WO2014054682A1 - Power supply control device - Google Patents

Power supply control device Download PDF

Info

Publication number
WO2014054682A1
WO2014054682A1 PCT/JP2013/076800 JP2013076800W WO2014054682A1 WO 2014054682 A1 WO2014054682 A1 WO 2014054682A1 JP 2013076800 W JP2013076800 W JP 2013076800W WO 2014054682 A1 WO2014054682 A1 WO 2014054682A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
temperature
supply path
current
load current
Prior art date
Application number
PCT/JP2013/076800
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 杉沢
成治 高橋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2014054682A1 publication Critical patent/WO2014054682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode

Definitions

  • the present invention relates to a power supply control device, and more particularly to a load current control technique in consideration of a power supply path to be used in a power supply control apparatus that supplies power to a load via a power supply path.
  • Patent Document 1 a technique described in Patent Document 1 is known as a load current control technique considering a power supply path to be used.
  • Patent Document 1 by controlling the load current interruption timing, it is used in a motor drive circuit (power supply control device) to suppress the allowable current value of the electric wire (feeding path) as much as possible, and to reduce the electric wire cost and the electric wire weight. Techniques that enable this are described. JP 2010-172049 A
  • the electric wire is selected in consideration of the case where the load current increases due to the temperature characteristics of the load, the variation of the load, the rise of the power supply voltage, etc. At that time, the wire is usually selected so that the allowable current of the wire is not exceeded even when the load current increases. For example, even if the normal load current is 12 A, if there are wires with allowable currents of 13 A and 17 A, the wires with allowable current of 17 A are often selected in anticipation of fluctuations in the load current. In this case, it can not be said that the selected electric wire necessarily conforms to the actually required specifications, and there is a possibility that an electric wire thicker than necessary may be used due to over-spec. In that case, the electric wire weight increases. For example, when the electric wire is arranged in the vehicle, the vehicle weight is increased.
  • the present invention provides a technique for optimizing the selection of a power feeding path in a power supply control device that supplies power to a load via the power feeding path. (Means for solving the problem)
  • the power supply control device disclosed in this specification is a power supply path having a predetermined smoke generation characteristic indicating a relationship between current and smoke generation time, and is connected to a power supply path that supplies power from a power source to a load.
  • a switch circuit that is connected to the power supply path and switches on / off of supply of load current from the power source to the load; and the power supply path is the smoke generation
  • the average value of power loss of the power supply path is less than a predetermined power loss when the power supply path is used with a predetermined load current that is less than or equal to the allowable current of the power supply path.
  • a control circuit for controlling on / off switching of the switch circuit is a control circuit for controlling on / off switching of the switch circuit.
  • the switching of the switch circuit is controlled so that the average power loss is equal to or less than the predetermined power loss.
  • the electric wire can be safely used in the allowable use area. Therefore, for example, when selecting a wire when the predetermined load current is 12A, a wire having a permissible current of 13A can be selected instead of a wire having a permissible current of 17A. That is, the selection of electric wires can be optimized. As a result, it is possible to avoid using an electric wire having an allowable current more than necessary, and to reduce the size of the electric wire to be used. That is, in the power supply control device that supplies power to the load via the power supply path, the selection of the power supply path can be optimized.
  • the control circuit sets and sets a duty ratio for performing on / off control of the switch circuit so that an average value of power loss in the power feeding path is equal to or less than the predetermined power loss.
  • the switch circuit may be PWM controlled according to the duty ratio. According to this configuration, by setting the duty ratio for controlling the on / off of the switch circuit, the average value of the power loss of the power feeding path can be set to be equal to or less than the predetermined power loss.
  • the power supply control device may further include a current detection unit that detects the load current and generates a current detection signal, and the control circuit monitors the load current based on the current detection signal, and A current ratio of the predetermined load current to current may be calculated, and the square of the current ratio may be set as the duty ratio.
  • the power supply path since the power loss of the power supply path, for example, the electric wire is proportional to the square of the load current, the power supply path is preferably set by setting the square of the current ratio of the predetermined load current to the load current as the duty ratio. The average value of the power loss can be made equal to or less than the predetermined power loss.
  • the power supply control device may further include a voltage detection unit that is connected to the power supply path, detects a power supply voltage of the power supply, and generates a voltage detection signal.
  • the control circuit is based on the voltage detection signal.
  • the power supply voltage may be monitored, a voltage ratio of a predetermined power supply voltage corresponding to the predetermined load current to the power supply voltage may be calculated, and the square of the voltage ratio may be set as the duty ratio.
  • the power loss in the feed path is proportional to the square of the voltage drop in the feed path.
  • the power loss of the power supply path is preferably set by setting the square of the voltage ratio of the predetermined power supply voltage corresponding to the predetermined load current to the power supply voltage as the duty ratio.
  • the average value can be set to a predetermined power loss or less.
  • a current detection unit that detects the load current
  • a temperature detection unit that detects an environmental temperature
  • the load that causes an increase in temperature from the environmental temperature of the power supply path to the power supply path.
  • a power supply path temperature calculation circuit that calculates based on a difference between heat generation of the power supply path due to current and heat dissipation of the power supply path, and calculates the operation power supply path temperature by adding the rising temperature of the power supply path to the environmental temperature.
  • the control circuit estimates the temperature of the power supply path from the calculated power supply path temperature, and turns on the switch circuit after the temperature of the power supply path reaches a first threshold temperature.
  • the feed line may be controlled to be equal to or less than a predetermined power loss when used in rated current below a predetermined load current fed-path a.
  • the control circuit turns off the switch circuit at the first threshold temperature and turns on the switch circuit at the second threshold temperature, thereby controlling the temperature of the power supply path. You may make it maintain to the value between 1 threshold temperature and the said 2nd threshold temperature. According to this configuration, the temperature of the power feeding path can be maintained at a temperature within a predetermined temperature range between the first threshold temperature and the second threshold temperature.
  • control circuit may determine the length of the next ON period in accordance with the rate of increase in the power supply path temperature during the ON period of the switch circuit.
  • the feed path temperature can be controlled so as not to exceed the threshold temperature in accordance with the rate of increase of the feed path temperature, that is, in accordance with the magnitude of the load current.
  • FIG. 1 is a schematic block diagram of a power supply control device according to a first embodiment of the present invention.
  • FIG. 3 is a time chart schematically showing a time transition of each signal according to the first embodiment.
  • FIG. Schematic block diagram of a power supply control apparatus according to Embodiment 2 of the present invention Time chart which shows roughly time transition of each signal concerning Embodiment 2
  • Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3.
  • the power supply control device 10 is connected between a power source Ba and a load 50 to an electric wire (an example of a power feeding path) 51 that supplies power from the power source Ba to the load 50.
  • the power supply from Ba to the load 50 is controlled.
  • the power supply control device 10 includes a control circuit 20, a voltage detection circuit 22, a current detection circuit 23, a switch circuit 30, and a power supply line (an example of a power feeding path) 40.
  • the power supply control apparatus 10 shows the example arrange
  • the power source Ba is a battery, and an example is shown in which, for example, a light as the load 50 is driven and controlled by the power supply control device 10 via an electric wire 51.
  • the switch circuit 30 is provided in series with the power supply line 40, that is, provided in the middle of the power supply line 40, and turns on / off the supply of the load current Ir from the power supply Ba to the load 50 from the control circuit 20. Switching is performed according to the control signal Sgc.
  • the switch circuit 30 is configured as a semiconductor switch, and includes a main switch 31 that supplies power to the load 50 and a sense transistor (an example of a current detection unit) 32 for detecting the load current Ir.
  • the main switch 31 and the sense transistor 32 are configured by, for example, an N-channel FET (field effect transistor) as shown in FIG.
  • a voltage detection circuit (an example of a voltage detection unit) 22 is connected in parallel to the power supply line 40, detects the power supply voltage Vb of the power supply Ba, converts the power supply voltage Vb from analog to digital, and detects a voltage that is a digital signal.
  • a signal SV is generated.
  • the voltage detection signal SV is supplied to the control circuit 20.
  • the voltage detection circuit 22 is configured by, for example, a voltage follower or a voltage dividing resistor. In the present embodiment, the voltage detection circuit 22 may be omitted.
  • a current detection circuit (an example of a current detection unit) 23 is connected to the sense transistor 32, detects the load current Ir, converts the load current Ir from analog to digital, and generates a current detection signal SI that is a digital signal.
  • the current detection signal SI is supplied to the control circuit 20.
  • the electric wire 51 has a predetermined smoke generation characteristic indicating the relationship between the current and the smoke generation time, and is provided between the power supply line 40 and the load 50 in the power supply control device 10.
  • the electric wire 51 is a covered electric wire.
  • the allowable current Ips for example, a 13 A (ampere) electric wire 51 is used, and its smoke generation characteristic is indicated by the smoke generation characteristic line of FIG.
  • the smoke generation characteristic line shows the relationship between the current value of the current continuously flowing through the electric wire 51 and the time until the electric wire covering material of the electric wire 51 reaches smoke.
  • the smoke generation characteristic line it is divided into a smoke generation area where the electric wire 51 generates smoke and a use allowable area where the electric wire 51 can be used.
  • the allowable use area is divided into an excessive thermal resistance area and a balance area where heat generation and heat dissipation of the electric wire 51 are balanced.
  • the allowable current Ips is usually smaller than the equilibrium limit current Iv.
  • the rated current of the load 50 (the device use limit guaranteed at the time of design) Io is set to a value smaller than the allowable current Ips.
  • the rated current Io of the load 50 corresponds to a predetermined load current that is less than or equal to the allowable current.
  • the control circuit 20 is constituted by a CPU, for example.
  • the control circuit 20 generates a control signal Sgc for controlling on / off switching of the switch circuit 30 based on the current detection signal SI or the voltage detection signal SV, and controls the switch circuit 30 by the control signal Sgc. To do.
  • the control circuit 20 supplies a control signal Sgc to the gates of the main switch 31 and the sense transistor 32 to control on / off switching of the main switch 31 and the sense transistor 32.
  • the control circuit 20 has an average value of power loss of the electric wire 51 (hereinafter referred to as “average power loss”) Pwav
  • the on / off switching of the switch circuit 30 is controlled so that the power consumption Po is less than or equal to a predetermined power loss Po when 51 is used with a predetermined load current Io that is less than or equal to the allowable current Ips.
  • control circuit 20 sets the duty ratio Du for on / off control of the switch circuit 30 so that the average power loss Pwav is equal to or less than the predetermined power loss Po, and the switch circuit 30 is set according to the set duty ratio Du. Is PWM controlled.
  • the control circuit 20 monitors the load current Ir based on the current detection signal SI, calculates the current ratio of the predetermined load current Io to the load current Ir (predetermined load current Io / load current Ir), The square of the calculated current ratio is set as the duty ratio Du.
  • the electric wire 51 can be It can be used safely in an allowable use range, particularly in its balanced range.
  • the allowable current Ips of the electric wire 51 is set to “13A”, and the predetermined load current Io below the allowable current Ips is set to “12A”. Also, the rated current of the load is 12A, and since it operates normally at 12A, it is not necessary to supply more current.
  • the duty ratio Du of the switch circuit 30 is set so that the average power loss Pwav is equal to or less than a predetermined power loss Po when the electric wire 51 is used with the load current Ir of “12A”. At that time, the duty ratio Du is set to the square of the current ratio of the predetermined load current Io to the load current Ir.
  • the power loss in the excessive thermal resistance region such as when the power supply voltage Vb is turned on is excluded.
  • the control circuit 20 sets the duty ratio Du to “100%” when the load current Ir, that is, the detected current value Id is “12A” which is the predetermined load current Io. Then, the power loss Pw of the electric wire 51 when the detected current value Id (load current Ir) is 12 A is set as the predetermined power loss Po. As shown in FIG. 3, the predetermined power loss Po is smaller than the power loss Pps when the electric wire 51 is used at the allowable current Ips. Note that the detected current value Id shown in FIG. 3 is the maximum value of the current detection signal SI, that is, the maximum value of the detected current.
  • the control circuit 20 sets the duty ratio Du of the gate control signal Sgc to, for example, “73%”.
  • the load current Ir is a pulse current with a duty ratio Du of 73%, as shown in FIG.
  • the predetermined load current with respect to the load current Ir is (12/16) ⁇ 0.56. Therefore, by setting the duty ratio Du of the gate control signal Sgc to, for example, “56%”, the average power loss Pwav (256 ⁇ 0.56 ⁇ Rw ⁇ 143Rw) is equal to or less than the predetermined power loss Po (144Rw). Become.
  • the average power loss Pwav of the electric wire 51 is set to be equal to or less than the predetermined power loss Po when the electric wire 51 is used with a predetermined load current Io that is equal to or less than the allowable current Ips.
  • the duty ratio Du of the PWM control that is, the control signal Sgc is set so that the average power loss Pwav is equal to or less than the predetermined power loss Po.
  • the duty ratio Du is set.
  • the selection of the electric wire 51 can be optimized. As a result, it is possible to avoid using the electric wire 51 with a rated current more than necessary, and to reduce the size of the electric wire 51 to be used. Thereby, the weight of the vehicle can be reduced.
  • the power supply control device 10 ⁇ / b> A includes an environmental temperature sensor (an example of a temperature detection unit) 24 and an electric wire temperature calculation circuit 25 instead of the voltage detection circuit 22.
  • the electric wire temperature calculation circuit 25 is an example of a feeder line temperature calculation circuit.
  • the environmental temperature sensor 24 is provided in the vicinity of the electric wire temperature calculation circuit 25, for example, and detects the environmental temperature Ta in the engine room of the automobile. Information on the detected environmental temperature Ta is provided to the electric wire temperature calculation circuit 25.
  • the wire temperature calculation circuit 25 increases the temperature rise ⁇ Tw from the environmental temperature Ta of the wire 51 based on the difference between the heat generation of the wire 51 due to the load current Ir flowing through the wire 51 and the heat dissipation of the wire 51.
  • the calculated electric wire temperature Tw is calculated by adding the rising temperature ⁇ Tw of the electric wire 51 to the environmental temperature Ta, and the actual electric wire temperature TW is estimated from the calculated electric wire temperature Tw. Then, the electric wire temperature calculation circuit 25 provides the control circuit 20 with information on the calculated electric wire temperature Tw.
  • the wire temperature calculation circuit 25 samples the load current Ir every predetermined time ⁇ t, and substitutes the value of each load current Ir into the following equation (1) to calculate the wire rising temperature ⁇ Tw.
  • ⁇ Tw (n) ⁇ Tw (n ⁇ 1) ⁇ exp ( ⁇ t / ⁇ w) + Rthw ⁇ Rw (n ⁇ 1) ⁇ Ir (n ⁇ 1) 2 ⁇ (1-exp ( ⁇ t / ⁇ w)) (1)
  • ⁇ Tw (n) Wire rise temperature at the time of detection n times (° C)
  • Rw (n) Rw (0) ⁇ (1 + ⁇ w ⁇ (Tw ⁇ To)) : Wire resistance at detection n times ( ⁇ )
  • Rw (0) Wire resistance ( ⁇ ) at a predetermined reference temperature
  • ⁇ w Electric wire heat dissipation
  • the control circuit 20 estimates the actual wire temperature TW from the calculated wire temperature Tw. Further, after the wire temperature TW reaches the threshold temperature (an example of the first threshold temperature) Tth, the control circuit 20 controls on / off switching of the switch circuit 30 by the same method as in the first embodiment. The electric wire temperature TW is maintained at the threshold temperature Tth. As a result, the average power loss Pwav of the electric wire 51 is controlled to be equal to or less than the predetermined power loss Po.
  • the threshold temperature Tth is determined in advance through experiments or the like as the upper limit temperature of the electric wire 51 when the switching of the switching circuit 30 is controlled. At that time, the threshold temperature Tth is determined with a predetermined margin with respect to the smoke generation temperature TS of the electric wire 51, as shown in FIG.
  • control circuit 20 may determine the length of the next ON period Kon according to the rate of increase of the wire temperature TW during the ON period Kon of the switch circuit 30. For example, the length of the next ON period Kon may be shortened as the rate of increase in the wire temperature TW increases.
  • the control circuit 20 is not limited to maintaining the electric wire temperature TW at the threshold temperature Tth after the electric wire (feeding path) temperature TW reaches the threshold temperature (first threshold temperature) Tth.
  • the control circuit 20 turns off the switch circuit 30 at the threshold temperature Tth and turns on the switch circuit 30 at the second threshold temperature lower than the threshold temperature Tth, thereby changing the wire temperature TW between the threshold temperature Tth and the second threshold temperature.
  • the value may be maintained.
  • the electric wire temperature TW can be maintained at a temperature within a predetermined temperature range between the threshold temperature Tth and the second threshold temperature.
  • Embodiment 2 As described above, in the second embodiment, on / off switching of the switch circuit 30 is controlled while estimating the wire temperature TW so that the wire temperature TW does not exceed the predetermined threshold temperature Tth. As a result, the average power loss Pwav of the electric wire 51 is controlled to be equal to or less than the predetermined power loss Po. Therefore, the selection of the electric wire 51 can be optimized, and even if the load current Ir or the power supply voltage Vb fluctuates, the electric power is supplied to the load 50 without causing the selected electric wire 51 to emit smoke unnecessarily. Can be supplied.
  • the control circuit 20 monitors the load current Ir based on the current detection signal SI, calculates the current ratio of the predetermined load current Io to the load current Ir, and squares the current ratio.
  • the control circuit 20 monitors the power supply voltage Vb based on the voltage detection signal SV, and a voltage ratio of the predetermined power supply voltage Vo (12V in FIG. 2) corresponding to the predetermined load current Io to the power supply voltage Vb (predetermined power supply voltage Vo / The power supply voltage Vb) may be calculated, and the square of the voltage ratio may be set as the duty ratio of the control signal (PWM signal) Sgc.
  • the power loss Pw of the electric wire 51 is proportional to the square of the voltage drop of the electric wire. Therefore, when the voltage drop of the electric wire 51 is proportional to the power supply voltage Vb, for example, when the load resistance value is constant, the square of the voltage ratio of the predetermined power supply voltage Vo corresponding to the predetermined load current Io to the power supply voltage Vb is duty cycle By setting the ratio, the average value Pwav of the power loss of the electric wire 51 can be preferably made equal to or less than the predetermined power loss Po.
  • the duty ratio Du is set when the on / off switching of the switch circuit 30 is controlled so that the average power loss value Pwav of the electric wire 51 is equal to or less than the predetermined power loss Po.
  • the switch circuit 30 is PWM controlled by the set duty ratio Du
  • the present invention is not necessarily limited thereto.
  • the average power loss value Pwav for a predetermined time is calculated without setting the predetermined duty ratio Du, and the arbitrary on-time and off-time are set so that the calculated average power loss value Pwav is equal to or less than the predetermined power loss Po. You may make it switch ON / OFF of the switch circuit 30 according to time.
  • the power supply path is the electric wire 51 from the power supply control device 10, 10 ⁇ / b> A to the load 50
  • the power supply path is not limited to the electric wire 51.
  • the power supply path may be the power line 40.
  • each circuit of the power supply control device 10 or 10A is configured as an individual circuit has been described, but the present invention is not limited thereto.
  • the power supply control devices 10 and 10A may be configured by an ASIC (application-specific integrated circuit).

Abstract

A power supply control device comprises: a switch circuit which is connected to a power supply circuit which has a prescribed smoke characteristic which denotes a relation between a current and a smoke time, said switch circuit switching on and off a supply of a load current from a power source to a load; and a control circuit which, when a power supply path is used in a use allowance region by way of the smoke characteristic, controls the on-off switching of the switch circuit such that an average value Pwav of power loss of the power supply path is less than a prescribed power loss Po when the power supply path is used with a prescribed load current Io of less than or equal to an allowed current Ips of the power supply path.

Description

電力供給制御装置Power supply control device
 本発明は、電力供給制御装置に関し、特に、給電路を介して負荷に電力を供給する電力供給制御装置において、使用する給電路を考慮した負荷電流の制御技術に関する。 The present invention relates to a power supply control device, and more particularly to a load current control technique in consideration of a power supply path to be used in a power supply control apparatus that supplies power to a load via a power supply path.
 従来、給電路を介して負荷に電力を供給する電力供給制御装置において、使用する給電路を考慮した負荷電流の制御技術として、例えば、特許文献1に記載された技術が知られている。特許文献1では、負荷電流の遮断タイミングを制御することによって、モータ駆動回路(電力供給制御装置)に用いられて電線(給電路)の許容電流値を極力小さく抑え、電線コスト、電線重量の低減を可能とする技術が記載されている。
特開2010-172049号公報
2. Description of the Related Art Conventionally, in a power supply control device that supplies power to a load via a power supply path, for example, a technique described in Patent Document 1 is known as a load current control technique considering a power supply path to be used. In Patent Document 1, by controlling the load current interruption timing, it is used in a motor drive circuit (power supply control device) to suppress the allowable current value of the electric wire (feeding path) as much as possible, and to reduce the electric wire cost and the electric wire weight. Techniques that enable this are described.
JP 2010-172049 A
(発明が解決しようとする課題)
 上記、特許文献1に記載された技術では、モーターロックという異常状態においてモーターへの通電を制限することにより、好適に電線コスト、電線重量が低減できるものの、対象負荷が限定されることや、モーターの非ロック時には、電源電圧の上昇や負荷のばらつきを見込んだ電線径の設定が必要であること等から、電線径が細い(許容電流の小さい)電線を使用する方法が所望されていた。
(Problems to be solved by the invention)
In the technique described in Patent Document 1, although the electric wire cost and the electric wire weight can be suitably reduced by restricting energization to the motor in an abnormal state called motor lock, the target load is limited, the motor At the time of non-locking, since it is necessary to set the wire diameter in consideration of the rise of the power supply voltage and the variation of the load, a method of using a wire with a thin wire diameter (small allowable current) has been desired.
 通常、電線の選定は、負荷の温度特性、負荷のバラツキ、電源電圧の上昇等によって負荷電流が増加した場合を考慮して行われる。その際、通常、負荷電流が増加した場合であっても電線の許容電流を超えないように、電線の選定が行われる。例えば、通常の負荷電流が12Aであっても、許容電流が13Aおよび17Aの電線がある場合、負荷電流の変動を見越して、許容電流が17Aの電線が選定される場合が多い。この場合、選定された電線が必ずしも実際に必要とされるスペックに合致しているとは言えず、オーバースペックとなって必要以上に太い電線が使用される虞があった。その場合、電線重量が増加し、例えば、電線が車両に配置される場合、車両重量を増加させることとなる。 Normally, the electric wire is selected in consideration of the case where the load current increases due to the temperature characteristics of the load, the variation of the load, the rise of the power supply voltage, etc. At that time, the wire is usually selected so that the allowable current of the wire is not exceeded even when the load current increases. For example, even if the normal load current is 12 A, if there are wires with allowable currents of 13 A and 17 A, the wires with allowable current of 17 A are often selected in anticipation of fluctuations in the load current. In this case, it can not be said that the selected electric wire necessarily conforms to the actually required specifications, and there is a possibility that an electric wire thicker than necessary may be used due to over-spec. In that case, the electric wire weight increases. For example, when the electric wire is arranged in the vehicle, the vehicle weight is increased.
 本発明は、給電路を介して負荷に電力を供給する電力供給制御装置において、給電路の選定を適正化する技術を提供する。
(課題を解決するための手段)
The present invention provides a technique for optimizing the selection of a power feeding path in a power supply control device that supplies power to a load via the power feeding path.
(Means for solving the problem)
 本明細書によって開示される電力供給制御装置は、電流と発煙時間との関係を示す所定の発煙特性を有する給電路であって、電源から負荷へ電力を供給する給電路に接続され、前記電源から前記負荷への電力供給を制御する電力供給制御装置において、前記給電路に接続され、前記電源から前記負荷への負荷電流の供給のオン・オフを切替えるスイッチ回路と、前記給電路が前記発煙特性による使用許容領域において使用される場合において、前記給電路の電力損失の平均値が、前記給電路を該給電路の許容電流以下の所定負荷電流で使用した際の所定電力損失以下となるように、前記スイッチ回路のオン・オフの切替えを制御する制御回路とを備える。 The power supply control device disclosed in this specification is a power supply path having a predetermined smoke generation characteristic indicating a relationship between current and smoke generation time, and is connected to a power supply path that supplies power from a power source to a load. In the power supply control device for controlling power supply from the power source to the load, a switch circuit that is connected to the power supply path and switches on / off of supply of load current from the power source to the load; and the power supply path is the smoke generation When used in an allowable use area due to characteristics, the average value of power loss of the power supply path is less than a predetermined power loss when the power supply path is used with a predetermined load current that is less than or equal to the allowable current of the power supply path. And a control circuit for controlling on / off switching of the switch circuit.
 本構成によれば、負荷電流が給電路、例えば電線の許容電流を超える場合であっても、平均電力損失が、所定電力損失以下となるように、スイッチ回路のオン・オフの切替えが制御される。それによって、負荷電流が電線の許容電流を超えることがあっても、電線をその使用許容領域において安全に使用することができる。そのため、例えば、所定負荷電流が12Aである場合の電線の選定において、許容電流が17Aの電線に代えて、許容電流が13Aの電線を選定することができる。すなわち、電線の選定を適正化することができる。その結果、必要以上の許容電流の電線を使用することを回避でき、使用する電線を小型化することができる。すなわち、給電路を介して負荷に電力を供給する電力供給制御装置において、給電路の選定を適正化することができる。 According to this configuration, even when the load current exceeds the allowable current of the power supply path, for example, the electric wire, the switching of the switch circuit is controlled so that the average power loss is equal to or less than the predetermined power loss. The Thereby, even if the load current exceeds the allowable current of the electric wire, the electric wire can be safely used in the allowable use area. Therefore, for example, when selecting a wire when the predetermined load current is 12A, a wire having a permissible current of 13A can be selected instead of a wire having a permissible current of 17A. That is, the selection of electric wires can be optimized. As a result, it is possible to avoid using an electric wire having an allowable current more than necessary, and to reduce the size of the electric wire to be used. That is, in the power supply control device that supplies power to the load via the power supply path, the selection of the power supply path can be optimized.
 上記電力供給制御装置において、前記制御回路は、前記給電路の電力損失の平均値が、前記所定電力損失以下となるように、前記スイッチ回路をオン・オフ制御するデューティ比を設定し、設定された前記デューティ比によって前記スイッチ回路をPWM制御するようにしてもよい。
 本構成によれば、スイッチ回路をオン・オフ制御するデューティ比を設定することによって、簡易および好適に、給電路の電力損失の平均値を、所定電力損失以下とすることができる。
In the power supply control device, the control circuit sets and sets a duty ratio for performing on / off control of the switch circuit so that an average value of power loss in the power feeding path is equal to or less than the predetermined power loss. The switch circuit may be PWM controlled according to the duty ratio.
According to this configuration, by setting the duty ratio for controlling the on / off of the switch circuit, the average value of the power loss of the power feeding path can be set to be equal to or less than the predetermined power loss.
 また、上記電力供給制御装置において、前記負荷電流を検出し、電流検出信号を生成する電流検出部をさらに備え、前記制御回路は、前記電流検出信号に基づいて前記負荷電流を監視し、前記負荷電流に対する、前記所定負荷電流の電流比を算出し、前記電流比の2乗を前記デューティ比として設定するようにしてもよい。
 本構成によれば、給電路、例えば電線の電力損失は負荷電流の二乗に比例するため、負荷電流に対する、所定負荷電流の電流比の2乗をデューティ比とすることによって、好適に、給電路の電力損失の平均値を、所定電力損失以下とすることができる。
The power supply control device may further include a current detection unit that detects the load current and generates a current detection signal, and the control circuit monitors the load current based on the current detection signal, and A current ratio of the predetermined load current to current may be calculated, and the square of the current ratio may be set as the duty ratio.
According to this configuration, since the power loss of the power supply path, for example, the electric wire is proportional to the square of the load current, the power supply path is preferably set by setting the square of the current ratio of the predetermined load current to the load current as the duty ratio. The average value of the power loss can be made equal to or less than the predetermined power loss.
 また、上記電力供給制御装置において、前記給電路に接続され、前記電源の電源電圧を検出し、電圧検出信号を生成する電圧検出部をさらに備え、前記制御回路は、前記電圧検出信号に基づいて前記電源電圧を監視し、前記電源電圧に対する、前記所定負荷電流に対応した所定電源電圧の電圧比を算出し、前記電圧比の2乗を前記デューティ比として設定するようにしてもよい。
 給電路の電力損失は給電路の電圧降下の二乗に比例する。そのため、給電路の電圧降下が電源電圧に比例する場合、電源電圧に対する、所定負荷電流に対応した所定電源電圧の電圧比の2乗をデューティ比とすることによって、好適に、給電路の電力損失の平均値を、所定電力損失以下とすることができる。
The power supply control device may further include a voltage detection unit that is connected to the power supply path, detects a power supply voltage of the power supply, and generates a voltage detection signal. The control circuit is based on the voltage detection signal. The power supply voltage may be monitored, a voltage ratio of a predetermined power supply voltage corresponding to the predetermined load current to the power supply voltage may be calculated, and the square of the voltage ratio may be set as the duty ratio.
The power loss in the feed path is proportional to the square of the voltage drop in the feed path. Therefore, when the voltage drop of the power supply path is proportional to the power supply voltage, the power loss of the power supply path is preferably set by setting the square of the voltage ratio of the predetermined power supply voltage corresponding to the predetermined load current to the power supply voltage as the duty ratio. The average value can be set to a predetermined power loss or less.
 また、上記電力供給制御装置において、前記負荷電流を検出する電流検出部と、環境温度を検出する温度検出部と、前記給電路の前記環境温度からの上昇温度を、前記給電路に流れる前記負荷電流による前記給電路の発熱と、前記給電路の放熱との差に基づいて算出し、前記環境温度に前記給電路の前記上昇温度を加算して演算給電路温度を算出する給電路温度演算回路とをさらに備え、前記制御回路は、前記制御回路は、前記演算給電路温度によって前記給電路の温度を推定し、前記給電路の温度が第1閾温度に達した以後、前記スイッチ回路のオン・オフの切り替えを制御し、前記給電路の温度を、前記第1閾温度に維持することによって、または、前記第1閾温度と該第1閾温度より低い第2閾温度の間に維持することによって、前記給電路の電力損失の平均値を、前記給電路を該給電路の定格電流以下の所定負荷電流で使用した際の所定電力損失以下となるように制御するようにしてもよい。 In the power supply control device, a current detection unit that detects the load current, a temperature detection unit that detects an environmental temperature, and the load that causes an increase in temperature from the environmental temperature of the power supply path to the power supply path. A power supply path temperature calculation circuit that calculates based on a difference between heat generation of the power supply path due to current and heat dissipation of the power supply path, and calculates the operation power supply path temperature by adding the rising temperature of the power supply path to the environmental temperature. The control circuit estimates the temperature of the power supply path from the calculated power supply path temperature, and turns on the switch circuit after the temperature of the power supply path reaches a first threshold temperature. Control off switching and maintain the temperature of the power supply path at the first threshold temperature or between the first threshold temperature and a second threshold temperature lower than the first threshold temperature By before The average value of the power loss in the feed line, the feed line may be controlled to be equal to or less than a predetermined power loss when used in rated current below a predetermined load current fed-path a.
 本構成によれば、給電路の選定を適正化することができるとともに、負荷電流、あるいは電源電圧が変動する場合であっても、給電路温度が推定されるため、選定された給電路を不要に発煙させることなく、設定される閾温度の状態で使用することができる。 According to this configuration, it is possible to optimize the selection of the power supply path, and even when the load current or the power supply voltage fluctuates, the power supply path temperature is estimated, so the selected power supply path is unnecessary. It can be used in the state of the set threshold temperature without causing smoke.
 また、上記電力供給制御装置において、前記制御回路は、前記第1閾温度で前記スイッチ回路をオフし、前記第2閾温度で前記スイッチ回路をオンすることにより、前記給電路の温度を前記第1閾温度と前記第2閾温度の間の値に維持するようにしてもよい。
 本構成によれば、給電路の温度を、第1閾温度と第2閾温度との間の所定温度範囲内の温度に維持できる。
In the power supply control device, the control circuit turns off the switch circuit at the first threshold temperature and turns on the switch circuit at the second threshold temperature, thereby controlling the temperature of the power supply path. You may make it maintain to the value between 1 threshold temperature and the said 2nd threshold temperature.
According to this configuration, the temperature of the power feeding path can be maintained at a temperature within a predetermined temperature range between the first threshold temperature and the second threshold temperature.
 その際、前記制御回路は、前記スイッチ回路のオン期間中における前記給電路温度の上昇率に応じて、次のオン期間の長さを決定するようにしてもよい。
 本構成によれば、給電路温度の上昇率に応じて、すなわち負荷電流の大きさに対応して、閾温度を超えないように、給電路温度を制御できる。
At that time, the control circuit may determine the length of the next ON period in accordance with the rate of increase in the power supply path temperature during the ON period of the switch circuit.
According to this configuration, the feed path temperature can be controlled so as not to exceed the threshold temperature in accordance with the rate of increase of the feed path temperature, that is, in accordance with the magnitude of the load current.
本発明の実施形態1に係る電力供給制御装置の概略的なブロック図1 is a schematic block diagram of a power supply control device according to a first embodiment of the present invention. 電線の発煙特性を示すグラフGraph showing smoke characteristics of electric wires 実施形態1に係る各信号の時間推移を概略的に示すタイムチャートFIG. 3 is a time chart schematically showing a time transition of each signal according to the first embodiment. FIG. 本発明の実施形態2に係る電力供給制御装置の概略的なブロック図Schematic block diagram of a power supply control apparatus according to Embodiment 2 of the present invention 実施形態2に係る各信号の時間推移を概略的に示すタイムチャートTime chart which shows roughly time transition of each signal concerning Embodiment 2
 10...電力供給制御装置
 20...制御回路
 22...電圧検出回路
 23...電流検出回路(電流検出部)
 24...環境温度センサ
 25...電線温度演算回路
 30...スイッチ回路
 31...メインスイッチ(スイッチ回路)
 32...センストランジスタ(電流検出部)
 51...電線(給電路)
 Ir...負荷電流
 Ta...環境温度
 TW...電線温度
 Tw...演算電線温度
 ΔTw...電線の上昇温度
DESCRIPTION OF SYMBOLS 10 ... Power supply control apparatus 20 ... Control circuit 22 ... Voltage detection circuit 23 ... Current detection circuit (current detection part)
24 ... Environmental temperature sensor 25 ... Electric wire temperature calculation circuit 30 ... Switch circuit 31 ... Main switch (switch circuit)
32 ... Sense transistor (current detector)
51. Electric wire (feeding line)
Ir ... Load current Ta ... Environmental temperature TW ... Wire temperature Tw ... Calculated wire temperature ΔTw ... Rise temperature of wire
 <実施形態1>
 本発明の実施形態1について図1から図3を参照しつつ説明する。
 1.回路構成
 電力供給制御装置10は、図1に示されるように、電源Baと負荷50との間において、電源Baから負荷50へ電力を供給する電線(給電路の一例)51に接続され、電源Baから負荷50へ電力供給を制御する。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3.
1. Circuit Configuration As shown in FIG. 1, the power supply control device 10 is connected between a power source Ba and a load 50 to an electric wire (an example of a power feeding path) 51 that supplies power from the power source Ba to the load 50. The power supply from Ba to the load 50 is controlled.
 電力供給制御装置10は、制御回路20、電圧検出回路22、電流検出回路23、スイッチ回路30、および電源ライン(給電路の一例)40を含む。 The power supply control device 10 includes a control circuit 20, a voltage detection circuit 22, a current detection circuit 23, a switch circuit 30, and a power supply line (an example of a power feeding path) 40.
 なお、実施形態1においては、電力供給制御装置10は、例えば、自動車のエンジンルーム内に配置される例を示す。また、電源Baはバッテリであり、負荷50として例えばライトが、電線51を介して電力供給制御装置10によって駆動制御される例が示される。 In addition, in Embodiment 1, the power supply control apparatus 10 shows the example arrange | positioned in the engine room of a motor vehicle, for example. Further, the power source Ba is a battery, and an example is shown in which, for example, a light as the load 50 is driven and controlled by the power supply control device 10 via an electric wire 51.
 スイッチ回路30は、電源ライン40に対して直列に設けられ、すなわち、電源ライン40の途中に設けられ、電源Baから負荷50への負荷電流Irの供給のオン・オフを、制御回路20からの制御信号Sgcに応じて切替える。ここで、スイッチ回路30は半導体スイッチとして構成され、負荷50に電力を供給するメインスイッチ31と負荷電流Irを検出するためのセンストランジスタ(電流検出部の一例)32とを含む。メインスイッチ31およびセンストランジスタ32は、例えば、図1に示されるように、NチャネルFET(電界効果トランジスタ)によって構成される。 The switch circuit 30 is provided in series with the power supply line 40, that is, provided in the middle of the power supply line 40, and turns on / off the supply of the load current Ir from the power supply Ba to the load 50 from the control circuit 20. Switching is performed according to the control signal Sgc. Here, the switch circuit 30 is configured as a semiconductor switch, and includes a main switch 31 that supplies power to the load 50 and a sense transistor (an example of a current detection unit) 32 for detecting the load current Ir. The main switch 31 and the sense transistor 32 are configured by, for example, an N-channel FET (field effect transistor) as shown in FIG.
 電圧検出回路(電圧検出部の一例)22は、電源ライン40に対して並列接続され、電源Baの電源電圧Vbを検出し、電源電圧Vbをアナログ-デジタル変換して、デジタル信号である電圧検出信号SVを生成する。電圧検出信号SVは、制御回路20に供給される。電圧検出回路22は、例えば、ボルテージフォロア、あるいは分圧抵抗によって構成される。なお、本実施形態において、電圧検出回路22は省略されてもよい。 A voltage detection circuit (an example of a voltage detection unit) 22 is connected in parallel to the power supply line 40, detects the power supply voltage Vb of the power supply Ba, converts the power supply voltage Vb from analog to digital, and detects a voltage that is a digital signal. A signal SV is generated. The voltage detection signal SV is supplied to the control circuit 20. The voltage detection circuit 22 is configured by, for example, a voltage follower or a voltage dividing resistor. In the present embodiment, the voltage detection circuit 22 may be omitted.
 電流検出回路(電流検出部の一例)23は、センストランジスタ32に接続され、負荷電流Irを検出し、負荷電流Irをアナログ-デジタル変換して、デジタル信号である電流検出信号SIを生成する。電流検出信号SIは制御回路20に供給される。 A current detection circuit (an example of a current detection unit) 23 is connected to the sense transistor 32, detects the load current Ir, converts the load current Ir from analog to digital, and generates a current detection signal SI that is a digital signal. The current detection signal SI is supplied to the control circuit 20.
 電線51は、電流と発煙時間との関係を示す所定の発煙特性を有し、電力供給制御装置10内の電源ライン40と負荷50との間に設けられる。ここでは、電線51は被覆電線である。また、許容電流Ipsとして、例えば、13A(アンペア)の電線51が使用され、その発煙特性が、図2の発煙特性線によって示される。発煙特性線は、詳しくは、電線51に継続的に流す電流の電流値と、電線51の電線被覆材が発煙に至るまでの時間との関係を示すものである。 The electric wire 51 has a predetermined smoke generation characteristic indicating the relationship between the current and the smoke generation time, and is provided between the power supply line 40 and the load 50 in the power supply control device 10. Here, the electric wire 51 is a covered electric wire. Further, as the allowable current Ips, for example, a 13 A (ampere) electric wire 51 is used, and its smoke generation characteristic is indicated by the smoke generation characteristic line of FIG. Specifically, the smoke generation characteristic line shows the relationship between the current value of the current continuously flowing through the electric wire 51 and the time until the electric wire covering material of the electric wire 51 reaches smoke.
 発煙特性線によって、電線51が発煙する発煙領域と、電線51の使用可能な使用許容領域に区分される。また、使用許容領域は、過度熱抵抗領域と、電線51の発熱と放熱がバランスするバランス領域に区分される。 According to the smoke generation characteristic line, it is divided into a smoke generation area where the electric wire 51 generates smoke and a use allowable area where the electric wire 51 can be used. The allowable use area is divided into an excessive thermal resistance area and a balance area where heat generation and heat dissipation of the electric wire 51 are balanced.
 バランス領域では、電線51の発熱と放熱のバランスがとれた熱平衡状態で所定の電流を流すことが可能であり、その電流の最高値が平衡時限界電流Ivとして示される。図2に示されるように、通常、許容電流Ipsは、平衡時限界電流Ivより小さい値である。また、通常、負荷50の定格電流(設計時に保証される機器の使用限度)Ioは、許容電流Ipsより小さい値に設定される。負荷50の定格電流Ioは、許容電流以下の所定負荷電流に相当する。 In the balance region, it is possible to flow a predetermined current in a thermal equilibrium state where the heat generation and heat dissipation of the electric wire 51 are balanced, and the maximum value of the current is indicated as the equilibrium limit current Iv. As shown in FIG. 2, the allowable current Ips is usually smaller than the equilibrium limit current Iv. In general, the rated current of the load 50 (the device use limit guaranteed at the time of design) Io is set to a value smaller than the allowable current Ips. The rated current Io of the load 50 corresponds to a predetermined load current that is less than or equal to the allowable current.
 制御回路20は、例えば、CPUによって構成される。制御回路20は、電流検出信号SIあるいは電圧検出信号SVに基づいて、スイッチ回路30のオン・オフの切替えを制御するための、制御信号Sgcを生成し、制御信号Sgcによって、スイッチ回路30を制御する。詳しくは、制御回路20は、制御信号Sgcをメインスイッチ31およびセンストランジスタ32のゲートに供給して、メインスイッチ31およびセンストランジスタ32のオン・オフの切替えを制御する。 The control circuit 20 is constituted by a CPU, for example. The control circuit 20 generates a control signal Sgc for controlling on / off switching of the switch circuit 30 based on the current detection signal SI or the voltage detection signal SV, and controls the switch circuit 30 by the control signal Sgc. To do. Specifically, the control circuit 20 supplies a control signal Sgc to the gates of the main switch 31 and the sense transistor 32 to control on / off switching of the main switch 31 and the sense transistor 32.
 2.電力供給制御装置の動作
 次に図3を参照して、実施形態1における電力供給制御装置10の特徴的な動作を説明する。なお、説明の便宜上、負荷50の抵抗値を1オーム(Ω)とし、電線51の抵抗値は負荷50の抵抗値と比べて無視できるほど小さいものとする。そのため、図3に示されるように、電源電圧Vbの検出電圧Vdの数値と、負荷電流Irの検出電流Idの数値とは等しくなる。
2. Operation of Power Supply Control Device Next, a characteristic operation of the power supply control device 10 according to the first embodiment will be described with reference to FIG. For convenience of explanation, it is assumed that the resistance value of the load 50 is 1 ohm (Ω), and the resistance value of the electric wire 51 is negligibly smaller than the resistance value of the load 50. Therefore, as shown in FIG. 3, the numerical value of the detection voltage Vd of the power supply voltage Vb is equal to the numerical value of the detection current Id of the load current Ir.
 特徴的な動作として、制御回路20は、電線51が図2の使用許容領域において使用される場合において、電線51の電力損失の平均値(以下、「平均電力損失」と記す)Pwavが、電線51を許容電流Ips以下の所定負荷電流Ioで使用した際の所定電力損失Po以下となるように、スイッチ回路30のオン・オフの切替えを制御する。 As a characteristic operation, when the electric wire 51 is used in the use allowable region of FIG. 2, the control circuit 20 has an average value of power loss of the electric wire 51 (hereinafter referred to as “average power loss”) Pwav The on / off switching of the switch circuit 30 is controlled so that the power consumption Po is less than or equal to a predetermined power loss Po when 51 is used with a predetermined load current Io that is less than or equal to the allowable current Ips.
 その際、制御回路20は、平均電力損失Pwavが、所定電力損失Po以下となるように、スイッチ回路30をオン・オフ制御するデューティ比Duを設定し、設定されたデューティ比Duによってスイッチ回路30をPWM制御する。 At that time, the control circuit 20 sets the duty ratio Du for on / off control of the switch circuit 30 so that the average power loss Pwav is equal to or less than the predetermined power loss Po, and the switch circuit 30 is set according to the set duty ratio Du. Is PWM controlled.
 また、その際、制御回路20は、電流検出信号SIに基づいて負荷電流Irを監視し、負荷電流Irに対する、所定負荷電流Ioの電流比(所定負荷電流Io/負荷電流Ir)を算出し、算出された電流比の2乗をデューティ比Duとして設定する。 At that time, the control circuit 20 monitors the load current Ir based on the current detection signal SI, calculates the current ratio of the predetermined load current Io to the load current Ir (predetermined load current Io / load current Ir), The square of the calculated current ratio is set as the duty ratio Du.
 このように、PWM制御のデューティ比Du、すなわち、制御信号Sgcのデューティ比Duを設定することにより、負荷電流Irが電線51の許容電流Ipsを超えることがあっても、電線51を図2の使用許容領域、特に、そのバランス領域において安全に使用することができる。 Thus, by setting the duty ratio Du of the PWM control, that is, the duty ratio Du of the control signal Sgc, even if the load current Ir may exceed the allowable current Ips of the electric wire 51, the electric wire 51 can be It can be used safely in an allowable use range, particularly in its balanced range.
 以下、その具体例を、図3を参照して説明する。ここでは、電線51の許容電流Ipsを「13A」とし、許容電流Ips以下の所定負荷電流Ioを、「12A」とする。また、負荷の定格電流は12Aであり、12Aで正常に動作するため、それ以上の電流を供給する必要はない。そして、スイッチ回路30のデューティ比Duは、平均電力損失Pwavが、電線51を「12A」の負荷電流Irで使用した際の所定電力損失Po以下となるように、設定される。その際、デューティ比Duは、負荷電流Irに対する、所定負荷電流Ioの電流比の2乗に設定される。なお、ここで、電線51の電力損失と言うとき、電源電圧Vbの投入時等の過度熱抵抗領域における電力損失は除かれるものとする。 Hereinafter, a specific example thereof will be described with reference to FIG. Here, the allowable current Ips of the electric wire 51 is set to “13A”, and the predetermined load current Io below the allowable current Ips is set to “12A”. Also, the rated current of the load is 12A, and since it operates normally at 12A, it is not necessary to supply more current. The duty ratio Du of the switch circuit 30 is set so that the average power loss Pwav is equal to or less than a predetermined power loss Po when the electric wire 51 is used with the load current Ir of “12A”. At that time, the duty ratio Du is set to the square of the current ratio of the predetermined load current Io to the load current Ir. Here, when the power loss of the electric wire 51 is referred to, the power loss in the excessive thermal resistance region such as when the power supply voltage Vb is turned on is excluded.
 図3に示されるように、制御回路20は、負荷電流Irが、すなわち検出電流値Idが、所定負荷電流Ioである「12A」である場合、デューティ比Duを「100%」に設定する。そして、検出電流値Id(負荷電流Ir)が12Aである場合の電線51の電力損失Pwが、所定電力損失Poとされる。図3に示されるように、所定電力損失Poは、電線51を許容電流Ipsで使用した場合の電力損失Ppsより小さい値となる。なお、図3に示される検出電流値Idは、電流検出信号SIの最大値、すなわち検出電流の最大値とする。 3, the control circuit 20 sets the duty ratio Du to “100%” when the load current Ir, that is, the detected current value Id is “12A” which is the predetermined load current Io. Then, the power loss Pw of the electric wire 51 when the detected current value Id (load current Ir) is 12 A is set as the predetermined power loss Po. As shown in FIG. 3, the predetermined power loss Po is smaller than the power loss Pps when the electric wire 51 is used at the allowable current Ips. Note that the detected current value Id shown in FIG. 3 is the maximum value of the current detection signal SI, that is, the maximum value of the detected current.
 例えば、負荷電流Irの検出電流値Idが「14A」である場合、すなわち図3の時刻t1までの期間においては、負荷電流Irに対する所定負荷電流Ioの電流比の2乗は、(12/14)≒0.734となる。そのため、制御回路20は、ゲート制御信号Sgcのデューティ比Duを、例えば、「73%」に設定する。このとき、負荷電流Irは、図3に示されるように、デューティ比Duが73%のパルス電流となる。 For example, when the detected current value Id of the load current Ir is “14A”, that is, in the period up to time t1 in FIG. 3, the square of the current ratio of the predetermined load current Io to the load current Ir is (12/14 ) becomes a 2 ≒ 0.734. Therefore, the control circuit 20 sets the duty ratio Du of the gate control signal Sgc to, for example, “73%”. At this time, the load current Ir is a pulse current with a duty ratio Du of 73%, as shown in FIG.
 ここで、電線51の抵抗値をRwとすると、電線51の平均電力損失値Pwavは、Pwav=Id×Du×Rw=196×0.73×Rw≒143Rw となる。
一方、所定電力損失Poは、Po=(所定負荷電流Io)×Rw=12×Rw=144Rw となり、平均電力損失Pwavは、所定電力損失Po以下となる。
Here, when the resistance value of the electric wire 51 is Rw, the average power loss value Pwav of the electric wire 51 is Pwav = Id 2 × Du × Rw = 196 × 0.73 × Rw≈143Rw.
On the other hand, the predetermined power loss Po is Po = (predetermined load current Io) 2 × Rw = 12 2 × Rw = 144 Rw, and the average power loss Pwav is equal to or less than the predetermined power loss Po.
 また、同様に、例えば、負荷電流Irの検出電流値Idが、定格電流を超える「16A」である場合、すなわち図3の時刻t1から時刻t2までの期間においては、負荷電流Irに対する所定負荷電流Ioの電流比の2乗は、(12/16)≒0.56となる。そのため、ゲート制御信号Sgcのデューティ比Duを、例えば、「56%」に設定することによって、平均電力損失Pwav(256×0.56×Rw≒143Rw)が、所定電力損失Po(144Rw)以下となる。 Similarly, for example, when the detected current value Id of the load current Ir is “16 A” exceeding the rated current, that is, in the period from time t1 to time t2 in FIG. 3, the predetermined load current with respect to the load current Ir The square of the current ratio of Io is (12/16) ≈0.56. Therefore, by setting the duty ratio Du of the gate control signal Sgc to, for example, “56%”, the average power loss Pwav (256 × 0.56 × Rw≈143Rw) is equal to or less than the predetermined power loss Po (144Rw). Become.
 このように、電線51の平均電力損失Pwavが、電線51を許容電流Ips以下の所定負荷電流Ioで使用した際の所定電力損失Po以下とされる。それによって、負荷電流Irが、バランス領域(使用許容領域)内において電線51の許容電流Ipsを超える場合であっても、電線51を使用許容領域において安全に使用することができる。 Thus, the average power loss Pwav of the electric wire 51 is set to be equal to or less than the predetermined power loss Po when the electric wire 51 is used with a predetermined load current Io that is equal to or less than the allowable current Ips. Thereby, even when the load current Ir exceeds the allowable current Ips of the electric wire 51 in the balance region (usable allowable region), the electric wire 51 can be safely used in the allowable allowable region.
 3.実施形態1の効果
 負荷電流Irが電線51の許容電流Ipsを超える場合であっても、平均電力損失Pwavが、所定電力損失Po以下となるように、PWM制御のデューティ比Du、すなわち制御信号Sgcのデューティ比Duが設定される。それによって、負荷電流Irが電線51の許容電流Ipsを超えることがあっても、電線51を図2の使用許容領域において安全に使用することができる。そのため、例えば、所定負荷電流Ioが12Aである場合の電線51の選定において、許容電流Ipsが17Aの電線に代えて、許容電流Ipsが13Aの電線を選定することができる。すなわち、電線51の選定を適正化することができる。その結果、必要以上の定格電流の電線51を使用することを回避でき、使用する電線51を小型化することができる。それによって、車両の重量を低減させることができる。
3. Effect of Embodiment 1 Even when the load current Ir exceeds the allowable current Ips of the electric wire 51, the duty ratio Du of the PWM control, that is, the control signal Sgc is set so that the average power loss Pwav is equal to or less than the predetermined power loss Po. The duty ratio Du is set. Thereby, even if the load current Ir exceeds the allowable current Ips of the electric wire 51, the electric wire 51 can be used safely in the allowable use region of FIG. Therefore, for example, in selecting the electric wire 51 when the predetermined load current Io is 12 A, it is possible to select an electric wire having an allowable current Ips of 13 A instead of an electric wire having an allowable current Ips of 17 A. That is, the selection of the electric wire 51 can be optimized. As a result, it is possible to avoid using the electric wire 51 with a rated current more than necessary, and to reduce the size of the electric wire 51 to be used. Thereby, the weight of the vehicle can be reduced.
 <実施形態2>
 次に、図4および図5を参照して、実施形態2の電力供給制御装置10Aを説明する。なお、主に、実施形態1の電力供給制御装置10との相違点について説明し、重複する説明は割愛する。
<Embodiment 2>
Next, with reference to FIGS. 4 and 5, the power supply control device 10 </ b> A of the second embodiment will be described. Note that differences from the power supply control device 10 according to the first embodiment will be mainly described, and redundant descriptions will be omitted.
 図4に示されるように、電力供給制御装置10Aは、電圧検出回路22に代えて、環境温度センサ(温度検出部の一例)24および電線温度演算回路25を含む。電線温度演算回路25は、給電線温度演算回路の一例である。 As shown in FIG. 4, the power supply control device 10 </ b> A includes an environmental temperature sensor (an example of a temperature detection unit) 24 and an electric wire temperature calculation circuit 25 instead of the voltage detection circuit 22. The electric wire temperature calculation circuit 25 is an example of a feeder line temperature calculation circuit.
 環境温度センサ24は、例えば、電線温度演算回路25の近傍に設けられ、自動車のエンジンルーム内の環境温度Taを検出する。検出された環境温度Taの情報は、電線温度演算回路25に提供される。 The environmental temperature sensor 24 is provided in the vicinity of the electric wire temperature calculation circuit 25, for example, and detects the environmental temperature Ta in the engine room of the automobile. Information on the detected environmental temperature Ta is provided to the electric wire temperature calculation circuit 25.
 電線温度演算回路25は、以下に示すように、電線51の環境温度Taからの上昇温度ΔTwを、電線51に流れる負荷電流Irによる電線51の発熱と、電線51の放熱との差に基づいて算出し、環境温度Taに電線51の上昇温度ΔTwを加算して演算電線温度Twを算出し、演算電線温度Twによって実際の電線温度TWを推定する。そして、電線温度演算回路25は、演算電線温度Twの情報を制御回路20に提供する。 As shown below, the wire temperature calculation circuit 25 increases the temperature rise ΔTw from the environmental temperature Ta of the wire 51 based on the difference between the heat generation of the wire 51 due to the load current Ir flowing through the wire 51 and the heat dissipation of the wire 51. The calculated electric wire temperature Tw is calculated by adding the rising temperature ΔTw of the electric wire 51 to the environmental temperature Ta, and the actual electric wire temperature TW is estimated from the calculated electric wire temperature Tw. Then, the electric wire temperature calculation circuit 25 provides the control circuit 20 with information on the calculated electric wire temperature Tw.
 ここで、電線温度演算回路25は、例えば、所定時間Δt毎に負荷電流Irをサンプリングし、各負荷電流Irの値を下式(1)に代入して、電線上昇温度ΔTwを算出する。
ΔTw(n)=ΔTw(n-1)×exp(-Δt/τw)+Rthw
 ×Rw(n-1)×Ir(n-1)×(1-exp(-Δt/τw)) ......(1)
ここで、Ir(n):検出n(1以上の整数)回目の検出負荷電流値(A)
  ΔTw(n):検出n回時での電線上昇温度(℃)
   Rw(n)=Rw(0)×(1+κw×(Tw-To))
        :検出n回時の電線抵抗(Ω)
   Rw(0):所定基準温度Toでの電線抵抗(Ω)
    Rthw:電線熱抵抗(℃/W)
      τw:電線放熱時定数(s)
      κw:電線抵抗温度係数(/℃)
なお、式(1)において、電流Irが含まれない第1項が電線51の放熱を示し、負荷電流Irを含む第2項が負荷電流Irによる電線51の発熱を示している。すなわち、スイッチ回路30がオフされ負荷電流Irが遮断されて負荷電流Irが無い場合は、電線51の放熱によって、演算電線温度Twが決定される。
Here, for example, the wire temperature calculation circuit 25 samples the load current Ir every predetermined time Δt, and substitutes the value of each load current Ir into the following equation (1) to calculate the wire rising temperature ΔTw.
ΔTw (n) = ΔTw (n−1) × exp (−Δt / τw) + Rthw
× Rw (n−1) × Ir (n−1) 2 × (1-exp (−Δt / τw)) (1)
Here, Ir (n): detection load current value (A) for detection n (an integer of 1 or more)
ΔTw (n): Wire rise temperature at the time of detection n times (° C)
Rw (n) = Rw (0) × (1 + κw × (Tw−To))
: Wire resistance at detection n times (Ω)
Rw (0): Wire resistance (Ω) at a predetermined reference temperature To
Rthw: Wire thermal resistance (° C / W)
τw: Electric wire heat dissipation time constant (s)
κw: Wire resistance temperature coefficient (/ ° C)
In Equation (1), the first term that does not include the current Ir indicates heat dissipation of the electric wire 51, and the second term that includes the load current Ir indicates heat generation of the electric wire 51 due to the load current Ir. That is, when the switch circuit 30 is turned off and the load current Ir is cut off and there is no load current Ir, the calculated wire temperature Tw is determined by the heat radiation of the wire 51.
 制御回路20は、演算電線温度Twによって実際の電線温度TWを推定する。また、制御回路20は、電線温度TWが閾温度(第1閾温度の一例)Tthに達した以後、実施形態1と同様な方法によって、スイッチ回路30のオン・オフの切替えを制御することによって、電線温度TWを閾温度Tthに維持する。その結果、電線51の電力損失の平均値Pwavが所定電力損失Po以下となるように制御される。 The control circuit 20 estimates the actual wire temperature TW from the calculated wire temperature Tw. Further, after the wire temperature TW reaches the threshold temperature (an example of the first threshold temperature) Tth, the control circuit 20 controls on / off switching of the switch circuit 30 by the same method as in the first embodiment. The electric wire temperature TW is maintained at the threshold temperature Tth. As a result, the average power loss Pwav of the electric wire 51 is controlled to be equal to or less than the predetermined power loss Po.
 なお、閾温度Tthは、スイッチ回路30のオン・オフの切替えを制御する場合の電線51の上限温度として、予め実験等において決定される。その際、閾温度Tthは、図5に示されるように、電線51の発煙温度TSに対して所定のマージンを持たせて決定される。 It should be noted that the threshold temperature Tth is determined in advance through experiments or the like as the upper limit temperature of the electric wire 51 when the switching of the switching circuit 30 is controlled. At that time, the threshold temperature Tth is determined with a predetermined margin with respect to the smoke generation temperature TS of the electric wire 51, as shown in FIG.
 その際、制御回路20は、スイッチ回路30のオン期間Kon中における電線温度TWの上昇率に応じて、次のオン期間Konの長さを決定するようにしてもよい。例えば、電線温度TWの上昇率が大きいほど、次回のオン期間Konの長さを短くするようにしてもよい。 At that time, the control circuit 20 may determine the length of the next ON period Kon according to the rate of increase of the wire temperature TW during the ON period Kon of the switch circuit 30. For example, the length of the next ON period Kon may be shortened as the rate of increase in the wire temperature TW increases.
 例えば、図5において、時刻t0において負荷電流Irの供給か開始され、時刻t3において、電線温度TWが閾温度Tthに達したとする。時刻t0から時刻t3までの電線温度TWの上昇率を「β」とすると、上昇率βが大きいほど、時刻t4からのオン期間Konの長さを短くするようにする。 For example, in FIG. 5, it is assumed that the supply of the load current Ir is started at time t0, and the wire temperature TW reaches the threshold temperature Tth at time t3. Assuming that the rate of increase of the wire temperature TW from time t0 to time t3 is “β”, the length of the on period Kon from time t4 is shortened as the rate of increase β increases.
 これは以下の理由による。通常、上昇率βは負荷電流Irに依存し、負荷電流Irのオフ期間Koffにおける電線温度TWの低下は、負荷電流Irに依存しないからである。すなわち、上昇率βが大きい場合は負荷電流Irが大きい場合に相当する。そのため、電線温度TWの上昇を抑制するために、負荷電流Irを低減させて、電線51の平均電力損失Pを低減させる必要があるからである。 This is due to the following reasons. This is because the increase rate β normally depends on the load current Ir, and the decrease in the wire temperature TW during the off-period Koff of the load current Ir does not depend on the load current Ir. That is, the case where the increase rate β is large corresponds to the case where the load current Ir is large. Therefore, in order to suppress the rise in the wire temperature TW, it is necessary to reduce the load current Ir and reduce the average power loss P of the wire 51.
 なお、電線温度TWが閾温度Tthに達した以後における、スイッチ回路30のオン・オフの切替え周期は、図5に示される温度ヒステリシスの設定量に応じて、適宜、決定されればよい。
 また、制御回路20は、電線(給電路)温度TWが閾温度(第1閾温度)Tthに達した以後、電線温度TWを閾温度Tthに維持することに限られない。制御回路20は、閾温度Tthでスイッチ回路を30オフし、閾温度Tthより低い第2閾温度でスイッチ回路30をオンすることにより、電線温度TWを閾温度Tthと第2閾温度の間の値に維持するようにしてもよい。この場合、電線温度TWを、閾温度Tthと第2閾温度の間の所定温度範囲内の温度に維持できる。
Note that the on / off switching cycle of the switch circuit 30 after the wire temperature TW reaches the threshold temperature Tth may be appropriately determined according to the set amount of the temperature hysteresis shown in FIG.
Further, the control circuit 20 is not limited to maintaining the electric wire temperature TW at the threshold temperature Tth after the electric wire (feeding path) temperature TW reaches the threshold temperature (first threshold temperature) Tth. The control circuit 20 turns off the switch circuit 30 at the threshold temperature Tth and turns on the switch circuit 30 at the second threshold temperature lower than the threshold temperature Tth, thereby changing the wire temperature TW between the threshold temperature Tth and the second threshold temperature. The value may be maintained. In this case, the electric wire temperature TW can be maintained at a temperature within a predetermined temperature range between the threshold temperature Tth and the second threshold temperature.
 4.実施形態2の効果、
 上記したように、実施形態2においては、電線温度TWが所定の閾温度Tthを超えないように、電線温度TWを推定しながら、スイッチ回路30のオン・オフの切替えが制御される。その結果、電線51の電力損失の平均値Pwavが所定電力損失Po以下となるように制御される。そのため、電線51の選定を適正化することができるとともに、負荷電流Ir、あるいは電源電圧Vbが変動する場合であっても、選定された電線51を不要に発煙させることなく、負荷50に電力を供給することができる。
4). The effect of Embodiment 2,
As described above, in the second embodiment, on / off switching of the switch circuit 30 is controlled while estimating the wire temperature TW so that the wire temperature TW does not exceed the predetermined threshold temperature Tth. As a result, the average power loss Pwav of the electric wire 51 is controlled to be equal to or less than the predetermined power loss Po. Therefore, the selection of the electric wire 51 can be optimized, and even if the load current Ir or the power supply voltage Vb fluctuates, the electric power is supplied to the load 50 without causing the selected electric wire 51 to emit smoke unnecessarily. Can be supplied.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
 (1)上記実施形態1においては、制御回路20は、電流検出信号SIに基づいて負荷電流Irを監視し、負荷電流Irに対する、所定負荷電流Ioの電流比を算出し、電流比の2乗をデューティ比Duとして設定する例を示したが、これに限られない。制御回路20は、電圧検出信号SVに基づいて電源電圧Vbを監視し、電源電圧Vbに対する、所定負荷電流Ioに対応した所定電源電圧Vo(図2では12V)の電圧比(所定電源電圧Vo/電源電圧Vb)を算出し、その電圧比の2乗を制御信号(PWM信号)Sgcのデューティ比として設定するようにしてもよい。 (1) In the first embodiment, the control circuit 20 monitors the load current Ir based on the current detection signal SI, calculates the current ratio of the predetermined load current Io to the load current Ir, and squares the current ratio. Although an example in which is set as the duty ratio Du is shown, the present invention is not limited to this. The control circuit 20 monitors the power supply voltage Vb based on the voltage detection signal SV, and a voltage ratio of the predetermined power supply voltage Vo (12V in FIG. 2) corresponding to the predetermined load current Io to the power supply voltage Vb (predetermined power supply voltage Vo / The power supply voltage Vb) may be calculated, and the square of the voltage ratio may be set as the duty ratio of the control signal (PWM signal) Sgc.
 電線51の電力損失Pwは電線の電圧降下の二乗に比例する。そのため、電線51の電圧降下が電源電圧Vbに比例する場合、例えば、負荷抵抗値が一定の場合、電源電圧Vbに対する、所定負荷電流Ioに対応した所定電源電圧Voの電圧比の2乗をデューティ比とすることによって、好適に、電線51の電力損失の平均値Pwavを、所定電力損失Po以下とすることができる。 The power loss Pw of the electric wire 51 is proportional to the square of the voltage drop of the electric wire. Therefore, when the voltage drop of the electric wire 51 is proportional to the power supply voltage Vb, for example, when the load resistance value is constant, the square of the voltage ratio of the predetermined power supply voltage Vo corresponding to the predetermined load current Io to the power supply voltage Vb is duty cycle By setting the ratio, the average value Pwav of the power loss of the electric wire 51 can be preferably made equal to or less than the predetermined power loss Po.
 (2)上記実施形態では、電線51の平均電力損失値Pwavが、所定電力損失Po以下となるように、スイッチ回路30のオン・オフの切替えを制御する際に、デューティ比Duを設定し、設定されたデューティ比Duによってスイッチ回路30をPWM制御する例を示したが、必ずしもこれに限られない。例えば、所定のデューティ比Duを設定せずに、所定時間における平均電力損失値Pwavを算出し、算出された平均電力損失値Pwavが所定電力損失Po以下となるように、任意のオン時間およびオフ時間によってスイッチ回路30のオン・オフを切替えるようにしてもよい。 (2) In the above embodiment, the duty ratio Du is set when the on / off switching of the switch circuit 30 is controlled so that the average power loss value Pwav of the electric wire 51 is equal to or less than the predetermined power loss Po. Although an example in which the switch circuit 30 is PWM controlled by the set duty ratio Du has been shown, the present invention is not necessarily limited thereto. For example, the average power loss value Pwav for a predetermined time is calculated without setting the predetermined duty ratio Du, and the arbitrary on-time and off-time are set so that the calculated average power loss value Pwav is equal to or less than the predetermined power loss Po. You may make it switch ON / OFF of the switch circuit 30 according to time.
 (3)上記実施形態では、給電路を、電力供給制御装置10、10Aから負荷50に至る電線51とする例を示したが、給電路は電線51に限られない。例えば、給電路は電源ライン40であってもよい。 (3) In the above embodiment, an example in which the power supply path is the electric wire 51 from the power supply control device 10, 10 </ b> A to the load 50 is shown, but the power supply path is not limited to the electric wire 51. For example, the power supply path may be the power line 40.
 (4)上記実施形態において、電力供給制御装置10、10Aの各回路を個別の回路として構成する例を示したが、これに限られない。例えば、環境温度センサ24およびスイッチ回路30を除いて、電力供給制御装置10、10Aを、ASIC(特定用途向け集積回路)によって構成するようにしてもよい。 (4) In the above embodiment, the example in which each circuit of the power supply control device 10 or 10A is configured as an individual circuit has been described, but the present invention is not limited thereto. For example, except for the environmental temperature sensor 24 and the switch circuit 30, the power supply control devices 10 and 10A may be configured by an ASIC (application-specific integrated circuit).

Claims (7)

  1.  電流と発煙時間との関係を示す所定の発煙特性を有する給電路であって、電源から負荷へ電力を供給する給電路に接続され、前記電源から前記負荷への電力供給を制御する電力供給制御装置において、
     前記給電路に接続され、前記電源から前記負荷への負荷電流の供給のオン・オフを切替えるスイッチ回路と、
     前記給電路が前記発煙特性による使用許容領域において使用される場合において、前記給電路の電力損失の平均値が、前記給電路を該給電路の許容電流以下の所定負荷電流で使用した際の所定電力損失以下となるように、前記スイッチ回路のオン・オフの切替えを制御する制御回路と、
     を備えた、電力供給制御装置。
    Power supply control having a predetermined smoke generation characteristic indicating a relationship between current and smoke generation time, connected to a power supply path that supplies power from a power source to a load, and controls power supply from the power source to the load In the device
    A switch circuit that is connected to the power supply path and switches on / off of supply of load current from the power source to the load;
    When the power supply path is used in an allowable use area due to the smoke generation characteristic, the average value of the power loss of the power supply path is a predetermined value when the power supply path is used with a predetermined load current that is equal to or lower than the allowable current of the power supply path. A control circuit for controlling on / off switching of the switch circuit so as to be less than or equal to power loss;
    A power supply control device comprising:
  2.  前記制御回路は、前記給電路の電力損失の平均値が、前記所定電力損失以下となるように、前記スイッチ回路をオン・オフ制御するデューティ比を設定し、設定された前記デューティ比によって前記スイッチ回路をPWM制御する、請求項1に記載の電力供給制御装置。 The control circuit sets a duty ratio for on / off control of the switch circuit so that an average value of power loss of the power feeding path is equal to or less than the predetermined power loss, and the switch circuit is set according to the set duty ratio. The power supply control device according to claim 1, wherein the circuit performs PWM control.
  3.  前記負荷電流を検出し、電流検出信号を生成する電流検出部をさらに備え、
     前記制御回路は、前記電流検出信号に基づいて前記負荷電流を監視し、
     前記負荷電流に対する、前記所定負荷電流の電流比を算出し、前記電流比の2乗を前記デューティ比として設定する、請求項2に記載の電力供給制御装置。
    A current detection unit that detects the load current and generates a current detection signal;
    The control circuit monitors the load current based on the current detection signal,
    The power supply control device according to claim 2, wherein a current ratio of the predetermined load current to the load current is calculated, and a square of the current ratio is set as the duty ratio.
  4.  前記給電路に接続され、前記電源の電源電圧を検出し、電圧検出信号を生成する電圧検出部をさらに備え、
     前記制御回路は、前記電圧検出信号に基づいて前記電源電圧を監視し、前記電源電圧に対する、前記所定負荷電流に対応した所定電源電圧の電圧比を算出し、前記電圧比の2乗を前記デューティ比として設定する、請求項2に記載の電力供給制御装置。
    A voltage detection unit that is connected to the power supply path, detects a power supply voltage of the power supply, and generates a voltage detection signal;
    The control circuit monitors the power supply voltage based on the voltage detection signal, calculates a voltage ratio of a predetermined power supply voltage corresponding to the predetermined load current to the power supply voltage, and calculates the square of the voltage ratio as the duty The power supply control device according to claim 2, wherein the power supply control device is set as a ratio.
  5.  前記負荷電流を検出する電流検出回路と、
     環境温度を検出する温度検出部と、
     前記給電路の前記環境温度からの上昇温度を、前記給電路に流れる前記負荷電流による前記給電路の発熱と、前記給電路の放熱との差に基づいて算出し、前記環境温度に前記給電路の前記上昇温度を加算して演算給電路温度を算出する給電路温度演算回路とをさらに備え、
     前記制御回路は、前記演算給電路温度によって前記給電路の温度を推定し、
    前記給電路の温度が第1閾温度に達した以後、前記スイッチ回路のオン・オフの切り替えを制御し、前記給電路の温度を、前記第1閾温度に維持することによって、または、前記第1閾温度と該第1閾温度より低い第2閾温度の間に維持することによって、前記給電路の電力損失の平均値を、前記給電路を該給電路の定格電流以下の所定負荷電流で使用した際の所定電力損失以下となるように制御する、請求項1に記載の電力供給制御装置。
    A current detection circuit for detecting the load current;
    A temperature detector for detecting the environmental temperature;
    A temperature rise from the environmental temperature of the power supply path is calculated based on a difference between heat generation of the power supply path due to the load current flowing through the power supply path and heat dissipation of the power supply path, and the power supply path is calculated based on the environmental temperature. A power supply path temperature calculation circuit for calculating a calculation power supply path temperature by adding the rising temperature of
    The control circuit estimates the temperature of the power supply path from the calculated power supply path temperature,
    After the temperature of the power supply path reaches the first threshold temperature, the switching of the switch circuit is controlled to maintain the temperature of the power supply path at the first threshold temperature, or By maintaining between one threshold temperature and a second threshold temperature that is lower than the first threshold temperature, the average value of power loss of the power supply path is determined at a predetermined load current that is less than the rated current of the power supply path. The power supply control device according to claim 1, wherein the power supply control device is controlled so as to be equal to or less than a predetermined power loss when used.
  6.  前記制御回路は、前記第1閾温度で前記スイッチ回路をオフし、前記第2閾温度で前記スイッチ回路をオンすることにより、前記給電路の温度を前記第1閾温度と前記第2閾温度の間の値に維持する、請求項5に記載の電力供給制御装置。 The control circuit turns off the switch circuit at the first threshold temperature and turns on the switch circuit at the second threshold temperature, thereby changing the temperature of the power supply path to the first threshold temperature and the second threshold temperature. The power supply control device according to claim 5, wherein the power supply control device is maintained at a value between.
  7.  前記制御回路は、前記スイッチ回路のオン期間中における前記給電路温度の上昇率に応じて、次のオン期間の長さを決定する、請求項5または請求項6に記載の電力供給制御装置。 The power supply control device according to claim 5 or 6, wherein the control circuit determines a length of a next on-period according to a rate of increase of the power supply path temperature during the on-period of the switch circuit.
PCT/JP2013/076800 2012-10-03 2013-10-02 Power supply control device WO2014054682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-221046 2012-10-03
JP2012221046 2012-10-03

Publications (1)

Publication Number Publication Date
WO2014054682A1 true WO2014054682A1 (en) 2014-04-10

Family

ID=50435004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076800 WO2014054682A1 (en) 2012-10-03 2013-10-02 Power supply control device

Country Status (1)

Country Link
WO (1) WO2014054682A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059646A1 (en) * 2004-11-30 2006-06-08 Autonetworks Technologies, Ltd. Power supply controller
JP2008289297A (en) * 2007-05-18 2008-11-27 Yazaki Corp Protection device for load circuit
JP2011072133A (en) * 2009-09-25 2011-04-07 Autonetworks Technologies Ltd Power supply control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059646A1 (en) * 2004-11-30 2006-06-08 Autonetworks Technologies, Ltd. Power supply controller
JP2008289297A (en) * 2007-05-18 2008-11-27 Yazaki Corp Protection device for load circuit
JP2011072133A (en) * 2009-09-25 2011-04-07 Autonetworks Technologies Ltd Power supply control device

Similar Documents

Publication Publication Date Title
JP5639868B2 (en) Load circuit protection device
US8918222B2 (en) Controlling and protecting power-supply paths from thermal overloads
US9197127B2 (en) Power supply controller
EP2741568B1 (en) Heater control device, method, and program
JP5647501B2 (en) Vehicle power distribution device
JP2009289689A (en) Relay control device
JP6280975B2 (en) Relay malfunction detection device
US9413159B2 (en) Switching circuit protector
JP2013229966A (en) Protection apparatus for current flowing circuit
JP6262931B2 (en) Protection device for energization circuit
EP2741569B1 (en) Heater control device, control method, and control program
JP6472076B2 (en) Load current control device
JP2010110091A (en) Load driving device
JP5776946B2 (en) Power supply control device
JP6274906B2 (en) DC / DC converter and control method of DC / DC converter
JP6003857B2 (en) Control device
WO2014054682A1 (en) Power supply control device
JP2015015564A (en) Current detection circuit, power supply control device and current detection method
JP2009226984A (en) Electric wire protection method and electric wire protection device
JP2008195150A (en) Drive control device for vehicle, drive control method for vehicle and overvoltage protection circuit
JP6846244B2 (en) Wire protection device
JP6497081B2 (en) Braking resistance control device and braking resistance control method
JP2019049929A (en) Electric power detection device and heating device
JP2018152991A (en) Electric wire protection device
JP4793433B2 (en) Voltage converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP