WO2014054646A1 - Atomizing device - Google Patents

Atomizing device Download PDF

Info

Publication number
WO2014054646A1
WO2014054646A1 PCT/JP2013/076721 JP2013076721W WO2014054646A1 WO 2014054646 A1 WO2014054646 A1 WO 2014054646A1 JP 2013076721 W JP2013076721 W JP 2013076721W WO 2014054646 A1 WO2014054646 A1 WO 2014054646A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
end side
female
cylindrical member
male
Prior art date
Application number
PCT/JP2013/076721
Other languages
French (fr)
Japanese (ja)
Inventor
治彦 板谷
Original Assignee
株式会社 ワールドハンドリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ワールドハンドリング filed Critical 株式会社 ワールドハンドリング
Publication of WO2014054646A1 publication Critical patent/WO2014054646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/46Homogenising or emulsifying nozzles

Definitions

  • the present invention relates to a micronizing apparatus for micronizing substances that do not mix with each other and dispersing them in a liquid.
  • micronization devices as a method for finely mixing substances that do not mix with each other, such as water and oil, and uniformly dispersing fine particles in a liquid.
  • the micronization device performs dispersion and micronization by pressurizing a plurality of substances such as water and oil, which are not mixed with each other, and a liquid containing fine particles as fluids to be processed and colliding with each other.
  • a micronizing device for example, there is known a device of a type in which two nozzles are set as one set in the same straight line with jetting ports facing each other and fluids to be treated ejected from both nozzles face each other. (For example, Japanese Patent Laid-Open No. 06-047264).
  • micronizing device In addition to the above-described micronizing device, a micronizing device with various improvements has been proposed in response to demands for longer nozzle life (for example, Japanese Patent Application Laid-Open No. 2009-111002, Japan). JP, 2011-088108, A).
  • the above-described micronizer has the following problems. That is, the nozzles described above have problems such as wear in the nozzle tube accompanying the atomization, blockage in the tube due to the solid component in the fluid to be treated, and insufficient atomization.
  • the present invention enables sufficiently uniform and high-purity fine particles at an arbitrary processing flow rate, can sufficiently reduce the frequency of nozzle replacement, and can cope with pressure drop and blockage of the nozzle.
  • An object is to provide an easy atomization apparatus.
  • the micronizing apparatus of the present invention is configured as follows.
  • a first nozzle body located on the base end side, provided on the first nozzle body, the tip side
  • a first nozzle portion having a first guide path formed at a base end side of the first nozzle body and having the other end formed on an outer surface of the convex portion.
  • a second nozzle body located on the distal end side with respect to the first nozzle part, and a recessed part formed on the base end side of the second nozzle body so that at least the convex part can be inserted and removed.
  • a second nozzle portion having one end provided at the bottom of the recessed portion and the other end formed on the tip side of the second nozzle body, a tip portion of the convex portion, and the bottom portion. And a nozzle drive mechanism that adjusts the distance between them.
  • sufficiently uniform and high-purity fine particles can be obtained at an arbitrary processing flow rate, the frequency of nozzle replacement can be sufficiently reduced, and further, it is possible to cope with nozzle pressure drop and blockage. Is possible.
  • FIG. 1 is an explanatory view showing a micronization system pipe using a micronization apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the micronization apparatus.
  • FIG. 3 is an explanatory diagram showing the atomization of the fluid to be processed in the nozzle by enlarging the main part of the atomization apparatus.
  • FIG. 1 is an explanatory view showing the piping of the atomization circuit 10 incorporating the atomization device 30 according to one embodiment of the present invention
  • FIG. 2 is a sectional view showing the structure of the atomization device 30, and FIG. It is explanatory drawing which expands the principal part of the apparatus 30 and shows the flow path of the to-be-processed fluid.
  • S denotes a central axis that is parallel to the direction from the inflow side to the outflow side of the atomization device 30 and passes through the center of the atomization device 30.
  • the microparticulation circuit 100 is formed on the inflow side, and premixing is performed such that an emulsifier and a first substance and a second substance (for example, water and oil) that are not mixed with each other flow in and are premixed and then discharged as a processing fluid.
  • a high-pressure pump 26 that is located downstream of the premixing unit 10 and pressurizes the fluid to be treated that has flowed out of the premixing unit 10, and is provided on the downstream side of the high-pressure pump 26.
  • the high pressure pump 26 pressurizes the fluid to be treated to 8 to 300 MPa and sends it to the micronizer 30. Further, the pipe between the high-pressure pump 26 and the micronizer 30 is branched and a pressure gauge 29 is connected. A certain pressure or more is required for atomization of the fluid to be treated. The measurement value obtained by the pressure gauge 29 is used to control the atomization apparatus 30 to maintain the treatment pressure at a certain value or more.
  • the premixing unit 10 is connected to an emulsifier supply circuit 11 for supplying an emulsifier, a first substance supply circuit 16 for supplying a first substance, and a second substance supply circuit 21 for supplying a second substance.
  • the premixing unit 10 has three flow control structures similar to those of the micronizer 30 described later, and each controls the flow rates of the emulsifier, the first substance, and the second substance.
  • the emulsifier supply circuit 11 controls the flow rate with the first check valve 12 with a cracking pressure, while the emulsifier supply pump 13 supplies the emulsifier to the premixing unit 10 and the flow path from the emulsifier supply pump 13 toward the premixing unit 10.
  • a stop valve 15 The flow rate of the emulsifier is controlled by the premixing unit 10 using the measured value obtained from the second flow meter 14.
  • the first check valve with cracking pressure 12 has a function of returning the emulsifier to the inlet side of the emulsifier supply pump 13 without applying a load to the emulsifier supply pump 13.
  • the first substance supply circuit 16 includes a first substance supply pump 18 for supplying the first substance to the premixing unit 10 while controlling the flow rate by the third cracking pressure check valve 17, and a first substance supply pump 18.
  • a third flow meter 19 is provided on the flow path toward the premixing unit 10 to measure the flow rate of the first substance, and is provided between the third flow meter 19 and the premixing unit 10.
  • a fourth cracking pressure check valve 20 for preventing backflow.
  • the flow rate of the first substance is controlled by the premixing unit 10 using the measured value obtained from the third flow meter 19. Since the discharge amount of the first substance supply pump 18 is constant, a load is generated in the first substance supply pump 18 when the flow rate of the first substance is reduced by the premixing unit 10.
  • the third cracking pressure check valve 17 has a function of returning the first substance to the inlet side of the first substance supply pump 18 without applying a load to the first substance supply pump 18.
  • the second substance supply circuit 21 includes a second substance supply pump 23 for supplying the second substance to the premixing unit 10 while controlling the flow rate with the fifth check valve 22 with a cracking pressure, and the second substance supply pump 23.
  • a fourth flow meter 24 for measuring the flow rate of the second substance provided on the flow path toward the premixing unit 10, and provided between the fourth flow meter 24 and the premixing unit 10, And a sixth cracking pressure check valve 25 for preventing backflow.
  • the flow rate of the second substance is controlled by the premixing unit 10 using the measured value obtained from the fourth flow meter 24. Since the discharge amount of the second substance supply pump 23 is constant, when the flow rate of the second substance is reduced by the premixing unit 10, a load is generated on the second substance supply pump 23.
  • the fifth check valve 22 with a cracking pressure has a function of returning the second substance to the inlet side of the second substance supply pump 23 without applying a load to the second substance supply pump 23.
  • the micronizing device 30 is formed with the central axis S as an axis, and has a function of allowing the fluid to be treated to flow from the base end side (upper side in FIG. 2) and discharging from the tip side (lower side in FIG. 2) after micronization. is doing.
  • the inflow side will be described as the base end side
  • the outflow side will be described as the front end side.
  • the atomization device 30 is provided on the distal end side of the inner peripheral portion of the outer cylindrical member 40 connected to the atomization circuit 10 and the female nozzle portion 50 having a recess opening at the proximal end side.
  • the inner cylindrical member 60 coaxially included in the outer cylindrical member 40, and liquid tightly held on the distal end side of the inner cylindrical member 60, the distal end portion of which is exposed from the inner cylindrical member 60, and the female
  • a drive unit (nozzle drive mechanism) 80 is provided that causes the male nozzle unit 70 to advance and retract along the central axis S direction with respect to the female nozzle unit 50 by a screw mechanism described later.
  • the outer cylindrical member 40 has a shape penetrating from the proximal end side 40 a to the distal end side 40 b, and the distal end side 40 b is connected to the atomization circuit 10.
  • a female nozzle portion 50 is provided on the distal end side 40 b of the inner peripheral portion of the outer cylindrical member 40.
  • the outer cylindrical member 40 is provided between an outer female screw portion 41 formed on the proximal end side 40 a of the inner peripheral portion, and between the outer female screw portion 41 and the female nozzle portion 50.
  • a fixing hole 42 that penetrates in the radial direction and a fixing pin (rotation stop pin) 43 that is inserted and fixed to the fixing hole (rotation stop hole) 42 from the outside are provided.
  • the fixing hole 42 is formed as a set of two fixing holes 42 formed at symmetrical positions with respect to the central axis S.
  • the fixing pin 43 engages with a fixing groove (rotation stop groove) 64 formed in the inner cylindrical member 60 described later, so that the inner cylindrical member 60 with respect to the outer cylindrical member 40 with the central axis S as an axis. Prevent relative rotation of the.
  • the outer peripheral part of the base end side 40a of the outer cylindrical member 40 is provided with a flange portion 44 and a mounting hole 45 formed in the flange portion 44 so as to penetrate from the base end side to the tip end side. .
  • the outer cylindrical member 40 is fixed to the atomization circuit 10 by the flange portion 44 and the attachment hole 45.
  • the female nozzle portion 50 is formed around the central axis S, and has a female nozzle body (second nozzle body) 51 that is liquid-tightly joined to the inner peripheral surface of the distal end side 40 b of the outer cylindrical member 40, and the female nozzle body 51. It has a recessed part 52 (the above-mentioned recessed part) that is provided and opens on the base end side, and an ejection path (second guiding path) 55 that communicates from the recessed part 52 to the outflow side.
  • the recessed part 52 has a shape penetrating the truncated cone, and has an inner side surface portion 53 corresponding to the side surface of the truncated cone and a female nozzle surface 54 corresponding to the upper bottom surface of the truncated cone.
  • One end of the ejection path 55 is located at the center of the female nozzle surface 54. Note that the inclination of the inner side surface portion 53 is defined by a predetermined angle ⁇ with respect to the central axis S.
  • the inner cylindrical member 60 is provided on the outer peripheral portion, and has an inner male screw portion 61 formed in a reverse thread with respect to the outer female screw portion 41, and the inside from the proximal end side to the distal end side along the central axis S. It has an inflow passage 62 that penetrates, and a fixing groove 64 that is provided on the distal end side from the inner male screw portion 61 of the outer peripheral portion.
  • the fixing groove 64 is a set of two fixing grooves 64 formed from the proximal end side to the distal end side at the target position with respect to the central axis S, and the distal end portion of the fixing pin 43 is engaged as described above. To do. Thereby, relative rotation around the central axis S of the inner cylindrical member 60 with respect to the outer cylindrical member 40 is prevented.
  • the male nozzle portion 70 is formed with the central axis S as an axis.
  • the male nozzle portion 70 is provided on the distal end side of the male nozzle body 71 with a cylindrical male nozzle body (first nozzle body) 71 that is liquid-tightly fixed to the inner peripheral surface on the distal end side of the inner cylindrical member 60.
  • One end of the guide path 75 is located on the base end side of the male nozzle body 71 and communicates with the inflow path 62.
  • the convex portion 72 has a tapered outer surface portion 73 formed on the distal end side thereof and a male nozzle surface 74 formed on the distal end of the outer surface portion 73. On the proximal end side of the outer side surface portion 73, the other end portion of the guide path 75 is provided.
  • the tapered slope of the outer surface portion 73 is defined by a predetermined angle ⁇ with respect to the central axis S, and this angle ⁇ is formed to be equal to the angle ⁇ that defines the inner surface portion 53 described above.
  • the diameter of the male nozzle surface 74 is formed to be equal to the diameter of the female nozzle surface 54 described above. For this reason, when the male nozzle surface 74 and the female nozzle surface 54 are in contact with each other, the outer surface portion 73 and the inner surface portion 53 are also in contact with each other, and the distal end side of the convex portion 72 and the recessed portion 52 are fitted.
  • the driving unit 80 is provided on the proximal end side 40a of the outer cylindrical member 40, and is formed in an annular shape with the central axis S as an axis.
  • the drive unit 80 includes a passive unit 81 that receives a rotational force from the outside by a motor or the like, and a transmission unit 82 provided between the outer female screw part 41 and the inner male screw part 61.
  • An outer male screw portion 83 that engages with the outer female screw portion 41 is formed on the outer periphery of the transmission portion 82, and an inner female screw portion 84 that engages with the inner male screw portion 61 is formed on the inner periphery.
  • the inner female screw portion 84 and the inner male screw portion 61 are formed in reverse threads with respect to the outer female screw portion 41 and the outer male screw portion 83. Further, due to the fixing pin 43 and the fixing groove 64, the inner cylindrical member 60 does not rotate relative to the outer cylindrical member 40. Accordingly, when the drive unit 80 rotates about the central axis S, the inner cylindrical member 60 advances and retreats in the direction of the central axis S with respect to the outer cylindrical member 40.
  • the seal portion 90 is annular and is provided between the outer periphery of the convex portion 72 and the inner periphery of the outer cylindrical member 40.
  • the outer peripheral portion of the seal portion 90 is liquid-tightly fixed to the outer cylindrical member 40.
  • the inner peripheral surface of the seal part 90 supports the male nozzle part 70 in a liquid-tight manner and the male nozzle part 70 is slidable in a direction along the central axis S.
  • the seal member 90 is provided at a position where the end of the guide path 75 on the convex portion 72 is not blocked.
  • the flow path of the fluid to be processed and the atomization by the opposing collision will be described.
  • the flow path from the guide path 75 to the ejection path 55 is formed by the male nozzle portion 70, the seal portion 90, the female nozzle portion 50, and the outer cylindrical member 40. It is liquid-tight.
  • the fluid to be treated that has flowed into the micronizing device 30 passes through the guide path 75 in the male nozzle portion 70 as indicated by the arrow Y1, and is guided onto the outer surface portion 73 as indicated by the arrow Y2. After that, as indicated by an arrow Y3, it passes between the outer surface portion 73 and the inner surface portion 53, and is guided between the male nozzle surface 74 and the female nozzle surface 54 as indicated by an arrow Y4. Thereafter, the fluid to be treated flows from all directions of 360 degrees around the central axis S toward the ejection path 55 and collides with each other to be atomized. The fluid to be processed is discharged from the ejection path 55 as indicated by an arrow Y5 after being atomized.
  • the micronizing device 30 since the opposing collision is performed from all directions at 360 degrees, uniform and high-purity micronization can be performed.
  • the distance from when the fluid to be processed flows between the male nozzle surface 74 and the female nozzle surface 54 until the opposite collision occurs is shortened. be able to. Thereby, it is possible to atomize with a sufficient impact force.
  • the flow rate of the micronizing device 30 is formed to be the smallest between the front end portion of the outer surface portion 73 and the inner surface portion 53. That is, the processing flow rate of the micronizer 30 under a constant processing pressure depends on the distance between the outer surface portion 73 and the inner surface portion 53. Since the inner cylindrical member 60 can move relative to the outer cylindrical member 40 by rotating the drive unit 80, the interval between the outer side surface 73 and the inner side surface 53 is also arbitrarily adjusted, and the processing flow rate is adjusted. Can be any value. Similarly, any processing pressure can be obtained under a constant processing flow rate. Therefore, it is possible to obtain an arbitrary processing flow rate and processing pressure.
  • the blockage is released by widening the interval between the convex portion 72 and the concave portion 52. Is possible.
  • the fluid to be treated which has been pressurized above a certain treatment pressure, it is necessary to cause the fluid to be treated, which has been pressurized above a certain treatment pressure, to face each other.
  • the space between the outer side surface portion 73 and the inner side surface portion 53 increases due to friction with the fluid to be processed, and the pressure decreases.
  • the pressure can be kept constant by adjusting the distance between the outer surface portion 73 and the inner surface portion 53 by the drive unit 80.
  • Experiment 1 shows the change over time of the treatment flow rate when the liquid to be treated is kept flowing for a long time
  • Experiment 2 shows the change over time in the treatment flow rate at a different initial treatment flow rate, compared with a commonly used atomization apparatus. Went.
  • the processing pressure was maintained by increasing the flow rate of the fluid to be processed without performing correction by the driving unit 80.
  • Experiment 3 when the processing flow rate was changed due to wear, the verification by the rotation of the drive unit 80 for maintaining the processing pressure constant was verified.
  • the micronizer 30 used in Experiment 1 to Experiment 3 has a sum of the pitch of the outer female screw portion 41 and the outer male screw portion 83 and the pitch of the inner female screw portion 84 and the inner male screw portion 61 is 0.75 mm.
  • the inclination of the outer side surface portion 73 and the inner side surface portion 53 was set to 5 degrees with respect to the central axis S.
  • the diameters of the male nozzle surface 74 and the female nozzle surface 54 were 4 mm, and the material of the male nozzle portion 70 and the female nozzle portion 50 was zirconia ceramics.
  • the separation distance between the male nozzle surface 74 and the female nozzle surface 54 is 0.75 mm
  • the separation distance between the outer surface portion 73 and the inner surface portion 43 is 1 [rotation]. From the formula of 0.75 [mm] ⁇ sin5 ⁇ 0.06525 [mm], it is 0.06525 mm.
  • the separation distance between the outer side surface 73 and the inner side surface 43 when the drive unit 70 is rotated once is very small, the flow rate of the fluid to be processed can be finely controlled.
  • the atomization apparatus used as a comparison target in Experiment 1 and Experiment 2 used an apparatus in which two nozzles are arranged as opposed to each other with the ejection ports facing each other, and the fluids to be treated ejected from both nozzles collide with each other.
  • the nozzle of the comparative micronizer was made of natural diamond that is generally used.
  • the micronizer 30 has an interval between the outer surface portion 73 and the inner surface portion 53 of 0.00222 mm in the case of 4 L / min, 0.00446 mm in the case of 8 L / min, and 16 L / min. In the case of 0.00891 mm, the case of 32 L / min was adjusted to 0.0177 mm.
  • the nozzles used in the comparative examples were each set of two units of ⁇ 0.2665 ⁇ 1 + ⁇ 0.2658 ⁇ 1 at 4 L / min, and ⁇ 0.375540 ⁇ 1 + ⁇ 0 at 8 L / min.
  • Tables 3 and 4 show an initial flow rate of 4 L / min
  • Tables 5 and 6 show an initial processing flow rate of 8 L / min
  • Tables 7 and 8 show an initial processing flow rate of 16 L / min
  • Tables 9 and 10 show an initial processing flow rate of 32 L / min. The change with time and the rate of change of the processing flow rate in each case are shown.
  • the micronization device 30 has higher wear resistance than the micronization device generally used. However, even when the micronizer 30 is used, wear is increased under severe conditions such as an initial processing flow rate of 32 L / min.
  • the atomization apparatus 30 it is possible to have higher wear resistance than a generally used atomization apparatus. Even when wear occurs, the interval between the male nozzle portion 70 and the female nozzle portion 50 can be adjusted, so that an arbitrary processing flow rate and processing pressure can be obtained. Therefore, it is possible to correct the pressure drop due to wear. Further, by forming the male nozzle surface 74 and the female nozzle surface 54 small, it is possible to perform a 360-degree opposing collision with a sufficient impact force, and sufficiently uniform high-purity fine particles can be obtained. Further, by adjusting the distance between the male nozzle portion 70 and the female nozzle portion 50, when the gap between the convex portion 72 and the concave portion 52 is blocked, the blockage can be released.
  • uniform high-purity fine particles can be obtained at an arbitrary processing flow rate, and the frequency of nozzle replacement can be sufficiently reduced. Is possible.
  • the present invention is not limited to the above embodiment.
  • the outer cylindrical member and the female nozzle portion are separate members, but it is needless to say that the present invention can be similarly applied even when they are integrally formed.
  • various modifications can be made without departing from the scope of the present invention.
  • SYMBOLS 10 Preliminary mixing part, 30 ... Micronizer, 40 ... Outer cylindrical member, 50 ... Female nozzle part, 60 ... Inner cylindrical member, 70 ... Male nozzle part, 80 ... Drive part, 90 ... Seal part, 100 ... Particulate circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nozzles (AREA)

Abstract

This atomizing device mixes and disperses liquids of different types flowing in from a base end side and makes an outflow from a tip end side. The atomizing device is provided with: a first nozzle part (60) which has a first nozzle main body (61) positioned at the base end side, a protruding part (72) provided on the first nozzle main body (61) and formed oriented toward the tip end side, and a guide passage (75) one end of which is provided on the base end side of the first nozzle main body (61) and the other end of which is formed in the outside surface (63) of the protruding part (72); a second nozzle part (40) which has a second nozzle main body (41) positioned at the tip end side with respect to the first nozzle part (60), a recessed part (52) formed on the base end side of the second nozzle main body (41) and formed such that the protruding part (72) is insertable therein, and a second guide passage (45) one end of which is provided on the bottom part (44) of the recessed part (52) and the other end of which is formed in the tip end side of the second nozzle main body (41); and a nozzle drive mechanism (70) for adjusting a gap between the tip end part of the protruding part (72) and the bottom part (44).

Description

微粒子化装置Particulater
 本発明は、相互に混じり合わない物質同士を微粒子化し、液体中に分散させる微粒子化装置に関する。 The present invention relates to a micronizing apparatus for micronizing substances that do not mix with each other and dispersing them in a liquid.
 水と油に代表されるような、相互に混じり合わない物質同士を微粒子化して均一に混合させる方法や、微細な粒子を液体中に均一に分散させる方法として、微粒子化装置が知られている。微粒子化装置は、上述した水と油のような相互に混じり合わない複数の物質や、微細な粒子を含む液体を被処理流体として加圧して対向衝突させ、分散、微粒子化を行う。このような微粒子化装置の例として、例えば、2つのノズルを一組として同一直線状に、噴出口を対向させて配置し、両ノズルから噴出する被処理流体を対向衝突させる方式の装置が知られている(例えば、日本国特開平06-047264号公報)。この微粒子化装置では、対向衝突しなかった流体は、ノズル本体に衝突する。このノズル本体への衝突を予測し、回避するために、2つのノズルの噴出方向を直線状とせず、角度を付けて設ける方式の装置も同様に知られている(例えば、日本国特開平10-337457号公報)。 There are known micronization devices as a method for finely mixing substances that do not mix with each other, such as water and oil, and uniformly dispersing fine particles in a liquid. . The micronization device performs dispersion and micronization by pressurizing a plurality of substances such as water and oil, which are not mixed with each other, and a liquid containing fine particles as fluids to be processed and colliding with each other. As an example of such a micronizing device, for example, there is known a device of a type in which two nozzles are set as one set in the same straight line with jetting ports facing each other and fluids to be treated ejected from both nozzles face each other. (For example, Japanese Patent Laid-Open No. 06-047264). In this micronizing device, the fluid that did not collide against the nozzle collides with the nozzle body. In order to predict and avoid this collision with the nozzle body, an apparatus of a system in which the ejection direction of the two nozzles is provided with an angle instead of being linear is also known (for example, Japanese Patent Application Laid-Open No. Hei 10). -337457).
 被処理流体の微粒子化を行うためには、ノズル入口における被処理流体の圧力が一定以上に加圧されている必要がある。このため、被処理流体との摩擦によって、流路断面積が増大する。ノズル管内の圧力を維持するためには、被処理流体を供給するポンプの供給量を増大させる必要がある。したがって、ノズル内の被処理流体の流量がポンプ能力の限界を超えた時点で、ノズルの交換を行うことになる。このようなノズルの交換頻度を低減させるために、磨耗の発生しにくい形状の管が提案されている(例えば、日本国特開平06-278030号公報)。 In order to atomize the fluid to be treated, it is necessary that the pressure of the fluid to be treated at the nozzle inlet is pressurized above a certain level. For this reason, the flow path cross-sectional area increases due to friction with the fluid to be processed. In order to maintain the pressure in the nozzle tube, it is necessary to increase the supply amount of the pump that supplies the fluid to be processed. Therefore, the nozzle is replaced when the flow rate of the fluid to be processed in the nozzle exceeds the limit of the pump capacity. In order to reduce the replacement frequency of such nozzles, a pipe having a shape that hardly causes wear has been proposed (for example, Japanese Patent Laid-Open No. 06-278030).
 また、上述した微粒子化装置の他に、ノズルの長寿命化等の要請から、様々な改善がなされた微粒子化装置が提案されている(例えば、日本国特開2009-113002号公報、日本国特開2011-088108号公報)。 In addition to the above-described micronizing device, a micronizing device with various improvements has been proposed in response to demands for longer nozzle life (for example, Japanese Patent Application Laid-Open No. 2009-111002, Japan). JP, 2011-088108, A).
 上述した微粒子化装置では、次のような問題がある。すなわち、上述したノズルは微粒子化に伴うノズル管内の磨耗や、被処理流体中の固型分による管内の閉塞、十分に微粒子化ができない等の問題がある。 The above-described micronizer has the following problems. That is, the nozzles described above have problems such as wear in the nozzle tube accompanying the atomization, blockage in the tube due to the solid component in the fluid to be treated, and insufficient atomization.
 一体に形成されたノズルでは、ノズル管内で磨耗が発生した場合、ノズル側で圧力の変化に対する補正ができない。このため、圧力を一定に保つために、ポンプの供給量を増大させる必要がある。圧力を一定以上に保つために必要な供給量がノズルの供給能力の限界を超えた時点で、ノズルの交換が必要になる。ノズル管形状を磨耗が発生しにくい形状にすることで、ノズルの交換頻度を下げる方法が提案されているものの、少なからず流量は増大する。このため、ノズルの交換時期は依然としてポンプの供給能力の限界に依存し、ノズルの交換頻度を十分に低減できない。また、ノズル管内が閉塞した場合、管内の固型分を除去する必要がある。この閉塞解除の要請から、上述の微粒子化装置を用いる場合、回路中に超高圧電動弁等の装置を組み込む必要があり、微粒子化回路の形成が制限される問題がある。 ¡In the case of an integrally formed nozzle, if wear occurs in the nozzle tube, it is not possible to compensate for pressure changes on the nozzle side. For this reason, it is necessary to increase the supply amount of the pump in order to keep the pressure constant. When the supply amount necessary to keep the pressure above a certain level exceeds the limit of the nozzle supply capability, the nozzle needs to be replaced. Although a method for lowering the nozzle replacement frequency has been proposed by making the nozzle tube shape less susceptible to wear, the flow rate is increased. For this reason, the replacement time of the nozzle still depends on the limit of the supply capacity of the pump, and the replacement frequency of the nozzle cannot be sufficiently reduced. Moreover, when the inside of a nozzle pipe | tube is obstruct | occluded, it is necessary to remove the solid part in a pipe | tube. Because of the demand for releasing the blockage, when using the above-described microparticulation device, it is necessary to incorporate a device such as an ultrahigh pressure motorized valve in the circuit, and there is a problem that the formation of the microparticulation circuit is limited.
 噴射口が対向しているノズルでは、被処理流体同士を正確に対向衝突させることは困難であり、均一高純度の微粒子化を行うことができない。また、この問題を解決した微粒子化装置では、ノズルの磨耗を低減できず、ノズル交換頻度が多くなる。なお、ノズルの噴出方向に角度を付けて形成した場合、対向するノズル間の距離が大きくなる。このため、対向衝突の衝撃力が小さくなり、十分な微粒子化ができない問題がある。 In the nozzle where the injection ports are opposed, it is difficult to cause the fluids to be treated to collide with each other accurately, and uniform high-purity fine particles cannot be obtained. Moreover, in the micronizing device that solves this problem, the wear of the nozzle cannot be reduced, and the frequency of nozzle replacement increases. In addition, when it forms with an angle in the ejection direction of a nozzle, the distance between the nozzles which opposes becomes large. For this reason, there is a problem that the impact force of the opposing collision becomes small and sufficient fine particles cannot be formed.
 そこで本発明は、任意の処理流量において十分に均一高純度の微粒子化が可能であり、且つ、ノズルの交換頻度を十分に低減することができ、更に、ノズルの圧力低下や閉塞への対応が容易である微粒子化装置を提供することを目的としている。 Therefore, the present invention enables sufficiently uniform and high-purity fine particles at an arbitrary processing flow rate, can sufficiently reduce the frequency of nozzle replacement, and can cope with pressure drop and blockage of the nozzle. An object is to provide an easy atomization apparatus.
 前記課題を解決し目的を達成するために、本発明の微粒子化装置は次のように構成されている。 In order to solve the above problems and achieve the object, the micronizing apparatus of the present invention is configured as follows.
 基端側から流入する異種の液体を混合・分散し、先端側から流出させる微粒子化装置において、前記基端側に位置する第1ノズル本体と、この第1ノズル本体に設けられ、前記先端側に向けて形成された凸部と、その一端が前記第1ノズル本体の基端側に設けられ、他端が前記凸部の外側面に形成された第1案内路を有する第1ノズル部と、前記第1ノズル部に対し、前記先端側に位置する第2ノズル本体と、この第2ノズル本体の前記基端側に形成され、少なくとも前記凸部を挿脱可能に形成された凹陥部と、その一端が前記凹陥部の底部に設けられ、他端が第2ノズル本体の先端側に形成された第2案内路とを有する第2ノズル部と、前記凸部の先端部と前記底部との間隔を調整するノズル駆動機構とを備えることを特徴とする。 In a microparticulater that mixes and disperses different types of liquid flowing in from the base end side and flows out from the tip end side, a first nozzle body located on the base end side, provided on the first nozzle body, the tip side A first nozzle portion having a first guide path formed at a base end side of the first nozzle body and having the other end formed on an outer surface of the convex portion. A second nozzle body located on the distal end side with respect to the first nozzle part, and a recessed part formed on the base end side of the second nozzle body so that at least the convex part can be inserted and removed. A second nozzle portion having one end provided at the bottom of the recessed portion and the other end formed on the tip side of the second nozzle body, a tip portion of the convex portion, and the bottom portion. And a nozzle drive mechanism that adjusts the distance between them.
 本発明によれば、任意の処理流量において十分に均一高純度の微粒子化が可能であり、且つ、ノズルの交換頻度を十分に低減することができ、更に、ノズルの圧力低下や閉塞への対応が可能となる。 According to the present invention, sufficiently uniform and high-purity fine particles can be obtained at an arbitrary processing flow rate, the frequency of nozzle replacement can be sufficiently reduced, and further, it is possible to cope with nozzle pressure drop and blockage. Is possible.
図1は、本発明の一実施の形態に係る微粒子化装置を用いた微粒子化系の配管を示す説明図である。FIG. 1 is an explanatory view showing a micronization system pipe using a micronization apparatus according to an embodiment of the present invention. 図2は、同微粒子化装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the micronization apparatus. 図3は、同微粒子化装置の要部を拡大し、ノズル内の被処理流体の微粒子化を示す説明図である。FIG. 3 is an explanatory diagram showing the atomization of the fluid to be processed in the nozzle by enlarging the main part of the atomization apparatus.
 図1は本発明の一実施の形態に係る微粒子化装置30が組み込まれた微粒子化回路10の配管を示す説明図、図2は微粒子化装置30の構造を示す断面図、図3は微粒子化装置30の要部を拡大し、被処理流体の流路を示す説明図である。なお、図2中Sは、微粒子化装置30の流入側から流出側に向かう方向に平行で、且つ、微粒子化装置30の中心を通る中心軸を示している。 FIG. 1 is an explanatory view showing the piping of the atomization circuit 10 incorporating the atomization device 30 according to one embodiment of the present invention, FIG. 2 is a sectional view showing the structure of the atomization device 30, and FIG. It is explanatory drawing which expands the principal part of the apparatus 30 and shows the flow path of the to-be-processed fluid. In FIG. 2, S denotes a central axis that is parallel to the direction from the inflow side to the outflow side of the atomization device 30 and passes through the center of the atomization device 30.
 微粒子化回路100は、流入側に形成され、乳化剤と、相互に混じり合わない第1物質及び第2物質(例えば、水と油)が流入し、予備混合した後に被処理流体として排出する予備混合部10と、予備混合部10の下流側に位置し、予備混合部10から流出した被処理流体を加圧する高圧ポンプ26と、高圧ポンプ26の下流側に設けられ、被処理流体の微粒子化を行う微粒子化装置30と、微粒子化装置30の下流側に設けられ、微粒子化装置30から流出する被処理流体の流量を測定する第1流量計27と、第1流量計27の下流側に設けられ、被処理流体を排出する排出路28とを有している。高圧ポンプ26は、被処理流体を8~300MPaに加圧し、微粒子化装置30に送る。また、高圧ポンプ26と微粒子化装置30との間の管は枝分かれし、圧力計29が接続されている。被処理流体の微粒子化には一定以上の圧力が必要であり、圧力計29により得られた計測値を用いて微粒子化装置30を制御し、処理圧力を一定以上に維持する。 The microparticulation circuit 100 is formed on the inflow side, and premixing is performed such that an emulsifier and a first substance and a second substance (for example, water and oil) that are not mixed with each other flow in and are premixed and then discharged as a processing fluid. Part 10, a high-pressure pump 26 that is located downstream of the premixing unit 10 and pressurizes the fluid to be treated that has flowed out of the premixing unit 10, and is provided on the downstream side of the high-pressure pump 26. A first atomizer 30 to be performed; a first flow meter 27 that is provided on the downstream side of the atomizer 30 and that measures the flow rate of the fluid to be processed flowing out of the atomizer 30; And a discharge path 28 for discharging the fluid to be processed. The high pressure pump 26 pressurizes the fluid to be treated to 8 to 300 MPa and sends it to the micronizer 30. Further, the pipe between the high-pressure pump 26 and the micronizer 30 is branched and a pressure gauge 29 is connected. A certain pressure or more is required for atomization of the fluid to be treated. The measurement value obtained by the pressure gauge 29 is used to control the atomization apparatus 30 to maintain the treatment pressure at a certain value or more.
 予備混合部10には、乳化剤を供給する乳化剤供給回路11と、第1物質を供給する第1物質供給回路16と、第2物質を供給する第2物質供給回路21とが接続されている。予備混合部10は、後述する微粒子化装置30と同様の流量制御構造部を3台有し、各々が乳化剤、第1物質、第2物質の流量を制御する。 The premixing unit 10 is connected to an emulsifier supply circuit 11 for supplying an emulsifier, a first substance supply circuit 16 for supplying a first substance, and a second substance supply circuit 21 for supplying a second substance. The premixing unit 10 has three flow control structures similar to those of the micronizer 30 described later, and each controls the flow rates of the emulsifier, the first substance, and the second substance.
 乳化剤供給回路11は、第1クラッキング圧付逆止弁12で流量を制御しつつ、予備混合部10に乳化剤を供給する乳化剤供給ポンプ13と、乳化剤供給ポンプ13から予備混合部10に向かう流路上に設けられ、乳化剤の流量を計測する第2流量計14と、第2流量計14と予備混合部10との間に設けられ、予備混合部10からの逆流を防止する第2クラッキング圧付逆止弁15とを有している。乳化剤の流量は、第2流量計14から得られた計測値を用い、予備混合部10により制御される。乳化剤供給ポンプ13は吐出量が一定であるため、予備混合部10により乳化剤の流量が低減された場合、乳化剤供給ポンプ13に負荷が生じる。第1クラッキング圧付逆止弁12は、乳化剤供給ポンプ13に負荷を掛けずに、乳化剤を乳化剤供給ポンプ13の入口側に戻す機能を有している。 The emulsifier supply circuit 11 controls the flow rate with the first check valve 12 with a cracking pressure, while the emulsifier supply pump 13 supplies the emulsifier to the premixing unit 10 and the flow path from the emulsifier supply pump 13 toward the premixing unit 10. A second flow meter 14 for measuring the flow rate of the emulsifier, and a reverse with a second cracking pressure provided between the second flow meter 14 and the premixing unit 10 to prevent backflow from the premixing unit 10 And a stop valve 15. The flow rate of the emulsifier is controlled by the premixing unit 10 using the measured value obtained from the second flow meter 14. Since the discharge amount of the emulsifier supply pump 13 is constant, when the flow rate of the emulsifier is reduced by the premixing unit 10, a load is generated on the emulsifier supply pump 13. The first check valve with cracking pressure 12 has a function of returning the emulsifier to the inlet side of the emulsifier supply pump 13 without applying a load to the emulsifier supply pump 13.
 第1物質供給回路16は、第3クラッキング圧付逆止弁17で流量を制御しつつ、予備混合部10に第1物質を供給する第1物質供給ポンプ18と、第1物質供給ポンプ18から予備混合部10に向かう流路上に設けられ、第1物質の流量を計測する第3流量計19と、第3流量計19と予備混合部10との間に設けられ、予備混合部10からの逆流を防止する第4クラッキング圧付逆止弁20とを有している。第1物質の流量は、第3流量計19から得られた計測値を用い、予備混合部10により制御される。第1物質供給ポンプ18は吐出量が一定であるため、予備混合部10により第1物質の流量が低減された場合、第1物質供給ポンプ18に負荷が生じる。第3クラッキング圧付逆止弁17は、第1物質供給ポンプ18に負荷を掛けずに、第1物質を第1物質供給ポンプ18の入口側に戻す機能を有している。 The first substance supply circuit 16 includes a first substance supply pump 18 for supplying the first substance to the premixing unit 10 while controlling the flow rate by the third cracking pressure check valve 17, and a first substance supply pump 18. A third flow meter 19 is provided on the flow path toward the premixing unit 10 to measure the flow rate of the first substance, and is provided between the third flow meter 19 and the premixing unit 10. And a fourth cracking pressure check valve 20 for preventing backflow. The flow rate of the first substance is controlled by the premixing unit 10 using the measured value obtained from the third flow meter 19. Since the discharge amount of the first substance supply pump 18 is constant, a load is generated in the first substance supply pump 18 when the flow rate of the first substance is reduced by the premixing unit 10. The third cracking pressure check valve 17 has a function of returning the first substance to the inlet side of the first substance supply pump 18 without applying a load to the first substance supply pump 18.
 第2物質供給回路21は、第5クラッキング圧付逆止弁22で流量を制御しつつ、予備混合部10に第2物質を供給する第2物質供給ポンプ23と、第2物質供給ポンプ23から予備混合部10に向かう流路上に設けられ、第2物質の流量を計測する第4流量計24と、第4流量計24と予備混合部10との間に設けられ、予備混合部10からの逆流を防止する第6クラッキング圧付逆止弁25とを有している。第2物質の流量は、第4流量計24から得られた計測値を用い、予備混合部10により制御される。第2物質供給ポンプ23は吐出量が一定であるため、予備混合部10により第2物質の流量が低減された場合、第2物質供給ポンプ23に負荷が生じる。第5クラッキング圧付逆止弁22は、第2物質供給ポンプ23に負荷を掛けずに、第2物質を第2物質供給ポンプ23の入口側に戻す機能を有している。 The second substance supply circuit 21 includes a second substance supply pump 23 for supplying the second substance to the premixing unit 10 while controlling the flow rate with the fifth check valve 22 with a cracking pressure, and the second substance supply pump 23. A fourth flow meter 24 for measuring the flow rate of the second substance provided on the flow path toward the premixing unit 10, and provided between the fourth flow meter 24 and the premixing unit 10, And a sixth cracking pressure check valve 25 for preventing backflow. The flow rate of the second substance is controlled by the premixing unit 10 using the measured value obtained from the fourth flow meter 24. Since the discharge amount of the second substance supply pump 23 is constant, when the flow rate of the second substance is reduced by the premixing unit 10, a load is generated on the second substance supply pump 23. The fifth check valve 22 with a cracking pressure has a function of returning the second substance to the inlet side of the second substance supply pump 23 without applying a load to the second substance supply pump 23.
 第2クラッキング圧付逆止弁15、第4クラッキング圧付逆止弁20、第6クラッキング圧付逆止弁25は、乳化剤、第1物質、第2物質の流入圧力を同一にできないことから、これに起因する逆流を防止する機能を有している。 Since the second cracking pressure check valve 15, the fourth cracking pressure check valve 20, and the sixth cracking pressure check valve 25 cannot make the inflow pressure of the emulsifier, the first substance and the second substance the same, It has a function to prevent backflow caused by this.
 微粒子化装置30は、中心軸Sを軸として形成され、基端側(図2中上方)から被処理流体を流入させ、微粒子化後、先端側(図2中下方)から排出する機能を有している。なお、以後の説明においては、流入側を基端側、流出側を先端側として説明する。 The micronizing device 30 is formed with the central axis S as an axis, and has a function of allowing the fluid to be treated to flow from the base end side (upper side in FIG. 2) and discharging from the tip side (lower side in FIG. 2) after micronization. is doing. In the following description, the inflow side will be described as the base end side, and the outflow side will be described as the front end side.
 微粒子化装置30は、微粒子化回路10に接続された外側筒状部材40と、外側筒状部材40の内周部の先端側に設けられ、その基端側が開口する凹部を有する雌ノズル部50と、外側筒状部材40に同軸的に内包される内側筒状部材60と、内側筒状部材60の先端側に液密に保持され、その先端部が内側筒状部材60から露出し、雌ノズル部50の凹部に挿脱可能に形成された雄ノズル部70と、雄ノズル部70の外周面と外側筒状部材40の内周面との間を液密に閉塞するシール部90とを備えている。更に、後述するネジ機構により、雄ノズル部70を雌ノズル部50に対し、中心軸S方向に沿って進退させる駆動部(ノズル駆動機構)80を備えている。 The atomization device 30 is provided on the distal end side of the inner peripheral portion of the outer cylindrical member 40 connected to the atomization circuit 10 and the female nozzle portion 50 having a recess opening at the proximal end side. The inner cylindrical member 60 coaxially included in the outer cylindrical member 40, and liquid tightly held on the distal end side of the inner cylindrical member 60, the distal end portion of which is exposed from the inner cylindrical member 60, and the female A male nozzle part 70 detachably formed in the concave part of the nozzle part 50, and a seal part 90 for liquid-tightly closing between the outer peripheral surface of the male nozzle part 70 and the inner peripheral surface of the outer cylindrical member 40. I have. Furthermore, a drive unit (nozzle drive mechanism) 80 is provided that causes the male nozzle unit 70 to advance and retract along the central axis S direction with respect to the female nozzle unit 50 by a screw mechanism described later.
 外側筒状部材40は、基端側40aから先端側40bに貫通する形状を有し、先端側40bは、微粒子化回路10に接続されている。また、外側筒状部材40の内周部の先端側40bには、雌ノズル部50が設けられている。外側筒状部材40には、内周部の基端側40aに形成された外側雌ネジ部41と、外側雌ネジ部41と雌ノズル部50との間に設けられ、外側筒状部材40の径方向に貫通する固定孔42と、固定孔(回転止孔)42に外側から挿入、固定される固定ピン(回転止ピン)43とを有している。固定孔42は中心軸Sについて対称の位置に形成された2つの固定孔42を一組として形成されている。固定ピン43は、後述する内側筒状部材60に形成された固定溝(回転止溝)64と係合することで、中心軸Sを軸とした、外側筒状部材40に対する内側筒状部材60の相対回転を防止する。なお、外側筒状部材40の基端側40aの外周部には、フランジ部44と、フランジ部44に、基端側から先端側に貫通して形成された取付孔45とが設けられている。外側筒状部材40は、フランジ部44と取付孔45により、微粒子化回路10に固定される。 The outer cylindrical member 40 has a shape penetrating from the proximal end side 40 a to the distal end side 40 b, and the distal end side 40 b is connected to the atomization circuit 10. A female nozzle portion 50 is provided on the distal end side 40 b of the inner peripheral portion of the outer cylindrical member 40. The outer cylindrical member 40 is provided between an outer female screw portion 41 formed on the proximal end side 40 a of the inner peripheral portion, and between the outer female screw portion 41 and the female nozzle portion 50. A fixing hole 42 that penetrates in the radial direction and a fixing pin (rotation stop pin) 43 that is inserted and fixed to the fixing hole (rotation stop hole) 42 from the outside are provided. The fixing hole 42 is formed as a set of two fixing holes 42 formed at symmetrical positions with respect to the central axis S. The fixing pin 43 engages with a fixing groove (rotation stop groove) 64 formed in the inner cylindrical member 60 described later, so that the inner cylindrical member 60 with respect to the outer cylindrical member 40 with the central axis S as an axis. Prevent relative rotation of the. In addition, the outer peripheral part of the base end side 40a of the outer cylindrical member 40 is provided with a flange portion 44 and a mounting hole 45 formed in the flange portion 44 so as to penetrate from the base end side to the tip end side. . The outer cylindrical member 40 is fixed to the atomization circuit 10 by the flange portion 44 and the attachment hole 45.
 雌ノズル部50は中心軸Sを中心に形成され、外側筒状部材40の先端側40bの内周面と液密に接合する雌ノズル本体(第2ノズル本体)51と、雌ノズル本体51に設けられ、基端側が開口する凹陥部52(上述した凹部)と、凹陥部52から流出側に連通する噴出路(第2案内路)55とを有している。凹陥部52は、円錐台を刳り貫いた形状であり、この円錐台の側面にあたる内側面部53と、この円錐台の上底面にあたる雌ノズル面54とを有している。噴出路55の一方の端部は、雌ノズル面54の中央部に位置している。なお、内側面部53は、中心軸Sに対する所定の角度αによって傾斜が規定されている。 The female nozzle portion 50 is formed around the central axis S, and has a female nozzle body (second nozzle body) 51 that is liquid-tightly joined to the inner peripheral surface of the distal end side 40 b of the outer cylindrical member 40, and the female nozzle body 51. It has a recessed part 52 (the above-mentioned recessed part) that is provided and opens on the base end side, and an ejection path (second guiding path) 55 that communicates from the recessed part 52 to the outflow side. The recessed part 52 has a shape penetrating the truncated cone, and has an inner side surface portion 53 corresponding to the side surface of the truncated cone and a female nozzle surface 54 corresponding to the upper bottom surface of the truncated cone. One end of the ejection path 55 is located at the center of the female nozzle surface 54. Note that the inclination of the inner side surface portion 53 is defined by a predetermined angle α with respect to the central axis S.
 内側筒状部材60は、外周部に設けられ、外側雌ネジ部41に対して逆ネジに形成された内側雄ネジ部61と、内部を基端側から先端側に、中心軸Sに沿って貫通する流入路62と、外周部の内側雄ネジ部61より先端側に設けられた固定溝64とを有している。固定溝64は、中心軸Sについて対象の位置に、基端側から先端側に沿って形成された2つの固定溝64を一組とし、上述したように、固定ピン43の先端部が係合する。これにより、外側筒状部材40に対する内側筒状部材60の中心軸S廻りの相対回転を防止する。 The inner cylindrical member 60 is provided on the outer peripheral portion, and has an inner male screw portion 61 formed in a reverse thread with respect to the outer female screw portion 41, and the inside from the proximal end side to the distal end side along the central axis S. It has an inflow passage 62 that penetrates, and a fixing groove 64 that is provided on the distal end side from the inner male screw portion 61 of the outer peripheral portion. The fixing groove 64 is a set of two fixing grooves 64 formed from the proximal end side to the distal end side at the target position with respect to the central axis S, and the distal end portion of the fixing pin 43 is engaged as described above. To do. Thereby, relative rotation around the central axis S of the inner cylindrical member 60 with respect to the outer cylindrical member 40 is prevented.
 雄ノズル部70は、中心軸Sを軸として形成されている。雄ノズル部70は、内側筒状部材60の先端側の内周面に液密に固定された円柱状の雄ノズル本体(第1ノズル本体)71と、雄ノズル本体71より先端側に設けられ、内側筒状部材60から露出する凸部72と、雄ノズル部70の内部に形成された案内路(第1案内路)75とを有している。雄ノズル本体71の基端側には、案内路75の一方の端部が位置し、流入路62と連通している。凸部72は、その先端側に形成されたテーパ状の外側面部73と、外側面部73の先端に形成された雄ノズル面74を有している。外側面部73の基端側には、案内路75の他方の端部が設けられている。 The male nozzle portion 70 is formed with the central axis S as an axis. The male nozzle portion 70 is provided on the distal end side of the male nozzle body 71 with a cylindrical male nozzle body (first nozzle body) 71 that is liquid-tightly fixed to the inner peripheral surface on the distal end side of the inner cylindrical member 60. And a convex portion 72 exposed from the inner cylindrical member 60, and a guide path (first guide path) 75 formed inside the male nozzle portion 70. One end of the guide path 75 is located on the base end side of the male nozzle body 71 and communicates with the inflow path 62. The convex portion 72 has a tapered outer surface portion 73 formed on the distal end side thereof and a male nozzle surface 74 formed on the distal end of the outer surface portion 73. On the proximal end side of the outer side surface portion 73, the other end portion of the guide path 75 is provided.
 外側面部73のテーパ形状の傾斜は、中心軸Sに対する所定の角度βに規定され、この角度βは、上述した内側面部53を規定する角度αと等しくなるように形成されている。また、雄ノズル面74の直径は、上述した雌ノズル面54の直径と等しくなるように形成されている。このため、雄ノズル面74と雌ノズル面54が接しているとき、外側面部73と内側面部53も接し、凸部72の先端側と凹陥部52は嵌合する。 The tapered slope of the outer surface portion 73 is defined by a predetermined angle β with respect to the central axis S, and this angle β is formed to be equal to the angle α that defines the inner surface portion 53 described above. The diameter of the male nozzle surface 74 is formed to be equal to the diameter of the female nozzle surface 54 described above. For this reason, when the male nozzle surface 74 and the female nozzle surface 54 are in contact with each other, the outer surface portion 73 and the inner surface portion 53 are also in contact with each other, and the distal end side of the convex portion 72 and the recessed portion 52 are fitted.
 駆動部80は、外側筒状部材40の基端側40aに設けられ、中心軸Sを軸として環状に形成されている。駆動部80は、モータ等による外部からの回転力を受ける受動部81と、外側雌ネジ部41と内側雄ネジ部61の間に設けられた伝達部82とを有している。伝達部82の外周には外側雌ネジ部41と螺合する外側雄ネジ部83が形成され、内周には内側雄ネジ部61と螺合する内側雌ネジ部84が形成されている。なお、上述したように、外側雌ネジ部41及び外側雄ネジ部83に対し、内側雌ネジ部84及び内側雄ネジ部61は逆ネジに形成されている。また、固定ピン43と固定溝64により、内側筒状部材60は外側筒状部材40に対して相対回転しない。従って、駆動部80が中心軸Sを軸に回転すると、内側筒状部材60は外側筒状部材40に対して中心軸S方向に進退する。 The driving unit 80 is provided on the proximal end side 40a of the outer cylindrical member 40, and is formed in an annular shape with the central axis S as an axis. The drive unit 80 includes a passive unit 81 that receives a rotational force from the outside by a motor or the like, and a transmission unit 82 provided between the outer female screw part 41 and the inner male screw part 61. An outer male screw portion 83 that engages with the outer female screw portion 41 is formed on the outer periphery of the transmission portion 82, and an inner female screw portion 84 that engages with the inner male screw portion 61 is formed on the inner periphery. Note that, as described above, the inner female screw portion 84 and the inner male screw portion 61 are formed in reverse threads with respect to the outer female screw portion 41 and the outer male screw portion 83. Further, due to the fixing pin 43 and the fixing groove 64, the inner cylindrical member 60 does not rotate relative to the outer cylindrical member 40. Accordingly, when the drive unit 80 rotates about the central axis S, the inner cylindrical member 60 advances and retreats in the direction of the central axis S with respect to the outer cylindrical member 40.
 シール部90は、環状であり、凸部72の外周と外側筒状部材40の内周との間に設けられている。シール部90の外周部は、外側筒状部材40に液密に固定されている。シール部90の内周面は、雄ノズル部70を液密に、且つ、雄ノズル部70が中心軸Sに沿う方向に摺動可能に支持している。なお、シール部材90は、凸部72上の案内路75の端部を塞がない位置に設けられている。 The seal portion 90 is annular and is provided between the outer periphery of the convex portion 72 and the inner periphery of the outer cylindrical member 40. The outer peripheral portion of the seal portion 90 is liquid-tightly fixed to the outer cylindrical member 40. The inner peripheral surface of the seal part 90 supports the male nozzle part 70 in a liquid-tight manner and the male nozzle part 70 is slidable in a direction along the central axis S. The seal member 90 is provided at a position where the end of the guide path 75 on the convex portion 72 is not blocked.
 次に、被処理流体の流路と、対向衝突による微粒子化について説明する。上述のように、微粒子化装置30では、雄ノズル部70と、シール部90と、雌ノズル部50と、外側筒状部材40とにより、案内路75から噴出路55に至るまでの流路が液密に形成されている。 Next, the flow path of the fluid to be processed and the atomization by the opposing collision will be described. As described above, in the micronizer 30, the flow path from the guide path 75 to the ejection path 55 is formed by the male nozzle portion 70, the seal portion 90, the female nozzle portion 50, and the outer cylindrical member 40. It is liquid-tight.
 微粒子化装置30に流入した被処理流体は、矢印Y1に示すように、雄ノズル部70内の案内路75を通り、矢印Y2に示すように、外側面部73上に案内される。その後、矢印Y3に示すように、外側面部73と内側面部53の間を通り、矢印Y4に示すように、雄ノズル面74と雌ノズル面54との間に案内される。その後、被処理流体は噴出路55に向かって、中心軸Sを中心とした360度全方向から流れて対向衝突し、微粒子化が行われる。被処理流体は微粒子化後、矢印Y5に示すように噴出路55から排出される。微粒子化装置30では、360度全方向から対向衝突がされるため、均一且つ高純度の微粒子化を行うことが可能である。なお、雄ノズル面74及び雌ノズル面54の面積を小さく形成することで、被処理流体が雄ノズル面74と雌ノズル面54との間に流入してから対向衝突するまでの距離を短くすることができる。これにより、十分な衝撃力を持って微粒子化を行うことが可能である。 The fluid to be treated that has flowed into the micronizing device 30 passes through the guide path 75 in the male nozzle portion 70 as indicated by the arrow Y1, and is guided onto the outer surface portion 73 as indicated by the arrow Y2. After that, as indicated by an arrow Y3, it passes between the outer surface portion 73 and the inner surface portion 53, and is guided between the male nozzle surface 74 and the female nozzle surface 54 as indicated by an arrow Y4. Thereafter, the fluid to be treated flows from all directions of 360 degrees around the central axis S toward the ejection path 55 and collides with each other to be atomized. The fluid to be processed is discharged from the ejection path 55 as indicated by an arrow Y5 after being atomized. In the micronizing device 30, since the opposing collision is performed from all directions at 360 degrees, uniform and high-purity micronization can be performed. In addition, by forming the areas of the male nozzle surface 74 and the female nozzle surface 54 small, the distance from when the fluid to be processed flows between the male nozzle surface 74 and the female nozzle surface 54 until the opposite collision occurs is shortened. be able to. Thereby, it is possible to atomize with a sufficient impact force.
 なお、微粒子化装置30の流量は、外側面部73の先端部と内側面部53との間において、もっとも少なくなるように形成されている。すなわち、処理圧力一定の条件下における微粒子化装置30の処理流量は、外側面部73と内側面部53の間隔に依存する。駆動部80を回転させることで、内側筒状部材60は外側筒状部材40に対して相対移動が可能であることから、外側面部73と内側面部53との間隔も任意に調整し、処理流量を任意の値にすることができる。同様に、処理流量一定のもとでは、任意の処理圧力を得ることが可能である。したがって、任意の処理流量及び処理圧力を得ることが可能となる。また、凸部72と凹陥部52との間が被処理流体中の固型分により閉塞した場合であっても、凸部72と凹陥部52との間隔を広げることで、閉塞を解除することが可能である。 It should be noted that the flow rate of the micronizing device 30 is formed to be the smallest between the front end portion of the outer surface portion 73 and the inner surface portion 53. That is, the processing flow rate of the micronizer 30 under a constant processing pressure depends on the distance between the outer surface portion 73 and the inner surface portion 53. Since the inner cylindrical member 60 can move relative to the outer cylindrical member 40 by rotating the drive unit 80, the interval between the outer side surface 73 and the inner side surface 53 is also arbitrarily adjusted, and the processing flow rate is adjusted. Can be any value. Similarly, any processing pressure can be obtained under a constant processing flow rate. Therefore, it is possible to obtain an arbitrary processing flow rate and processing pressure. Further, even when the gap between the convex portion 72 and the concave portion 52 is blocked by a solid portion in the fluid to be processed, the blockage is released by widening the interval between the convex portion 72 and the concave portion 52. Is possible.
 上述したように、被処理流体の微粒子化には、一定の処理圧力以上に加圧された被処理流体を対向衝突させる必要がある。微粒子化装置30では、被処理流体との摩擦により、外側面部73と内側面部53との間隔が大きくなり、圧力が低下する。この場合、駆動部80により外側面部73と内側面部53との間隔を調整することで、圧力を一定に保つことが可能である。 As described above, in order to atomize the fluid to be treated, it is necessary to cause the fluid to be treated, which has been pressurized above a certain treatment pressure, to face each other. In the micronizing device 30, the space between the outer side surface portion 73 and the inner side surface portion 53 increases due to friction with the fluid to be processed, and the pressure decreases. In this case, the pressure can be kept constant by adjusting the distance between the outer surface portion 73 and the inner surface portion 53 by the drive unit 80.
 次に、本実施の形態に係る微粒子化装置30の効果の検証を行った実験について説明する。実験は3つの場合について行った。実験1は長時間被処理液体を流し続けた場合の処理流量の経時変化、実験2は異なる初期処理流量における処理流量の経時変化について、一般的に利用されている微粒子化装置と比較し、検証を行った。実験1及び実験2では、駆動部80による補正は行わず、被処理流体の流量を増加させることで、処理圧力の維持を行った。また、実験3では、磨耗により処理流量が変化した場合、処理圧力を一定に維持するための駆動部80の回転による補正について検証を行った。 Next, an experiment in which the effect of the atomization apparatus 30 according to the present embodiment was verified will be described. The experiment was conducted for three cases. Experiment 1 shows the change over time of the treatment flow rate when the liquid to be treated is kept flowing for a long time, and Experiment 2 shows the change over time in the treatment flow rate at a different initial treatment flow rate, compared with a commonly used atomization apparatus. Went. In Experiment 1 and Experiment 2, the processing pressure was maintained by increasing the flow rate of the fluid to be processed without performing correction by the driving unit 80. Further, in Experiment 3, when the processing flow rate was changed due to wear, the verification by the rotation of the drive unit 80 for maintaining the processing pressure constant was verified.
 なお、実験1から実験3において用いる微粒子化装置30は、外側雌ネジ部41及び外側雄ネジ部83のピッチと、内側雌ネジ部84及び内側雄ネジ部61のピッチとの和を0.75mmに調整し、外側面部73と内側面部53の傾斜を中心軸Sに対して5度とした。また、雄ノズル面74及び雌ノズル面54の直径は4mmとし、雄ノズル部70と雌ノズル部50の材質はジルコニアセラミックスとした。この場合、駆動部80を1回転させる際の雄ノズル面74と雌ノズル面54との離間距離は0.75mmであり、外側面部73と内側面部43との離間距離は、1[回転]・0.75[mm]・sin5≒0.06525[mm]の式から、0.06525mmである。このように、駆動部70を1回転させた場合の外側面部73と内側面部43との離間距離は僅かであるため、被処理流体の流量の微細な制御が可能である。 In addition, the micronizer 30 used in Experiment 1 to Experiment 3 has a sum of the pitch of the outer female screw portion 41 and the outer male screw portion 83 and the pitch of the inner female screw portion 84 and the inner male screw portion 61 is 0.75 mm. The inclination of the outer side surface portion 73 and the inner side surface portion 53 was set to 5 degrees with respect to the central axis S. The diameters of the male nozzle surface 74 and the female nozzle surface 54 were 4 mm, and the material of the male nozzle portion 70 and the female nozzle portion 50 was zirconia ceramics. In this case, when the drive unit 80 is rotated once, the separation distance between the male nozzle surface 74 and the female nozzle surface 54 is 0.75 mm, and the separation distance between the outer surface portion 73 and the inner surface portion 43 is 1 [rotation]. From the formula of 0.75 [mm] · sin5≈0.06525 [mm], it is 0.06525 mm. Thus, since the separation distance between the outer side surface 73 and the inner side surface 43 when the drive unit 70 is rotated once is very small, the flow rate of the fluid to be processed can be finely controlled.
 実験1及び実験2で比較対象として用いる微粒子化装置は、2つのノズルを一組として噴出口を対向させて配置し、両ノズルから噴出する被処理流体を対向衝突させるものを利用した。また、比較対象の微粒子化装置のノズルは、一般的に用いられる天然ダイヤモンド製とした。 The atomization apparatus used as a comparison target in Experiment 1 and Experiment 2 used an apparatus in which two nozzles are arranged as opposed to each other with the ejection ports facing each other, and the fluids to be treated ejected from both nozzles collide with each other. In addition, the nozzle of the comparative micronizer was made of natural diamond that is generally used.
 実験1においては、経過時間と処理流量とを比較することで、ノズル内の磨耗の比較を行った。本実験では、微粒子化装置30と比較例の両者とも、初期処理流量は250MPa加圧時に毎分2リットルとし、外側面部73と内側面部53との間の間隔は0.00113mmとした。なお、比較例は、直径0.19mmのノズル2個を一組として用いた。本実験の結果は、微粒子化装置30を用いた場合を実験例1、比較対象の微粒子化装置を用いた場合を比較例として、流量の変化を表1、流量の変化率を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
In Experiment 1, the wear in the nozzle was compared by comparing the elapsed time and the treatment flow rate. In this experiment, in both the micronizer 30 and the comparative example, the initial processing flow rate was 2 liters per minute when 250 MPa was applied, and the distance between the outer surface portion 73 and the inner surface portion 53 was 0.00113 mm. In the comparative example, two nozzles having a diameter of 0.19 mm were used as a set. As a result of this experiment, Table 1 shows the change in flow rate and Table 2 shows the rate of change in flow rate, with Experimental Example 1 using the micronization device 30 and Comparative Example using the micronization device to be compared. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示した比較例では、ノズルの磨耗により、流量が大きくなっており、通常は300時間から600時間経過時にノズルの交換が必要になる。一方、実験例1では、流量の増加量は僅かである。このように、本実験の結果から本実施の形態に係る微粒子化装置30は、高い耐磨耗性を有していることが確認できる。 In the comparative examples shown in Tables 1 and 2, the flow rate increases due to wear of the nozzles, and it is usually necessary to replace the nozzles after 300 to 600 hours. On the other hand, in Experimental Example 1, the amount of increase in the flow rate is slight. Thus, from the results of this experiment, it can be confirmed that the micronization apparatus 30 according to the present embodiment has high wear resistance.
 実験2においては、初期処理流量が4L/min,8L/min,16L/min,32L/minのそれぞれの場合について、ノズル内の磨耗の比較を行った。磨耗の比較方法は、実験1と同様に、経過時間と処理流量とを比較することで行った。 In Experiment 2, the wear in the nozzles was compared for each of the initial process flow rates of 4 L / min, 8 L / min, 16 L / min, and 32 L / min. The wear comparison method was performed by comparing the elapsed time and the treatment flow rate as in Experiment 1.
 微粒子化装置30は、各初期流量を得るために、外側面部73と内側面部53との間隔は、4L/minの場合は0.00222mm、8L/minの場合は0.00446mm、16L/minの場合は0.00891mm、32L/minの場合は0.0177mmに調整した。また、比較例に用いたノズルは、各初期流量を得るために、4L/minの場合はФ0.2665・1+Ф0.2658・1の2個1組、8L/minの場合はФ0.37540・1+Ф0.37600・1の2個1組、16L/minの場合はФ0.5344・1+Ф0.5302・1の2個1組、32L/minの場合はФ0.7594・1+Ф0.7589・1の2個1組を用いた。実験結果を、表4から表10として示す。なお、表4から表10において、微粒子化装置30の結果は実験例2とし、比較対象の微粒子化装置の結果は比較例とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
In order to obtain each initial flow rate, the micronizer 30 has an interval between the outer surface portion 73 and the inner surface portion 53 of 0.00222 mm in the case of 4 L / min, 0.00446 mm in the case of 8 L / min, and 16 L / min. In the case of 0.00891 mm, the case of 32 L / min was adjusted to 0.0177 mm. In addition, in order to obtain each initial flow rate, the nozzles used in the comparative examples were each set of two units of Ф0.2665 · 1 + Ф0.2658 · 1 at 4 L / min, and 、 0.375540 · 1 + Ф0 at 8 L / min. .37600 ・ 1 2 pieces 1 set, 16L / min is Ф0.5344 ・ 1 + Ф0.5302 ・ 1 2 pieces 1 set, 32L / min is Ф0.7594 ・ 1 + Ф0.755891 A set was used. The experimental results are shown in Tables 4 to 10. In Tables 4 to 10, the result of the micronizing device 30 is Experimental Example 2, and the result of the micronizing device to be compared is a comparative example.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3及び表4は初期流量4L/min、表5及び表6は初期処理流量8L/min、表7及び表8は初期処理流量16L/min、表9及び表10は初期処理流量32L/minの各々の場合の、処理流量の経時変化と変化率を示している。 Tables 3 and 4 show an initial flow rate of 4 L / min, Tables 5 and 6 show an initial processing flow rate of 8 L / min, Tables 7 and 8 show an initial processing flow rate of 16 L / min, and Tables 9 and 10 show an initial processing flow rate of 32 L / min. The change with time and the rate of change of the processing flow rate in each case are shown.
 上記結果から、一般的に利用されている微粒子化装置に比べ、微粒子化装置30は高い耐磨耗性を有していることが確認できる。しかしながら、微粒子化装置30を用いた場合であっても、初期処理流量32L/minのような過酷な条件では、磨耗が大きくなっている。 From the above results, it can be confirmed that the micronization device 30 has higher wear resistance than the micronization device generally used. However, even when the micronizer 30 is used, wear is increased under severe conditions such as an initial processing flow rate of 32 L / min.
 実験3においては、例えば実験2のように、雄ノズル部70及び雌ノズル部50の磨耗が発生し、処理流量が増大した場合の、処理圧力維持のための処理流量の補正について検証する実験を行った。本実験では、駆動部80の回転角度と、駆動部80による補正後の処理流量の比較を行った。実験結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
In Experiment 3, for example, as in Experiment 2, when the male nozzle unit 70 and the female nozzle unit 50 are worn and the processing flow rate is increased, an experiment for verifying the correction of the processing flow rate for maintaining the processing pressure is performed. went. In this experiment, the rotation angle of the drive unit 80 was compared with the processing flow rate corrected by the drive unit 80. The experimental results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
 上記結果から、磨耗により流量が増加した場合であっても、補正を行うことで、処理流量を一定に保つことができる。従って、被処理流体を供給するポンプ(乳化剤ポンプ22、第1ポンプ23、第2ポンプ24)の供給能力の限界によるノズルの交換は不要であるため、ノズルの交換頻度を低減させることが可能である。 From the above results, even if the flow rate increases due to wear, the processing flow rate can be kept constant by performing correction. Accordingly, it is not necessary to replace the nozzles due to the limit of the supply capacity of the pumps (emulsifier pump 22, first pump 23, second pump 24) for supplying the fluid to be treated, and therefore it is possible to reduce the frequency of nozzle replacement. is there.
 本実施の形態に係る微粒子化装置30によれば、一般的に利用される微粒子化装置に比べ、高い耐磨耗性を有することが可能となる。磨耗が発生した場合であっても、雄ノズル部70と雌ノズル部50との間隔を調整することが可能であるため、任意の処理流量及び処理圧力を得ることができる。したがって、磨耗による圧力の低下を補正することが可能である。また、雄ノズル面74及び雌ノズル面54を小さく形成することで、十分な衝撃力を持って360度対向衝突を行うことができ、十分に均一高純度の微粒子化が可能である。更に、雄ノズル部70と雌ノズル部50との間隔を調整することで、凸部72と凹陥部52との間が閉塞した場合は、閉塞を解除することが可能となる。 According to the atomization apparatus 30 according to the present embodiment, it is possible to have higher wear resistance than a generally used atomization apparatus. Even when wear occurs, the interval between the male nozzle portion 70 and the female nozzle portion 50 can be adjusted, so that an arbitrary processing flow rate and processing pressure can be obtained. Therefore, it is possible to correct the pressure drop due to wear. Further, by forming the male nozzle surface 74 and the female nozzle surface 54 small, it is possible to perform a 360-degree opposing collision with a sufficient impact force, and sufficiently uniform high-purity fine particles can be obtained. Further, by adjusting the distance between the male nozzle portion 70 and the female nozzle portion 50, when the gap between the convex portion 72 and the concave portion 52 is blocked, the blockage can be released.
 上述したように、本発明によれば、任意の処理流量において均一高純度の微粒子化が可能であり、且つ、ノズルの交換頻度を十分に低減することができ、更に、ノズルの圧力低下や閉塞への対応が可能となる。 As described above, according to the present invention, uniform high-purity fine particles can be obtained at an arbitrary processing flow rate, and the frequency of nozzle replacement can be sufficiently reduced. Is possible.
 なお、本発明は前記実施の形態に限定されるものではない。例えば、上述した例では、外側筒状部材と雌ノズル部を別部材としたが、一体に形成されている場合であっても、同様に適用できるのは勿論である。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。 The present invention is not limited to the above embodiment. For example, in the above-described example, the outer cylindrical member and the female nozzle portion are separate members, but it is needless to say that the present invention can be similarly applied even when they are integrally formed. Of course, various modifications can be made without departing from the scope of the present invention.
 10…予備混合部、30…微粒子化装置、40…外側筒状部材、50…雌ノズル部、60…内側筒状部材、70…雄ノズル部、80…駆動部、90…シール部、100…微粒子化回路。 DESCRIPTION OF SYMBOLS 10 ... Preliminary mixing part, 30 ... Micronizer, 40 ... Outer cylindrical member, 50 ... Female nozzle part, 60 ... Inner cylindrical member, 70 ... Male nozzle part, 80 ... Drive part, 90 ... Seal part, 100 ... Particulate circuit.

Claims (10)

  1.  基端側から流入する異種の液体を混合・分散し、先端側から流出させる微粒子化装置において、
     前記基端側に位置する第1ノズル本体と、この第1ノズル本体に設けられ、前記先端側に向けて形成された凸部と、その一端が前記第1ノズル本体の基端側に設けられ、他端が前記凸部の外側面に形成された第1案内路を有する第1ノズル部と、
     前記第1ノズル部に対し、前記先端側に位置する第2ノズル本体と、この第2ノズル本体の前記基端側に形成され、少なくとも前記凸部を挿脱可能に形成された凹陥部と、その一端が前記凹陥部の底部に設けられ、他端が第2ノズル本体の先端側に形成された第2案内路とを有する第2ノズル部と、
     前記凸部の先端部と前記底部との間隔を調整するノズル駆動機構とを備えることを特徴とする微粒子化装置。
    In a micronizer that mixes and disperses different types of liquid flowing in from the base end and flows out from the front end.
    A first nozzle body located on the proximal end side, a convex portion provided on the first nozzle body and formed toward the distal end side, and one end thereof provided on the proximal end side of the first nozzle body. A first nozzle portion having a first guide path formed on the outer surface of the convex portion at the other end;
    A second nozzle body located on the distal end side with respect to the first nozzle part, and a recessed part formed on the base end side of the second nozzle body so that at least the convex part can be inserted and removed; A second nozzle portion having one end provided at the bottom of the recessed portion and the other end formed on the tip side of the second nozzle body;
    A microparticulater comprising a nozzle driving mechanism for adjusting a distance between a tip portion of the convex portion and the bottom portion.
  2.  前記異種の液体は、前記凸部と前記凹陥部との間の、前記基端側から前記先端側に向かう方向を軸とする360度全方向から、前記軸に向かって流れ、前記第2案内路近傍で対向衝突することを特徴とする請求項1に記載の微粒子化装置。 The dissimilar liquid flows from 360 degrees in all directions between the convex part and the concave part with the direction from the base end side to the tip side as the axis toward the axis, and the second guide 2. The microparticulater according to claim 1, wherein the micronizer collides in the vicinity of the road.
  3.  前記凸部と前記凹陥部との間が閉塞した場合、前記ノズル駆動機構を用いて前記凸部と前記凹陥部との間隔を調整することで、前記閉塞を解除することを特徴とする請求項1に記載の微粒子化装置。 When the gap between the convex portion and the concave portion is blocked, the blockage is released by adjusting a distance between the convex portion and the concave portion using the nozzle driving mechanism. 2. The micronization apparatus according to 1.
  4.  前記ノズル駆動機構は、前記凸部の先端部と前記底部との間隔を調整することで、前記異種の液体の圧力を調整することを特徴とする請求項1に記載の微粒子化装置。 2. The microparticulater according to claim 1, wherein the nozzle driving mechanism adjusts the pressure of the different kind of liquid by adjusting a distance between a tip portion of the convex portion and the bottom portion.
  5.  前記凸部の先端部と前記凹陥部の底部の面積を小さくすることで、前記対向衝突の衝撃力を大きくすることを特徴とする請求項2に記載の微粒子化装置。 3. The microparticulater according to claim 2, wherein the impact force of the opposing collision is increased by reducing the area of the tip of the convex part and the bottom of the concave part.
  6.  基端側から流入する異種の液体を混合・分散し、先端側から流出させる微粒子化装置において、
     その内周部の前記基端側の端部に外側雌ネジ部を有する外側筒状部材と、
     前記外側筒状部材の前記内周部の前記先端側に設けられた雌ノズル本体と、前記雌ノズル本体の前記基端側に設けられ、前記基端側が開口する凹陥部と、前記凹陥部の底に形成された雌ノズル面と、前記雌ノズル面の中心部から前記雌ノズル本体の先端側に連通する噴出路を有する雌ノズル部と、
     前記外側筒状部材と同軸的に設けられた筒状形状であり、その先端部が前記外側雌ネジ部と前記雌ノズル部との間に位置する内側筒状部材本体と、前記内側筒状部材本体の外周面に、前記外側雌ネジ部に対し逆ネジに形成された内側雄ネジ部を有する内側筒状部材と、
     前記内側筒状部材の内周部の前記先端側に液密に保持された雄ノズル本体と、前記雄ノズル本体の前記先端側に設けられ、前記内側筒状部材から露出し、その外側面が前記凹陥部の内周面に対向しつつ、前記凹陥部に挿脱可能に形成された凸部と、前記凸部の先端側に設けられ、前記雌ノズル面と対向する雄ノズル面と、その一端が前記雄ノズル本体の前記基端側に設けられ、他端が前記凸部の外側面部に形成された案内路を有する雄ノズル部と、
     前記凸部より前記基端側において、前記雄ノズル部の外周面と前記外側筒状部材の内周面との間を液密に閉塞するシール部と、
     前記外側雌ネジ部と前記内側雄ネジ部との間に、前記外側筒状部材及び前記内側筒状部材と同軸的に設けられ、外部からの回転力を受ける筒状部と、前記筒状部の外周側に形成され、前記外側雌ネジ部と螺合する外側雄ネジ部と、前記筒状部の内周側に形成され、前記内側雄ネジ部と螺合する内側雌ネジ部を有し、前記筒状部が前記外側筒状部材及び内側筒状部材に対して回転することで、前記雌ノズル部に対する雄ノズルの軸方向の位置を調整する駆動部とを備えることを特徴とする微粒子化装置。
    In a micronizer that mixes and disperses different types of liquid flowing in from the base end and flows out from the front end.
    An outer cylindrical member having an outer female screw portion at the proximal end of the inner peripheral portion;
    A female nozzle body provided on the distal end side of the inner peripheral portion of the outer cylindrical member, a recessed portion provided on the proximal end side of the female nozzle body and opening on the proximal end side, and A female nozzle part formed on the bottom, and a female nozzle part having a jet passage communicating from the central part of the female nozzle face to the tip side of the female nozzle body;
    An inner cylindrical member body having a cylindrical shape provided coaxially with the outer cylindrical member, a tip portion of which is located between the outer female screw portion and the female nozzle portion, and the inner cylindrical member On the outer peripheral surface of the main body, an inner cylindrical member having an inner male screw portion formed in a reverse thread with respect to the outer female screw portion,
    A male nozzle main body that is liquid-tightly held on the front end side of the inner peripheral portion of the inner cylindrical member, provided on the front end side of the male nozzle main body, exposed from the inner cylindrical member, and an outer surface thereof A convex part formed so as to be able to be inserted into and removed from the concave part while facing the inner peripheral surface of the concave part, a male nozzle surface provided on the tip side of the convex part and facing the female nozzle surface, One end is provided on the base end side of the male nozzle body, and the other end is a male nozzle portion having a guide path formed on the outer surface portion of the convex portion,
    On the base end side from the convex portion, a seal portion that liquid-tightly seals between the outer peripheral surface of the male nozzle portion and the inner peripheral surface of the outer cylindrical member;
    A cylindrical portion provided coaxially with the outer cylindrical member and the inner cylindrical member between the outer female screw portion and the inner male screw portion, and receiving a rotational force from the outside, and the cylindrical portion An outer male screw portion that is screwed with the outer female screw portion, and an inner female screw portion that is formed on the inner peripheral side of the cylindrical portion and screwed with the inner male screw portion. And a driving part that adjusts the axial position of the male nozzle relative to the female nozzle part by rotating the cylindrical part with respect to the outer cylindrical member and the inner cylindrical member. Device.
  7.  前記異種の液体は、前記雄ノズル面と前記雌ノズル面との間の、前記基端側から前記先端側に向かう方向を軸とする360度全方向から、前記軸に向かって流れ、前記噴出路近傍で対向衝突することを特徴とする請求項6に記載の微粒子化装置。 The dissimilar liquid flows from 360 ° in all directions between the male nozzle surface and the female nozzle surface from the base end side toward the tip end side toward the axis, The microparticulater according to claim 6, which collides oppositely in the vicinity of the road.
  8.  前記凸部と前記凹陥部との間が閉塞した場合、前記駆動部を用いて前記凸部と前記凹陥部との軸方向の間隔を調整することで、前記閉塞を解除することを特徴とする請求項6に記載の微粒子化装置。 When the gap between the convex portion and the concave portion is blocked, the blockage is released by adjusting an axial interval between the convex portion and the concave portion using the driving unit. The micronization apparatus according to claim 6.
  9.  前記駆動部は、前記雌ノズル部に対する雄ノズルの軸方向の位置を調整することで、前記異種の液体の圧力を調整することを特徴とする請求項6に記載の微粒子化装置。 The microparticulation apparatus according to claim 6, wherein the driving unit adjusts the pressure of the different liquid by adjusting the position of the male nozzle in the axial direction with respect to the female nozzle unit.
  10.  前記雄ノズル面及び前記雌ノズル面の面積を小さくすることで、前記対向衝突の衝撃力を大きくすることを特徴とする請求項7に記載の微粒子化装置。 The microparticulater according to claim 7, wherein the impact force of the opposing collision is increased by reducing the areas of the male nozzle surface and the female nozzle surface.
PCT/JP2013/076721 2012-10-02 2013-10-01 Atomizing device WO2014054646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-220174 2012-10-02
JP2012220174A JP2014069172A (en) 2012-10-02 2012-10-02 Atomizer

Publications (1)

Publication Number Publication Date
WO2014054646A1 true WO2014054646A1 (en) 2014-04-10

Family

ID=50434972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076721 WO2014054646A1 (en) 2012-10-02 2013-10-01 Atomizing device

Country Status (2)

Country Link
JP (1) JP2014069172A (en)
WO (1) WO2014054646A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
JP7034352B1 (en) * 2021-03-25 2022-03-11 株式会社スギノマシン nozzle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242332A (en) * 1987-03-31 1988-10-07 Nordson Kk Method and apparatus for mixing, and mixing and emitting or ejecting liquids
JPH0194933A (en) * 1987-10-02 1989-04-13 Sayama Trading:Kk Emulsifier
JPH10180065A (en) * 1996-12-26 1998-07-07 Jiinasu:Kk Atomizing method and device therefor
JPH1142429A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Method and device for atomization
JP2005024015A (en) * 2003-07-03 2005-01-27 Sumitomo Electric Ind Ltd Flow regulating valve
JP2005144329A (en) * 2003-11-14 2005-06-09 Sugino Mach Ltd Pulverizing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242332A (en) * 1987-03-31 1988-10-07 Nordson Kk Method and apparatus for mixing, and mixing and emitting or ejecting liquids
JPH0194933A (en) * 1987-10-02 1989-04-13 Sayama Trading:Kk Emulsifier
JPH10180065A (en) * 1996-12-26 1998-07-07 Jiinasu:Kk Atomizing method and device therefor
JPH1142429A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Method and device for atomization
JP2005024015A (en) * 2003-07-03 2005-01-27 Sumitomo Electric Ind Ltd Flow regulating valve
JP2005144329A (en) * 2003-11-14 2005-06-09 Sugino Mach Ltd Pulverizing apparatus

Also Published As

Publication number Publication date
JP2014069172A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
TW201433363A (en) Fine bubble generating nozzle and fine bubble generating apparatus
US20150085601A1 (en) Vortex mixing and ratio adjustment system
TW200909066A (en) Spray device for small amount of liquid
US11213840B2 (en) Mixer design for a plural component system
US20130098880A1 (en) Injector for plasma spray torches
US20150136876A1 (en) Nozzle arrangement
WO2014054646A1 (en) Atomizing device
JP7338799B2 (en) Two-fluid nozzle spray device
JP2005288390A (en) Two-fluid nozzle and spraying method
JP5856332B1 (en) Micro fluid discharge method and micro fluid dispenser
TWI583440B (en) A fine air bubble generating device and a cyclone flow forming body
WO2010018805A1 (en) Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus
KR102279187B1 (en) 2 Fluid Nozzle
TW201410331A (en) Liquid jetting apparatus and liquid jetting method
EP2277664B1 (en) Automated flow gun for delivering fluids
KR101732648B1 (en) A Nozzle Assembly for Atomizing Liquid
JP5176946B2 (en) Microbubble generator
US9724709B2 (en) Swirler elements for nozzles
JP2008161834A (en) Nozzle and gas-liquid atomizer
US20070257135A1 (en) Spray Nozzle
JP2014213237A (en) Mixing device
US20230415105A1 (en) Slit chamber and atomizing apparatus
KR20210129973A (en) Emulsion manufacturing system using ultrafine bubbles
JP7398666B2 (en) Spraying device and method
JP6022899B2 (en) Fluid mixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13843344

Country of ref document: EP

Kind code of ref document: A1