WO2015129401A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2015129401A1
WO2015129401A1 PCT/JP2015/052940 JP2015052940W WO2015129401A1 WO 2015129401 A1 WO2015129401 A1 WO 2015129401A1 JP 2015052940 W JP2015052940 W JP 2015052940W WO 2015129401 A1 WO2015129401 A1 WO 2015129401A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode member
sides
storage device
positive electrode
Prior art date
Application number
PCT/JP2015/052940
Other languages
French (fr)
Japanese (ja)
Inventor
前吉弘隆
大塚大輔
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015129401A1 publication Critical patent/WO2015129401A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device, and more particularly to an electricity storage device having a structure in which a positive electrode member and a negative electrode member are laminated so as to face each other with a separator interposed therebetween.
  • a high energy density storage device represented by a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, etc.
  • a sheet-shaped current collecting member for example, an aluminum foil or a copper foil
  • an active material It was configured by laminating a sheet-like positive electrode member and negative electrode member formed by coating (activated carbon, lithium composite oxide, carbon, etc.) via a separator for preventing a short circuit due to contact between them.
  • an electric storage device having a structure in which a laminate and an electrolyte are housed in an exterior body (for example, a laminate case made of a laminate sheet in which an aluminum foil is sandwiched between thermoplastic resin layers).
  • the stacked secondary battery 101 includes a plurality of first electrodes 102, a plurality of first current collecting tabs 105a, and a plurality of separators that can be divided into a first portion and a second portion on a central axis M. 104, a plurality of second electrodes 103 in which one of the parts that can be divided by the central axis N faces the first part, and the other part faces the second part, and a plurality of second current collecting tabs 105b.
  • a first asymmetric portion 107 that is asymmetric with respect to the second portion and the central axis M is formed in the first portion of each separator 104, and the other portion and the center are formed in one portion of each second electrode 103.
  • a second asymmetric portion 108 that is asymmetric with respect to the axis N is formed, and all the first asymmetric portions 107 and all the second asymmetric portions 108 are configured to coincide with each other in the stacking direction.
  • the separator 104 the bag-shaped separator formed by laminating
  • either the first electrode 102 or the second electrode 103 is erroneously stacked and the first current collecting tab 105a and the second current collecting tab 105a are second stacked. Even if the current collecting tab 105b overlaps in the stacking direction, the first asymmetrical portion 107 and the second asymmetrical portion 108 do not coincide with each other in the stacking direction, so that erroneous stacking of electrodes can be easily recognized. Thus, it is possible to prevent problems due to erroneous stacking of electrodes.
  • the bag-shaped separator 104 formed by stacking separator sheet-like materials and fusion-bonding a predetermined plurality of positions on the peripheral edge, On the two sides 104a and 104b facing each other, the fusion bonded portions 114 are provided with the same length (the same area) and the same pitch. In each separator 104, the fusion bonded portions 114 on the two sides 104a and 104b are provided. Therefore, there is a problem as described below.
  • the heating test which requires a design that does not cause a short circuit between one electrode and the other even when heated in the heating test.
  • the heat shrink direction of the separator 104 in the heating test is the direction indicated by the arrow Y in FIG. 6 (the dimension from one side 104a to the other side 104b ( (Width) becomes smaller direction).
  • the welding stress is caused by the contraction stress when the separator 104 is thermally contracted in the heating test.
  • the joint 114 is disconnected, the electrode (for example, positive electrode) accommodated in the separator 104 is exposed, and is in contact with the other electrode (the electrode (negative electrode) not accommodated in the separator) adjacent in the stacking direction. There is a problem that heat is generated.
  • the bonding strength of the fusion bonding portion 114 on the one side 104a and the other side 104b is the same and the bonding strength is high, the outer body is laminated by the gas generated when heated in the heating test.
  • the restraining force on the body decreases, the amount of shrinkage of the separator 104 increases, but since the bonding strength is high, the above-mentioned fusion bonded portion 114 does not break the bonding, and the separator 104 is accommodated inside by the contracting force.
  • Electrode for example, positive electrode
  • the edge breaks through the separator 104, and is short-circuited with the other electrode adjacent to the stacking direction (the electrode (negative electrode) not accommodated in the separator). There is a problem that it generates heat.
  • the present invention solves the above-mentioned problem, and even when the separator is thermally contracted by being heated in a heating test, it is possible to suppress an increase in the short-circuit area between the positive electrode member and the negative electrode member.
  • An object of the present invention is to provide a highly reliable power storage device.
  • the electricity storage device of the present invention is: An electricity storage device having a structure in which an electricity storage element including a laminate formed by laminating a positive electrode member and a negative electrode member so as to face each other via a separator and an electrolyte solution is housed in an outer package, In the separator, at least on two sides facing each other in a plan view, a two-layer separator sheet material is welded to each other to form a region in which the positive electrode member or the negative electrode member is accommodated.
  • At least one of the positive electrode member and the negative electrode member is accommodated in the separator, so that the positive electrode member and the negative electrode member are stacked to face each other with the separator interposed therebetween,
  • the separator is configured to have different bonding strengths due to welding on the two sides.
  • a method for welding the two-layer separator sheet material to each other for example, a heat welding method, a high frequency welding method, and the like are exemplified, but other methods may be used.
  • the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side. It is preferable that one of the sides and the other side have the same planar area of each welding region and have different arrangement pitches.
  • the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which the arrangement pitch of each welding region is the same and the plane area is different from the other side.
  • the pitch of arrangement of each welding region is the same means that they are substantially the same, and does not require that the pitches are completely the same.
  • the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which both the planar area of each heat welding region and the pitch of arrangement are different from the other side.
  • the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which the planar area and the arrangement pitch of each thermal welding region are the same as the other side, and the bonding strength per unit area of each thermal welding region is different.
  • the separator at least on two sides facing each other in plan view, two layers of separator sheet materials are thermally welded to each other, so that the positive electrode member or the negative electrode member is accommodated therein. Separator is formed, and the bonding strength by thermal welding on the two sides facing each other is different from each other. For example, the separator is contracted by being heated in a heating test. In this case, of the two sides, the welded portion is cut at the side having the lower bonding strength, and the electrode member is exposed at the side where the bonding is cut.
  • the bonding is surely cut at the welded portion having the smaller bonding strength among the two sides facing each other, the bonding strength by the welding at the two facing sides is the same as in the conventional case.
  • the bonding strengths at the two opposing sides are the same and the bonding strength is large, the positive electrode member or the negative electrode member accommodated in the separator is deformed (curved), and the edge portion is Although there is a possibility of breaking through the separator and short-circuiting with the other electrode member adjacent to the stacking direction (for example, the negative electrode member not accommodated in the separator), in the present invention, the bonding strength by thermal welding of the two opposing sides Since the welded portion is cut off on the smaller side of the positive electrode member or the negative electrode member accommodated in the separator, the edge portion breaks through the separator and short-circuits with the other electrode adjacent in the stacking direction. To improve reliability.
  • FIG. 3B shows a state in which the side having a high bonding strength is positioned on the right side.
  • FIG. 1 is a front sectional view showing a configuration of an electricity storage device (lithium ion secondary battery) according to an embodiment of the present invention
  • FIGS. 2 (a) and 2 (b) are electrical storage devices according to an embodiment of the present invention. It is a top view which shows the usage condition of the separator in which a positive electrode member is accommodated.
  • FIG. 3 is an exploded perspective view showing a stacked aspect of the positive electrode member and the negative electrode member constituting the electric storage device (lithium ion secondary battery) according to the embodiment of the present invention.
  • an electricity storage device (lithium ion secondary battery) 100 is configured by alternately stacking positive electrode members 11 and negative electrode members 12 housed in a bag-shaped separator 13.
  • the laminated body 10 has a structure in which the laminated body 10 is housed in an exterior body (laminate case) 20 together with an electrolyte (electrolyte solution) 14.
  • the laminate sheets 20a and 20b constituting the outer package 20 are, for example, an outer protective layer made of a thermoplastic resin (polypropylene or the like), a gas barrier layer made of an aluminum foil, and an inner side made of a thermoplastic resin (polypropylene or the like). It is the material (laminated sheet) which has a laminated structure which laminated
  • a thermoplastic resin polypropylene or the like
  • an external terminal (positive electrode terminal) 16a that is electrically connected to each positive electrode member 11 is drawn out from one end side of the outer package 20 via a plurality of current collecting members 15a, and a plurality of current collectors are drawn from the other end side.
  • An external terminal (negative electrode terminal) 16b that is electrically connected to each negative electrode member 12 is drawn out through the member 15b.
  • the separator 13 is for two (two layers) separators at predetermined positions on the two sides 23a and 23b facing each other in plan view.
  • the sheet materials 33a and 33b (FIG. 1) are formed into a bag shape so as to secure a region in which the positive electrode member 11 is accommodated by heat-welding each other. It is comprised so that it may accommodate in the separator 13 of this.
  • stacking the positive electrode member 11 and the negative electrode member 12 which were accommodated in the separator 13 is formed. can do.
  • the bonding strength by thermal welding at the two opposite sides 23a and 23b of the separator 13 is configured to be different from each other at the opposite two sides 23a and 23b.
  • the separator 13 can also be formed using the two separator sheet materials 33a and 33b. Further, the separator 13 can be formed by bending one separator sheet material and opposing the two sides. It is also possible to form by heat welding.
  • the sheet material for the separator constituting the separator various known materials such as a porous sheet material made of polyamideimide can be used.
  • thermo welding for welding the predetermined positions of the two opposite sides 23a and 23b
  • methods such as heat welding, ultrasonic welding, and laser welding can be used.
  • the bag-shaped separator 13 is specifically formed in a bag shape by thermally welding predetermined positions on the periphery of the two-layer separator sheet material 13a, 13b (see FIG. 1). (See FIGS. 2 and 3).
  • region A has the substantially same planar area in any of the mutually opposing sides 23a and 23b of the separator 13, and arrangement
  • the one side 23a is provided with the thermal welding region A with a small pitch P (P1)
  • the other side 23b is provided with one thermal welding region A.
  • P (P2) that is larger than the pitch P (P1) of the side 23a
  • the separator 13 used in this embodiment has a dimension L of two sides 23a and 23b facing each other of 100 mm, and a dimension W of sides 24a and 24b perpendicular to the sides 23a and 23b is 100 mm.
  • the pitch P1 of the heat welding region A on one side 23a is 3 mm
  • the pitch P2 of the heat welding region A on the other side 23b is 42 mm.
  • the side 23a Is a side having a high bonding strength by heat welding
  • the side 23b is a side having a low bonding strength by heat welding.
  • the positive electrode member 11 accommodated in the bag-like separator 13 having different bonding strengths due to thermal welding on the two sides 23 a and 23 b facing each other is used as the separator. While being stacked via the negative electrode member 12 that is not accommodated, the side 23a having a higher bonding strength and the side 23b having a lower bonding strength are alternately positioned on the opposite side by heat welding of the bag-shaped separator 13. It is laminated in such a manner.
  • 2A shows an aspect in which the side 13a of the separator 13 in which the positive electrode member 11 is accommodated and the pitch 23 of the heat-welding region A is 3 mm is located on the left side, and FIG.
  • region A is 42 mm is shown in the right side,
  • the positive electrode member 11 accommodated in the separator 13 is laminated
  • the bonding by thermal welding among the two sides 23a and 23b is performed. Only at the side 23b having the lower strength, the welded portion is disconnected and the electrode member (for example, positive electrode) accommodated in the separator 13 is exposed. As a result, the bonding strength at the two opposing sides is the same and the bonding is broken at both sides simultaneously, as in the case where the bonding strength is low, and a short circuit between the positive electrode member and the negative electrode member occurs in an unexpected manner. In addition, it is possible to obtain a highly reliable power storage device by suppressing an increase in the short-circuit area.
  • the positive electrode member or the negative electrode member accommodated in the separator is deformed (curved), and the edge portion breaks through the separator.
  • the other electrode member adjacent in the stacking direction (for example, the negative electrode member not accommodated in the separator) is short-circuited.
  • the two sides 23a and 23b facing each other since the welded portion is disconnected at the side 23b having the smaller bonding strength, the positive electrode member 11 accommodated in the separator 13 is bent and short-circuited with the other electrode member (negative electrode member) 12 adjacent in the stacking direction. Can be prevented.
  • Evaluation method In order to evaluate the characteristics of the electricity storage device 100 according to the embodiment of the present invention manufactured as described above, a voltage of 3.5 V is applied between the positive electrode terminal 16a and the negative electrode terminal 16b (see FIG. 1), and the environmental temperature is set. A heating test was performed in which heating was performed up to 150 ° C. and the heating state was maintained for 7200 seconds from the start of heating.
  • the pitch P (P1, P2) of the two sides 23a, 23b facing each other is a separator having a pitch P (P1, P2) of 3 mm, that is, the bonding strength by the thermal welding of the two sides 23a, 23b facing each other is the same,
  • a short circuit occurs when about 3700 seconds have elapsed after the start of heating, and the voltage can be significantly reduced. all right.
  • the significant decrease in voltage (that is, short circuit) is not recognized until about 4200 seconds elapses, because there is a difference in the welding strength, so that the deformation of the electrode due to the shrinkage of the separator is small, and the weaker strength than the metal
  • the positive electrode member having high resistance is exposed and slowly self-discharges by short-circuiting.
  • the reason why the heat generation is small is that, even when a short circuit occurs, the short circuit area is small, so that a large heat generation does not occur.
  • the pitches P ⁇ b> 1 and P ⁇ b> 2 of the plurality of heat-welding regions A disposed on the two opposite sides 23 a and 23 b of the separator 13 having the same area are made different from each other, whereby although the bonding strength by heat welding at the sides 23a and 23b is made different, the bonding strength by heat welding at the two sides 23a and 23b facing each other of the separator 13 can be made different by the method described below. Is possible.
  • One side of the above-mentioned two sides of the separator and the other side have the same arrangement pitch of the respective heat-welding regions, and are opposed to each other by different plane areas of the respective heat-welding regions.
  • the positive electrode member is accommodated in the separator
  • the negative electrode member may be accommodated in the separator.
  • Each of the negative electrode members may be configured to be accommodated in a separator.
  • the case where the exterior body is a laminated case has been described as an example.
  • a container made of a metal such as aluminum can be used as the exterior body.
  • the lithium ion secondary battery has been described as an example of the electricity storage device.
  • the present invention is not limited to a battery such as a lithium ion secondary battery, but also to a lithium ion capacitor, an electric double layer capacitor, and the like. It is possible to apply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 Provided is a highly-reliable power storage device capable of suppressing an increase in the short-circuit area between a positive electrode member and a negative electrode member even when a separator is heated and thus thermally shrunk in a heating test. In the power storage device having a structure in which a power storage element including a laminate and an electrolyte is housed in an exterior body, the laminate being formed by laminating a positive electrode member (11) and a negative electrode member (12) so as to face each other through a separator (13), the separator (13) is formed by welding together, at at least two sides (23a, 23b) that face each other in a plan view, two layers of a sheet material for the separator. The positive electrode member and/or the negative electrode member is housed in the separator and thus the positive electrode member and the negative electrode member are laminated so as to face each other through the separator. The joint strengths by the welding at the two sides (23a, 23b) of the separator (13) are different from each other.

Description

蓄電デバイスPower storage device
 本発明は蓄電デバイスに関し、詳しくは、正極部材と負極部材とがセパレータを介して互いに対向するように積層された構造を有する蓄電デバイスに関する。 The present invention relates to an electricity storage device, and more particularly to an electricity storage device having a structure in which a positive electrode member and a negative electrode member are laminated so as to face each other with a separator interposed therebetween.
 リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタなどに代表される高エネルギー密度の蓄電デバイスには、例えば、シート状の集電部材(例えば、アルミニウム箔または銅箔など)に、活物質(活性炭、リチウム複合酸化物、炭素など)を塗工することにより形成されたシート状の正極部材および負極部材を、両者の接触による短絡を防ぐためのセパレータを介して積層することにより構成された積層体と、電解質とが、外装体(例えば、熱可塑性樹脂層間にアルミニウム箔が挟み込まれたラミネートシートからなるラミネートケースなど)に収容された構造を有する蓄電デバイスがある。 For a high energy density storage device represented by a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, etc., for example, a sheet-shaped current collecting member (for example, an aluminum foil or a copper foil), an active material It was configured by laminating a sheet-like positive electrode member and negative electrode member formed by coating (activated carbon, lithium composite oxide, carbon, etc.) via a separator for preventing a short circuit due to contact between them. There is an electric storage device having a structure in which a laminate and an electrolyte are housed in an exterior body (for example, a laminate case made of a laminate sheet in which an aluminum foil is sandwiched between thermoplastic resin layers).
 そして、このような蓄電デバイスの1つとして、図6に示すような構造を有する積層型二次電池が提案されている。 As one of such power storage devices, a stacked secondary battery having a structure as shown in FIG. 6 has been proposed.
 この積層型二次電池101は、複数の第1の電極102と、複数の第1の集電タブ105aと、中心軸Mで第1の部分と第2の部分とに二分可能な複数のセパレータ104と、中心軸Nで二分可能な部分の一方が第1の部分に対向し、他方の部分が第2の部分に対向した複数の第2の電極103と、複数の第2の集電タブ105bとを有している。 The stacked secondary battery 101 includes a plurality of first electrodes 102, a plurality of first current collecting tabs 105a, and a plurality of separators that can be divided into a first portion and a second portion on a central axis M. 104, a plurality of second electrodes 103 in which one of the parts that can be divided by the central axis N faces the first part, and the other part faces the second part, and a plurality of second current collecting tabs 105b.
 そして、各セパレータ104における第1の部分に、第2の部分と中心軸Mに関して非対称な第1の非対称部107が形成され、各第2の電極103における一方の部分に、他方の部分と中心軸Nに関して非対称な第2の非対称部108が形成されており、全ての第1の非対称部107と全ての第2の非対称部108とが積層方向で一致するように構成されている。 A first asymmetric portion 107 that is asymmetric with respect to the second portion and the central axis M is formed in the first portion of each separator 104, and the other portion and the center are formed in one portion of each second electrode 103. A second asymmetric portion 108 that is asymmetric with respect to the axis N is formed, and all the first asymmetric portions 107 and all the second asymmetric portions 108 are configured to coincide with each other in the stacking direction.
 そして、セパレータ104としては、セパレータ用シート状材料を重ねて、周縁部の所定の位置を融着接合させることにより形成された袋状のセパレータが用いられている(特許文献1の図1,図4,図5など参照)。 And as the separator 104, the bag-shaped separator formed by laminating | stacking the sheet-like material for separators and carrying out the melt | fusion joining of the predetermined position of a peripheral part is used (FIG. 1, FIG. 1 of patent document 1). 4, see FIG.
 上述のように構成された特許文献1の積層型二次電池101によれば、第1の電極102または第2の電極103のいずれかが誤積層されて第1の集電タブ105aと第2の集電タブ105bとが積層方向で重なったとしても、第1の非対称部107と第2の非対称部108とが積層方向で一致しなくなるため、電極の誤積層を容易に認識することが可能で、電極の誤積層による不具合を防止することが可能になる。 According to the stacked secondary battery 101 of Patent Document 1 configured as described above, either the first electrode 102 or the second electrode 103 is erroneously stacked and the first current collecting tab 105a and the second current collecting tab 105a are second stacked. Even if the current collecting tab 105b overlaps in the stacking direction, the first asymmetrical portion 107 and the second asymmetrical portion 108 do not coincide with each other in the stacking direction, so that erroneous stacking of electrodes can be easily recognized. Thus, it is possible to prevent problems due to erroneous stacking of electrodes.
 しかしながら、上述の特許文献1の積層型二次電池101の場合、セパレータ用シート状材料を重ねて、周縁部の所定の複数位置を融着接合させることにより形成された袋状のセパレータ104の、互いに対向する2辺104a,104bにおいては、融着接合部114が同じ長さ(同じ面積)、同じピッチで設けられており、各セパレータ104において、2つの辺104a,104bにおける融着接合部114の接合強度が同一となるように構成されていることから、以下に説明するような問題点がある。 However, in the case of the above-described multilayer secondary battery 101 of Patent Document 1, the bag-shaped separator 104 formed by stacking separator sheet-like materials and fusion-bonding a predetermined plurality of positions on the peripheral edge, On the two sides 104a and 104b facing each other, the fusion bonded portions 114 are provided with the same length (the same area) and the same pitch. In each separator 104, the fusion bonded portions 114 on the two sides 104a and 104b are provided. Therefore, there is a problem as described below.
 リチウムイオン電池などの二次電池の安全性試験の一つに加熱試験があり、加熱試験において加熱しても一方の電極と他方の電極が短絡して発火するようなことのない設計が必要となる。
 例えば、図6に示すような構成を有する二次電池の場合、加熱試験におけるセパレータ104の熱収縮方向は、図6の矢印Yで示す方向(一方の辺104aから他方の辺104bまでの寸法(幅)が小さくなる方向)となる。
One of the safety tests for secondary batteries such as lithium-ion batteries is the heating test, which requires a design that does not cause a short circuit between one electrode and the other even when heated in the heating test. Become.
For example, in the case of a secondary battery having the configuration shown in FIG. 6, the heat shrink direction of the separator 104 in the heating test is the direction indicated by the arrow Y in FIG. 6 (the dimension from one side 104a to the other side 104b ( (Width) becomes smaller direction).
 そして、一方の辺104aと他方の辺104bにおける融着接合部114の接合強度が同一で、その接合強度が小さい場合には、加熱試験において、セパレータ104が熱収縮したときの収縮応力によって、溶着接合部114の接合が切れ、セパレータ104内に収容されている電極(例えば正極)が露出し、積層方向に隣り合う他方の電極(セパレータ内に収容されていない方の電極(負極))と接触して、発熱するという問題点がある。 In the case where the bonding strength of the fusion bonded portion 114 on the one side 104a and the other side 104b is the same and the bonding strength is small, the welding stress is caused by the contraction stress when the separator 104 is thermally contracted in the heating test. The joint 114 is disconnected, the electrode (for example, positive electrode) accommodated in the separator 104 is exposed, and is in contact with the other electrode (the electrode (negative electrode) not accommodated in the separator) adjacent in the stacking direction. There is a problem that heat is generated.
 また、一方の辺104aと他方の辺104bにおける融着接合部114の接合強度が同じで、かつ、接合強度が大きい場合には、加熱試験において加熱されたときに発生するガスにより外装体による積層体への拘束力が低下すると、セパレータ104の収縮量が大きくなるが、接合強度が大きいため上記の融着接合部114で接合が切れることがなく、セパレータ104の収縮力により、内部に収容されている電極(例えば、正極)が変形(湾曲)して、そのエッジがセパレータ104を突き破り、積層方向に隣り合う他方の電極(セパレータ内に収容されていない方の電極(負極))と短絡して発熱するという問題点がある。 Further, when the bonding strength of the fusion bonding portion 114 on the one side 104a and the other side 104b is the same and the bonding strength is high, the outer body is laminated by the gas generated when heated in the heating test. When the restraining force on the body decreases, the amount of shrinkage of the separator 104 increases, but since the bonding strength is high, the above-mentioned fusion bonded portion 114 does not break the bonding, and the separator 104 is accommodated inside by the contracting force. Electrode (for example, positive electrode) is deformed (curved), its edge breaks through the separator 104, and is short-circuited with the other electrode adjacent to the stacking direction (the electrode (negative electrode) not accommodated in the separator). There is a problem that it generates heat.
特開2012-54194号公報JP 2012-54194 A
 本発明は、上記課題を解決するものであり、加熱試験において加熱されることによりセパレータが熱収縮した場合にも、正極部材と負極部材との短絡面積が大きくなることを抑制することが可能な、信頼性の高い蓄電デバイスを提供することを目的とする。 The present invention solves the above-mentioned problem, and even when the separator is thermally contracted by being heated in a heating test, it is possible to suppress an increase in the short-circuit area between the positive electrode member and the negative electrode member. An object of the present invention is to provide a highly reliable power storage device.
 上記課題を解決するために、本発明の蓄電デバイスは、
 正極部材と負極部材とをセパレータを介して互いに対向するように積層してなる積層体と電解液とを含む蓄電要素が外装体内に収容された構造を有する蓄電デバイスであって、
 前記セパレータは、少なくとも、平面的に見て互いに対向する2辺において、2層のセパレータ用シート材料が互いに溶着されることにより、内部に前記正極部材または前記負極部材が収容される領域が形成されており、かつ、
 前記正極部材および前記負極部材の少なくとも一方が、前記セパレータ内に収容されることにより、前記正極部材と負極部材とがセパレータを介して互いに対向して積層されるように構成されているとともに、
 前記セパレータの、前記2辺における溶着による接合強度が互いに異なるように構成されていること
 を特徴としている。
 なお、2層のセパレータ用シート材料を互いに溶着する方法としては、例えば、熱溶着の方法や、高周波溶着の方法などが例示されるが、さらの他の方法であってもよい。
In order to solve the above problems, the electricity storage device of the present invention is:
An electricity storage device having a structure in which an electricity storage element including a laminate formed by laminating a positive electrode member and a negative electrode member so as to face each other via a separator and an electrolyte solution is housed in an outer package,
In the separator, at least on two sides facing each other in a plan view, a two-layer separator sheet material is welded to each other to form a region in which the positive electrode member or the negative electrode member is accommodated. And
At least one of the positive electrode member and the negative electrode member is accommodated in the separator, so that the positive electrode member and the negative electrode member are stacked to face each other with the separator interposed therebetween,
The separator is configured to have different bonding strengths due to welding on the two sides.
In addition, as a method for welding the two-layer separator sheet material to each other, for example, a heat welding method, a high frequency welding method, and the like are exemplified, but other methods may be used.
 本発明の蓄電デバイスにおいては、前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の平面面積が同じで、配設のピッチが異なっていることが好ましい。 In the electricity storage device of the present invention, on the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side. It is preferable that one of the sides and the other side have the same planar area of each welding region and have different arrangement pitches.
 上記構成とした場合、2辺のうちの一方の辺と他方の辺とで、溶着領域の配設ピッチを異ならせるだけで、容易に、セパレータの互いに対向する2辺における溶着による接合強度を異ならせることが可能になり、本発明をより実効あらしめることができる。
 なお、「溶着領域の平面面積が同じ」とは、実質的に同一であることを意味するものであって、平面面積が完全同一であることを要件とするものではない。
In the case of the above-described configuration, it is possible to easily change the bonding strength due to welding on the two opposite sides of the separator by merely changing the arrangement pitch of the welding regions on one side and the other side of the two sides. It is possible to make the present invention more effective.
Note that “the planar area of the welding region is the same” means that they are substantially the same, and does not require that the planar areas are completely the same.
 また、前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の配設のピッチが同じで、平面面積が異なっている構成とすることも可能である。
 なお、「各溶着領域の配設のピッチが同じ」とは、実質的に同一であることを意味するものであって、ピッチが完全同一であることを要件とするものではない。
Further, on the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which the arrangement pitch of each welding region is the same and the plane area is different from the other side.
In addition, “the pitch of arrangement of each welding region is the same” means that they are substantially the same, and does not require that the pitches are completely the same.
 上記構成とした場合にも、セパレータの互いに対向する2辺における溶着による接合強度を異ならせることが可能で、例えば、セパレータが熱収縮した場合にも、正極部材と負極部材との短絡面積が大きくなることを抑制して、信頼性の高い蓄電デバイスを得ることが可能になる。 Even in the case of the above configuration, it is possible to vary the bonding strength by welding on the two opposite sides of the separator. For example, even when the separator is thermally contracted, the short-circuit area between the positive electrode member and the negative electrode member is large. This makes it possible to obtain a highly reliable power storage device.
 また、前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各熱溶着領域の平面面積および配設のピッチの両方が異なっている構成とすることも可能である。 Further, on the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which both the planar area of each heat welding region and the pitch of arrangement are different from the other side.
 上記構成とした場合にも、セパレータの互いに対向する2辺における溶着による接合強度を異ならせることが可能で、セパレータが収縮した場合にも、正極部材と負極部材との短絡面積が大きくなることを抑制して、信頼性の高い蓄電デバイスを得ることが可能になる。 Even in the case of the above configuration, it is possible to vary the bonding strength by welding on the two opposite sides of the separator, and even when the separator contracts, the short-circuit area between the positive electrode member and the negative electrode member increases. This makes it possible to obtain a highly reliable power storage device.
 また、前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各熱溶着領域の平面面積および配設のピッチが同じであって、各熱溶着領域の単位面積あたりの接合強度が異なっている構成とすることも可能である。 Further, on the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one of the two sides and It is also possible to adopt a configuration in which the planar area and the arrangement pitch of each thermal welding region are the same as the other side, and the bonding strength per unit area of each thermal welding region is different.
 上記構成とした場合にも、セパレータの互いに対向する2辺における溶着による接合強度を異ならせることが可能で、セパレータが熱収縮した場合にも、正極部材と負極部材との短絡面積が大きくなることを抑制して、信頼性の高い蓄電デバイスを得ることが可能になる。 Even in the case of the above configuration, it is possible to vary the bonding strength by welding on the two opposing sides of the separator, and the short-circuit area between the positive electrode member and the negative electrode member becomes large even when the separator is thermally contracted. This makes it possible to obtain a highly reliable power storage device.
 本発明の蓄電デバイスにおいては、セパレータとして、少なくとも、平面的に見て互いに対向する2辺において、2層のセパレータ用シート材料が互いに熱溶着されることにより、内部に正極部材または負極部材が収容される領域が形成されたセパレータが用いられており、かつ、互いに対向する上記2辺における熱溶着による接合強度が互いに異なるように構成されているので、例えば、加熱試験において加熱され、セパレータが収縮した場合に、上記2辺のうち、接合強度の小さい方の辺で溶着部の接合が切れることになり、接合が切れた方の辺側で電極部材が露出することになる。 In the electricity storage device of the present invention, as the separator, at least on two sides facing each other in plan view, two layers of separator sheet materials are thermally welded to each other, so that the positive electrode member or the negative electrode member is accommodated therein. Separator is formed, and the bonding strength by thermal welding on the two sides facing each other is different from each other. For example, the separator is contracted by being heated in a heating test. In this case, of the two sides, the welded portion is cut at the side having the lower bonding strength, and the electrode member is exposed at the side where the bonding is cut.
 上述のように、互いに対向する上記2辺のうち、接合強度の小さい方の溶着部において確実に接合が切れることになるため、対向する2辺における溶着による接合強度が同じである従来の場合のように、両方の辺において同時に溶着が切れて、予期せぬ態様で、正極部材と負極部材との短絡が生じたり、短絡面積が大きくなったりすることを抑制して、信頼性を向上させることができる。 As described above, since the bonding is surely cut at the welded portion having the smaller bonding strength among the two sides facing each other, the bonding strength by the welding at the two facing sides is the same as in the conventional case. As described above, it is possible to improve reliability by suppressing the occurrence of a short circuit between the positive electrode member and the negative electrode member and an increase in the short circuit area in an unexpected manner because the welding is cut simultaneously on both sides. Can do.
 また、従来のように、対向する2辺における接合強度が同じであって、接合強度が大きい場合には、セパレータに収容された正極部材または負極部材が変形(湾曲)して、そのエッジ部分がセパレータを突き破り、積層方向に隣り合う他方の電極部材(例えば、セパレータ内に収容されていない負極部材)と短絡するおそれがあるが、本発明では、対向する2辺のうちの熱溶着による接合強度の小さい方の辺側で溶着部の接合が切れるため、セパレータに収容された正極部材または負極部材が湾曲して、エッジ部分がセパレータを突き破り、積層方向に隣り合う他方の電極と短絡することを防止して、信頼性を向上させることができる。 Further, as in the conventional case, when the bonding strengths at the two opposing sides are the same and the bonding strength is large, the positive electrode member or the negative electrode member accommodated in the separator is deformed (curved), and the edge portion is Although there is a possibility of breaking through the separator and short-circuiting with the other electrode member adjacent to the stacking direction (for example, the negative electrode member not accommodated in the separator), in the present invention, the bonding strength by thermal welding of the two opposing sides Since the welded portion is cut off on the smaller side of the positive electrode member or the negative electrode member accommodated in the separator, the edge portion breaks through the separator and short-circuits with the other electrode adjacent in the stacking direction. To improve reliability.
本発明の一実施形態にかかる蓄電デバイス(リチウムイオン二次電池)の構成を模式的に示す正面断面図である。It is a front sectional view showing typically the composition of the electrical storage device (lithium ion secondary battery) concerning one embodiment of the present invention. (a),(b)は本発明の一実施形態にかかる蓄電デバイス(リチウムイオン二次電池)において、正極部材が収容されるセパレータの使用態様を示す平面図であって、(a)は左側に接合強度が大きい辺が位置するように配置された状態を示し、(b)は右側に接合強度が大きい辺が位置するように配置された状態を示している。(A), (b) is a top view which shows the usage condition of the separator in which the positive electrode member is accommodated in the electrical storage device (lithium ion secondary battery) concerning one Embodiment of this invention, (a) is left side 2 shows a state in which the side having a high bonding strength is positioned, and FIG. 3B shows a state in which the side having a high bonding strength is positioned on the right side. 本発明の一実施形態にかかる蓄電デバイス(リチウムイオン二次電池)を構成する正極部材と負極部材の積層態様を示す分解斜視図である。It is a disassembled perspective view which shows the lamination | stacking aspect of the positive electrode member and negative electrode member which comprise the electrical storage device (lithium ion secondary battery) concerning one Embodiment of this invention. 加熱試験における、電圧と加熱プロファイル(加熱時間)の関係を示す線図である。It is a diagram which shows the relationship between a voltage and a heating profile (heating time) in a heating test. 加熱試験における、蓄電デバイスの温度と加熱プロファイル(加熱時間)の関係を示す線図である。It is a diagram which shows the relationship between the temperature of an electrical storage device, and a heating profile (heating time) in a heating test. 従来の蓄電デバイスの構成の一例を模式的に示す図である。It is a figure which shows typically an example of a structure of the conventional electrical storage device.
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below, and the features of the present invention will be described in more detail.
 [実施形態]
 図1は本発明の一実施形態にかかる蓄電デバイス(リチウムイオン二次電池)の構成を示す正面断面図、図2(a),(b)は本発明の一実施形態にかかる蓄電デバイスにおいて、正極部材が収容されるセパレータの使用態様を示す平面図である。
 また、図3は本発明の一実施形態にかかる蓄電デバイス(リチウムイオン二次電池)を構成する正極部材と負極部材の積層態様を示す分解斜視図である。
[Embodiment]
FIG. 1 is a front sectional view showing a configuration of an electricity storage device (lithium ion secondary battery) according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are electrical storage devices according to an embodiment of the present invention. It is a top view which shows the usage condition of the separator in which a positive electrode member is accommodated.
FIG. 3 is an exploded perspective view showing a stacked aspect of the positive electrode member and the negative electrode member constituting the electric storage device (lithium ion secondary battery) according to the embodiment of the present invention.
 本発明の実施形態にかかる蓄電デバイス(リチウムイオン二次電池)100は、図1に示すように、袋状のセパレータ13に収容された正極部材11と、負極部材12とを、交互に積層してなる積層体10が、電解質(電解液)14とともに外装体(ラミネートケース)20内に収容された構造を有している。 As shown in FIG. 1, an electricity storage device (lithium ion secondary battery) 100 according to an embodiment of the present invention is configured by alternately stacking positive electrode members 11 and negative electrode members 12 housed in a bag-shaped separator 13. The laminated body 10 has a structure in which the laminated body 10 is housed in an exterior body (laminate case) 20 together with an electrolyte (electrolyte solution) 14.
 なお、外装体20を構成するラミネートシート20a,20bは、例えば、熱可塑性樹脂(ポリプロピレンなど)からなる外側の保護層と、アルミニウム箔からなるガスバリア層と、熱可塑性樹脂(ポリプロピレンなど)からなる内側の接着層とを積層して一体化した積層構造を有する材料(積層シート)である。 The laminate sheets 20a and 20b constituting the outer package 20 are, for example, an outer protective layer made of a thermoplastic resin (polypropylene or the like), a gas barrier layer made of an aluminum foil, and an inner side made of a thermoplastic resin (polypropylene or the like). It is the material (laminated sheet) which has a laminated structure which laminated | stacked and integrated these adhesive layers.
 そして、外装体20の一方端側からは複数の集電部材15aを介して各正極部材11と導通する外部端子(正極端子)16aが外部に引き出され、他方端側からは、複数の集電部材15bを介して各負極部材12と導通する外部端子(負極端子)16bが外部に引き出されている。 Then, an external terminal (positive electrode terminal) 16a that is electrically connected to each positive electrode member 11 is drawn out from one end side of the outer package 20 via a plurality of current collecting members 15a, and a plurality of current collectors are drawn from the other end side. An external terminal (negative electrode terminal) 16b that is electrically connected to each negative electrode member 12 is drawn out through the member 15b.
 そして、この蓄電デバイス100において、セパレータ13は、図1~図3に示すように、平面的に見て互いに対向する2辺23a,23bの所定の位置において、2枚(2層)のセパレータ用シート材料33a,33b(図1)が互いに熱溶着されることにより、内部に正極部材11が収容される領域が確保されるように袋状に形成されており、正極部材11は、この袋状のセパレータ13内に収容されるように構成されている。 In the electricity storage device 100, as shown in FIGS. 1 to 3, the separator 13 is for two (two layers) separators at predetermined positions on the two sides 23a and 23b facing each other in plan view. The sheet materials 33a and 33b (FIG. 1) are formed into a bag shape so as to secure a region in which the positive electrode member 11 is accommodated by heat-welding each other. It is comprised so that it may accommodate in the separator 13 of this.
 そして、セパレータ13内に収容された正極部材11と負極部材12とを積層することにより、正極部材11と負極部材12とがセパレータ13を介して互いに対向するように積層された積層体10を形成することができる。 And the laminated body 10 laminated | stacked so that the positive electrode member 11 and the negative electrode member 12 may mutually oppose through the separator 13 by laminating | stacking the positive electrode member 11 and the negative electrode member 12 which were accommodated in the separator 13 is formed. can do.
 また、セパレータ13の互いに対向する2辺23a,23bにおける熱溶着による接合強度は、対向する2辺23a,23bで互いに異なるように構成されている。 Further, the bonding strength by thermal welding at the two opposite sides 23a and 23b of the separator 13 is configured to be different from each other at the opposite two sides 23a and 23b.
 なお、セパレータ13は、上述のように、2枚のセパレータ用シート材料33a,33bを用いて形成することも可能であり、また、1枚のセパレータ用シート材料を折り曲げて、互いに対向する2辺を熱溶着することによって形成することも可能である。 As described above, the separator 13 can also be formed using the two separator sheet materials 33a and 33b. Further, the separator 13 can be formed by bending one separator sheet material and opposing the two sides. It is also possible to form by heat welding.
 セパレータを構成するセパレータ用シート状材料としては、例えば、ポリアミドイミドからなる多孔性のシート状材料など、公知の種々のものを用いることができる。 As the sheet material for the separator constituting the separator, various known materials such as a porous sheet material made of polyamideimide can be used.
 また、対向する2辺23a,23bの所定の位置を溶着するための熱溶着の方法としては、熱溶着、超音波溶着、レーザー溶着などの方法を用いることができる。 Further, as a method of heat welding for welding the predetermined positions of the two opposite sides 23a and 23b, methods such as heat welding, ultrasonic welding, and laser welding can be used.
 この実施形態において、袋状のセパレータ13は、具体的には2層のセパレータ用シート材料13a,13b(図1参照))の周縁の所定の位置を熱溶着することによって袋状に形成されている(図2,図3参照)。 In this embodiment, the bag-shaped separator 13 is specifically formed in a bag shape by thermally welding predetermined positions on the periphery of the two-layer separator sheet material 13a, 13b (see FIG. 1). (See FIGS. 2 and 3).
 また、互いに対向する2辺23a,23bにおいて、異なるピッチP1,P2で所定の領域(熱溶着領域A)を熱溶着することにより、一方の辺23aと、他方の辺23bで、熱溶着による接合強度が互いに異なるように構成されている。なお、各熱溶着領域Aは、セパレータ13の互いに対向する辺23a,23bのいずれにおいても、その平面面積はほぼ同じで、配設のピッチP(P1,P2)が、対向する辺23a,23bにおいて異なるように構成されている。 In addition, the two sides 23a and 23b facing each other are bonded by thermal welding at one side 23a and the other side 23b by thermally welding a predetermined region (thermal welding region A) with different pitches P1 and P2. It is comprised so that intensity | strength may mutually differ. In addition, each thermal welding area | region A has the substantially same planar area in any of the mutually opposing sides 23a and 23b of the separator 13, and arrangement | positioning pitch P (P1, P2) is the opposing sides 23a and 23b. Are configured differently.
 すなわち、互いに対向する辺23a,23bのうち、一方の辺23aにおいては、熱溶着領域Aが小さいピッチP(P1)で配設されており、他方の辺23bにおいては、熱溶着領域Aが一方の辺23aのピッチP(P1)より大きいピッチP(P2)で配設されており、セパレータ13の互いに対向する2辺23a,23bにおける熱溶着による接合強度が互いに異なる(一方の辺23aでは、他方の辺23bよりも熱溶着による接合強度が大きくなる)ように構成されている。 That is, of the sides 23a and 23b facing each other, the one side 23a is provided with the thermal welding region A with a small pitch P (P1), and the other side 23b is provided with one thermal welding region A. Are arranged at a pitch P (P2) that is larger than the pitch P (P1) of the side 23a, and the bonding strength due to thermal welding on the two opposite sides 23a and 23b of the separator 13 is different from each other (in one side 23a, The bonding strength by heat welding is larger than that of the other side 23b).
 例えば、この実施形態において用いられているセパレータ13は、互いに対向する2辺23a,23bの寸法Lが100mm、該辺23a,23bに直交する辺24a,24bの寸法Wが100mmのものであり、一方の辺23aの熱溶着領域AのピッチP1が3mm、他方の辺23bの熱溶着領域AのピッチP2が42mmとされており、セパレータ13の互いに対向する2辺23a,23bのうち、辺23aが熱溶着による接合強度の大きい辺となり、辺23bが熱溶着による接合強度の小さい辺となるように構成されている。 For example, the separator 13 used in this embodiment has a dimension L of two sides 23a and 23b facing each other of 100 mm, and a dimension W of sides 24a and 24b perpendicular to the sides 23a and 23b is 100 mm. The pitch P1 of the heat welding region A on one side 23a is 3 mm, and the pitch P2 of the heat welding region A on the other side 23b is 42 mm. Of the two sides 23a and 23b of the separator 13 facing each other, the side 23a Is a side having a high bonding strength by heat welding, and the side 23b is a side having a low bonding strength by heat welding.
 そして、この実施形態では、図2、図3に示すように、互いに対向する2辺23a,23bにおける熱溶着による接合強度が互いに異なる袋状のセパレータ13に収容された正極部材11が、セパレータに収容されていない負極部材12を介して積層されているとともに、袋状のセパレータ13の熱溶着による接合強度の大きい方の辺23aと、接合強度の小さい方の辺23bが交互に逆側に位置するような態様で積層されている。
 なお、図2(a)は、正極部材11が収容されたセパレータ13の、熱溶着領域Aのピッチが3mmの辺23aが左側に位置している態様を示し、図2(b)は、熱溶着領域Aのピッチが42mmの辺23bが右側に位置している態様を示しており、このような態様で、セパレータ13に収容された正極部材11が、負極部材12を介して交互に積層されることにより、図3に示すような積層体10が形成される。
In this embodiment, as shown in FIGS. 2 and 3, the positive electrode member 11 accommodated in the bag-like separator 13 having different bonding strengths due to thermal welding on the two sides 23 a and 23 b facing each other is used as the separator. While being stacked via the negative electrode member 12 that is not accommodated, the side 23a having a higher bonding strength and the side 23b having a lower bonding strength are alternately positioned on the opposite side by heat welding of the bag-shaped separator 13. It is laminated in such a manner.
2A shows an aspect in which the side 13a of the separator 13 in which the positive electrode member 11 is accommodated and the pitch 23 of the heat-welding region A is 3 mm is located on the left side, and FIG. The side 23b whose pitch of the welding area | region A is 42 mm is shown in the right side, The positive electrode member 11 accommodated in the separator 13 is laminated | stacked alternately via the negative electrode member 12 in such an aspect. Thereby, the laminated body 10 as shown in FIG. 3 is formed.
 したがって、この実施形態にかかる蓄電デバイス100においては、例えば、加熱試験において加熱され、セパレータ13が収縮して溶着部の接合が切れる場合に、上記の2辺23a,23bのうち、熱溶着による接合強度の小さい方の辺23bでのみ、溶着部の接合が切れて、セパレータ13に収容されている電極部材(例えば正極)が露出することになる。その結果、対向する2辺における接合強度が同じで、その接合強度が小さい場合のように、両方の辺において同時に接合が切れて、予期せぬ態様で、正極部材と負極部材との短絡が生じたり、短絡面積が大きくなったりすることを抑制して、信頼性の高い蓄電デバイスを得ることが可能になる。 Therefore, in the electricity storage device 100 according to this embodiment, for example, when the separator 13 contracts and the welded portion is disconnected due to heating in the heating test, the bonding by thermal welding among the two sides 23a and 23b is performed. Only at the side 23b having the lower strength, the welded portion is disconnected and the electrode member (for example, positive electrode) accommodated in the separator 13 is exposed. As a result, the bonding strength at the two opposing sides is the same and the bonding is broken at both sides simultaneously, as in the case where the bonding strength is low, and a short circuit between the positive electrode member and the negative electrode member occurs in an unexpected manner. In addition, it is possible to obtain a highly reliable power storage device by suppressing an increase in the short-circuit area.
 また、従来のように、対向する2辺における接合強度が同じで、その接合強度が大きい場合、セパレータに収容された正極部材または負極部材が変形(湾曲)して、そのエッジ部分がセパレータを突き破り、積層方向に隣り合う他方の電極部材(例えば、セパレータ内に収容されていない負極部材)と短絡することになるが、この実施形態の蓄電デバイス100の場合、対向する2辺23a,23bのうち、接合強度の小さい方の辺23bで溶着部の接合が切れるため、セパレータ13に収容された正極部材11が湾曲して、積層方向に隣り合う他方の電極部材(負極部材)12と短絡することを防止することができる。 Further, as in the conventional case, when the bonding strengths at the two opposing sides are the same and the bonding strength is high, the positive electrode member or the negative electrode member accommodated in the separator is deformed (curved), and the edge portion breaks through the separator. The other electrode member adjacent in the stacking direction (for example, the negative electrode member not accommodated in the separator) is short-circuited. In the case of the electricity storage device 100 of this embodiment, the two sides 23a and 23b facing each other In addition, since the welded portion is disconnected at the side 23b having the smaller bonding strength, the positive electrode member 11 accommodated in the separator 13 is bent and short-circuited with the other electrode member (negative electrode member) 12 adjacent in the stacking direction. Can be prevented.
 <特性の評価>
 (1)評価方法(加熱試験)
 上述のように作製した本発明の実施形態にかかる蓄電デバイス100の特性を評価するため、正極端子16aと負極端子16b(図1参照)の間に3.5Vの電圧を印加し、環境温度を150℃にまで加熱し、加熱の開始から7200秒間加熱状態を維持する加熱試験を行った。
<Evaluation of characteristics>
(1) Evaluation method (heating test)
In order to evaluate the characteristics of the electricity storage device 100 according to the embodiment of the present invention manufactured as described above, a voltage of 3.5 V is applied between the positive electrode terminal 16a and the negative electrode terminal 16b (see FIG. 1), and the environmental temperature is set. A heating test was performed in which heating was performed up to 150 ° C. and the heating state was maintained for 7200 seconds from the start of heating.
 このとき、互いに対向する2辺23a,23bの熱溶着領域AのピッチP(P1,P2)がいずれも42mmのセパレータを用いた試料(比較例1の試料)と、互いに対向する2辺23a,23bの熱溶着領域AのピッチP(P1,P2)がいずれも3mmのセパレータを用いた試料(比較例2の試料)を作製し、これらの試料(比較例1および2)についても同様の加熱試験に供した。 At this time, the sample using the separator having the pitch P (P1, P2) of the heat welding region A of the two sides 23a, 23b facing each other of 42 mm and the two sides 23a, Samples using a separator having a pitch P (P1, P2) of 3 mm in the thermal welding region A of 23b are both 3 mm (samples of comparative example 2), and these samples (comparative examples 1 and 2) are also heated similarly. It used for the test.
 (2)評価結果
 互いに対向する2辺23a,23bの熱溶着領域AのピッチP(P1,P2)がいずれも42mmのセパレータ、すなわち、互いに対向する2辺23a,23bの熱溶着による接合強度が同じで、その接合強度が小さいセパレータを用いた試料(比較例1の試料)の場合、図4に示すように、加熱開始後、約3500秒が経過した時点で短絡が生じ、電圧が著しく低下することがわかった。
(2) Evaluation results The separator P having a pitch P (P1, P2) of the two sides 23a, 23b facing each other of 42 mm, that is, the bonding strength due to the thermal welding of the two sides 23a, 23b facing each other is obtained. Similarly, in the case of a sample using a separator having a low bonding strength (sample of Comparative Example 1), as shown in FIG. 4, a short circuit occurs when about 3500 seconds have elapsed after the start of heating, and the voltage is significantly reduced. I found out that
 また、発熱についても、図5に示すように、約3600秒を過ぎたあたりで、230℃を超えるような、大きな発熱を示すピークが認められた。 As for the heat generation, as shown in FIG. 5, a peak showing a large heat generation exceeding 230 ° C. was recognized after about 3600 seconds.
 比較例1の試料において、このような結果となったのは、セパレータ13の互いに対向する2辺23a,23bの熱溶着による接合強度がいずれも小さく、セパレータ13の熱収縮により、熱溶着部で接合が切れて、内部に収容されている正極部材11の一部が露出し、積層方向に隣り合う他方の負極部材12と短絡したことによるものである。 In the sample of Comparative Example 1, such a result was obtained because the joining strength due to the thermal welding of the two opposite sides 23a and 23b of the separator 13 was small, and the thermal contraction of the separator 13 caused the thermal welding to occur. This is because the bonding is broken, a part of the positive electrode member 11 accommodated therein is exposed, and the other negative electrode member 12 adjacent in the stacking direction is short-circuited.
 また、互いに対向する2辺23a,23bの熱溶着領域AのピッチP(P1,P2)がいずれも3mmのセパレータ、すなわち、互いに対向する2辺23a,23bの熱溶着による接合強度が同じで、その接合強度が大きいセパレータを用いた試料(比較例2の試料)の場合、図4に示すように、加熱開始後、約3700秒が経過した時点で短絡が生じ、電圧が著しく低下することがわかった。 In addition, the pitch P (P1, P2) of the two sides 23a, 23b facing each other is a separator having a pitch P (P1, P2) of 3 mm, that is, the bonding strength by the thermal welding of the two sides 23a, 23b facing each other is the same, In the case of a sample using a separator having a high bonding strength (sample of Comparative Example 2), as shown in FIG. 4, a short circuit occurs when about 3700 seconds have elapsed after the start of heating, and the voltage can be significantly reduced. all right.
 また、発熱についても、図5に示すように、約3900秒を過ぎたあたりで、約190℃に達する、大きな発熱を示すピークが確認された。 As for the heat generation, as shown in FIG. 5, a peak showing a large heat generation reaching about 190 ° C. was confirmed after about 3900 seconds.
 比較例2の試料において、このような結果となったのは、セパレータ13の互いに対向する2辺23a,23bの接合強度がいずれも大きく、熱溶着部で接合が切れずに、セパレータ13の熱収縮により、内部に収容されている正極部材11が変形(湾曲)し、そのエッジがセパレータ13を突き破り、積層方向に隣り合う負極部材12と短絡したことによるものである。 In the sample of Comparative Example 2, this result was obtained because the joining strength of the two opposite sides 23a and 23b of the separator 13 was large, and the joining of the separator 13 did not break at the heat welded portion. This is because the positive electrode member 11 accommodated therein is deformed (curved) due to the contraction, and the edge breaks through the separator 13 to short-circuit the negative electrode member 12 adjacent in the stacking direction.
 一方、本発明の要件を満たす上記実施形態の試料の場合、図4に示すように、加熱開始後、約4200秒が経過するまでは電圧の著しい低下が認められないこと、すなわち、短絡が発生しないことが確認された。 On the other hand, in the case of the sample of the above embodiment satisfying the requirements of the present invention, as shown in FIG. 4, no significant decrease in voltage is observed until about 4200 seconds have elapsed after the start of heating, that is, a short circuit occurs. It was confirmed not to.
 このように、約4200秒が経過するまで電圧の著しい低下(すなわち短絡)が認められないのは、溶着強度差があるため、セパレータの収縮による電極の変形が小さく、強度の弱い側で金属よりも抵抗が高い正極部材が露出し、短絡することでゆっくり自己放電することによるものと考えられる。 As described above, the significant decrease in voltage (that is, short circuit) is not recognized until about 4200 seconds elapses, because there is a difference in the welding strength, so that the deformation of the electrode due to the shrinkage of the separator is small, and the weaker strength than the metal However, it is considered that the positive electrode member having high resistance is exposed and slowly self-discharges by short-circuiting.
 また、発熱についても、図5に示すように、加熱開始後、約4500秒が経過した時点で、約170℃程度の小さいピークが認められるだけであることが確認された。 As for the heat generation, as shown in FIG. 5, it was confirmed that only a small peak of about 170 ° C. was observed when about 4500 seconds passed after the start of heating.
 このように、発熱が少ないのは、短絡が生じた場合にも短絡面積が小さいため、大きな発熱を生じなかったことによる。 As described above, the reason why the heat generation is small is that, even when a short circuit occurs, the short circuit area is small, so that a large heat generation does not occur.
 上記実施形態では、セパレータ13の互いに対向する2辺23a,23bに配設されたほぼ面積が同じ複数の熱溶着領域AのピッチP1とP2を互いに異ならせることにより、セパレータ13の互いに対向する2辺23a,23bにおける熱溶着による接合強度を異ならせるようにしたが、以下に説明する方法で、セパレータ13の互いに対向する2辺23a,23bにおける熱溶着による接合強度を異ならせるようにすることも可能である。 In the embodiment described above, the pitches P <b> 1 and P <b> 2 of the plurality of heat-welding regions A disposed on the two opposite sides 23 a and 23 b of the separator 13 having the same area are made different from each other, whereby Although the bonding strength by heat welding at the sides 23a and 23b is made different, the bonding strength by heat welding at the two sides 23a and 23b facing each other of the separator 13 can be made different by the method described below. Is possible.
 (1)セパレータの上述の2辺のうちの一方の辺と他方の辺とで、各熱溶着領域の配設ピッチを同じとし、各熱溶着領域の平面面積を異ならせることにより、互いに対向する2辺における熱溶着による接合着強度を異ならせる方法。 (1) One side of the above-mentioned two sides of the separator and the other side have the same arrangement pitch of the respective heat-welding regions, and are opposed to each other by different plane areas of the respective heat-welding regions. A method of different bonding strengths by heat welding on two sides.
 (2)セパレータの上述の2辺のうちの一方の辺と他方の辺とで、各熱溶着領域の配設ピッチを異ならせるとともに、各熱溶着領域の平面面積を異ならせることにより、互いに対向する2辺における熱溶着による接合着強度を異ならせる方法。 (2) The one side and the other side of the two sides of the separator are opposed to each other by making the arrangement pitch of each heat welding region different and making the plane area of each heat welding region different. A method of different bonding strengths by heat welding on two sides.
 (3)セパレータの上述の2辺のうちの一方の辺と他方の辺とで、各熱溶着領域の配設ピッチと、各熱溶着領域の平面面積を同じとする一方、上述の2辺のうちの一方の辺と他方の辺とで、各熱溶着領域の単位面積あたりの接合強度を異ならせる方法。 (3) While one side and the other side of the two sides of the separator have the same arrangement pitch of the respective heat welding regions and the planar area of each heat welding region, A method in which the bonding strength per unit area of each heat welding region is made different between one side and the other side.
 なお、上記(3)の方法において、各熱溶着領域の単位面積あたりの接合強度を異ならせるには、熱溶着条件を異ならせる方法、例えば、熱溶着を行う場合の温度条件や時間条件を異ならせる方法などが例示される。 In the above method (3), in order to vary the bonding strength per unit area of each thermal welding region, a method of varying the thermal welding conditions, for example, different temperature conditions and time conditions when performing thermal welding. The method of making it etc. is illustrated.
 また、上記実施形態では、セパレータに正極部材を収容するようにした場合を例にとって説明したが、負極部材をセパレータに収容した構成とすることも可能であり、また、場合によっては、正極部材および負極部材のそれぞれをセパレータに収容した構成とすることも可能である。 Further, in the above embodiment, the case where the positive electrode member is accommodated in the separator has been described as an example. However, the negative electrode member may be accommodated in the separator. Each of the negative electrode members may be configured to be accommodated in a separator.
 また、上記実施形態では、外装体がラミネートケースである場合を例にとって説明したが、例えば、アルミニウムなどの金属からなる容器を外装体として用いることも可能である。 In the above embodiment, the case where the exterior body is a laminated case has been described as an example. However, for example, a container made of a metal such as aluminum can be used as the exterior body.
 また、上記実施形態では、蓄電デバイスとして、リチウムイオン二次電池を例にとって説明したが、本発明は、リチウムイオン二次電池などの電池に限らず、リチウムイオンキャパシタ、電気二重層キャパシタなどにも適用することが可能である。 In the above embodiment, the lithium ion secondary battery has been described as an example of the electricity storage device. However, the present invention is not limited to a battery such as a lithium ion secondary battery, but also to a lithium ion capacitor, an electric double layer capacitor, and the like. It is possible to apply.
 本発明は、さらにその他の点においても上記実施形態に限定されるものではなく、セパレータの具体的な形状や、セパレータに収容される電極部材の形状や構造などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiment in other respects, and various modifications can be made within the scope of the invention with respect to the specific shape of the separator and the shape and structure of the electrode member accommodated in the separator. It is possible to add applications and modifications.
 10        積層体
 11        正極部材
 12        負極部材
 13        セパレータ
 14        電解質(電解液)
 15a,15b   集電部材
 16a,16b   外部端子
 20        外装体(ラミネートケース)
 20a,20b   ラミネートシート
 23a,23b   セパレータの互いに対向する辺
 24a,24b   セパレータの互いに対向する辺に直交する辺
 33a,33b   セパレータ用シート材料
 100       蓄電デバイス
 A         熱溶着領域
 P(P1,P2)  熱溶着領域のピッチ
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Positive electrode member 12 Negative electrode member 13 Separator 14 Electrolyte (electrolytic solution)
15a, 15b Current collecting member 16a, 16b External terminal 20 Exterior body (laminate case)
20a, 20b Laminate sheet 23a, 23b Opposite side 24a, 24b Separator side 33a, 33b Separator sheet material 100 Power storage device A Thermal welding region P (P1, P2) Thermal welding region Pitch of

Claims (5)

  1.  正極部材と負極部材とをセパレータを介して互いに対向するように積層してなる積層体と電解質とを含む蓄電要素が外装体内に収容された構造を有する蓄電デバイスであって、
     前記セパレータは、少なくとも、平面的に見て互いに対向する2辺において、2層のセパレータ用シート材料が互いに溶着されることにより、内部に前記正極部材または前記負極部材が収容される領域が形成されており、かつ、
     前記正極部材および前記負極部材の少なくとも一方が、前記セパレータ内に収容されることにより、前記正極部材と負極部材とがセパレータを介して互いに対向して積層されるように構成されているとともに、
     前記セパレータの、前記2辺における溶着による接合強度が互いに異なるように構成されていること
     を特徴とする蓄電デバイス。
    An electricity storage device having a structure in which an electricity storage element including a laminate and an electrolyte obtained by laminating a positive electrode member and a negative electrode member so as to face each other with a separator interposed therebetween,
    In the separator, at least on two sides facing each other in a plan view, a two-layer separator sheet material is welded to each other to form a region in which the positive electrode member or the negative electrode member is accommodated. And
    At least one of the positive electrode member and the negative electrode member is accommodated in the separator, so that the positive electrode member and the negative electrode member are stacked to face each other with the separator interposed therebetween,
    An electricity storage device, wherein the separators are configured to have different bonding strengths due to welding on the two sides.
  2.  前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の平面面積が同じで、配設のピッチが異なっていることを特徴とする請求項1記載の蓄電デバイス。 On the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one side and the other side of the two sides are welded. The electric storage device according to claim 1, wherein a planar area of each welding region is the same and an arrangement pitch is different from the side.
  3.  前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の配設のピッチが同じで、平面面積が異なっていることを特徴とする請求項1記載の蓄電デバイス。 On the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one side and the other side of the two sides are welded. The electric storage device according to claim 1, wherein a pitch of the welding regions is the same and a planar area is different from the side.
  4.  前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の平面面積および配設のピッチの両方が異なっていることを特徴とする請求項1記載の蓄電デバイス。 On the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one side and the other side of the two sides are welded. 2. The electric storage device according to claim 1, wherein both the planar area of each welding region and the pitch of arrangement differ from each other.
  5.  前記セパレータの前記互いに対向する2辺において、前記2層のセパレータ用シート材料はそれぞれ、各辺の長さ方向に所定のピッチで溶着されており、前記2辺のうちの一方の辺と他方の辺とでは、各溶着領域の平面面積および配設のピッチが同じであって、各溶着領域の単位面積あたりの接合強度が異なっていることを特徴とする請求項1記載の蓄電デバイス。 On the two opposite sides of the separator, the two-layer separator sheet material is welded at a predetermined pitch in the length direction of each side, and one side and the other side of the two sides are welded. The electric storage device according to claim 1, wherein the planar area and arrangement pitch of each welding region are the same as the side, and the bonding strength per unit area of each welding region is different.
PCT/JP2015/052940 2014-02-25 2015-02-03 Power storage device WO2015129401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014033638 2014-02-25
JP2014-033638 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129401A1 true WO2015129401A1 (en) 2015-09-03

Family

ID=54008727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052940 WO2015129401A1 (en) 2014-02-25 2015-02-03 Power storage device

Country Status (1)

Country Link
WO (1) WO2015129401A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670597A (en) * 2020-12-21 2021-04-16 珠海冠宇电池股份有限公司 Electrode assembly, electrochemical device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017112A (en) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd Laminated secondary cell
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012069378A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Stacked cell
JP2013251206A (en) * 2012-06-01 2013-12-12 Toyota Industries Corp Power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017112A (en) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd Laminated secondary cell
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012069378A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Stacked cell
JP2013251206A (en) * 2012-06-01 2013-12-12 Toyota Industries Corp Power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670597A (en) * 2020-12-21 2021-04-16 珠海冠宇电池股份有限公司 Electrode assembly, electrochemical device and electronic equipment

Similar Documents

Publication Publication Date Title
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
KR101152552B1 (en) Electrode assembly and secondary battery using the same
JP4562693B2 (en) Secondary battery with improved stability by fixing a separator to the battery case
JP6232849B2 (en) Electricity storage element
KR101139016B1 (en) Lithium secondary battery having multi-directional lead-tab structure
KR101156955B1 (en) Electrode Assembly of Improved Stability and Secondary Battery Comprising the Same
JP2016178025A (en) Power storage element
KR20140094205A (en) Rechargeable battery
TWI758541B (en) Electrochemical element
WO2014010419A1 (en) Battery assembly
JP6004112B2 (en) Manufacturing method of laminate-type electricity storage device
WO2011145478A1 (en) Stacked secondary cell
KR101753938B1 (en) Secondary battery with improved electric insulation and manufacture method thereof
KR20130122564A (en) Pouch-typed secondary battery having improved safety by preventing internal moving of electrode assembly
WO2015129401A1 (en) Power storage device
JP6036107B2 (en) Electricity storage element
WO2013031642A1 (en) Accumulator device
JP2019057473A (en) Electrochemical cell
JP5651610B2 (en) Secondary battery
KR101849990B1 (en) Battery Cell Having Separation Film of Suppressed Thermal Shrinkage
US9786886B2 (en) Nonaqueous battery
JP6340925B2 (en) Power storage device
JP2015046217A (en) Thin secondary battery
US9202633B2 (en) Laminate type energy device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP