lamination.
 分子内に2つ以下のメルカプト基を有する化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い分子内に2つ以下のメルカプト基を有する化合物を使用するときに有効である。 A compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は高い方が金属箔と板状キャリアの接着強度は低下する傾向にあり、分子内に2つ以下のメルカプト基を有する化合物の濃度調整によって接着強度を調整可能である。限定的ではないが、分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は0.01~10.0重量%とすることができ、典型的には0.1~5.0重量%とすることができる。 The higher the concentration of the compound having two or less mercapto groups in the molecule in the aqueous solution, the lower the adhesive strength between the metal foil and the plate carrier, and the compound having two or less mercapto groups in the molecule. The adhesive strength can be adjusted by adjusting the concentration. Although not limited, the concentration of the compound having 2 or less mercapto groups in the molecule in the aqueous solution can be 0.01 to 10.0% by weight, typically 0.1 to 5.0%. % By weight.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
 分子内に2つ以下のメルカプト基を有する化合物による接着強度の調節を容易にするという観点から、金属箔と板状キャリアとの接着強度は、10gf/cm以上であることが好ましく、30gf/cm以上であることがより好ましく、50gf/cm以上であることが一層好ましい一方で、200gf/cm以下であることが好ましく、150gf/cm以下であることがより好ましく、80gf/cm以下であることが一層好ましい。金属箔と板状キャリアの接着強度をこのような範囲とすることによって、搬送時や加工時に剥離することない一方で、人手で容易に剥がすことができるような接着強度の調節が容易になる。 From the viewpoint of facilitating the adjustment of the adhesive strength by a compound having two or less mercapto groups in the molecule, the adhesive strength between the metal foil and the plate-like carrier is preferably 10 gf / cm or more, preferably 30 gf / cm. More preferably, it is more preferably 50 gf / cm or more, while it is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and 80 gf / cm or less. Even more preferred. By setting the adhesive strength between the metal foil and the plate-shaped carrier in such a range, the adhesive strength can be easily adjusted so that it can be easily removed manually while it is not peeled off during transportation or processing.
(3)金属アルコキシド
 次式に示す構造を有するアルミネート化合物、チタネート化合物、ジルコネート化合物、またはその加水分解生成物質、または該加水分解生成物質の縮合体(以下、単に金属アルコキシドと記述する)を単独でまたは複数混合して使用して、板状キャリアと金属箔を貼り合わせることによっても、仮接着に適した接着強度を容易に得ることができる。
(3) Metal alkoxide An aluminate compound, titanate compound, zirconate compound having a structure represented by the following formula, or a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a metal alkoxide) alone In addition, or by using a mixture of a plurality of plate carriers and metal foils, an adhesive strength suitable for temporary bonding can be easily obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。 In the formula, R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group. M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
 当該金属アルコキシドはアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、板状キャリアと金属箔表面の密着性が低下し過ぎる傾向がある。また、当該金属アルコキシドはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を0~2個有していることが必要である。当該炭化水素基を3つ以上有する場合、板状キャリアと金属箔表面の密着性が低下し過ぎる傾向があるからである。なお、本願発明に係るアルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。板状キャリアと金属箔の接着強度を上述した範囲に調節する上では、当該金属アルコキシドはアルコキシ基を二つ以上、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つか二つ有していることが好ましい。 The metal alkoxide must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a plate-shaped carrier and metal foil surface to fall too much. The metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when three or more hydrocarbon groups are present, the adhesion between the plate-like carrier and the metal foil surface tends to be excessively lowered. The alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms. In adjusting the adhesive strength between the plate-like carrier and the metal foil to the above-mentioned range, the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、R2として好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。
Further, examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいアルミネート化合物の例としては、トリメトキシアルミニウム、メチルジメトキシアルミニウム、エチルジメトキシアルミニウム、n-又はiso-プロピルジメトキシアルミニウム、n-、iso-又はtert-ブチルジメトキシアルミニウム、n-、iso-又はneo-ペンチルジメトキシアルミニウム、ヘキシルジメトキシアルミニウム、オクチルジメトキシアルミニウム、デシルジメトキシアルミニウム、フェニルジメトキシアルミニウム;アルキル置換フェニルジメトキシアルミニウム(例えば、p-(メチル)フェニルジメトキシアルミニウム)、ジメチルメトキシアルミニウム、トリエトキシアルミニウム、メチルジエトキシアルミニウム、エチルジエトキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジエトキシアルミニウム、ペンチルジエトキシアルミニウム、ヘキシルジエトキシアルミニウム、オクチルジエトキシアルミニウム、デシルジエトキシアルミニウム、フェニルジエトキシアルミニウム、アルキル置換フェニルジエトキシアルミニウム(例えば、p-(メチル)フェニルジエトキシアルミニウム)、ジメチルエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、エチルジイソプロポキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジイソプロポキシアルミニウム、ペンチルジイソプロポキシアルミニウム、ヘキシルジイソプロポキシアルミニウム、オクチルジイソプロポキシアルミニウム、デシルジイソプロポキシアルミニウム、フェニルジイソプロポキシアルミニウム、アルキル置換フェニルジイソプロポキシアルミニウム(例えば、p-(メチル)フェニルジイソプロポキシアルミニウム)、ジメチルイソプロポキシアルミニウム、(3,3,3-トリフルオロプロピル)ジメトキシアルミニウム、及びトリデカフルオロオクチルジエトキシアルミニウム、メチルジクロロアルミニウム、ジメチルクロロアルミニウム、ジメチルクロロアルミニウム、フェニルジクロロアルミニウム、ジメチルフルオロアルミニウム、ジメチルブロモアルミニウム、ジフェニルブロモアルミニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、が好ましい。 Examples of preferred aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldiethoxyaluminum, pentyldiethoxyaluminum, hexyldiethoxyaluminum, octyldiethoxyaluminum, decyldiethoxyaluminum, phenyldiethoxyaluminum, alkyl-substituted phenyldiethoxyaluminum (eg p -(Methyl) phenyldiethoxyaluminum), dimethylethoxyaluminum, triisopropoxyaluminum, methyldiisopropoxyaluminum, ethyldiisopropoxyaluminum, n- or iso-propyldiethoxyaluminum, n-, iso- or tert-butyl Diisopropoxy aluminum, pentyl diisopropoxy aluminum, hexyl diisopropoxy aluminum, octyl dii Propoxyaluminum, decyldiisopropoxyaluminum, phenyldiisopropoxyaluminum, alkyl-substituted phenyldiisopropoxyaluminum (eg, p- (methyl) phenyldiisopropoxyaluminum), dimethylisopropoxyaluminum, (3,3,3-tri Fluoropropyl) dimethoxyaluminum and tridecafluorooctyldiethoxyaluminum, methyldichloroaluminum, dimethylchloroaluminum, dimethylchloroaluminum, phenyldichloroaluminum, dimethylfluoroaluminum, dimethylbromoaluminum, diphenylbromoaluminum, their hydrolysis products, And condensates of these hydrolysis products. Among these, from the viewpoint of availability, trimethoxyaluminum, triethoxyaluminum, and triisopropoxyaluminum are preferable.
 好ましいチタネート化合物の例としては、テトラメトキシチタン、メチルトリメトキシチタン、エチルトリメトキシチタン、n-又はiso-プロピルトリメトキシチタン、n-、iso-又はtert-ブチルトリメトキシチタン、n-、iso-又はneo-ペンチルトリメトキシチタン、ヘキシルトリメトキシチタン、オクチルトリメトキシチタン、デシルトリメトキシチタン、フェニルトリメトキシチタン;アルキル置換フェニルトリメトキシチタン(例えば、p-(メチル)フェニルトリメトキシチタン)、ジメチルジメトキシチタン、テトラエトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリエトキシチタン、ペンチルトリエトキシチタン、ヘキシルトリエトキシチタン、オクチルトリエトキシチタン、デシルトリエトキシチタン、フェニルトリエトキシチタン、アルキル置換フェニルトリエトキシチタン(例えば、p-(メチル)フェニルトリエトキシチタン)、ジメチルジエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン、エチルトリイソプロポキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリイソプロポキシチタン、ペンチルトリイソプロポキシチタン、ヘキシルトリイソプロポキシチタン、オクチルトリイソプロポキシチタン、デシルトリイソプロポキシチタン、フェニルトリイソプロポキシチタン、アルキル置換フェニルトリイソプロポキシチタン(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシチタン、(3,3,3-トリフルオロプロピル)トリメトキシチタン、及びトリデカフルオロオクチルトリエトキシチタン、メチルトリクロロチタン、ジメチルジクロロチタン、トリメチルクロロチタン、フェニルトリクロロチタン、ジメチルジフルオロチタン、ジメチルジブロモチタン、ジフェニルジブロモチタン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、が好ましい。 Examples of preferred titanate compounds include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso- or tert-butyl triethoxy titanium, Nitrotriethoxytitanium, hexyltriethoxytitanium, octyltriethoxytitanium, decyltriethoxytitanium, phenyltriethoxytitanium, alkyl-substituted phenyltriethoxytitanium (eg p- (methyl) phenyltriethoxytitanium), dimethyldiethoxytitanium , Tetraisopropoxytitanium, methyltriisopropoxytitanium, ethyltriisopropoxytitanium, n- or iso-propyltriethoxytitanium, n-, iso- or tert-butyltriisopropoxytitanium, pentyltriisopropoxytitanium, hexyltri Isopropoxytitanium, octyltriisopropoxytitanium, decyltriisopropoxytitanium, phenyltriisopropoxytitanium, alkyl-substituted phenyltriisopropoxytitanium ( For example, p- (methyl) phenyltriisopropoxytitanium), dimethyldiisopropoxytitanium, (3,3,3-trifluoropropyl) trimethoxytitanium, and tridecafluorooctyltriethoxytitanium, methyltrichlorotitanium, dimethyldichloro Examples include titanium, trimethylchlorotitanium, phenyltrichlorotitanium, dimethyldifluorotitanium, dimethyldibromotitanium, diphenyldibromotitanium, hydrolysis products thereof, and condensates of these hydrolysis products. Among these, tetramethoxy titanium, tetraethoxy titanium, and tetraisopropoxy titanium are preferable from the viewpoint of availability.
 好ましいジルコネート化合物の例としては、テトラメトキシジルコニウム、メチルトリメトキシジルコニウム、エチルトリメトキシジルコニウム、n-又はiso-プロピルトリメトキシジルコニウム、n-、iso-又はtert-ブチルトリメトキシジルコニウム、n-、iso-又はneo-ペンチルトリメトキシジルコニウム、ヘキシルトリメトキシジルコニウム、オクチルトリメトキシジルコニウム、デシルトリメトキシジルコニウム、フェニルトリメトキシジルコニウム;アルキル置換フェニルトリメトキシジルコニウム(例えば、p-(メチル)フェニルトリメトキシジルコニウム)、ジメチルジメトキシジルコニウム、テトラエトキシジルコニウム、メチルトリエトキシジルコニウム、エチルトリエトキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリエトキシジルコニウム、ペンチルトリエトキシジルコニウム、ヘキシルトリエトキシジルコニウム、オクチルトリエトキシジルコニウム、デシルトリエトキシジルコニウム、フェニルトリエトキシジルコニウム、アルキル置換フェニルトリエトキシジルコニウム(例えば、p-(メチル)フェニルトリエトキシジルコニウム)、ジメチルジエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム、エチルトリイソプロポキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリイソプロポキシジルコニウム、ペンチルトリイソプロポキシジルコニウム、ヘキシルトリイソプロポキシジルコニウム、オクチルトリイソプロポキシジルコニウム、デシルトリイソプロポキシジルコニウム、フェニルトリイソプロポキシジルコニウム、アルキル置換フェニルトリイソプロポキシジルコニウム(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシジルコニウム、(3,3,3-トリフルオロプロピル)トリメトキシジルコニウム、及びトリデカフルオロオクチルトリエトキシジルコニウム、メチルトリクロロジルコニウム、ジメチルジクロロジルコニウム、トリメチルクロロジルコニウム、フェニルトリクロロジルコニウム、ジメチルジフルオロジルコニウム、ジメチルジブロモジルコニウム、ジフェニルジブロモジルコニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、が好ましい。 Examples of preferred zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltriethoxyzirconium, -Or iso-propyltriethoxyzirconium, n-, iso- or tert-butyltriethoxyzirconium, pentyltriethoxyzirconium, hexyltriethoxyzirconium, octyltriethoxyzirconium, decyltriethoxyzirconium, phenyltriethoxyzirconium, alkyl-substituted phenyl Triethoxyzirconium (eg, p- (methyl) phenyltriethoxyzirconium), dimethyldiethoxyzirconium, tetraisopropoxyzirconium, methyltriisopropoxyzirconium, ethyltriisopropoxyzirconium, n- or iso-propyltriethoxyzirconium, n -, Iso- or tert-butyltriisopropoxyzirconium, pentyltriisopropoxy Luconium, hexyltriisopropoxyzirconium, octyltriisopropoxyzirconium, decyltriisopropoxyzirconium, phenyltriisopropoxyzirconium, alkyl-substituted phenyltriisopropoxyzirconium (eg, p- (methyl) phenyltriisopropoxytitanium), dimethyldi Isopropoxyzirconium, (3,3,3-trifluoropropyl) trimethoxyzirconium, and tridecafluorooctyltriethoxyzirconium, methyltrichlorozirconium, dimethyldichlorozirconium, trimethylchlorozirconium, phenyltrichlorozirconium, dimethyldifluorozirconium, dimethyldibromo Zirconium, diphenyldibromozirconium and their hydrolysis Products, and condensates of these hydrolysis products. Among these, tetramethoxyzirconium, tetraethoxyzirconium, and tetraisopropoxyzirconium are preferable from the viewpoint of availability.
 金属アルコキシドは水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い金属アルコキシドを使用するときに有効である。 Metal alkoxide can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
 金属アルコキシドの水溶液中の濃度は高い方が金属箔と板状キャリアの接着強度は低下する傾向にあり、金属アルコキシド濃度調整によって接着強度を調整可能である。限定的ではないが、金属アルコキシドの水溶液中の濃度は0.001~1.0mol/Lとすることができ、典型的には0.005~0.2mol/Lとすることができる。 The higher the concentration of the metal alkoxide in the aqueous solution, the lower the adhesive strength between the metal foil and the plate carrier, and the adhesive strength can be adjusted by adjusting the metal alkoxide concentration. Although not limited, the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
 金属アルコキシドの水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
 金属アルコキシドによる接着強度の調節を容易にするという観点から、金属箔と板状キャリアとの接着強度は、10gf/cm以上であることが好ましく、30gf/cm以上であることがより好ましく、50gf/cm以上であることが一層好ましい一方で、200gf/cm以下であることが好ましく、150gf/cm以下であることがより好ましく、80gf/cm以下であることが一層好ましい。金属箔と板状キャリアの接着強度をこのような範囲とすることによって、搬送時や加工時に剥離することない一方で、人手で容易に剥がすことができるような接着強度の調節が容易になる。 From the viewpoint of facilitating the adjustment of the adhesive strength with the metal alkoxide, the adhesive strength between the metal foil and the plate carrier is preferably 10 gf / cm or more, more preferably 30 gf / cm or more, and 50 gf / cm. While it is more preferably at least cm, it is preferably at most 200 gf / cm, more preferably at most 150 gf / cm, and even more preferably at most 80 gf / cm. By setting the adhesive strength between the metal foil and the plate-shaped carrier in such a range, the adhesive strength can be easily adjusted so that it can be easily removed manually while it is not peeled off during transportation or processing.
(4)シリコーン含有離型剤
 板状キャリアと金属箔とを、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とを含有する離型剤を使用して、板状キャリアと金属箔を貼り合わせることによっても、仮接着に適した接着強度を容易に得ることができる。
(4) Silicone-containing release agent A release agent containing a plate-like carrier and a metal foil, silicone, and any one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin The adhesive strength suitable for temporary bonding can also be easily obtained by using and laminating the plate-like carrier and the metal foil.
 エポキシ系樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、臭素化エポキシ樹脂、アミン型エポキシ樹脂、可撓性エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、臭素化フェノキシ樹脂等が挙げられる。 Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
 メラミン系樹脂としては、メチルエーテル化メラミン樹脂、ブチル化尿素メラミン樹脂、ブチル化メラミン樹脂、メチル化メラミン樹脂、ブチルアルコール変性メラミン樹脂等が挙げられる。また、メラミン系樹脂は、前記樹脂とブチル化尿素樹脂、ブチル化ベンゾグアナミン樹脂等との混合樹脂であってもよい。 Examples of the melamine-based resin include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin. The melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
 なお、エポキシ系樹脂の数平均分子量は2000~3000、メラミン系樹脂の数平均分子量は500~1000であることが好ましい。このような数平均分子量を有することによって、樹脂の塗料化が可能になると共に、シリコーン含有離型剤により形成される樹脂塗膜の接着強度を所定範囲に調整し易くなる。 The number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000. By having such a number average molecular weight, the resin can be made into a paint, and the adhesive strength of the resin coating film formed by the silicone-containing release agent can be easily adjusted to a predetermined range.
 また、フッ素樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。 Also, examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
 シリコーンとしては、メチルフェニルポリシロキサン、メチルハイドロポリシロキサン、ジメチルポリシロキサン、変性ジメチルポリシロキサン、これらの混合物等が挙げられる。ここで、変性とは、例えば、エポキシ変性、アルキル変性、アミノ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシポリエーテル変性、ポリエーテル変性、アルキル高級アルコールエステル変性、ポリエステル変性、アシロキシアルキル変性、ハロゲン化アルキルアシロキシアルキル変性、ハロゲン化アルキル変性、アミノグリコール変性、メルカプト変性、水酸基含有ポリエステル変性等が挙げられる。 Examples of silicone include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof. Here, the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification. And acyloxyalkyl modification, halogenated alkylacyloxyalkyl modification, halogenated alkyl modification, aminoglycol modification, mercapto modification, hydroxyl group-containing polyester modification, and the like.
 樹脂塗膜において、膜厚が小さすぎると、樹脂塗膜が薄膜すぎて形成が困難であるため、生産性が低下し易い。また、膜厚が一定の大きさを超えても、樹脂塗膜の剥離性のさらなる向上は見られず、樹脂塗膜の製造コストが高くなり易い。このような観点から、樹脂塗膜は、その膜厚が0.1~10μmであることが好ましく、0.5~5μmであることがさらに好ましい。また、樹脂塗膜の膜厚は、後述する手順において、樹脂塗料を所定塗布量で塗布することによって達成される。 In the resin coating film, if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude | size, the further improvement of the peelability of a resin coating film is not seen, but the manufacturing cost of a resin coating film tends to become high. From such a viewpoint, the resin coating film preferably has a thickness of 0.1 to 10 μm, and more preferably 0.5 to 5 μm. Moreover, the film thickness of a resin coating film is achieved by apply | coating a resin coating material by the predetermined application amount in the procedure mentioned later.
 樹脂塗膜において、シリコーンは樹脂塗膜の剥離剤として機能する。そこで、エポキシ系樹脂、メラミン系樹脂の合計量がシリコーンに比べて多すぎると、板状キャリアと金属箔との間で樹脂塗膜が付与する接着強度が大きくなるため、樹脂塗膜の剥離性が低下し、人手で容易に剥がせなくなることがある。一方で、エポキシ系樹脂、メラミン系樹脂の合計量が少なすぎると、前述の接着強度が小さくなるため、キャリア付金属箔の搬送時や加工時に剥離することがある。この観点から、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれることが好ましく、さらに好ましくは20~800重量部の量で含まれることが好ましい。 In the resin coating, silicone functions as a release agent for the resin coating. Therefore, if the total amount of epoxy resin and melamine resin is too much compared to silicone, the adhesive strength imparted by the resin coating between the plate carrier and the metal foil increases, so that the peelability of the resin coating is increased. May decrease and may not be easily removed by hand. On the other hand, if the total amount of the epoxy resin and the melamine resin is too small, the above-described adhesive strength is reduced, and therefore, the metal foil with a carrier may be peeled off during processing or processing. From this viewpoint, the total of the epoxy resin and the melamine resin is preferably contained in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
 また、フッ素樹脂は、シリコーンと同様、剥離剤として機能し、樹脂塗膜の耐熱性を向上させる効果がある。フッ素樹脂がシリコーンに比べて多すぎると、前述の接着強度が小さくなるため、キャリア付金属箔の搬送時や加工時に剥離することがあるほか、後述する焼き付け工程に必要な温度が上がるため不経済となる。この観点から、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましく、さらに好ましくは0~40質量部であることが好ましい。 Further, like silicone, fluororesin functions as a release agent and has the effect of improving the heat resistance of the resin coating film. If the amount of fluororesin is too much compared to silicone, the aforementioned adhesive strength will be reduced, which may cause peeling during transportation or processing of the metal foil with carrier, and it will be uneconomical because the temperature required for the baking process described later will increase. It becomes. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
 樹脂塗膜は、シリコーン、およびエポキシ樹脂および/またはメラミン樹脂、および必要に応じてフッ素樹脂に加えて、SiO2、MgO、Al23、BaSO4およびMg(OH)2から選択される1種以上の表面粗化粒子をさらに含有していてもよい。樹脂塗膜が表面粗化粒子を含有することによって、樹脂塗膜の表面が凹凸となる。その凹凸によって、樹脂塗膜が塗布された板状キャリアあるいは金属箔の表面が凹凸となり、艶消し表面となる。表面粗化粒子の含有量は、樹脂塗膜が凹凸化されれば特に限定されないが、シリコーン100質量部に対して、1~10質量部が好ましい。 The resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH) 2 in addition to silicone and epoxy resin and / or melamine resin and, if necessary, fluororesin 1 You may contain the surface roughening particle | grains more than a seed | species. When the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the plate-like carrier or metal foil to which the resin coating film is applied becomes uneven and becomes a matte surface. The content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
 表面粗化粒子の粒子径は、15nm~4μmであることが好ましい。ここで、粒子径は、走査電子顕微鏡(SEM)写真等から測定した平均粒子径(最大粒子径と最小粒子径の平均値)を意味する。表面粗化粒子の粒子径が前記範囲であることによって、樹脂塗膜の表面の凹凸量が調整し易くなり、結果的に板状キャリアあるいは金属箔の表面の凹凸量が調整し易くなる。具体的には、板状キャリアあるいは金属箔の表面の凹凸量は、JIS規定の最大高さ粗さRyで4.0μm程度となる。 The particle diameter of the surface roughened particles is preferably 15 nm to 4 μm. Here, the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like. When the particle diameter of the surface roughened particles is within the above range, the unevenness on the surface of the resin coating film can be easily adjusted, and as a result, the unevenness on the surface of the plate-like carrier or metal foil can be easily adjusted. Specifically, the amount of irregularities on the surface of the plate-like carrier or metal foil is about 4.0 μm in terms of the maximum height roughness Ry defined by JIS.
 ここで、シリコーン含有離型剤を用いた場合の板状キャリアと金属箔の仮接着方法について説明する。シリコーン含有離型剤を用いた仮接着方法は、板状キャリア又は金属箔の少なくとも一方の表面に、シリコーン含有離型剤を塗布する工程と、この塗布した離型剤を硬化させる焼付け工程と、金属箔及び板状キャリアをホットプレスする工程を含む。以下、各工程について説明する。 Here, a temporary bonding method between the plate-like carrier and the metal foil when using the silicone-containing release agent will be described. A temporary adhesion method using a silicone-containing release agent includes a step of applying a silicone-containing release agent to at least one surface of a plate-like carrier or a metal foil, and a baking step of curing the applied release agent. A step of hot pressing the metal foil and the plate-like carrier. Hereinafter, each step will be described.
(塗布工程)
 塗布工程は、板状キャリアの片面または両面にシリコーン含有離型剤を塗布して樹脂塗膜を形成する工程である。シリコーン含有離型剤は、アルコール等の有機溶媒にエポキシ系樹脂、メラミン系樹脂、フッ素樹脂およびシリコーンを溶解したものとすることができる。また、樹脂塗料における配合量(添加量)は、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部であることが好ましい。また、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましい。
(Coating process)
The coating step is a step of forming a resin coating film by applying a silicone-containing release agent on one or both sides of the plate-like carrier. The silicone-containing release agent can be obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol. The blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone. The fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
 塗布工程における塗布方法としては、樹脂塗膜が形成できれば特に限定されるものではないが、グラビアコート法、バーコート法、ロールコート法、カーテンフローコート法、静電塗装機を用いる方法等が用いられ、樹脂塗膜の均一性、および、作業の簡便性からグラビアコート法が好ましい。また、塗布量としては、樹脂塗膜3が好ましい膜厚:0.5~5μmとなるように、樹脂量として1.0~2.0g/m2が好ましい。 The coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred. The coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 μm.
 グラビアコート法は、ロール表面に設けられた凹部(セル)に満たされたシリコーン含有離型剤を板状キャリアに転写させることによって、板状キャリアの表面に樹脂塗膜を形成させる方法である。具体的には、表面にセルが設けられた下側ロールの下部をシリコーン含有離型剤中に浸漬し、下側ロールの回転によってセル内に樹脂塗料を汲み上げる。そして、下側ロールと、下側ロールの上側に配置された上側ロールとの間に板状キャリアを配置し、上側ロールで板状キャリアを下側ロールに押し付けながら、下側ロールおよび上側ロールを回転させることによって、板状キャリアが搬送されると共に、セル内に汲み上げられた樹脂塗料が板状キャリアの片面に転写(塗布)される。 The gravure coating method is a method in which a resin coating film is formed on the surface of a plate-like carrier by transferring a silicone-containing release agent filled in a recess (cell) provided on the roll surface to the plate-like carrier. Specifically, the lower part of the lower roll having the cell provided on the surface is immersed in a silicone-containing release agent, and the resin paint is pumped into the cell by the rotation of the lower roll. Then, the plate-like carrier is arranged between the lower roll and the upper roll arranged on the upper side of the lower roll, and the lower roll and the upper roll are held while pressing the plate-like carrier against the lower roll with the upper roll. By rotating, the plate-like carrier is conveyed, and the resin paint pumped into the cell is transferred (applied) to one side of the plate-like carrier.
 また、板状キャリアの搬入側に、下側ロールの表面に接触するようにドクターブレードを配置することによって、セル以外のロール表面に汲み上げられた過剰なシリコーン含有離型剤が取り除かれ、板状キャリアの表面に所定量のシリコーン含有離型剤が塗布される。なお、セルの番手(大きさおよび深さ)が大きい場合、または、シリコーン含有離型剤の粘度が高い場合には、板状キャリアの片面に形成される樹脂塗膜が平滑になり難くなる。したがって、板状キャリアの搬出側にスムージングロールを配置して、樹脂塗膜の平滑度を維持してもよい。 In addition, by placing a doctor blade on the side where the plate-shaped carrier is brought into contact with the surface of the lower roll, excess silicone-containing release agent pumped up on the roll surface other than the cell is removed, and the plate-like carrier is removed. A predetermined amount of a silicone-containing release agent is applied to the surface of the carrier. In addition, when the count (size and depth) of a cell is large, or when the viscosity of a silicone containing mold release agent is high, the resin coating film formed on one side of a plate-shaped carrier becomes difficult to become smooth. Therefore, a smoothing roll may be disposed on the carry-out side of the plate carrier to maintain the smoothness of the resin coating film.
 なお、板状キャリアの両面に樹脂塗膜を形成させる場合には、板状キャリアの片面に樹脂塗膜を形成させた後に、板状キャリアを裏返して、再度、下側ロールと上側ロールとの間に配置する。そして、前記と同様に、下側ロールのセル内のシリコーン含有離型剤を板状キャリアの裏面に転写(塗布)する。 In addition, when forming the resin coating film on both surfaces of the plate carrier, after forming the resin coating film on one surface of the plate carrier, turn over the plate carrier, and again between the lower roll and the upper roll. Place between. In the same manner as described above, the silicone-containing release agent in the cell of the lower roll is transferred (applied) to the back surface of the plate carrier.
(焼付け工程)
 焼付け工程は、塗布工程で形成された樹脂塗膜に125~320℃(焼付け温度)で0.5~60秒間(焼付け時間)の焼付け処理を施す工程である。このように、所定配合量の樹脂塗料で形成された樹脂塗膜に所定条件の焼付け処理を施すことによって、樹脂塗膜により付与される板状キャリアと金属箔との間の接着強度が所定範囲に制御される。本発明において、焼付け温度は板状キャリアの到達温度である。また、焼付け処理に使用される加熱手段としては、従来公知の装置を使用する。
(Baking process)
The baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time). Thus, the adhesive strength between the plate-like carrier provided by the resin coating film and the metal foil is in a predetermined range by subjecting the resin coating film formed of the resin coating of a predetermined blending amount to a baking process under predetermined conditions. To be controlled. In the present invention, the baking temperature is the ultimate temperature of the plate carrier. Moreover, a conventionally well-known apparatus is used as a heating means used for a baking process.
 焼き付けが不十分となる条件、例えば焼付け温度が125℃未満、または、焼付け時間が0.5秒未満である場合には、樹脂塗膜が硬化不足となり、上記接着強度が200gf/cmを超え、剥離性が低下する。また、焼き付けが過度な条件、例えば焼付け温度が320℃を超える場合には、樹脂塗膜が劣化して、上記接着強度が200gf/cmを超え、剥離時の作業性が悪化する。あるいは、板状キャリアが高温によって変質することがある。また、焼付け時間が60秒を超える場合には、生産性が悪化する。 When the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the adhesive strength exceeds 200 gf / cm, The peelability is reduced. Moreover, when baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film will deteriorate, the said adhesive strength will exceed 200 gf / cm, and workability | operativity at the time of peeling will deteriorate. Or a plate-shaped carrier may change in quality by high temperature. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
 シリコーン含有離型剤は、主剤としてのシリコーンと、硬化剤としてのエポキシ樹脂、メラミン系樹脂と、剥離剤としてのフッ素樹脂と、SiO2、MgO、Al23、BaSO4およびMg(OH)2から選択される1種以上の表面粗化粒子とからなるものであってもよい。このような表面粗化粒子をシリコーン含有離型剤にさらに添加することによって、樹脂塗膜の表面が凹凸となり、この凹凸によって板状キャリアあるいは金属箔が凹凸となり、艶消し表面となる。そして、このような艶消し表面を有する板状キャリアあるいは金属箔を得るためには、シリコーン含有離型剤における表面粗化粒子の配合量(添加量)が、シリコーン100質量部に対して、1~10質量部であることが好ましい。また、表面粗化粒子の粒子径が15nm~4μmであることがさらに好ましい。 Silicone-containing mold release agents include silicone as a main agent, epoxy resin and melamine resin as curing agents, fluororesin as a release agent, SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH). It may consist of one or more kinds of surface roughened particles selected from 2 . By further adding such surface-roughening particles to the silicone-containing release agent, the surface of the resin coating becomes uneven, and this unevenness makes the plate-like carrier or metal foil uneven, resulting in a matte surface. And in order to obtain the plate-shaped carrier or metal foil which has such a matt surface, the compounding quantity (addition quantity) of the surface roughening particle in a silicone containing mold release agent is 1 with respect to 100 mass parts of silicone. It is preferably ˜10 parts by mass. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 μm.
 なお、金属箔または樹脂の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Siが検出されれば、金属箔または樹脂の表面にシラン化合物が存在すると推察することができ、またSが検出されれば、金属箔または樹脂の表面に、分子内に2つ以下のメルカプト基を有する化合物が存在すると推察することができ、またAl、Ti、Zrが検出されれば、金属箔または樹脂の表面に、上記金属アルコキシドが存在すると推察することができる。 The surface of the metal foil or resin was measured with a scanning electron microscope or the like equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). If detected, it can be inferred that a silane compound is present on the surface of the metal foil or resin. If S is detected, the surface of the metal foil or resin has two or less mercapto groups in the molecule. It can be inferred that a compound is present, and if Al, Ti, Zr is detected, it can be inferred that the metal alkoxide is present on the surface of the metal foil or resin.
 本発明に係るキャリア付金属箔の製造方法は、以上説明したとおりであるが、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、塗布工程の前に板状キャリアの表面を洗浄する洗浄工程を行ってもよい。 The method for producing a metal foil with a carrier according to the present invention is as described above. However, in carrying out the present invention, other processes may be performed between or before and after each process within a range that does not adversely affect each process. May be included. For example, you may perform the washing | cleaning process which wash | cleans the surface of a plate-shaped carrier before an application | coating process.
 また、多層プリント配線板の製造過程では、積層プレス工程やデスミア工程で加熱処理することが多い。そのため、キャリア付金属箔が受ける熱履歴は、積層数が多くなるほど厳しくなる。従って、特に多層プリント配線板への適用を考える上では、所要の熱履歴を経た後にも、仮接着領域における金属箔と板状キャリアとの接着強度が先述した範囲にあることが望ましい。 Also, in the process of manufacturing a multilayer printed wiring board, heat treatment is often performed in a lamination press process or a desmear process. Therefore, the heat history that the metal foil with a carrier receives becomes severer as the number of laminated layers increases. Therefore, when considering application to a multilayer printed wiring board in particular, it is desirable that the adhesive strength between the metal foil and the plate-like carrier in the temporary adhesion region is in the above-described range even after passing through a required thermal history.
 従って、本発明の更に好ましい一実施形態においては、多層プリント配線板の製造過程における加熱条件を想定した、例えば220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、金属箔と板状キャリアの仮接着領域における接着強度が、30gf/cm以上であることが好ましく、50gf/cm以上であることがより好ましい。また、当該接着強度が200gf/cm以下であることが好ましく、150gf/cm以下であることがより好ましく、80gf/cm以下であることが更により好ましい。 Accordingly, in a further preferred embodiment of the present invention, the metal after assuming at least one of heating for 3 hours, 6 hours or 9 hours at 220 ° C., assuming heating conditions in the production process of the multilayer printed wiring board. The adhesive strength in the temporary adhesion region between the foil and the plate-like carrier is preferably 30 gf / cm or more, and more preferably 50 gf / cm or more. The adhesive strength is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and even more preferably 80 gf / cm or less.
 220℃での加熱後の接着強度については、多彩な積層数に対応可能であるという観点から、3時間後および6時間後の両方、または6時間および9時間後の両方において接着強度が上述した範囲を満たすことが好ましく、3時間、6時間および9時間後の全ての接着強度が上述した範囲を満たすことが更に好ましい。 Regarding the adhesive strength after heating at 220 ° C., the adhesive strength is described above in both 3 hours and 6 hours, or in both 6 hours and 9 hours from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all the adhesive strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
 本発明において、仮接着領域における金属箔と板状キャリアの間の接着強度は、外周領域を切断して除去した後、JIS C6481に規定される90度接着強度測定方法に準拠して測定する。また、接着領域における金属箔と板状キャリアの間の接着強度は、外周領域を切断した後、外周領域のうちで接着領域を含む切断片に対して、JIS C6481に規定される90度接着強度測定方法に準拠して測定する。接着領域が狭すぎて接着強度を測定するのに足りない場合は、適宜接着強度測定用回路幅を調節して測定を行い、10mm幅における90度接着強度(gf/cm)に換算すればよい。すなわち、測定時の回路幅をw(mm)としたときに、換算値(gf/cm)=接着力測定値(gf)×10/wの換算式で得られる。 In the present invention, the adhesive strength between the metal foil and the plate-like carrier in the temporary adhesive region is measured in accordance with the 90-degree adhesive strength measuring method defined in JIS C6481, after removing the outer peripheral region by cutting. In addition, the adhesive strength between the metal foil and the plate-like carrier in the adhesive region is 90 ° adhesive strength defined in JIS C6481 with respect to a cut piece including the adhesive region in the outer peripheral region after cutting the outer peripheral region. Measure according to the measurement method. When the adhesive region is too narrow to measure the adhesive strength, the measurement is performed by appropriately adjusting the circuit width for measuring the adhesive strength and converting it to 90 ° adhesive strength (gf / cm) at a width of 10 mm. . That is, when the circuit width at the time of measurement is w (mm), the conversion value (gf / cm) = adhesive force measurement value (gf) × 10 / w is obtained.
 以下、このような接着強度を実現するための各材料の具体的構成要件について説明する。 Hereinafter, specific constituent requirements of each material for realizing such adhesive strength will be described.
 板状キャリアとなる樹脂としては、特に制限はないが、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、天然ゴム、松脂等を使用することができるが、熱硬化性樹脂であることが好ましい。また、プリプレグを使用することもできる。金属箔と貼り合わせ前のプリプレグはBステージの状態にあるものがよい。プリプレグ(Cステージ)の線膨張係数は12~18(×10-6/℃)と、基板の構成材料である銅箔の16.5(×10-6/℃)、またはSUSプレス板の17.3(×10-6/℃)とほぼ等しいことから、プレス前後の基板サイズが設計時のそれとは異なる現象(スケーリング変化)による回路の位置ずれが発生し難い点で有利である。更に、これらのメリットの相乗効果として多層の極薄コアレス基板の生産も可能になる。ここで使用するプリプレグは、回路基板を構成するプリプレグと同じ物であっても異なる物であってもよい。 The resin that serves as the plate-like carrier is not particularly limited, and phenol resin, polyimide resin, epoxy resin, natural rubber, pine resin, and the like can be used, but a thermosetting resin is preferable. A prepreg can also be used. The prepreg before being bonded to the metal foil is preferably in a B-stage state. The linear expansion coefficient of the prepreg (C stage) is 12 to 18 (× 10 −6 / ° C.), 16.5 (× 10 −6 / ° C.) of the copper foil as the constituent material of the substrate, or 17 of the SUS press plate .3 (× 10 −6 / ° C.) is advantageous in that it is difficult to cause circuit misalignment due to a phenomenon (scaling change) in which the substrate size before and after pressing differs from that at the time of design. Furthermore, as a synergistic effect of these merits, it becomes possible to produce a multilayer ultra-thin coreless substrate. The prepreg used here may be the same as or different from the prepreg constituting the circuit board.
 この板状キャリアは、高いガラス転移温度Tgを有することが加熱後の接着強度を最適な範囲に維持する観点で好ましく、例えば120~320℃、好ましくは170~240℃のガラス転移温度Tgである。なお、ガラス転移温度Tgは、DSC(示差走査熱量測定法)により測定される値とする。 The plate-like carrier preferably has a high glass transition temperature Tg from the viewpoint of maintaining the adhesive strength after heating in an optimum range, for example, a glass transition temperature Tg of 120 to 320 ° C., preferably 170 to 240 ° C. . The glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
 また、樹脂の熱膨張率が、金属箔の熱膨張率の+10%、-30%以内であることが望ましい。これによって、金属箔と樹脂との熱膨張差に起因する回路の位置ずれを効果的に防止することができ、不良品発生を減少させ、歩留りを向上させることができる。 Also, it is desirable that the thermal expansion coefficient of the resin is within + 10% and −30% of the thermal expansion coefficient of the metal foil. As a result, it is possible to effectively prevent circuit misalignment due to the difference in thermal expansion between the metal foil and the resin, thereby reducing the occurrence of defective products and improving the yield.
 板状キャリアの厚みは特に制限はなく、リジッドでもフレキシブルでもよいが、厚すぎるとホットプレス中の熱分布に悪影響がでる一方で、薄すぎると撓んでしまいプリント配線板の製造工程を流れなくなることから、通常5μm以上1000μm以下であり、50μm以上900μm以下が好ましく、100μm以上400μm以下がより好ましい。 The thickness of the plate-like carrier is not particularly limited and may be rigid or flexible. However, if it is too thick, it will adversely affect the heat distribution during hot pressing, while if it is too thin, it will bend and will not flow through the printed wiring board manufacturing process. Therefore, it is usually 5 μm or more and 1000 μm or less, preferably 50 μm or more and 900 μm or less, and more preferably 100 μm or more and 400 μm or less.
 金属箔としては、銅又は銅合金箔が代表的なものであるが、アルミニウム、ニッケル、亜鉛などの箔を使用することもできる。銅又は銅合金箔の場合、電解箔又は圧延箔を使用することができる。金属箔は、限定的ではないが、プリント回路基板の配線としての使用を考えると、1μm以上、好ましくは5μm以上、および400μ以下、好ましくは120μm以下の厚みを有するのが一般的である。板状キャリアの両面に金属箔を貼り付ける場合、同じ厚みの金属箔を用いても良いし、異なる厚みの金属箔を用いても良い。 As the metal foil, copper or copper alloy foil is a typical one, but foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used. Although not limited, the metal foil generally has a thickness of 1 [mu] m or more, preferably 5 [mu] m or more, and 400 [mu] m or less, preferably 120 [mu] m or less, considering use as a wiring of a printed circuit board. When metal foil is affixed on both surfaces of the plate-like carrier, metal foils having the same thickness may be used, or metal foils having different thicknesses may be used.
 使用する金属箔には各種の表面処理が施されていてもよい。例えば、耐熱性付与を目的とした金属めっき(Niめっき、Ni-Zn合金めっき、Cu-Ni合金めっき、Cu-Zn合金めっき、Znめっき、Cu-Ni-Zn合金めっき、Co-Ni合金めっきなど)、防錆性や耐変色性を付与するためのクロメート処理(クロメート処理液中にZn、P、Ni、Mo、Zr、Ti等の合金元素を1種以上含有させる場合を含む)、表面粗度調整のための粗化処理(例:銅電着粒やCu-Ni-Co合金めっき、Cu-Ni-P合金めっき、Cu-Co合金めっき、Cu-Ni合金めっき、Cu-Co合金めっき、Cu-As合金めっき、Cu-As-W合金めっき等の銅合金めっきによるもの)が挙げられる。粗化処理が金属箔と板状キャリアの接着強度に影響を与えることはもちろん、クロメート処理も大きな影響を与える。クロメート処理は防錆性や耐変色性の観点から重要であるが、接着強度を有意に上昇させるので、接着層を形成する手段として意義がある。 The metal foil used may be subjected to various surface treatments. For example, metal plating for the purpose of imparting heat resistance (Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc. ), Chromate treatment (including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc. are contained in the chromate treatment liquid) for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating). Of course, the roughening treatment affects the adhesive strength between the metal foil and the plate carrier, and the chromate treatment also has a great influence. Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but significantly increases the adhesive strength, and is therefore meaningful as a means for forming an adhesive layer.
 接着領域においては、樹脂と金属箔の接着強度が高いことが望まれるので、例えば、電解銅箔のマット面(M面)を樹脂との接着面とし、粗化処理等の表面処理を施すことによって化学的および物理的アンカー効果による接着力向上が図ることが可能である。また、樹脂側においても、金属箔との接着力をアップするために各種バインダーを添加することもできる。仮接着領域を感光性樹脂などによってマスキングすることにより、接着領域に対して選択的に粗化処理することが可能である。 In the bonding area, it is desired that the adhesive strength between the resin and the metal foil is high. For example, the matte surface (M surface) of the electrolytic copper foil is used as the bonding surface with the resin, and surface treatment such as roughening treatment is performed. It is possible to improve the adhesive force by the chemical and physical anchor effect. Moreover, various binders can also be added on the resin side in order to increase the adhesive strength with the metal foil. By masking the temporary adhesion region with a photosensitive resin or the like, it is possible to selectively roughen the adhesion region.
 一方、仮接着領域においては、金属箔と板状キャリアの接着強度を先述した好ましい範囲に調節するため、貼り合わせ面の表面粗度を、JIS B 0601:2001に準拠して測定した金属箔表面の十点平均粗さ(Rz jis)で表して、3.5μm以下、更に3.0μm以下とすることが好ましい。但し、表面粗度を際限なく小さくするのは手間がかかりコスト上昇の原因となるので、0.1μm以上とするのが好ましく、0.3μm以上とすることがより好ましい。金属箔として電解銅箔を使用する場合、このような表面粗度に調整すれば、光沢面(シャイニー面、S面)及び粗面(マット面、M面)の何れを使用することも可能であるが、S面を用いた方が上記表面粗度への調整が容易である。一方で、前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)は、0.4μm以上10.0μm以下であることが好ましい。 On the other hand, in the temporary adhesion region, the surface roughness of the bonded surface was measured in accordance with JIS B 0601: 2001 in order to adjust the adhesive strength between the metal foil and the plate-like carrier to the preferred range described above. The ten-point average roughness (Rz jis) is preferably 3.5 μm or less, more preferably 3.0 μm or less. However, reducing the surface roughness indefinitely takes time and increases costs, so it is preferably 0.1 μm or more, and more preferably 0.3 μm or more. When electrolytic copper foil is used as the metal foil, it is possible to use either a glossy surface (shiny surface, S surface) or a rough surface (matte surface, M surface) by adjusting to such a surface roughness. However, it is easier to adjust the surface roughness by using the S-plane. On the other hand, it is preferable that the ten-point average roughness (Rz jis) of the surface of the metal foil not contacting the carrier is 0.4 μm or more and 10.0 μm or less.
 また、仮接着領域においては、金属箔の板状キャリアとの貼り合わせ面に対しては、粗化処理等接着強度向上のための表面処理は行わないこともできる。また、本発明に係るキャリア付金属箔の好ましい一実施形態においては、仮接着領域においては、板状キャリア中には、金属箔との接着力をアップするためのバインダーは添加されていない。 Also, in the temporary adhesion region, the surface treatment for improving the adhesive strength such as roughening treatment may not be performed on the bonding surface of the metal foil with the plate-like carrier. Moreover, in preferable one Embodiment of metal foil with a carrier which concerns on this invention, the binder for improving the adhesive force with metal foil is not added in the plate-shaped carrier in the temporary adhesion | attachment area | region.
 キャリア付金属箔を製造するためのホットプレスの条件としては、板状キャリアとしてプリプレグを使用する場合、圧力30~40kg/cm2、プリプレグのガラス転移温度よりも高い温度でホットプレスすることが好ましい。 As conditions for hot pressing for producing a metal foil with a carrier, when a prepreg is used as a plate-like carrier, it is preferable to perform hot pressing at a pressure of 30 to 40 kg / cm 2 and a temperature higher than the glass transition temperature of the prepreg. .
 さらに、別の観点から、本発明は、上述したキャリア付金属箔の用途を提供する。
 第一に、上述したキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで樹脂又は金属箔を1回以上、例えば1~10回繰り返すことを含む多層積層板の製造方法が提供される。
Furthermore, from another viewpoint, this invention provides the use of the metal foil with a carrier mentioned above.
First, production of a multilayer laminated board including laminating a resin on at least one metal foil side of the metal foil with a carrier described above, and then repeating the resin or the metal foil one or more times, for example, 1 to 10 times. A method is provided.
 第二に、上述したキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面金属張積層板、又は金属箔を1回以上、例えば1~10回繰り返す工程を含む多層積層板の製造方法が提供される。 Second, a multilayer including a step of laminating a resin on the metal foil side of the metal foil with carrier described above, and then repeating the resin, single-sided or double-sided metal-clad laminate, or metal foil one or more times, for example, 1 to 10 times A method for manufacturing a laminate is provided.
 上記の多層金属張積層板の製造方法においては、必要に応じて、接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断することができる。当該切断工程は、本発明の効果を十分に発揮するためには、多層金属張積層板の積層完了後に実施することが好ましいが、積層前や積層途中で行うこともできる。積層途中や積層完了後に切断工程を行う場合は、キャリア付金属箔のみならず、積層された樹脂や基板なども一緒に切断されることになるのが通常である。 In the above-described method for producing a multilayer metal-clad laminate, if necessary, the carrier-attached metal foil may be cut in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via an adhesive layer. it can. The cutting step is preferably performed after the completion of the lamination of the multilayer metal-clad laminate in order to sufficiently exhibit the effects of the present invention, but can also be performed before or during the lamination. When the cutting process is performed during or after the completion of lamination, not only the metal foil with carrier but also the laminated resin and substrate are usually cut together.
 さらに、前記板状キャリアと金属箔とを剥離して分離した後は、必要に応じて、剥離により露出した金属箔の一部または全部をエッチングにより除去する工程を行っても良い。 Furthermore, after separating and separating the plate-like carrier and the metal foil, a step of removing a part or all of the metal foil exposed by the peeling by etching may be performed as necessary.
 第四に、上述したキャリア付金属箔の金属箔側にビルドアップ配線層を一層以上積層する工程を含むビルドアップ基板の製造方法が提供される。この際、ビルドアップ配線層はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成することができる。 Fourth, there is provided a method for manufacturing a buildup board including a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with carrier described above. At this time, the build-up wiring layer can be formed using at least one of a full additive method and a semi-additive method.
 フルアディティブ法とは、導体層に金属箔を使用せず、無電解めっき又は/および電解めっきにより導体パターンを形成する方法であり、セミアディティブ法は、例えば金属箔からなるシード層上に無電解金属析出と、電解めっき、エッチング、又はその両者を併用して導体パターンを形成した後、不要なシード層をエッチングして除去することで導体パターンを得る方法である。 The full additive method is a method of forming a conductor pattern by electroless plating and / or electrolytic plating without using a metal foil for the conductor layer. The semi-additive method is an electroless method on a seed layer made of metal foil, for example. In this method, a conductor pattern is formed by using metal deposition and electrolytic plating, etching, or a combination thereof, and then an unnecessary seed layer is removed by etching.
 上述したキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面配線基板、片面若しくは両面金属張積層板、又は金属箔を1回以上、例えば1~10回繰り返して積層する工程を含むビルドアップ基板の製造方法が提供される。 The resin is laminated on the metal foil side of the metal foil with carrier described above, and then the resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, or metal foil is repeatedly laminated at least once, for example, 1 to 10 times. There is provided a method for manufacturing a build-up substrate including the step of:
 上記のビルドアップ基板の製造方法においては、片面若しくは両面配線基板、片面若しくは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、又は樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むことができる。また、前記片面若しくは両面配線基板を構成する金属箔、片面若しくは両面金属張積層板を構成する金属箔、及びキャリア付金属箔を構成する金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むこともできる。 In the manufacturing method of the build-up board, a hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, or a resin. The method may further include conducting conductive plating on the side surface and the bottom surface of the hole. In addition, the step of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
 上記のビルドアップ基板の製造方法においては、配線形成された表面の上に、片面に金属箔を密着させ、更に本発明に係る別のキャリア付金属箔のキャリア側を積層する工程を更に含むこともできる。また、配線形成された表面の上に、樹脂を積層し、当該樹脂に両面に金属箔を密着させた本発明に係るキャリア付金属箔を積層する工程を更に含むこともできる。なお、「配線形成された表面」とは、ビルドアップを行う過程で都度現れる表面に配線形成された部分を意味し、ビルドアップ基板としては最終製品のものも、その途中のものも包含する。 The manufacturing method of the build-up board further includes the step of bringing the metal foil into close contact with one surface on the surface on which the wiring is formed, and further laminating the carrier side of another metal foil with a carrier according to the present invention. You can also. Moreover, it is possible to further include a step of laminating a metal foil with a carrier according to the present invention in which a resin is laminated on the surface on which the wiring is formed and the metal foil is adhered to both sides of the resin. The “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
 また、上記のビルドアップ基板の製造方法においては、接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断することができる。当該切断工程は、本発明の効果を十分に発揮するためには、ビルドアップ基板の積層完了後に実施することが好ましいが、積層前や積層途中で行うこともできる。積層途中や積層完了後に切断工程を行う場合は、キャリア付金属箔のみならず、積層された樹脂や基板なども一緒に切断されることになるのが通常である。切断箇所は、配線形成が阻害されたり既に形成された配線が切断されたりしないように、配線形成領域よりも外側とするべきである。 Further, in the manufacturing method of the build-up board described above, the metal foil with a carrier can be cut in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via an adhesive layer. The cutting step is preferably performed after completion of the lamination of the build-up substrate in order to sufficiently exhibit the effects of the present invention, but can also be performed before or during the lamination. When the cutting process is performed during or after the completion of lamination, not only the metal foil with carrier but also the laminated resin and substrate are usually cut together. The cutting location should be outside the wiring formation region so that the wiring formation is not hindered or the already formed wiring is not cut.
 前記切断後の内側部分におけるキャリア付金属箔に対しては、板状キャリアと金属箔とを剥離して分離し、露出した金属箔の一部または全部をエッチングにより除去する工程を更に行うこともできる。 For the metal foil with a carrier in the inner part after the cutting, a step of peeling and separating the plate-like carrier and the metal foil and further removing a part or all of the exposed metal foil by etching may be further performed. it can.
 なお、上述の多層金属張積層板の製造方法およびビルドアップ基板の製造方法において、各層同士は熱圧着を行うことにより積層させることができる。この熱圧着は、一層一層積層するごとに行ってもよいし、ある程度積層させてからまとめて行ってもよいし、最後に一度にまとめて行ってもよい。 In addition, in the manufacturing method of the above-mentioned multilayer metal-clad laminate and the manufacturing method of a buildup board, each layer can be laminated | stacked by performing thermocompression bonding. This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed collectively at the end.
 以下、上述した用途の具体例として、図4を参照しながら、本発明に係るキャリア付金属箔を利用した4層金属張積層板の製法を説明する。ここで使用するキャリア付金属箔は、板状キャリア11cの片面に金属箔11aを本発明に係る方法で密着させたキャリア付金属箔11である。図示しないが、キャリア付金属箔11の板状キャリア11cと金属箔11aの間の界面には、内周部分の仮接着領域とそれを取り囲む外周部分の接着領域が存在する。このキャリア付金属箔上11に、所望枚数のプリプレグ12、次に内層コア13と称する2層金属張積層板、次にプリプレグ12、更にキャリア付金属箔11を順に重ねることで1組の4層金属張積層板の組み立てユニットが完成する。次に、このユニット14(通称「ページ」と言う)を10回程度繰り返し、プレス組み立て物15(通称「ブック」と言う)を構成する。その後、このブック15を積層金型10で挟んでホットプレス機にセットし、所定の温度及び圧力で加圧成型することにより多数の4層金属張積層板を同時に製造することができる。積層金型10としては例えばステンレス製プレートを使用することができる。プレートは、限定的ではないが、例えば1~10mm程度の厚板を使用することができる。4層以上の金属張積層板についても、一般的には内層コアの層数を上げることで、同様の工程で生産することが可能である。 Hereinafter, as a specific example of the above-mentioned application, a method for producing a four-layer metal-clad laminate using the metal foil with a carrier according to the present invention will be described with reference to FIG. The metal foil with carrier used here is the metal foil with carrier 11 in which the metal foil 11a is adhered to one surface of the plate-like carrier 11c by the method according to the present invention. Although not shown, at the interface between the plate-like carrier 11c of the metal foil with carrier 11 and the metal foil 11a, there is a temporary adhesion region in the inner peripheral portion and an adhesion region in the outer peripheral portion surrounding it. On this metal foil with carrier 11, a desired number of prepregs 12, then a two-layer metal-clad laminate called an inner core 13, then a prepreg 12, and then a metal foil 11 with a carrier are sequentially stacked to form a set of four layers. A metal-clad laminate assembly unit is completed. Next, the unit 14 (referred to as “page”) is repeated about 10 times to form a press assembly 15 (referred to as “book”). Thereafter, a large number of four-layer metal-clad laminates can be produced simultaneously by sandwiching the book 15 between the laminated molds 10 and setting the book 15 in a hot press machine, followed by pressure molding at a predetermined temperature and pressure. As the laminated mold 10, for example, a stainless plate can be used. Although the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used. A metal-clad laminate having four or more layers can generally be produced in the same process by increasing the number of inner core layers.
 次に、樹脂製の板状キャリア11cの両面に金属箔11aを密着させたキャリア付金属箔11を利用したコアレスビルドアップ基板の製法を例示的に説明する。図5を参照すると、この方法では、キャリア付金属箔11の両側にビルドアップ配線層16を必要数積層した後、接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断する。そうすると、キャリア付金属箔を構成するキャリアと金属箔は接着力の弱い部分のみで接着されているに過ぎないため、その後、キャリア付金属箔11から両面の金属箔が容易に剥離可能である。 Next, a method for producing a coreless buildup substrate using the metal foil with carrier 11 in which the metal foil 11a is adhered to both surfaces of the resin plate carrier 11c will be described as an example. Referring to FIG. 5, in this method, after a necessary number of build-up wiring layers 16 are stacked on both sides of the metal foil 11 with a carrier, the inner portion of the carrier is bonded to the metal foil via the adhesive layer. Cut the metal foil with carrier in the thickness direction. Then, since the carrier and metal foil which comprise metal foil with a carrier are adhere | attached only by the part with weak adhesive force, the metal foil of both surfaces can be easily peeled from the metal foil with carrier 11 after that.
 例えば、本発明のキャリア付金属箔の金属箔側に、絶縁層としての樹脂、2層回路基板、絶縁層としての樹脂を順に重ね、その上に金属箔側が樹脂と接触するようにして本発明のキャリア付金属箔の金属箔を順に重ねて積層体とすることでビルドアップ基板を製造することができる。 For example, on the metal foil side of the metal foil with a carrier of the present invention, a resin as an insulating layer, a two-layer circuit board, and a resin as an insulating layer are sequentially stacked, and the metal foil side is in contact with the resin on the metal foil side of the present invention. A build-up substrate can be manufactured by sequentially stacking metal foils of the metal foil with a carrier to form a laminate.
 また、別の方法としては、樹脂製の板状キャリア11cの両面または片面に金属箔を密着させたキャリア付金属箔の少なくともの一つの金属箔側に対して、絶縁層としての樹脂、導体層としての金属箔を順に積層する。次に、必要に応じて金属箔の全面を、ハーフエッチングして厚みを調整する工程を含めてもよい。次に、積層した金属箔の所定位置にレーザー加工を施して金属箔と樹脂を貫通するビアホールを形成し、ビアホールの中のスミアを除去するデスミア処理を施した後、ビアホール底部、側面および金属箔の全面または一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行う。金属箔上の無電解めっきまたは電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成おいてもよい。また、無電解めっき、電解めっき、めっきレジストと金属箔の密着性が不十分である場合には予め金属箔の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、金属箔および、無電解めっき部、電解めっき部の不要部分をエッチングにより除去することで配線を形成する。このようにしてビルドアップ基板を製造することができる。樹脂、銅箔の積層から配線形成までの工程を複数回繰り返し行ってさらに多層のビルドアップ基板としてもよい。
 さらに、このビルドアップ基板の最表面には、本発明の片面に金属箔を密着させたキャリア付金属箔の金属箔の樹脂側を接触させて積層してもよいし、一旦樹脂を積層した後に、本発明の両面に金属箔を密着させたキャリア付金属箔の一方の金属箔を接触させて積層してもよい。
As another method, a resin or conductor layer as an insulating layer is provided on at least one metal foil side of the metal foil with a carrier in which the metal foil is adhered to both surfaces or one surface of the resinous plate-like carrier 11c. Are laminated in order. Next, if necessary, a step of half-etching the entire surface of the metal foil to adjust the thickness may be included. Next, laser processing is performed at a predetermined position of the laminated metal foil to form a via hole penetrating the metal foil and the resin, and after applying a desmear process for removing smear in the via hole, the bottom of the via hole, the side surface and the metal foil Electroless plating is performed on the entire surface or a part of the substrate to form an interlayer connection, and further electrolytic plating is performed as necessary. A plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating. In addition, when the electroless plating, the electrolytic plating, or the adhesion between the plating resist and the metal foil is insufficient, the surface of the metal foil may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, wiring is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured. The process from the lamination of the resin and the copper foil to the wiring formation may be repeated a plurality of times to form a multilayer build-up board.
Furthermore, on the outermost surface of this build-up substrate, the metal side of the metal foil with a carrier having the metal foil adhered to one side of the present invention may be contacted and laminated, or once the resin is laminated Alternatively, one metal foil of the metal foil with carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
 ここで、ビルドアップ基板作製に用いる樹脂としては、熱硬化性樹脂を含有するプリプレグを好適に用いることができる。 Here, a prepreg containing a thermosetting resin can be suitably used as the resin used for manufacturing the build-up substrate.
 また、別の方法としては、本発明の板状キャリアの片面または両面に金属箔、例えば銅箔を貼り合わせて得られるキャリア付金属箔の金属箔の露出表面に、絶縁層としての樹脂(例えばプリプレグまたは感光性樹脂)を積層する。その後、樹脂の所定位置にビアホールを形成する。樹脂として例えばプリプレグを用いる場合、ビアホールはレーザー加工により行うことができる。レーザー加工の後、このビアホールの中のスミアを除去するデスミア処理を施すとよい。また、樹脂として感光性樹脂を用いた場合、フォトリソグラフィ法によりビアホールを形成部の樹脂を除去することができる。次に、ビアホール底部、側面および樹脂の全面または一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行う。樹脂上の無電解めっきまたは電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成おいてもよい。また、無電解めっき、電解めっき、めっきレジストと樹脂の密着性が不十分である場合には予め樹脂の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、無電解めっき部または電解めっき部の不要部分をエッチングにより除去することで配線を形成する。このようにしてビルドアップ基板を製造することができる。樹脂の積層から配線形成までの工程を複数回繰り返し行ってさらに多層のビルドアップ基板としてもよい。
 さらに、このビルドアップ基板の最表面には、本発明の片面に金属箔を密着させたキャリア付金属箔の金属箔の樹脂側を接触させて積層してもよいし、一旦樹脂を積層した後に、本発明の両面に金属箔を密着させたキャリア付金属箔の一方の金属箔を接触させて積層してもよい。
Further, as another method, a resin (for example, an insulating layer) is formed on the exposed surface of the metal foil with a carrier obtained by laminating a metal foil, for example, a copper foil, on one side or both sides of the plate-like carrier of the present invention. Prepreg or photosensitive resin) is laminated. Thereafter, a via hole is formed at a predetermined position of the resin. For example, when a prepreg is used as the resin, the via hole can be formed by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed. When a photosensitive resin is used as the resin, the resin in the via hole forming portion can be removed by a photolithography method. Next, electroless plating is performed on the bottom and side surfaces of the via holes, the entire surface or a part of the resin to form interlayer connections, and further electrolytic plating is performed as necessary. A plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, wiring is formed by removing unnecessary portions of the electroless plating portion or the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured. The steps from resin lamination to wiring formation may be repeated a plurality of times to form a multilayered build-up substrate.
Furthermore, on the outermost surface of this build-up substrate, the metal side of the metal foil with a carrier having the metal foil adhered to one side of the present invention may be contacted and laminated, or once the resin is laminated Alternatively, one metal foil of the metal foil with carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
 このようにして作製された仮のコアレスビルドアップ基板に対しては、めっき工程及び/又はエッチング工程を経て表面に配線を形成し、更にキャリア付金属箔からキャリアを剥離することでビルドアップ配線板が完成する。剥離分離後に露出した金属箔の剥離面に対して、金属箔の一部をエッチングにより除去することにより、配線を形成してもよい。また、全部をエッチングにより除去することも可能である。先述した切断工程は、板状キャリアと銅箔の間で、剥離分離させる直前に実施することもできる。更に、ビルドアップ配線板に電子部品類を搭載することで、プリント回路板が完成する。 For the temporary coreless build-up board thus produced, a build-up wiring board is formed by forming wiring on the surface through a plating process and / or etching process, and further peeling the carrier from the metal foil with carrier. Is completed. You may form wiring by removing a part of metal foil with respect to the peeling surface of the metal foil exposed after peeling isolation | separation. It is also possible to remove all by etching. The cutting process described above can also be performed immediately before separation and separation between the plate-like carrier and the copper foil. Furthermore, a printed circuit board is completed by mounting electronic components on the build-up wiring board.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
 複数の電解銅箔(550mm×550mm×厚さ12μm)を準備し、それぞれの電解銅箔のシャイニー(S)面に対して、下記の条件によるニッケル-亜鉛(Ni-Zn)合金めっき処理およびクロメート(Cr-Znクロメート)処理を施し、次いで、実験例の番号に応じてシランカップリング処理を行った。貼り合わせ面(ここではS面)の十点平均粗さ(Rz jis:JIS B 0031(2003)(JIS B0601:2001)に準拠して測定)を1.5μmとした後、実験例の条件に応じて当該S面またはプリプレグ表面に対して離型剤を塗布し、樹脂として南亜プラスティック社製のプリプレグ(FR-4レジン、550mm×550mm×厚さ200μm)を当該電解銅箔のS面と貼り合わせ、170℃で100分ホットプレス加工を行って、キャリア付銅箔を作製した。 A plurality of electrolytic copper foils (550 mm × 550 mm × thickness 12 μm) were prepared, and nickel-zinc (Ni—Zn) alloy plating treatment and chromate were performed on the shiny (S) surface of each electrolytic copper foil under the following conditions. (Cr—Zn chromate) treatment was performed, and then silane coupling treatment was performed according to the experimental example number. The ten-point average roughness (Rz jis: JIS B 0031 (2003) (measured in accordance with JIS B0601: 2001)) of the bonding surface (here, the S surface) was set to 1.5 μm, and the conditions of the experimental example were satisfied. Accordingly, a release agent is applied to the S surface or the prepreg surface, and a prepreg (FR-4 resin, 550 mm × 550 mm × thickness 200 μm) manufactured by Nanya Plastic Co., Ltd. is used as the resin with the S surface of the electrolytic copper foil. Bonding and hot pressing at 170 ° C. for 100 minutes were performed to prepare a copper foil with a carrier.
 (ニッケル-亜鉛合金めっき)
  Ni濃度 17g/L(NiSO4として添加)
  Zn濃度  4g/L(ZnSO4として添加)
  pH    3.1
  液温    40℃
  電流密度  0.1~10A/dm2
  めっき時間 0.1~10秒
(Nickel-zinc alloy plating)
Ni concentration 17g / L (added as NiSO 4 )
Zn concentration 4g / L (added as ZnSO 4 )
pH 3.1
Liquid temperature 40 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 (クロメート処理)
  Cr濃度    1.4g/L(CrO3またはK2CrO7として添加)
  Zn濃度    0.01~1.0g/L(ZnSO4として添加)
  Na2SO4濃度 10g/L
  pH      4.8
  液温      55℃
  電流密度    0.1~10A/dm2
  めっき時間   0.1~10秒
(Chromate treatment)
Cr concentration 1.4g / L (added as CrO 3 or K 2 CrO 7 )
Zn concentration 0.01 to 1.0 g / L (added as ZnSO 4 )
Na 2 SO 4 concentration 10 g / L
pH 4.8
Liquid temperature 55 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 当該S面またはプリプレグへの離型剤の処理に関しては、離型剤の水溶液をスプレーコーターを用いて塗布してから、100℃の空気中で銅箔表面を乾燥させた後、プリプレグとの貼り合わせを行った。離型剤の使用条件について、離型剤の種類、離型剤を水中に溶解させてから塗布する前までの撹拌時間、水溶液中の離型剤の濃度、水溶液中のアルコール濃度、水溶液のpHを表1に示す。
 また、当該S面またはプリプレグへのシリコーン含有離型剤を用いた樹脂塗膜の形成は、表1に示した組成を有する樹脂塗膜用の組成物をグラビアコート法により塗布した後、ドクターブレードを用いてその厚みを2~4μmに調節した。また、塗布した樹脂塗膜は、150℃で、30秒間加熱して焼き付け処理を行った。なお、表1で示したエポキシ系樹脂としてはビスフェノールA型エポキシ樹脂を用い、メラミン系樹脂としてはメチルエーテル化メラミン樹脂を用いた。
 離型剤の処理が不要である銅箔およびプリプレグの外周部には、実験例に応じて適宜マスキングを行い、離型剤の処理完了後、マスキングを除去して接着領域を得た。
Regarding the treatment of the mold release agent on the S surface or the prepreg, an aqueous solution of the mold release agent is applied using a spray coater, and then the copper foil surface is dried in air at 100 ° C. and then attached to the prepreg. Combined. Regarding the use conditions of the release agent, the type of release agent, the stirring time from when the release agent is dissolved in water to before application, the concentration of the release agent in the aqueous solution, the alcohol concentration in the aqueous solution, the pH of the aqueous solution Is shown in Table 1.
The formation of a resin coating using a silicone-containing release agent on the S-surface or prepreg is performed by applying a composition for a resin coating having the composition shown in Table 1 by a gravure coating method, and then a doctor blade. The thickness was adjusted to 2-4 μm using Moreover, the applied resin coating film was baked by heating at 150 ° C. for 30 seconds. In addition, bisphenol A type epoxy resin was used as the epoxy resin shown in Table 1, and methyl etherified melamine resin was used as the melamine resin.
The outer periphery of the copper foil and the prepreg, which do not require a release agent treatment, was appropriately masked according to the experimental example, and after completion of the release agent treatment, the masking was removed to obtain an adhesive region.
 銅箔の貼り合わせ面の種別、表面処理の条件および表面粗さRz jis、離型剤の使用条件、プリプレグの種類、ならびに銅箔とプリプレグとの積層条件は、表1に示したとおりである。 Table 1 shows the types of copper foil bonding surfaces, surface treatment conditions and surface roughness Rz jis, release agent usage conditions, prepreg types, and lamination conditions of copper foil and prepreg. .
 また、キャリア付銅箔を、当該キャリア付銅箔に対して回路形成などのさらなる加熱処理の際に熱履歴がかかることを想定して、表1に記載の条件の各熱処理を行った。 Further, the copper foil with a carrier was subjected to each heat treatment under the conditions shown in Table 1 assuming that a thermal history is applied to the copper foil with a carrier during further heat treatment such as circuit formation.
 ホットプレスにより得られたキャリア付銅箔、および更に熱処理を行った後のキャリア付銅箔における、離型剤処理されている中央部分(仮接着領域)の銅箔と板状キャリア(加熱後のプリプレグ)との接着強度を測定した。それぞれの結果を表1に示す。 In the copper foil with carrier obtained by hot pressing, and the copper foil with carrier after further heat treatment, the copper foil and the plate carrier (after heating) in the central part (temporary bonding region) treated with the release agent The adhesive strength with the prepreg was measured. The results are shown in Table 1.
 また、剥離作業性を評価するため、仮接着領域を切り出し、それぞれ単位個数当たりの人手による作業時間(時間/個)を評価した。結果を表2に示す。 Also, in order to evaluate the peeling workability, the temporary adhesion region was cut out and the work time (hour / piece) by hand per unit number was evaluated. The results are shown in Table 2.
 また、金属箔とキャリアの間の界面への薬液の染み込みを評価するため、キャリア付銅箔を市販のデスミア液に浸漬して金属箔とキャリア界面部分の浸食幅の最大値を目視にて確認した。デスミア液としては、日本マクダーミッド株式会社製DS224を用い、液温75℃で25分間処理した。結果を表3に示す。 Also, in order to evaluate the penetration of the chemical solution into the interface between the metal foil and the carrier, the copper foil with carrier is immersed in a commercially available desmear solution and the maximum value of the erosion width of the metal foil and the carrier interface is visually confirmed. did. As the desmear liquid, DS224 manufactured by Nihon McDermid Co., Ltd. was used and treated at a liquid temperature of 75 ° C. for 25 minutes. The results are shown in Table 3.
 上記条件で作製されたキャリア付金属箔について、外周領域(接着層)の接着強度をJIS C6481に規定される90度接着強度測定方法に準拠して測定した。接着領域が狭すぎて接着強度を測定するのに足りない場合は、先述した方法に従って適宜接着強度測定用回路幅を調節して測定を行い、10mm幅における90度接着強度(gf/cm)に換算した。当該キャリア付金属箔に対して回路形成などのさらなる加熱処理の際に熱履歴がかかることを想定して、表3に記載の条件の熱処理を行った後の接着強度についてもそれぞれ測定した。結果を表3に示す。 The adhesive strength of the outer peripheral region (adhesive layer) of the metal foil with a carrier produced under the above conditions was measured according to the 90-degree adhesive strength measurement method specified in JIS C6481. If the adhesive area is too narrow to measure the adhesive strength, the measurement is performed by appropriately adjusting the circuit width for measuring the adhesive strength according to the above-described method, and the adhesive strength is 90 degrees adhesive strength (gf / cm) at 10 mm width. Converted. Assuming that a thermal history is applied to the metal foil with a carrier during further heat treatment such as circuit formation, the adhesive strength after heat treatment under the conditions shown in Table 3 was also measured. The results are shown in Table 3.
 各実験例における離型剤の処理領域(仮接着領域)、外周部における接着領域の処理方法とこの部分の接着強度を詳述する。
<実験例1、4~6>
 離型剤の処理領域は図2(a)の形態とした。銅箔両端部の接着領域の幅は実験例1で3mm、実験例4で1mm、実験例5で20mm、実験例6で50mmとした。接着領域において接着層として機能するのは銅箔上に形成された前述のクロメート層である。この接着領域の接着強度は360gf/cmで、十分な接着強度を有していた(離型剤を処理していない実験例12に相当)。しかし、キャリア付銅箔を熱処理した時は接着強度が低下する傾向にある。
<実験例2、7~10>
 離型剤の処理領域(仮接着領域)は図2(b)の形態とした。銅箔およびプリプレグ外周部の接着領域の幅は実験例2で3mm、実験例7で1mm、実験例8で20mm、実験例9および10で50mmとした。接着領域において接着層として機能するのは実験例2においては銅箔の上に形成された前述のクロメート層、実験例7~10においては銅箔の上に形成された前述のクロメート層と、銅箔のクロメート層の上に塗布されたシランカップリング剤である。接着層に用いるシランカップリング剤としては、実験例7では3-グリシドキシプロピルトリメトキシシラン、実験例8ではN-2-アミノエチル-3-アミノプロピルトリメトキシシラン、実験例9ではビニルトリメトキシシラン、実験例10では3-メタクリロキシプロピルトリメトキシシランとした。
 全てのシランカップリング剤について、2.0体積%水溶液を用い、pH7.0で常温12時間撹拌したものをロールコーターを用いて塗布後、100℃の空気中で5分間乾燥させた。実験例7~10における強接着部の接着強度は330~550gf/cmで、十分な接着強度を有する。また、220℃で3時間、6時間、9時間熱処理した後の接着強度についても大部分が200gf/cm以上を維持しており、十分な強度を示した。
<実験例3、11>
 離型剤の処理領域(仮接着領域)は図2(c)の形態とした。銅箔およびプリプレグの四隅部の未処理部(接着領域)の形状は直角二等辺三角形とし、直角を挟む2辺の長さが実験例3で5mm、実験例11で30mmとした。未処理部において強接着層として機能するのは実験例1と同様、銅箔の上に処理された前述のクロメート処理層である。この強接着部の接着強度は360gf/cmで、十分な接着強度を有する。しかし、キャリア付銅箔を熱処理した時は接着強度が低下する傾向にある。
<実験例12>
 離型剤を銅箔の全面に処理した以外は、実験例2と同一の条件でキャリア付銅箔を製作した。すなわち、外周部の接着強度は中心部と同一となる。この時、薬液染み込み量はキャリア付銅箔、およびこれを熱処理した後の全てで20mm以上と大きく、銅箔とプリプレグの界面への薬液の染み込みを防ぐことができないことが分かった。
The treatment region (temporary adhesion region) of the release agent in each experimental example, the treatment method of the adhesion region in the outer peripheral portion, and the adhesive strength of this portion will be described in detail.
<Experimental examples 1, 4 to 6>
The treatment area of the release agent was set as shown in FIG. The width of the adhesive region at both ends of the copper foil was 3 mm in Experimental Example 1, 1 mm in Experimental Example 4, 20 mm in Experimental Example 5, and 50 mm in Experimental Example 6. It is the aforementioned chromate layer formed on the copper foil that functions as an adhesive layer in the adhesive region. The adhesive strength of this adhesive region was 360 gf / cm, and it had sufficient adhesive strength (corresponding to Experimental Example 12 where no release agent was treated). However, when the copper foil with a carrier is heat treated, the adhesive strength tends to decrease.
<Experimental example 2, 7 to 10>
The treatment area (temporary adhesion area) of the release agent was as shown in FIG. The width of the adhesion region of the copper foil and the prepreg outer peripheral part was 3 mm in Experimental Example 2, 1 mm in Experimental Example 7, 20 mm in Experimental Example 8, and 50 mm in Experimental Examples 9 and 10. In the experimental example 2, the chromate layer formed on the copper foil functions as the adhesive layer in the adhesion region. In the experimental examples 7 to 10, the above-described chromate layer formed on the copper foil, and the copper A silane coupling agent applied on the chromate layer of the foil. Examples of the silane coupling agent used in the adhesive layer include 3-glycidoxypropyltrimethoxysilane in Experimental Example 7, N-2-aminoethyl-3-aminopropyltrimethoxysilane in Experimental Example 8, and vinyl trimethyl in Experimental Example 9. Methoxysilane, 3-methacryloxypropyltrimethoxysilane in Experimental Example 10, was used.
About all the silane coupling agents, what was stirred at room temperature for 12 hours at pH 7.0 using a 2.0 volume% aqueous solution was applied using a roll coater, and then dried in air at 100 ° C. for 5 minutes. The adhesive strengths of the strong adhesion portions in Experimental Examples 7 to 10 are 330 to 550 gf / cm, which is sufficient. Further, most of the adhesive strength after heat treatment at 220 ° C. for 3 hours, 6 hours, and 9 hours was maintained at 200 gf / cm or more, indicating sufficient strength.
<Experimental Examples 3 and 11>
The treatment area (temporary adhesion area) of the release agent was as shown in FIG. The shape of the copper foil and the untreated part (adhesion region) at the four corners of the prepreg was a right-angled isosceles triangle, and the length of two sides sandwiching the right angle was 5 mm in Experimental Example 3 and 30 mm in Experimental Example 11. In the untreated portion, the chromate-treated layer treated on the copper foil functions as a strong adhesive layer as in Experimental Example 1. The strong bonding portion has a bonding strength of 360 gf / cm and has a sufficient bonding strength. However, when the copper foil with a carrier is heat treated, the adhesive strength tends to decrease.
<Experimental example 12>
A carrier-attached copper foil was produced under the same conditions as in Experimental Example 2, except that the release agent was treated on the entire surface of the copper foil. That is, the adhesive strength of the outer peripheral portion is the same as that of the central portion. At this time, the amount of the chemical solution soaked was as large as 20 mm or more in all the copper foil with carrier and after the heat treatment thereof, and it was found that the soaking of the chemical solution at the interface between the copper foil and the prepreg could not be prevented.
 表によれば、離型剤は、銅箔の表面にて処理しても、板状キャリア(プリプレグ)の表面に処理しても、その後の積層体の接着強度、加熱後の接着強度、剥離作業性において、同等の結果が得られたことがわかる。 According to the table, the release agent can be processed on the surface of the copper foil or the surface of the plate-like carrier (prepreg), and then the adhesive strength of the laminate, the adhesive strength after heating, and the peeling It can be seen that the same results were obtained in workability.
 全ての実施例および比較例において、板状キャリアとの貼り合わせ面とは反対側の銅箔マット(M)面に対して以下の条件で粗化処理、クロメート処理及びエポキシシラン処理を順に行った。その結果、M面の十点平均粗さ(Rz jis:JIS B 0031(2003)(JIS B0601:2001)に準拠して測定)は3.7μmであった。 In all Examples and Comparative Examples, roughening treatment, chromate treatment, and epoxysilane treatment were sequentially performed under the following conditions on the copper foil mat (M) surface opposite to the bonding surface with the plate-like carrier. . As a result, the ten-point average roughness (Rz jis: JIS B 0031 (2003) (measured in accordance with JIS B0601: 2001)) of the M surface was 3.7 μm.
 (粗化処理)
  Cu濃度 20g/L(CuSO4として添加)
  H2SO4濃度  50~100g/L
  As濃度 0.01~2.0g/L(亜ヒ酸として添加)
  液温    40℃
  電流密度  40~100A/dm2
  めっき時間 0.1~30秒
(Roughening treatment)
Cu concentration 20 g / L (added as CuSO 4 )
H 2 SO 4 concentration 50 ~ 100g / L
As concentration 0.01-2.0 g / L (added as arsenite)
Liquid temperature 40 ℃
Current density 40-100A / dm 2
Plating time 0.1-30 seconds
 (クロメート処理)
  Cr濃度 1.5g/L(K2Cr2O7として添加)
  Zn濃度  0.5g/L(硫酸亜鉛として追加)
  pH 3.9 (硫酸と水酸化カリウムを用いて調整)
  液温    40℃
  電流密度  5A/dm2
  めっき時間 1~5秒
(Chromate treatment)
Cr concentration 1.5 g / L (added as K2Cr2O 7)
Zn concentration 0.5g / L (added as zinc sulfate)
pH 3.9 (adjusted using sulfuric acid and potassium hydroxide)
Liquid temperature 40 ℃
Current density 5A / dm 2
Plating time 1-5 seconds
 (エポキシシラン処理)
 処理液:3-グリシドキシプロピルトリメトキシシラン 0.9体積%水溶液
     pH5.0~9.0
     12時間常温で攪拌したもの
 処理方法:スプレーコーターを用いて処理液を塗布後、100℃の空気中で5分間処理面を乾燥させる。
(Epoxysilane treatment)
Treatment liquid: 3-glycidoxypropyltrimethoxysilane 0.9 volume% aqueous solution pH 5.0 to 9.0
Stirred at room temperature for 12 hours Treatment method: After applying the treatment liquid using a spray coater, the treated surface is dried in air at 100 ° C. for 5 minutes.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実験例1~12と同様の条件で、但し、プリプレグの両側に銅箔を積層して作製したキャリア付銅箔の両側に、FR-4プリプレグ(南亜プラスティック社製)、銅箔(JX日鉱日石金属(株)製、JTC12μm(製品名))を順に重ね、3MPaの圧力で170℃・100分間ホットプレスを行い、4層銅張積層板を作製した。 Under the same conditions as in Experimental Examples 1 to 12, except that FR-4 prepreg (manufactured by Nanya Plastic Co.), copper foil (JX Nippon Mining Co., Ltd.) was formed on both sides of the copper foil with carrier prepared by laminating copper foil on both sides of the prepreg. Nisseki Metal Co., Ltd., JTC 12 μm (product name)) was stacked in order, and hot pressing was performed at a pressure of 3 MPa at 170 ° C. for 100 minutes to prepare a four-layer copper-clad laminate.
 次に、前記4層銅張積層板両表面の銅箔とその下の絶縁層(硬化したプリプレグ)を貫通する直径100μmの孔をレーザー加工機を用いて空けた。続いて、前記孔の底部に露出したキャリア付き銅箔上の銅箔表面と、前記孔の側面、前記4層銅張積層板表面の銅箔上に無電解銅めっき、電気銅めっきにより順に銅めっきを行い、キャリア付銅箔上の銅箔と、4層銅張積層板表面の銅箔との間に電気的接続を形成した。次に、4層銅張積層板表面の銅箔の一部を塩化第二鉄系のエッチング液を用いてエッチングし、回路を形成した。このようにして、4層ビルドアップ基板を作製することができる。 Next, a 100 μm diameter hole penetrating the copper foil on both surfaces of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine. Subsequently, the copper foil surface on the copper foil with a carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate are electrolessly plated with copper and electroplated in order. Plating was performed to form an electrical connection between the copper foil on the carrier-attached copper foil and the copper foil on the surface of the four-layer copper-clad laminate. Next, a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this manner, a four-layer buildup substrate can be produced.
 続いて、前記4層ビルドアップ基板を、前記接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断した後、前記キャリア付銅箔の板状キャリアと銅箔を機械的に剥離して分離することにより、2組の2層ビルドアップ配線板を得た。 Subsequently, after cutting the metal foil with a carrier in the thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via the adhesive layer, the four-layer build-up substrate, Two sets of two-layer build-up wiring boards were obtained by mechanically peeling and separating the plate-like carrier and the copper foil.
 各実験例とも複数の4層ビルドアップ基板を作製した後、それぞれについて、キャリア付銅箔を構成するプリプレグと銅箔との密着具合を目視にて確認したところ、比較例のほうがプリプレグと銅箔との界面で剥がれかかった状態のものが、実施例1~11で得られたものよりも多かった。
 また、実施例3、11と実施例1、2、4~10とを比較すると、実施例1、2、4~10の方がプリプレグと銅箔との界面で剥がれかかった状態の個数が少なかった。
 また、実施例1、4~6と実施例2、7~10とを比較すると、実施例2、7~10の方がプリプレグと銅箔との界面で剥がれかかった状態の個数が少なかった。
 また、実施例2、7~10の各実施例の間で比較すると、実施例7、8、10、9、2の順にプリプレグと銅箔との界面で剥がれかかった状態の個数が少なかった。(すなわち実施例7が最もプリプレグと銅箔との界面で剥がれかかった状態の個数が少なかった。)
In each experimental example, after preparing a plurality of four-layer buildup substrates, the adhesion between the prepreg and the copper foil constituting the carrier-attached copper foil was visually confirmed, and the comparative example was more prepreg and copper foil. There were more than the ones obtained in Examples 1 to 11 in the state of being peeled off at the interface.
Further, when Examples 3 and 11 are compared with Examples 1, 2, 4 to 10, Examples 1, 2, 4 to 10 have a smaller number of states that are about to peel off at the interface between the prepreg and the copper foil. It was.
Further, when Examples 1, 4 to 6 were compared with Examples 2 and 7 to 10, Examples 2 and 7 to 10 had a smaller number of states that were about to peel off at the interface between the prepreg and the copper foil.
Further, when comparing the Examples 2 and 7 to 10, the number of the state where the prepreg and the copper foil were peeled off was small in the order of Examples 7, 8, 10, 9, and 2. (In other words, the number of the state in which Example 7 was almost peeled off at the interface between the prepreg and the copper foil was small.)
10  積層金型
11  キャリア付金属箔
11a 金属箔
11c 板状キャリア
12  プリプレグ
13  内層コア
14  ページ
15  ブック
16  ビルドアップ配線層
200 金属箔
210 仮接着領域
220 接着領域
230 キャリア付金属箔
240 板状キャリア
DESCRIPTION OF SYMBOLS 10 Laminated metal mold 11 Metal foil with carrier 11a Metal foil 11c Plate carrier 12 Prepreg 13 Inner core 14 Page 15 Book 16 Build-up wiring layer 200 Metal foil 210 Temporary adhesion area 220 Adhesion area 230 Metal foil with carrier 240 Plate carrier

Claims (51)

  1.  樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に積層された金属箔とからなるキャリア付金属箔であって、キャリアと金属箔の間の界面は、外周領域のうち少なくとも角部において接着層を介して201~1000gf/cmの接着強度でキャリアと金属箔が接着されており、残部領域において剥離剤を用いて10~200gf/cmの接着強度でキャリアと金属箔が仮接着されているキャリア付金属箔。 A metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil laminated on at least one surface of the carrier, and the interface between the carrier and the metal foil is at least at the corners in the outer peripheral region. The carrier and the metal foil are bonded with an adhesive strength of 201 to 1000 gf / cm through the adhesive layer, and the carrier and the metal foil are temporarily bonded with an adhesive strength of 10 to 200 gf / cm using a release agent in the remaining region. Metal foil with carrier.
  2.  前記離型剤は、次式:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、または一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する請求項1に記載のキャリア付金属箔。
    The mold release agent has the following formula:
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.)
    The metal foil with a carrier of Claim 1 which contains the silane compound, its hydrolysis product, and the condensate of this hydrolysis product which are shown in any 1 or more in combination.
  3.  前記離型剤は、分子内に2つ以下のメルカプト基を有する化合物を含有する請求項1に記載のキャリア付金属箔。 2. The metal foil with a carrier according to claim 1, wherein the release agent contains a compound having two or less mercapto groups in the molecule.
  4.  前記離型剤は、次式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する請求項1に記載のキャリア付金属箔。
    The mold release agent has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
    The metal foil with a carrier of Claim 1 which contains the aluminate compound, titanate compound, zirconate compound shown to these, the hydrolysis product of these, and the condensate of this hydrolysis product individually or in combination.
  5.  前記離型剤は、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択される一種以上の樹脂とを含有する請求項1に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1, wherein the release agent contains silicone and one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin.
  6.  前記接着層は、クロメート層、シランカップリング剤層から選択される少なくとも一層である請求項1~5の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 5, wherein the adhesive layer is at least one layer selected from a chromate layer and a silane coupling agent layer.
  7.  前記シランカップリング剤層の形成に使用されるシランカップリング剤は、エポキシ基、アミノ基、メタクリル基、ビニル基のうちいずれか1つ以上を分子中に有する請求項6に記載のキャリア付金属箔。 The metal with a carrier according to claim 6, wherein the silane coupling agent used for forming the silane coupling agent layer has one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule. Foil.
  8.  キャリアと金属箔の間の界面は、外周全体が接着層を介してキャリアと金属箔が接着されている請求項1~7の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 7, wherein the carrier and the metal foil are bonded to the entire outer periphery of the interface between the carrier and the metal foil via an adhesive layer.
  9.  接着層を介してキャリアと金属箔が接着されている部分が平面視帯状であり、当該部分の幅が0.1mm以上である請求項1~7の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 7, wherein a portion where the carrier and the metal foil are bonded via an adhesive layer has a band shape in plan view, and the width of the portion is 0.1 mm or more. .
  10.  接着層を介してキャリアと金属箔が接着されている部分において、直径0.01mm~10mmの孔が1~10箇所設けられた請求項1~9の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 9, wherein 1 to 10 holes having a diameter of 0.01 mm to 10 mm are provided in a portion where the carrier and the metal foil are bonded via an adhesive layer. .
  11.  樹脂製の板状キャリアがプリプレグである請求項1~10の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 10, wherein the resinous plate-like carrier is a prepreg.
  12.  前記プリプレグは、120~320℃のガラス転移温度Tgを有する請求項11に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 11, wherein the prepreg has a glass transition temperature Tg of 120 to 320 ° C.
  13.  キャリアと金属箔が仮接着されている残部領域において、前記金属箔の前記キャリアと接する側の表面の十点平均粗さ(Rz jis)が、3.5μm以下である請求項1~12の何れか一項に記載のキャリア付金属箔。 The ten-point average roughness (Rz jis) of the surface of the metal foil on the side in contact with the carrier in the remaining region where the carrier and the metal foil are temporarily bonded is 3.5 μm or less. A metal foil with a carrier according to claim 1.
  14.  前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である請求項1~13の何れか一項に記載のキャリア付金属箔。 The metal with a carrier according to any one of claims 1 to 13, wherein the surface of the metal foil not contacting the carrier has a ten-point average roughness (Rz jis) of 0.4 µm to 10.0 µm. Foil.
  15.  前記金属箔の厚みが1μm以上400μm以下である請求項1~14の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 14, wherein a thickness of the metal foil is 1 µm or more and 400 µm or less.
  16.  前記板状キャリアの厚みが5μm以上1000μm以下である請求項1~15の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 15, wherein the thickness of the plate-like carrier is 5 µm or more and 1000 µm or less.
  17.  剥離剤を用いてキャリアと金属箔が仮接着されている残部領域において、220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、金属箔と板状キャリアとの接着強度が、10gf/cm以上200gf/cm以下である請求項1~16の何れか一項に記載のキャリア付金属箔。 Bond strength between metal foil and plate carrier after heating at 220 ° C. for 3 hours, 6 hours or 9 hours in the remaining region where carrier and metal foil are temporarily bonded using a release agent The metal foil with a carrier according to any one of claims 1 to 16, wherein the metal foil is 10 gf / cm or more and 200 gf / cm or less.
  18.  前記金属箔が銅箔である請求項1~17の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 17, wherein the metal foil is a copper foil.
  19.  四隅が面取り処理されている請求項1~18の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 18, wherein the four corners are chamfered.
  20.  請求項1~19の何れか一項に記載のキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで樹脂又は金属箔を1回以上繰り返すことを含む多層金属張積層板の製造方法。 A multilayer metal-clad laminate comprising laminating a resin on at least one metal foil side of the metal foil with a carrier according to any one of claims 1 to 19, and then repeating the resin or the metal foil one or more times. A manufacturing method of a board.
  21.  請求項1~19の何れか一項に記載のキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面金属張積層板、又は金属箔を1回以上回繰り返すことを含む多層金属張積層板の製造方法。 A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of claims 1 to 19, and then the resin, the single-sided or double-sided metal-clad laminate, or the metal foil is repeated one or more times. The manufacturing method of the multilayer metal-clad laminated board containing.
  22.  接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断する工程を含む請求項20又は21に記載の多層金属張積層板の製造方法。 The manufacturing method of the multilayer metal-clad laminate of Claim 20 or 21 including the process of cut | disconnecting metal foil with a carrier in the thickness direction in the inner part rather than the location where the carrier and metal foil are adhere | attached through the contact bonding layer.
  23.  前記切断後の内側部分におけるキャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程と、剥離することにより露出した金属箔の一部または全部をエッチングにより除去する工程を更に含む請求項22に記載の多層金属張積層板の製造方法。 It further includes a step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil in the inner portion after the cutting, and a step of removing a part or all of the metal foil exposed by peeling by etching. The manufacturing method of the multilayer metal-clad laminate of Claim 22.
  24.  請求項20~23の何れか一項に記載の製造方法により得られる多層金属張積層板。 A multilayer metal-clad laminate obtained by the production method according to any one of claims 20 to 23.
  25.  請求項1~19の何れか一項に記載のキャリア付金属箔の金属箔側に、ビルドアップ配線層を一層以上積層する工程を含むビルドアップ基板の製造方法。 A method for manufacturing a buildup substrate, comprising a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of claims 1 to 19.
  26.  ビルドアップ配線層はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される請求項25に記載のビルドアップ基板の製造方法。 The buildup substrate manufacturing method according to claim 25, wherein the buildup wiring layer is formed using at least one of a full additive method and a semiadditive method.
  27.  請求項1~19の何れか一項に記載のキャリア付金属箔の金属箔側に、樹脂を積層し、次いで樹脂、片面若しくは両面配線基板、片面若しくは両面金属張積層板、又は金属箔を1回以上繰り返して積層する工程を含むビルドアップ基板の製造方法。 A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of claims 1 to 19, and then a resin, a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, or a metal foil is 1 A method for manufacturing a build-up substrate including a step of repeatedly laminating at least times.
  28.  請求項27に記載のビルドアップ基板の製造方法において、片面若しくは両面配線基板、片面若しくは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、又は樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むビルドアップ基板の製造方法。 28. The method for manufacturing a build-up board according to claim 27, wherein a hole is formed in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, or a resin. A method for manufacturing a build-up substrate, further comprising the steps of opening and conducting conductive plating on the side surface and bottom surface of the hole.
  29.  請求項27又は28に記載のビルドアップ基板の製造方法において、前記片面若しくは両面配線基板を構成する金属箔、片面若しくは両面金属張積層板を構成する金属箔、及びキャリア付金属箔を構成する金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むビルドアップ基板の製造方法。 29. The build-up board manufacturing method according to claim 27 or 28, wherein the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal constituting the metal foil with carrier A method for manufacturing a build-up substrate, further comprising performing the step of forming a wiring on at least one of the foils once or more.
  30.  配線形成された表面上に、片面に金属箔を密着させた請求項1~19の何れか一項に記載の別のキャリア付金属箔のキャリア側を積層する工程を更に含む請求項27~29の何れか一項に記載のビルドアップ基板の製造方法。 The step of laminating the carrier side of another metal foil with a carrier according to any one of claims 1 to 19, further comprising a step of laminating the metal foil on one side of the surface on which the wiring is formed. The manufacturing method of the buildup board | substrate as described in any one of these.
  31.  前記樹脂の少なくとも一つがプリプレグである請求項27~30の何れか一項に記載のビルドアップ基板の製造方法。 The method for producing a build-up substrate according to any one of claims 27 to 30, wherein at least one of the resins is a prepreg.
  32.  接着層を介してキャリアと金属箔が接着されている箇所よりも内側部分でキャリア付金属箔を厚み方向に切断する工程を更に含む請求項25~31の何れか一項に記載のビルドアップ基板の製造方法。 The buildup substrate according to any one of claims 25 to 31, further comprising a step of cutting the metal foil with a carrier in a thickness direction at a portion inside the portion where the carrier and the metal foil are bonded via the adhesive layer. Manufacturing method.
  33.  請求項32に記載のビルドアップ基板の製造方法によって得られたビルドアップ基板について、ビルドアップ基板の製造に使用したキャリア付金属箔からキャリアを剥離する工程を含むビルドアップ配線板の製造方法。 A buildup wiring board manufacturing method comprising a step of peeling a carrier from a metal foil with a carrier used for manufacturing a buildup board, with respect to the buildup board obtained by the buildup board manufacturing method according to claim 32.
  34.  キャリアを剥離することにより露出した金属箔の一部または全部をエッチングにより除去する工程を更に含む請求項33に記載のビルドアップ配線板の製造方法。 The manufacturing method of the buildup wiring board of Claim 33 which further includes the process of removing a part or all of the metal foil exposed by peeling a carrier by an etching.
  35.  請求項33又は34に記載の方法により得られるビルドアップ配線板。 A build-up wiring board obtained by the method according to claim 33 or 34.
  36.  請求項34又は35に記載の方法によりビルドアップ配線板を製造する工程を含むプリント回路板の製造方法。 A method for producing a printed circuit board, comprising a step of producing a build-up wiring board by the method according to claim 34 or 35.
  37.  一方の表面に離型剤処理領域と離型剤未処理領域を有する金属箔であって、離型剤未処理領域が金属箔の外周領域のうち少なくとも角部に存在する金属箔。 A metal foil having a release agent-treated region and a release agent-untreated region on one surface, wherein the release agent-untreated region is present at least at the corner of the outer peripheral region of the metal foil.
  38.  離型剤未処理領域には接着層が最表面に露出している請求項37に記載の金属箔。 The metal foil according to claim 37, wherein an adhesive layer is exposed on the outermost surface in the untreated part of the release agent.
  39.  離型剤処理領域の下に接着層が形成されている請求項37又は38に記載の金属箔。 The metal foil according to claim 37 or 38, wherein an adhesive layer is formed under the release agent treatment region.
  40.  外周全体が離型剤未処理領域である請求項37~39の何れか一項に記載の金属箔。 40. The metal foil according to any one of claims 37 to 39, wherein the entire outer periphery is a release agent-untreated region.
  41.  離型剤未処理領域が平面視帯状であり、当該領域の幅が0.1mm以上である請求項37~40の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 40, wherein the release agent-untreated region has a band shape in plan view, and the width of the region is 0.1 mm or more.
  42.  金属が銅である請求項37~41の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 41, wherein the metal is copper.
  43.  前記離型剤は、次式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、または一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する請求項37~42の何れか一項に記載の金属箔。
    The mold release agent has the following formula:
    Figure JPOXMLDOC01-appb-C000003
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups wherein one or more hydrogen atoms are replaced by halogen atoms.)
    The metal foil according to any one of claims 37 to 42, which comprises the silane compound shown in the following, a hydrolysis product thereof, and a condensate of the hydrolysis product, alone or in combination.
  44.  前記離型剤は、分子内に2つ以下のメルカプト基を有する化合物を含有する請求項37~42の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 42, wherein the release agent contains a compound having two or less mercapto groups in the molecule.
  45.  前記離型剤は、次式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて含有する請求項37~42の何れか一項に記載の金属箔。
    The mold release agent has the following formula:
    Figure JPOXMLDOC01-appb-C000004
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to the valence of M, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
    The metal according to any one of claims 37 to 42, comprising the aluminate compound, titanate compound, zirconate compound, hydrolysis products thereof, and condensates of the hydrolysis products shown in the above, alone or in combination. Foil.
  46.  前記離型剤は、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択される一種以上の樹脂とを含有する請求項37~42の何れか一項に記載の金属箔。 The metal mold according to any one of claims 37 to 42, wherein the release agent contains silicone and one or more resins selected from an epoxy resin, a melamine resin, and a fluororesin.
  47.  前記接着層は、クロメート層、シランカップリング剤層から選択される少なくとも一層である請求項38~42の何れか一項に記載の金属箔。 The metal foil according to any one of claims 38 to 42, wherein the adhesive layer is at least one layer selected from a chromate layer and a silane coupling agent layer.
  48.  前記シランカップリング剤層の形成に使用されるシランカップリング剤は、エポキシ基、アミノ基、メタクリル基、ビニル基のうちいずれか1つ以上を分子中に有する請求項47に記載の金属箔。 The metal foil according to claim 47, wherein the silane coupling agent used for forming the silane coupling agent layer has any one or more of an epoxy group, an amino group, a methacryl group, and a vinyl group in the molecule.
  49.  離型剤で処理される前の表面の十点平均粗さ(Rz jis)が、3.5μm以下である請求項37~48の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 48, wherein a ten-point average roughness (Rz jis) of the surface before being treated with the release agent is 3.5 µm or less.
  50.  離型剤で処理されない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である請求項37~49の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 49, wherein the ten-point average roughness (Rz jis) of the surface not treated with the release agent is 0.4 µm or more and 10.0 µm or less.
  51.  前記金属箔の厚みが1μm以上400μm以下である請求項37~50の何れか一項に記載の金属箔。 The metal foil according to any one of claims 37 to 50, wherein the thickness of the metal foil is 1 µm or more and 400 µm or less.
PCT/JP2013/077183 2012-10-04 2013-10-04 Carrier-attached metal foil WO2014054812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539857A JP6373189B2 (en) 2012-10-04 2013-10-04 Metal foil with carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222582 2012-10-04
JP2012222582 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054812A1 true WO2014054812A1 (en) 2014-04-10

Family

ID=50435130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077183 WO2014054812A1 (en) 2012-10-04 2013-10-04 Carrier-attached metal foil

Country Status (3)

Country Link
JP (1) JP6373189B2 (en)
TW (1) TWI569953B (en)
WO (1) WO2014054812A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
US20170151755A1 (en) * 2015-12-01 2017-06-01 Materion Corporation Metal-on-ceramic substrates
JP2017177651A (en) * 2016-03-31 2017-10-05 東レKpフィルム株式会社 Copper foil with release film
WO2018003703A1 (en) * 2016-07-01 2018-01-04 三菱瓦斯化学株式会社 Method for manufacturing package substrate for carrying semiconductor element, and method for manufacturing semiconductor element-mounted substrate
CN108696988A (en) * 2017-03-31 2018-10-23 Jx金属株式会社 The manufacturing method of attached release layer copper foil, laminate, the manufacturing method of printing distributing board and e-machine
KR20200079515A (en) 2018-02-20 2020-07-03 미쓰이금속광업주식회사 Copper foil provided with glass carrier and its manufacturing method
WO2022124116A1 (en) 2020-12-08 2022-06-16 三井金属鉱業株式会社 Carrier-attached metal foil and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171899A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Copper foil with release layer, laminate, method for producing printed wiring board and method for producing electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018998A (en) * 2000-07-04 2002-01-22 Fujimori Kogyo Co Ltd Protective film and conductor foil laminate
JP2003059749A (en) * 2001-08-10 2003-02-28 Toyo Metallizing Co Ltd Metal film transfer film for electronic component
JP2009272589A (en) * 2008-05-12 2009-11-19 Nippon Mining & Metals Co Ltd Metal foil with carrier
WO2013132680A1 (en) * 2012-03-06 2013-09-12 フリージア・マクロス株式会社 Carrier-attached metal foil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736048A (en) * 1986-06-04 1988-04-05 Dow Corning Corporation Pressure sensitive adhesive release liner and fluorosilicone compounds, compositions and method therefor
WO2004092271A1 (en) * 2003-04-18 2004-10-28 Asahi Kasei Chemicals Corporation Release film for printed wiring board production
ES2379388T3 (en) * 2007-10-12 2012-04-25 Sihl Gmbh Multi-layer loop label comprising self-adhesive and cold-sealed coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018998A (en) * 2000-07-04 2002-01-22 Fujimori Kogyo Co Ltd Protective film and conductor foil laminate
JP2003059749A (en) * 2001-08-10 2003-02-28 Toyo Metallizing Co Ltd Metal film transfer film for electronic component
JP2009272589A (en) * 2008-05-12 2009-11-19 Nippon Mining & Metals Co Ltd Metal foil with carrier
WO2013132680A1 (en) * 2012-03-06 2013-09-12 フリージア・マクロス株式会社 Carrier-attached metal foil

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863621B2 (en) 2014-06-03 2020-12-08 Mitsui Mining & Smelting Co., Ltd. Metal foil with releasing resin layer, and printed wiring board
JP5936794B2 (en) * 2014-06-03 2016-06-22 三井金属鉱業株式会社 Metal foil with release resin layer and printed wiring board
CN106232350A (en) * 2014-06-03 2016-12-14 三井金属矿业株式会社 Metal forming and the printed circuit board (PCB) of resin bed peeled off by band
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
US20170151755A1 (en) * 2015-12-01 2017-06-01 Materion Corporation Metal-on-ceramic substrates
US11046051B2 (en) * 2015-12-01 2021-06-29 Materion Corporation Metal-on-ceramic substrates
JP2017177651A (en) * 2016-03-31 2017-10-05 東レKpフィルム株式会社 Copper foil with release film
JPWO2018003703A1 (en) * 2016-07-01 2019-05-16 三菱瓦斯化学株式会社 Method of manufacturing package substrate for mounting semiconductor device and method of manufacturing semiconductor device mounting substrate
US10727081B2 (en) 2016-07-01 2020-07-28 Mitsubishi Gas Chemical Company, Inc. Method for manufacturing package substrate for mounting a semiconductor device, and method for manufacturing semiconductor device mounting substrate
TWI718316B (en) * 2016-07-01 2021-02-11 日商三菱瓦斯化學股份有限公司 Method for manufacturing package substrate for mounting semiconductor element, and method for manufacturing semiconductor element mounting substrate
WO2018003703A1 (en) * 2016-07-01 2018-01-04 三菱瓦斯化学株式会社 Method for manufacturing package substrate for carrying semiconductor element, and method for manufacturing semiconductor element-mounted substrate
JP7044997B2 (en) 2016-07-01 2022-03-31 三菱瓦斯化学株式会社 Manufacturing method of package substrate for mounting semiconductor devices and manufacturing method of semiconductor device mounting board
CN108696988A (en) * 2017-03-31 2018-10-23 Jx金属株式会社 The manufacturing method of attached release layer copper foil, laminate, the manufacturing method of printing distributing board and e-machine
KR20200079515A (en) 2018-02-20 2020-07-03 미쓰이금속광업주식회사 Copper foil provided with glass carrier and its manufacturing method
US11756845B2 (en) 2018-02-20 2023-09-12 Mitsui Mining & Smelting Co., Ltd. Copper foil with glass carrier and production method therefor
WO2022124116A1 (en) 2020-12-08 2022-06-16 三井金属鉱業株式会社 Carrier-attached metal foil and method for producing same
KR20230117139A (en) 2020-12-08 2023-08-07 미쓰이금속광업주식회사 Metal foil provided with a carrier and its manufacturing method

Also Published As

Publication number Publication date
TWI569953B (en) 2017-02-11
JPWO2014054812A1 (en) 2016-08-25
JP6373189B2 (en) 2018-08-15
TW201422424A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP6373189B2 (en) Metal foil with carrier
JP6393619B2 (en) Multilayer printed wiring board manufacturing method and base substrate
KR101902128B1 (en) Surface-treated copper foil, copper clad laminate, printed wiring board, electronic device, circuit formation substrate for semiconductor package, semicondeuctor package and process of producing printed wiring board
JP6096787B2 (en) Metal foil with carrier, laminate made of resinous plate carrier and metal foil, and uses thereof
JP6204430B2 (en) Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
TW201811557A (en) Copper foil with release layer, laminated material, method for producing printed wiring board, and method for producing electronic apparatus
JP5887420B2 (en) Metal foil with carrier
WO2017051898A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
JP6327840B2 (en) Resin composition comprising a thermosetting resin and a release agent
JP6393618B2 (en) Multilayer printed wiring board manufacturing method and base substrate
JP2018121085A (en) Method for manufacturing printed wiring board
JP6306865B2 (en) Laminate with resin substrates in close contact with each other in a peelable manner
JP6266965B2 (en) Multilayer printed wiring board manufacturing method and base substrate
WO2017051905A1 (en) Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board
KR20180111659A (en) Copper foil with release layer, laminate, method of manufacturing printed wiring board and method of manufacturing electronic device
WO2017051897A1 (en) Metal foil, metal foil with mold release layer, laminate, printed wiring board, semiconductor package, electronic device and method for producing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843133

Country of ref document: EP

Kind code of ref document: A1