WO2014054734A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2014054734A1
WO2014054734A1 PCT/JP2013/076945 JP2013076945W WO2014054734A1 WO 2014054734 A1 WO2014054734 A1 WO 2014054734A1 JP 2013076945 W JP2013076945 W JP 2013076945W WO 2014054734 A1 WO2014054734 A1 WO 2014054734A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut
positive electrode
bolt
secondary battery
wall surface
Prior art date
Application number
PCT/JP2013/076945
Other languages
French (fr)
Japanese (ja)
Inventor
雄輔 内田
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2014539815A priority Critical patent/JPWO2014054734A1/en
Publication of WO2014054734A1 publication Critical patent/WO2014054734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B41/00Measures against loss of bolts, nuts, or pins; Measures against unauthorised operation of bolts, nuts or pins
    • F16B41/002Measures against loss of bolts, nuts or pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery in which connecting means for connecting an electrode plate group and a terminal structure part is fastened to the terminal structure part using a fastening structure using bolts or bolts and nuts.
  • Patent Document 1 a plurality of tabs of electrode plates are welded to L-shaped current collecting leads (current collecting plates), and the plurality of current collecting leads are tabbed. It is disclosed that parts to be welded are extended in parallel at a predetermined interval, and base portions of a plurality of current collecting leads are overlapped and fixed to a connection portion of an electrode terminal by bolts and welding.
  • An object of the present invention is to provide a secondary battery that prevents the nut or bolt from dropping and does not cause a short circuit with the battery container even when the nut or bolt of the fastening structure is loosened without using welding. There is to do.
  • a secondary battery to be improved by the present invention is an electrode plate group composed of a plurality of electrode plates and a separator, a conductive battery container that houses the electrode plate group, and an outside of the battery container. Terminal portion, terminal body portion electrically connected to electrode plate group, and connection means for connecting terminal body portion and electrode plate group to terminal body portion using bolts or bolts and nuts And a terminal structure portion having a fastening structure.
  • the dimension of the gap between at least one of the bolt head and nut of the fastening structure and the inner wall surface of the battery container is set to a dimension that can prevent the bolt and nut from falling off.
  • the wall surface portion of the inner wall surface of the battery container facing at least one of the bolt head portion and the nut through the gap, or at least one of the bolt head portion and the nut facing the wall surface portion An electrically insulating material that prevents contact between the wall surface and the bolt head or nut is fixed. According to the present invention, even if the bolt or nut is loosened and approaches the inner wall surface of the battery container, the bolt or nut and the inner wall surface of the battery container are not in direct contact due to the presence of the electrically insulating material. Therefore, it is possible to prevent a short circuit accident from occurring without using welding.
  • the connecting means is a plurality of current collector plates between the plurality of current collector plates to which the plurality of tabs are connected and the terminal body portion. It can comprise from the pressing member which pinches
  • the electrical insulating material preferably has a cap shape fitted to the head or nut of the bolt.
  • a cap-shaped electrical insulating material is easy to mount and highly versatile.
  • the nut may be a single nut or a double nut, but when a double nut is used, it is preferable that the electrically insulating material has a cap shape tightly fitted to both the double nut. . When an electrically insulating material fitted to both of the double nuts is used, the electrically insulating material can suppress the double nut from loosening.
  • the cap-shaped electrical insulating material preferably has a size that occupies most of the gap while being fitted to the head or nut of the bolt. If it does in this way, an electrically insulating raw material will function as a stopper member of a volt
  • the electrical insulating material can be integrally formed of rubber or insulating resin material. And it is preferable to make the fitting recessed part of an electrically insulating material into the cylindrical space which has a diameter dimension slightly smaller than the maximum diameter dimension of a bolt head or a nut. Note that the contour shapes of the bolt head and nut are not limited to a general hexagon. If it does in this way, a fitting operation can be carried out, without worrying about the positional relationship between the electrically insulating material and the head of the bolt or the nut. Even if there is some manufacturing error, this error can be absorbed by the deformation of the deformed electrical insulating material.
  • the electrical insulating material may be in the form of a sheet joined or fixed to the wall surface. Since the sheet-like electrically insulating material is less expensive than the cap-like electrically insulating material, the secondary battery can be manufactured at a low cost.
  • FIG. 1 is a schematic longitudinal cross-sectional view which shows the internal structure of the lithium ion secondary battery of FIG. 1
  • B is a figure for demonstrating the structure of an electrode group.
  • It is a schematic front view which shows an internal structure. It is an enlarged view of the principal part of the internal structure of a lithium ion secondary battery.
  • the positive electrode tab of the positive electrode plate, the positive electrode current collector plate, the positive electrode terminal structure portion and the bolt are shown separately is there.
  • FIG. 1 It is a top view of an insulating member. It is a figure which shows the modification of an insulating member. It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 2nd Embodiment of this invention. It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 3rd Embodiment of this invention. It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 4th Embodiment of this invention. It is a figure which shows the modification of the positive electrode tab channel
  • FIG. 1 is a plan view of the appearance of a lithium ion secondary battery 1 as a non-aqueous electrolyte secondary battery to which an embodiment of the current collecting structure of the present invention is applied.
  • 2A is a schematic longitudinal sectional view showing the internal structure of the lithium ion secondary battery 1
  • FIG. 2B is a view for explaining the configuration of the electrode plate group
  • FIG. 3 shows the internal structure.
  • FIG. 4 is an enlarged view of a main part of the internal structure of the lithium ion secondary battery 1.
  • FIG. 2 in order to explain the shape of a bundle of positive electrode tabs 35a described later, only the positive electrode tabs are shown extending from the electrode plate group.
  • FIG. 3 a positive electrode tab 35a and a negative electrode tab 37a, which will be described later, are conceptually drawn without being bent and curved in a bundle.
  • the lithium ion secondary battery 1 of the present embodiment includes an electrode plate group 3 and a stainless steel square battery container 5 that accommodates the electrode plate group 3 therein.
  • the battery container 5 includes a battery can 7 having one end opened, and a battery lid 9. After the electrode plate group 3 is inserted into the battery can 7, the opening peripheral edge of the battery can 7, and the battery lid It is sealed by welding the peripheral part of 9.
  • an aluminum positive electrode terminal structure 11 and a negative electrode terminal structure 13 are fixed to the battery lid 9.
  • the positive electrode terminal structure portion 11 and the negative electrode terminal structure portion 13 include terminal portions 11a and 13a that pass through the cover plate of the battery lid 9 and project outside the battery container 5, and terminal main body portions 11b that are disposed in the battery container. 13b.
  • An annular inner packing 15 is provided between the positive terminal structure 11 and the negative terminal structure 13 and the battery lid 9.
  • An annular outer packing 17 and a terminal washer 19 are provided on the outer side of the battery lid 9 so as to be opposed to the inner packing 15 via the battery lid 9.
  • the positive electrode terminal structure 11 and the negative electrode terminal structure 13 are connected to the battery by a positive terminal nut 21 and a negative terminal nut 23 provided at the tip of the screw portion via an inner packing 15, an outer packing 17, and a terminal washer 19. Each is fixed to a lid 9. A portion of the battery lid 9 where the positive electrode terminal structure 11 and the negative electrode terminal structure 13 are provided ensures a sealed / sealed state in the battery container 5 by the inner packing 15 and the outer packing 17.
  • the battery lid 9 is provided with a gas discharge valve 9a and a liquid injection port 9b welded with stainless steel foil.
  • the gas discharge valve 9a has a function of cleaving the stainless steel foil and releasing the internal gas when the battery internal pressure increases.
  • a non-aqueous electrolyte is injected from the injection port 9b. After injection of the electrolytic solution, the liquid injection port 9b is sealed with a liquid port stopper.
  • the positive electrode side pressing member 25 and the positive electrode current collector laminated portion 27 are attached to the terminal main body portion 11 b of the positive electrode terminal structure portion 11 by bolts 29.
  • the negative electrode side pressing member 31 and the negative electrode current collector laminated portion 33 are attached to the terminal main body portion 13 b of the negative electrode terminal structure portion 13 by bolts 29.
  • the electrode plate group 3 includes, for example, 320 positive electrode plates 35 and 321 negative electrode plates 37 that are alternately stacked via separators 39, respectively. It is configured.
  • the separator 39 prevents the positive electrode plate 35 and the negative electrode plate 37 from contacting and short-circuiting.
  • the positive electrode plate 35 has a positive electrode current collector made of an aluminum foil formed in a substantially rectangular plate shape, and a positive electrode active material layer provided on both surfaces of the positive electrode current collector.
  • a positive electrode tab 35 a is integrally formed on the side of the positive electrode current collector that extends along the battery lid 9.
  • the positive electrode tabs 35a of the plurality of positive electrode plates 35 have the same elongated shape.
  • the plurality of positive electrode tabs 35a are divided into 16 divided positive electrode tab bundles 36, bent into a predetermined shape, and joined to positive electrode current collector plates 41a to 41h described later by ultrasonic welding or laser welding.
  • the negative electrode plate 37 has a negative electrode current collector made of a copper foil formed in a substantially rectangular plate shape, and negative electrode active material layers provided on both surfaces of the negative electrode current collector. ing.
  • the negative electrode tabs 37a of the plurality of negative electrode plates 37 have the same elongated shape.
  • a negative electrode tab 37 a is integrally formed on the side of the negative electrode current collector that extends along the battery lid 9.
  • the negative electrode tab 37a is formed so as not to face the positive electrode tab 35a when the plurality of positive electrode plates 35 and the plurality of negative electrode plates 37 are laminated.
  • the plurality of negative electrode tabs 37a are divided into 16 divided negative electrode tab bundles 38 in the same manner as the divided positive electrode tab bundle 36 shown in FIG.
  • the negative electrode current collector plates 51a to 51h conceptually shown in FIG. 3 have the same shape as the positive electrode current collector plates 41a to 41h in FIG. 4 as shown in FIG.
  • the bundle 38 is bent similarly to the divided positive electrode tab bundle 36.
  • the separator 39 is formed in a substantially rectangular sheet shape by a porous material through which lithium ions can pass.
  • the separator 39 has a size that can prevent the positive electrode current collector of the positive electrode plate 35 and the negative electrode current collector of the negative electrode plate 37 from contacting each other in a stacked state.
  • FIG. 5 illustrates the positive electrode tab 35a, the positive electrode current collector plates 41a to 41h, the positive electrode terminal structure unit 11, and the positive electrode terminal structure unit 11 in order to explain the positive electrode side current collector structure of the nonaqueous electrolyte secondary battery of the present embodiment. It is the figure which showed the volt
  • FIG. 5 illustrates the positive electrode tab 35a, the positive electrode current collector plates 41a to 41h, the positive electrode terminal structure unit 11, and the positive electrode terminal structure unit 11 in order to explain the positive electrode side current collector structure of the nonaqueous electrolyte secondary battery of the present embodiment. It is the figure which showed the volt
  • the lengths of the positive electrode tab 35a and the negative electrode tab 37a are shown to be significantly shorter than the actual length. 4 and 5, the separator and the negative electrode plate are not shown. Further, in FIG. 4, for ease of illustration, the positive electrode current collector plate is illustrated such that the positive electrode tabs of the two positive electrode plates are welded to each other. The positive electrode tabs 35a of the 15 to 20 positive electrode plates 35 are joined to the respective 41a to 41h by welding or the like.
  • two screw holes 11d to which the bolts 29 are fastened are formed on the surface 11c facing in the stacking direction.
  • a fastening structure is configured by the bolt 29 and the two screw holes 11d.
  • the screw holes 11d are formed near the ends on both sides in the longitudinal direction of the surface 11c. Inside the screw hole 11d, a female screw that is screwed into a screw portion provided at the tip of the bolt 29 is formed.
  • the surface 11 c has a size that completely faces the positive electrode side pressing member 25.
  • the terminal main body 13b of the negative electrode terminal structure 13 has two screw holes 13d in which bolts 29 are fastened to the two surfaces 13c facing each other in the stacking direction, like the terminal main body 11b of the positive electrode terminal structure 11. Is formed. A female screw is also formed inside the screw hole 13d. The surface 13 c has a size that completely faces the negative electrode side pressing member 31.
  • the positive electrode side pressing member 25 is formed in a substantially rectangular parallelepiped shape from aluminum.
  • the positive electrode side pressing member 25 is formed with two through holes 25a through which the bolts 29 pass in the vicinity of both ends in the longitudinal direction.
  • the positive electrode side pressing member 25 is attached to the terminal main body portion 11b in a state where the positive electrode current collector plate laminated portion 27 is sandwiched between the positive electrode terminal structure portion 11 and the terminal main body portion 11b.
  • the positive electrode side pressing member 25 and the positive electrode current collector plate lamination portion 27 constitute connection means for connecting the terminal main body portion 11 b and the electrode plate group 3.
  • the terminal main body portion 11b of the present embodiment As shown in FIG. 4, screw holes are formed in the surface facing the surface 11c of the terminal main body portion 11b in the stacking direction, and the terminal main body portion 11b faces the opposite two.
  • Two positive current collector laminated portions 27 are respectively attached to one surface using a positive electrode side pressing member 25 and a bolt 29.
  • a cap-shaped electrical insulating material 30 is fitted to the head of the bolt 29.
  • the dimension of the gap between the head 29a of the bolt 29 having the fastening structure and the inner wall surface of the battery container 5 is set to a dimension that can prevent the bolt 29 from falling off.
  • the cap-shaped electrical insulating material 30 made of rubber or an insulating resin material (for example, polytetrafluoroethylene) prevents such a short circuit. According to the present embodiment, even if the bolt 29 is loosened and approaches the inner wall surface of the battery container 5, the head 29 a of the bolt 29 and the inner wall surface of the battery container 5 are in direct contact due to the presence of the electrical insulating material 30. There is nothing. In the present embodiment, the cap-shaped electrical insulating material 30 has a size that occupies most of the gap while being fitted to the head 29 a of the bolt 29.
  • the electrical insulating material 30 functions as a stopper member for the bolt 29 and can prevent the bolt 29 from proceeding loosening.
  • the fitting recess for fitting the electrical insulating material 30 is a cylindrical space having a diameter slightly smaller than the maximum diameter of the head 29 a of the bolt 29. The fitting operation can be performed without worrying about the positional relationship between the electrical insulating material 30 and the head 29a of the bolt 29. Needless to say, the electrical insulating material 30 may be used in a state where it is not completely fitted to the head portion 29a of the bolt 29 as in the electrical insulating material 30 located on the left side of the paper surface of FIG.
  • the 16 positive current collecting plates 41 are divided into two groups of 8 pieces each.
  • FIG. 5 shows only four positive electrode current collector plates 41a, 41b, 41e, and 41h.
  • the positive electrode current collector plates 41a to 41h are respectively provided with fixed portions 43a to 43h constituting the positive electrode current collector plate lamination portion 27 and welded portions 45a to 45h to which the positive electrode tabs 35a are welded.
  • the fixed portion 43 and the welded portion 45 are configured by bending the positive electrode current collector plate 41 made of aluminum formed in a substantially rectangular shape at the bending portion 47.
  • the positive electrode current collectors 41a to 41h have the same shape before being bent.
  • the fixed portion 43 of the present embodiment has two through holes 49 through which the bolts 29 penetrate in the vicinity of both end portions of the portion sandwiched between the terminal main body portion 11b of the positive electrode terminal structure portion 11 and the positive electrode side pressing member 25. Is formed.
  • the positive electrode current collector laminating portion 27 is configured by sequentially laminating the welded portions 45a to 45h.
  • the positive electrode current collector plate 41a attached at a position adjacent to the positive electrode side pressing member 25 has a welded portion 45a bent in a direction from the terminal body 11b toward the positive electrode side pressing member 25.
  • the positive electrode current collector plate 41a is bent so that the angle of the bent portion 47a between the fixed portion 43a and the welded portion 45a is 80 °.
  • the positive electrode current collector plates 41b to 41d have a welded portion 45a bent in a direction from the terminal body 11b toward the positive electrode side pressing member 25.
  • the angles of the bent portions 47b to 47d of the positive electrode current collector plates 41b to 41d are 90 °, 100 °, and 110 °, respectively.
  • the positive electrode current collector plates 41e to 41h have bent portions 45e to 45h bent in a direction from the positive electrode side pressing member 25 toward the terminal main body portion 11b.
  • the angles of the bent portions 47e to 47h of the positive electrode current collector plates 41e to 41h are 110 °, 100 °, 90 °, and 80 °, respectively.
  • a plate-like insulating member 61 is disposed between the electrode plate group 3 and the positive electrode terminal structure portion 11 and the negative electrode terminal structure portion 13. ing.
  • the insulating member 61 is formed of an insulating material that is light and does not react with the electrolyte, such as polytetrafluoroethylene. As shown in FIG.
  • the insulating member 61 includes four positive electrode tab passages 63 through which a positive electrode tab bundle composed of a plurality of divided positive electrode tab bundles 36 and four negative electrodes through which a negative electrode tab bundle composed of a plurality of divided negative electrode tab bundles 38 pass.
  • a tab passage 65 is provided.
  • the insulating member 61 is provided to prevent a short circuit between the positive electrode terminal structure 11 and the negative electrode plate 37 and a short circuit between the negative electrode terminal structure 13 and the positive electrode plate 35.
  • the four divided positive electrode tab bundles 36 that have passed through one positive electrode tab passage 63 are connected to the terminal body 11b of the positive electrode terminal structure 11 using the connection structure described above.
  • the four divided negative electrode tab bundles 38 that have passed through one negative electrode tab passage 65 are also connected to the negative electrode terminal structure portion 13 using the connection structure described above.
  • the portions of the four divided positive electrode tab bundles 36 that pass through one positive electrode tab passage 63 generate a force that pushes the insulating member 61 toward the electrode plate group 3 side. Is deformed.
  • the divided positive electrode tab bundle 36 is illustrated in order to show the deformed shape of the divided positive electrode tab bundle 36, and therefore, the four divided positive electrode tab bundles 36 are depicted as not pressing the insulating member 61. In practice, however, the insulating member 61 is pushed toward the electrode plate group 3 by the four divided positive electrode tab bundles 36.
  • FIG. 4 the portions of the four divided positive electrode tab bundles 36 that pass through one positive electrode tab passage 63 generate a force that pushes the insulating member 61 toward the electrode plate group 3 side. Is deformed.
  • the divided positive electrode tab bundle 36 is illustrated in order to show the deformed shape of the divided positive
  • the rightmost four divided positive electrode tab bundles 36 are bent in an inverted S shape, and the four right adjacent divided positive electrode tab bundles 36 are bent in an S shape.
  • the four divided positive electrode tab bundles 36 on the right side adjacent to the left are bent in an inverted S shape, and the four leftmost divided positive electrode tab bundles 36 are bent in an S shape. .
  • the insulating member 61 is pushed toward the electrode plate group 3 side by the restoring force of the divided positive electrode tab bundle 36.
  • the portions of the four divided negative electrode tab bundles 38 that have passed through the negative electrode tab passages 65 are also deformed to generate a force that pushes the insulating member 61 toward the electrode plate group 3 side.
  • one positive electrode tab bundle is constituted by four divided positive electrode tab bundles 36
  • one negative electrode tab bundle is constituted by four divided negative electrode tab bundles 38.
  • the two adjacent positive electrode tab bundles and the remaining two adjacent positive electrode tab bundles are each two between the two positive electrode tab passages 63. It is deformed so as to have a symmetrical shape with respect to the virtual plane S extending so as not to cross the positive electrode tab passage 63.
  • the two adjacent negative electrode tab bundles and the remaining two adjacent negative electrode tab bundles each have two negative electrode tabs 65 between two negative electrode tab passages 65.
  • the insulating member 61 can be pushed by the deformed positive electrode tab bundle and negative electrode tab bundle in the widest possible range. As a result, with the four positive electrode tab bundles and the four negative electrode tab bundles, the insulating member 61 can be pushed toward the electrode plate group 3 side, and the displacement of the insulating member 61 can be restricted. The possibility of occurrence of a short circuit can be greatly reduced. Moreover, according to this Embodiment, since the insulating member is comprised from the one member in which the positive electrode tab channel
  • the insulating member 61 ′ may be composed of two divided insulating members 61′A and 61′B that are combined to form the insulating member 61 ′.
  • the two divided insulating members 61'A and 61'B are arranged on both sides of one or more positive electrode tab bundles and one or more negative electrode tab bundles, so that one or more positive electrode tab bundles and one or more negative electrode tab bundles are arranged.
  • the one or more positive electrode tab bundles and the one or more negative electrode tab bundles to surround one or more positive electrode tab passages and one or more negative electrode tab passages to form a split slit 63 'and 65 'respectively.
  • the two divided insulating members 61′A and 61′B have a length dimension that overlaps at the respective tip portions. Specifically, the lengths of the two divided insulating members 61′A and 61′B are determined so that the tip of the divided insulating member 61′B is positioned below the divided insulating member 61′A.
  • the insulating member 61 ′ is constituted by the two divided insulating members 61 ′ A and 61 ′ B in this way, the insulating member even after the electrode plate group 3 is connected to the positive terminal structure 11 and the negative terminal structure 13. 61 'can be attached.
  • FIG. 8 is an enlarged view of a main part of the lithium ion secondary battery according to the second embodiment of the present invention.
  • components similar to those in the first embodiment shown in FIGS. 1 to 6 are given the same number as 100 plus the number given in FIGS. A description thereof will be omitted.
  • the second embodiment since the number of positive and negative electrodes in the electrode plate is halved compared to the first embodiment, the dimension in the thickness direction of the battery container 105 is halved.
  • the number of stacked portions 127 is also halved.
  • one positive electrode integrated plate laminate portion 127 is composed of four positive electrode current collector plates 41a to 41d.
  • a fastening structure is constituted by a double nut including a bolt 129 and two nuts 128A and 128B.
  • the cap-shaped electrical insulating material 130 is fitted to the two nuts 128A and 128B that move due to the looseness of the nuts.
  • the electrically insulating material 130 fitted to both of the double nuts is used, the electrically insulating material 130 suppresses the loosening of the double nut.
  • a similar structure is also adopted in the negative electrode terminal structure.
  • the present embodiment includes a first insulating member 161 and a second insulating member 167 that prevent a short circuit between the positive electrode terminal structure 111 and the negative electrode plate and a short circuit between the negative electrode terminal structure unit and the positive electrode plate. .
  • the negative electrode tab bundle formed by bundling a plurality of negative electrode tabs is such that the bundle portion passing through the negative electrode tab passage 165 of the first insulating member 161 serves as a pole for the first insulating member 161.
  • the electrode plate group 103 has two positive electrode tab bundles and two negative electrode tab bundles, and the two positive electrode tab bundles have two positive electrode tabs 163 between the two positive electrode tab passages 163. It is configured to have a symmetrical shape with respect to the virtual plane S ⁇ b> 1 extending so as not to intersect the passage 163.
  • the two negative electrode tab bundles are also deformed so as to have a symmetrical shape with respect to a virtual plane extending so as not to intersect the two negative electrode tab passages between the two negative electrode tab passages.
  • the insulating member can be pushed by the deformed positive electrode tab bundle and the negative electrode tab bundle in the widest possible range, and the displacement of the first and second insulating members is prevented, so that the occurrence of a short circuit is more sure. Can be reduced.
  • FIG. 9 is an enlarged view of a main part of the lithium ion secondary battery according to the third embodiment of the present invention.
  • the same members as those of the second embodiment shown in FIG. 8 are denoted by the same reference numerals as those in FIG.
  • the third embodiment is the same as the second embodiment except that the first insulating member 161 is not provided, as compared to the second embodiment.
  • the displacement of the insulating member 167 can be regulated by pushing the insulating member 167 toward the positive electrode terminal structure 111 side and the negative electrode terminal structure side by the positive electrode tab bundle and the negative electrode tab bundle. it can.
  • it is possible to prevent breakage of the tab and reduce the possibility of occurrence of a short circuit.
  • FIG. 10 is an enlarged view of a main part of the lithium ion secondary battery according to the fourth embodiment of the present invention.
  • the same components as those of the second embodiment shown in FIG. 8 are denoted by the same reference numerals as those in FIG. To do.
  • the second insulating member 161 is not provided, and the cap-shaped electrical insulating material is not fitted to the double nuts 228A and 228B.
  • a thick sheet-like electrical insulating material 230 is bonded or fixed to the wall surface of the battery case 205, and an insulating resin-made insulating sheet 230 'constituting the thin sheet-like electrical insulating material is an electrode plate group.
  • the electrically insulating material 230 is fixed in order to prevent the loosened nut 228B from coming into contact with the wall surface portion of the inner wall surface of the battery container 205 facing the nut 228B via the gap. .
  • the electrically insulating material 230 is formed of a material that does not react with the electrolytic solution, such as polytetrafluoroethylene, and is adhered to the wall surface portion of the battery container 205 using an adhesive that does not react with the electrolytic solution.
  • the insulating sheet 230 ′ has a length that extends to a position facing the head 229 a of the bolt 229 along the wall surface portion of the battery container 205.
  • the insulating sheet 230 ' is also formed of an insulating resin material that does not react with the electrolyte solution, such as polytetrafluoroethylene. Since the sheet-like electrically insulating material 230 and the insulating sheet 230 ′ are less expensive than the cap-like electrically insulating material, a secondary battery can be manufactured at a low cost.
  • the electrical insulating materials 30, 130, and 230 are formed of a deformable material.
  • the electrical insulating materials 30, 130, and 230 can be formed of a material that does not deform, such as ceramic.
  • the shape of the fitting recess of the electrical insulating materials 30, 130, 230 may be formed slightly larger than the shape of the bolt head or nut.
  • FIG. 11 is a view showing a modification of the positive electrode tab passage 363 or the negative electrode tab passage provided in the insulating member 361.
  • the one or more positive electrode tab passages 363 and the one or more negative electrode tab passages provided in the insulating member 361 are inclined in a direction to draw out the one or more positive electrode tab bundles 336 and the one or more negative electrode tab bundles.
  • the direction in which the positive electrode tab bundle 336 and the negative electrode tab bundle extend can be forced, so that the positive electrode tab bundle 336 and the negative electrode tab bundle are bent into a desired shape. It becomes possible.
  • the lithium ion secondary battery has been described.
  • the present invention is not limited to this, and the present invention may of course be applied to other secondary batteries. .
  • the bolt or nut and the inner wall surface of the battery container are not in direct contact due to the presence of the electrically insulating material. Without using it, it is possible to prevent a short circuit accident from occurring.

Abstract

Provided is a secondary battery in which short-circuiting of a battery container and a nut or a bolt of a fastening structure does not occur, even if the nut or the bolt are loosened. The dimensions of a gap between at least one of either a head part (29a) of the bolt (29) or the nut (128B) of the fastening structure, and an inner wall surface of the battery container (5) are set so as to be capable of preventing the bolt (29) and the nut (128B) from detaching. An electrical insulating material (30) which prevents a wall surface section of the inner wall surface of the battery container (5) from making contact with the head part (29a) of the bolt (29) or the nut (128B) is fixed to the wall surface section which faces at least one of either the bolt head part (29a) or the nut (128B) with the gap therebetween, or is fixed to at least one of either the bolt head part (29a) or the nut (128B) which faces the wall surface section in question.

Description

二次電池Secondary battery
 本発明は、ボルトまたはボルト及びナットを用いた締結構造を用いて極板群と端子構造部を接続する接続手段を端子構造部に締結する二次電池に関するものである。 The present invention relates to a secondary battery in which connecting means for connecting an electrode plate group and a terminal structure part is fastened to the terminal structure part using a fastening structure using bolts or bolts and nuts.
 ナットまたはボルトと導電性の電池容器の内壁面との間の間隙の寸法が、ナットまたはボルトの脱落を阻止できる寸法に設定されている二次電池では、緩んだナットまたはボルトが間隙中に残ることにより、電極端子と電池容器とが緩んだナットまたはボルトを介して短絡する問題がある。 In a secondary battery in which the dimension of the gap between the nut or bolt and the inner wall surface of the conductive battery container is set so as to prevent the nut or bolt from falling off, the loose nut or bolt remains in the gap. As a result, there is a problem that the electrode terminal and the battery container are short-circuited via a loose nut or bolt.
 そこで特許第4494731号公報(特許文献1)には、複数枚の極板のタブをL字状の集電リード(集電板)に溶接したものを複数作り、複数の集電リードをタブが溶接される部分を所定の間隔をあけて平行に延ばし、複数の集電リードの基部を重ねてボルト及び溶接により電極端子の接続部に固定することが開示されている。 Therefore, in Japanese Patent No. 4494731 (Patent Document 1), a plurality of tabs of electrode plates are welded to L-shaped current collecting leads (current collecting plates), and the plurality of current collecting leads are tabbed. It is disclosed that parts to be welded are extended in parallel at a predetermined interval, and base portions of a plurality of current collecting leads are overlapped and fixed to a connection portion of an electrode terminal by bolts and welding.
特許第4494731号公報Japanese Patent No. 4494731
 特許文献1に示された二次電池のように、締結構造に用いられるナットまたはボルトを溶接すると振動の印加が原因となって、ナットまたはボルトが脱落することを確実に防止できる。しかしながらナットまたはボルトの溶接作業を行う際に、溶融金属が落下して極板群を破損するなどし、短絡の原因となる。短絡した不良電池は、例えば自己放電により取り出せるエネルギー量が減り、電池としての働きを失う。また電池電圧による充電制御ができなくなるため、過充電されることにより通常使用範囲外の昇温を招き、場合によっては火災などを引き起こすおそれがある。これらの溶融金属からなる金属異物が原因で不良となった電池が引き起こす問題を考えると、溶接を用いない他の方法でボルトまたはナットの脱落を防止することが望まれる。 As in the secondary battery disclosed in Patent Document 1, when a nut or bolt used in a fastening structure is welded, it is possible to reliably prevent the nut or bolt from falling off due to the application of vibration. However, when performing the welding operation of the nut or bolt, the molten metal falls and damages the electrode plate group, which causes a short circuit. A short-circuited defective battery loses its function as a battery because the amount of energy that can be taken out by, for example, self-discharge is reduced. In addition, since charging control based on the battery voltage cannot be performed, overcharging may cause a temperature rise outside the normal use range, possibly causing a fire or the like. Considering the problems caused by batteries that have become defective due to these metal foreign objects made of molten metal, it is desirable to prevent the bolts or nuts from falling off by other methods that do not use welding.
 本発明の目的は、溶接を用いずに、締結構造のナットまたはボルトが緩んだ場合でも、ナットまたはボルトの落下を防止して、電池容器との短絡が発生することがない二次電池を提供することにある。 An object of the present invention is to provide a secondary battery that prevents the nut or bolt from dropping and does not cause a short circuit with the battery container even when the nut or bolt of the fastening structure is loosened without using welding. There is to do.
 本発明が改良の対象とする二次電池は、複数枚の極板とセパレータとからなる極板群と、極板群を収納する導電性の電池容器と、該電池容器の外部に配置される端子部、極板群と電気的に接続される端子本体部、該端子本体部と極板群とを接続するための接続手段をボルトまたはボルト及びナットを用いて端子本体部に締結するための締結構造を備えた端子構造部とを備えている。そして締結構造のボルトの頭部及びナットの少なくとも一方と、電池容器の内壁面との間の間隙の寸法が、ボルト及びナットの脱落を阻止できる寸法に設定されている。本発明の二次電池では、間隙を介してボルトの頭部及びナットの少なくとも一方と対向する電池容器の内壁面の壁面部分または該壁面部分と対向するボルトの頭部及びナットの少なくとも一方に、壁面部分とボルトの頭部またはナットが接触することを阻止する電気絶縁素材が固定されている。本発明によれば、ボルトまたはナットが緩んで電池容器の内壁面に近づいても、電気絶縁素材の存在により、ボルトまたはナットと電池容器の内壁面とが直接接触することがない。したがって溶接を用いることなく、短絡事故が発生することを防止できる。 A secondary battery to be improved by the present invention is an electrode plate group composed of a plurality of electrode plates and a separator, a conductive battery container that houses the electrode plate group, and an outside of the battery container. Terminal portion, terminal body portion electrically connected to electrode plate group, and connection means for connecting terminal body portion and electrode plate group to terminal body portion using bolts or bolts and nuts And a terminal structure portion having a fastening structure. The dimension of the gap between at least one of the bolt head and nut of the fastening structure and the inner wall surface of the battery container is set to a dimension that can prevent the bolt and nut from falling off. In the secondary battery of the present invention, the wall surface portion of the inner wall surface of the battery container facing at least one of the bolt head portion and the nut through the gap, or at least one of the bolt head portion and the nut facing the wall surface portion, An electrically insulating material that prevents contact between the wall surface and the bolt head or nut is fixed. According to the present invention, even if the bolt or nut is loosened and approaches the inner wall surface of the battery container, the bolt or nut and the inner wall surface of the battery container are not in direct contact due to the presence of the electrically insulating material. Therefore, it is possible to prevent a short circuit accident from occurring without using welding.
 複数枚の極板がそれぞれ1以上のタブを備えている場合、接続手段を、複数枚のタブが接続された複数枚の集電板と、端子本体部との間に複数枚の集電板を挟む押さえ部材とから構成することができる。このような接続手段を用いると、タブを備えた極板を含む極板群と端子構造部との接続が容易になる。 When the plurality of electrode plates each have one or more tabs, the connecting means is a plurality of current collector plates between the plurality of current collector plates to which the plurality of tabs are connected and the terminal body portion. It can comprise from the pressing member which pinches | interposes. When such a connection means is used, the connection between the electrode plate group including the electrode plate provided with the tab and the terminal structure portion is facilitated.
 電気絶縁素材は、ボルトの頭部またはナットに嵌合されたキャップ形状を有しているのが好ましい。キャップ形状の電気絶縁素材であれば、装着が容易で、しかも汎用性が高い。 The electrical insulating material preferably has a cap shape fitted to the head or nut of the bolt. A cap-shaped electrical insulating material is easy to mount and highly versatile.
 ナットは、一つのナットでも、二重ナットでもよいが、二重ナットを用いる場合には、電気絶縁素材は、二重ナットの両方にきつく嵌合されたキャップ形状を有しているのが好ましい。二重ナットの両方に嵌合される電気絶縁素材を用いると、電気絶縁素材は二重ナットが緩むことを抑制することができる。 The nut may be a single nut or a double nut, but when a double nut is used, it is preferable that the electrically insulating material has a cap shape tightly fitted to both the double nut. . When an electrically insulating material fitted to both of the double nuts is used, the electrically insulating material can suppress the double nut from loosening.
 キャップ形状の電気絶縁素材は、ボルトの頭部またはナットに嵌合された状態で間隙の大部分を占領する大きさを有しているのが好ましい。このようにすると電気絶縁素材は、ボルトまたはナットのストッパ部材として機能し、ボルトまたはナットが緩みを進めることを阻止することができる。 The cap-shaped electrical insulating material preferably has a size that occupies most of the gap while being fitted to the head or nut of the bolt. If it does in this way, an electrically insulating raw material will function as a stopper member of a volt | bolt or a nut, and can prevent that a volt | bolt or a nut advances loosening.
 電気絶縁素材は、ゴムまたは絶縁樹脂材料によって一体に形成することができる。そして電気絶縁素材の嵌合凹部を、ボルトの頭部またはナットの最大径寸法よりも僅かに小さい径寸法を有する円柱空間とすることが好ましい。なおボルトの頭部及びナットの輪郭形状は、一般的な六角形に限定されるものではない。このようにすると、電気絶縁素材とボルトの頭部またはナットとの位置関係を気にすることなく、嵌合作業を実施することができる。また製造上の多少の誤差があっても、変形する電気絶縁素材の変形により、この誤差を吸収することができる。 The electrical insulating material can be integrally formed of rubber or insulating resin material. And it is preferable to make the fitting recessed part of an electrically insulating material into the cylindrical space which has a diameter dimension slightly smaller than the maximum diameter dimension of a bolt head or a nut. Note that the contour shapes of the bolt head and nut are not limited to a general hexagon. If it does in this way, a fitting operation can be carried out, without worrying about the positional relationship between the electrically insulating material and the head of the bolt or the nut. Even if there is some manufacturing error, this error can be absorbed by the deformation of the deformed electrical insulating material.
 電気絶縁素材は、壁面部分に接合または固定されているシート状をなしていてもよい。シート状の電気絶縁素材は、キャップ状の電気絶縁素材と比べて、安価であるため、二次電池を安価に製造できる。 The electrical insulating material may be in the form of a sheet joined or fixed to the wall surface. Since the sheet-like electrically insulating material is less expensive than the cap-like electrically insulating material, the secondary battery can be manufactured at a low cost.
本発明の一実施の形態の非水電解液二次電池としてのリチウムイオン二次電池の平面図である。It is a top view of the lithium ion secondary battery as a nonaqueous electrolyte secondary battery of one embodiment of the present invention. (A)は図1のリチウムイオン二次電池の内部構造を示す概略縦断面図であり、(B)は極板群の構成を説明するための図である。(A) is a schematic longitudinal cross-sectional view which shows the internal structure of the lithium ion secondary battery of FIG. 1, (B) is a figure for demonstrating the structure of an electrode group. 内部構造を示す概略正面図である。It is a schematic front view which shows an internal structure. リチウムイオン二次電池の内部構造の要部の拡大図である。It is an enlarged view of the principal part of the internal structure of a lithium ion secondary battery. 本実施の形態の非水電解液二次電池の正極側の集電構造を説明するために、正極板の正極タブ、正極集電板、正極端子構造部及びボルトを分離して示した図である。In order to explain the current collecting structure on the positive electrode side of the non-aqueous electrolyte secondary battery of the present embodiment, the positive electrode tab of the positive electrode plate, the positive electrode current collector plate, the positive electrode terminal structure portion and the bolt are shown separately is there. 絶縁部材の平面図である。It is a top view of an insulating member. 絶縁部材の変形例を示す図である。It is a figure which shows the modification of an insulating member. 本発明の第2の実施の形態のリチウムイオン二次電池の要部を拡大して示す図である。It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のリチウムイオン二次電池の要部を拡大して示す図である。It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 3rd Embodiment of this invention. 本発明の第4の実施の形態のリチウムイオン二次電池の要部を拡大して示す図である。It is a figure which expands and shows the principal part of the lithium ion secondary battery of the 4th Embodiment of this invention. 絶縁部材に設けられる正極タブ通路または負極タブ通路の変形例を示す図である。It is a figure which shows the modification of the positive electrode tab channel | path or negative electrode tab channel | path provided in an insulating member.
[第1の実施の形態]
 以下、図面を参照して本発明の二次電池の実施の形態の構成を詳細に説明する。図1は、本発明の集電構造の一実施の形態を適用した非水電解液二次電池としてのリチウムイオン二次電池1の外観の平面図である。図2(A)はリチウムイオン二次電池1の内部構造を示す概略縦断面図であり、図2(B)は極板群の構成を説明するための図であり、図3は内部構造を示す概略正面図であり、図4はリチウムイオン二次電池1の内部構造の要部の拡大図である。図2乃至図4においては、理解を容易にするためと、図示を容易にするために、一部の部品の寸法を縮小または誇張して描いており、また断面部分を示すハッチングを省略してある。また図2においては、後述する正極タブ35aの束の形状を説明するために、極板群からは正極タブだけが延びているように図示してある。特に図3においては、後述する正極タブ35a及び負極タブ37aを、実際よりも短く且つ束にして湾曲させずに概念的に描いている。
[First Embodiment]
Hereinafter, a configuration of an embodiment of a secondary battery of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view of the appearance of a lithium ion secondary battery 1 as a non-aqueous electrolyte secondary battery to which an embodiment of the current collecting structure of the present invention is applied. 2A is a schematic longitudinal sectional view showing the internal structure of the lithium ion secondary battery 1, FIG. 2B is a view for explaining the configuration of the electrode plate group, and FIG. 3 shows the internal structure. FIG. 4 is an enlarged view of a main part of the internal structure of the lithium ion secondary battery 1. In FIG. 2 to FIG. 4, for ease of understanding and easy illustration, the dimensions of some parts are drawn in a reduced or exaggerated manner, and the hatching indicating the cross section is omitted. is there. In FIG. 2, in order to explain the shape of a bundle of positive electrode tabs 35a described later, only the positive electrode tabs are shown extending from the electrode plate group. In particular, in FIG. 3, a positive electrode tab 35a and a negative electrode tab 37a, which will be described later, are conceptually drawn without being bent and curved in a bundle.
 本実施の形態のリチウムイオン二次電池1は、極板群3と、極板群3を内部に収容するステンレス製の角型の電池容器5とを備えている。電池容器5は、一方の端部が開口する電池缶7と、電池蓋9とを備えており、極板群3を電池缶7に挿入した後、電池缶7の開口周縁部と、電池蓋9の周縁部とを溶接することで密閉されている。 The lithium ion secondary battery 1 of the present embodiment includes an electrode plate group 3 and a stainless steel square battery container 5 that accommodates the electrode plate group 3 therein. The battery container 5 includes a battery can 7 having one end opened, and a battery lid 9. After the electrode plate group 3 is inserted into the battery can 7, the opening peripheral edge of the battery can 7, and the battery lid It is sealed by welding the peripheral part of 9.
 図1及び図3に示すように、電池蓋9には、アルミニウム製の正極端子構造部11及び負極端子構造部13が固定されている。正極端子構造部11及び負極端子構造部13は、電池蓋9の蓋板を貫通して電池容器5の外部に突出する端子部11a及び13aと、電池容器内に配置される端子本体部11b及び13bとをそれぞれ有している。正極端子構造部11及び負極端子構造部13と電池蓋9の間には、円環状の内側パッキン15がそれぞれ設けられている。電池蓋9の外側には、電池蓋9を介して内側パッキン15と対向する位置に、円環状の外側パッキン17と、端子ワッシャ19とが重ねられた状態で設けられている。正極端子構造部11及び負極端子構造部13は、内側パッキン15、外側パッキン17、端子ワッシャ19を介して、ネジ部の先端に設けられた正極端子用ナット21及び負極端子用ナット23により、電池蓋9にそれぞれ固定されている。電池蓋9の正極端子構造部11及び負極端子構造部13が設けられた部分は、内側パッキン15及び外側パッキン17により、電池容器5内の密閉・封止状態を確保している。 As shown in FIGS. 1 and 3, an aluminum positive electrode terminal structure 11 and a negative electrode terminal structure 13 are fixed to the battery lid 9. The positive electrode terminal structure portion 11 and the negative electrode terminal structure portion 13 include terminal portions 11a and 13a that pass through the cover plate of the battery lid 9 and project outside the battery container 5, and terminal main body portions 11b that are disposed in the battery container. 13b. An annular inner packing 15 is provided between the positive terminal structure 11 and the negative terminal structure 13 and the battery lid 9. An annular outer packing 17 and a terminal washer 19 are provided on the outer side of the battery lid 9 so as to be opposed to the inner packing 15 via the battery lid 9. The positive electrode terminal structure 11 and the negative electrode terminal structure 13 are connected to the battery by a positive terminal nut 21 and a negative terminal nut 23 provided at the tip of the screw portion via an inner packing 15, an outer packing 17, and a terminal washer 19. Each is fixed to a lid 9. A portion of the battery lid 9 where the positive electrode terminal structure 11 and the negative electrode terminal structure 13 are provided ensures a sealed / sealed state in the battery container 5 by the inner packing 15 and the outer packing 17.
 図1に示すように、電池蓋9には、ステンレス箔を溶接したガス排出弁9a及び注液口9bが配設されている。ガス排出弁9aは、電池内圧上昇時にステンレス箔が開裂して内部のガスを放出する機能を有している。注液口9bからは、非水電解液が注入される。電解液注入後、液口栓により注液口9bは密閉されている。 As shown in FIG. 1, the battery lid 9 is provided with a gas discharge valve 9a and a liquid injection port 9b welded with stainless steel foil. The gas discharge valve 9a has a function of cleaving the stainless steel foil and releasing the internal gas when the battery internal pressure increases. A non-aqueous electrolyte is injected from the injection port 9b. After injection of the electrolytic solution, the liquid injection port 9b is sealed with a liquid port stopper.
 図3及び図4に一部を示すように、正極端子構造部11の端子本体部11bには、正極側押さえ部材25と正極集電板積層部27とがボルト29により取り付けられている。また、図3に示すように、負極端子構造部13の端子本体部13bには、負極側押さえ部材31と負極集電板積層部33とがボルト29により取り付けられている。 As shown in part in FIGS. 3 and 4, the positive electrode side pressing member 25 and the positive electrode current collector laminated portion 27 are attached to the terminal main body portion 11 b of the positive electrode terminal structure portion 11 by bolts 29. As shown in FIG. 3, the negative electrode side pressing member 31 and the negative electrode current collector laminated portion 33 are attached to the terminal main body portion 13 b of the negative electrode terminal structure portion 13 by bolts 29.
 図2(B)に一部を概略的に示すように、極板群3は、例えば320枚の正極板35と、321枚の負極板37とがそれぞれセパレータ39を介して交互に積層されて構成されている。セパレータ39は、正極板35と負極板37とが接触して短絡することを防止している。 As schematically shown in part in FIG. 2B, the electrode plate group 3 includes, for example, 320 positive electrode plates 35 and 321 negative electrode plates 37 that are alternately stacked via separators 39, respectively. It is configured. The separator 39 prevents the positive electrode plate 35 and the negative electrode plate 37 from contacting and short-circuiting.
 正極板35は、ほぼ長方形形状の板状に形成されたアルミニウム箔からなる正極集電体と、正極集電体の両面に設けられた正極活物質層とを有している。正極集電体の電池蓋9に沿って延びる辺には、正極タブ35aが一体に形成されている。複数の正極板35の正極タブ35aは、同じ細長い形状を有している。複数枚の正極タブ35aは、16本の分割正極タブ束36に分けられ、所定の形状に曲げられて後述する正極集電板41a乃至41hに超音波溶接またはレーザ溶接等により接合されている。 The positive electrode plate 35 has a positive electrode current collector made of an aluminum foil formed in a substantially rectangular plate shape, and a positive electrode active material layer provided on both surfaces of the positive electrode current collector. A positive electrode tab 35 a is integrally formed on the side of the positive electrode current collector that extends along the battery lid 9. The positive electrode tabs 35a of the plurality of positive electrode plates 35 have the same elongated shape. The plurality of positive electrode tabs 35a are divided into 16 divided positive electrode tab bundles 36, bent into a predetermined shape, and joined to positive electrode current collector plates 41a to 41h described later by ultrasonic welding or laser welding.
 図3に示すように、負極板37は、ほぼ長方形形状の板状に形成された銅箔からなる負極集電体と、負極集電体の両面に設けられた負極活物質層とを有している。複数の負極板37の負極タブ37aは、同じ細長い形状を有している。負極集電体の電池蓋9に沿って延びる辺には、負極タブ37aが一体に形成されている。この負極タブ37aは、複数枚の正極板35及び複数枚の負極板37を積層したときに、正極タブ35aと対向しないように形成されている。複数枚の負極タブ37aは、図4に示した分割正極タブ束36と同様に16本の分割負極タブ束38に分けられ、所定の形状に曲げられて負極集電板51a乃至51hに超音波溶接またはレーザ溶接等により接合されている。なお図3において概念的に示した負極集電板51a乃至51hは、後に説明する図5に示すように、図4の正極集電板41a乃至41hと同じ形状を有しており、分割負極タブ束38も分割正極タブ束36と同様に曲げられている。 As shown in FIG. 3, the negative electrode plate 37 has a negative electrode current collector made of a copper foil formed in a substantially rectangular plate shape, and negative electrode active material layers provided on both surfaces of the negative electrode current collector. ing. The negative electrode tabs 37a of the plurality of negative electrode plates 37 have the same elongated shape. A negative electrode tab 37 a is integrally formed on the side of the negative electrode current collector that extends along the battery lid 9. The negative electrode tab 37a is formed so as not to face the positive electrode tab 35a when the plurality of positive electrode plates 35 and the plurality of negative electrode plates 37 are laminated. The plurality of negative electrode tabs 37a are divided into 16 divided negative electrode tab bundles 38 in the same manner as the divided positive electrode tab bundle 36 shown in FIG. 4, bent into a predetermined shape, and ultrasonically applied to the negative electrode current collector plates 51a to 51h. They are joined by welding or laser welding. Note that the negative electrode current collector plates 51a to 51h conceptually shown in FIG. 3 have the same shape as the positive electrode current collector plates 41a to 41h in FIG. 4 as shown in FIG. The bundle 38 is bent similarly to the divided positive electrode tab bundle 36.
 セパレータ39は、リチウムイオンが通過可能な多孔質材によりほぼ長方形形状のシート状に形成されている。なおセパレータ39は、正極板35の正極集電体と負極板37の負極集電体とが積層状態で接触することを阻止できる大きさを有している。 The separator 39 is formed in a substantially rectangular sheet shape by a porous material through which lithium ions can pass. The separator 39 has a size that can prevent the positive electrode current collector of the positive electrode plate 35 and the negative electrode current collector of the negative electrode plate 37 from contacting each other in a stacked state.
 図5は、本実施の形態の非水電解液二次電池の正極側の集電構造を説明するために、正極板の正極タブ35a、正極集電板41a乃至41h、正極端子構造部11及びボルト29を分離して示した図である。なお負極側の集電構造も正極側の集電構造と同じ構造を有しているため、図5には、負極板37の負極タブ37a及び負極集電板51a乃至51hの符号を括弧内に付記して負極側の集電構造の説明を省略する。また図5では、正極タブ35a及び負極タブ37aの長さは、実際より大幅に短く示してある。図4及び図5においては、セパレータ及び負極板を図示していない。また図4では、図示を容易にするために、正極集電板には、2枚の正極板の正極タブがそれぞれ溶接されているように図示しているが、実際には、正極集電板41a乃至41hには、それぞれ15乃至20枚の正極板35の正極タブ35aが溶接等により接合されている。 FIG. 5 illustrates the positive electrode tab 35a, the positive electrode current collector plates 41a to 41h, the positive electrode terminal structure unit 11, and the positive electrode terminal structure unit 11 in order to explain the positive electrode side current collector structure of the nonaqueous electrolyte secondary battery of the present embodiment. It is the figure which showed the volt | bolt 29 isolate | separated. Since the current collector structure on the negative electrode side has the same structure as the current collector structure on the positive electrode side, the reference numerals of the negative electrode tab 37a of the negative electrode plate 37 and the negative electrode current collector plates 51a to 51h are shown in parentheses in FIG. In addition, description of the current collecting structure on the negative electrode side is omitted. In FIG. 5, the lengths of the positive electrode tab 35a and the negative electrode tab 37a are shown to be significantly shorter than the actual length. 4 and 5, the separator and the negative electrode plate are not shown. Further, in FIG. 4, for ease of illustration, the positive electrode current collector plate is illustrated such that the positive electrode tabs of the two positive electrode plates are welded to each other. The positive electrode tabs 35a of the 15 to 20 positive electrode plates 35 are joined to the respective 41a to 41h by welding or the like.
 正極端子構造部11の端子本体部11bには,積層方向に対向する面11cに、ボルト29が締結される2つのネジ孔11dが形成されている。本実施の形態では、ボルト29と2つのネジ孔11dによって締結構造が構成されている。ネジ孔11dは、面11cの長手方向の両側の端部付近に形成される。ネジ孔11dの内部には、ボルト29の先端に設けられたネジ部と螺合される雌ネジが形成されている。面11cは、正極側押さえ部材25と完全に対向する大きさを有している。なお負極端子構造部13の端子本体部13bには、正極端子構造部11の端子本体部11bと同様に、積層方向に対向する2つの面13cに、ボルト29が締結される2つのネジ孔13dが形成されている。ネジ孔13dの内部にも、雌ネジが形成されている。面13cは、負極側押さえ部材31と完全に対向する大きさを有している。 In the terminal body 11b of the positive electrode terminal structure 11, two screw holes 11d to which the bolts 29 are fastened are formed on the surface 11c facing in the stacking direction. In the present embodiment, a fastening structure is configured by the bolt 29 and the two screw holes 11d. The screw holes 11d are formed near the ends on both sides in the longitudinal direction of the surface 11c. Inside the screw hole 11d, a female screw that is screwed into a screw portion provided at the tip of the bolt 29 is formed. The surface 11 c has a size that completely faces the positive electrode side pressing member 25. The terminal main body 13b of the negative electrode terminal structure 13 has two screw holes 13d in which bolts 29 are fastened to the two surfaces 13c facing each other in the stacking direction, like the terminal main body 11b of the positive electrode terminal structure 11. Is formed. A female screw is also formed inside the screw hole 13d. The surface 13 c has a size that completely faces the negative electrode side pressing member 31.
 正極側押さえ部材25は、アルミニウムによりほぼ直方体形状に形成されている。正極側押さえ部材25には、長手方向の両側の端部付近にボルト29が貫通する2つの貫通孔25aが形成されている。正極側押さえ部材25は、正極端子構造部11の端子本体部11bとの間に正極集電板積層部27を挟んだ状態で端子本体部11bに取り付けられる。本実施の形態では、正極側押さえ部材25と正極集電板積層部27とにより端子本体部11bと極板群3とを接続するための接続手段が構成されている。 The positive electrode side pressing member 25 is formed in a substantially rectangular parallelepiped shape from aluminum. The positive electrode side pressing member 25 is formed with two through holes 25a through which the bolts 29 pass in the vicinity of both ends in the longitudinal direction. The positive electrode side pressing member 25 is attached to the terminal main body portion 11b in a state where the positive electrode current collector plate laminated portion 27 is sandwiched between the positive electrode terminal structure portion 11 and the terminal main body portion 11b. In the present embodiment, the positive electrode side pressing member 25 and the positive electrode current collector plate lamination portion 27 constitute connection means for connecting the terminal main body portion 11 b and the electrode plate group 3.
 本実施の形態の端子本体部11bでは、図4に示すように、端子本体部11bの面11cと積層方向に対向する面にもネジ孔を形成しており、端子本体部11bの対向する2つの面に、正極側押さえ部材25とボルト29を用いて2つの正極集電板積層部27がそれぞれ取り付けられている。なおボルト29の頭部には、キャップ状の電気絶縁素材30が嵌合されている。本実施の形態では、締結構造のボルト29の頭部29aと、電池容器5の内壁面との間の間隙の寸法が、ボルト29の脱落を阻止できる寸法に設定されている。そのため緩んだボルト29が間隙中に残ることにより、正極端子構造部11と電池容器5とが緩んだボルトを介して短絡する問題が生じることがある。ゴムまたは絶縁樹脂材料(例えばポリテトラフルオロエチレン)からなるキャップ状の電気絶縁素材30は、このような短絡を防止する。本実施の形態によれば、ボルト29が緩んで電池容器5の内壁面に近づいても、電気絶縁素材30の存在により、ボルト29の頭部29aと電池容器5の内壁面とが直接接触することがない。また本実施の形態では、キャップ形状の電気絶縁素材30は、ボルト29の頭部29aに嵌合された状態で間隙の大部分を占領する大きさを有している。したがって電気絶縁素材30は、ボルト29のストッパ部材として機能し、ボルト29が緩みを進めることを阻止することができる。なお電気絶縁素材30の嵌合用の嵌合凹部は、ボルト29の頭部29aの最大径寸法よりも僅かに小さい径寸法を有する円柱空間である。電気絶縁素材30とボルト29の頭部29aとの位置関係を気にすることなく、嵌合作業を実施することができる。図4の紙面上の左側に位置する電気絶縁素材30のように、ボルト29の頭部29aに完全に嵌合させない状態で、電気絶縁素材30を用いてもよいのは勿論である。 In the terminal main body portion 11b of the present embodiment, as shown in FIG. 4, screw holes are formed in the surface facing the surface 11c of the terminal main body portion 11b in the stacking direction, and the terminal main body portion 11b faces the opposite two. Two positive current collector laminated portions 27 are respectively attached to one surface using a positive electrode side pressing member 25 and a bolt 29. A cap-shaped electrical insulating material 30 is fitted to the head of the bolt 29. In the present embodiment, the dimension of the gap between the head 29a of the bolt 29 having the fastening structure and the inner wall surface of the battery container 5 is set to a dimension that can prevent the bolt 29 from falling off. Therefore, when the loose bolt 29 remains in the gap, there may be a problem that the positive terminal structure 11 and the battery case 5 are short-circuited via the loose bolt. The cap-shaped electrical insulating material 30 made of rubber or an insulating resin material (for example, polytetrafluoroethylene) prevents such a short circuit. According to the present embodiment, even if the bolt 29 is loosened and approaches the inner wall surface of the battery container 5, the head 29 a of the bolt 29 and the inner wall surface of the battery container 5 are in direct contact due to the presence of the electrical insulating material 30. There is nothing. In the present embodiment, the cap-shaped electrical insulating material 30 has a size that occupies most of the gap while being fitted to the head 29 a of the bolt 29. Therefore, the electrical insulating material 30 functions as a stopper member for the bolt 29 and can prevent the bolt 29 from proceeding loosening. The fitting recess for fitting the electrical insulating material 30 is a cylindrical space having a diameter slightly smaller than the maximum diameter of the head 29 a of the bolt 29. The fitting operation can be performed without worrying about the positional relationship between the electrical insulating material 30 and the head 29a of the bolt 29. Needless to say, the electrical insulating material 30 may be used in a state where it is not completely fitted to the head portion 29a of the bolt 29 as in the electrical insulating material 30 located on the left side of the paper surface of FIG.
 本実施の形態では、図5に示すように、16の正極集電板41が8枚ずつの2つのグループに分けられている。図5には、4つの正極集電板41a、41b、41e及び41hのみを図示している。正極集電板41a乃至41hは、正極集電板積層部27を構成する被固定部43a乃至43hと、正極タブ35aが溶接される被溶接部45a乃至45hとをそれぞれ備えている。本実施の形態では、ほぼ直方形形状に形成されたアルミニウムからなる正極集電板41を曲げ部47で折り曲げることにより被固定部43及び被溶接部45を構成している。正極集電板41a乃至41hは、折り曲げる前は、同じ形状を有している。本実施の形態の被固定部43には、正極端子構造部11の端子本体部11b及び正極側押さえ部材25により挟まれる部分の両端の端部付近にボルト29が貫通する2つの貫通孔49が形成されている。正極集電板積層部27は、被溶接部45a乃至45hを順番に積層することにより構成されている。 In this embodiment, as shown in FIG. 5, the 16 positive current collecting plates 41 are divided into two groups of 8 pieces each. FIG. 5 shows only four positive electrode current collector plates 41a, 41b, 41e, and 41h. The positive electrode current collector plates 41a to 41h are respectively provided with fixed portions 43a to 43h constituting the positive electrode current collector plate lamination portion 27 and welded portions 45a to 45h to which the positive electrode tabs 35a are welded. In the present embodiment, the fixed portion 43 and the welded portion 45 are configured by bending the positive electrode current collector plate 41 made of aluminum formed in a substantially rectangular shape at the bending portion 47. The positive electrode current collectors 41a to 41h have the same shape before being bent. The fixed portion 43 of the present embodiment has two through holes 49 through which the bolts 29 penetrate in the vicinity of both end portions of the portion sandwiched between the terminal main body portion 11b of the positive electrode terminal structure portion 11 and the positive electrode side pressing member 25. Is formed. The positive electrode current collector laminating portion 27 is configured by sequentially laminating the welded portions 45a to 45h.
 正極側押さえ部材25に隣接する位置に取り付けられる正極集電板41aは、端子本体部11bから正極側押さえ部材25に向かう方向に被溶接部45aが折り曲げられている。正極集電板41aは、被固定部43aと被溶接部45aとの間の曲げ部47aの角度が80°となるように折り曲げられている。正極集電板41b乃至41dは、正極集電板41aと同様に、端子本体部11bから正極側押さえ部材25に向かう方向に被溶接部45aが折り曲げられている。正極集電板41b乃至41dの曲げ部47b乃至47dの角度は、それぞれ90°、100°、110°である。 The positive electrode current collector plate 41a attached at a position adjacent to the positive electrode side pressing member 25 has a welded portion 45a bent in a direction from the terminal body 11b toward the positive electrode side pressing member 25. The positive electrode current collector plate 41a is bent so that the angle of the bent portion 47a between the fixed portion 43a and the welded portion 45a is 80 °. Similarly to the positive electrode current collector plate 41a, the positive electrode current collector plates 41b to 41d have a welded portion 45a bent in a direction from the terminal body 11b toward the positive electrode side pressing member 25. The angles of the bent portions 47b to 47d of the positive electrode current collector plates 41b to 41d are 90 °, 100 °, and 110 °, respectively.
 正極集電板41e乃至41hは、正極側押さえ部材25から端子本体部11bに向かう方向に被溶接部45e乃至45hが折り曲げられている。正極集電板41e乃至41hの曲げ部47e乃至47hの角度は、それぞれ110°、100°、90°、80°である。本実施の形態の二次電池では、図2乃至図4に示すように、極板群3と正極端子構造部11及び負極端子構造部13との間に、板状の絶縁部材61が配置されている。絶縁部材61は、ポリテトラフルオロエチレン等のように軽く且つ電解液と反応しない絶縁材料で形成されている。図6に示すように、絶縁部材61は、複数の分割正極タブ束36からなる正極タブ束が通る4つの正極タブ通路63と複数の分割負極タブ束38からなる負極タブ束が通る4つの負極タブ通路65を備えている。本実施の形態では、絶縁部材61は、正極端子構造部11と負極板37との短絡及び負極端子構造部13と正極板35との短絡を防止するために設けられている。1つの正極タブ通路63を通った4本の分割正極タブ束36は、正極端子構造部11の端子本体部11bに前述の接続構造を用いて接続されている。また1つの負極タブ通路65を通った4本の分割負極タブ束38も、前述の接続構造を用いて負極端子構造部13に接続されている。本実施の形態では、図4に示すように、1つの正極タブ通路63を通り抜けた4本の分割正極タブ束36の部分が、絶縁部材61を極板群3側に押す力を発生するように変形している。なお図4においては、分割正極タブ束36の変形形状を示すために分割正極タブ束36を図示しているため、4本の分割正極タブ束36では、絶縁部材61を押していないように描かれているが、実際には、4本の分割正極タブ束36によって絶縁部材61は極板群3側に押されている。図4において、最も右側の4本の分割正極タブ束36は、逆S字状に曲げられており、その左隣りの右側の4本の分割正極タブ束36は、S字状に曲げられており、見その左隣りの右側の4本の分割正極タブ束36は、逆S字状に曲げられており、最も左側の4本の分割正極タブ束36は、S字状に曲げられている。このように各分割正極タブ束36を曲げると、分割正極タブ束36の復元力によって、絶縁部材61は極板群3側に押されることになる。また各負極タブ通路65を通り抜けた4本の分割負極タブ束38の部分も、絶縁部材61を極板群3側に押す力を発生するように変形している。 The positive electrode current collector plates 41e to 41h have bent portions 45e to 45h bent in a direction from the positive electrode side pressing member 25 toward the terminal main body portion 11b. The angles of the bent portions 47e to 47h of the positive electrode current collector plates 41e to 41h are 110 °, 100 °, 90 °, and 80 °, respectively. In the secondary battery according to the present embodiment, as shown in FIGS. 2 to 4, a plate-like insulating member 61 is disposed between the electrode plate group 3 and the positive electrode terminal structure portion 11 and the negative electrode terminal structure portion 13. ing. The insulating member 61 is formed of an insulating material that is light and does not react with the electrolyte, such as polytetrafluoroethylene. As shown in FIG. 6, the insulating member 61 includes four positive electrode tab passages 63 through which a positive electrode tab bundle composed of a plurality of divided positive electrode tab bundles 36 and four negative electrodes through which a negative electrode tab bundle composed of a plurality of divided negative electrode tab bundles 38 pass. A tab passage 65 is provided. In the present embodiment, the insulating member 61 is provided to prevent a short circuit between the positive electrode terminal structure 11 and the negative electrode plate 37 and a short circuit between the negative electrode terminal structure 13 and the positive electrode plate 35. The four divided positive electrode tab bundles 36 that have passed through one positive electrode tab passage 63 are connected to the terminal body 11b of the positive electrode terminal structure 11 using the connection structure described above. Further, the four divided negative electrode tab bundles 38 that have passed through one negative electrode tab passage 65 are also connected to the negative electrode terminal structure portion 13 using the connection structure described above. In the present embodiment, as shown in FIG. 4, the portions of the four divided positive electrode tab bundles 36 that pass through one positive electrode tab passage 63 generate a force that pushes the insulating member 61 toward the electrode plate group 3 side. Is deformed. In FIG. 4, the divided positive electrode tab bundle 36 is illustrated in order to show the deformed shape of the divided positive electrode tab bundle 36, and therefore, the four divided positive electrode tab bundles 36 are depicted as not pressing the insulating member 61. In practice, however, the insulating member 61 is pushed toward the electrode plate group 3 by the four divided positive electrode tab bundles 36. In FIG. 4, the rightmost four divided positive electrode tab bundles 36 are bent in an inverted S shape, and the four right adjacent divided positive electrode tab bundles 36 are bent in an S shape. The four divided positive electrode tab bundles 36 on the right side adjacent to the left are bent in an inverted S shape, and the four leftmost divided positive electrode tab bundles 36 are bent in an S shape. . When each divided positive electrode tab bundle 36 is bent in this way, the insulating member 61 is pushed toward the electrode plate group 3 side by the restoring force of the divided positive electrode tab bundle 36. The portions of the four divided negative electrode tab bundles 38 that have passed through the negative electrode tab passages 65 are also deformed to generate a force that pushes the insulating member 61 toward the electrode plate group 3 side.
 本実施の形態では、4本の分割正極タブ束36によって1本の正極タブ束が構成されており、4本の分割負極タブ束38によって1本の負極タブ束が構成されている。そして本実施の形態では、4本の正極タブ束のうち、隣り合う2本の正極タブ束と残りの隣り合う2本の正極タブ束とは、それぞれ2つの正極タブ通路63の間を2つの正極タブ通路63と交差しないように延びる仮想面Sに対して対称的な形状になるように変形している。同様に図示していないが、4本の負極タブ束のうち、隣り合う2つの負極タブ束と残りの隣り合う2つの負極タブ束とは、それぞれ2つの負極タブ通路65の間を2つの負極タブ通路と交差しないように延びる仮想面に対して対称的な形状になるように変形している。このようにすると、絶縁部材61を最大限広い範囲で、変形した正極タブ束及び負極タブ束で押すことができる。その結果、4本の正極タブ束と4本の負極タブ束により、絶縁部材61を極板群3側に押して、絶縁部材61の変位を規制することができ、タブの破損を防止して、短絡の発生の可能性を大幅に低減できる。また本実施の形態によれば、絶縁部材が、正極タブ通路63及び負極タブ通路65が形成された1つの部材から構成されているので、部品点数を少なくすることができる。 In the present embodiment, one positive electrode tab bundle is constituted by four divided positive electrode tab bundles 36, and one negative electrode tab bundle is constituted by four divided negative electrode tab bundles 38. In the present embodiment, of the four positive electrode tab bundles, the two adjacent positive electrode tab bundles and the remaining two adjacent positive electrode tab bundles are each two between the two positive electrode tab passages 63. It is deformed so as to have a symmetrical shape with respect to the virtual plane S extending so as not to cross the positive electrode tab passage 63. Similarly, although not shown in the figure, of the four negative electrode tab bundles, the two adjacent negative electrode tab bundles and the remaining two adjacent negative electrode tab bundles each have two negative electrode tabs 65 between two negative electrode tab passages 65. It is deformed so as to have a symmetrical shape with respect to a virtual plane extending so as not to intersect the tab passage. If it does in this way, the insulating member 61 can be pushed by the deformed positive electrode tab bundle and negative electrode tab bundle in the widest possible range. As a result, with the four positive electrode tab bundles and the four negative electrode tab bundles, the insulating member 61 can be pushed toward the electrode plate group 3 side, and the displacement of the insulating member 61 can be restricted. The possibility of occurrence of a short circuit can be greatly reduced. Moreover, according to this Embodiment, since the insulating member is comprised from the one member in which the positive electrode tab channel | path 63 and the negative electrode tab channel | path 65 were formed, the number of parts can be decreased.
[絶縁部材の変形例]
 図7(A)に示すように、絶縁部材61´は、組み合わされて絶縁部材61´を構成する2つの分割絶縁部材61´A及び61´Bにより構成してもよい。この場合、2つの分割絶縁部材61´A及び61´Bは、1以上の正極タブ束及び1以上の負極タブ束の両側に配置した状態から1以上の正極タブ束及び1以上の負極タブ束に向かって近付けることにより組み合わされる際に、1以上の正極タブ束及び1以上の負極タブ束の周囲を囲んで1以上の正極タブ通路及び1以上の負極タブ通路を構成する分割スリット63´及び65´をそれぞれ備えている。なお本実施の形態では、図7(B)に示すように、2つの分割絶縁部材61´A及び61´Bは、それぞれの先端部において重なる長さ寸法を有している。具体的には、分割絶縁部材61´Bの先端部が分割絶縁部材61´Aの下に位置するように2つの分割絶縁部材61´A及び61´Bの長さが定められている。このように2つの分割絶縁部材61´A及び61´Bにより絶縁部材61´を構成すると、極板群3と正極端子構造部11及び負極端子構造部13との接続を行った後でも絶縁部材61´の取付が可能になる。
[Modification of insulation member]
As shown in FIG. 7A, the insulating member 61 ′ may be composed of two divided insulating members 61′A and 61′B that are combined to form the insulating member 61 ′. In this case, the two divided insulating members 61'A and 61'B are arranged on both sides of one or more positive electrode tab bundles and one or more negative electrode tab bundles, so that one or more positive electrode tab bundles and one or more negative electrode tab bundles are arranged. The one or more positive electrode tab bundles and the one or more negative electrode tab bundles to surround one or more positive electrode tab passages and one or more negative electrode tab passages to form a split slit 63 'and 65 'respectively. In the present embodiment, as shown in FIG. 7B, the two divided insulating members 61′A and 61′B have a length dimension that overlaps at the respective tip portions. Specifically, the lengths of the two divided insulating members 61′A and 61′B are determined so that the tip of the divided insulating member 61′B is positioned below the divided insulating member 61′A. When the insulating member 61 ′ is constituted by the two divided insulating members 61 ′ A and 61 ′ B in this way, the insulating member even after the electrode plate group 3 is connected to the positive terminal structure 11 and the negative terminal structure 13. 61 'can be attached.
[第2の実施の形態]
 図8は、本発明の第2の実施の形態のリチウムイオン二次電池の要部を拡大して示している。図8においては、図1乃至図6に示した第1の実施の形態の構成部材と同様の構成部材には、図1乃至図6に付した符号の数に100を加えた数の符号を付して説明を省略する。第2の実施の形態では、第1の実施の形態よりも極板の正極板及び負極の枚数を半分にしているため、電池容器105の厚み方向の寸法は半分になっており、正極集積板積層部127の数も半分になっている。具体的には、1つの正極集積板積層部127は4枚の正極集電板41a乃至41dによって構成されている。また本実施の形態では、ボルト129と2個のナット128A及び128Bからなる二重ナットによって、締結構造が構成されている。そしてキャップ状の電気絶縁素材130は、ナットの緩みによって移動する2個のナット128A及び128Bに対して嵌合されている。二重ナットの両方に嵌合される電気絶縁素材130を用いると、電気絶縁素材130は二重ナットが緩むことを抑制する。負極端子構造部でも、同様の構造が採用されている。特に本実施の形態では、正極端子構造部111と負極板との短絡及び負極端子構造部と正極板との短絡を防止する第1の絶縁部材161と第2の絶縁部材167とを備えている。複数枚の正極タブが束になって形成された4本の分割正極タブ束136からなる正極タブ束は、第1の絶縁部材161の正極タブ通路163を通り抜けた束部分が第1の絶縁部材161を極板群3側に押す力を発生し且つ第2の絶縁部材167を正極端子構造部側に押す力を発生するように変形している。そして図示していないが、複数枚の負極タブが束になって形成された負極タブ束は、第1の絶縁部材161の負極タブ通路165を通り抜けた束部分が第1の絶縁部材161を極板群側に押す力を発生し且つ第2の絶縁部材167を負極端子構造部側に押す力を発生するように変形している。すなわち本実施の形態では、極板群103が2つの正極タブ束と2つの負極タブ束とを有しており、2つの正極タブ束が、2つの正極タブ通路163の間を2つの正極タブ通路163と交差しないように延びる仮想面S1に対して対称的な形状になるよう構成されている。また2つの負極タブ束も、2つの負極タブ通路の間を2つの負極タブ通路と交差しないように延びる仮想面に対して対称的な形状になるように変形している。このようにすると、絶縁部材を最大限広い範囲で、変形した正極タブ束及び負極タブ束で押すことができ、第1及び第2の絶縁部材の変位を阻止して、短絡の発生をより確実に低減することができる。
[Second Embodiment]
FIG. 8 is an enlarged view of a main part of the lithium ion secondary battery according to the second embodiment of the present invention. In FIG. 8, components similar to those in the first embodiment shown in FIGS. 1 to 6 are given the same number as 100 plus the number given in FIGS. A description thereof will be omitted. In the second embodiment, since the number of positive and negative electrodes in the electrode plate is halved compared to the first embodiment, the dimension in the thickness direction of the battery container 105 is halved. The number of stacked portions 127 is also halved. Specifically, one positive electrode integrated plate laminate portion 127 is composed of four positive electrode current collector plates 41a to 41d. In this embodiment, a fastening structure is constituted by a double nut including a bolt 129 and two nuts 128A and 128B. The cap-shaped electrical insulating material 130 is fitted to the two nuts 128A and 128B that move due to the looseness of the nuts. When the electrically insulating material 130 fitted to both of the double nuts is used, the electrically insulating material 130 suppresses the loosening of the double nut. A similar structure is also adopted in the negative electrode terminal structure. In particular, the present embodiment includes a first insulating member 161 and a second insulating member 167 that prevent a short circuit between the positive electrode terminal structure 111 and the negative electrode plate and a short circuit between the negative electrode terminal structure unit and the positive electrode plate. . A positive electrode tab bundle composed of four divided positive electrode tab bundles 136 formed by bundling a plurality of positive electrode tabs, the bundle portion passing through the positive electrode tab passage 163 of the first insulating member 161 is the first insulating member. It is deformed to generate a force that pushes 161 toward the electrode plate group 3 side and a force that pushes the second insulating member 167 toward the positive electrode terminal structure. Although not shown, the negative electrode tab bundle formed by bundling a plurality of negative electrode tabs is such that the bundle portion passing through the negative electrode tab passage 165 of the first insulating member 161 serves as a pole for the first insulating member 161. It is deformed so as to generate a pressing force to the plate group side and to generate a pressing force to push the second insulating member 167 to the negative electrode terminal structure side. That is, in the present embodiment, the electrode plate group 103 has two positive electrode tab bundles and two negative electrode tab bundles, and the two positive electrode tab bundles have two positive electrode tabs 163 between the two positive electrode tab passages 163. It is configured to have a symmetrical shape with respect to the virtual plane S <b> 1 extending so as not to intersect the passage 163. The two negative electrode tab bundles are also deformed so as to have a symmetrical shape with respect to a virtual plane extending so as not to intersect the two negative electrode tab passages between the two negative electrode tab passages. In this way, the insulating member can be pushed by the deformed positive electrode tab bundle and the negative electrode tab bundle in the widest possible range, and the displacement of the first and second insulating members is prevented, so that the occurrence of a short circuit is more sure. Can be reduced.
[第3の実施の形態]
 図9は、本発明の第3の実施の形態のリチウムイオン二次電池の要部を拡大して示している。図9においては、図8に示した第2の実施の形態の構成部材と同様の構成部材には、図8に付した符号と同じ符号を付して説明を省略する。第3の実施の形態では、第2の実施の形態と比べて、第1の絶縁部材161を備えていない点以外は、第2の実施の形態と同じである。第2の絶縁部材167だけを用いる場合でも、正極タブ束と負極タブ束により、絶縁部材167を正極端子構造部111側及び負極端子構造部側に押して、絶縁部材167の変位を規制することができる。その結果、本実施の形態によれば、タブの破損を防止して、短絡の発生の可能性を低減できる。
[Third Embodiment]
FIG. 9 is an enlarged view of a main part of the lithium ion secondary battery according to the third embodiment of the present invention. In FIG. 9, the same members as those of the second embodiment shown in FIG. 8 are denoted by the same reference numerals as those in FIG. The third embodiment is the same as the second embodiment except that the first insulating member 161 is not provided, as compared to the second embodiment. Even when only the second insulating member 167 is used, the displacement of the insulating member 167 can be regulated by pushing the insulating member 167 toward the positive electrode terminal structure 111 side and the negative electrode terminal structure side by the positive electrode tab bundle and the negative electrode tab bundle. it can. As a result, according to the present embodiment, it is possible to prevent breakage of the tab and reduce the possibility of occurrence of a short circuit.
[第4の実施の形態]
 図10は、本発明の第4の実施の形態のリチウムイオン二次電池の要部を拡大して示している。図10においては、図8に示した第2の実施の形態の構成部材と同様の構成部材には、図8に付した符号の数に100を加えた数の符号を付して説明を省略する。第4の実施の形態では、第2の実施の形態と比べて、第2の絶縁部材161を備えていない点、及び二重ナット228A及び228Bにキャップ状の電気絶縁素材を嵌合していない点、及び厚手のシート状の電気絶縁素材230が電池容器205の壁面部分に接合または固定されている点、薄いシート状の電気絶縁素材を構成する絶縁樹脂製の絶縁シート230´が極板群203と一緒に電池容器205内に挿入されている点である。すなわち本実施の形態では、間隙を介してナット228Bと対向する電池容器205の内壁面の壁面部分に、緩んだナット228Bが接触することを阻止するために、電気絶縁素材230が固定されている。電気絶縁素材230は、ポリテトラフルオロエチレン等のように電解液と反応しない材料で形成されており、電解液と反応しない接着剤を用いて電池容器205の壁面部分に接着されている。また絶縁シート230´は、電池容器205の壁面部分に沿ってボル229の頭部229aと対向する位置まで延びる長さを有している。絶縁シート230´もポリテトラフルオロエチレン等のように電解液と反応しない絶縁樹脂材料で形成されている。シート状の電気絶縁素材230及び絶縁シート230´は、キャップ状の電気絶縁素材と比べて、安価であるため、二次電池を安価に製造できる。
[Fourth Embodiment]
FIG. 10 is an enlarged view of a main part of the lithium ion secondary battery according to the fourth embodiment of the present invention. In FIG. 10, the same components as those of the second embodiment shown in FIG. 8 are denoted by the same reference numerals as those in FIG. To do. In the fourth embodiment, compared to the second embodiment, the second insulating member 161 is not provided, and the cap-shaped electrical insulating material is not fitted to the double nuts 228A and 228B. A thick sheet-like electrical insulating material 230 is bonded or fixed to the wall surface of the battery case 205, and an insulating resin-made insulating sheet 230 'constituting the thin sheet-like electrical insulating material is an electrode plate group. It is that it is inserted into the battery container 205 together with 203. That is, in the present embodiment, the electrically insulating material 230 is fixed in order to prevent the loosened nut 228B from coming into contact with the wall surface portion of the inner wall surface of the battery container 205 facing the nut 228B via the gap. . The electrically insulating material 230 is formed of a material that does not react with the electrolytic solution, such as polytetrafluoroethylene, and is adhered to the wall surface portion of the battery container 205 using an adhesive that does not react with the electrolytic solution. The insulating sheet 230 ′ has a length that extends to a position facing the head 229 a of the bolt 229 along the wall surface portion of the battery container 205. The insulating sheet 230 'is also formed of an insulating resin material that does not react with the electrolyte solution, such as polytetrafluoroethylene. Since the sheet-like electrically insulating material 230 and the insulating sheet 230 ′ are less expensive than the cap-like electrically insulating material, a secondary battery can be manufactured at a low cost.
[電気絶縁素材の変形例]
 上記各実施の形態では、電気絶縁素材30,130,230を変形可能な材料で形成したが、電気絶縁素材30,130,230をセラミック等のように変形しない材料で形成することもできる。この場合には、電気絶縁素材30,130,230の嵌合凹部の形状は、ボルトの頭部またはナットの形状寸法よりも若干大きく形成しておけばよい。
[Modification of electrical insulation material]
In the above embodiments, the electrical insulating materials 30, 130, and 230 are formed of a deformable material. However, the electrical insulating materials 30, 130, and 230 can be formed of a material that does not deform, such as ceramic. In this case, the shape of the fitting recess of the electrical insulating materials 30, 130, 230 may be formed slightly larger than the shape of the bolt head or nut.
[絶縁部材の変形例]
 図11は、絶縁部材361に設けられる正極タブ通路363または負極タブ通路の変形例を示す図である。絶縁部材361に設ける1以上の正極タブ通路363及び1以上の負極タブ通路は、1以上の正極タブ束336及び1以上の負極タブ束を引き出す方向に傾斜している。このような傾斜した正極タブ通路363及び負極タブ通路を用いると、正極タブ束336及び負極タブ束が延びる方向を強制することができるので、正極タブ束336及び負極タブ束を所望の形状に曲げることが可能になる。
[Modification of insulation member]
FIG. 11 is a view showing a modification of the positive electrode tab passage 363 or the negative electrode tab passage provided in the insulating member 361. The one or more positive electrode tab passages 363 and the one or more negative electrode tab passages provided in the insulating member 361 are inclined in a direction to draw out the one or more positive electrode tab bundles 336 and the one or more negative electrode tab bundles. By using such an inclined positive electrode tab passage 363 and negative electrode tab passage, the direction in which the positive electrode tab bundle 336 and the negative electrode tab bundle extend can be forced, so that the positive electrode tab bundle 336 and the negative electrode tab bundle are bent into a desired shape. It becomes possible.
 さらに上記各実施の形態では、リチウムイオン二次電池について説明をしたが、本発明はこれに限定されるものではなく、他の二次電池に本発明を適用しても良いのは勿論である。 Further, in each of the above embodiments, the lithium ion secondary battery has been described. However, the present invention is not limited to this, and the present invention may of course be applied to other secondary batteries. .
 また上記実施の形態は、積層型の極板群を備えた二次電池に本発明を適用したものであるが、本発明は捲回型の極板群を備えた二次電池にも適用できるのは勿論である。 Moreover, although the said embodiment applies this invention to the secondary battery provided with the laminated type electrode plate group, this invention is applicable also to the secondary battery provided with the winding type electrode plate group. Of course.
 本発明によれば、ボルトまたはナットが緩んで電池容器の内壁面に近づいても、電気絶縁素材の存在により、ボルトまたはナットと電池容器の内壁面とが直接接触することがないので、溶接を用いることなく、短絡事故が発生することを防止できる。 According to the present invention, even if the bolt or nut is loosened and approaches the inner wall surface of the battery container, the bolt or nut and the inner wall surface of the battery container are not in direct contact due to the presence of the electrically insulating material. Without using it, it is possible to prevent a short circuit accident from occurring.
1     リチウムイオン二次電池
3     極板群
5     電池容器
7     電池缶
9     電池蓋
9a    ガス排出弁
9b    注液口
11    正極端子構造部
11a   端子部
11b   端子本体部
11d   ネジ孔
13    負極端子構造部
13b   端子本体部
13d   ネジ孔
27    正極集電板積層部
29    ボルト
29a   頭部
30    電気絶縁素材
35a   正極タブ
35    正極板
36    分割正極タブ束
37a   負極タブ
37    負極板
38    分割負極タブ束
39    セパレータ
41a乃至41h   正極集電板
43a乃至43h   被固定部
45a乃至45h   被溶接部
51a乃至51h   負極集電板
61    絶縁部材
63    正極タブ通路
65    負極タブ通路
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 3 Electrode board group 5 Battery container 7 Battery can 9 Battery cover 9a Gas discharge valve 9b Injection port 11 Positive electrode terminal structure part 11a Terminal part 11b Terminal body part 11d Screw hole 13 Negative electrode terminal structure part 13b Terminal body Portion 13d Screw hole 27 Positive electrode current collector plate stack 29 Bolt 29a Head 30 Electrical insulation material 35a Positive electrode tab 35 Positive electrode plate 36 Split positive electrode tab bundle 37a Negative electrode tab 37 Negative electrode plate 38 Split negative electrode tab bundle 39 Separator 41a to 41h Positive electrode current collector Plates 43a to 43h Fixed portions 45a to 45h Welded portions 51a to 51h Negative electrode current collector plate 61 Insulating member 63 Positive electrode tab passage 65 Negative electrode tab passage

Claims (7)

  1.  複数枚の極板とセパレータとからなる極板群と、
     前記極板群を収納する導電性の電池容器と、
     前記電池容器の外部に配置される端子部、前記極板群と電気的に接続される端子本体部、前記端子本体部と前記極板群とを接続するための接続手段をボルトまたはボルト及びナットを用いて前記端子本体部に締結するための締結構造を備えた端子構造部とを備え、
     前記締結構造の前記ボルトの頭部及び前記ナットの少なくとも一方と、前記電池容器の内壁面との間の間隙の寸法が、前記ボルト及び前記ナットの脱落を阻止できる寸法に設定されている二次電池であって、
     前記間隙を介して前記ボルトの頭部及び前記ナットの少なくとも一方と対向する前記内壁面の壁面部分または前記壁面部分と対向する前記ボルトの頭部及び前記ナットの少なくとも一方に、前記壁面部分と前記ボルトの頭部または前記ナットが接触することを阻止する電気絶縁素材が固定されていることを特徴とする二次電池。
    An electrode plate group comprising a plurality of electrode plates and separators;
    A conductive battery container for housing the electrode plate group;
    A terminal part arranged outside the battery case, a terminal main body part electrically connected to the electrode plate group, and a connecting means for connecting the terminal main body part and the electrode plate group are bolts or bolts and nuts. A terminal structure portion having a fastening structure for fastening to the terminal body portion using
    The secondary dimension in which the dimension of the gap between the head of the bolt and the nut of the fastening structure and the inner wall surface of the battery container is set to a dimension that can prevent the bolt and the nut from falling off. A battery,
    At least one of the wall surface portion of the inner wall surface facing the head portion of the bolt and the nut through the gap or the wall surface portion of the bolt and the nut facing the wall surface portion, and the wall surface portion and the nut A secondary battery, characterized in that an electrically insulating material for preventing a bolt head or the nut from contacting is fixed.
  2.  前記電気絶縁素材は、前記ボルトの頭部または前記ナットに嵌合されたキャップ形状を有している請求項1に記載の二次電池。 2. The secondary battery according to claim 1, wherein the electrically insulating material has a cap shape fitted to the head of the bolt or the nut.
  3.  前記ナットが二重ナットであり、
     前記電気絶縁素材は、前記二重ナットの両方にきつく嵌合されたキャップ形状を有している請求項2に記載の二次電池。
    The nut is a double nut;
    The secondary battery according to claim 2, wherein the electrically insulating material has a cap shape that is tightly fitted to both the double nuts.
  4.  前記キャップ形状の電気絶縁素材は、前記ボルトの頭部または前記ナットに嵌合された状態で前記間隙の大部分を占領する大きさを有している請求項2または3に記載の二次電池。 4. The secondary battery according to claim 2, wherein the cap-shaped electrical insulating material has a size that occupies most of the gap while being fitted to a head of the bolt or the nut. 5. .
  5.  前記電気絶縁素材は、ゴムまたは絶縁樹脂材料によって一体に形成されており、前記電気絶縁素材の嵌合凹部は、前記ボルトの頭部または前記ナットの最大径寸法よりも僅かに小さい径寸法を有する円柱空間である請求項1に記載の二次電池。 The electrically insulating material is integrally formed of rubber or an insulating resin material, and the fitting recess of the electrically insulating material has a diameter slightly smaller than the maximum diameter of the bolt head or the nut. The secondary battery according to claim 1, wherein the secondary battery is a cylindrical space.
  6.  前記電気絶縁素材は、前記壁面部分に接合または固定されているシート状をなしている請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrically insulating material has a sheet shape bonded or fixed to the wall surface portion.
  7.  前記複数枚の極板がそれぞれ1以上のタブを備えており、
     前記接続手段が、複数枚の前記タブが接続された複数枚の集電板と、前記端子本体部との間に前記複数枚の集電板を挟む押さえ部材とからなる請求項1に記載の二次電池。
    Each of the plurality of electrode plates has one or more tabs;
    The said connection means consists of the several current collector plate to which the said several tab was connected, and the pressing member which pinches | interposes the said several current collector plate between the said terminal main-body parts. Secondary battery.
PCT/JP2013/076945 2012-10-03 2013-10-03 Secondary battery WO2014054734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539815A JPWO2014054734A1 (en) 2012-10-03 2013-10-03 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012221365 2012-10-03
JP2012-221365 2012-10-03

Publications (1)

Publication Number Publication Date
WO2014054734A1 true WO2014054734A1 (en) 2014-04-10

Family

ID=50435054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076945 WO2014054734A1 (en) 2012-10-03 2013-10-03 Secondary battery

Country Status (2)

Country Link
JP (1) JPWO2014054734A1 (en)
WO (1) WO2014054734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062339A1 (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Method for manufacturing angular secondary battery
WO2022185464A1 (en) * 2021-03-04 2022-09-09 株式会社 東芝 Electrode, electrode group, and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992237A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery and its assembled battery
JPH11312509A (en) * 1998-04-28 1999-11-09 Toyota Central Res & Dev Lab Inc Wound electrode type battery
JPH11345630A (en) * 1998-06-02 1999-12-14 Ngk Insulators Ltd Lithium secondary battery
JP2001015167A (en) * 1999-06-25 2001-01-19 Sanyo Electric Co Ltd Cylindrical battery
JP2010009841A (en) * 2008-06-25 2010-01-14 Panasonic Corp Cylindrical sealed battery
JP2011054567A (en) * 2009-09-01 2011-03-17 Sb Limotive Co Ltd Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992237A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery and its assembled battery
JPH11312509A (en) * 1998-04-28 1999-11-09 Toyota Central Res & Dev Lab Inc Wound electrode type battery
JPH11345630A (en) * 1998-06-02 1999-12-14 Ngk Insulators Ltd Lithium secondary battery
JP2001015167A (en) * 1999-06-25 2001-01-19 Sanyo Electric Co Ltd Cylindrical battery
JP2010009841A (en) * 2008-06-25 2010-01-14 Panasonic Corp Cylindrical sealed battery
JP2011054567A (en) * 2009-09-01 2011-03-17 Sb Limotive Co Ltd Secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062339A1 (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Method for manufacturing angular secondary battery
CN109792073A (en) * 2016-09-30 2019-05-21 三洋电机株式会社 The manufacturing method of rectangular secondary cell
JPWO2018062339A1 (en) * 2016-09-30 2019-07-18 三洋電機株式会社 Method of manufacturing square secondary battery
JP7014171B2 (en) 2016-09-30 2022-02-01 三洋電機株式会社 Manufacturing method of square secondary battery
CN109792073B (en) * 2016-09-30 2022-04-08 三洋电机株式会社 Method for manufacturing prismatic secondary battery
US11437652B2 (en) 2016-09-30 2022-09-06 Sanyo Electric Co., Ltd. Method of manufacturing square secondary battery
US11715846B2 (en) 2016-09-30 2023-08-01 Sanyo Electric Co., Ltd. Method of manufacturing square secondary battery
WO2022185464A1 (en) * 2021-03-04 2022-09-09 株式会社 東芝 Electrode, electrode group, and battery

Also Published As

Publication number Publication date
JPWO2014054734A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014054733A1 (en) Secondary battery
EP2500972B1 (en) Lithium secondary battery having multi-directional lead-tab structure
JP6158474B2 (en) Secondary battery
JP5783331B2 (en) Secondary battery current collection structure and secondary battery
JP5618706B2 (en) Stacked battery
US10141560B2 (en) Energy storage device including a pressing member pressing a separator toward an electrode assembly
EP2337117B1 (en) Secondary battery
US11735743B2 (en) Power storage device and power storage device production method
JP2010161044A (en) Power storage module
JPWO2020166182A1 (en) Battery module
JP2014103027A (en) Square secondary battery
US9672993B2 (en) Electricity storage device and electricity storage module
WO2014054734A1 (en) Secondary battery
WO2013168260A1 (en) Secondary battery
US20210313637A1 (en) Battery module
JP2013222517A (en) Square secondary battery
US10637014B2 (en) Energy storage device
WO2013031642A1 (en) Accumulator device
US20220158306A1 (en) Power storage device
US20230307800A1 (en) Secondary battery
US20230307799A1 (en) Secondary battery
WO2015129401A1 (en) Power storage device
JP2017027900A (en) Power storage device
JP2014026735A (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844287

Country of ref document: EP

Kind code of ref document: A1