WO2014054536A1 - On-board device and navigation method - Google Patents

On-board device and navigation method Download PDF

Info

Publication number
WO2014054536A1
WO2014054536A1 PCT/JP2013/076332 JP2013076332W WO2014054536A1 WO 2014054536 A1 WO2014054536 A1 WO 2014054536A1 JP 2013076332 W JP2013076332 W JP 2013076332W WO 2014054536 A1 WO2014054536 A1 WO 2014054536A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant
route
passive
vehicle
candidate
Prior art date
Application number
PCT/JP2013/076332
Other languages
French (fr)
Japanese (ja)
Inventor
広瀬 悟
小林 誠一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014054536A1 publication Critical patent/WO2014054536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/0244Non-manual adjustments, e.g. with electrical operation with logic circuits
    • B60N2/0268Non-manual adjustments, e.g. with electrical operation with logic circuits using sensors or detectors for adapting the seat or seat part, e.g. to the position of an occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/64Back-rests or cushions
    • B60N2/66Lumbar supports
    • B60N2/665Lumbar supports using inflatable bladders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for
    • B60N2/914Hydro-pneumatic adjustments of the shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles

Definitions

  • the present invention relates to an in-vehicle device and a navigation method.
  • This application claims priority based on Japanese Patent Application No. 2012-220983, filed on October 3, 2012.
  • the contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
  • Patent Document 1 a seat device that supports the occupant's posture by detecting the occupant's posture and controlling the seat cushion and the seat back according to the occupant's posture in order to improve the riding comfort of the moving body.
  • the conventional technology reduces the exercise load applied to the occupant by traveling the vehicle (muscle load necessary for the occupant to maintain the posture during vehicle travel) by supporting the occupant's posture. Among them, it was difficult for the passengers to obtain the amount of exercise necessary to maintain and improve their health.
  • the problem to be solved by the present invention is to provide an in-vehicle device that searches for a route through which an occupant can appropriately perform passive motion.
  • the present invention is installed in a seat device on which an occupant sits, and the vehicle is driven to a destination while driving a passive motion mechanism for changing the occupant's posture so that the momentum due to the passive motion of the occupant changes while the vehicle is traveling.
  • the above problem is solved by predicting the occupant's passive exercise momentum for each route when driving the route leading to, and determining the recommended route from a plurality of routes based on the predicted passive exercise momentum .
  • the present invention it is possible to search for a recommended route that allows an occupant to appropriately perform passive exercise from a plurality of routes by predicting the amount of exercise by the occupant's passive exercise for each route.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle 1 (hereinafter, also referred to as a host vehicle 1) provided with the navigation system according to the present embodiment.
  • the vehicle 1 includes a seat device 100, an input device 200, a map database 300, a control device 400, and a presentation device 500. These devices are connected by a CAN (Controller Area Network) or other vehicle-mounted LAN, and exchange information with each other.
  • CAN Controller Area Network
  • FIG. 2 is a view showing the sheet apparatus 100 according to the present embodiment.
  • a seat device 100 according to the present embodiment is mounted on a vehicle 1 so that an occupant riding the vehicle 1 can be seated.
  • the seat device 100 described below may be applied to a seat device in a driver seat where a driver is seated, or may be applied to a seat device in a seat where a passenger other than the driver is seated. .
  • the seat device 100 when the occupant sits on the seat device 100, the seat device 100 includes a seat cushion 10 that supports the lower body of the occupant, a seat back 20 that supports the upper body of the occupant, and the head of the occupant. It is comprised from the headrest 30 which supports.
  • the seat back 20 is provided with a thoracic vertebra airbag 21 and a lumbar airbag 22 as shown in FIG.
  • the thoracic portion airbag 21 is provided at a position corresponding to the thoracic vertebra of the occupant when the occupant leans against the seat back 20
  • the lumbar portion airbag 22 is disposed on the seat back 20. It is provided at a position corresponding to the lumbar spine of the occupant when leaning.
  • the thoracic spine airbag 21 is connected to the air pump 40 via the hose 41.
  • the shape of the thoracic vertebra part airbag 21 is variable by sending air into the thoracic vertebra part airbag 21 or discharging air from the thoracic part airbag 21 by the air pump 40.
  • the lumbar portion airbag 22 is connected to the air pump 40 via the hose 42, and air is sent into the lumbar portion airbag 22 by the air pump 40 or air is discharged from the lumbar portion airbag 22.
  • the shape of the lumbar portion airbag 22 is variable.
  • FIG. 3 is a diagram illustrating an example of a relationship between the air supply amount supplied by the air pump 40 and the protrusion amount of the thoracic vertebra part airbag 21 when the occupant is seated on the seat device 100.
  • FIG. 3 also shows an example of the relationship between the air supply amount supplied by the air pump 40 and the air pressure in the thoracic vertebra airbag 21. For example, in the example shown in FIG.
  • the thoracic vertebra part airbag 21 starts to protrude in the occupant direction (X-axis direction).
  • the protruding thoracic vertebra airbag 21 pushes a part of the occupant's body in the X-axis direction, and as a result, the posture of the occupant is changed so that the momentum due to the passive movement of the occupant during vehicle travel increases. be able to.
  • FIG. 1 In the example shown in FIG.
  • the thoracic portion airbag 21 when the air supply amount by the air pump 40 exceeds a predetermined amount Qp, the thoracic portion airbag 21 is pushed back by the occupant's body, thereby suppressing the protrusion of the thoracic portion airbag 21.
  • the air pressure in the thoracic spine airbag 21 is increased. That is, the rate at which the thoracic portion airbag 21 projects in the occupant direction (X-axis direction) with respect to the amount of air supplied from the air pump 40 decreases, and the rate at which the air pressure within the thoracic portion airbag 21 increases.
  • the lumbar airbag 22 swells and begins to protrude in the occupant direction (X-axis direction).
  • the protruded lumbar portion airbag 22 pushes a part of the occupant's body in the X-axis direction, and as a result, the occupant's posture is changed so that the momentum due to the passive movement of the occupant during vehicle travel increases. be able to.
  • the contact area between the upper body of the occupant and the seat back 20 is reduced. Therefore, when the vehicle 1 changes lanes or runs a curve with the thoracic vertebra airbag 21 or lumbar airbag 22 protruding in the occupant direction (X-axis direction), the upper body of the occupant is caused by the centrifugal force. Becomes easier to move in the lateral direction (substantially in the Y-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture can be increased.
  • the amount of protrusion of the thoracic vertebra airbag 21 and lumbar airbag 22 can be freely adjusted by the control of the control device 300 to be described later, and the thoracic airbag 21 and lumbar airbag.
  • the amount of exercise in the passive movement of the occupant can be adjusted according to the amount of protrusion 22.
  • the thoracic portion airbag 21 and the lumbar portion airbag 22 may be projected at the same time, or one of the thoracic portion airbag 21 and the lumbar portion airbag 22. It is also possible to protrude only. For example, when the thoracic portion airbag 21 and the lumbar portion airbag 22 are projected at the same time, compared to the case where only one of the thoracic portion airbag 21 and the lumbar portion airbag 22 is projected, Since the contact area of the seat surface is smaller, the momentum due to passive movement of the occupant can be further increased.
  • the air pump 40 discharges air from the thoracic vertebra airbag 21 or lumbar airbag 22.
  • the protruding amount of the thoracic vertebra part airbag 21 and the lumbar part airbag 22 can be reduced.
  • the protrusion amount of the thoracic vertebra part airbag 21 and the lumbar part airbag 22 is set to zero, the contact area between the occupant's upper body and the seat back 20 is increased, and the occupant's upper body is supported by the entire seat back 20. Therefore, when the vehicle is running, the upper body of the occupant becomes difficult to move in the lateral direction (Y-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture is reduced. Can do.
  • the seat cushion 10 is provided with a seat surface rear portion airbag 11.
  • the seat surface rear portion airbag 11 is located behind the center of the seat cushion 10 or the center of the seat cushion 10 (X-axis negative direction side), and when the occupant sits on the seat cushion 10 It is provided at a position corresponding to the occupant's buttocks.
  • the seat surface rear part airbag 11 is connected to the air pump 40 via the hose 43, and air is sent into the seat surface rear part airbag 11 by the air pump 40, or air is sent from the seat surface rear part airbag 11. By discharging, the shape of the seat surface rear portion airbag 11 is variable.
  • the seat surface rear portion airbag 11 when air is supplied into the seat surface rear portion airbag 11 by the air pump 40, the seat surface rear portion airbag 11 expands and protrudes in the passenger direction (Z-axis direction). And by making the seat surface rear part airbag 11 project in the occupant direction (Z-axis direction) in this way, the contact area between the lower body of the occupant and the seat cushion 10 is reduced, which allows the vehicle to change lanes or curve
  • the occupant's body is easy to move back and forth and left and right (X-axis direction and Y-axis direction) due to the centrifugal force when traveling and the inertial force when the vehicle accelerates or decelerates. It is possible to increase the exercise load (muscle load) necessary for maintaining the balance.
  • the seat device 100 increases the momentum in the passive motion of the occupant using the kinetic energy of the vehicle by causing the seat surface rear portion airbag 11 to protrude in the occupant direction (Z-axis direction). Can be made.
  • the air pump 40 discharges air from the seat back portion airbag 11 to reduce the protrusion amount of the seat back portion airbag 11. can do.
  • the protrusion amount of the seat back portion airbag 11 is set to zero, the contact area between the lower body of the occupant and the seat cushion 10 is increased, and the body pressure distribution of the lower body of the occupant is equal in the seat cushion 10.
  • the lower body of the occupant can be supported by the entire seat cushion 10.
  • the amount of protrusion of the seat surface rear portion airbag 11 can be freely adjusted by the control of the control device 300 described later, and according to the amount of protrusion of the seat surface rear portion airbag 11, The amount of exercise by passive movement of the occupant can be adjusted.
  • the seat cushion 10 is provided with a pair of seat surface front portion airbags 12 and 13.
  • the pair of seat surface front portion airbags 12 and 13 are in front of the center of the seat cushion 10 (X-axis positive direction side), and when the occupant is seated on the seat cushion 10, It is provided at a position corresponding to each thigh.
  • the seat front portion airbags 12 and 13 are connected to the air pump 40 via hoses 44 and 45. Then, the air pump 40 feeds air into the seat front part airbags 12 and 13, or discharges air from the seat front part airbags 12 and 13, thereby forming the shape of the seat front part airbags 12 and 13. Is variable.
  • FIG. 4 is a schematic view showing the side surface of the seat device 100 according to the first embodiment (showing the seat device 100 viewed from the Y-axis direction), and FIG. FIG. 4B shows the seat apparatus 100 in a scene where a sufficient amount of air is supplied to the backs 12 and 13, and FIG. 4B discharges a sufficient amount of air from the seat front part airbags 12 and 13.
  • the sheet apparatus 100 of the scene which carried out is shown.
  • the seat front part airbags 12 and 13 when a sufficient amount of air is supplied into the seat front part airbags 12 and 13, the seat front part airbags 12 and 13 are inflated and occupant direction ( It projects in the direction of the substantially Z axis).
  • the seat front part airbags 12 and 13 protrude in the occupant direction (substantially Z-axis direction).
  • the seat surface of the seat cushion 10 can be made substantially horizontal.
  • FIG. 4 (B) when a sufficient amount of air is discharged from the seat front part airbags 12 and 13, the occupant direction of the seat front part airbags 12 and 13 ( The amount of protrusion in the (substantially Z-axis direction) is zero. Therefore, as shown in FIG. 4B, the seat surface of the seat cushion 10 is inclined forward (X-axis direction) as a whole. Thus, when the seat surface of the seat cushion 10 is tilted forward, the posture of the occupant seated on the seat cushion 10 is also tilted forward (in the X-axis direction).
  • the seat device 100 uses the kinetic energy of the vehicle by discharging air from the seat front part airbags 12 and 13 and tilting the seat cushion 10 forward. The amount of exercise in the passive movement of the occupant can be increased.
  • the air pump 40 is connected to the hoses 41 to 45, respectively, and through these hoses 41 to 45, the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and a pair of seat surface fronts are provided. Air is sent into the part airbags 12 and 13, or the thoracic part airbag 21, the lumbar part airbag 22, the seat rear part airbag 11, and the pair of seat front part airbags 12 and 13. Can be discharged.
  • the air pump 40 may be a dedicated air pump for adjusting the amount of air in each of the airbags 21, 22, 11, 12, and 13, or may be an air pump that is also used as an in-vehicle air conditioner or the like. Also good.
  • air valves 51 to 55 are provided in the respective hoses 41 to 45, respectively. By controlling the opening and closing of the air valves 51 to 55 by a control device 300 described later, the air valves 51 to 55 are controlled. The amount of air can be adjusted for each of the backs 21, 22, 11, 12, and 13.
  • the input device 200 is, for example, a device such as a microphone that can be input by the occupant's voice, or a touch panel or joystick that is arranged on a display screen that can be input by the occupant's manual operation.
  • the occupant can input information for determining a recommended route to the destination as input information via the input device 200.
  • Such input information includes, for example, the destination, the travel distance to the destination, the required time to the destination, and the amount of passive motion desired by the occupant (for example, the average motion intensity of the passive motion, the passive motion Information such as maximum exercise intensity and passive exercise time).
  • the occupant can input the distance to the destination as “close”, “far”, “within 10 km” or the like via the input device 200, and the required time to the destination is “within 60 minutes”. And so on. Furthermore, the occupant can input the exercise intensity of the passive motion desired by the occupant as “strong”, “medium”, “weak”, “2METs”, etc. via the input device 200. The exercise intensity can be input as “3METs”. As will be described later, the input information input by the input device 200 is transmitted to the control device 400, and the route most suitable for the input information is determined as the recommended route. Note that “METs”, which is a unit indicating exercise intensity, is based on oxygen intake per unit time, and the higher the value, the greater the amount of passive exercise.
  • input information is not limited to said information, For example, it is good also as a structure containing the calorie consumption which shows the momentum of the passive exercise which a passenger
  • a numerical value in units of “exercise” may be input.
  • “Exercise” is a unit indicating the amount of exercise obtained by integrating METs over time. One exercise is performed when 1 METs is exercised continuously for 1 hour. Two hours of exercise will also result in two exercises. By the way, the target value of the exercise guidelines published by the Ministry of Health, Labor and Welfare requires exercise more than 23 exercises every week.
  • the map database 300 stores map information as well as momentum information of each road.
  • the momentum information is information indicating the momentum of the passive movement of the occupant when the host vehicle 1 travels on a road, and is calculated for each road by the control device 400.
  • the calculation method of the momentum by the passenger's passive movement on each road will be described later.
  • the control device 400 includes a ROM (Read Only Memory) in which a program for controlling the seat device 100 is stored, a CPU (Central Processing Unit) that executes the program stored in the ROM, and an accessible storage device. It has a functioning RAM (Random Access Memory).
  • ROM Read Only Memory
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • As an operation circuit instead of or in addition to a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), etc. Can be used.
  • the control device 400 executes a program stored in the ROM by the CPU, thereby obtaining an input information acquisition function for acquiring input information from the input device 200, and a map for acquiring map information and momentum information of each road from the map database 300.
  • the momentum calculating function for calculating the momentum of the passive movement of the occupant at the time and the movement control function for controlling the airbags 21, 22, 11, 12, and 13 to change the posture of the occupant are realized. Below, each function with which the control apparatus 400 is provided is demonstrated.
  • the input information acquisition function of the control device 400 acquires input information input via the input device 200 by a passenger.
  • the input information acquired by the input information acquisition function includes the destination, the travel distance to the destination, the required time to the destination, the amount of passive movement desired by the occupant (for example, average exercise intensity, maximum exercise intensity, and Information such as exercise time). Further, the input information acquisition function may be configured to acquire the required time to the destination as the exercise time of the passive exercise.
  • the map information acquisition function of the control device 400 acquires map information and momentum information for each road from the map database 300.
  • This momentum information is information indicating the momentum of passive exercise on each road calculated by the momentum calculation function described later.
  • the candidate route search function searches each of a plurality of routes reaching the destination as candidate routes based on the input information acquired by the input information acquisition function and the map information acquired by the map information acquisition function. Specifically, the candidate route search function searches a plurality of routes satisfying the destination, the travel distance to the destination, the required time to the destination, etc. as candidate routes from the input information input by the occupant. For example, when the required time to reach the destination is entered by the occupant as “within 60 minutes” and the travel distance to the destination is entered as “within 10 km”, the candidate route search function displays the destination entered by the occupant. A plurality of routes that can reach the destination within “60 minutes” and have a travel distance of “within 10 km” are searched for as candidate routes.
  • the recommended route determination function of the control device 400 determines, as a recommended route, a route most suitable for the input information input by the occupant from among a plurality of candidate routes searched by the candidate route search function.
  • the recommended route determination function is based on the momentum information of each road acquired by the map information acquisition function, and the amount of exercise due to the passive motion of the occupant when traveling on each candidate route (for example, traveling on each candidate route) Predicted average exercise intensity, maximum exercise intensity, and exercise time).
  • the recommended route determination function is, for example, the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise in each predicted candidate route, and the average exercise intensity of the passive exercise desired by the occupant acquired by the input information acquisition function.
  • the maximum exercise intensity and the exercise time are collated, and a candidate route most suitable for the input information input by the occupant is determined as a recommended route from among a plurality of candidate routes.
  • FIG. 5 is a diagram for explaining a method for determining a recommended route.
  • the average exercise intensity of the passive exercise is compared with the route A having a relatively high average exercise intensity of the passive exercise.
  • An example is shown in which a low-estimated route B is searched as a candidate route.
  • the recommended route determination function is a candidate route with a high average exercise intensity of the passive exercise.
  • candidate path A with high passive exercise intensity can be determined as a recommended path.
  • the recommended path determination function selects the candidate path B. It can be determined as a recommended route.
  • the recommended route determination function determines the recommended route in consideration of the fuel consumption to the destination. For example, when the occupant inputs the average exercise intensity due to the passive movement of the occupant as “2 METs” and the maximum exercise intensity as “3 METs” via the input device 200, the recommended route determination function has a plurality of candidates that satisfy these conditions. Among the routes, a candidate route with the lowest fuel consumption can be determined as a recommended route. Then, the recommended route determined by the recommended route determination function is transmitted to the presentation device 500 and presented to the occupant.
  • the re-search determination function of the control device 400 determines whether or not to re-search the recommended route. For example, the re-search determination function determines a recommended route suitable for newly input information when the vehicle 1 is traveling on the recommended route and new input information is input by the occupant. In order to do so, it is decided to re-search the recommended route.
  • the re-search determination function obtains the amount of passive motion desired by the occupant in the current recommended route from the posture of the occupant detected based on the output of a pressure sensor embedded in a camera (not shown) or the seat device 100. If it is determined that it is not, it can be determined that the recommended route is re-searched so that the amount of passive motion desired by the passenger can be obtained.
  • the re-search determination function determines that it cannot reach the destination in the required time entered by the occupant when traveling on the current recommended route from the current time, It is possible to decide to re-search the recommended route so that the destination can be reached.
  • the re-search determination function can determine that the recommended route is re-searched even when the occupant instructs the recommended route to be searched again via the input device 200.
  • the motion control function of the control device 400 controls the driving of the thoracic portion airbag 21, the lumbar portion airbag 22, and the seat back portion airbag 11, so that the occupant can appropriately perform passive motion. Change the posture.
  • the motion control function opens the air valves 51, 52, and 53 in the seat device 100 on which the driver is seated when the driver's driving load is low, such as when the vehicle is traveling on a highway.
  • the air pump 40 By operating the air pump 40 so as to supply air into the thoracic vertebra airbag 21, lumbar vertebra airbag 22, and rear seat airbag 11, the thoracic airbag 21, lumbar airbag 22, seat The protruding amount of the rear airbag 11 is increased.
  • the driver's posture can be changed so that the exercise load (muscle load) necessary for the driver to maintain his / her posture increases.
  • the motion control function opens the air valves 54 and 55 and causes the air pump 40 to discharge air from the pair of seat surface front airbags 12 and 13. By operating, the posture of the driver can be changed so that the seat cushion 10 is tilted forward and the exercise load (muscle load) necessary for the driver to maintain the posture increases.
  • the motion control function enables the air valves 51, 52, 53 in the seat device 100 on which the driver is seated.
  • the protrusion amount of the seat surface rear portion airbag 11 is reduced.
  • the driver's body is supported by the entire seat cushion 10 and the entire seat back 20, and the posture of the driver is changed so that the exercise load (muscle load) necessary for the driver to maintain the posture is reduced. Can be made.
  • the motion control function opens the air valves 54 and 55 and supplies sufficient air into the seat front portion airbags 12 and 13.
  • the seat cushion 10 has a seating surface tilted substantially horizontally (or tilted so that the seat cushion sinks backward from substantially horizontal), and the exercise load (muscle load) necessary for the driver to maintain his / her posture is maintained.
  • the driver's posture can be changed to reduce.
  • the driving control function can determine whether or not the vehicle 1 is traveling on a highway or a narrow street based on the map information acquired by the map information acquisition function.
  • the momentum calculation function of the control device 400 calculates the momentum of passive movement for each road when the host vehicle 1 travels on the road. Specifically, the momentum calculation function calculates the amount of momentum generated by the passive movement of the occupant for each road based on the number of corners on the road on which the host vehicle 1 has traveled, the number of brakes, whether the road is on a slope, the width of the road, and the like. calculate. For example, the momentum calculation function is such that the greater the number of corners of the road on which the host vehicle 1 is traveling, the greater the number of brakes, the more the slope is, the narrower the width of the road, Etc. and the load (acceleration) applied to the occupant increases, so the momentum due to the passive motion of the occupant on such a road is calculated high. In addition, since the load (acceleration) applied to the occupant changes depending on the travel speed, the amount of exercise is calculated using the vehicle speed from the travel history and the average travel speed of a general vehicle in addition to the road speed limit value. May be.
  • the momentum calculation function calculates the momentum in the passive movement of the occupant in consideration of the control of the airbags 21, 22, 11, 12, and 13 by the movement control function. For example, when traveling on a road, the movement control function reduces the amount of protrusion of the thoracic vertebra airbag 21, lumbar vertebra airbag 22, and rear seat airbag 11 toward the occupant side, and passive movement of the occupant When the amount of exercise due to decreases, the amount of exercise due to the passive movement of the occupant is calculated accordingly. Then, the momentum calculation function stores information on the calculated momentum of the passive exercise in the map database 300 as the amount of exercise information in association with the road that has traveled.
  • the presentation device 500 presents the recommended route determined by the control device 400 to the occupant.
  • the presentation device 500 is not particularly limited, and examples thereof include a display that displays a recommended route together with map information and a speaker that guides the recommended route by voice.
  • the presentation device 500 may be a display having the touch panel type input device 200.
  • FIG. 6 is a flowchart showing the navigation processing according to the present embodiment.
  • step S101 input information input by a passenger via the input device 200 is acquired by the input information acquisition function of the control device 400. If the input information is acquired, the process proceeds to step S102. If the input information is not obtained, step S101 is repeated.
  • step S102 the map information acquisition function of the control device 400 acquires map information and momentum information of each road from the map database 300.
  • step S103 the candidate route search function of the control device 400 searches for the candidate route to the destination based on the input information acquired in step S101 and the map information acquired in step S102.
  • the candidate route search function searches a plurality of routes that satisfy the travel distance to the destination and the required time included in the input information as candidate routes.
  • the recommended route determination function of the control device 400 determines the recommended route based on the input information acquired in step S101 and the momentum information of each road acquired in step S102. Specifically, the recommended route determination function first predicts the momentum due to the passive motion of the occupant when traveling on each candidate route searched in step S103, based on the momentum information of each road acquired in step S102. To do.
  • the recommended route determination function includes the amount of passive exercise desired by the occupant (for example, average exercise intensity, maximum exercise intensity, and exercise time) included in the input information, and the occupant predicted in each candidate route.
  • the candidate path most suitable for the input information is determined as a recommended path by collating with the amount of exercise of the passive exercise (for example, the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise).
  • step S105 the presentation device 400 presents the recommended route determined in step S104 to the passenger.
  • the recommended route can be presented to the occupant by displaying the recommended route together with the map information on the display screen.
  • step S106 the re-search determination function of the control device 400 determines whether or not to re-search the recommended route. For example, the re-search determination function is used when the input information is newly input, or when the occupant determines that the passive motion suitable for the input information has not been obtained. When it is determined that the destination cannot be reached, it can be determined that the recommended route is re-searched. If it is determined that the recommended route is to be searched again, the process returns to step S102 and a new recommended route is searched. On the other hand, if it is determined not to re-search the recommended route, the process proceeds to step S107.
  • step S107 the re-search determination function determines whether or not the host vehicle 1 has arrived at the destination. When it is determined that the host vehicle 1 has arrived at the destination, the navigation process is terminated. On the other hand, when it is determined that the host vehicle 1 has not arrived at the destination, the process returns to step S106 and again. The determination as to whether or not to re-search for the recommended route is repeated.
  • the control device 400 controls the airbags 21, 22, 11, 12, and 13 by the motion control function and the passive motion of the passengers on each road by the motion amount calculation function even during the navigation processing described above.
  • the momentum is calculated repeatedly.
  • the occupant can appropriately perform passive exercise, and the amount of exercise information of each road used for determining the recommended route in the above-described navigation process is obtained from the map database. 300 can be accumulated.
  • the route to the destination is searched as a candidate route, and the passive motion of the occupant by the airbags 21, 22, 11, 12, and 13 when the vehicle 1 travels on the candidate route.
  • the most suitable route for performing the passive motion required by the occupant is determined as a recommended route based on the predicted momentum of the passive motion in each candidate route.
  • the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise in each candidate route are predicted as the amount of exercise of the passive mobility, and the average exercise intensity and the maximum exercise intensity of the passive exercise desired by the occupant are predicted.
  • the recommended route is determined from the plurality of candidate routes by comparing the exercise time and the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise predicted in each candidate route.
  • crew desires can be determined with a higher precision.
  • driving energy consumption until reaching the destination can be suppressed by determining the recommended route in consideration of the fuel consumption to the destination.
  • the recommended route most suitable for the input information input by the occupant is presented to the occupant via the presentation device 300, and the occupant desires the occupant to travel along the recommended route. It is possible to appropriately perform the passive exercise of the momentum.
  • the second embodiment has the same configuration as the first embodiment except that the sheet device 100a is different from the sheet device 100 according to the first embodiment in the points described below. It operates in the same way.
  • FIG. 7 is a configuration diagram of the sheet apparatus 100a according to the second embodiment.
  • the seat device 100a according to the second embodiment includes the lumbar support portions 23 and 24 and the side support portions 25 and 26 so that the posture of the occupant does not change by a certain amount or more.
  • Knee support portions 61 and 62 a heel support portion 71, arm support portions 81 and 82 (not shown), elbow support portions 83 and 84 (not shown), and a neck support portion 31.
  • the lumbar support portions 23 and 24 are respectively provided in regions on the left and right sides of the thoracic airbag 21 and the lumbar airbag 22 corresponding to the vicinity of the lumbar region of the occupant seated on the seat device 100a. ing.
  • the lumbar support portions 23 and 24 are connected to an actuator (not shown), and by driving the actuator, the lumbar support portions 23 and 24 bend toward the front inner side (occupant side). The movement in the direction is suppressed, and the posture of the occupant is prevented from changing more than a certain amount.
  • each lumbar support part 23 and 24 can operate
  • the actuator which operates the lumbar support parts 23 and 24 employs a reversible actuator that is reversibly driven such as an electric motor.
  • a reversible actuator that is reversibly driven such as an electric motor.
  • the side support portions 25 and 26 are provided in regions outside the thoracic vertebra portion airbag 21, the lumbar portion airbag 22, and the lumbar support portions 23 and 24, respectively.
  • Actuators (not shown) are connected to the side support portions 25 and 26. By driving the actuators, the side support portions 25 and 26 bend forward inward (occupant side) and the occupant's upper body moves in the lateral direction. It is possible to prevent the occupant's posture from changing more than a certain amount.
  • each side support part 25 and 26 can operate
  • the actuator which operates the side support parts 25 and 26 employ
  • the knee support portions 61 and 62 are provided in each of the door and the center console so as to face each other at a height corresponding to the knee portion of the occupant seated on the seat device 100a.
  • Each knee support portion 61, 62 is configured to be able to protrude toward the occupant side, and is connected to an actuator (not shown). By driving this actuator, the knee support portion 61, 62 protrudes toward the occupant side.
  • the knee support portions 61 and 62 constitute part of the surface shape of the inner panel of the door or the center console in the normal state (initial state), and project toward the occupant side by operating toward the occupant side. To do.
  • knee support portions 61 and 62 abut against the occupant's knee, the lateral movement of the occupant's legs can be suppressed, and the posture of the occupant can be prevented from changing more than a certain amount.
  • the support performance in the vicinity of the knee can be improved.
  • the individual knee support units 61 and 62 can operate independently.
  • the heel support portion 71 is provided on the floor around the feet of the passenger sitting on the seat device 100a.
  • the heel support portion 71 constitutes a part of the surface shape of the floor around the feet of the occupant in the normal state (initial state). However, the heel support portion 71 is moved toward the occupant side by an actuator (not shown).
  • the front end portion (the end portion on the X-axis direction) of the vehicle rises from the floor to the occupant side, and functions as a stopper that prevents the occupant's posture from changing by a certain amount or more. In other words, the occupant can prevent the posture of the occupant from changing by a certain amount or more by using the protruding heel support portion 71 as a step.
  • the actuator which operates this heel support part 71 employ
  • the arm support portions 81 and 82 are provided in each of the door and the center console so as to face each other at a height corresponding to the arm portion of the occupant seated on the seat device 100a.
  • the elbow support portions 83 and 84 are provided on the door and the center console in such a relationship that they face each other at a height corresponding to the elbow portion of the occupant seated on the seat device 100a.
  • the arm support portions 81 and 82 and the elbow support portions 83 and 84 are respectively connected to actuators (not shown).
  • the arm support portions 81 and 82 and the elbow support portions 83 and 84 are The lateral movement of the occupant's upper body is suppressed, and the occupant's posture is prevented from changing more than a certain amount.
  • the arm support portions 81 and 82 and the elbow support portions 83 and 84 can operate independently.
  • the actuator which operates arm support part 81,82 and elbow support part 83,84 employ
  • the parts 83 and 84 can return to the normal state from the state of protruding toward the occupant as a reversible operation.
  • the neck support portion 31 is provided at a position corresponding to the neck portion of the occupant seated on the seat device 100a in the headrest 30.
  • the neck support portion 31 incorporates a wire whose left and right ends can be moved by an actuator (not shown), and the left and right ends of the wire are bent forward inward (occupant side), thereby suppressing the movement of the neck of the occupant. Can be prevented from changing more than a certain amount.
  • the actuator that operates the neck support portion 31 employs a reversible actuator that is reversibly driven such as an electric motor. As a result, the neck support portion 31 is also reversibly operated from a state where it protrudes toward the occupant side. It can return to the state.
  • the control device 400a includes lumbar support parts 23 and 24, side support parts 25 and 26, knee support parts 61 and 62, a heel support part 71, an arm support part 81, 82, elbow support parts 83 and 84, and a function of controlling the operation of the neck support part 31.
  • the control device 400a provides the lumbar support so that when the host vehicle 1 is traveling on a narrow street and the driver's driving load is large, the momentum due to the driver's passive motion is reduced.
  • the parts 23 and 24, the side support parts 25 and 26, the knee support parts 61 and 62, the heel support part 71, the arm support parts 81 and 82, the elbow support parts 83 and 84, and the neck support part 31 are operated to the occupant side.
  • the control device 400a returns the support unit to a normal state so that the driver can obtain a certain momentum. To control.
  • the seat device 100a includes the lumbar support portions 23 and 24, the side support portions 25 and 26, the knee support portions 61 and 62, the heel support portion 71, the arm support portions 81 and 82, and the elbow support.
  • the portions 83 and 84 and the neck support portion 31 By providing the portions 83 and 84 and the neck support portion 31 and driving these support portions to the occupant side, the posture of the occupant can be prevented from changing by a certain amount or more.
  • the momentum calculation function of the control device 400 is based on the number of corners of the road on which the host vehicle 1 is traveling, the number of times of braking, whether the road is a slope, the width of the road, and the like.
  • the function for calculating the momentum includes the number of corners of the road on which the vehicle 1 is traveling, the number of times of braking, whether the road is a slope, the width of the road, etc.
  • the momentum of the current passive movement of the occupant is calculated, and the calculated amount of passive movement is stored in the map database 300 as history information. It may be configured to calculate the amount of exercise.
  • the momentum calculation function stores the calculated momentum of the occupant's passive motion as history information each time the vehicle travels on the road, and calculates the average value of the past occupant's passive exercise momentum stored as the history information. It can be calculated as the momentum of the passive movement of the occupant.
  • the configuration in which the own vehicle 1 calculates the momentum due to the passive motion of the occupant on each road by actually traveling on the road is exemplified.
  • the amount of passive movement of the occupant can be stored in the map database 300 in advance.
  • the path to be included can be determined as the recommended path.
  • the own vehicle 1 can passively pass passengers on each road from the information center. It is good also as a structure which acquires the exercise amount of an exercise
  • the configuration in which the candidate route most suitable for the input information input by the input device 200 is determined as the recommended route by the recommended route determination function of the control device 400 is illustrated, but the configuration is limited to this configuration.
  • the recommended route may be determined from among a plurality of candidate routes based on the amount of exercise generally required by the occupant for maintaining and improving health.
  • the control device 400 controls the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and the pair of seat surface front part airbags 12 and 13.
  • the present invention is not limited to this configuration.
  • the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat rear part airbag 11, and the pair of seats It is good also as a structure which controls the surface front part airbags 12 and 13. FIG. As a result, the occupant can perform a desired passive motion at a desired timing.
  • the parts 81 and 82, the elbow support parts 83 and 84, and the neck support part 31 may be operated.
  • the seat cushion 10 is configured so that the seat surface of the seat cushion 10 becomes substantially horizontal when a sufficient amount of air is discharged from the pair of seat surface front portion airbags 12 and 13.
  • the seat front part airbags 12 and 13 By supplying a sufficient amount of air to the seat front part airbags 12 and 13, the seat front part airbags 12 and 13 are inflated, and the pair of seat front part airbags 12 and 13 are moved in the passenger direction (Z By projecting in the axial direction), the seat surface of the seat cushion 10 may be tilted rearward, whereby the posture of the occupant may be tilted rearward to increase the momentum due to the passive motion of the occupant.
  • the seat cushion 10 when a sufficient amount of air is discharged from the seat front part airbags 12 and 13, the seat cushion 10 is tilted forward, and the seat front part airbags 12 and 13 have a sufficient amount.
  • the seat surface front portion airbags 12 and 13 are configured so that the seat surface of the seat cushion 10 is tilted rearward. It is good also as a structure which inclines the seat surface of the seat cushion 10 by adjusting quantity, and adjusts the momentum in a passenger
  • the seat device 100 includes any one of the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and the pair of seat surface front part airbags 12 and 13. It is good also as a structure, It is good also as a structure provided with combining any 2 or more airbags.
  • the seat device 100a includes lumbar support parts 23 and 24, side support parts 25 and 26, knee support parts 61 and 62, heel support parts 71, arm support parts 81 and 82, elbow support parts 83 and 84, and a neck support. It is good also as a structure provided with any one support part among the parts 31, or it is good also as a structure provided with combining any two or more support parts.
  • Reference numeral 400 corresponds to candidate route searching means, prediction means, and route determination means of the present invention
  • presentation device 500 corresponds to presentation means of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Seats For Vehicles (AREA)

Abstract

This on-board device is characterized by being provided with: passive motion mechanisms (21, 22, 11, 12, 13) disposed in a seat device (100) in which a passenger sits, for changing the posture of the passenger in such a way as to change the amount of motion of the passenger due to passive motion during driving of a vehicle; a prospective route search means (400) for respectively searching for a plurality of routes leading to a target destination as prospective routes; a prediction means (400) for predicting the passenger's level of motion of passive motion by the passive motion mechanisms (21, 22, 11, 12, 13) in the event of the vehicle being driven over the prospective routes; and a route selection means (400) for selecting a recommended route from among the plurality of prospective routes, on the basis of passenger's level of motion of to passive motion, that was predicted by the prediction means (400).

Description

車載装置およびナビゲーション方法In-vehicle device and navigation method
 本発明は、車載装置およびナビゲーション方法に関するものである。
 本出願は、2012年10月3日に出願された日本国特許出願の特願2012-220983に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
The present invention relates to an in-vehicle device and a navigation method.
This application claims priority based on Japanese Patent Application No. 2012-220983, filed on October 3, 2012. For designated countries that are allowed to be incorporated by reference, The contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
 従来、移動体の乗り心地を向上するために、乗員の姿勢を検出し、乗員の姿勢に応じて、シートクッションやシートバックを制御することで、乗員の姿勢をサポートするシート装置が知られている(特許文献1)。 Conventionally, there has been known a seat device that supports the occupant's posture by detecting the occupant's posture and controlling the seat cushion and the seat back according to the occupant's posture in order to improve the riding comfort of the moving body. (Patent Document 1).
特開2006-8098号公報JP 2006-8098 A
 健康の維持・向上のために、一定量の運動を行うことが望まれている。しかしながら、車両に乗車している場合には、乗員の動きは制限され、健康の維持・向上のために必要な運動量を得られないという問題があった。特に、従来技術は、乗員の姿勢をサポートすることで、車両の走行により乗員に加わる運動負荷(車両走行時に乗員が姿勢を保つために必要な筋肉負荷)を軽減させるものであるため、車両走行中に、乗員が健康の維持・向上ために必要な運動量を得ることは困難であった。 It is desirable to perform a certain amount of exercise to maintain and improve health. However, when riding in a vehicle, the movement of the occupant is limited, and there is a problem that the amount of exercise necessary for maintaining and improving health cannot be obtained. In particular, the conventional technology reduces the exercise load applied to the occupant by traveling the vehicle (muscle load necessary for the occupant to maintain the posture during vehicle travel) by supporting the occupant's posture. Among them, it was difficult for the passengers to obtain the amount of exercise necessary to maintain and improve their health.
 本発明が解決しようとする課題は、乗員が受動運動を適切に行うことが可能な経路を探索する車載装置を提供することである。 The problem to be solved by the present invention is to provide an in-vehicle device that searches for a route through which an occupant can appropriately perform passive motion.
 本発明は、乗員が着座するシート装置に設置され、車両走行中における乗員の受動運動による運動量が変化するように、乗員の姿勢を変化させるための受動運動機構を駆動させながら、車両が目的地に至る経路を走行した場合の乗員の受動運動の運動量を経路ごとに予測し、予測した受動運動の運動量に基づいて、複数の経路の中から推奨経路を決定することで、上記課題を解決する。 The present invention is installed in a seat device on which an occupant sits, and the vehicle is driven to a destination while driving a passive motion mechanism for changing the occupant's posture so that the momentum due to the passive motion of the occupant changes while the vehicle is traveling. The above problem is solved by predicting the occupant's passive exercise momentum for each route when driving the route leading to, and determining the recommended route from a plurality of routes based on the predicted passive exercise momentum .
 本発明によれば、乗員の受動運動による運動量を経路ごとに予測することで、複数の経路の中から、乗員が受動運動を適切に行うことが可能な推奨経路を探索することができる。 According to the present invention, it is possible to search for a recommended route that allows an occupant to appropriately perform passive exercise from a plurality of routes by predicting the amount of exercise by the occupant's passive exercise for each route.
本実施形態に係るナビゲーションシステムを示すブロック図である。It is a block diagram which shows the navigation system which concerns on this embodiment. 第1実施形態に係るシート装置を示す構成図である。It is a lineblock diagram showing the sheet device concerning a 1st embodiment. 胸椎部エアバックの乗員側への突出量と、胸椎部エアバック内に供給される空気供給量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the protrusion amount to the passenger | crew side of a thoracic-vertebra part airbag, and the air supply amount supplied in a thoracic-vertebra part airbag. 本実施形態に係るシート装置の側面を示す概略図である。It is the schematic which shows the side surface of the sheet | seat apparatus which concerns on this embodiment. 推奨経路の決定方法を説明するための図である。It is a figure for demonstrating the determination method of a recommendation path | route. 本実施形態に係るナビゲーション処理を示すフローチャートである。It is a flowchart which shows the navigation process which concerns on this embodiment. 第2実施形態に係るシート装置を示す構成図である。It is a block diagram which shows the sheet | seat apparatus which concerns on 2nd Embodiment.
 ≪第1実施形態≫
 以下、本発明の実施の形態を図面に基づいて説明する。
<< First Embodiment >>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施形態においては、車両に搭載されるナビゲーションシステムを例示して説明する。ここで、図1は、本実施形態に係るナビゲーションシステムを備えた車両1(以下、自車両1ともいう)の構成を示すブロック図である。図1に示すように、車両1は、シート装置100と、入力装置200と、地図データベース300と、制御装置400と、提示装置500とを有する。これらの装置は、CAN(Controller Area Network)その他の車載LANによって接続され、相互に情報の授受を行う。 In this embodiment, a navigation system mounted on a vehicle will be described as an example. Here, FIG. 1 is a block diagram illustrating a configuration of a vehicle 1 (hereinafter, also referred to as a host vehicle 1) provided with the navigation system according to the present embodiment. As shown in FIG. 1, the vehicle 1 includes a seat device 100, an input device 200, a map database 300, a control device 400, and a presentation device 500. These devices are connected by a CAN (Controller Area Network) or other vehicle-mounted LAN, and exchange information with each other.
 図2は、本実施形態に係るシート装置100を示す図である。本実施形態に係るシート装置100は、車両1に搭載され、車両1に乗車した乗員が着座可能となっている。また、以下に説明するシート装置100は、運転者が着座する運転席のシート装置に適用してもよいし、あるいは、運転者以外の同乗者が着座する席のシート装置に適用してもよい。 FIG. 2 is a view showing the sheet apparatus 100 according to the present embodiment. A seat device 100 according to the present embodiment is mounted on a vehicle 1 so that an occupant riding the vehicle 1 can be seated. The seat device 100 described below may be applied to a seat device in a driver seat where a driver is seated, or may be applied to a seat device in a seat where a passenger other than the driver is seated. .
 図2に示すように、シート装置100は、乗員がシート装置100に着座した際に、乗員の下半身を支持するシートクッション10と、乗員の上体を支持するシートバック20と、乗員の頭部を支持するヘッドレスト30とから構成される。 As shown in FIG. 2, when the occupant sits on the seat device 100, the seat device 100 includes a seat cushion 10 that supports the lower body of the occupant, a seat back 20 that supports the upper body of the occupant, and the head of the occupant. It is comprised from the headrest 30 which supports.
 シートバック20には、図2に示すように、胸椎部エアバック21および腰椎部エアバック22が設けられている。具体的には、胸椎部エアバック21は、乗員がシートバック20に寄りかかった際に、乗員の胸椎に対応する位置に設けられており、腰椎部エアバック22は、乗員がシートバック20に寄りかかった際に、乗員の腰椎に対応する位置に設けられている。 The seat back 20 is provided with a thoracic vertebra airbag 21 and a lumbar airbag 22 as shown in FIG. Specifically, the thoracic portion airbag 21 is provided at a position corresponding to the thoracic vertebra of the occupant when the occupant leans against the seat back 20, and the lumbar portion airbag 22 is disposed on the seat back 20. It is provided at a position corresponding to the lumbar spine of the occupant when leaning.
 また、胸椎部エアバック21は、ホース41を介してエアポンプ40と接続している。そして、エアポンプ40により、胸椎部エアバック21内に空気を送り込み、あるいは、胸椎部エアバック21内から空気を排出することで、胸椎部エアバック21の形状が可変となっている。同様に、腰部部エアバック22は、ホース42を介してエアポンプ40と接続されており、エアポンプ40により腰椎部エアバック22内に空気を送り込み、あるいは腰椎部エアバック22内から空気を排出することで、腰椎部エアバック22の形状が可変となっている。 In addition, the thoracic spine airbag 21 is connected to the air pump 40 via the hose 41. The shape of the thoracic vertebra part airbag 21 is variable by sending air into the thoracic vertebra part airbag 21 or discharging air from the thoracic part airbag 21 by the air pump 40. Similarly, the lumbar portion airbag 22 is connected to the air pump 40 via the hose 42, and air is sent into the lumbar portion airbag 22 by the air pump 40 or air is discharged from the lumbar portion airbag 22. Thus, the shape of the lumbar portion airbag 22 is variable.
 たとえば、エアポンプ40により胸椎部エアバック21内に空気が供給されると、胸椎部エアバック21は膨らみ、乗員方向(X軸方向)に突出する。ここで、図3は、乗員がシート装置100に着座している際における、エアポンプ40により供給される空気供給量と、胸椎部エアバック21の突出量との関係の一例を示す図である。また、図3においては、エアポンプ40により供給される空気供給量と、胸椎部エアバック21内の空気圧との関係の一例も示している。たとえば、図3に示す例では、エアポンプ40から胸椎部エアバック21に対して空気の供給が開始されると、胸椎部エアバック21が乗員方向(X軸方向)に突出し始める。これにより、突出した胸椎部エアバック21が乗員の身体の一部をX軸方向に押すこととなり、その結果、車両走行中における乗員の受動運動による運動量が増大するように乗員の姿勢を変化させることができる。なお、図3に示す例では、エアポンプ40による空気供給量が所定量Qpを超えると、乗員の身体によって胸椎部エアバック21が押し返されることで、胸椎部エアバック21の突出が抑制され、胸椎部エアバック21内の空気圧が高くなる。すなわち、エアポンプ40からの空気供給量に対して、胸椎部エアバック21が乗員方向(X軸方向)に突出する割合が小さくなり、胸椎部エアバック21内の空気圧が増加する割合が大きくなる。 For example, when air is supplied into the thoracic spine airbag 21 by the air pump 40, the thoracic spine airbag 21 swells and protrudes in the occupant direction (X-axis direction). Here, FIG. 3 is a diagram illustrating an example of a relationship between the air supply amount supplied by the air pump 40 and the protrusion amount of the thoracic vertebra part airbag 21 when the occupant is seated on the seat device 100. FIG. 3 also shows an example of the relationship between the air supply amount supplied by the air pump 40 and the air pressure in the thoracic vertebra airbag 21. For example, in the example shown in FIG. 3, when the supply of air from the air pump 40 to the thoracic vertebra part airbag 21 is started, the thoracic vertebra part airbag 21 starts to protrude in the occupant direction (X-axis direction). As a result, the protruding thoracic vertebra airbag 21 pushes a part of the occupant's body in the X-axis direction, and as a result, the posture of the occupant is changed so that the momentum due to the passive movement of the occupant during vehicle travel increases. be able to. In the example shown in FIG. 3, when the air supply amount by the air pump 40 exceeds a predetermined amount Qp, the thoracic portion airbag 21 is pushed back by the occupant's body, thereby suppressing the protrusion of the thoracic portion airbag 21. The air pressure in the thoracic spine airbag 21 is increased. That is, the rate at which the thoracic portion airbag 21 projects in the occupant direction (X-axis direction) with respect to the amount of air supplied from the air pump 40 decreases, and the rate at which the air pressure within the thoracic portion airbag 21 increases.
 同様に、エアポンプ40により腰椎部エアバック22内に空気が供給されると、腰椎部エアバック22は膨らみ、乗員方向(X軸方向)に突出し始める。これにより、突出した腰椎部エアバック22が乗員の身体の一部をX軸方向に押すこととなり、その結果、車両走行中における乗員の受動運動による運動量が増大するように乗員の姿勢を変化させることができる。 Similarly, when air is supplied into the lumbar airbag 22 by the air pump 40, the lumbar airbag 22 swells and begins to protrude in the occupant direction (X-axis direction). As a result, the protruded lumbar portion airbag 22 pushes a part of the occupant's body in the X-axis direction, and as a result, the occupant's posture is changed so that the momentum due to the passive movement of the occupant during vehicle travel increases. be able to.
 すなわち、胸椎部エアバック21や腰椎部エアバック22を乗員方向(X軸方向)に突出させることで、乗員の上体とシートバック20との接触面積は小さくなる。そのため、胸椎部エアバック21や腰椎部エアバック22を乗員方向(X軸方向)に突出させた状態で、車両1が車線変更やカーブ走行を行った場合、その遠心力により、乗員の上体が横方向(略Y軸方向)に動き易くなり、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)を増加させることができる。また、本実施形態においては、後述する制御装置300の制御により、胸椎部エアバック21や腰椎部エアバック22の突出量を自由に調整することができ、胸椎部エアバック21や腰椎部エアバック22の突出量に応じて、乗員の受動運動における運動量を調整することができる。 That is, by projecting the thoracic vertebra airbag 21 and lumbar airbag 22 in the occupant direction (X-axis direction), the contact area between the upper body of the occupant and the seat back 20 is reduced. Therefore, when the vehicle 1 changes lanes or runs a curve with the thoracic vertebra airbag 21 or lumbar airbag 22 protruding in the occupant direction (X-axis direction), the upper body of the occupant is caused by the centrifugal force. Becomes easier to move in the lateral direction (substantially in the Y-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture can be increased. In the present embodiment, the amount of protrusion of the thoracic vertebra airbag 21 and lumbar airbag 22 can be freely adjusted by the control of the control device 300 to be described later, and the thoracic airbag 21 and lumbar airbag. The amount of exercise in the passive movement of the occupant can be adjusted according to the amount of protrusion 22.
 なお、本実施形態に係るシート装置100においては、胸椎部エアバック21と腰椎部エアバック22とを同時に突出させることも、あるいは、胸椎部エアバック21および腰椎部エアバック22のうちいずれか一方のみを突出させることも可能である。たとえば、胸椎部エアバック21および腰椎部エアバック22を同時に突出させた場合には、胸椎部エアバック21および腰椎部エアバック22のうちいずれか一方のみを突出させた場合と比べて、乗員とシート面の接触面積がより小さくなることから、乗員の受動運動による運動量をより増大させることができる。 In the seat device 100 according to the present embodiment, the thoracic portion airbag 21 and the lumbar portion airbag 22 may be projected at the same time, or one of the thoracic portion airbag 21 and the lumbar portion airbag 22. It is also possible to protrude only. For example, when the thoracic portion airbag 21 and the lumbar portion airbag 22 are projected at the same time, compared to the case where only one of the thoracic portion airbag 21 and the lumbar portion airbag 22 is projected, Since the contact area of the seat surface is smaller, the momentum due to passive movement of the occupant can be further increased.
 また、胸椎部エアバック21や腰椎部エアバック22が乗員側(X軸方向)に突出している場合に、エアポンプ40によって胸椎部エアバック21や腰椎部エアバック22内から空気を排出することで、胸椎部エアバック21や腰椎部エアバック22の突出量を小さくすることができる。たとえば、胸椎部エアバック21や腰椎部エアバック22の突出量をゼロにした場合、乗員の上体とシートバック20との接触面積は大きくなり、乗員の上体をシートバック20全体でサポートすることができるため、車両が走行している際に乗員の上体が横方向(Y軸方向)に動き難くなり、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)を減少させることができる。 Further, when the thoracic vertebra airbag 21 or the lumbar vertebra airbag 22 protrudes toward the passenger (X-axis direction), the air pump 40 discharges air from the thoracic vertebra airbag 21 or lumbar airbag 22. The protruding amount of the thoracic vertebra part airbag 21 and the lumbar part airbag 22 can be reduced. For example, when the protrusion amount of the thoracic vertebra part airbag 21 and the lumbar part airbag 22 is set to zero, the contact area between the occupant's upper body and the seat back 20 is increased, and the occupant's upper body is supported by the entire seat back 20. Therefore, when the vehicle is running, the upper body of the occupant becomes difficult to move in the lateral direction (Y-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture is reduced. Can do.
 また、図2に示すように、シートクッション10には、座面後方部エアバック11が設けられている。具体的には、座面後方部エアバック11は、シートクッション10の中央またはシートクッション10の中央よりも後方側(X軸負方向側)であって、乗員がシートクッション10に着座した際に乗員の臀部に対応する位置に設けられている。 Further, as shown in FIG. 2, the seat cushion 10 is provided with a seat surface rear portion airbag 11. Specifically, the seat surface rear portion airbag 11 is located behind the center of the seat cushion 10 or the center of the seat cushion 10 (X-axis negative direction side), and when the occupant sits on the seat cushion 10 It is provided at a position corresponding to the occupant's buttocks.
 座面後方部エアバック11は、ホース43を介してエアポンプ40と接続されており、エアポンプ40により座面後方部エアバック11内に空気を送り込み、あるいは座面後方部エアバック11内から空気を排出することで、座面後方部エアバック11の形状は可変となっている。 The seat surface rear part airbag 11 is connected to the air pump 40 via the hose 43, and air is sent into the seat surface rear part airbag 11 by the air pump 40, or air is sent from the seat surface rear part airbag 11. By discharging, the shape of the seat surface rear portion airbag 11 is variable.
 たとえば、エアポンプ40により座面後方部エアバック11内に空気が供給されると、座面後方部エアバック11は膨らみ、乗員方向(Z軸方向)に突出する。そして、このように座面後方部エアバック11を乗員方向(Z軸方向)に突出させることで、乗員の下半身とシートクッション10との接触面積が小さくなり、これにより、車両が車線変更やカーブ走行を行った際の遠心力や、車両が加速または減速した際の慣性力により、乗員の身体が前後左右(X軸方向、Y軸方向)に動き易くなり、車両走行中において、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)を増加させることができる。このように、本実施形態に係るシート装置100は、座面後方部エアバック11を乗員方向(Z軸方向)に突出させることで、車両の運動エネルギーを利用した乗員の受動運動における運動量を増大させることができる。 For example, when air is supplied into the seat surface rear portion airbag 11 by the air pump 40, the seat surface rear portion airbag 11 expands and protrudes in the passenger direction (Z-axis direction). And by making the seat surface rear part airbag 11 project in the occupant direction (Z-axis direction) in this way, the contact area between the lower body of the occupant and the seat cushion 10 is reduced, which allows the vehicle to change lanes or curve The occupant's body is easy to move back and forth and left and right (X-axis direction and Y-axis direction) due to the centrifugal force when traveling and the inertial force when the vehicle accelerates or decelerates. It is possible to increase the exercise load (muscle load) necessary for maintaining the balance. As described above, the seat device 100 according to the present embodiment increases the momentum in the passive motion of the occupant using the kinetic energy of the vehicle by causing the seat surface rear portion airbag 11 to protrude in the occupant direction (Z-axis direction). Can be made.
 一方、座面後方部エアバック11が乗員側に突出している場合に、エアポンプ40により座面後方部エアバック11内から空気を排出することで、座面後方部エアバック11の突出量を小さくすることができる。たとえば、座面後方部エアバック11の突出量をゼロにした場合、乗員の下半身とシートクッション10との接触面積は大きくなり、シートクッション10において乗員の下半身の体圧分布が等しくなるように、乗員の下半身をシートクッション10全体でサポートすることができる。そのため、自車両1が走行している際に、乗員の身体が前後左右(X軸方向、Y軸方向)に動き難くなり、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)を減少させることができる。なお、本実施形態においては、後述する制御装置300の制御により、座面後方部エアバック11の突出量を自由に調整することができ、座面後方部エアバック11の突出量に応じて、乗員の受動運動による運動量を調整することができる。 On the other hand, when the seat back portion airbag 11 protrudes toward the occupant side, the air pump 40 discharges air from the seat back portion airbag 11 to reduce the protrusion amount of the seat back portion airbag 11. can do. For example, when the protrusion amount of the seat back portion airbag 11 is set to zero, the contact area between the lower body of the occupant and the seat cushion 10 is increased, and the body pressure distribution of the lower body of the occupant is equal in the seat cushion 10. The lower body of the occupant can be supported by the entire seat cushion 10. Therefore, when the host vehicle 1 is traveling, the occupant's body is difficult to move back and forth, left and right (X-axis direction, Y-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture is increased. Can be reduced. In the present embodiment, the amount of protrusion of the seat surface rear portion airbag 11 can be freely adjusted by the control of the control device 300 described later, and according to the amount of protrusion of the seat surface rear portion airbag 11, The amount of exercise by passive movement of the occupant can be adjusted.
 加えて、シートクッション10には、図2に示すように、一対の座面前方部エアバック12,13が設けられている。具体的には、一対の座面前方部エアバック12,13は、シートクッション10の中央よりも前方(X軸正方向側)であって、乗員がシートクッション10に着座した際に乗員の左右大腿部にそれぞれ対応する位置に設けられている。 In addition, as shown in FIG. 2, the seat cushion 10 is provided with a pair of seat surface front portion airbags 12 and 13. Specifically, the pair of seat surface front portion airbags 12 and 13 are in front of the center of the seat cushion 10 (X-axis positive direction side), and when the occupant is seated on the seat cushion 10, It is provided at a position corresponding to each thigh.
 座面前方部エアバック12,13は、ホース44,45を介してエアポンプ40と接続している。そして、エアポンプ40により座面前方部エアバック12,13内に空気を送り込み、あるいは座面前方部エアバック12,13内から空気を排出することで、座面前方部エアバック12,13の形状が可変となっている。 The seat front portion airbags 12 and 13 are connected to the air pump 40 via hoses 44 and 45. Then, the air pump 40 feeds air into the seat front part airbags 12 and 13, or discharges air from the seat front part airbags 12 and 13, thereby forming the shape of the seat front part airbags 12 and 13. Is variable.
 ここで、図4は、第1実施形態に係るシート装置100の側面を示す(Y軸方向から見たシート装置100を示す)概要図であり、図4(A)は、座面前方部エアバック12,13に十分な量の空気が供給されている場面のシート装置100を示しており、図4(B)は、座面前方部エアバック12,13内から十分な量の空気を排出した場面のシート装置100を示している。 Here, FIG. 4 is a schematic view showing the side surface of the seat device 100 according to the first embodiment (showing the seat device 100 viewed from the Y-axis direction), and FIG. FIG. 4B shows the seat apparatus 100 in a scene where a sufficient amount of air is supplied to the backs 12 and 13, and FIG. 4B discharges a sufficient amount of air from the seat front part airbags 12 and 13. The sheet apparatus 100 of the scene which carried out is shown.
 たとえば、図4(A)に示すように、座面前方部エアバック12,13内に十分な量の空気が供給されている場合、座面前方部エアバック12,13は膨らみ、乗員方向(略Z軸方向)に突出する。このように、座面前方部エアバック12,13内に十分な量の空気が供給されている場合には、座面前方部エアバック12,13が乗員方向(略Z軸方向)に突出することで、シートクッション10の座面を略水平とすることができる。これにより、車両走行時における乗員の運動負荷(筋肉負荷)が軽減し、乗員が運転を適切に行うことができる。 For example, as shown in FIG. 4 (A), when a sufficient amount of air is supplied into the seat front part airbags 12 and 13, the seat front part airbags 12 and 13 are inflated and occupant direction ( It projects in the direction of the substantially Z axis). Thus, when a sufficient amount of air is supplied into the seat front part airbags 12 and 13, the seat front part airbags 12 and 13 protrude in the occupant direction (substantially Z-axis direction). Thereby, the seat surface of the seat cushion 10 can be made substantially horizontal. Thereby, the exercise | movement load (muscle load) of a passenger | crew at the time of vehicle travel is reduced, and a passenger | crew can perform a driving | operation appropriately.
 これに対して、図4(B)に示すように、座面前方部エアバック12,13内から十分な量の空気を排出させた場合、座面前方部エアバック12,13の乗員方向(略Z軸方向)への突出量はゼロとなる。そのため、図4(B)に示すように、シートクッション10の座面は全体的に前方(X軸方向)に傾くことなる。このように、シートクッション10の座面が前方に傾いている場合、このシートクッション10に着座する乗員の姿勢も前方(X軸方向)に傾くため、たとえば、車両が加速または減速した際の慣性力により、乗員の身体が前後方向(X軸方向)に動き易くなり、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)を増加させることができる。特に、乗員がシートバック20に寄りかからないように、乗員の姿勢を前方に傾けることで、乗員が姿勢を維持するために必要な運動負荷(筋肉負荷)をより増加させることができる。このように、本実施形態に係るシート装置100は、座面前方部エアバック12,13内から空気を排出させて、シートクッション10の座面を前方に傾けることで、車両の運動エネルギーを利用した乗員の受動運動における運動量を増大させることができる。 On the other hand, as shown in FIG. 4 (B), when a sufficient amount of air is discharged from the seat front part airbags 12 and 13, the occupant direction of the seat front part airbags 12 and 13 ( The amount of protrusion in the (substantially Z-axis direction) is zero. Therefore, as shown in FIG. 4B, the seat surface of the seat cushion 10 is inclined forward (X-axis direction) as a whole. Thus, when the seat surface of the seat cushion 10 is tilted forward, the posture of the occupant seated on the seat cushion 10 is also tilted forward (in the X-axis direction). For example, inertia when the vehicle is accelerated or decelerated The force makes it easier for the occupant's body to move in the front-rear direction (X-axis direction), and the exercise load (muscle load) necessary for the occupant to maintain the posture can be increased. In particular, by tilting the posture of the occupant forward so that the occupant does not approach the seat back 20, it is possible to further increase the exercise load (muscle load) necessary for the occupant to maintain the posture. As described above, the seat device 100 according to the present embodiment uses the kinetic energy of the vehicle by discharging air from the seat front part airbags 12 and 13 and tilting the seat cushion 10 forward. The amount of exercise in the passive movement of the occupant can be increased.
 エアポンプ40は、ホース41~45にそれぞれ接続しており、これらホース41~45を介して、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13内に空気を送り込み、あるいは、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13内から空気を排出することができる。なお、エアポンプ40は、各エアバック21,22,11,12,13内の空気量を調整するために専用のエアポンプであってもよいし、あるいは、車内空調装置等と兼用のエアポンプであってもよい。 The air pump 40 is connected to the hoses 41 to 45, respectively, and through these hoses 41 to 45, the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and a pair of seat surface fronts are provided. Air is sent into the part airbags 12 and 13, or the thoracic part airbag 21, the lumbar part airbag 22, the seat rear part airbag 11, and the pair of seat front part airbags 12 and 13. Can be discharged. The air pump 40 may be a dedicated air pump for adjusting the amount of air in each of the airbags 21, 22, 11, 12, and 13, or may be an air pump that is also used as an in-vehicle air conditioner or the like. Also good.
 また、図2に示すように、各ホース41~45には空気弁51~55がそれぞれ設けられており、後述する制御装置300により、空気弁51~55の開閉を制御することで、各エアバック21,22,11,12,13ごとに空気量の調整を行うことができる。 As shown in FIG. 2, air valves 51 to 55 are provided in the respective hoses 41 to 45, respectively. By controlling the opening and closing of the air valves 51 to 55 by a control device 300 described later, the air valves 51 to 55 are controlled. The amount of air can be adjusted for each of the backs 21, 22, 11, 12, and 13.
 図1に戻り、入力装置200は、たとえば、乗員の音声による入力が可能なマイクや、乗員の手操作による入力が可能なディスプレイ画面上に配置されるタッチパネルまたはジョイスティックなどの装置である。乗員は、入力装置200を介して、目的地までの推奨経路を決定するための情報を、入力情報として入力することができる。このような入力情報としては、たとえば、目的地、目的地までの走行距離、目的地までの所要時間、さらに、乗員が所望する受動運動の運動量(たとえば、受動運動の平均運動強度、受動運動の最大運動強度、および受動運動の運動時間)などの情報が含まれる。 Returning to FIG. 1, the input device 200 is, for example, a device such as a microphone that can be input by the occupant's voice, or a touch panel or joystick that is arranged on a display screen that can be input by the occupant's manual operation. The occupant can input information for determining a recommended route to the destination as input information via the input device 200. Such input information includes, for example, the destination, the travel distance to the destination, the required time to the destination, and the amount of passive motion desired by the occupant (for example, the average motion intensity of the passive motion, the passive motion Information such as maximum exercise intensity and passive exercise time).
 たとえば、乗員は入力装置200を介して、目的地までの走行距離を「近い」、「遠い」、「10km以内」などと入力することができ、目的地までの所要時間を「60分以内」などと入力することができる。さらに、乗員は入力装置200を介して、たとえば、乗員が所望する受動運動の運動強度を「強」、「中」、「弱」や「2METs」などと入力することができ、受動運動の最大運動強度を「3METs」などと入力することができる。入力装置200により入力された入力情報は、後述するように、制御装置400に送信され、入力情報に最も適した経路が推奨経路として決定されることとなる。なお、運動強度を示す単位である「METs」とは、単位時間当たりの酸素摂取量に基づくものであり、数値が高いほど、受動運動の運動量は大きくなる。また、入力情報は、上記の情報に限定されず、たとえば、乗員が所望する受動運動の運動量を示す消費カロリーを含む構成としてもよい。さらに、「METs」に代えて、「エクササイズ」という単位の数値を入力してもよい。エクササイズとは、METsを時間積算した運動量を示す単位であり、1時間連続して1METsの運動を行った場合に1エクササイズとなり、2METsの運動を1時間行った場合に2エクササイズ、1METsの運動を2時間行った場合も2エクササイズとなる。ちなみに、厚生労働省が公表した運動指針の目標値は、毎週23エクササイズ以上の運動が必要とされている。 For example, the occupant can input the distance to the destination as “close”, “far”, “within 10 km” or the like via the input device 200, and the required time to the destination is “within 60 minutes”. And so on. Furthermore, the occupant can input the exercise intensity of the passive motion desired by the occupant as “strong”, “medium”, “weak”, “2METs”, etc. via the input device 200. The exercise intensity can be input as “3METs”. As will be described later, the input information input by the input device 200 is transmitted to the control device 400, and the route most suitable for the input information is determined as the recommended route. Note that “METs”, which is a unit indicating exercise intensity, is based on oxygen intake per unit time, and the higher the value, the greater the amount of passive exercise. Moreover, input information is not limited to said information, For example, it is good also as a structure containing the calorie consumption which shows the momentum of the passive exercise which a passenger | crew desires. Furthermore, instead of “METs”, a numerical value in units of “exercise” may be input. “Exercise” is a unit indicating the amount of exercise obtained by integrating METs over time. One exercise is performed when 1 METs is exercised continuously for 1 hour. Two hours of exercise will also result in two exercises. By the way, the target value of the exercise guidelines published by the Ministry of Health, Labor and Welfare requires exercise more than 23 exercises every week.
 地図データベース300は、地図情報を記憶するとともに、各道路の運動量情報を記憶している。ここで、運動量情報とは、自車両1が道路を走行した場合における乗員の受動運動の運動量を示す情報であり、制御装置400により各道路ごとに算出される。なお、各道路における乗員の受動運動による運動量の算出方法については、後述する。 The map database 300 stores map information as well as momentum information of each road. Here, the momentum information is information indicating the momentum of the passive movement of the occupant when the host vehicle 1 travels on a road, and is calculated for each road by the control device 400. In addition, the calculation method of the momentum by the passenger's passive movement on each road will be described later.
 制御装置400は、シート装置100を制御するためのプログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とを備える。なお、動作回路としては、CPU(Central Processing Unit)に代えて又はこれとともに、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などを用いることができる。 The control device 400 includes a ROM (Read Only Memory) in which a program for controlling the seat device 100 is stored, a CPU (Central Processing Unit) that executes the program stored in the ROM, and an accessible storage device. It has a functioning RAM (Random Access Memory). As an operation circuit, instead of or in addition to a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), etc. Can be used.
 制御装置400は、ROMに格納されたプログラムをCPUにより実行することにより、入力装置200から入力情報を取得する入力情報取得機能と、地図データベース300から地図情報および各道路の運動量情報を取得する地図情報取得機能と、目的地までの候補経路を探索する候補経路探索機能と、候補経路の中から自車両1の推奨経路を決定する推奨経路決定機能と、自車両1が道路を走行している際における乗員の受動運動の運動量を算出する運動量算出機能と、各エアバック21,22,11,12,13を制御して乗員の姿勢を変化させる運動制御機能とを実現する。以下に、制御装置400が備える各機能について説明する。 The control device 400 executes a program stored in the ROM by the CPU, thereby obtaining an input information acquisition function for acquiring input information from the input device 200, and a map for acquiring map information and momentum information of each road from the map database 300. An information acquisition function, a candidate route search function for searching for a candidate route to the destination, a recommended route determination function for determining a recommended route of the host vehicle 1 from the candidate routes, and the host vehicle 1 traveling on a road The momentum calculating function for calculating the momentum of the passive movement of the occupant at the time and the movement control function for controlling the airbags 21, 22, 11, 12, and 13 to change the posture of the occupant are realized. Below, each function with which the control apparatus 400 is provided is demonstrated.
 制御装置400の入力情報取得機能は、乗員により入力装置200を介して入力された入力情報を取得する。入力情報取得機能により取得される入力情報としては、目的地、目的地までの走行距離、目的地までの所要時間、乗員が所望する受動運動の運動量(たとえば、平均運動強度、最大運動強度、および運動時間)などの情報が挙げられる。また、入力情報取得機能は、目的地までの所要時間を受動運動の運動時間として取得する構成としてもよい。 The input information acquisition function of the control device 400 acquires input information input via the input device 200 by a passenger. The input information acquired by the input information acquisition function includes the destination, the travel distance to the destination, the required time to the destination, the amount of passive movement desired by the occupant (for example, average exercise intensity, maximum exercise intensity, and Information such as exercise time). Further, the input information acquisition function may be configured to acquire the required time to the destination as the exercise time of the passive exercise.
 制御装置400の地図情報取得機能は、地図データベース300から地図情報、および、道路ごとの運動量情報を取得する。この運動量情報は、後述する運動量算出機能により算出された各道路における受動運動の運動量を示す情報である。 The map information acquisition function of the control device 400 acquires map information and momentum information for each road from the map database 300. This momentum information is information indicating the momentum of passive exercise on each road calculated by the momentum calculation function described later.
 候補経路探索機能は、入力情報取得機能により取得された入力情報と、地図情報取得機能により取得された地図情報とに基づいて、目的地に至る複数の経路のそれぞれを候補経路として探索する。具体的には、候補経路探索機能は、乗員により入力された入力情報のうち、目的地、目的地までの走行距離、目的地までの所要時間などを満たす複数の経路を候補経路として探索する。たとえば、乗員により目的地までの所要時間が「60分以内」と入力され、目的地までの走行距離が「10km以内」と入力された場合、候補経路探索機能は、乗員に入力された目的地に到達するための経路のうち、目的地まで「60分以内」に到着可能であり、かつ、目的地までの走行距離が「10km以内」である複数の経路を候補経路として探索する。 The candidate route search function searches each of a plurality of routes reaching the destination as candidate routes based on the input information acquired by the input information acquisition function and the map information acquired by the map information acquisition function. Specifically, the candidate route search function searches a plurality of routes satisfying the destination, the travel distance to the destination, the required time to the destination, etc. as candidate routes from the input information input by the occupant. For example, when the required time to reach the destination is entered by the occupant as “within 60 minutes” and the travel distance to the destination is entered as “within 10 km”, the candidate route search function displays the destination entered by the occupant. A plurality of routes that can reach the destination within “60 minutes” and have a travel distance of “within 10 km” are searched for as candidate routes.
 制御装置400の推奨経路決定機能は、候補経路探索機能により探索された複数の候補経路の中から、乗員が入力した入力情報に最も適した経路を、推奨経路として決定する。具体的には、推奨経路決定機能は、地図情報取得機能により取得した各道路の運動量情報に基づいて、各候補経路を走行した場合における乗員の受動運動による運動量(たとえば、各候補経路を走行した場合の受動運動の平均運動強度、最大運動強度、および運動時間)を予測する。そして、推奨経路決定機能は、たとえば、予測した各候補経路における受動運動の平均運動強度、最大運動強度、および運動時間と、入力情報取得機能により取得した、乗員が所望する受動運動の平均運動強度、最大運動強度、および運動時間とを照合して、複数の候補経路の中から、乗員が入力した入力情報に最も適した候補経路を、推奨経路として決定する。 The recommended route determination function of the control device 400 determines, as a recommended route, a route most suitable for the input information input by the occupant from among a plurality of candidate routes searched by the candidate route search function. Specifically, the recommended route determination function is based on the momentum information of each road acquired by the map information acquisition function, and the amount of exercise due to the passive motion of the occupant when traveling on each candidate route (for example, traveling on each candidate route) Predicted average exercise intensity, maximum exercise intensity, and exercise time). The recommended route determination function is, for example, the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise in each predicted candidate route, and the average exercise intensity of the passive exercise desired by the occupant acquired by the input information acquisition function. The maximum exercise intensity and the exercise time are collated, and a candidate route most suitable for the input information input by the occupant is determined as a recommended route from among a plurality of candidate routes.
 ここで、図5は、推奨経路の決定方法を説明するための図であり、図5に示す例では、受動運動の平均運動強度が比較的高い経路Aと、受動運動の平均運動強度が比較的低い経路Bとが候補経路として探索された場面を例示している。たとえば、図5に示す例において、乗員が入力装置200を介して受動運動の平均運動強度を「高」と入力した場合には、推奨経路決定機能は、受動運動の平均運動強度が高い候補経路Aと、受動運動の運動強度の低い候補経路Bのうち、受動運動の運動強度が高い候補経路Aを、推奨経路として決定することができる。また、図5に示す場面例において、たとえば、候補経路Aにおける受動運動の最大運動強度が、乗員が入力した受動運動の最大運動強度を超える場合には、推奨経路決定機能は、候補経路Bを推奨経路として決定することができる。 Here, FIG. 5 is a diagram for explaining a method for determining a recommended route. In the example shown in FIG. 5, the average exercise intensity of the passive exercise is compared with the route A having a relatively high average exercise intensity of the passive exercise. An example is shown in which a low-estimated route B is searched as a candidate route. For example, in the example illustrated in FIG. 5, when the occupant inputs the average exercise intensity of the passive exercise as “high” via the input device 200, the recommended route determination function is a candidate route with a high average exercise intensity of the passive exercise. Among A and candidate path B with low passive exercise intensity, candidate path A with high passive exercise intensity can be determined as a recommended path. In the example of the scene shown in FIG. 5, for example, when the maximum exercise intensity of the passive movement in the candidate path A exceeds the maximum exercise intensity of the passive movement input by the occupant, the recommended path determination function selects the candidate path B. It can be determined as a recommended route.
 さらに、推奨経路決定機能は、目的地までの燃費を考慮して、推奨経路を決定する。たとえば、乗員が入力装置200を介して、乗員の受動運動による平均運動強度を「2METs」、最大運動強度を「3METs」と入力した場合、推奨経路決定機能は、これらの条件を満たす複数の候補経路の中から、最も燃費が低く抑えられる候補経路を、推奨経路として決定することができる。そして、推奨経路決定機能により決定された推奨経路は、提示装置500に送信され、乗員に提示されることとなる。 Furthermore, the recommended route determination function determines the recommended route in consideration of the fuel consumption to the destination. For example, when the occupant inputs the average exercise intensity due to the passive movement of the occupant as “2 METs” and the maximum exercise intensity as “3 METs” via the input device 200, the recommended route determination function has a plurality of candidates that satisfy these conditions. Among the routes, a candidate route with the lowest fuel consumption can be determined as a recommended route. Then, the recommended route determined by the recommended route determination function is transmitted to the presentation device 500 and presented to the occupant.
 制御装置400の再探索判定機能は、推奨経路の再探索を行うか否かを判定する。たとえば、再探索判定機能は、自車両1が推奨経路を走行している際に、乗員により新たに入力情報が入力された場合には、新たに入力された入力情報に適した推奨経路を決定するために、推奨経路の再探索を行うことを決定する。また、再探索判定機能は、図示しないカメラやシート装置100に埋設された圧力センサの出力に基づいて検出した乗員の姿勢から、現在の推奨経路では、乗員が所望する受動運動の運動量が得られていないと判断した場合には、乗員が所望する受動運動の運動量が得られるように、推奨経路の再探索を行ことを決定することができる。さらに、再探索判定機能は、現在の時刻から、現在の推奨経路を走行した場合に、乗員が入力した所要時間で目的地まで到着できないと判断した場合には、乗員が入力した所要時間内で目的地に到着できるように、推奨経路の再探索を行うことを決定することができる。また、再探索判定機能は、たとえば、乗員により入力装置200を介して推奨経路の再探索の指示があった場合も、推奨経路の再探索を行うことを決定することができる。 The re-search determination function of the control device 400 determines whether or not to re-search the recommended route. For example, the re-search determination function determines a recommended route suitable for newly input information when the vehicle 1 is traveling on the recommended route and new input information is input by the occupant. In order to do so, it is decided to re-search the recommended route. The re-search determination function obtains the amount of passive motion desired by the occupant in the current recommended route from the posture of the occupant detected based on the output of a pressure sensor embedded in a camera (not shown) or the seat device 100. If it is determined that it is not, it can be determined that the recommended route is re-searched so that the amount of passive motion desired by the passenger can be obtained. Furthermore, if the re-search determination function determines that it cannot reach the destination in the required time entered by the occupant when traveling on the current recommended route from the current time, It is possible to decide to re-search the recommended route so that the destination can be reached. In addition, the re-search determination function can determine that the recommended route is re-searched even when the occupant instructs the recommended route to be searched again via the input device 200.
 制御装置400の運動制御機能は、胸椎部エアバック21、腰椎部エアバック22、および、座面後方部エアバック11の駆動を制御することで、乗員が受動運動を適切に行えるように、乗員の姿勢を変化させる。たとえば、運動制御機能は、車両が高速道路を走行している場合など、運転者の運転負荷が低い場合には、運転者が着座するシート装置100において、空気弁51,52,53を開き、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11内に空気を供給するように、エアポンプ40を動作させることで、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11の突出量を大きくする。これにより、運転者の運転負荷が低い場合には、運転者が姿勢を維持するために必要な運動負荷(筋肉負荷)が増加するように、運転者の姿勢を変化させることができる。同様に、運転者の運転負荷が低い場合には、運動制御機能は、空気弁54,55を開き、一対の座面前方部エアバック12,13内から空気を排出させるように、エアポンプ40を動作させことで、シートクッション10を前方に傾けて、運転者が姿勢を維持するために必要な運動負荷(筋肉負荷)が増加するように、運転者の姿勢を変化させることができる。 The motion control function of the control device 400 controls the driving of the thoracic portion airbag 21, the lumbar portion airbag 22, and the seat back portion airbag 11, so that the occupant can appropriately perform passive motion. Change the posture. For example, the motion control function opens the air valves 51, 52, and 53 in the seat device 100 on which the driver is seated when the driver's driving load is low, such as when the vehicle is traveling on a highway. By operating the air pump 40 so as to supply air into the thoracic vertebra airbag 21, lumbar vertebra airbag 22, and rear seat airbag 11, the thoracic airbag 21, lumbar airbag 22, seat The protruding amount of the rear airbag 11 is increased. As a result, when the driver's driving load is low, the driver's posture can be changed so that the exercise load (muscle load) necessary for the driver to maintain his / her posture increases. Similarly, when the driver's driving load is low, the motion control function opens the air valves 54 and 55 and causes the air pump 40 to discharge air from the pair of seat surface front airbags 12 and 13. By operating, the posture of the driver can be changed so that the seat cushion 10 is tilted forward and the exercise load (muscle load) necessary for the driver to maintain the posture increases.
 一方、運動制御機能は、たとえば、車両が細街路を走行している場合など、運転者の運転負荷が高い場合には、運転者が着座するシート装置100において、空気弁51,52,53を開き、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11内から空気を排出するように、エアポンプ40を動作させることで、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11の突出量を小さくする。これにより、シートクッション10全体、シートバック20全体で運転者の身体をサポートし、運転者が姿勢を維持するために必要な運動負荷(筋肉負荷)が軽減するように、運転者の姿勢を変化させることができる。また同様に、運動制御機能は、運転者の運転負荷が高い場合には、空気弁54,55を開き、座面前方部エアバック12,13内に十分な空気を供給するように、エアポンプ40を動作させることで、シートクッション10の座面の傾きを略水平(あるいは略水平から後方に沈み込むような傾き)にし、運転者が姿勢を維持するために必要な運動負荷(筋肉負荷)を軽減するように、運転者の姿勢を変化させることができる。なお、運転制御機能は、地図情報取得機能により取得した地図情報に基づいて、自車両1が高速道路や細街路を走行しているか否かを判断することができる。 On the other hand, when the driver's driving load is high, for example, when the vehicle is traveling on a narrow street, the motion control function enables the air valves 51, 52, 53 in the seat device 100 on which the driver is seated. The thoracic vertebrae airbag 21, the lumbar vertebrae airbag 22, and the lumbar vertebrae airbag 22, The protrusion amount of the seat surface rear portion airbag 11 is reduced. As a result, the driver's body is supported by the entire seat cushion 10 and the entire seat back 20, and the posture of the driver is changed so that the exercise load (muscle load) necessary for the driver to maintain the posture is reduced. Can be made. Similarly, when the driving load on the driver is high, the motion control function opens the air valves 54 and 55 and supplies sufficient air into the seat front portion airbags 12 and 13. By moving the seat cushion 10, the seat cushion 10 has a seating surface tilted substantially horizontally (or tilted so that the seat cushion sinks backward from substantially horizontal), and the exercise load (muscle load) necessary for the driver to maintain his / her posture is maintained. The driver's posture can be changed to reduce. The driving control function can determine whether or not the vehicle 1 is traveling on a highway or a narrow street based on the map information acquired by the map information acquisition function.
 制御装置400の運動量算出機能は、自車両1が道路を走行した場合における受動運動の運動量を道路ごとに算出する。具体的には、運動量算出機能は、自車両1が走行した道路でのコーナー数、ブレーキ回数、坂道であるか否か、道路の幅などに基づいて、乗員の受動運動による運動量を道路ごとに算出する。たとえば、運動量算出機能は、自車両1が走行している道路のコーナー数が多いほど、ブレーキ回数が多いほど、坂道である場合、道路の幅が狭いほど、車両走行時の遠心力や慣性力などが大きくなり、乗員にかかる負荷(加速度)が高くなるため、このような道路における乗員の受動運動による運動量を高く算出する。また、走行速度によって乗員にかかる負荷(加速度)が変化するため、道路の制限車速値に加えて、走行履歴からの車速や一般的な車両の走行速度平均値などを用いて運動量の算出をしてもよい。 The momentum calculation function of the control device 400 calculates the momentum of passive movement for each road when the host vehicle 1 travels on the road. Specifically, the momentum calculation function calculates the amount of momentum generated by the passive movement of the occupant for each road based on the number of corners on the road on which the host vehicle 1 has traveled, the number of brakes, whether the road is on a slope, the width of the road, and the like. calculate. For example, the momentum calculation function is such that the greater the number of corners of the road on which the host vehicle 1 is traveling, the greater the number of brakes, the more the slope is, the narrower the width of the road, Etc. and the load (acceleration) applied to the occupant increases, so the momentum due to the passive motion of the occupant on such a road is calculated high. In addition, since the load (acceleration) applied to the occupant changes depending on the travel speed, the amount of exercise is calculated using the vehicle speed from the travel history and the average travel speed of a general vehicle in addition to the road speed limit value. May be.
 さらに、運動量算出機能は、運動制御機能による各エアバック21,22,11,12,13の制御を考慮して、乗員の受動運動における運動量を算出する。たとえば、道路を走行している際に、運動制御機能により、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11の乗員側への突出量が小さくなり、乗員の受動運動による運動量が減少した場合には、その分、乗員の受動運動による運動量を低く算出する。そして、運動量算出機能は、算出した受動運動の運動量の情報を、走行した道路に関連付けて、運動量情報として地図データベース300に記憶する。 Further, the momentum calculation function calculates the momentum in the passive movement of the occupant in consideration of the control of the airbags 21, 22, 11, 12, and 13 by the movement control function. For example, when traveling on a road, the movement control function reduces the amount of protrusion of the thoracic vertebra airbag 21, lumbar vertebra airbag 22, and rear seat airbag 11 toward the occupant side, and passive movement of the occupant When the amount of exercise due to decreases, the amount of exercise due to the passive movement of the occupant is calculated accordingly. Then, the momentum calculation function stores information on the calculated momentum of the passive exercise in the map database 300 as the amount of exercise information in association with the road that has traveled.
 提示装置500は、制御装置400により決定された推奨経路を、乗員に提示する。提示装置500は、特に限定されず、たとえば、地図情報とともに推奨経路を表示するディスプレイや、音声により推奨経路を案内するスピーカーなどの装置が挙げられる。また、提示装置500を、タッチパネル式の入力装置200を兼ね備えたディスプレイとすることもできる。 The presentation device 500 presents the recommended route determined by the control device 400 to the occupant. The presentation device 500 is not particularly limited, and examples thereof include a display that displays a recommended route together with map information and a speaker that guides the recommended route by voice. In addition, the presentation device 500 may be a display having the touch panel type input device 200.
 次に、本実施形態に係るナビゲーション処理について説明する。図6は、本実施形態に係るナビゲーション処理を示すフローチャートである。 Next, the navigation process according to this embodiment will be described. FIG. 6 is a flowchart showing the navigation processing according to the present embodiment.
 まず、ステップS101では、制御装置400の入力情報取得機能により、入力装置200を介して乗員により入力された入力情報の取得が行われる。入力情報が取得された場合には、ステップS102に進み、入力情報が入手されない場合には、ステップS101を繰り返す。 First, in step S101, input information input by a passenger via the input device 200 is acquired by the input information acquisition function of the control device 400. If the input information is acquired, the process proceeds to step S102. If the input information is not obtained, step S101 is repeated.
 また、ステップS102では、制御装置400の地図情報取得機能により、地図データベース300から、地図情報および各道路の運動量情報の取得が行われる。 In step S102, the map information acquisition function of the control device 400 acquires map information and momentum information of each road from the map database 300.
 ステップS103では、制御装置400の候補経路探索機能により、ステップS101で取得された入力情報と、ステップS102で取得された地図情報とに基づいて、目的地までの候補経路の探索が行われる。たとえば、候補経路探索機能は、入力情報に含まれる目的地までの走行距離および所要時間を満たす複数の経路を候補経路として探索する。 In step S103, the candidate route search function of the control device 400 searches for the candidate route to the destination based on the input information acquired in step S101 and the map information acquired in step S102. For example, the candidate route search function searches a plurality of routes that satisfy the travel distance to the destination and the required time included in the input information as candidate routes.
 ステップS104では、制御装置400の推奨経路決定機能により、ステップS101で取得された入力情報と、ステップS102で取得された各道路の運動量情報とに基づいて、推奨経路の決定が行われる。具体的には、推奨経路決定機能は、まず、ステップS102で取得された各道路の運動量情報に基づいて、ステップS103で探索された各候補経路を走行した場合における乗員の受動運動による運動量を予測する。そして、推奨経路決定機能は、入力情報に含まれる、乗員が所望する受動運動の運動量(たとえば、受動運動の平均運動強度、最大運動強度、および運動時間)と、各候補経路において予測される乗員の受動運動の運動量(たとえば、受動運動の平均運動強度、最大運動強度、および運動時間)とを照合することで、入力情報に最も適した候補経路を推奨経路として決定する。 In step S104, the recommended route determination function of the control device 400 determines the recommended route based on the input information acquired in step S101 and the momentum information of each road acquired in step S102. Specifically, the recommended route determination function first predicts the momentum due to the passive motion of the occupant when traveling on each candidate route searched in step S103, based on the momentum information of each road acquired in step S102. To do. The recommended route determination function includes the amount of passive exercise desired by the occupant (for example, average exercise intensity, maximum exercise intensity, and exercise time) included in the input information, and the occupant predicted in each candidate route. The candidate path most suitable for the input information is determined as a recommended path by collating with the amount of exercise of the passive exercise (for example, the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise).
 ステップS105では、提示装置400により、ステップS104で決定された推奨経路の乗員への提示が行われる。たとえば、提示装置400がディスプレイである場合、ディスプレイの画面に、地図情報とともに推奨経路を表示することで、推奨経路を乗員に提示することができる。 In step S105, the presentation device 400 presents the recommended route determined in step S104 to the passenger. For example, when the presentation device 400 is a display, the recommended route can be presented to the occupant by displaying the recommended route together with the map information on the display screen.
 ステップS106では、制御装置400の再探索判定機能により、推奨経路の再探索を行うか否かの判定が行われる。たとえば、再探索判定機能は、新たに入力情報が入力された場合や、乗員が入力情報に適した受動運動を得られていないと判断した場合、現在の時間から、乗員が入力した所要時間内に目的地まで到着できないと判断した場合などに、推奨経路の再探索を行うこと判定することができる。推奨経路の再探索を行うと判定された場合は、ステップS102に戻り、新たに推奨経路の探索が行われることとなる。一方、推奨経路の再探索を行なわないと判定された場合は、ステップS107に進む。 In step S106, the re-search determination function of the control device 400 determines whether or not to re-search the recommended route. For example, the re-search determination function is used when the input information is newly input, or when the occupant determines that the passive motion suitable for the input information has not been obtained. When it is determined that the destination cannot be reached, it can be determined that the recommended route is re-searched. If it is determined that the recommended route is to be searched again, the process returns to step S102 and a new recommended route is searched. On the other hand, if it is determined not to re-search the recommended route, the process proceeds to step S107.
 ステップS107では、再探索判定機能により、自車両1が目的地に到着したか否かの判断が行われる。自車両1が目的地に到着したと判断された場合には、このナビゲーション処理を終了し、一方、自車両1が目的地に到着していないと判断された場合は、ステップS106に戻り、再度、推奨経路の再探索を行うか否かの判断が繰り返される。 In step S107, the re-search determination function determines whether or not the host vehicle 1 has arrived at the destination. When it is determined that the host vehicle 1 has arrived at the destination, the navigation process is terminated. On the other hand, when it is determined that the host vehicle 1 has not arrived at the destination, the process returns to step S106 and again. The determination as to whether or not to re-search for the recommended route is repeated.
 なお、制御装置400は、上述したナビゲーション処理を行っている間も、運動制御機能による各エアバック21,22,11,12,13の制御、および、運動量算出機能による各道路における乗員の受動運動による運動量の算出を繰り返し行っている。これにより、本実施形態では、車両走行中に、乗員に受動運動を適切に行わせることができるとともに、上述したナビゲーション処理において推奨経路を決定するために用いられる各道路の運動量情報を、地図データベース300に蓄積することができる。 The control device 400 controls the airbags 21, 22, 11, 12, and 13 by the motion control function and the passive motion of the passengers on each road by the motion amount calculation function even during the navigation processing described above. The momentum is calculated repeatedly. Thus, in the present embodiment, while the vehicle can travel, the occupant can appropriately perform passive exercise, and the amount of exercise information of each road used for determining the recommended route in the above-described navigation process is obtained from the map database. 300 can be accumulated.
 以上のように、本実施形態では、目的地までの経路を候補経路として探索し、自車両1が候補経路を走行した場合における各エアバック21,22,11,12,13による乗員の受動運動の運動量を各候補経路ごとに予測し、予測した各候補経路における受動運動の運動量に基づいて、乗員が必要とする受動運動を行うために最も適した経路を、推奨経路として決定する。これにより、本実施形態では、自車両1が推奨経路を走行した場合に、乗員は、乗員が必要とする運動量を得ることができ、乗員の健康の維持・向上を適切に図ることができる。 As described above, in the present embodiment, the route to the destination is searched as a candidate route, and the passive motion of the occupant by the airbags 21, 22, 11, 12, and 13 when the vehicle 1 travels on the candidate route. Is determined for each candidate route, and the most suitable route for performing the passive motion required by the occupant is determined as a recommended route based on the predicted momentum of the passive motion in each candidate route. Thereby, in this embodiment, when the own vehicle 1 travels on the recommended route, the occupant can obtain the amount of exercise required by the occupant and can appropriately maintain and improve the health of the occupant.
 また、本実施形態では、受動運度の運動量として、各候補経路における受動運動の平均運動強度、最大運動強度、および運動時間を予測し、乗員が所望する受動運動の平均運動強度、最大運動強度、および運動時間と、各候補経路において予測される受動運動の平均運動強度、最大運動強度、および運動時間とを照合することで、複数の候補経路の中から推奨経路を決定する。これにより、本実施形態では、乗員が所望する受動運動が行える推奨経路をより高い精度で決定することができる。さらに、本実施形態では、目的地までの燃費を考慮して推奨経路を決定することで、目的地に到達するまでの駆動エネルギー消費量を抑制することができる。 In the present embodiment, the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise in each candidate route are predicted as the amount of exercise of the passive mobility, and the average exercise intensity and the maximum exercise intensity of the passive exercise desired by the occupant are predicted. The recommended route is determined from the plurality of candidate routes by comparing the exercise time and the average exercise intensity, the maximum exercise intensity, and the exercise time of the passive exercise predicted in each candidate route. Thereby, in this embodiment, the recommended path | route which can perform the passive motion which a passenger | crew desires can be determined with a higher precision. Furthermore, in this embodiment, driving energy consumption until reaching the destination can be suppressed by determining the recommended route in consideration of the fuel consumption to the destination.
 さらに、本実施形態では、乗員により入力された入力情報に最も適した推奨経路を、提示装置300を介して乗員に提示し、乗員に推奨経路を走行させることで、乗員に、乗員が所望する運動量の受動運動を適切に行わせることができる。 Further, in the present embodiment, the recommended route most suitable for the input information input by the occupant is presented to the occupant via the presentation device 300, and the occupant desires the occupant to travel along the recommended route. It is possible to appropriately perform the passive exercise of the momentum.
 ≪第2実施形態≫
 続いて、本発明の第2実施形態について説明する。第2実施形態においては、シート装置100aが、以下に説明する点において第1実施形態に係るシート装置100と異なること以外は、第1実施形態と同様の構成を有し、第1実施形態と同様に動作する。
<< Second Embodiment >>
Subsequently, a second embodiment of the present invention will be described. The second embodiment has the same configuration as the first embodiment except that the sheet device 100a is different from the sheet device 100 according to the first embodiment in the points described below. It operates in the same way.
 図7は、第2実施形態に係るシート装置100aの構成図である。第2実施形態に係るシート装置100aは、第1実施形態に係るシート装置100の構成に加えて、乗員の姿勢が一定量以上変化しないように、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82(図示省略)、および、エルボーサポート部83,84(図示省略)、および、ネックサポート部31を備える。 FIG. 7 is a configuration diagram of the sheet apparatus 100a according to the second embodiment. In addition to the configuration of the seat device 100 according to the first embodiment, the seat device 100a according to the second embodiment includes the lumbar support portions 23 and 24 and the side support portions 25 and 26 so that the posture of the occupant does not change by a certain amount or more. , Knee support portions 61 and 62, a heel support portion 71, arm support portions 81 and 82 (not shown), elbow support portions 83 and 84 (not shown), and a neck support portion 31.
 ランバーサポート部23,24は、図7に示すように、シート装置100aに着座する乗員の腰部近傍に対応する、胸椎部エアバック21および腰椎部エアバック22の左右側部の領域にそれぞれ設けられている。ランバーサポート部23,24は、図示しないアクチュエータが連結されており、このアクチュエータを駆動することにより、ランバーサポート部23,24が前方内側(乗員側)へと屈曲することで、乗員の腰部の横方向への動きを抑制し、乗員の姿勢が一定量以上変化することを防止する。なお、個々のランバーサポート部23,24は独立して動作することができる。また、ランバーサポート部23,24を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、ランバーサポート部23,24は可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 As shown in FIG. 7, the lumbar support portions 23 and 24 are respectively provided in regions on the left and right sides of the thoracic airbag 21 and the lumbar airbag 22 corresponding to the vicinity of the lumbar region of the occupant seated on the seat device 100a. ing. The lumbar support portions 23 and 24 are connected to an actuator (not shown), and by driving the actuator, the lumbar support portions 23 and 24 bend toward the front inner side (occupant side). The movement in the direction is suppressed, and the posture of the occupant is prevented from changing more than a certain amount. In addition, each lumbar support part 23 and 24 can operate | move independently. Moreover, the actuator which operates the lumbar support parts 23 and 24 employs a reversible actuator that is reversibly driven such as an electric motor. As a result, the lumbar support parts 23 and 24 are reversibly operated to the passenger side. It is possible to return to the normal state from the protruding state.
 サイドサポート部25,26は、図7に示すように、胸椎部エアバック21、腰椎部エアバック22、およびランバーサポート部23,24よりも外側の領域にそれぞれ設けられている。サイドサポート部25,26は、図示しないアクチュエータが連結されており、このアクチュエータを駆動することにより、サイドサポート部25,26が前方内側(乗員側)に屈曲し、乗員の上体の横方向への動きを抑制して、乗員の姿勢が一定量以上変化することを防止することができる。なお、個々のサイドサポート部25,26は独立して動作することができる。また、サイドサポート部25,26を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、サイドサポート部25,26は可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 As shown in FIG. 7, the side support portions 25 and 26 are provided in regions outside the thoracic vertebra portion airbag 21, the lumbar portion airbag 22, and the lumbar support portions 23 and 24, respectively. Actuators (not shown) are connected to the side support portions 25 and 26. By driving the actuators, the side support portions 25 and 26 bend forward inward (occupant side) and the occupant's upper body moves in the lateral direction. It is possible to prevent the occupant's posture from changing more than a certain amount. In addition, each side support part 25 and 26 can operate | move independently. Moreover, the actuator which operates the side support parts 25 and 26 employ | adopts the reversible actuator which drives reversibly, such as an electric motor, Thereby, the side support parts 25 and 26 project to the passenger | crew side as a reversible operation | movement. It is possible to return from the normal state to the normal state.
 ニーサポート部61,62は、シート装置100aに着座する乗員の膝部と対応する高さにおいて、互いに対向するような関係でドアおよびセンターコンソールのそれぞれに設けられている。個々のニーサポート部61,62は、乗員側に突出可能に構成されているとともに、図示しないアクチュエータが連結されており、このアクチュエータを駆動することにより、乗員側へ向けて突出動作する。このニーサポート部61,62は、通常状態(初期状態)において、ドアのインナーパネルまたはセンターコンソールの面形状の一部を構成しており、乗員側へと動作することにより、乗員側へと突出する。これにより、ニーサポート部61,62の端面が乗員の膝部と当接するため、乗員の脚部の横方向への動きを抑制し、乗員の姿勢が一定量以上変化することを防止することができ、膝部近傍のサポート性能の向上を図ることができる。なお、個々のニーサポート部61,62は独立して動作することができる。また、ニーサポート部61,62を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、ニーサポート部61,62は可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 The knee support portions 61 and 62 are provided in each of the door and the center console so as to face each other at a height corresponding to the knee portion of the occupant seated on the seat device 100a. Each knee support portion 61, 62 is configured to be able to protrude toward the occupant side, and is connected to an actuator (not shown). By driving this actuator, the knee support portion 61, 62 protrudes toward the occupant side. The knee support portions 61 and 62 constitute part of the surface shape of the inner panel of the door or the center console in the normal state (initial state), and project toward the occupant side by operating toward the occupant side. To do. As a result, since the end surfaces of the knee support portions 61 and 62 abut against the occupant's knee, the lateral movement of the occupant's legs can be suppressed, and the posture of the occupant can be prevented from changing more than a certain amount. The support performance in the vicinity of the knee can be improved. The individual knee support units 61 and 62 can operate independently. Moreover, the actuator which operates knee support parts 61 and 62 employ | adopts the reversible actuator which drives reversibly, such as an electric motor, Thereby, knee support parts 61 and 62 are set to a passenger | crew side as a reversible operation | movement. It is possible to return to the normal state from the protruding state.
 ヒールサポート部71は、シート装置100aに着座する乗員の足元周辺のフロアに設けられている。ヒールサポート部71は、通常状態(初期状態)において、乗員の足元周辺のフロアの面形状の一部を構成しているが、図示しないアクチュエータにより乗員側へと動作することにより、ヒールサポート部71の前端部(X軸方向側の端部)をフロアから乗員側に起き上がり、乗員の姿勢が一定量以上変化することを防止するストッパーとして機能する。すなわち、乗員は、突出したヒールサポート部71を踏み台にすることで、乗員の姿勢が一定量以上変化してしまうことを防止することができる。なお、このヒールサポート部71を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、ヒールサポート部71は可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 The heel support portion 71 is provided on the floor around the feet of the passenger sitting on the seat device 100a. The heel support portion 71 constitutes a part of the surface shape of the floor around the feet of the occupant in the normal state (initial state). However, the heel support portion 71 is moved toward the occupant side by an actuator (not shown). The front end portion (the end portion on the X-axis direction) of the vehicle rises from the floor to the occupant side, and functions as a stopper that prevents the occupant's posture from changing by a certain amount or more. In other words, the occupant can prevent the posture of the occupant from changing by a certain amount or more by using the protruding heel support portion 71 as a step. In addition, the actuator which operates this heel support part 71 employ | adopts the reversible actuator which drives reversibly, such as an electric motor, Thereby, the heel support part 71 protruded to the passenger | crew side as a reversible operation | movement. It is possible to return from the state to the normal state.
 アームサポート部81,82は、シート装置100aに着座する乗員の腕部と対応する高さにおいて、互いに対向するような関係でドアおよびセンターコンソールのそれぞれに設けられている。また、エルボーサポート部83,84は、シート装置100aに着座する乗員の肘部と対応する高さにおいて、互いに対向するような関係でドアおよびセンターコンソールのそれぞれに設けられている。また、アームサポート部81,82およびエルボーサポート部83,84には図示しないアクチュエータがそれぞれ連結されており、このアクチュエータを駆動することにより、アームサポート部81,82およびエルボーサポート部83,84が、乗員の上体の横方向への動きを抑制し、乗員の姿勢が一定量以上変化することを防止する。なお、アームサポート部81,82およびエルボーサポート部83,84はそれぞれ独立して動作することができる。また、アームサポート部81,82およびエルボーサポート部83,84を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、アームサポート部81,82およびエルボーサポート部83,84は可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 The arm support portions 81 and 82 are provided in each of the door and the center console so as to face each other at a height corresponding to the arm portion of the occupant seated on the seat device 100a. In addition, the elbow support portions 83 and 84 are provided on the door and the center console in such a relationship that they face each other at a height corresponding to the elbow portion of the occupant seated on the seat device 100a. In addition, the arm support portions 81 and 82 and the elbow support portions 83 and 84 are respectively connected to actuators (not shown). By driving the actuators, the arm support portions 81 and 82 and the elbow support portions 83 and 84 are The lateral movement of the occupant's upper body is suppressed, and the occupant's posture is prevented from changing more than a certain amount. The arm support portions 81 and 82 and the elbow support portions 83 and 84 can operate independently. Moreover, the actuator which operates arm support part 81,82 and elbow support part 83,84 employ | adopts the reversible actuator which drives reversibly, such as an electric motor, By this, arm support part 81,82 and elbow support The parts 83 and 84 can return to the normal state from the state of protruding toward the occupant as a reversible operation.
 ネックサポート部31は、ヘッドレスト30のうち、シート装置100aに着座する乗員の首部に対応する位置に設けられている。ネックサポート部31には、図示しないアクチュエータにより左右両端が可動するワイヤーが内蔵されており、ワイヤーの左右両端が前方内側(乗員側)に屈曲することで、乗員の首部の動きを抑制し、乗員の姿勢が一定量以上変化することを防止することができる。ネックサポート部31を動作させるアクチュエータは、電動モータといった可逆的に駆動する可逆式アクチュエータが採用されており、これにより、ネックサポート部31も可逆的な動作として、乗員側へと突出した状態から通常状態へ復帰することができる。 The neck support portion 31 is provided at a position corresponding to the neck portion of the occupant seated on the seat device 100a in the headrest 30. The neck support portion 31 incorporates a wire whose left and right ends can be moved by an actuator (not shown), and the left and right ends of the wire are bent forward inward (occupant side), thereby suppressing the movement of the neck of the occupant. Can be prevented from changing more than a certain amount. The actuator that operates the neck support portion 31 employs a reversible actuator that is reversibly driven such as an electric motor. As a result, the neck support portion 31 is also reversibly operated from a state where it protrudes toward the occupant side. It can return to the state.
 第2実施形態に係る制御装置400aは、第1実施形態の機能に加え、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82、エルボーサポート部83,84、およびネックサポート部31の動作を制御する機能を備える。たとえば、本実施形態において、制御装置400aは、自車両1が細街路を走行しており、運転者の運転負荷が大きい場合には、運転者の受動運動による運動量が小さくなるように、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82、エルボーサポート部83,84、およびネックサポート部31を乗員側に動作させる。これにより、車両走行中に運転者の姿勢が一定量以上変化してしまうことを防止することができ、運転者の運転負荷が大きい場面において、運転者の身体をサポートすることができる。また、制御装置400aは、自車両1が高速道路を走行しており、運転者の運転負荷が小さい場合には、これらサポート部を通常状態に復帰させることで、運転者が一定の運動量を得られるように制御を行う。 In addition to the functions of the first embodiment, the control device 400a according to the second embodiment includes lumbar support parts 23 and 24, side support parts 25 and 26, knee support parts 61 and 62, a heel support part 71, an arm support part 81, 82, elbow support parts 83 and 84, and a function of controlling the operation of the neck support part 31. For example, in the present embodiment, the control device 400a provides the lumbar support so that when the host vehicle 1 is traveling on a narrow street and the driver's driving load is large, the momentum due to the driver's passive motion is reduced. The parts 23 and 24, the side support parts 25 and 26, the knee support parts 61 and 62, the heel support part 71, the arm support parts 81 and 82, the elbow support parts 83 and 84, and the neck support part 31 are operated to the occupant side. As a result, it is possible to prevent the driver's posture from changing by a certain amount or more during traveling of the vehicle, and to support the driver's body in a scene where the driver's driving load is large. In addition, when the host vehicle 1 is traveling on an expressway and the driver's driving load is small, the control device 400a returns the support unit to a normal state so that the driver can obtain a certain momentum. To control.
 以上のように、第2実施形態に係るシート装置100aは、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82、エルボーサポート部83,84、および、ネックサポート部31を備え、これらサポート部を乗員側に駆動させることで、乗員の姿勢が一定量以上変化することを防止することができる。 As described above, the seat device 100a according to the second embodiment includes the lumbar support portions 23 and 24, the side support portions 25 and 26, the knee support portions 61 and 62, the heel support portion 71, the arm support portions 81 and 82, and the elbow support. By providing the portions 83 and 84 and the neck support portion 31 and driving these support portions to the occupant side, the posture of the occupant can be prevented from changing by a certain amount or more.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 たとえば、上述した実施形態では、制御装置400の運動量算出機能は、自車両1が走行している道路のコーナー数、ブレーキ回数、坂道であるか否か、道路の幅などに基づいて、各道路における乗員の受動運動による運動量を算出する構成を例示したが、たとえば、運動量算出機能は、自車両1が走行している道路のコーナー数、ブレーキ回数、坂道であるか否か、道路の幅などに基づいて、乗員の現在の受動運動による運動量を算出し、算出した受動運動の運動量を地図データベース300に履歴情報として記憶することで、各道路の履歴情報に基づいて、各道路における乗員の受動運動の運動量を算出する構成としてもよい。たとえば、運動量算出機能は、道路を走行する度に、算出した乗員の受動運動による運動量を履歴情報として記憶し、履歴情報として記憶された過去の乗員の受動運動の運動量の平均値を、該道路における乗員の受動運動の運動量として算出することができる。 For example, in the above-described embodiment, the momentum calculation function of the control device 400 is based on the number of corners of the road on which the host vehicle 1 is traveling, the number of times of braking, whether the road is a slope, the width of the road, and the like. However, for example, the function for calculating the momentum includes the number of corners of the road on which the vehicle 1 is traveling, the number of times of braking, whether the road is a slope, the width of the road, etc. Based on the history information of each road, the momentum of the current passive movement of the occupant is calculated, and the calculated amount of passive movement is stored in the map database 300 as history information. It may be configured to calculate the amount of exercise. For example, the momentum calculation function stores the calculated momentum of the occupant's passive motion as history information each time the vehicle travels on the road, and calculates the average value of the past occupant's passive exercise momentum stored as the history information. It can be calculated as the momentum of the passive movement of the occupant.
 また、上述した実施形態では、各道路の乗員の受動運動による運動量を、自車両1が実際に道路を走行することで算出する構成を例示したが、この構成に限定されず、たとえば、各道路における乗員の受動運動の運動量を、予め地図データベース300に記憶させておく構成とすることができる。この場合、自車両1が実際に走行していない道路においても、地図データベース300から、その道路における乗員の受動運動の運動量を取得することができるため、自車両1が走行したことがない道路を含む経路を、推奨経路として決定することができる。同様に、車両1の外部に設置された情報センターに、各道路の受動運動の運動量を、複数の他車両から収集しておくことで、自車両1は、情報センターから各道路における乗員の受動運動の運動量を取得する構成としてもよい。この場合も、自車両1が実際に走行していない道路であっても、他車両が走行したことがある道路であれば、その道路における受動運動の運動量を情報センターから取得することができるため、自車両1が走行したことがない道路を含む経路を、自車両1の推奨経路として決定することができる。 Further, in the above-described embodiment, the configuration in which the own vehicle 1 calculates the momentum due to the passive motion of the occupant on each road by actually traveling on the road is exemplified. However, the present invention is not limited to this configuration. The amount of passive movement of the occupant can be stored in the map database 300 in advance. In this case, since the momentum of the passive movement of the occupant on the road can be obtained from the map database 300 even on the road on which the own vehicle 1 is not actually traveling, the road on which the own vehicle 1 has not traveled can be obtained. The path to be included can be determined as the recommended path. Similarly, by collecting the momentum of the passive movement of each road from a plurality of other vehicles in an information center installed outside the vehicle 1, the own vehicle 1 can passively pass passengers on each road from the information center. It is good also as a structure which acquires the exercise amount of an exercise | movement. In this case as well, even if the host vehicle 1 is not actually traveling, the amount of passive motion on the road can be acquired from the information center as long as the other vehicle has traveled. A route including a road on which the host vehicle 1 has never traveled can be determined as a recommended route of the host vehicle 1.
 さらに、上述した実施形態では、制御装置400の推奨経路決定機能により、入力装置200により入力された入力情報に最も適した候補経路を、推奨経路として決定する構成を例示したが、この構成に限定されず、たとえば、乗員が健康の維持・向上のために一般に必要とされる運動量に基づいて、複数の候補経路の中から、推奨経路を決定する構成としてもよい。 Further, in the above-described embodiment, the configuration in which the candidate route most suitable for the input information input by the input device 200 is determined as the recommended route by the recommended route determination function of the control device 400 is illustrated, but the configuration is limited to this configuration. For example, the recommended route may be determined from among a plurality of candidate routes based on the amount of exercise generally required by the occupant for maintaining and improving health.
 加えて、上述した実施形態では、制御装置400により、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13を制御する構成を例示したが、この構成に限定されず、たとえば、乗員が図示しない操作部を操作することで、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13を制御する構成としてもよい。これにより、乗員は所望するタイミングで所望する受動運動を行うことができる。同様に、上述した第2実施形態において、乗員が図示しない操作部を操作することで、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82、エルボーサポート部83,84、および、ネックサポート部31を動作させる構成としてもよい。 In addition, in the above-described embodiment, the control device 400 controls the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and the pair of seat surface front part airbags 12 and 13. However, the present invention is not limited to this configuration. For example, when the occupant operates an operation unit (not shown), the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat rear part airbag 11, and the pair of seats It is good also as a structure which controls the surface front part airbags 12 and 13. FIG. As a result, the occupant can perform a desired passive motion at a desired timing. Similarly, in the second embodiment described above, the lumbar support parts 23 and 24, the side support parts 25 and 26, the knee support parts 61 and 62, the heel support part 71, the arm support by operating the operation part (not shown) in the occupant. The parts 81 and 82, the elbow support parts 83 and 84, and the neck support part 31 may be operated.
 また、上述した実施形態では、一対の座面前方部エアバック12,13内から空気を排出することで、シートクッション10の座面を傾ける構成を例示したが、この構成に限定されず、以下のような構成としてもよい。たとえば、一対の座面前方部エアバック12,13内から十分な量の空気を排出させた場合に、シートクッション10の座面が略水平となるように、シートクッション10を構成し、一対の座面前方部エアバック12,13に十分な量の空気を供給することで、座面前方部エアバック12,13を膨らませて、一対の座面前方部エアバック12,13を乗員方向(Z軸方向)に突出させることで、シートクッション10の座面を後方に傾け、これにより、乗員の姿勢を後方に傾けて、乗員の受動運動による運動量を増大させる構成としてもよい。あるいは、座面前方部エアバック12,13内から十分な量の空気を排出させた場合に、シートクッション10の座面が前方に傾き、座面前方部エアバック12,13内に十分な量の空気を供給した場合に、シートクッション10の座面が後方に傾くように、座面前方部エアバック12,13を構成し、エアポンプ40により、座面前方部エアバック12,13内の空気量を調整することで、シートクッション10の座面を傾けて、乗員の受動運動における運動量を調整する構成としてもよい。 Moreover, in embodiment mentioned above, although the structure which inclines the seat surface of the seat cushion 10 by discharging | emitting air from a pair of seat surface front part airbags 12 and 13 was illustrated, it is not limited to this structure, The following It is good also as such a structure. For example, the seat cushion 10 is configured so that the seat surface of the seat cushion 10 becomes substantially horizontal when a sufficient amount of air is discharged from the pair of seat surface front portion airbags 12 and 13. By supplying a sufficient amount of air to the seat front part airbags 12 and 13, the seat front part airbags 12 and 13 are inflated, and the pair of seat front part airbags 12 and 13 are moved in the passenger direction (Z By projecting in the axial direction), the seat surface of the seat cushion 10 may be tilted rearward, whereby the posture of the occupant may be tilted rearward to increase the momentum due to the passive motion of the occupant. Alternatively, when a sufficient amount of air is discharged from the seat front part airbags 12 and 13, the seat cushion 10 is tilted forward, and the seat front part airbags 12 and 13 have a sufficient amount. When the air is supplied, the seat surface front portion airbags 12 and 13 are configured so that the seat surface of the seat cushion 10 is tilted rearward. It is good also as a structure which inclines the seat surface of the seat cushion 10 by adjusting quantity, and adjusts the momentum in a passenger | crew's passive motion.
 さらに、シート装置100は、胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13のうち、いずれか1つのエアバックを備える構成としてもよいし、あるいは、いずれか2以上のエアバックを組み合わせて備える構成としてもよい。同様に、シート装置100aは、ランバーサポート部23,24、サイドサポート部25,26、ニーサポート部61,62、ヒールサポート部71、アームサポート部81,82、エルボーサポート部83,84、およびネックサポート部31のうち、いずれか1つのサポート部を備える構成としてもよいし、あるいは、いずれか2以上のサポート部を組み合わせて備える構成としてもよい。 Further, the seat device 100 includes any one of the thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat surface rear part airbag 11, and the pair of seat surface front part airbags 12 and 13. It is good also as a structure, It is good also as a structure provided with combining any 2 or more airbags. Similarly, the seat device 100a includes lumbar support parts 23 and 24, side support parts 25 and 26, knee support parts 61 and 62, heel support parts 71, arm support parts 81 and 82, elbow support parts 83 and 84, and a neck support. It is good also as a structure provided with any one support part among the parts 31, or it is good also as a structure provided with combining any two or more support parts.
 なお、上述した実施形態の胸椎部エアバック21、腰椎部エアバック22、座面後方部エアバック11、および一対の座面前方部エアバック12,13は本発明の受動運動機構に、制御装置400は本発明の候補経路探索手段、予測手段、および経路決定手段に、提示装置500は本発明の提示手段にそれぞれ相当する。 The thoracic vertebra part airbag 21, the lumbar vertebra part airbag 22, the seat rear part airbag 11, and the pair of seat front part airbags 12 and 13 according to the above-described embodiment are added to the passive motion mechanism of the present invention. Reference numeral 400 corresponds to candidate route searching means, prediction means, and route determination means of the present invention, and presentation device 500 corresponds to presentation means of the present invention.
 100,100a…シート装置
  10…シートクッション
   11…座面後方部エアバック
   12,13…座面前方部エアバック
  20…シートバック
   21…胸椎部エアバック
   22…腰椎部エアバック
   23,24…ランバーサポート部
   25,26…サイドサポート部
  30…ネックレスト
   31…ネックサポート部
  40…エアポンプ
   41~45…ホース
  51~55…空気弁
  61,62…ニーサポート部
  71…ヒールサポート部
  81,82…アームサポート部
  83,84…エルボーサポート部
 200…入力装置
 300…地図データベース
 400…制御装置
 500…提示装置
DESCRIPTION OF SYMBOLS 100,100a ... Seat apparatus 10 ... Seat cushion 11 ... Seat surface rear part airbag 12, 13 ... Seat surface front part airbag 20 ... Seat back 21 ... Thoracic vertebra part airbag 22 ... Lumbar vertebra part airbag 23, 24 ... Lumber support Part 25, 26 ... Side support part 30 ... Necklace 31 ... Neck support part 40 ... Air pump 41-45 ... Hose 51-55 ... Air valve 61, 62 ... Knee support part 71 ... Heel support part 81, 82 ... Arm support part 83 84 ... Elbow support unit 200 ... Input device 300 ... Map database 400 ... Control device 500 ... Presentation device

Claims (6)

  1.  乗員が着座するシート装置に設置され、車両走行中における前記乗員の受動運動による運動量が変化するように、前記乗員の姿勢を変化させるための受動運動機構と、
     目的地に至る複数の経路のそれぞれを候補経路として探索する候補経路探索手段と、
     前記車両が前記候補経路を走行した場合における、前記受動運動機構による乗員の受動運動の運動量を前記候補経路ごとに予測する予測手段と、
     前記予測手段により予測された前記候補経路ごとの前記受動運動の運動量に基づいて、前記複数の候補経路の中から推奨経路を決定する経路決定手段と、を備えることを特徴とする車載装置。
    A passive motion mechanism that is installed in a seat device on which an occupant is seated, and that changes the posture of the occupant so that the amount of motion due to the passive motion of the occupant during vehicle travel changes;
    Candidate route searching means for searching each of a plurality of routes to the destination as candidate routes;
    Predicting means for predicting, for each candidate path, the amount of passive movement of the occupant by the passive movement mechanism when the vehicle travels along the candidate path.
    An in-vehicle apparatus, comprising: a route determination unit that determines a recommended route from the plurality of candidate routes based on the amount of movement of the passive motion for each candidate route predicted by the prediction unit.
  2.  請求項1に記載の車載装置であって、
     前記経路決定手段は、前記予測手段により予測された前記候補経路ごとの前記受動運動の運動量に加え、前記乗員に必要とされる前記受動運動の運動量に基づいて、前記複数の候補経路の中から前記推奨経路を決定することを特徴とする車載装置。
    The in-vehicle device according to claim 1,
    The route determination unit is configured to select one of the plurality of candidate routes based on the passive exercise momentum required for the occupant in addition to the passive exercise momentum for each candidate route predicted by the prediction unit. An in-vehicle device that determines the recommended route.
  3.  請求項2に記載の車載装置であって、
     前記予測手段は、前記車両が前記候補経路を走行した場合における、前記受動運動機構による前記乗員の受動運動の運動強度および運動時間を予測することで、前記候補経路における前記受動運動の運動量を予測することを特徴とする車載装置。
    The in-vehicle device according to claim 2,
    The predicting unit predicts the exercise intensity and the exercise time of the passive motion of the occupant by the passive motion mechanism when the vehicle travels on the candidate route, thereby predicting the momentum of the passive motion on the candidate route. A vehicle-mounted device characterized by:
  4.  請求項1~3のいずれかに記載の車載装置であって、
     前記予測手段は、前記車両が前記候補経路を走行した場合の駆動エネルギー消費量を前記候補経路ごとに予測し、
     前記経路決定手段は、前記予測手段により予測された前記候補経路ごとの駆動エネルギー消費量を加味して、前記複数の候補経路の中から前記推奨経路を決定することを特徴とする車載装置。
    The in-vehicle device according to any one of claims 1 to 3,
    The predicting means predicts a driving energy consumption amount for each candidate route when the vehicle travels on the candidate route,
    The in-vehicle device, wherein the route determination unit determines the recommended route from the plurality of candidate routes in consideration of the drive energy consumption for each candidate route predicted by the prediction unit.
  5.  請求項1~4のいずれかに記載の車載装置であって、
     前記経路決定手段により決定された前記推奨経路を、乗員に提示する提示手段をさらに備えることを特徴とする車載装置。
    The in-vehicle device according to any one of claims 1 to 4,
    The in-vehicle device further comprising a presenting unit for presenting the recommended route determined by the route determining unit to an occupant.
  6.  乗員が着座するシート装置に設置され、車両走行中における前記乗員の受動運動による運動量が変化するように前記乗員の姿勢を変化させるための受動運動機構による、乗員の受動運動の運動量を経路ごとに予測し、予測した各経路ごとの前記受動運動の運動量に基づいて、複数の前記経路の中から推奨経路を決定することを特徴とするナビゲーション方法。 Installed in the seat device on which the occupant sits, the passive motion mechanism for changing the posture of the occupant so that the amount of motion due to the passive motion of the occupant changes while the vehicle is running. A navigation method characterized by predicting and determining a recommended route from a plurality of the routes based on the predicted momentum of the passive motion for each route.
PCT/JP2013/076332 2012-10-03 2013-09-27 On-board device and navigation method WO2014054536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012220983 2012-10-03
JP2012-220983 2012-10-03

Publications (1)

Publication Number Publication Date
WO2014054536A1 true WO2014054536A1 (en) 2014-04-10

Family

ID=50434864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076332 WO2014054536A1 (en) 2012-10-03 2013-09-27 On-board device and navigation method

Country Status (1)

Country Link
WO (1) WO2014054536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156874A (en) * 2016-02-29 2017-09-07 トヨタ自動車株式会社 Automatic driving system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116075A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Consumed calorie computing apparatus mounted on vehicle, and method of computing consumed calorie
JP2007038704A (en) * 2005-07-29 2007-02-15 Nissan Motor Co Ltd Driving attitude adjustment device for vehicle and its method
JP2007303991A (en) * 2006-05-12 2007-11-22 Fujitsu Ten Ltd Navigation device with calorie consumption calculation function
JP2010193318A (en) * 2009-02-19 2010-09-02 Fujitsu Ten Ltd Onboard system, onboard device, and mobile terminal apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116075A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Consumed calorie computing apparatus mounted on vehicle, and method of computing consumed calorie
JP2007038704A (en) * 2005-07-29 2007-02-15 Nissan Motor Co Ltd Driving attitude adjustment device for vehicle and its method
JP2007303991A (en) * 2006-05-12 2007-11-22 Fujitsu Ten Ltd Navigation device with calorie consumption calculation function
JP2010193318A (en) * 2009-02-19 2010-09-02 Fujitsu Ten Ltd Onboard system, onboard device, and mobile terminal apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156874A (en) * 2016-02-29 2017-09-07 トヨタ自動車株式会社 Automatic driving system

Similar Documents

Publication Publication Date Title
RU149358U1 (en) MASSAGE SYSTEM FOR VEHICLE CHAIR
JP6582458B2 (en) Driving position control device
CN110549916B (en) Seat control device
CN109843652B (en) Method for adjusting switch position and vehicle operation device
US10787162B2 (en) Driving force control apparatus
JP2003532577A (en) Method for dynamic adaptation of body support of a person seated in a vehicle seat and vehicle seat therefor
JP5901788B2 (en) Control method and control device for tactile accelerator pedal in vehicle based on seat information
JP7436909B2 (en) vehicle seat
JP7191583B2 (en) Occupant posture control device and occupant posture control method
CN102050038A (en) Method and device for dynamic adaptation of body support for person seated in adaptive vehicle seat
CN111002877B (en) Vehicle seat
CN108725266B (en) Method for adjusting a vehicle seat
WO2013180089A1 (en) Seat device, and control device of on-board seat device
WO2014054536A1 (en) On-board device and navigation method
US11479149B2 (en) Occupant posture control method and occupant posture control device
JP2019020312A (en) Display controller and method for display control
CN103879313A (en) Driver seat position adjusting method and system and vehicle
KR20230048183A (en) System and method for controlling regeneration torque of electric vehicle
US20240034213A1 (en) Vehicle Seat
JP2006008098A (en) Seat control device
JP2014073712A (en) Momentum measuring apparatus and momentum measuring method
RU2729856C1 (en) Vehicle seat control device
JP2004099037A (en) Device to identify seat position of occupant in vehicle
JPWO2020039530A1 (en) Driver selection device and driver selection method
WO2014054537A1 (en) Vehicle-mounted seat device control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP