WO2014053760A1 - Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire - Google Patents

Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire Download PDF

Info

Publication number
WO2014053760A1
WO2014053760A1 PCT/FR2013/052325 FR2013052325W WO2014053760A1 WO 2014053760 A1 WO2014053760 A1 WO 2014053760A1 FR 2013052325 W FR2013052325 W FR 2013052325W WO 2014053760 A1 WO2014053760 A1 WO 2014053760A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
perforations
cooling
chamber bottom
cooling air
Prior art date
Application number
PCT/FR2013/052325
Other languages
English (en)
Inventor
Thierry Cortes
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Publication of WO2014053760A1 publication Critical patent/WO2014053760A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the general technical field of aircraft turbomachines such as turbojets and turboprops.
  • the invention belongs to the technical field of turbomachine combustion chambers, in particular to that of the thermal protection means of the combustion chamber bottoms.
  • the application FR 2856466A1 discloses a turbomachine combustion chamber comprising a chamber bottom provided with perforations configured to allow the passage of a cooling air flow rate of the chamber bottom, the perforations being inclined with respect to a median axis of the bottom of the chamber so that the perforations located near an axial wall of the combustion chamber are less inclined, when considering the angle between the central axis of the chamber bottom and the nearest axial wall , that perforations that are farther away from the same nearest wall.
  • the application FR 2958013A1 describes a chamber bottom for a turbomachine combustion chamber, the chamber bottom being provided with perforations oriented in a predominantly homogeneous manner in a direction opposite to that of the exit direction of a cooling air diffuser supplying the perforations, the diffuser being offset radially with respect to a median axis of the chamber bottom.
  • the invention aims to solve the problems encountered with the solutions of the prior art and aims in particular to improve the cooling of the chamber bottom of a turbomachine combustion chamber.
  • the subject of the invention is an annular chamber bottom for an aircraft turbomachine combustion chamber
  • the chamber bottom comprising cooling air supply perforations of the chamber bottom, characterized in that at least a plurality of the perforations each have an outlet direction having at least one tangential component relative to a longitudinal main axis of the bottom chamber so that the cooling air exiting these perforations forms a cooling gyratory flow around the longitudinal main axis.
  • the bottom chamber according to the invention has the effect of reducing the cooling air consumption while conferring analogous or superior performance, that is to say that the invention allows a better use of the air of cooling for a cooling air flow rate identical to the inlet of the perforations.
  • the invention makes it possible to further cool the insufficiently cooled areas of the chamber bottom, in particular those situated at the interface between two injection orifices.
  • a gyratory cooling flow makes it possible to better add the multiplicity of the air flow rates associated with the output of each of at least a plurality of perforations at the interfaces for meeting these air flows.
  • a gyratory cooling flow makes it possible to prevent the flow of air which intersect at the exit of the perforations from having directions with tangential components of opposite direction in certain parts of the chamber floor, as was the case. for the interfaces between two injection ports in document US 2006/0042263.
  • a gyratory cooling flow limits the partial cancellation of the cooling air flows at the outlet of spatially close perforations, which results in a more efficient cooling of these interfaces.
  • the direction of the cooling air at the exit of a perforation is determined by its configuration, in particular its output configuration.
  • the perforations according to the invention are not necessarily cylindrical, even if they are preferentially for reasons of convenience, for example for their drilling. Drilling a perforation so as to orient the cooling air is part of the general knowledge of the skilled person as could for example attest the two applications FR 2854666A1 and FR 2958013A1.
  • the term "gyratory" can be broadly interpreted as not necessarily meaning so as to define at least one arc of a circle over a large part of the surface of the chamber floor.
  • the perforations of a chamber bottom according to the invention could have an exit direction such that the tangential components of each of at least a plurality of perforations spatially close two by two and forming a row about the axis.
  • main longitudinal of the chamber bottom are in the same direction on a portion of its inner surface and so that the cooling air at the outlet of these perforations forms a gyratory cooling flow.
  • the cooling gyratory flow can define at least one closed contour along the chamber bottom surface around the longitudinal major axis.
  • the flow of the cooling air coming out of macroscopic perforations along a part of the surface of the chamber bottom is studied.
  • the cooling air at the outlet of the perforations can define a cooling flow.
  • the tangential output components of each of a sufficient number of perforations close two by two add up in order to create a gyratory flow of the cooling air.
  • the tangential components of all the cooling air supply perforations of the chamber bottom are in particular oriented in the same direction.
  • Such a configuration makes it possible to further improve the cooling of the chamber bottom with identical cooling air flow rate.
  • the gyratory flow lines created by the output air flow of each of the perforations, when the tangential components of the exit direction of all the perforations are in the same direction, can be added even better, which also has the advantage of effect of further limiting the cancellation of air flow output of spatially close perforations. This results in better cooling of the chamber floor.
  • the tangential components could for example be oriented in the trigonometric direction or the counterclockwise direction as long as they are all oriented in the same direction. It might be interesting in some cases to favor a particular meaning depending on the configuration of the turbomachine, so as to obtain the best possible configuration for the gases entering the turbomachine in an axial direction.
  • the flow rates of cooling air leaving all the perforations participate in the gyratory flow of cooling while it could be sufficient for a plurality of them to impose the cooling air leaving it to form a cooling gyratory flow.
  • the invention may not be limited to a chamber bottom consisting solely of perforations whose direction of exit orients the cooling air exiting there to form a gyratory cooling flow.
  • a plurality of perforations close two by two could possibly be sufficient to create a cooling gyratory flow according to the invention. It is also possible that locally the output air flow of at least one perforation does not participate in the gyratory cooling flow of the chamber bottom.
  • cooling gyratory flow lines are for example only deflected locally, especially near the center of injection orifices of the chamber bottom.
  • the gyratory flow of cooling can extend, on at least a part of a surface of the chamber bottom, in a radial direction over at least half, or better still at least 2/3 or even better at least 3/4 of a radial length of the chamber bottom.
  • the cooling gyratory flow preferably extends over at least half or better still at least 2/3 or even better at least 3/4 of the radial length of the chamber bottom between two injection orifices.
  • the invention may optionally include one or more of the following features combined with one another or not:
  • At least one perforation of the chamber bottom could have an exit direction having at least one radial component relative to the longitudinal main axis of the chamber bottom.
  • the cooling air leaving these perforations forms a flow having a radial component, that is to say oriented towards one of the axial walls of the chamber bottom.
  • the exit direction of one or more of these perforations may or may not have a tangential component so that the cooling air leaving these perforations also contributes to forming the cooling gyratory flow around the longitudinal principal axis.
  • a cooling flow could be both gyratory and radial or the cooling of at least one wall by a radial air flow can be done independently of the gyratory flow of cooling.
  • the exit surface of the chamber bottom is the inner surface of the chamber bottom, i.e., the bottom surface of the chamber with the primary zone of combustion.
  • the density of the perforations of the chamber bottom can evolve in a radial direction.
  • the density of the perforations of the chamber floor can indeed be variable.
  • the density of the perforations may vary depending on the distance between the median axis of the chamber bottom and at least one of the walls of the chamber bottom.
  • the distribution of the densities of perforations as a function of the distance to the median axis towards an axial wall of the combustion chamber may be identical for the internal or external walls. This latter solution is generally adapted when one wall does not require more efficient cooling means than the other, especially when the bottom of the chamber is cooled by a flow of cooling air coming from the outlet of a radially located diffuser. substantially along the median axis of the chamber bottom.
  • the distribution of the densities of perforations as a function of the distance to the median axis of the chamber bottom to an axial wall of the combustion chamber may be different for the internal or external walls.
  • This latter solution may be preferred especially when the flow of cooling air supplying the chamber bottom is radially offset towards one of the walls.
  • the variation of the density of the perforations makes it possible to adapt the air flow at the level of the chamber bottom according to the quantity of air necessary for the cooling of the various parts of the chamber bottom.
  • a variation of the characteristic size of the perforations to fulfill the same function is quite conceivable.
  • the density of the perforations is higher when approaching at least one of the axial walls.
  • the cooling gyratory flow around the longitudinal axis may be circular on at least a portion of a surface of the chamber bottom.
  • Such a configuration makes it possible to further improve the cooling of the bottom of the chamber with a constant cooling air flow rate.
  • the gyratory cooling flow can be concentric.
  • the chamber bottom can be exposed directly to the thermal radiation of the primary combustion zone.
  • the term "directly" means in particular that the bottom of the combustion chamber does not include a deflector of thermal energy, as is often the case in the prior art.
  • a deflector of thermal energy as is often the case in the prior art.
  • the baffles may be subjected to a particularly high thermal exposure, particularly depending on the material of the combustion chamber, which may damage them.
  • the absence of deflectors overcomes these disadvantages.
  • the invention also relates to a combustion chamber comprising a chamber bottom as defined above, in particular provided with perforations allowing a gyratory flow of the cooling air with respect to the exit surface of the chamber bottom.
  • the invention also relates to a combustion chamber, as defined above, comprising a diffuser configured to supply cooling air to the inlet of the perforations, the outlet of the diffuser being offset radially with respect to a median axis of the bottom. chamber, and at least one perforation having an exit direction having at least one radial component relative to the longitudinal major axis facing the side where the diffuser outlet is located.
  • the cooling along the median axis of the chamber bottom may be greater than that on the walls, it may be advantageous to have a greater density of perforations at the walls and / or a cooling flow to the walls in order to obtain adequate cooling of the chamber bottom.
  • the invention may also have as its object a combustion chamber comprising a diffuser configured to supply cooling air to the inlet of the perforations, the outlet of the diffuser being offset radially with respect to a median axis of the chamber bottom, and at least one perforation having an exit direction having at least one radial component relative to the longitudinal main axis facing a side opposite to that where the diffuser outlet is.
  • a combustion chamber comprising a diffuser configured to supply cooling air to the inlet of the perforations, the outlet of the diffuser being offset radially with respect to a median axis of the chamber bottom, and at least one perforation having an exit direction having at least one radial component relative to the longitudinal main axis facing a side opposite to that where the diffuser outlet is.
  • the invention also relates to a turbomachine comprising a chamber bottom, as defined above, provided with perforations allowing a gyratory flow of the cooling air with respect to the exit surface of the chamber bottom.
  • the invention finally relates to a method of cooling a chamber bottom as defined above, comprising a step of cooling the chamber bottom by a gyratory flow around the longitudinal main axis of the chamber bottom.
  • FIG. 1 shows a partial axial half-sectional view of a turbomachine combustion chamber comprising an annular chamber bottom, according to a preferred embodiment of the invention
  • FIG. 2 is a view along the longitudinal main axis of the chamber bottom of the inner surface of the chamber bottom;
  • FIG. 3 is an enlargement of a detail of Figure 2;
  • FIG. 4 is a sectional view taken along the line III-III of FIG. 2.
  • FIGS. 1 and 2 there is shown a combustion chamber 1 of a turbomachine provided with a chamber bottom, according to a preferred embodiment of the present invention.
  • the combustion chamber 1 comprises an external axial wall 2 and an internal axial wall 4, these two walls 2 and 4 being disposed coaxially along a longitudinal main axis of the chamber 1, this axis also corresponding to the longitudinal main axis of the turbomachine.
  • the axial walls 2 and 4 are connected to each other via a chamber bottom 8, the latter being assembled for example by welding to an upstream portion of each of the axial walls 2 and 4.
  • the combustion chamber 1 In a state of rest, the combustion chamber 1 is neither supplied with cooling air nor with fuel.
  • the chamber bottom 8 preferably takes the form of a substantially flat annular ring, of longitudinal main axis 6 identical to the longitudinal principal axis of the chamber 1.
  • this chamber bottom 8 could also have any other suitable shapes, such as a frustoconical shape of the same axis, without departing from the scope of the invention.
  • Each of these injection orifices 10 is designed so as to be able to cooperate with an injection system (not shown) receiving a fuel injector 12, to allow combustion reactions within this combustion chamber 1.
  • the injection system is also designed to allow the introduction of at least a portion of the air for combustion, the latter occurring in a primary zone 14 located in an upstream portion of the combustion chamber 1.
  • the air for combustion can also be introduced inside the chamber 1 via primary orifices 16, located all around the outer axial walls 2 and inner 4.
  • the primary orifices 16 are arranged in upstream of a plurality of dilution orifices 18, the latter also being placed all around the external axial walls 2 and internal 4, and whose main function is to allow the supply of air to a dilution zone 20 located downstream of the primary zone 14.
  • a diffuser 3 radially offset towards the inner wall 4 with respect to a central axis of the chamber bottom 32 supplies cooling air to the chamber bottom 8 by a cooling air flow D arriving on the inlet surface. 29 of the chamber bottom 8 so as to cool the inner surface 21 of the chamber bottom 8.
  • an additional cooling air flow (not shown) is generally allocated to cool all of these inner hot surfaces 22 and 24.
  • FIG. 2 is a view of the outlet surface 21 of the chamber bottom 8 or inner surface of the chamber bottom 8, that is to say of the surface of the chamber bottom facing towards the primary zone 14 of the chamber of FIG.
  • the invention is represented in an operating state in which the combustion chamber is supplied with cooling air and with fuel and that it feeds for example at least one turbine of a turbomachine.
  • the chamber bottom 8 is of the multi-perforated type, namely that it has a plurality of perforations 26, preferably cylindrical or better circular sections, and intended to allow the passage of the cooling air flow D inside the combustion chamber 1.
  • the cooling air flow at the outlet of each of a plurality of perforations 26 is added with the air flow of other perforations 26 spatially close so as to form gyratory cooling flow lines FG defining a contour around the main longitudinal axis 6 of the chamber bottom 8.
  • gyratory cooling flow lines FG defining a contour around the main longitudinal axis 6 of the chamber bottom 8.
  • the gyratory flow of cooling extends over a radial length L relative to the main axis 6 of the chamber bottom 8, taken between the gyratory flow line FG closest to the outer wall 4, respectively of the inner wall 2, which is equal to more than 3/4 of the radial length of the chamber bottom 8.
  • the existence of a cooling gyratory flow does not prevent certain perforations from having an exit direction having a radial component, as will be described with reference to the figure 4.
  • the gyratory cooling flow lines FG each form a closed contour around the longitudinal main axis 6 of the chamber bottom 8. In other words, they run all along the chamber bottom 8 in a movement about the longitudinal main axis 6 of the chamber bottom 8.
  • the gyratory cooling flow lines are all oriented in the same direction.
  • All the gyratory flow lines are circular and concentric around the longitudinal main axis 6 of the chamber bottom 8, with the possible exception of those which pass close to the center of the injection holes 10, which can be locally deformed at because of the introduction of the carburetted air in the chamber bottom 8.
  • the lines of gyratory flow FG sufficiently far from the center of the injection holes 10 are only little or almost not disturbed by the air at the outlet of the holes d injection 10.
  • the chamber bottom 8 is divided into an outer portion 28 connected to the outer axial wall 2, and an inner portion 30 connected to the inner axial wall 4.
  • these portions rings 28 and 30 are usually formed in one piece, and their virtual separation can then consist of a center circle C located on the longitudinal principal axis 6, and radius R corresponding to a mean radius between an outer radius and a internal radius of the chamber bottom 8. All the perforations 26 of the chamber bottom 8 contribute to the formation of the same gyratory cooling flow of the chamber bottom 8, which is symmetrical with respect to the circle C.
  • the density of perforations 26 is identical on the bottom of chamber 8.
  • the density of the perforations 26 varies in a radial direction for illustrative purposes only.
  • the exit direction (S) of the center hole C1 on the inner surface 21 of the chamber bottom 8 when considering the exit direction (S) of the center hole C1 on the inner surface 21 of the chamber bottom 8, the latter has a tangential component (T) relative to the longitudinal main axis 6 of the annular chamber bottom 8 and a radial component (Rd) of direction parallel to the direction of the radius R of the chamber bottom 8 passing through the center C1 of this perforation 26.
  • the exit direction of the perforations 26 is important for creating a cooling gyratory flow on the inner surface 21 of the chamber floor 8 while, as a general rule, it is not necessary to consider the entrance surface 29 of the chamber floor 8 since it has little influence on the exit direction of the perforations 26.
  • the center C1 of the center hole 26 of the center surface Cl 21 is therefore only represented as purely indicative.
  • the center hole C1 on the surface 21 is cylindrical and therefore, the exit direction (S) of the perforation is identical to the axis of revolution of the cylindrical perforation.
  • perforations 26, such as the center C2 on the inner surface 21 of the chamber bottom 8 may not be cylindrical and nevertheless have an exit direction having a tangential component T relative to the longitudinal main axis 6 of the chamber bottom 8 so that the cooling air issuing from these perforations 26 forms a cooling gyratory flow around the longitudinal main axis 6.
  • perforations 26 of the inner portion 30 and of the outer portion 28 have an exit direction having a radial component towards the outer wall 2 of the bottom 8 to better cool the inner surface 21 of the chamber bottom 8 located on the side opposite to that of the direction of the diffuser 3.
  • the majority of the perforations 26, however, have an exit direction having a radial component (not shown) substantially parallel to the median axis 32 of the chamber bottom 8.
  • a large number of these perforations 26 have an exit direction having a tangential component in a direction orthogonal to the plane of Figure 4 so that the cooling air leaving these perforations forms the cooling gyratory flow around the longitudinal main axis 6 of the chamber bottom 8.
  • the perforations 26 of the inner portion 30 are such that the value of the acute angles B formed between a median axis 32 of the half-section and principal directions 36 of the perforations 26 in this half-section, changes in a decreasing manner as a function of the distance between these perforations 26 and this median axis 32.
  • the central axis 32 is mentioned essentially for reference.
  • this central axis 32 passing through the circle C, is also substantially perpendicular to the chamber bottom 8, insofar as it itself is substantially perpendicular to the axial walls 2 and 4.
  • the main directions 36 of the perforations 26 respectively correspond to their main axes, in the sense that these perforations 26 are all traversed diametrically by the section plane. .
  • the perforations 26 located near the central axis 32 may be strongly inclined, for example so that the acute angle B reaches a value of about 60 °.
  • the cooling air coming from these perforations 26 can therefore flow easily and directly along the inner surface 21 of the outer portion 28 of the chamber bottom 8, substantially radially to the outer axial wall 2, without disturbing combustion reactions in the primary zone 14.
  • the perforations 26 of the inner portion 30 are oriented towards the outer wall 2 such that the value of the acute angles B formed between the central axis 32 and principal directions 36 perforations 26 in this half-section, evolves decreasingly as a function of the distance between these perforations 26 and the central axis 32 to preferentially cool the wall external 2 of the chamber bottom 8 and thus compensate, in terms of cooling of the chamber bottom, the radial offset of the outlet of the diffuser 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Solid-Fuel Combustion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Fond de chambre (8) annulaire pour chambre de combustion de turbomachine d'aéronef, le fond de chambre (8) comprenant des perforations (26) d'alimentation en air de refroidissement du fond de chambre (8). Les perforations (26) présentent une direction de sortie ayant au moins une composante tangentielle relativement à un axe principal longitudinal (6) du fond de chambre (8) dans un même sens, de manière à ce que l'air de refroidissement sortant de ces perforations (26) forme un flux giratoire de refroidissement autour de l'axe principal longitudinal (6).

Description

FOND DE CHAMBRE ANNULAIRE POUR CHAMBRE DE COMBUSTION DE TURBOMACHINE D'AERONEF, MUNI DE PERFORATIONS PERMETTANT UN REFROIDISSEMENT PAR FLUX
GIRATOIRE
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine technique général des turbomachines d'aéronef telles que les turboréacteurs et les turbopropulseurs.
Plus précisément, l'invention appartient au domaine technique des chambres de combustion de turbomachine, en particulier à celui des moyens de protection thermique des fonds de chambre de combustion.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE II est connu de l'art antérieur de procéder à de multiples perforations du fond de chambre d'une chambre de combustion et de refroidir directement ce fond de chambre par un débit d'air de refroidissement, c'est-à-dire de ne pas munir la chambre de combustion de déflecteurs thermiques, comme l'illustrent les deux documents FR 2854666A1 et FR 2958013A1.
La demande FR 2856466A1 divulgue une chambre de combustion de turbomachine comportant un fond de chambre muni de perforations configurées pour permettre le passage d'un débit d'air de refroidissement du fond de chambre, les perforations étant inclinées par rapport à un axe médian du fond de la chambre de façon à ce que les perforations situées à proximité d'une paroi axiale de la chambre de combustion soient moins inclinées, lorsqu'on considère l'angle entre l'axe médian du fond de chambre et la paroi axiale la plus proche, que les perforations qui sont plus éloignées de la même paroi la plus proche.
La demande FR 2958013A1 décrit un fond de chambre pour chambre à combustion de turbomachine, le fond de chambre étant muni de perforations orientées de manière majoritairement homogène dans une direction opposée à celle de la direction de sortie d'un diffuseur d'air de refroidissement alimentant les perforations, le diffuseur étant décalé radialement par rapport à un axe médian du fond de chambre.
Il est également connu de la demande US2006/0042263 une chambre de combustion sans déflecteur comprenant un fond de chambre muni de perforations d'alimentation en air de refroidissement du fond de chambre et d'orifices d'injection de carburant, les perforations situées à proximité immédiate d'un orifice d'injection présentant chacune une direction de sortie orientée de manière à créer, dans la chambre de combustion, un débit d'air de refroidissement hélicoïdal centré autour de l'axe longitudinal de l'orifice d'injection. Avec cette configuration, certaines zones sont moins bien refroidies, notamment au niveau de l'interface entre deux trous d'injection directement consécutifs.
Aussi existe-t-il un besoin d'améliorer davantage le refroidissement du fond de chambre à partir d'un même débit de refroidissement en entrée des perforations.
EXPOSÉ DE L'INVENTION
L'invention vise à résoudre les problèmes rencontrés avec les solutions de l'art antérieur et vise notamment à améliorer le refroidissement du fond de chambre d'une chambre de combustion de turbomachine.
A cet égard, l'invention a pour objet un fond de chambre annulaire pour chambre de combustion de turbomachine d'aéronef,
le fond de chambre comprenant des perforations d'alimentation en air de refroidissement du fond de chambre, caractérisé en ce qu'au moins une pluralité des perforations présentent chacune une direction de sortie ayant au moins une composante tangentielle relativement à un axe principal longitudinal du fond de chambre de manière à ce que l'air de refroidissement sortant de ces perforations forme un flux giratoire de refroidissement autour de l'axe principal longitudinal.
Le fond de chambre selon l'invention a pour conséquence de diminuer la consommation d'air de refroidissement tout en conférant des performances analogues ou supérieures, c'est-à-dire que l'invention permet une meilleure utilisation de l'air de refroidissement pour un débit d'air de refroidissement identique à l'entrée des perforations.
Il est possible d'obtenir une réduction du débit d'air de refroidissement jusqu'à 20% environ.
L'invention permet de refroidir davantage les zones insuffisamment refroidies du fond de chambre, notamment celles situées à l'interface entre deux orifices d'injection.
Un flux giratoire de refroidissement permet en effet de mieux additionner la multiplicité des débits d'air associés à la sortie de chacune d'au moins une pluralité de perforations au niveau d'interfaces de rencontre de ces débits d'air. En particulier, un flux giratoire de refroidissement permet d'éviter que les débits d'air qui se croisent à la sortie des perforations présentent des directions ayant des composantes tangentielles de sens opposé dans certaines parties du fond de chambre, comme c'était le cas pour les interfaces entre deux orifices d'injection dans le document US 2006/0042263. Autrement dit, un flux giratoire de refroidissement limite l'annulation partielle des débits d'air de refroidissement à la sortie de perforations spatialement proches, ce qui aboutit à un refroidissement plus efficace de ces interfaces.
La direction de l'air de refroidissement à la sortie d'une perforation est déterminée par sa configuration, en particulier sa configuration de sortie. Les perforations selon l'invention ne sont pas obligatoirement cylindriques, même si elles le sont de manière préférentielle pour des raisons de commodité, par exemple pour leur perçage. Percer une perforation de sorte à orienter l'air de refroidissement fait partie des connaissances générales de l'homme du métier comme pourraient par exemple en attester les deux demandes FR 2854666A1 et FR 2958013A1.
Le qualificatif « giratoire » peut être interprété de manière large comme ne signifiant pas nécessairement de manière à définir au moins un arc de cercle sur une grande partie de la surface du fond de chambre. En fait, les perforations d'un fond de chambre selon l'invention pourraient avoir une direction de sortie telle que les composantes tangentielles de chacune d'au moins une pluralité de perforations spatialement proches deux à deux et formant une rangée autour de l'axe principal longitudinal du fond de chambre soient dans le même sens sur une partie de sa surface intérieure et de façon à ce que l'air de refroidissement en sortie de ces perforations forme un flux giratoire de refroidissement. Idéalement le flux giratoire de refroidissement peut définir au moins un contour fermé le long de la surface du fond de chambre, autour de l'axe principal longitudinal.
Pour pouvoir observer un mouvement giratoire du flux de refroidissement, on étudie l'écoulement de l'air de refroidissement sortant de perforations à l'échelle macroscopique le long d'une partie de la surface du fond de chambre. A ce niveau d'observation, l'air de refroidissement à la sortie des perforations peut définir un flux de refroidissement. En particulier, les composantes tangentielles de sortie de chacune d'un nombre suffisant de perforations proches deux à deux s'additionnent pour pouvoir créer un flux giratoire de l'air de refroidissement.
Les composantes tangentielles de toutes les perforations d'alimentation en air de refroidissement du fond de chambre sont notamment orientées dans un même sens.
Une telle configuration permet d'améliorer encore le refroidissement du fond de chambre à débit d'air de refroidissement identique.
Les lignes de flux giratoire créées par le débit d'air de sortie de chacune des perforations, lorsque les composantes tangentielles de la direction de sortie de toutes les perforations sont dans un même sens, peuvent encore mieux s'additionner, ce qui a aussi pour effet de limiter encore l'annulation de débit d'air en sortie de perforations spatialement proches. Il en résulte un meilleur refroidissement du fond de chambre.
Les composantes tangentielles pourraient être par exemple orientées dans le sens trigonométrique ou le sens contre trigonométrique du moment qu'elles sont toutes orientées dans un même sens. Il pourrait être éventuellement intéressant dans certains cas de privilégier un sens particulier selon la configuration de la turbomachine, de manière à obtenir la meilleure configuration possible pour les gaz entrant dans la turbomachine dans une direction axiale.
Dans de tels modes de réalisation selon l'invention, les débits d'air de refroidissement sortant de toutes les perforations participent au flux giratoire de refroidissement alors qu'il pourrait ne suffire que d'une pluralité d'entre elles pour imposer à l'air de refroidissement qui en sort de former un flux giratoire de refroidissement.
En variante, l'invention pourrait ne pas se limiter à un fond de chambre constitué uniquement de perforations dont la direction de sortie oriente l'air de refroidissement qui en sort de manière à former un flux giratoire de refroidissement. A ce titre, seule une pluralité de perforations proches deux à deux pourrait éventuellement suffire pour créer un flux giratoire de refroidissement conformément à l'invention. Il est aussi possible que localement le débit d'air de sortie d'au moins une perforation ne participe pas au flux giratoire de refroidissement du fond de chambre.
Selon cette variante, les lignes de flux giratoire de refroidissement sont par exemple seulement déviées de manière locale, notamment à proximité du centre d'orifices d'injection du fond de chambre.
De préférence, le flux giratoire de refroidissement peut s'étendre, sur au moins une partie d'une surface du fond de chambre, dans une direction radiale sur au moins la moitié, ou mieux au moins 2/3 ou encore mieux au moins les 3/4 d'une longueur radiale du fond de chambre. En particulier, le flux giratoire de refroidissement s'étend de préférence sur au moins la moitié ou mieux au moins 2/3 ou encore mieux au moins 3/4 de la longueur radiale du fond de chambre entre deux orifices d'injection.
L'invention peut comporter de manière facultative une ou plusieurs des caractéristiques suivantes combinées entre elles ou non :
Eventuellement, au moins une perforation du fond de chambre pourrait présenter une direction de sortie ayant au moins une composante radiale relativement à l'axe principal longitudinal du fond de chambre.
L'air de refroidissement sortant de ces perforations forme un flux ayant une composante radiale, c'est-à-dire orienté vers une des parois axiales du fond de chambre.
Il peut cependant ne pas être nécessaire de créer un flux de refroidissement ayant une composante radiale mais suffire d'avoir une composante radiale de l'air de refroidissement sortant d'au moins une perforation. La direction de sortie d'une ou de plusieurs de ces perforations peut présenter ou non une composante tangentielle de manière à ce que l'air de refroidissement sortant de ces perforations participe également à former le flux giratoire de refroidissement autour de l'axe principal longitudinal. Ainsi, selon les cas un flux de refroidissement pourrait être à la fois giratoire et radial ou bien le refroidissement d'au moins une paroi par un débit d'air radial peut se faire indépendamment du flux giratoire de refroidissement. La surface de sortie du fond de chambre est la surface intérieure du fond de chambre, c'est-à-dire la surface du fond de chambre avec la zone primaire de combustion.
La densité des perforations du fond de chambre peut évoluer selon une direction radiale.
La densité des perforations du fond de chambre peut en effet être variable. En particulier, la densité des perforations peut varier en fonction de l'éloignement entre la axe médian du fond de chambre et au moins une des parois du fond de chambre.
La distribution des densités de perforations en fonction de l'éloignement à l'axe médian vers une paroi axiale de la chambre de combustion peut être identique pour les parois internes ou externes. Cette dernière solution est généralement adaptée lorsqu'une paroi ne nécessite pas de moyens de refroidissement plus efficaces que l'autre, notamment lorsque le fond de chambre est refroidi par un débit d'air de refroidissement provenant de la sortie d'un diffuseur situé radialement sensiblement le long de l'axe médian du fond de chambre.
A l'inverse, la distribution des densités de perforations en fonction de l'éloignement à l'axe médian du fond de chambre vers une paroi axiale de la chambre de combustion peut être différente pour les parois internes ou externes. On pourra privilégier cette dernière solution notamment lorsque le débit d'air de refroidissement alimentant le fond de chambre est décalé radialement vers l'une des parois. La variation de la densité des perforations permet d'adapter le débit d'air au niveau du fond de chambre en fonction de la quantité d'air nécessaire au refroidissement des différentes parties du fond de chambre. Une variation de la taille caractéristique des perforations en vue de remplir la même fonction est tout à fait envisageable.
De même, il est bien sûr possible de modifier le nombre total de perforations du fond de chambre par rapport à un fond de chambre pris comme référence et sinon en tous points identique. Une autre possibilité consiste à modifier le nombre de perforations sur seulement certaines sections du fond de chambre par rapport au fond de chambre de référence pour obtenir un refroidissement adéquat du fond de chambre sans nécessairement faire varier la densité des perforations sur une section radiale du fond de chambre.
De manière préférentielle, la densité des perforations est plus élevée lorsqu'on se rapproche d'au moins une des parois axiales.
Ainsi certaines zones du fond de chambre, en particulier celles qui sont proches des parois, notamment de la paroi axiale du fond de chambre la plus éloignée d'un diffuseur d'air de refroidissement décalé radialement par rapport à une axe médian du fond de chambre, pourraient être refroidies préférentiellement par le débit d'air en entrée du fond de chambre.
Le flux giratoire de refroidissement autour de l'axe longitudinal peut être circulaire sur au moins une partie d'une surface du fond de chambre.
Une telle configuration permet d'améliorer encore le refroidissement du fond de chambre à débit d'air de refroidissement constant.
On peut notamment avoir des lignes de flux giratoires concentriques relativement à la surface de sortie du fond de chambre. Par exemple le long d'un même rayon pris par rapport à l'axe principal longitudinal, le flux giratoire de refroidissement peut être concentrique.
Le fond de chambre peut être exposé directement au rayonnement thermique de la zone primaire de combustion.
En pratique, le terme « directement » signifie notamment que le fond de chambre de combustion ne comprend pas de déflecteur de l'énergie thermique, comme c'est souvent le cas dans l'art antérieur. Une telle solution permet d'éviter de prévoir un refroidissement spécifique du déflecteur et d'économiser ainsi l'air du débit de refroidissement. Par ailleurs, les déflecteurs peuvent être soumis à une exposition thermique particulièrement importante, en particulier suivant le matériau de la chambre de combustion, susceptible de les endommager. L'absence de déflecteurs permet de pallier à ces inconvénients.
L'invention porte également sur une chambre de combustion comprenant un fond de chambre tel que défini ci-dessus, muni notamment de perforations permettant un flux giratoire de l'air de refroidissement par rapport à la surface de sortie du fond de chambre.
L'invention se rapporte aussi à une chambre de combustion, telle que définie ci-dessus, comprenant un diffuseur configuré pour approvisionner en air de refroidissement l'entrée des perforations, la sortie du diffuseur étant décalée radialement par rapport à un axe médian du fond de chambre, et au moins une perforation présentant une direction de sortie ayant au moins une composante radiale relativement à l'axe principal longitudinal orientée vers le côté où se trouve la sortie du diffuseur.
Comme en présence d'une densité uniforme de perforations identiques, le refroidissement le long de l'axe médian du fond de chambre peut être plus important que celui sur les parois, il peut s'avérer intéressant d'avoir une densité de perforations plus importante au niveau des parois et/ou un flux de refroidissement vers les parois afin d'obtenir un refroidissement adéquat du fond de chambre.
En variante, l'invention peut aussi avoir pour objet une chambre de combustion comprenant un diffuseur configuré pour approvisionner en air de refroidissement l'entrée des perforations, la sortie du diffuseur étant décalée radialement par rapport à un axe médian du fond de chambre, et au moins une perforation présentant une direction de sortie ayant au moins une composante radiale relativement à l'axe principal longitudinal orientée vers un côté opposé à celui où se trouve la sortie du diffuseur.
Une telle solution permet de compenser le manque de débit d'air de refroidissement vers la paroi la plus éloignée de la sortie du diffuseur et d'éviter ainsi un échauffement trop important de cette paroi. Il est possible de moduler également le refroidissement avec la densité ou les tailles caractéristiques des perforations. L'invention se rapporte aussi à une turbomachine comprenant un fond de chambre, tel que défini ci-dessus, muni de perforations permettant un flux giratoire de l'air de refroidissement par rapport à la surface de sortie du fond de chambre.
L'invention porte enfin sur un procédé de refroidissement d'un fond de chambre tel que défini ci-dessus, comprenant une étape de refroidissement du fond de chambre par un flux giratoire autour de l'axe principal longitudinal du fond de chambre.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation, donnés à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
- la figure 1 représente une vue partielle en demi-coupe axiale d'une chambre de combustion de turbomachine comprenant un fond de chambre annulaire, selon un mode de réalisation préféré de l'invention ;
- la figure 2 est une vue selon l'axe principal longitudinal du fond de chambre de la surface intérieure du fond de chambre ;
- la figure 3 est un agrandissement d'un détail de la figure 2 ;
- la figure 4, est une vue en section prise le long de la ligne lll-lll de la figure 2.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Des parties identiques, similaires ou équivalentes des différentes figures portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.
Les différentes variantes doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles. En référence conjointement aux figures 1 et 2, il est représenté une chambre de combustion 1 d'une turbomachine munie d'un fond de chambre, selon un mode de réalisation préféré de la présente invention.
La chambre de combustion 1 comporte une paroi axiale externe 2, ainsi qu'une paroi axiale interne 4, ces deux parois 2 et 4 étant disposées coaxialement selon un axe principal longitudinal de la chambre 1, cet axe correspondant également à l'axe principal longitudinal de la turbomachine.
Les parois axiales 2 et 4 sont reliées entre-elles par l'intermédiaire d'un fond de chambre 8, celui-ci étant assemblé par exemple par soudage à une partie amont de chacune des parois axiales 2 et 4.
Dans un état de repos, la chambre de combustion 1 n'est ni alimentée en air de refroidissement ni en carburant.
Le fond de chambre 8 prend de préférence la forme d'une couronne annulaire sensiblement plane, d'axe principal longitudinal 6 identique à l'axe principa l longitudinal de la chambre 1.
Bien entendu, ce fond de chambre 8 pourrait également présenter toutes autres formes appropriées, 25 telles qu'une forme tronconique de même axe, sans sortir du cadre de l'invention.
Une pluralité d'orifices d'injection 10, préférentiellement de forme cylindrique et de section circulaire, sont répartis angulairement et de façon sensiblement régulière sur le fond de chambre 8. Chacun de ces orifices d'injection 10 est conçu de manière à pouvoir coopérer avec un système d'injection (non représenté) recevant un injecteur de carburant 12, afin d'autoriser les réactions de combustion à l'intérieur de cette chambre de combustion 1. Il est précisé que le système d'injection est également conçu de manière à permettre l'introduction d'au moins une partie de l'air destiné à la combustion, celle-ci se produisant dans une zone primaire 14 située dans une partie amont de la chambre de combustion 1. Par ailleurs, il est également indiqué que l'air destiné à la combustion peut aussi être introduit à l'intérieur de la chambre 1 par l'intermédiaire d'orifices primaires 16, situés tout autour des parois axiales externe 2 et interne 4. Comme on peut le voir sur la figure 1, les orifices primaires 16 sont agencés en amont d'une pluralité d'orifices de dilution 18, ces derniers étant également placés tout autour des parois axiales externe 2 et interne 4, et ayant pour fonction principale de permettre l'alimentation en air d'une zone de dilution 20 située en aval de la zone primaire 14.
En outre, un diffuseur 3 décalé radialement vers la paroi interne 4 par rapport à une axe médian du fond de chambre 32 approvisionne en air de refroidissement le fond de chambre 8 par un débit d'air de refroidissement D arrivant sur la surface d'entrée 29 du fond de chambre 8 de manière à refroidir la surface intérieure 21 du fond de chambre 8. A ce titre, même si l'air servant à refroidir le fond de chambre 8 permet également de refroidir une portion amont des surfaces intérieures 22 et 24 des parois axiales externe 2 et interne 4, un débit d'air de refroidissement supplémentaire (non représenté) est généralement alloué pour refroidir l'intégralité de ces surfaces intérieures chaudes 22 et 24.
La figure 2 est une vue de la surface de sortie 21 du fond de chambre 8 ou surface intérieure du fond de chambre 8, c'est-à-dire de la surface du fond de chambre orienté vers la zone primaire 14 de la chambre de combustion 1. L'invention y est représentée dans un état de fonctionnement dans lequel la chambre de combustion est alimentée en air de refroidissement et en carburant et qu'elle alimente par exemple au moins une turbine d'une turbomachine.
Plus spécifiquement en référence à cette figure, on peut voir que le fond de chambre 8 est du type multiperforé, à savoir qu'il dispose d'une pluralité de perforations 26, de préférence cylindriques ou mieux de sections circulaires, et destinées à autoriser le passage du débit d'air de refroidissement D à l'intérieur de la chambre de combustion 1.
Le débit d'air de refroidissement à la sortie de chacune d'une pluralité de perforations 26 s'additionne avec le débit d'air d'autres perforations 26 spatialement proches de manière à former des lignes de flux de refroidissement giratoires FG définissant un contour autour de l'axe principal longitudinal 6 du fond de chambre 8. Lorsque plusieurs lignes de flux de refroidissement giratoire FG de même sens s'additionnent, elles forment un flux giratoire de refroidissement. Le flux giratoire de refroidissement s'étend sur une longueur radiale L relativement à l'axe principal 6 du fond de chambre 8, prise entre la ligne de flux giratoire FG la plus proche de la paroi externe 4, respectivement de la paroi interne 2, qui est égale à plus des 3/4 de la longueur radiale du fond de chambre 8. L'existence d'un flux giratoire de refroidissement n'empêche pas que certaines perforations aient une direction de sortie ayant une composante radiale, comme cela sera décrit en référence à la figure 4.
Les lignes de flux de refroidissement giratoires FG forment chacune un contour fermé autour de l'axe principal longitudinal 6 du fond de chambre 8. Autrement dit, elles parcourent tout le long du fond de chambre 8 dans un mouvement autour de l'axe principal longitudinal 6 du fond de chambre 8.
Pour obtenir un meilleur refroidissement, les lignes de flux de refroidissement giratoires sont toutes orientées dans un même sens.
Toutes les lignes de flux giratoires sont circulaires et concentriques autour de l'axe principal longitudinal 6 du fond de chambre 8, à l'exception éventuellement de celles qui passent à proximité du centre des trous d'injection 10, qui peuvent être localement déformées à cause de l'introduction de l'air carburé dans le fond de chambre 8. Les lignes de flux giratoire FG suffisamment éloignées du centre des trous d'injection 10 ne sont que peu ou presque pas perturbées par l'air en sortie des trous d'injection 10.
Comme on peut le voir également sur la figure 2, le fond de chambre 8 est divisé en une portion externe 28 reliée à la paroi axiale externe 2, et en une portion interne 30 reliée à la paroi axiale interne 4. Bien entendu, ces portions annulaires 28 et 30 sont habituellement formées d'une seule pièce, et leur séparation virtuelle peut alors consister en un cercle C de centre situé sur l'axe principal longitudinal 6, et de rayon R correspondant à un rayon moyen entre un rayon externe et un rayon interne du fond de chambre 8. Toutes les perforations 26 du fond de chambre 8 participent à la formation du même flux giratoire de refroidissement du fond de chambre 8, qui est symétrique par rapport au cercle C.
A l'exception du détail correspondant à la figure 3 et représenté dans le cadre A, la densité de perforations 26 est identique sur le fond de chambre 8. Sur cette figure, la densité des perforations 26 varie selon une direction radiale à titre d'illustration seulement.
En référence maintenant à la figure 3, lorsqu'on considère la direction de sortie (S) de la perforation de centre Cl sur la surface intérieure 21 du fond de chambre 8, celle-ci présente une composante tangentielle (T) relativement à l'axe principal longitudinal 6 du fond de chambre annulaire 8 ainsi qu'une composante radiale (Rd) de direction parallèle à la direction du rayon R du fond de chambre 8 passant par le centre Cl de cette perforation 26. La direction de sortie des perforations 26 est importante pour créer un flux giratoire de refroidissement sur la surface intérieure 21 du fond de chambre 8 alors qu'en règle générale, il n'y a pas lieu de considérer la surface d'entrée 29 du fond de chambre 8 puisqu'elle n'influe que peu sur la direction de sortie des perforations 26. Considérant la surface d'entrée 29 du fond de chambre 8, le centre Cl de la perforation 26 de centre Cl sur la surface intérieure 21 n'est donc représenté qu'à titre purement indicatif. De manière classique, la perforation de centre Cl sur la surface 21 est cylindrique et de ce fait, la direction de sortie (S) de la perforation est identique à l'axe de révolution de la perforation cylindrique.
A l'inverse, des perforations 26, comme celle de centre C2 sur la surface intérieure 21 du fond de chambre 8, peuvent ne pas être cylindriques et présenter néanmoins une direction de sortie ayant une composante tangentielle T relativement à l'axe principal longitudinal 6 du fond de chambre 8 de manière à ce que l'air de refroidissement sortant de ces perforations 26 forme un flux giratoire de refroidissement autour de l'axe principal longitudinal 6.
En référence à présent à la figure 4, on peut apercevoir qu'en demi- section axiale, des perforations 26 de la portion interne 30 et de la portion externe 28 ont une direction de sortie présentant une composante radiale vers la paroi externe 2 du fond de chambre 8 de manière à mieux refroidir la surface intérieure 21 du fond de chambre 8 située du côté opposé à celui de la direction du diffuseur 3. La majorité des perforations 26 ont cependant une direction de sortie ayant une composante radiale (non représentée) sensiblement parallèle à l'axe médian 32 du fond de chambre 8. Par ailleurs, un grand nombre de ces perforations 26 ont une direction de sortie présentant une composante tangentielle dans une direction orthogonale au plan de la figure 4 de manière à ce que l'air de refroidissement sortant de ces perforations forme le flux giratoire de refroidissement autour de l'axe principal longitudinal 6 du fond de chambre 8.
Les perforations 26 de la portion interne 30 sont telles que la valeur des angles aigus B formés entre une axe médian 32 de la demi-section et des directions principales 36 des perforations 26 dans cette demi-section, évolue de façon décroissante en fonction de l'éloignement entre ces perforations 26 et cette axe médian 32. L'axe médian 32 est mentionné essentiellement à titre de référence.
En effet, par axe médian 32 de la demi-section, il faut comprendre qu'il s'agit de la ligne virtuelle éventuellement courbe située à égale distance environ des parois axiales externe 2 et interne 4 considérées en demi-section, cet axe 32 pouvant également être remarqué en ce sens qu'outre le fait de constituer un axe de symétrie de la demi-section représentée, il sépare virtuellement les portions externe 28 et interne 30 du fond de chambre 8. Il est précisé que dans le mode de réalisation préféré décrit, cet axe médian 32, passant par le cercle C, est également sensiblement perpendiculaire au fond de chambre 8, dans la mesure où lui-même est sensiblement perpendiculaire aux parois axiales 2 et 4.
Par ailleurs, il est également indiqué que dans la demi-section axiale représentée sur la figure 4, les directions principales 36 des perforations 26 correspondent respectivement à leurs axes principaux, dans le sens où ces perforations 26 sont toutes traversées diamétralement par le plan de section. Les perforations 26 situées à proximité de l'axe médian 32 peuvent être fortement inclinées, par exemple de façon à ce que l'angle aigu B atteigne une valeur d'environ 60°. L'air de refroidissement provenant de ces perforations 26 peut par conséquent s'écouler facilement et directement le long de la surface intérieure 21 de la portion externe 28 du fond de chambre 8, sensiblement radialement jusqu'à la paroi axiale externe 2, sans perturber les réactions de combustion dans la zone primaire 14.
De façon similaire et en vue de parvenir au même effet, les perforations 26 de la portion interne 30 sont orientées vers la paroi externe 2 telles que la valeur des angles aigus B formés entre la axe médian 32 et des directions principales 36 des perforations 26 dans cette demi-section, évolue de façon décroissante en fonction de l'éloignement entre ces perforations 26 et l'axe médian 32 en vue de refroidir préférentiellement la paroi externe 2 du fond de chambre 8 et compenser ainsi, en terme de refroidissement du fond de chambre, le décalage radial de la sortie du diffuseur 3.

Claims

REVENDICATIONS
1. Fond de chambre (8) annulaire pour chambre de combustion (1) de turbomachine d'aéronef,
le fond de chambre (8) comprenant des perforations (26) d'alimentation en air de refroidissement du fond de chambre (8), au moins une pluralité des perforations (26) présentant chacune une direction de sortie ayant au moins une composante tangentielle (T) relativement à un axe principal longitudinal (6) du fond de chambre (8) de manière à ce que l'air de refroidissement sortant de ces perforations (26) forme un flux giratoire de refroidissement autour de l'axe principal longitudinal (6), caractérisé en ce que les composantes tangentielles (T) de toutes les perforations d'alimentation en air de refroidissement (26) du fond de chambre (8) sont orientées dans un même sens.
2. Fond de chambre (8) selon l'une des revendications précédentes, caractérisé en ce qu'au moins une perforation (26) présente une direction de sortie ayant au moins une composante radiale (Rd) relativement à l'axe principal longitudinal (6) du fond de chambre (8).
3. Fond de chambre (8) selon l'une des revendications précédentes, caractérisé en ce que la densité des perforations (26) du fond de chambre (8) évolue selon une direction radiale.
4. Fond de chambre (8) selon l'une quelconque des revendications précédentes, caractérisé en ce que le flux giratoire de refroidissement autour de l'axe longitudinal (6) est circulaire sur au moins une partie d'une surface du fond de chambre (8).
5. Fond de chambre (8) selon l'une des revendications précédentes, caractérisé en ce que le fond de chambre (8) est configuré pour être exposé directement au rayonnement thermique de la zone primaire de combustion.
6. Chambre de combustion (1) de turbomachine comprenant un fond de chambre (8) selon l'une quelconque des revendications précédentes.
7. Chambre de combustion (1) selon la revendication précédente, caractérisée en ce qu'elle comprend un diffuseur (3) configuré pour approvisionner en air de refroidissement l'entrée des perforations (26), la sortie du diffuseur étant décalée radialement par rapport à un axe médian (32) du fond de chambre (8), et en ce qu'au moins une perforation (26) présente une direction de sortie ayant au moins une composante radiale (Rd) relativement à l'axe principal longitudinal (6) orientée vers un côté opposé à celui où se trouve la sortie du diffuseur (3).
8. Turbomachine comprenant un fond de chambre (8) de chambre de combustion (1) selon l'une quelconque des revendications précédentes.
9. Procédé de refroidissement d'un fond de chambre (8) selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comprend une étape de refroidissement du fond de chambre (8) par un flux giratoire autour de l'axe principal longitudinal (6) du fond de chambre (8).
PCT/FR2013/052325 2012-10-02 2013-10-01 Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire WO2014053760A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259342 2012-10-02
FR1259342A FR2996284B1 (fr) 2012-10-02 2012-10-02 Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire

Publications (1)

Publication Number Publication Date
WO2014053760A1 true WO2014053760A1 (fr) 2014-04-10

Family

ID=47428684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052325 WO2014053760A1 (fr) 2012-10-02 2013-10-01 Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire

Country Status (2)

Country Link
FR (1) FR2996284B1 (fr)
WO (1) WO2014053760A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854666A1 (fr) 2003-05-09 2004-11-12 Cismac Electronique Turbines a deux helices complementaires pouvant s'inserer sur une canalisation sous pression transportant un fluide non homogene ou a debit tres variable
FR2856466A1 (fr) 2003-06-20 2004-12-24 Snecma Moteurs Dispositif d'etancheite de bougie non soude sur la paroi de chambre
US6955053B1 (en) * 2002-07-01 2005-10-18 Hamilton Sundstrand Corporation Pyrospin combuster
US20060042263A1 (en) 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Combustor and method
US20060272335A1 (en) * 2005-06-07 2006-12-07 Honeywell International, Inc. Advanced effusion cooling schemes for combustor domes
FR2955374A1 (fr) * 2010-01-15 2011-07-22 Turbomeca Chambre de combustion multi-percee a ecoulements tangentiels contre giratoires
FR2958013A1 (fr) 2010-03-26 2011-09-30 Snecma Chambre de combustion de turbomachine a compresseur centrifuge sans deflecteur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955053B1 (en) * 2002-07-01 2005-10-18 Hamilton Sundstrand Corporation Pyrospin combuster
FR2854666A1 (fr) 2003-05-09 2004-11-12 Cismac Electronique Turbines a deux helices complementaires pouvant s'inserer sur une canalisation sous pression transportant un fluide non homogene ou a debit tres variable
FR2856466A1 (fr) 2003-06-20 2004-12-24 Snecma Moteurs Dispositif d'etancheite de bougie non soude sur la paroi de chambre
US20060042263A1 (en) 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Combustor and method
US20060272335A1 (en) * 2005-06-07 2006-12-07 Honeywell International, Inc. Advanced effusion cooling schemes for combustor domes
FR2955374A1 (fr) * 2010-01-15 2011-07-22 Turbomeca Chambre de combustion multi-percee a ecoulements tangentiels contre giratoires
FR2958013A1 (fr) 2010-03-26 2011-09-30 Snecma Chambre de combustion de turbomachine a compresseur centrifuge sans deflecteur

Also Published As

Publication number Publication date
FR2996284B1 (fr) 2019-03-15
FR2996284A1 (fr) 2014-04-04

Similar Documents

Publication Publication Date Title
CA2535304C (fr) Carenage de chambre de combustion de turbomachine
EP1818613B1 (fr) Chambre de combustion d'une turbomachine
EP2678610B1 (fr) Chambre annulaire de combustion de turbomachine comprenant des orifices de dilution ameliores
FR2929323A1 (fr) Procede de refroidissement d'une piece de turbine et piece de turbine correspondante
EP3463737B1 (fr) Carter d'echappement de turbomachine et son procede de fabrication
EP1634021B1 (fr) Chambre de combustion annulaire de turbomachine
EP2683930B1 (fr) Injecteur pour le mélange de deux ergols comprenant au moins un élément d'injection a structure tricoaxiale
CA2754419C (fr) Chambre de combustion de turbomachine comprenant des moyens ameliores d'alimentation en air
FR2964725A1 (fr) Carenage aerodynamique pour fond de chambre de combustion
FR2856468A1 (fr) Chambre de combustion annulaire de turbomachine
EP1930659A1 (fr) Chambre de combustion de turboréacteur
FR2956724A1 (fr) Systeme d'injection de carburant pour une chambre de combustion de turbomachine
EP3794218B1 (fr) Aube de turbine comprenant un système passif de réduction des phénomènes tourbillonaires dans un flux d'air qui la parcourt
FR3029271A1 (fr) Paroi annulaire de deflection pour systeme d'injection de chambre de combustion de turbomachine offrant une zone etendue d'atomisation de carburant
WO2014053760A1 (fr) Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire
FR3087847A1 (fr) Melangeur a lobes favorisant le melange de flux confluents
FR3017928B1 (fr) Turbomachine a bride externe de chambre de combustion de type "sandwich"
EP3301258B1 (fr) Disque de rotor et rotor de turbomachine comportant un tel disque
EP3847342B1 (fr) Boîtier d'alimentation en air sous pression d'un dispositif de refroidissement par jets d'air
FR2893389A1 (fr) Paroi transversale de chambre de combustion munie de trous de multiperforation
EP3359880B1 (fr) Chambre de combustion annulaire pour turbomachine
FR2999277A1 (fr) Paroi annulaire de chambre de combustion en aval d'un compresseur centrifuge
FR3070751A1 (fr) Chambre de combustion comportant une repartition amelioree de trous de refroidissement
FR2972368A1 (fr) Injecteur pour le melange de deux ergols, comprenant au moins un element d'injection a structure tricoaxiale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785511

Country of ref document: EP

Kind code of ref document: A1