WO2014053751A1 - Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform - Google Patents
Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform Download PDFInfo
- Publication number
- WO2014053751A1 WO2014053751A1 PCT/FR2013/052302 FR2013052302W WO2014053751A1 WO 2014053751 A1 WO2014053751 A1 WO 2014053751A1 FR 2013052302 W FR2013052302 W FR 2013052302W WO 2014053751 A1 WO2014053751 A1 WO 2014053751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preform
- ceramic
- composite material
- powder
- ceramic powder
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B19/00—Machines or methods for applying the material to surfaces to form a permanent layer thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/24—Producing shaped prefabricated articles from the material by injection moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0068—Embedding lost cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/02—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
- B28B3/025—Hot pressing, e.g. of ceramic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/563—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5024—Silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
- B29B11/16—Making preforms characterised by structure or composition comprising fillers or reinforcement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
- C04B2235/3481—Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/341—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/348—Zirconia, hafnia, zirconates or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/361—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/38—Fiber or whisker reinforced
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/84—Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
Definitions
- the present invention relates to aerodynamic parts made of composite material comprising a fiber reinforcement densified by a matrix.
- parts with aerodynamic shapes are usually made of metal alloys by a foundry process and local machining.
- a solution for producing the blades consists of using composite materials, such as, for example, ceramic matrix composite materials.
- the ceramic matrix composite materials are part of so-called thermostructural composite materials, that is to say composite materials having good mechanical properties and ability to retain these properties at high temperature.
- parts, such as blades, made of CMC have a significant weight gain compared to the same parts made with the usual metal alloys.
- the CMC parts are formed by a fibrous reinforcement of refractory fibers (carbon or ceramic) which is densified by a ceramic matrix, in particular carbide, nitride, refractory oxide, ....
- Typical examples of CMC materials are C-SiC materials (carbon fiber reinforcement and silicon carbide matrix), SiC-SiC materials and CC / SiC materials (mixed carbon / silicon carbide matrix). The manufacture of CMC composite parts is well known.
- CMC parts have a wavy and relatively rough surface appearance that may be incompatible with the aerodynamic performance required for parts such as blades.
- the surface corrugation is due to the fibrous reinforcement while the roughness is related to the ceramic matrix in "seal-coat", in particular when it is deposited by chemical vapor infiltration (CVI).
- parts made of metal alloys and associated processes have a smooth surface appearance with a very low roughness (of the order of 1 pm).
- a first solution consists in carrying out a complete machining of the profile of the part in order to limit the ripple related to the texture.
- this operation only partially solves the problem of ripple and is not compatible with a series production of parts.
- the machining leads to the cutting of the reinforcing wire on the surface and consequently reduces the mechanical performance of the part.
- Another solution for improving the surface condition of a composite material part consists in depositing on the surface thereof a coating fulfilling the following conditions:
- This solution is implemented by applying to the brush on the surface of the composite material part a suspension based on ceramic powder, for example SiC, and an organosilicon binder in order to form a ceramic coating on the surface of the piece.
- a suspension based on ceramic powder for example SiC
- an organosilicon binder in order to form a ceramic coating on the surface of the piece.
- the present invention therefore aims to provide a method for manufacturing, industrially and economically, parts incorporating the mechanical properties of composite materials while respecting the requirements of shape and aerodynamic performance.
- the invention proposes a method for manufacturing an aerodynamic part comprising:
- the ceramic powder has a thermal expansion coefficient of not more than ⁇ 4.10 "6 .K " 1 with respect to the thermal expansion coefficient of the composite material of the preform, said ceramic powder further having a particle size of between 0 , 25 ⁇ and 25 Mm.
- the method of the invention makes it possible to obtain an aerodynamic part which comprises both the necessary structural functions thanks to its preform made of composite material and the aerodynamic functions thanks to the controlled surface state of the ceramic envelope formed on the preform .
- the overmoulding of the ceramic skin on the preform made of composite material of dimensions smaller than the final dimensions of the part to be produced makes it possible, in a minimum of steps that can be implemented industrially, to produce a so-called "near net shape" Of the piece, that is to say, obtaining, immediately after overmolding the ceramic casing, a piece to the shape and final dimensions required (no resumption of the necessary part).
- the use of a ceramic powder having a coefficient of thermal expansion which is sufficiently close to that of the composite material of the part as well as a particle size determined as above makes it possible to directly form the ceramic envelope on the material composite of the preform.
- the ceramic powder has a particle size between a minimum value (0.25 pm) and a maximum value (25 pm).
- a stabilization of the ceramic powder by flash sintering below the minimum value of determined particle size, premature re-agglomeration phenomena can occur and lead to the formation of particles of particle size that are too high to obtain ceramic shell with a satisfactory structure and surface finish.
- the process of the invention it is therefore possible to directly form a ceramic envelope on the composite material of the preform, which represents an important advantage, particularly in the case of the formation of such an envelope by overmoulding .
- one or more attachment or adaptation sub-layers are generally used.
- the use of one or more sub-layers is problematic because of the variability of the surface condition of the composite material preform.
- the final thickness of the coating which is between the outer surface of the preform and the inner surface of the mold, may be less than the thickness of the, or sub-layers, not allowing the formation of a ceramic envelope in these areas.
- the stabilization of the ceramic powder is carried out by flash sintering.
- a ceramic powder composition having a maximum flash sintering temperature greater than 250 ° C. is preferably chosen at the temperature of thermal stability of the fibers of the preform made of composite material.
- the interposition of the ceramic powder is obtained by mixing said ceramic powder with a binder and injecting the mixture between the preform and the inner surface of the mold, stabilizing the powder being made by chemical vapor infiltration of silicon carbide.
- the binder can be chosen in particular from at least one organosilicon compound and a fugitive resin.
- Ceramic fibers may also be added to the binder and ceramic powder mixture.
- the ceramic powder comprises nanopowders.
- the preform is made of ceramic matrix composite material (CMC).
- CMC ceramic matrix composite material
- the aerodynamic part is a fixed or moving turbomachine blade.
- FIG. 1 is a perspective view of a turbomachine blade made from a process according to the invention
- FIG. 2 is a flowchart illustrating successive steps of modes of implementation of a method according to the invention
- FIG. 3 is a perspective view of the composite material preform of the blade of FIG. 1;
- FIG. 4 is a three-dimensional view showing the surface state of a portion of a CMC part without additional surface treatment
- FIG. 5 is a curve for measuring the dimensional variations of the part portion of FIG. 4;
- FIG. 6 is a curve for measuring the dimensional variations on the surface of a metallic material used for producing aeronautical motor blades
- FIGS. 7A and 7B are perspective views showing the overmoulding of a ceramic envelope on the preform of FIG. 3 by flash sintering
- FIGS. 8A and 8B are photographs of a fiber preform on which a ceramic envelope has been overmolded according to a process of the invention
- FIG. 9 is a flowchart illustrating successive steps of modes of implementation of another method according to the invention.
- FIGS. 10 and 11 show results obtained after the formation of a ceramic envelope made by overmolding a ceramic powder, the powder respectively having a particle size outside and within the range of particle size defined in FIG. invention
- FIGS. 12 and 13 show results obtained after the formation of a ceramic envelope made by overmolding a ceramic powder, the powder respectively having a particle size outside and within the range of particle size defined in FIG. invention
- each aerodynamic part is made from a composite material preform (fiber reinforcement densified by a matrix) having dimensions smaller than those of the part to be produced and covered by a ceramic envelope having the final dimensions of the aerodynamic part.
- the ceramic casing is obtained by molding and stabilizing / densifying a ceramic powder around the preform of the part.
- ceramic powder is meant here a powder containing at least one or more constituents of the ceramic of the envelope to be formed on the preform.
- the ceramic powder may be further mixed with other elements in particular in the form of grains, liquid or fibers.
- FIG. 1 illustrates a vane 100 of a low pressure turbine (BP) impeller which comprises a blade 120 and a foot 130 formed by a portion of greater thickness, for example with a bulbous section, extended by a stilt 132.
- the blade 120 extends longitudinally between its foot 130 and its top 121 and has a cross section a curved profile of variable thickness defining two faces 122 and 123, respectively corresponding to the extrados and intrados of the blade 120 and each connecting the leading edge 120a and the trailing edge 120b of the latter.
- the blade 120 further comprises a blade platform 140 and a blade root 160.
- the blade 100 is formed of a preform 300 made of composite material, that is to say comprising a fiber reinforcement densified by a matrix, the preform 300 being further covered by a ceramic casing 150 defining the exact shape and dimensions of the blade.
- a method of manufacturing the blade of Figure 1 according to the invention comprises the following steps.
- the manufacture of the blade begins with the provision of a fibrous structure from which will be formed a composite material preform whose shape is close to that of the blade to be manufactured but whose dimensions are smaller than the final dimensions of the blade. dawn to achieve (step 10).
- the fibrous structure can be in various forms, such as:
- UD Unidirectional web
- nD multidirectional webs
- the fibers constituting the fibrous structure are refractory fibers, that is to say ceramic fibers, for example silicon carbide (SiC), carbon fibers or even fibers made of a refractory oxide, for example alumina (Al2O3).
- ceramic fibers for example silicon carbide (SiC)
- carbon fibers or even fibers made of a refractory oxide, for example alumina (Al2O3).
- the fibrous texture is produced by three-dimensional weaving or multi-layer in one piece of silicon carbide son such as in particular described in WO 2010/061140 and whose contents are incorporated herein by reference.
- the fibrous texture is shaped and consolidated by impregnation of the latter with a liquid composition containing a ceramic precursor consolidation resin (step 20).
- the fibrous texture is immersed in a bath containing the resin and usually a solvent thereof. After draining, drying is carried out in an oven. The drying may be accompanied by a pre-crosslinking or partial crosslinking of the resin. Such pre-crosslinking providing additional stiffness, it must, if it is performed, remain limited to maintain sufficient deformability of the fibrous texture.
- impregnation techniques such as preparing a prepreg by passing the fibrous texture in a continuous impregnator, impregnation by infusion, or impregnation by RTM ("Resin Transfer Molding").
- the consolidation resin is chosen to leave, after pyrolysis, a ceramic residue sufficient to ensure consolidation of the fibrous preform made thereafter.
- a ceramic precursor resin may be, for example, a polycarbosilane precursor resin of silicon carbide (SiC), or a polysiloxane resin precursor of SiCO, or a polyborocarbosilazane resin precursor of SiCNB, or a polysilazane resin (SiCN).
- the shaping of the fibrous preform is preferably accompanied by a compacting of the fibrous structure in order to increase the volume content of fibers in the composite material of the part to be produced.
- the crosslinking of the resin is performed, or completed if there has been pre-crosslinking, the preform being in a tool.
- the consolidation is completed by a heat treatment of pyrolysis of the resin.
- the pyrolysis is carried out at a temperature of, for example, about 900 ° C to 1000 ° C.
- Consolidation can also be achieved by chemical vapor infiltration (CVI).
- CVI chemical vapor infiltration
- step 30 the densification of the fibrous preform by a ceramic matrix is continued (step 30).
- the densification is advantageously carried out by chemical vapor infiltration (CVI), the parameters of the CVI process and the nature of the reaction gas phase being adapted to the nature of the matrix to be formed. It is thus possible to chain in the same oven the pyrolysis operations of the consolidation and densification resin.
- CVI chemical vapor infiltration
- the ceramic matrix formed by CVI may be an SiC matrix, or an at least partially self-healing matrix, such as a silicon-boron-carbon matrix (Si-BC) or a boron carbide (B 4 C) matrix, or again a sequenced matrix with alternate matrix phases in non-healing ceramics and healing ceramics.
- Si-BC silicon-boron-carbon matrix
- B 4 C boron carbide
- the ceramic matrix may be deposited in several successive infiltration cycles with between each cycle a machining operation to reopen the porosity of the surface material and facilitate the deposition of the matrix in the fibrous reinforcement.
- the preform 300 of CMC composite material (fibrous reinforcement densified by a matrix at least partially ceramic) with a blade preform portion 320, a foot preform portion 330 (with stilt preform), a platform preform portion 340 and a blade bead preform portion 350.
- the preform 300 has dimensions smaller than that of the blade 100 of FIG. 1 to be produced.
- FIG. 4 shows the surface state of a portion of a CMC part made from a multilayer fibrous texture of three-dimensional weaving of SiC fibers (Guipex® base satin of 8) consolidated, shaped and densified following the method described above.
- the piece has on the surface both corrugations of more than 200 ⁇ m in amplitude and a roughness level of the order of 5 ⁇ m.
- Such a surface irregularity can not possibly allow to use the room as such for aerodynamic applications.
- Figure 6 shows a measurement of the surface condition of a blade of a low-pressure stage of an aircraft engine, the latter having been made of metallic material. Note that this blade has no surface ripple and has a mean level of roughness of the order of 1 pm.
- a ceramic casing is formed around the preform made of composite material.
- the ceramic casing is made by flash sintering of a powder.
- the preform made of composite material 300 is placed in a sintering conductive mold having internal dimensions and shape corresponding to those of the blade to be produced with interposition in the space between the preform 300 and the inner surface of the mold of a ceramic powder (steps 40 and 50). More specifically, the composite material preform 300 is first placed in a first half 401 of the sintering mold 400 on a bed of ceramic powder 50 deposited on the inner surface 401a of the first half 401 of the mold (FIG. 7A), then is covered on its exposed face of the same powder 50 before closing the second half 402 of the mold 400 ( Figure 7B).
- the inner surfaces 401a and 402a of the mold define, once the two halves 401 and 402 of the mold together, dimensions and a shape corresponding to those of the blade to be manufactured.
- the ceramic powder 50 comprises one or more constituents (mixture of powders) of the ceramic of the envelope to be produced and possibly other elements also in the form of powder such as sintering agents.
- the powder 50 is then stabilized / densified by "flash sintering” or “SPS" ("Spark Plasma Sintering").
- flash sintering or "SPS"
- SPS Standard Plasma Sintering
- the difference between conventional hot pressing (standard sintering) and flash sintering is that the heat source is not external but that an electric current (continuous - continuous pulsed - or alternating) applied via electrodes passes through the conductive mold.
- the “flash sintering” consists of a heat treatment under pressure with passage of an electric current that consolidates the envelope by forming bonds between grains without total melting thereof. This solder made by diffusion of material, is accompanied by a densification, that is to say a decrease in the porosity rate and hardening which gives cohesion to the envelope shaped.
- the attachment of the ceramic envelope on the preform made of composite material is ensured by the chemical reactions between the oxides formed during sintering and the material of the preform.
- a device for implementing this flash sintering is in particular marketed by Sumitomo Electric Industries and makes it possible to subject the powder 50 to pulses (3.3 ms) of direct electrical current (typically 0-10 V, 1-5 kA ) while applying a pressure of several tens of MPa (up to 150 MPa) and this in a range of temperatures ranging from room temperature up to 2000 ° C. Flash sintering is usually done under vacuum but it is possible to work under an inert atmosphere (nitrogen, argon).
- the same sintering cycle can be used as a reference for the flash sintering densification of the various compositions of the refractory material according to the invention, only the final sintering temperature is modified as a function of the refraction of the components to be sintered.
- the temperature parameters chosen for the sintering cycle are, for example: a rise at 600 ° C. in 3 minutes, followed by a rise to the sintering temperature with a speed of 100 ° C./min, then a plateau at this temperature for 5 minutes and finally a descent to 600 ° C in 30 minutes and then stop heating.
- a pressure of several ten Pa is applied gradually from the beginning of the temperature rise to 600 ° C to close the majority of the remaining pores and avoid densification heterogeneity in the envelope after sintering.
- a generally dense material can be obtained, for which the contact between the grains is optimal.
- the controlled cooling allows a relaxation of residual stresses of thermal origin and to avoid the presence of cracks and microcracks in the material.
- the molds used are preferably graphite and are separated from the powder by a graphite sheet to prevent sticking.
- Flash sintering reduces the sintering temperature by one to several hundreds of degrees compared to standard sintering (conventional hot pressing).
- the ceramic powder used for forming the envelope has a particle size between 0.25 ⁇ and 25 pm. Indeed, a too fine particle size can cause premature reagglomeration phenomena which lead to the formation of particle size too large to obtain a ceramic envelope with a satisfactory structure and surface condition.
- the contact surface between the powder grains is too small to ensure good cohesion of the coating formed.
- the thermal budget ie temperature / time pair
- the thermal stability temperature of the fibers (thermostability) of the preform made of composite material which can lead to thermal degradation of the fibers considerably reducing their mechanical properties.
- composition of the powder intended to form the ceramic envelope around the fiber preform is also chosen so as to have a sintering temperature compatible with the thermal stability temperature of the fibers (thermostability) of the composite material preform.
- a powder composition which has a coefficient of thermal expansion close to that of the composite material of the preform, namely, in accordance with the invention, a powder having a coefficient of thermal expansion varying at most from 4.10 to 6 K “. 1 relative to the coefficient of thermal expansion of the composite material of the preform.
- a powder having a coefficient of thermal expansion varying at most from 1.5 ⁇ 10 -6 K -1 with respect to the thermal expansion coefficient of the composite material of the preform is preferably chosen. that is, a powder having a coefficient of thermal expansion of between 3.10 "6 K " 1 and 6.10 "6 K “ 1 .
- Table I gives examples of powder compositions that can be used for making a ceramic shell by flash sintering, the table further indicating the flash sintering temperatures of these compositions as well as compatible SiC fiber types. with these flash sintering temperatures.
- the powder compositions indicated in Table I also have a coefficient of thermal expansion which is relatively close to that of the CMC material of the preform.
- a blade is obtained such that the blade 100 shown in FIG. 1 comprises a core of composite material corresponding to the preform made of composite material 300 described above and an outer ceramic shell 150 defining the shape and the final dimensions of dawn.
- FIGS. 8A and 8B show a part 200 corresponding to the blade portion of a blade and whose fibrous preform 210 has been covered by a ceramic casing 220 made by flash sintering of a Si / Mullite / BSAS powder as explained above.
- FIGS. 10 and 11 show the result obtained after flash sintering of a layer of yttrium disilicate powder (Y2S12O7) produced at 1200 ° C. on a substrate made of CMC composite material, the powder used. to form the coating of Figure 10 having a particle size (D50) of 30 ⁇ m while the powder used to form the coating of Figure 11 has a particle size (D50) of 1 ⁇ m.
- Y2S12O7 yttrium disilicate powder
- the formed coating exhibits a continuous decohesion with the CMC substrate which results in poor adhesion of the coating to the substrate. Cracks are also present in the coating. This decohesion and these cracks are due mainly to the lack of contact surface between the grains because of the choice of a particle size too high (greater than 25 pm).
- the coating formed in FIG. 10 with a powder having a particle size of 1 ⁇ m, i.e. between 0.25 ⁇ m and 25 ⁇ m, does not show any decohesion with the substrate or cracks.
- FIGS. 12 and 13 show the result obtained after flash sintering of a layer of yttrium disilicate powder produced at 1200 ° C. on a substrate made of CMC composite material, the powder used to form the coating of Figure 10 having a particle size (D50) of 0.2 ⁇ m while the powder used to form the coating of Figure 11 has a particle size (D50) of 0.5 ⁇ m.
- the coating formed has a continuous decohesion with the CMC substrate due to premature re-agglomeration phenomena of the grains during the sintering of grains of a size that is too small (less than 0 , 25 ⁇ m).
- the coating formed in FIG. 13 with a powder having a particle size of 0.5 ⁇ m, that is to say between 0.25 m and 25 ⁇ does not show any decohesion with the substrate nor cracks.
- a composite material preform having dimensions smaller than those of the aerodynamic part to be formed in the same manner as described hereinabove is manufactured first. before, namely formation of a fibrous texture (step 110), consolidation and shaping of the fibrous texture (step 120) and densification of the preform (step 130).
- the composite material preform is placed in a mold whose inner surface corresponds to the shape and the final dimensions of the aerodynamic part to be produced (step 130), the ceramic powder intended to form the envelope ceramic is not yet present in the mold. Before it is introduced into the mold, the ceramic powder is premixed with a binder (step 140).
- the mixture is then injected into the mold in order to fill the space between the preform made of composite material and the internal surface of the mold (step 150).
- the piece is held in the center of the mold preferably at sacrificial portions or participating in the aerodynamics of the piece as the end portions.
- the binder is crosslinked (step 160).
- the part is then demolded and the ceramic casing formed on the preform by chemical vapor infiltration (CVI) of SiC (step 170) is stabilized, this CVI also making it possible to grip the ceramic envelope on the preform made of composite material.
- CVI chemical vapor infiltration
- a powder composition having a coefficient of thermal expansion varying at most from 4.10 "6 K “ 1 with respect to the thermal expansion coefficient of the composite material of the preform, that is to say between 0, is chosen. , 5.10 "6 K “ 1 and 8.5 ⁇ 10 " 6 K “ 1 , and a particle size of between 0.25 ⁇ and 25 ⁇ m. If the powder has a particle size less than 0.25 ⁇ m, it then becomes difficult for the infiltration gases of the CVI to penetrate into the powder layer and thus ensure good stabilization of the latter. In addition, if the particle size of the powder exceeds 25 ⁇ , there is no more surface area. sufficient contact between the grains to ensure satisfactory cohesion of the ceramic shell formed.
- the binder used may in particular be a liquid organosilicon liquid precursor compound such as a polycarbosilane resin (PCS) or polysilazane (Ceraset® PSZ20), or a thermoplastic resin such as polyvinyl acetate (PVA) or polyvinyl of butyral (PVB).
- a liquid organosilicon liquid precursor compound such as a polycarbosilane resin (PCS) or polysilazane (Ceraset® PSZ20), or a thermoplastic resin such as polyvinyl acetate (PVA) or polyvinyl of butyral (PVB).
- a mat of ceramic fibers for example of SiC fibers, is placed around the preform made of composite material before the injection of the ceramic-binder powder mixture into the mold in order to reinforce the mechanical strength of the envelope ceramic formed.
- short ceramic fibers for example short SiC fibers, can be introduced into the ceramic-binder powder mixture in order to reinforce the ceramic of the envelope.
- the ceramic powders used to produce the ceramic powder-injected binder mixture may be chosen in particular from the powder compositions indicated in Table I above.
- the ceramic of the envelope is further selected according to the conditions of use of the aerodynamic part. In particular, it must be able to withstand the operating temperatures of the room and have a service life at least equal to that defined for the room. For this purpose, a ceramic having a melting point higher than the maximum temperature of use of the part is chosen. In the case for example of parts constituting gas turbine blades, the maximum temperatures encountered by these parts can reach 1100 ° C. In this case, the ceramic of the envelope of the blade has a melting temperature greater than or equal to 1300 ° C.
- a particle size will be selected adapted to the final surface state of the target part. Powderes whose grain size is less than 20 ⁇ m are preferably chosen. Nanopowders may also be used because they reduce the sintering temperature.
- an aerodynamic part which has very good mechanical and structural characteristics conferred by the composite material preform and a surface state comparable to that obtained with metallic materials, and this without final machining because the part has its shape and final dimensions immediately after overmoulding of the cylindrical envelope.
- the fibers of the fibrous reinforcement of the preform made of composite material of the part may be of a material other than a ceramic, for example carbon
- the matrix may be made of a material other than than a ceramic, for example carbon or a resin.
- the aerodynamic part preform according to the invention may in particular be made of ceramic matrix composite material (CMC) which is a material formed of a carbon fiber or ceramic reinforcement densified by a matrix at least partially ceramic such as carbon-carbon / silicon carbide (CC / SiC), carbon-silicon carbide (C / SiC), silicon carbide-silicon carbide (SiC / SiC).
- CMC ceramic matrix composite material
- the preform may also be made of carbon-carbon (C / C) composite material which, in known manner, is a material formed of a carbon fiber reinforcement densified by a carbon matrix.
- C / C carbon-carbon
- the invention is of course also applicable to the manufacture of blades made of organic matrix composite material (CMO) such as that obtained, for example, from a high performance epoxy resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A method for producing an aerodynamic part comprising: - producing a preform (300) from a composite material made of a fibrous structure densified by a matrix, said preform having dimensions smaller than those of the aerodynamic part to be produced, - placing the preform made from composite material into a mould (400) having the same internal dimensions and shape as those of the aerodynamic part to be produced, - interposing a ceramic powder (50) between the preform made from composite material and the internal surface (402a) of the mould, said ceramic powder having a thermal expansion coefficient varying, at most, by 4.10"6.K_1 relative to the thermal expansion coefficient of the composite material of the preform, said ceramic powder further having a particle size of between 0.25 µm and 25 µm, - stabilising said powder in such a way as to form, around the preform made from composite material, a ceramic shell having the dimensions and the shape of the aerodynamic part to be produced.
Description
Procédé de fabrication d'une pièce aérodynamique par surmoulage d'une enveloppe céramique sur une préforme composite Arrière-plan de l'invention Method of manufacturing an aerodynamic part by overmoulding a ceramic envelope on a composite preform Background of the invention
La présente invention concerne les pièces aérodynamiques réalisées en matériau composite comprenant un renfort fibreux densifié par une matrice. The present invention relates to aerodynamic parts made of composite material comprising a fiber reinforcement densified by a matrix.
Dans les moteurs aéronautiques et en particulier dans les turbines à gaz de tels moteurs, les pièces présentant des formes aérodynamiques, comme les aubes, sont habituellement réalisées en alliages métalliques selon un procédé de fonderie et des usinages locaux. In aeronautical engines and in particular in the gas turbines of such engines, parts with aerodynamic shapes, such as blades, are usually made of metal alloys by a foundry process and local machining.
Afin de réduire de façon significative la masse et admettre des températures de fonctionnement plus élevées que celles autorisées avec les alliages métalliques actuels, une solution pour la réalisation des aubes consiste à utiliser des matériaux composites, comme par exemple des matériaux composites à matrice céramique. In order to significantly reduce the mass and to admit operating temperatures higher than those permitted with current metal alloys, a solution for producing the blades consists of using composite materials, such as, for example, ceramic matrix composite materials.
En effet, les matériaux composites à matrice céramique (CMC) font partie des matériaux composites dits thermostructuraux, c'est-à-dire des matériaux composites ayant des bonnes propriétés mécaniques et une capacité à conserver ces propriétés à température élevée. En outre, des pièces, telles que des aubes, réalisées en CMC présentent un gain de masse significatif par rapport à de mêmes pièces réalisées avec les alliages métalliques habituels. Indeed, the ceramic matrix composite materials (CMC) are part of so-called thermostructural composite materials, that is to say composite materials having good mechanical properties and ability to retain these properties at high temperature. In addition, parts, such as blades, made of CMC have a significant weight gain compared to the same parts made with the usual metal alloys.
De façon bien connue, les pièces en CMC sont formées par un renfort fibreux en fibres réfractaires (carbone ou céramique) qui est densifié par une matrice céramique, notamment carbure, nitrure, oxyde réfractaire,.... Des exemples typiques de matériaux CMC sont les matériaux C-SiC (renfort en fibres de carbone et matrice en carbure de silicium), les matériaux SiC-SiC et les matériaux C-C/SiC (matrice mixte carbone/carbure de silicium). La fabrication de pièces en composite CMC est bien connue. In a well known manner, the CMC parts are formed by a fibrous reinforcement of refractory fibers (carbon or ceramic) which is densified by a ceramic matrix, in particular carbide, nitride, refractory oxide, .... Typical examples of CMC materials are C-SiC materials (carbon fiber reinforcement and silicon carbide matrix), SiC-SiC materials and CC / SiC materials (mixed carbon / silicon carbide matrix). The manufacture of CMC composite parts is well known.
Cependant, les pièces en CMC présentent un aspect de surface ondulé et relativement rugueux qui peut s'avérer incompatible avec les performances aérodynamiques requises pour des pièces telles que des
aubes. L'ondulation de surface est due au renfort fibreux tandis que la rugosité est liée à la matrice céramique en "seal-coat", en particulier lorsque celle-ci est déposée par infiltration chimique en phase vapeur (CVI). However, CMC parts have a wavy and relatively rough surface appearance that may be incompatible with the aerodynamic performance required for parts such as blades. The surface corrugation is due to the fibrous reinforcement while the roughness is related to the ceramic matrix in "seal-coat", in particular when it is deposited by chemical vapor infiltration (CVI).
A l'inverse, les pièces réalisées en alliages métalliques et par les procédés associés présentent un aspect de surface lisse avec une rugosité très faible (de l'ordre de 1 pm). Conversely, parts made of metal alloys and associated processes have a smooth surface appearance with a very low roughness (of the order of 1 pm).
Afin d'améliorer l'état de surface des pièces réalisées en matériau composite, une première solution consiste à procéder à un usinage complet du profil de la pièce afin de limiter l'ondulation liée à la texture. Cependant, cette opération ne permet de résoudre que très partiellement le problème d'ondulation et n'est pas compatible avec une production série de pièces. En outre, l'usinage conduit à la coupure en surface de fils du renfort et réduit, par conséquent, les performances mécaniques de la pièce. In order to improve the surface condition of the parts made of composite material, a first solution consists in carrying out a complete machining of the profile of the part in order to limit the ripple related to the texture. However, this operation only partially solves the problem of ripple and is not compatible with a series production of parts. In addition, the machining leads to the cutting of the reinforcing wire on the surface and consequently reduces the mechanical performance of the part.
Une autre solution pour améliorer l'état de surface d'une pièce en matériau composite consiste à déposer sur la surface de celle-ci un revêtement remplissant les conditions suivantes : Another solution for improving the surface condition of a composite material part consists in depositing on the surface thereof a coating fulfilling the following conditions:
a) adhérence sur le matériau composite de la pièce, a) adhesion to the composite material of the part,
b) compatibilité avec le coefficient de dilatation thermique du matériau composite de la pièce, b) compatibility with the coefficient of thermal expansion of the composite material of the part,
c) stabilité en conditions d'utilisation, (c) stability under conditions of use,
d) température de mise en forme compatible avec la thermostabilité du matériau composite de la pièce. d) formatting temperature compatible with the thermostability of the composite material of the part.
Cette solution est mise œuvre en appliquant au pinceau à la surface de la pièce en matériau composite une suspension à base de poudre de céramique, par exemple du SiC, et d'un liant organosilicié afin de former un revêtement céramique sur la surface de la pièce. Cependant, si cette mise en œuvre est compatible avec les conditions énoncées ci- avant, son inconvénient majeur réside dans la complexité du procédé de mise en forme. En effet, l'application étant réalisée au pinceau, une étape de ponçage est nécessaire après la réticulation du liant afin de gommer les imperfections laissées lors de l'application du revêtement. Cette étape de ponçage s'avère particulièrement délicate sur des pièces non planes, nécessitant, à ce stade, de réaliser l'opération manuellement. En outre, afin de limiter la formation de bulles ou de craquelures, seul un dépôt fin
peut être appliqué. Ainsi, pour atteindre l'état de surface désiré, il peut s'avérer nécessaire de répéter plusieurs fois les séquences peinture/réticulation/ponçage (jusqu'à 5 fois). Enfin, afin d'assurer la cohésion du revêtement lors de son utilisation, il est nécessaire de stabiliser celui-ci, en réalisant, en dernier, une étape de densification par infiltration chimique en phase vapeur (CVI) de SiC qui permet de lier entre eux les grains de céramique. Un tel procédé de traitement de surface de pièce en CMC est décrit dans le document US 2006/0141154. This solution is implemented by applying to the brush on the surface of the composite material part a suspension based on ceramic powder, for example SiC, and an organosilicon binder in order to form a ceramic coating on the surface of the piece. . However, if this implementation is compatible with the conditions set out above, its major disadvantage lies in the complexity of the formatting process. Indeed, the application being carried out with a brush, a sanding step is necessary after the crosslinking of the binder in order to erase the imperfections left during the application of the coating. This sanding step is particularly difficult on non-planar parts, requiring, at this stage, to perform the operation manually. In addition, in order to limit the formation of bubbles or cracks, only a fine deposit can be applied. Thus, to reach the desired surface state, it may be necessary to repeat the paint / crosslinking / sanding sequences (up to 5 times) several times. Finally, in order to ensure cohesion of the coating during its use, it is necessary to stabilize it, by performing, last, a step of densification by chemical vapor infiltration (CVI) of SiC which allows to link between them the ceramic grains. Such a CMC part surface treatment method is described in US 2006/0141154.
Bien que ce procédé permette d'améliorer significativement l'état de surface d'une pièce en matériau composite en réduisant les ondulations et la rugosité de surface, la complexité de sa mise en œuvre entraîne une augmentation importante sur le coût et la durée de fabrication de la pièce. Although this method makes it possible to significantly improve the surface state of a composite material part by reducing the corrugations and the surface roughness, the complexity of its implementation causes a significant increase in the cost and the manufacturing time. of the room.
Obiet et résumé de l'invention Obiet and summary of the invention
La présente invention a, par conséquent, pour but de proposer un procédé permettant de fabriquer, de manière industrielle et économique, des pièces intégrant les propriétés mécaniques des matériaux composites tout en respectant les exigences de forme et de performances aérodynamiques. The present invention therefore aims to provide a method for manufacturing, industrially and economically, parts incorporating the mechanical properties of composite materials while respecting the requirements of shape and aerodynamic performance.
A cet effet, l'invention propose un procédé de fabrication d'une pièce aérodynamique comprenant : For this purpose, the invention proposes a method for manufacturing an aerodynamic part comprising:
- la réalisation d'une préforme en matériau composite à partir d'une structure fibreuse densifiée par une matrice, ladite préforme présentant des dimensions inférieures à celles de la pièce aérodynamique à réaliser, the production of a preform made of composite material from a fibrous structure densified by a matrix, said preform having dimensions smaller than those of the aerodynamic part to be produced,
- le placement de la préforme en matériau composite dans un moule présentant des dimensions et une forme internes correspondant à celles de la pièce aérodynamique à réaliser, placing the preform made of composite material in a mold having internal dimensions and shape corresponding to those of the aerodynamic part to be produced,
- l'interposition d'une poudre céramique entre la préforme en matériau composite et la surface interne du moule, the interposition of a ceramic powder between the preform made of composite material and the internal surface of the mold,
- la stabilisation de ladite poudre de manière à former autour de la préforme en matériau composite une enveloppe céramique aux dimensions et à la forme de la pièce aérodynamique à réaliser,
procédé dans lequel la poudre de céramique a un coefficient de dilatation thermique variant au plus de ± 4.10"6.K"1 par rapport au coefficient de dilatation thermique du matériau composite de la préforme, ladite poudre céramique présentant en outre une granulométrie comprise entre 0,25 μιη et 25 Mm. stabilizing said powder so as to form around the preform made of composite material a ceramic envelope with the dimensions and the shape of the aerodynamic part to be produced, a method in which the ceramic powder has a thermal expansion coefficient of not more than ± 4.10 "6 .K " 1 with respect to the thermal expansion coefficient of the composite material of the preform, said ceramic powder further having a particle size of between 0 , 25 μιη and 25 Mm.
Le procédé de l'invention permet d'obtenir une pièce aérodynamique qui comporte à la fois les fonctions structurales nécessaires grâce à sa préforme en matériau composite et les fonctions aérodynamiques grâce à l'état de surface maîtrisé de l'enveloppe céramique formée sur la préforme. The method of the invention makes it possible to obtain an aerodynamic part which comprises both the necessary structural functions thanks to its preform made of composite material and the aerodynamic functions thanks to the controlled surface state of the ceramic envelope formed on the preform .
En outre, le surmoulage de la peau céramique sur la préforme en matériau composite de dimensions inférieures aux dimensions finales de la pièce à réaliser permet de réaliser, en un minimum d'étapes pouvant être mises en uvre industriellement, une fabrication dite « near net shape » de la pièce, c'est-à-dire l'obtention, immédiatement après le surmoulage de l'enveloppe céramique, d'une pièce à la forme et aux dimensions finales requises (pas de reprise de la pièce nécessaire). In addition, the overmoulding of the ceramic skin on the preform made of composite material of dimensions smaller than the final dimensions of the part to be produced makes it possible, in a minimum of steps that can be implemented industrially, to produce a so-called "near net shape" Of the piece, that is to say, obtaining, immediately after overmolding the ceramic casing, a piece to the shape and final dimensions required (no resumption of the necessary part).
Par ailleurs, l'utilisation d'une poudre céramique ayant un coefficient de dilatation thermique qui est suffisamment proche de celui du matériau composite de la pièce ainsi qu'une granulométrie déterminée comme ci-avant permet de former directement l'enveloppe céramique sur le matériau composite de la préforme. En effet, en outre d'un coefficient de dilatation thermique adapté, la poudre céramique présente une granulométrie comprise entre une valeur minimale (0,25 pm) et une valeur maximale (25 pm). Dans le cas d'une stabilisation de la poudre céramique par frittage flash, en-dessous de la valeur minimale de granulométrie déterminée, des phénomènes de ré-agglomérations prématurées peuvent se produire et conduire à la formation de particules de granulométrie trop élevée pour obtenir une enveloppe céramique avec une structure et un état de surface satisfaisants. Dans le cas d'une stabilisation par infiltration chimique en phase vapeur de carbure de silicium, si la poudre présente une granulométrie inférieure à celle déterminée dans l'invention, il devient difficile pour les gaz d'infiltration de pénétrer la poudre, ce qui risque d'empêcher une bonne stabilisation de cette dernière.
En outre, au-delà de la valeur de granulométrie maximale définie dans l'invention, la surface de contact entre les grains devient trop faible pour assurer une cohésion satisfaisante de l'enveloppe céramique formée. Dans le cas d'une stabilisation de la poudre céramique par frittage flash, une granulométrie trop élevée nécessite d'utiliser un budget thermique (couple température/durée) pour le frittage qui est incompatible avec le température de stabilité thermique des fibres du matériau composite de la préforme. Moreover, the use of a ceramic powder having a coefficient of thermal expansion which is sufficiently close to that of the composite material of the part as well as a particle size determined as above makes it possible to directly form the ceramic envelope on the material composite of the preform. Indeed, in addition to a suitable coefficient of thermal expansion, the ceramic powder has a particle size between a minimum value (0.25 pm) and a maximum value (25 pm). In the case of a stabilization of the ceramic powder by flash sintering, below the minimum value of determined particle size, premature re-agglomeration phenomena can occur and lead to the formation of particles of particle size that are too high to obtain ceramic shell with a satisfactory structure and surface finish. In the case of stabilization by chemical vapor infiltration of silicon carbide, if the powder has a particle size smaller than that determined in the invention, it becomes difficult for the infiltration gases to penetrate the powder, which risks to prevent a good stabilization of the latter. In addition, beyond the value of maximum particle size defined in the invention, the contact surface between the grains becomes too small to ensure a satisfactory cohesion of the ceramic envelope formed. In the case of a stabilization of the ceramic powder by flash sintering, a particle size that is too high requires the use of a thermal budget (temperature / time pair) for the sintering which is incompatible with the thermal stability temperature of the fibers of the composite material of FIG. the preform.
Grâce au procédé de l'invention, il est, par conséquent, possible de former directement une enveloppe céramique sur le matériau composite de la préforme, ce qui représente un avantage important en particulier dans le cas de la formation d'une telle enveloppe par surmoulage. En effet, afin d'assurer un bon accrochage du revêtement sur le substrat, une ou plusieurs sous-couches d'accrochage ou d'adaptation sont en général utilisées. Cependant, dans le cas du surmoulage, l'utilisation d'une ou plusieurs sous-couches est problématique en raison de la variabilité de l'état de surface de la préforme en matériau composite. En effet, il existe des risques de mise à nu de la ou les sous-couches à l'issue de l'opération de surmoulage car, dans certaines zones, l'épaisseur finale du revêtement, qui est comprise entre la surface externe de la préforme et la surface interne du moule, pourra être inférieure à l'épaisseur de la, ou les sous-couches, ne permettant pas la formation d'une enveloppe céramique dans ces zones. Thanks to the process of the invention, it is therefore possible to directly form a ceramic envelope on the composite material of the preform, which represents an important advantage, particularly in the case of the formation of such an envelope by overmoulding . Indeed, in order to ensure a good adhesion of the coating on the substrate, one or more attachment or adaptation sub-layers are generally used. However, in the case of overmolding, the use of one or more sub-layers is problematic because of the variability of the surface condition of the composite material preform. Indeed, there are risks of exposing the or the underlayments at the end of the overmolding operation because, in certain areas, the final thickness of the coating, which is between the outer surface of the preform and the inner surface of the mold, may be less than the thickness of the, or sub-layers, not allowing the formation of a ceramic envelope in these areas.
Selon un premier aspect du procédé de l'invention, la stabilisation de la poudre céramique est réalisée par frittage flash. Dans ce cas, on choisit de préférence une composition de poudre céramique ayant une température de frittage flash au maximum supérieure de 250°C à la température de stabilité thermique des fibres de la préforme en matériau composite. According to a first aspect of the process of the invention, the stabilization of the ceramic powder is carried out by flash sintering. In this case, a ceramic powder composition having a maximum flash sintering temperature greater than 250 ° C. is preferably chosen at the temperature of thermal stability of the fibers of the preform made of composite material.
Selon un deuxième aspect du procédé de l'invention, l'interposition de la poudre céramique est obtenue en réalisant un mélange de ladite poudre céramique avec un liant et en injectant le mélange entre la préforme et la surface interne du moule, la stabilisation de la poudre étant réalisée par infiltration chimique en phase vapeur de carbure de silicium.
Le liant peut être notamment choisi parmi au moins : un composé organosilicié et une résine fugitive. According to a second aspect of the process of the invention, the interposition of the ceramic powder is obtained by mixing said ceramic powder with a binder and injecting the mixture between the preform and the inner surface of the mold, stabilizing the powder being made by chemical vapor infiltration of silicon carbide. The binder can be chosen in particular from at least one organosilicon compound and a fugitive resin.
Afin de renforcer la résistance mécanique de l'enveloppe céramique, on peut en outre disposer un mat de fibres céramiques autour de la préforme fibreuse avant l'injection du mélange de liant et de poudre céramique. Des fibres céramiques peuvent être également ajoutées au mélange de liant et de poudre céramique. In order to reinforce the mechanical strength of the ceramic envelope, it is also possible to have a mat of ceramic fibers around the fiber preform before the injection of the binder and ceramic powder mixture. Ceramic fibers may also be added to the binder and ceramic powder mixture.
Selon une caractéristique particulière de l'invention, la poudre céramique comprend des nanopoudres. According to a particular characteristic of the invention, the ceramic powder comprises nanopowders.
Selon un autre caractéristique particulière de l'invention, la préforme est réalisée en matériau composite à matrice céramique (CMC). According to another particular characteristic of the invention, the preform is made of ceramic matrix composite material (CMC).
Selon un troisième aspect de l'invention, la pièce aérodynamique est une aube fixe ou mobile de turbomachine. According to a third aspect of the invention, the aerodynamic part is a fixed or moving turbomachine blade.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels : Other characteristics and advantages of the invention will emerge from the following description of particular embodiments of the invention, given by way of non-limiting examples, with reference to the appended drawings, in which:
- la figure 1 est une vue en perspective d'une aube de turbomachine fabriquée à partir d'un procédé conforme à l'invention, FIG. 1 is a perspective view of a turbomachine blade made from a process according to the invention,
- la figure 2 est un ordinogramme illustrant des étapes successives de modes de mise en œuvre d'un procédé conforme à l'invention, FIG. 2 is a flowchart illustrating successive steps of modes of implementation of a method according to the invention,
- la figure 3 est une vue en perspective de la préforme en matériau composite de l'aube de la figure 1, FIG. 3 is a perspective view of the composite material preform of the blade of FIG. 1;
- la figure 4 est vue tridimensionnelle montrant l'état de surface d'une portion d'une pièce en CMC sans traitement supplémentaire de surface, FIG. 4 is a three-dimensional view showing the surface state of a portion of a CMC part without additional surface treatment,
- la figure 5 est une courbe de mesure des variations dimensionnelles de la portion de pièce de la figure 4, FIG. 5 is a curve for measuring the dimensional variations of the part portion of FIG. 4;
- la figure 6 est une courbe de mesure des variations dimensionnelles à la surface d'un matériau métallique utilisé pour la réalisation d'aubes de moteur aéronautique,
- les figures 7A et 7B sont des vues en perspective montrant le surmoulage d'une enveloppe céramique sur la préforme de la figure 3 par frittage flash, FIG. 6 is a curve for measuring the dimensional variations on the surface of a metallic material used for producing aeronautical motor blades, FIGS. 7A and 7B are perspective views showing the overmoulding of a ceramic envelope on the preform of FIG. 3 by flash sintering,
- les figures 8A et 8B sont des photographies d'une préforme fibreuse sur laquelle une enveloppe céramique a été surmoulée suivant un procédé de l'invention, FIGS. 8A and 8B are photographs of a fiber preform on which a ceramic envelope has been overmolded according to a process of the invention,
- la figure 9 est un ordinogramme illustrant des étapes successives de modes de mise en œuvre d'un autre procédé conforme à l'invention, FIG. 9 is a flowchart illustrating successive steps of modes of implementation of another method according to the invention,
- les figures 10 et 11 montrent des résultats obtenus après la formation d'une enveloppe céramique réalisée par surmoulage d'une poudre de céramique, la poudre ayant respectivement une granulométrie en dehors et à l'intérieur de la plage de granulométrie définie dans l'invention, FIGS. 10 and 11 show results obtained after the formation of a ceramic envelope made by overmolding a ceramic powder, the powder respectively having a particle size outside and within the range of particle size defined in FIG. invention,
- les figures 12 et 13 montrent des résultats obtenus après la formation d'une enveloppe céramique réalisée par surmoulage d'une poudre de céramique, la poudre ayant respectivement une granulométrie en dehors et à l'intérieur de la plage de granulométrie définie dans l'invention FIGS. 12 and 13 show results obtained after the formation of a ceramic envelope made by overmolding a ceramic powder, the powder respectively having a particle size outside and within the range of particle size defined in FIG. invention
Description détaillée de modes de réalisation Detailed description of embodiments
La présente invention propose un procédé pour la fabrication de pièces aérodynamiques. Le procédé de l'invention concerne en particulier, mais non exclusivement, la fabrication d'aubes pour rotors ou roues fixes de turbines à gaz utilisées dans les moteurs aéronautiques ou turbines industrielles. Conformément à l'invention et comme décrit en détails ci- après, chaque pièce aérodynamique est réalisés à partir d'une préforme en matériau composite (renfort fibreux densifié par une matrice) présentant des dimensions inférieures à celles de la pièce à réaliser et recouverte par une enveloppe céramique présentant les dimensions finales de la pièce aérodynamique. L'enveloppe céramique est obtenue par moulage et stabilisation/densification d'une poudre céramique autour de la préforme de la pièce. Par « poudre céramique », on entend ici une poudre contenant au moins un ou plusieurs constituants de la céramique de
l'enveloppe à former sur la préforme. La poudre céramique pouvant être en outre mélangée avec d'autres éléments se présentant notamment sous forme de grains, de liquide ou de fibres. The present invention provides a method for the manufacture of aerodynamic parts. The method of the invention relates in particular, but not exclusively, to the manufacture of blades for rotors or fixed wheels of gas turbines used in aircraft engines or industrial turbines. According to the invention and as described in detail below, each aerodynamic part is made from a composite material preform (fiber reinforcement densified by a matrix) having dimensions smaller than those of the part to be produced and covered by a ceramic envelope having the final dimensions of the aerodynamic part. The ceramic casing is obtained by molding and stabilizing / densifying a ceramic powder around the preform of the part. By "ceramic powder" is meant here a powder containing at least one or more constituents of the ceramic of the envelope to be formed on the preform. The ceramic powder may be further mixed with other elements in particular in the form of grains, liquid or fibers.
La figure 1 illustre une aube 100 de roue mobile de turbine basse pression (BP) qui comprend une pale 120 et un pied 130 formé par une partie de plus forte épaisseur, par exemple à section en forme de bulbe, prolongé par une échasse 132. La pale 120 s'étend en direction longitudinale entre son pied 130 et son sommet 121 et présente en section transversale un profil incurvé d'épaisseur variable délimitant deux faces 122 et 123, correspondant respectivement à l'extrados et à l'intrados de la pale 120 et reliant chacune le bord d'attaque 120a et le bord de fuite 120b de cette dernière. Dans l'exemple décrit ici, la pale 120 comprend en outre une plateforme d'aube 140 et un talon d'aube 160. Conformément à l'invention, l'aube 100 est formée d'une préforme 300 en matériau composite, c'est-à-dire comprenant un renfort fibreux densifié par une matrice, la préforme 300 étant en outre recouverte par une enveloppe céramique 150 définissant la forme et les dimensions exactes de l'aube. FIG. 1 illustrates a vane 100 of a low pressure turbine (BP) impeller which comprises a blade 120 and a foot 130 formed by a portion of greater thickness, for example with a bulbous section, extended by a stilt 132. The blade 120 extends longitudinally between its foot 130 and its top 121 and has a cross section a curved profile of variable thickness defining two faces 122 and 123, respectively corresponding to the extrados and intrados of the blade 120 and each connecting the leading edge 120a and the trailing edge 120b of the latter. In the example described here, the blade 120 further comprises a blade platform 140 and a blade root 160. In accordance with the invention, the blade 100 is formed of a preform 300 made of composite material, that is to say comprising a fiber reinforcement densified by a matrix, the preform 300 being further covered by a ceramic casing 150 defining the exact shape and dimensions of the blade.
En référence à la figure 2, un procédé de fabrication de l'aube de la figure 1 conforme à l'invention, comprend les étapes suivantes. Referring to Figure 2, a method of manufacturing the blade of Figure 1 according to the invention comprises the following steps.
La fabrication de l'aube débute par la fourniture d'une structure fibreuse à partir de laquelle sera formée une préforme en matériau composite dont la forme est voisine de celle de l'aube à fabriquer mais dont les dimensions sont inférieures aux dimensions finales de l'aube à réaliser (étape 10). The manufacture of the blade begins with the provision of a fibrous structure from which will be formed a composite material preform whose shape is close to that of the blade to be manufactured but whose dimensions are smaller than the final dimensions of the blade. dawn to achieve (step 10).
La structure fibreuse peut être sous différentes formes, telles que : The fibrous structure can be in various forms, such as:
- tissu bidimensionnel (2D), - two-dimensional fabric (2D),
- tissu tridimensionnel (3D) obtenu par tissage 3D ou multicouches, - three-dimensional fabric (3D) obtained by 3D or multilayer weaving,
- tresse, - braid,
- tricot, - knit,
- feutre, - felt,
- nappe unidirectionnelle (UD) de fils ou câbles ou nappes multidirectionnelle (nD) obtenue par superposition de plusieurs nappes UD dans des directions différentes et liaison des nappes UD entre elles par exemple par couture, par agent de liaison chimique ou par aiguilletage.
On peut aussi utiliser une structure fibreuse formée de plusieurs couches superposées de tissu, tresse, tricot, feutre, nappes ou autres, lesquelles couches sont liées entre elles par exemple par couture, par implantation de fils ou d'éléments rigides ou par aiguilletage. - Unidirectional web (UD) of son or cables or multidirectional webs (nD) obtained by superposition of several UD webs in different directions and UD web connection between them for example by sewing, by chemical bonding agent or by needling. It is also possible to use a fibrous structure formed of several superimposed layers of fabric, braid, knit, felt, plies or others, which layers are bonded together, for example by sewing, by implantation of threads or rigid elements or by needling.
Les fibres constitutives de la structure fibreuse sont des fibres réfractaires, c'est-à-dire des fibres en céramique, par exemple en carbure de silicium (SiC), des fibres en carbone ou même encore des fibres en un oxyde réfractaire, par exemple en alumine (AI2O3). The fibers constituting the fibrous structure are refractory fibers, that is to say ceramic fibers, for example silicon carbide (SiC), carbon fibers or even fibers made of a refractory oxide, for example alumina (Al2O3).
Dans l'exemple décrit ici, la texture fibreuse est réalisée par tissage tridimensionnel ou multicouche en une seule pièce de fils de carbure de silicium tel que notamment décrit dans le document WO 2010/061140 et dont le contenu est incorporé ici par référence. In the example described here, the fibrous texture is produced by three-dimensional weaving or multi-layer in one piece of silicon carbide son such as in particular described in WO 2010/061140 and whose contents are incorporated herein by reference.
Une fois constituée, la texture fibreuse est mise en forme et consolidée par imprégnation de cette dernière avec une composition liquide contenant une résine de consolidation précurseur de céramique (étape 20). Once formed, the fibrous texture is shaped and consolidated by impregnation of the latter with a liquid composition containing a ceramic precursor consolidation resin (step 20).
A cet effet, la texture fibreuse est immergée dans un bain contenant la résine et habituellement un solvant de celle-ci. Après égouttage, un séchage est réalisé en étuve. Le séchage peut être accompagné d'une pré-réticulation ou réticulation partielle de la résine. Une telle pré-réticulation apportant une raideur supplémentaire, elle doit, si elle est réalisée, rester limitée pour préserver une déformabilité suffisante de la texture fibreuse. For this purpose, the fibrous texture is immersed in a bath containing the resin and usually a solvent thereof. After draining, drying is carried out in an oven. The drying may be accompanied by a pre-crosslinking or partial crosslinking of the resin. Such pre-crosslinking providing additional stiffness, it must, if it is performed, remain limited to maintain sufficient deformability of the fibrous texture.
D'autres techniques connues d'imprégnation peuvent être utilisées telles que préparation d'un pré-imprégné par passage de la texture fibreuse dans une imprégnatrice en continu, imprégnation par infusion, ou encore imprégnation par RTM ("Resin Transfer Moulding"). Other known impregnation techniques may be used such as preparing a prepreg by passing the fibrous texture in a continuous impregnator, impregnation by infusion, or impregnation by RTM ("Resin Transfer Molding").
La résine de consolidation est choisie pour laisser, après pyrolyse, un résidu céramique suffisant pour assurer la consolidation de la préforme fibreuse réalisée ensuite. The consolidation resin is chosen to leave, after pyrolysis, a ceramic residue sufficient to ensure consolidation of the fibrous preform made thereafter.
Une résine précurseur de céramique peut être par exemple une résine polycarbosilane précurseur de carbure de silicium (SiC), ou une résine polysiloxane précurseur de SiCO, ou une résine polyborocarbosilazane précurseur de SiCNB, ou une résine polysilazane (SiCN).
Après imprégnation, une préforme fibreuse destinée à constituer le renfort fibreux de la pièce à réaliser, et ayant une forme correspondant sensiblement à celle de cette pièce, est mise en forme par conformation de la texture fibreuse à l'aide d'un outillage de maintien. A ceramic precursor resin may be, for example, a polycarbosilane precursor resin of silicon carbide (SiC), or a polysiloxane resin precursor of SiCO, or a polyborocarbosilazane resin precursor of SiCNB, or a polysilazane resin (SiCN). After impregnation, a fibrous preform intended to constitute the fibrous reinforcement of the part to be produced, and having a shape substantially corresponding to that of this part, is shaped by conformation of the fibrous texture using a holding tooling .
La mise en forme de la préforme fibreuse est de préférence accompagnée d'un compactage de la structure fibreuse afin d'augmenter le taux volumique de fibres dans le matériau composite de la pièce à réaliser. The shaping of the fibrous preform is preferably accompanied by a compacting of the fibrous structure in order to increase the volume content of fibers in the composite material of the part to be produced.
Après mise en forme de la préforme, la réticulation de la résine est réalisée, ou achevée s'il y a eu pré-réticulation, la préforme étant dans un outillage. After forming the preform, the crosslinking of the resin is performed, or completed if there has been pre-crosslinking, the preform being in a tool.
Ensuite, la consolidation est achevée par un traitement thermique de pyrolyse de la résine. La pyrolyse est réalisée à une température par exemple d'environ 900°C à 1000°C. Then, the consolidation is completed by a heat treatment of pyrolysis of the resin. The pyrolysis is carried out at a temperature of, for example, about 900 ° C to 1000 ° C.
La consolidation peut être également réalisée par infiltration chimique en phase gazeuse (CVI). Consolidation can also be achieved by chemical vapor infiltration (CVI).
Après cette consolidation, la densification de la préforme fibreuse par une matrice céramique est poursuivie (étape 30). After this consolidation, the densification of the fibrous preform by a ceramic matrix is continued (step 30).
La densification est avantageusement réalisée par infiltration chimique en phase gazeuse (CVI), les paramètres du processus CVI et la nature de la phase gazeuse réactionnelle étant adaptés à la nature de la matrice à former. On peut ainsi enchaîner dans le même four les opérations de pyrolyse de la résine de consolidation et de densification. The densification is advantageously carried out by chemical vapor infiltration (CVI), the parameters of the CVI process and the nature of the reaction gas phase being adapted to the nature of the matrix to be formed. It is thus possible to chain in the same oven the pyrolysis operations of the consolidation and densification resin.
La matrice céramique formée par CVI peut être une matrice SiC, ou une matrice au moins en partie auto-cicatrisante, telle qu'une matrice silicium-bore-carbone (Si-B-C) ou une matrice carbure de bore (B4C) ou encore une matrice séquencée avec des phases de matrices alternées en céramique non cicatrisante et en céramique cicatrisante. On pourra se référer notamment aux documents FR 2 401 888, US 5 246 736, US 5 965 266, US 6 068 930 et US 6 291 058. The ceramic matrix formed by CVI may be an SiC matrix, or an at least partially self-healing matrix, such as a silicon-boron-carbon matrix (Si-BC) or a boron carbide (B 4 C) matrix, or again a sequenced matrix with alternate matrix phases in non-healing ceramics and healing ceramics. We can refer in particular to documents FR 2 401 888, US 5 246 736, US 5 965 266, US 6 068 930 and US 6 291 058.
La matrice céramique peut être déposée en plusieurs cycles d'infiltration successifs avec entre chaque cycle une opération d'usinage permettant de rouvrir la porosité du matériau en surface et de faciliter le dépôt de la matrice dans le renfort fibreux. The ceramic matrix may be deposited in several successive infiltration cycles with between each cycle a machining operation to reopen the porosity of the surface material and facilitate the deposition of the matrix in the fibrous reinforcement.
On obtient ainsi comme illustré sur la figure 3, une préforme As illustrated in FIG. 3, a preform is thus obtained
300 en matériau composite CMC (renfort fibreux densifié par une matrice
au moins partiellement céramique) avec une partie 320 de préforme de pale, une partie 330 de préforme de pied (avec préforme d'échasse), une partie 340 de préforme de plateforme et une partie 350 de préforme de talon d'aube. Conformément au procédé de l'invention, la préforme 300 présente des dimensions inférieures à celle de l'aube 100 de la figure 1 à réaliser. 300 of CMC composite material (fibrous reinforcement densified by a matrix at least partially ceramic) with a blade preform portion 320, a foot preform portion 330 (with stilt preform), a platform preform portion 340 and a blade bead preform portion 350. According to the method of the invention, the preform 300 has dimensions smaller than that of the blade 100 of FIG. 1 to be produced.
La figure 4 montre l'état de surface d'une portion d'une pièce en CMC réalisée à partir d'une texture fibreuse multicouche de tissage tridimensionnel de fibres de SiC (Guipex® base satin de 8) consolidée, mise en forme et densifiée suivant la méthode décrite ci-dessus. Comme mesurée sur la figure 5, la pièce présente en surface à la fois des ondulations de plus de 200 pm d'amplitude et un niveau de rugosité de l'ordre de 5 pm. Une telle irrégularité de surface ne peut vraisemblablement pas permettre d'utiliser la pièce telle quelle pour des applications aérodynamiques. Par comparaison, la figure 6 montre une mesure de l'état de surface d'une aube d'un étage basse pression d'un moteur aéronautique, celle-ci ayant été réalisée en matériau métallique. On remarque que cette aube ne comporte pas d'ondulation de surface et présente un niveau moyen de rugosité de l'ordre de 1 pm. FIG. 4 shows the surface state of a portion of a CMC part made from a multilayer fibrous texture of three-dimensional weaving of SiC fibers (Guipex® base satin of 8) consolidated, shaped and densified following the method described above. As measured in FIG. 5, the piece has on the surface both corrugations of more than 200 μm in amplitude and a roughness level of the order of 5 μm. Such a surface irregularity can not possibly allow to use the room as such for aerodynamic applications. By comparison, Figure 6 shows a measurement of the surface condition of a blade of a low-pressure stage of an aircraft engine, the latter having been made of metallic material. Note that this blade has no surface ripple and has a mean level of roughness of the order of 1 pm.
A cet effet et conformément au procédé de l'invention, on procède à la formation d'une enveloppe céramique autour de la préforme en matériau composite. Dans l'exemple décrit ici, l'enveloppe céramique est réalisée par frittage flash d'une poudre. For this purpose and in accordance with the process of the invention, a ceramic casing is formed around the preform made of composite material. In the example described here, the ceramic casing is made by flash sintering of a powder.
Comme illustré sur les figure 7 A et 7B, on place la préforme en matériau composite 300 dans un moule conducteur de frittage présentant des dimensions et une forme internes correspondant à celles de l'aube à réaliser avec interposition dans l'espace présent entre la préforme 300 et la surface interne du moule d'une poudre céramique (étapes 40 et 50). Plus précisément, la préforme en matériau composite 300 est tout d'abord placée dans une première moitié 401 du moule 400 de frittage sur un lit de poudre céramique 50 déposée sur la surface interne 401a de la première moitié 401 du moule (figure 7A), puis est recouverte sur sa face exposée de cette même poudre 50 avant fermeture de la deuxième moitié 402 du moule 400 (figure 7B). Les surfaces internes 401a et 402a du moule définissent, une fois les deux moitiés 401 et 402 du moule réunies, des dimensions et une forme correspondant à celles de l'aube à fabriquer.
La poudre céramique 50 comprend un ou plusieurs constituants (mélange de poudres) de la céramique de l'enveloppe à réaliser et éventuellement d'autres éléments également sous forme de poudre tels que des agents de frittage. As illustrated in FIGS. 7A and 7B, the preform made of composite material 300 is placed in a sintering conductive mold having internal dimensions and shape corresponding to those of the blade to be produced with interposition in the space between the preform 300 and the inner surface of the mold of a ceramic powder (steps 40 and 50). More specifically, the composite material preform 300 is first placed in a first half 401 of the sintering mold 400 on a bed of ceramic powder 50 deposited on the inner surface 401a of the first half 401 of the mold (FIG. 7A), then is covered on its exposed face of the same powder 50 before closing the second half 402 of the mold 400 (Figure 7B). The inner surfaces 401a and 402a of the mold define, once the two halves 401 and 402 of the mold together, dimensions and a shape corresponding to those of the blade to be manufactured. The ceramic powder 50 comprises one or more constituents (mixture of powders) of the ceramic of the envelope to be produced and possibly other elements also in the form of powder such as sintering agents.
La poudre 50 est ensuite stabilisée/densifiée par "frittage flash" ou "SPS" ("Spark Plasma Sintering"). La différence entre le pressage à chaud conventionnel (frittage standard) et le frittage flash réside dans le fait que la source de chaleur n'est pas externe mais qu'un courant électrique (continu - continu puisé - ou alternatif) appliqué via des électrodes passe à travers le moule conducteur. Le "frittage flash" consiste en un traitement thermique sous pression avec passage d'un courant électrique qui permet de consolider l'enveloppe par formation de liaisons entre grains sans fusion totale de ceux-ci. Cette soudure réalisée par diffusion de matière, s'accompagne d'une densification, c'est-à-dire d'une diminution du taux de porosité et d'un durcissement qui confère de la cohésion à l'enveloppe mise en forme. En outre, l'accrochage de l'enveloppe céramique sur la préforme en matériau composite est assurée par les réactions chimiques entre les oxydes formés pendant le frittage et le matériau de la préforme. The powder 50 is then stabilized / densified by "flash sintering" or "SPS" ("Spark Plasma Sintering"). The difference between conventional hot pressing (standard sintering) and flash sintering is that the heat source is not external but that an electric current (continuous - continuous pulsed - or alternating) applied via electrodes passes through the conductive mold. The "flash sintering" consists of a heat treatment under pressure with passage of an electric current that consolidates the envelope by forming bonds between grains without total melting thereof. This solder made by diffusion of material, is accompanied by a densification, that is to say a decrease in the porosity rate and hardening which gives cohesion to the envelope shaped. In addition, the attachment of the ceramic envelope on the preform made of composite material is ensured by the chemical reactions between the oxides formed during sintering and the material of the preform.
Un dispositif permettant de mettre en œuvre ce frittage flash est notamment commercialisé par la société Sumitomo Electric Industries et permet de soumettre la poudre 50 à des puises (3,3 ms) de courant électrique continu (typiquement 0-10 V, 1-5 kA) tout en appliquant une pression de plusieurs dizaines de MPa (jusqu'à 150 MPa) et ceci dans une gamme de températures variant de la température ambiante jusqu'à 2000°C. Les frittages flash sont généralement réalisés sous vide mais il est possible de travailler sous atmosphère inerte (azote, argon). A device for implementing this flash sintering is in particular marketed by Sumitomo Electric Industries and makes it possible to subject the powder 50 to pulses (3.3 ms) of direct electrical current (typically 0-10 V, 1-5 kA ) while applying a pressure of several tens of MPa (up to 150 MPa) and this in a range of temperatures ranging from room temperature up to 2000 ° C. Flash sintering is usually done under vacuum but it is possible to work under an inert atmosphere (nitrogen, argon).
Un même cycle de frittage peut être pris comme référence pour la densification par frittage flash des diverses compositions du matériau réfractaire selon l'invention, seule la température finale de frittage est modifiée en fonction de la réfractarité des constituants à fritter. The same sintering cycle can be used as a reference for the flash sintering densification of the various compositions of the refractory material according to the invention, only the final sintering temperature is modified as a function of the refraction of the components to be sintered.
Les paramètres de température choisis pour le cycle de frittage sont par exemple: une montée à 600°C en 3 minutes, suivie d'une montée à la température de frittage avec une vitesse de 100°C/min, puis un palier à cette température pendant 5 minutes et enfin une descente à 600°C en 30 minutes puis l'arrêt du chauffage.
Durant le cycle, une pression de plusieurs dizaine de Pa est appliquée progressivement dès le début de la montée en température à 600°C pour refermer la majorité des pores restants et éviter une hétérogénéité de densification dans l'enveloppe après le frittage. Ainsi, dès le début du frittage, un matériau globalement dense peut être obtenu, pour lequel le contact entre les grains est optimal. The temperature parameters chosen for the sintering cycle are, for example: a rise at 600 ° C. in 3 minutes, followed by a rise to the sintering temperature with a speed of 100 ° C./min, then a plateau at this temperature for 5 minutes and finally a descent to 600 ° C in 30 minutes and then stop heating. During the cycle, a pressure of several ten Pa is applied gradually from the beginning of the temperature rise to 600 ° C to close the majority of the remaining pores and avoid densification heterogeneity in the envelope after sintering. Thus, from the beginning of the sintering, a generally dense material can be obtained, for which the contact between the grains is optimal.
Le refroidissement contrôlé permet une relaxation des contraintes résiduelles d'origine thermique et d'éviter la présence de fissures et de microfissures dans le matériau. The controlled cooling allows a relaxation of residual stresses of thermal origin and to avoid the presence of cracks and microcracks in the material.
Les moules utilisés sont de préférence en graphite et sont séparés de la poudre par une feuille de graphite pour éviter tout collage. The molds used are preferably graphite and are separated from the powder by a graphite sheet to prevent sticking.
Le frittage flash permet d'abaisser d'une à plusieurs centaines de degré la température de frittage en comparaison avec un frittage standard (pressage à chaud conventionnel). Flash sintering reduces the sintering temperature by one to several hundreds of degrees compared to standard sintering (conventional hot pressing).
Conformément à l'invention et afin d'assurer un bon accrochage de l'enveloppe céramique directement sur la préforme en matériau composite, c'est-à-dire sans sous-couche entre la préforme et l'enveloppe, la poudre céramique utilisée pour former l'enveloppe présente une granulométrie comprise entre 0,25 μιη et 25 pm. En effet, une granulométrie trop fine peut provoquer des phénomènes de réagglomérations prématurées qui conduisent à la formation de particules de granulométrie trop élevée pour obtenir une enveloppe céramique avec une structure et un état de surface satisfaisants. According to the invention and in order to ensure a good attachment of the ceramic envelope directly on the composite material preform, that is to say without underlay between the preform and the envelope, the ceramic powder used for forming the envelope has a particle size between 0.25 μιη and 25 pm. Indeed, a too fine particle size can cause premature reagglomeration phenomena which lead to the formation of particle size too large to obtain a ceramic envelope with a satisfactory structure and surface condition.
Par ailleurs, avec une granulométrie trop élevée, la surface de contact entre les grains de poudre est trop faible pour assurer une bonne cohésion du revêtement formé. En outre, si la taille des grains de poudre est trop importante, le budget thermique (i.e. couple température/durée) nécessaire pour réaliser le frittage risque d'être trop élevé et incompatible avec la température de stabilité thermique des fibres (thermostabilité) de la préforme en matériau composite, ce qui peut entraîner une dégradation thermique des fibres réduisant considérablement leurs propriétés mécaniques. Moreover, with a particle size too high, the contact surface between the powder grains is too small to ensure good cohesion of the coating formed. In addition, if the size of the powder grains is too large, the thermal budget (ie temperature / time pair) necessary to perform the sintering may be too high and incompatible with the thermal stability temperature of the fibers (thermostability) of the preform made of composite material, which can lead to thermal degradation of the fibers considerably reducing their mechanical properties.
La composition de la poudre destinée à former l'enveloppe céramique autour de la préforme fibreuse est également choisie de manière à avoir une température de frittage compatible avec la
température de stabilité thermique des fibres (thermostabilité) de la préforme en matériau composite. The composition of the powder intended to form the ceramic envelope around the fiber preform is also chosen so as to have a sintering temperature compatible with the thermal stability temperature of the fibers (thermostability) of the composite material preform.
Dans le cas du frittage flash, les montées en températures et les durées de frittage étant très brèves, il est possible d'utiliser des compositions de poudre ayant des températures de frittage pouvant dépasser de 250°C la température de stabilité des fibres de la préforme. In the case of flash sintering, the temperature rises and the sintering times being very short, it is possible to use powder compositions having sintering temperatures which can exceed the stability temperature of the fibers of the preform by 250.degree. .
On choisit également une composition de poudre qui présente un coefficient de dilatation thermique voisin de celui du matériau composite de la préforme, à savoir, conformément à l'invention, une poudre ayant un coefficient de dilatation thermique variant au plus de 4.10"6 K"1 par rapport au coefficient de dilatation thermique du matériau composite de la préforme. Dans le cas d'un frittage flash, on choisit de préférence une poudre ayant un coefficient de dilatation thermique variant au plus de 1,5.10"6 K"1 par rapport au coefficient de dilatation thermique du matériau composite de la préforme, c'est-à-dire une poudre ayant un coefficient de dilatation thermique compris entre 3.10"6 K"1 et 6.10"6 K"1. A powder composition is also chosen which has a coefficient of thermal expansion close to that of the composite material of the preform, namely, in accordance with the invention, a powder having a coefficient of thermal expansion varying at most from 4.10 to 6 K ". 1 relative to the coefficient of thermal expansion of the composite material of the preform. In the case of flash sintering, a powder having a coefficient of thermal expansion varying at most from 1.5 × 10 -6 K -1 with respect to the thermal expansion coefficient of the composite material of the preform is preferably chosen. that is, a powder having a coefficient of thermal expansion of between 3.10 "6 K " 1 and 6.10 "6 K " 1 .
Le tableau I ci-dessous donne des exemples de composition de poudre qui peuvent être utilisées pour la réalisation d'une enveloppe céramique par frittage flash, le tableau indiquant en outre les températures de frittage flash de ces compositions ainsi que les types de fibres SiC compatibles avec ces températures de frittage flash.
Table I below gives examples of powder compositions that can be used for making a ceramic shell by flash sintering, the table further indicating the flash sintering temperatures of these compositions as well as compatible SiC fiber types. with these flash sintering temperatures.
Tableau I Table I
On notera que les compositions de poudre indiquées dans le tableau I présentent également un coefficient de dilatation thermique qui est relativement proche de celui du matériau CMC de la préforme. It should be noted that the powder compositions indicated in Table I also have a coefficient of thermal expansion which is relatively close to that of the CMC material of the preform.
A l'issue du frittage flash, on obtient une aube telle que l'aube 100 représentée sur la figure 1 comprenant âme en matériau composite correspondant à la préforme en matériau composite 300 décrite ci-avant et une enveloppe céramique 150 externe définissant la forme et les dimensions finales de l'aube. At the end of the flash sintering, a blade is obtained such that the blade 100 shown in FIG. 1 comprises a core of composite material corresponding to the preform made of composite material 300 described above and an outer ceramic shell 150 defining the shape and the final dimensions of dawn.
Les figures 8A et 8B montrent une pièce 200 correspondant à la partie de pale d'une aube et dont la préforme fibreuse 210 a été
recouverte par une enveloppe céramique 220 réalisée par frittage flash d'une poudre de Si/Mullite/BSAS comme expliqué ci-avant. FIGS. 8A and 8B show a part 200 corresponding to the blade portion of a blade and whose fibrous preform 210 has been covered by a ceramic casing 220 made by flash sintering of a Si / Mullite / BSAS powder as explained above.
Afin de démontrer l'importance du choix de la granulométrie de la poudre céramique utilisée pour former l'enveloppe sur la préforme en matériau composite, des essais comparatifs ont été réalisés. In order to demonstrate the importance of the choice of the particle size of the ceramic powder used to form the envelope on the preform made of composite material, comparative tests were carried out.
Le premier essai est illustré sur les figures 10 et 11 qui montrent le résultat obtenu après un frittage flash d'une couche de poudre de disilicate d'yttrium (Y2S12O7) réalisé à 1200°C sur un substrat en matériau composite CMC, la poudre utilisée pour former le revêtement de la figure 10 ayant une granulométrie (D50) de 30 pm tandis que la poudre utilisée pour former le revêtement de la figure 11 présente une granulométrie (D50) de 1 pm. The first test is illustrated in FIGS. 10 and 11 which show the result obtained after flash sintering of a layer of yttrium disilicate powder (Y2S12O7) produced at 1200 ° C. on a substrate made of CMC composite material, the powder used. to form the coating of Figure 10 having a particle size (D50) of 30 μm while the powder used to form the coating of Figure 11 has a particle size (D50) of 1 μm.
Comme on peut le voir très clairement sur la figure 10, le revêtement formé présente une décohésion continue avec le substrat en CMC qui résulte en un mauvais accrochage du revêtement sur le substrat. Des fissures sont en outre présentes dans le revêtement. Cette décohésion et ces fissures sont dues principalement à l'insuffisance de surface de contact entre les grains en raison du choix d'une granulométrie trop élevée (supérieure à 25 pm). Au contraire, le revêtement formé sur la figure 10 avec une poudre ayant une granulométrie de 1 pm, c'est-à-dire comprise entre 0,25 pm et 25 pm, ne présente pas de décohésion avec le substrat ni de fissures. As can be seen very clearly in FIG. 10, the formed coating exhibits a continuous decohesion with the CMC substrate which results in poor adhesion of the coating to the substrate. Cracks are also present in the coating. This decohesion and these cracks are due mainly to the lack of contact surface between the grains because of the choice of a particle size too high (greater than 25 pm). In contrast, the coating formed in FIG. 10 with a powder having a particle size of 1 μm, i.e. between 0.25 μm and 25 μm, does not show any decohesion with the substrate or cracks.
Le deuxième essai est illustré sur les figures 12 et 13 qui montrent le résultat obtenu après un frittage flash d'une couche de poudre de disilicate d'yttrium réalisé à 1200°C sur un substrat en matériau composite CMC, la poudre utilisée pour former le revêtement de la figure 10 ayant une granulométrie (D50) de 0,2 pm tandis que la poudre utilisée pour former le revêtement de la figure 11 présente une granulométrie (D50) de 0,5 pm. The second test is illustrated in FIGS. 12 and 13 which show the result obtained after flash sintering of a layer of yttrium disilicate powder produced at 1200 ° C. on a substrate made of CMC composite material, the powder used to form the coating of Figure 10 having a particle size (D50) of 0.2 μm while the powder used to form the coating of Figure 11 has a particle size (D50) of 0.5 μm.
Comme on peut le voir très clairement sur la figure 12, le revêtement formé présente une décohésion continue avec le substrat en CMC en raison de phénomènes de ré-agglomérations prématurées des grains pendant le frittage de grains d'une taille trop faible (inférieure à 0,25 pm). Au contraire, le revêtement formé sur la figure 13 avec une poudre ayant une granulométrie de 0,5 pm, c'est-à-dire comprise entre
0,25 m et 25 μητι, ne présente pas de décohésion avec le substrat ni de fissures. As can be seen very clearly in FIG. 12, the coating formed has a continuous decohesion with the CMC substrate due to premature re-agglomeration phenomena of the grains during the sintering of grains of a size that is too small (less than 0 , 25 μm). In contrast, the coating formed in FIG. 13 with a powder having a particle size of 0.5 μm, that is to say between 0.25 m and 25 μητι, does not show any decohesion with the substrate nor cracks.
Selon une variante de mise en œuvre du procédé selon l'invention décrite à la figure 9, on fabrique tout d'abord une préforme en matériau composite présentant des dimensions inférieures à celles de la pièce aérodynamique à former de la même façon que décrite ci-avant, à savoir formation d'une texture fibreuse (étape 110), consolidation et mise en forme de la texture fibreuse (étape 120) et densification de la préforme (étape 130). Dans cette variante de mise en œuvre, la préforme en matériau composite est placée dans un moule dont la surface interne correspond à la forme et aux dimensions finales de la pièce aérodynamique à réaliser (étape 130), la poudre céramique destinée à former l'enveloppe céramique n'étant pas encore présente dans le moule. Avant son introduction dans le moule, la poudre céramique est préalablement mélangée avec un liant (étape 140). Le mélange est alors injecté dans le moule afin de remplir l'espace présent entre la préforme en matériau composite et la surface interne du moule (étape 150). Pendant l'injection du mélange, la pièce est maintenue au centre du moule de préférence au niveau de portions sacrificielles ou ne participant à l'aérodynamisme de la pièce comme les portions d'extrémités. According to an alternative embodiment of the method according to the invention described in FIG. 9, a composite material preform having dimensions smaller than those of the aerodynamic part to be formed in the same manner as described hereinabove is manufactured first. before, namely formation of a fibrous texture (step 110), consolidation and shaping of the fibrous texture (step 120) and densification of the preform (step 130). In this alternative embodiment, the composite material preform is placed in a mold whose inner surface corresponds to the shape and the final dimensions of the aerodynamic part to be produced (step 130), the ceramic powder intended to form the envelope ceramic is not yet present in the mold. Before it is introduced into the mold, the ceramic powder is premixed with a binder (step 140). The mixture is then injected into the mold in order to fill the space between the preform made of composite material and the internal surface of the mold (step 150). During the injection of the mixture, the piece is held in the center of the mold preferably at sacrificial portions or participating in the aerodynamics of the piece as the end portions.
Une fois le mélangé injecté, on procède à la réticulation du liant (étape 160). On démoule ensuite la pièce et on procède à la stabilisation de l'enveloppe céramique formée sur la préforme par infiltration chimique en phase vapeur (CVI) de SiC (étape 170), cette CVI permettant en outre d'assurer l'accrochage de l'enveloppe céramique sur la préforme en matériau composite. Once the mixture has been injected, the binder is crosslinked (step 160). The part is then demolded and the ceramic casing formed on the preform by chemical vapor infiltration (CVI) of SiC (step 170) is stabilized, this CVI also making it possible to grip the ceramic envelope on the preform made of composite material.
Comme indiqué précédemment, on choisit une composition de poudre ayant un coefficient de dilatation thermique variant au plus de 4.10"6 K"1 par rapport au coefficient de dilatation thermique du matériau composite de la préforme, c'est-à-dire compris entre 0,5.10"6 K"1 et 8,5.10" 6 K"1, et une granulométrie comprise entre 0,25 μητι et 25 pm. Si la poudre présente une granulométrie inférieure à 0,25 pm, il devient alors difficile pour les gaz d'infiltration de la CVI de pénétrer dans la couche de poudre et d'assurer ainsi une bonne stabilisation de cette dernière. En outre, si la granulométrie de la poudre excède 25 μητι, il n'y a plus de surface de
contact suffisante entre les grains pour assurer une cohésion satisfaisante de l'enveloppe céramique formée. As indicated above, a powder composition having a coefficient of thermal expansion varying at most from 4.10 "6 K " 1 with respect to the thermal expansion coefficient of the composite material of the preform, that is to say between 0, is chosen. , 5.10 "6 K " 1 and 8.5 × 10 " 6 K " 1 , and a particle size of between 0.25 μητι and 25 μm. If the powder has a particle size less than 0.25 μm, it then becomes difficult for the infiltration gases of the CVI to penetrate into the powder layer and thus ensure good stabilization of the latter. In addition, if the particle size of the powder exceeds 25 μητι, there is no more surface area. sufficient contact between the grains to ensure satisfactory cohesion of the ceramic shell formed.
Le liant utilisé peut être notamment un composé organosilicié liquide précurseur de céramique tel qu'une résine de type polycarbosilane (PCS) ou polysilazane (Ceraset® PSZ20), ou une résine fugitive thermoplastique telle que l'acétate de polyvinyle (PVA) ou le polyvinyle de butyral (PVB). The binder used may in particular be a liquid organosilicon liquid precursor compound such as a polycarbosilane resin (PCS) or polysilazane (Ceraset® PSZ20), or a thermoplastic resin such as polyvinyl acetate (PVA) or polyvinyl of butyral (PVB).
Selon encore une autre variante, un mat de fibres céramiques, par exemple de fibres SiC, est disposé autour de la préforme en matériau composite avant l'injection du mélange poudre céramique-liant dans le moule afin de renforcer la résistance mécanique de l'enveloppe céramique formée. De même, des fibres courtes céramiques, par exemple des fibres courtes de SiC, peuvent être introduites dans le mélange poudre céramique-liant afin de renforcer la céramique de l'enveloppe. According to yet another variant, a mat of ceramic fibers, for example of SiC fibers, is placed around the preform made of composite material before the injection of the ceramic-binder powder mixture into the mold in order to reinforce the mechanical strength of the envelope ceramic formed. Likewise, short ceramic fibers, for example short SiC fibers, can be introduced into the ceramic-binder powder mixture in order to reinforce the ceramic of the envelope.
Les poudres céramiques utilisées pour réaliser le mélange poudre céramique-liant injecté peuvent être notamment choisies parmi les compositions de poudres indiquées dans le tableau I ci-avant. The ceramic powders used to produce the ceramic powder-injected binder mixture may be chosen in particular from the powder compositions indicated in Table I above.
La céramique de l'enveloppe est en outre choisie en fonction des conditions d'utilisation de la pièce aérodynamique. Elle doit en particulier pouvoir résister aux températures d'utilisation de la pièce et présenter une durée de vie au moins égale à celle définie pour la pièce. A cet effet, on choisit une céramique ayant une température de fusion supérieure à la température maximale d'utilisation de la pièce. Dans le cas par exemple, de pièces constituant des aubes de turbines à gaz, les températures maximales rencontrées par ces pièces peuvent atteindre 1100°C. Dans ce cas, la céramique de l'enveloppe de l'aube présente une température de fusion supérieure ou égale à 1300°C. The ceramic of the envelope is further selected according to the conditions of use of the aerodynamic part. In particular, it must be able to withstand the operating temperatures of the room and have a service life at least equal to that defined for the room. For this purpose, a ceramic having a melting point higher than the maximum temperature of use of the part is chosen. In the case for example of parts constituting gas turbine blades, the maximum temperatures encountered by these parts can reach 1100 ° C. In this case, the ceramic of the envelope of the blade has a melting temperature greater than or equal to 1300 ° C.
Pour les constituants de la poudre céramique utilisée dans l'invention, on choisira une granulométrie adaptée à l'état de surface final de la pièce visé. On choisira de préférence des poudres dont la taille des grains est inférieure à 20pm. Des nanopoudres pourront également être utilisées car elles permettent de réduire la température de frittage. For the constituents of the ceramic powder used in the invention, a particle size will be selected adapted to the final surface state of the target part. Powderes whose grain size is less than 20 μm are preferably chosen. Nanopowders may also be used because they reduce the sintering temperature.
Quel que soit la mise en œuvre du procédé, on obtient une pièce aérodynamique qui présente de très bonnes caractéristiques mécaniques et structurales conférées par la préforme en matériau composite ainsi qu'un état de surface comparable à celui obtenu avec des
matériaux métalliques, et ce sans usinage final car la pièce présente sa forme et ses dimensions finales immédiatement après le surmoulage de l'enveloppe cylindrique. Whatever the implementation of the process, an aerodynamic part is obtained which has very good mechanical and structural characteristics conferred by the composite material preform and a surface state comparable to that obtained with metallic materials, and this without final machining because the part has its shape and final dimensions immediately after overmoulding of the cylindrical envelope.
Par ailleurs, selon les conditions d'utilisation envisagées, les fibres du renfort fibreux de la préforme en matériau composite de la pièce peuvent être en un matériau autre qu'une céramique, par exemple en carbone, et la matrice peut être en un matériau autre qu'une céramique, par exemple en carbone ou en une résine. Comme décrit ci-avant, la préforme de pièce aérodynamique selon l'invention peut être notamment réalisée en matériau composite à matrice céramique (CMC) qui est un matériau formé d'un renfort en fibres de carbone ou céramique densifié par une matrice au moins partiellement céramique tel qu'un matériau carbone-carbone/carbure de silicium (C-C/SiC), carbone-carbure de silicium (C/SiC), carbure de silicium-carbure de silicium (SiC/SiC). La préforme peut être en outre réalisée en matériau composite carbone- carbone (C/C) qui, de façon connue, est un matériau formé d'un renfort en fibres de carbone densifié par une matrice en carbone. L'invention est bien entendu applicable aussi à la fabrication d'aubes en matériau composite à matrice organique (CMO) telle que celle obtenue, par exemple, à partir d'une résine époxyde à hautes performances.
Furthermore, according to the envisaged conditions of use, the fibers of the fibrous reinforcement of the preform made of composite material of the part may be of a material other than a ceramic, for example carbon, and the matrix may be made of a material other than than a ceramic, for example carbon or a resin. As described above, the aerodynamic part preform according to the invention may in particular be made of ceramic matrix composite material (CMC) which is a material formed of a carbon fiber or ceramic reinforcement densified by a matrix at least partially ceramic such as carbon-carbon / silicon carbide (CC / SiC), carbon-silicon carbide (C / SiC), silicon carbide-silicon carbide (SiC / SiC). The preform may also be made of carbon-carbon (C / C) composite material which, in known manner, is a material formed of a carbon fiber reinforcement densified by a carbon matrix. The invention is of course also applicable to the manufacture of blades made of organic matrix composite material (CMO) such as that obtained, for example, from a high performance epoxy resin.
Claims
1. Procédé de fabrication d'une pièce aérodynamique comprenant : A method of manufacturing an aerodynamic workpiece comprising:
- la réalisation d'une préforme en matériau composite à partir d'une structure fibreuse densifiée par une matrice, ladite préforme présentant des dimensions inférieures à celles de la pièce aérodynamique à réaliser, the production of a preform made of composite material from a fibrous structure densified by a matrix, said preform having dimensions smaller than those of the aerodynamic part to be produced,
- le placement de la préforme en matériau composite dans un moule présentant des dimensions et une forme internes correspondant à celles de la pièce aérodynamique à réaliser, placing the preform made of composite material in a mold having internal dimensions and shape corresponding to those of the aerodynamic part to be produced,
- l'interposition d'une poudre céramique entre la préforme en matériau composite et la surface interne du moule, ladite poudre céramique ayant un coefficient de dilatation thermique variant au plus de 4.10~6.K~1 par rapport au coefficient de dilatation thermique du matériau composite de la préforme, ladite poudre céramique présentant en outre une granulométrie comprise entre 0,25 pm et 25 μιτι, - The interposition of a ceramic powder between the composite material preform and the inner surface of the mold, said ceramic powder having a coefficient of thermal expansion varying at most 4.10 ~ 6 .K ~ 1 relative to the coefficient of thermal expansion of the composite material of the preform, said ceramic powder further having a particle size of between 0.25 μm and 25 μm,
- la stabilisation de ladite poudre de manière à former autour de la préforme en matériau composite une enveloppe céramique aux dimensions et à la forme de la pièce aérodynamique à réaliser. stabilizing said powder so as to form around the composite material preform a ceramic envelope with the dimensions and the shape of the aerodynamic part to be produced.
2. Procédé selon la revendication 1, caractérisé en ce que la stabilisation de la poudre céramique est réalisée par frittage flash. 2. Method according to claim 1, characterized in that the stabilization of the ceramic powder is carried out by flash sintering.
3. Procédé selon la revendication 2, caractérisé en ce qu'on choisit une composition de poudre céramique ayant une température de frittage flash au maximum supérieure de 250°C à la température de stabilité thermique des fibres de la préforme en matériau composite. 3. Method according to claim 2, characterized in that one chooses a ceramic powder composition having a maximum flash sintering temperature greater than 250 ° C to the temperature of thermal stability of the fibers of the preform of composite material.
4. Procédé selon la revendication 1, caractérisé en ce que l'interposition de la poudre céramique est obtenue en réalisant un mélange de ladite poudre céramique avec un liant et en injectant le mélange entre la préforme et la surface interne du moule et en ce que la stabilisation de ladite poudre est réalisée par infiltration chimique en phase vapeur de carbure de silicium.
4. Method according to claim 1, characterized in that the interposition of the ceramic powder is obtained by producing a mixture of said ceramic powder with a binder and injecting the mixture between the preform and the inner surface of the mold and in that the stabilization of said powder is performed by chemical vapor infiltration of silicon carbide.
5. Procédé selon la revendication 4, caractérisé en ce que le liant est choisi parmi au moins : un composé organosilicié et une résine fugitive. 5. Method according to claim 4, characterized in that the binder is selected from at least: an organosilicon compound and a fugitive resin.
6. Procédé selon les revendications 4 et 5, caractérisé en ce que, avant l'injection du mélange de liant et de poudre céramique, on dispose un mat de fibres céramiques autour de la préforme fibreuse. 6. Method according to claims 4 and 5, characterized in that, before the injection of the mixture of binder and ceramic powder, there is a mat of ceramic fibers around the fiber preform.
7. Procédé selon les revendications 4 et 5, caractérisé en ce que le mélange de liant et de poudre céramique comprend en outre des fibres céramiques. 7. Method according to claims 4 and 5, characterized in that the mixture of binder and ceramic powder further comprises ceramic fibers.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la poudre céramique comprend des nanopoudres. 8. Method according to any one of claims 1 to 7, characterized in that the ceramic powder comprises nanopowders.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la pièce aérodynamique est une aube fixe ou mobile de turbomachine. 9. Method according to any one of claims 1 to 8, characterized in that the aerodynamic part is a fixed blade or mobile turbine engine.
10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la préforme est réalisée en matériau composite à matrice céramique (CMC).
10. Method according to any one of claims 1 to 8, characterized in that the preform is made of ceramic matrix composite material (CMC).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1259439A FR2996549B1 (en) | 2012-10-04 | 2012-10-04 | METHOD FOR MANUFACTURING AERODYNAMIC PIECE BY OVERMOLDING A CERAMIC ENVELOPE ON A COMPOSITE PREFORM |
FR1259439 | 2012-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014053751A1 true WO2014053751A1 (en) | 2014-04-10 |
Family
ID=47754631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2013/052302 WO2014053751A1 (en) | 2012-10-04 | 2013-09-27 | Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2996549B1 (en) |
WO (1) | WO2014053751A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027840A1 (en) * | 2014-11-04 | 2016-05-06 | Microturbo | PROCESS FOR MANUFACTURING A CERAMIC TURBINE BLADE |
WO2017194886A1 (en) * | 2016-05-11 | 2017-11-16 | Safran Ceramics | Ceramic matrix composite part |
WO2019220057A1 (en) * | 2018-05-15 | 2019-11-21 | Safran | Method for manufacturing a cmc part |
WO2021005286A1 (en) * | 2019-07-10 | 2021-01-14 | Safran Ceramics | Process for manufacturing a fibrous preform for reinforcement of parts made of composite material with a high local variation in thickness |
CN114800797A (en) * | 2022-05-19 | 2022-07-29 | 西北工业大学 | Multipurpose mold and application thereof |
US11820717B2 (en) | 2021-08-30 | 2023-11-21 | Rtx Corporation | PVB-based sacrificial tackifier for CMC |
US11858861B2 (en) | 2021-08-30 | 2024-01-02 | Rtx Corporation | Localized PVB based tackifier application for CMC |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3115280B1 (en) * | 2020-10-20 | 2023-07-21 | Safran Ceram | Process for manufacturing a hollow part in a composite material with a metal or ceramic matrix reinforced with short fibers |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2401888A1 (en) | 1977-09-06 | 1979-03-30 | Europ Propulsion | Impregnating porous carbon body with refractory material - esp. carbide, boride and/or nitride to improve compressive strength and erosion resistance |
US5246736A (en) | 1990-10-26 | 1993-09-21 | Societe Europeenne De Propulsion | Process for the manufacture of a refractory composite material protected against corrosion |
US5965266A (en) | 1995-03-28 | 1999-10-12 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it |
US6068930A (en) | 1995-12-14 | 2000-05-30 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | High-temperature composite materials with carbon or carbon-coated fibre reinforcements and enhanced oxidation resistance |
US6291058B1 (en) | 1996-11-28 | 2001-09-18 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. | Composite material with ceramic matrix and SiC fiber reinforcement, method for making same |
US20060141154A1 (en) | 2003-01-30 | 2006-06-29 | Jacques Thebault | Method for treating the surface of a part made of a heat-structured composite material and use thereof in brazing parts made of a heat-structured composite material |
WO2010061140A1 (en) | 2008-11-28 | 2010-06-03 | Snecma Propulsion Solide | Composite material turbine engine vane, and method for manufacturing same |
WO2010063946A1 (en) * | 2008-12-04 | 2010-06-10 | Snecma Propulsion Solide | Method for smoothing the surface of a part made from a cmc material |
FR2966455A1 (en) * | 2010-10-25 | 2012-04-27 | Commissariat Energie Atomique | METHOD FOR COATING A PART OF A COATING AGAINST OXIDATION |
WO2012076797A1 (en) * | 2010-12-10 | 2012-06-14 | Snecma Propulsion Solide | Materials and parts that can withstand high temperatures in an oxidising medium, and method for manufacturing same |
-
2012
- 2012-10-04 FR FR1259439A patent/FR2996549B1/en active Active
-
2013
- 2013-09-27 WO PCT/FR2013/052302 patent/WO2014053751A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2401888A1 (en) | 1977-09-06 | 1979-03-30 | Europ Propulsion | Impregnating porous carbon body with refractory material - esp. carbide, boride and/or nitride to improve compressive strength and erosion resistance |
US5246736A (en) | 1990-10-26 | 1993-09-21 | Societe Europeenne De Propulsion | Process for the manufacture of a refractory composite material protected against corrosion |
US5965266A (en) | 1995-03-28 | 1999-10-12 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it |
US6068930A (en) | 1995-12-14 | 2000-05-30 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | High-temperature composite materials with carbon or carbon-coated fibre reinforcements and enhanced oxidation resistance |
US6291058B1 (en) | 1996-11-28 | 2001-09-18 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. | Composite material with ceramic matrix and SiC fiber reinforcement, method for making same |
US20060141154A1 (en) | 2003-01-30 | 2006-06-29 | Jacques Thebault | Method for treating the surface of a part made of a heat-structured composite material and use thereof in brazing parts made of a heat-structured composite material |
WO2010061140A1 (en) | 2008-11-28 | 2010-06-03 | Snecma Propulsion Solide | Composite material turbine engine vane, and method for manufacturing same |
WO2010063946A1 (en) * | 2008-12-04 | 2010-06-10 | Snecma Propulsion Solide | Method for smoothing the surface of a part made from a cmc material |
FR2966455A1 (en) * | 2010-10-25 | 2012-04-27 | Commissariat Energie Atomique | METHOD FOR COATING A PART OF A COATING AGAINST OXIDATION |
WO2012076797A1 (en) * | 2010-12-10 | 2012-06-14 | Snecma Propulsion Solide | Materials and parts that can withstand high temperatures in an oxidising medium, and method for manufacturing same |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027840A1 (en) * | 2014-11-04 | 2016-05-06 | Microturbo | PROCESS FOR MANUFACTURING A CERAMIC TURBINE BLADE |
WO2016071619A1 (en) * | 2014-11-04 | 2016-05-12 | Microturbo | Process for manufacturing a ceramic turbine blade |
CN107000246A (en) * | 2014-11-04 | 2017-08-01 | 赛峰动力装置公司 | The technique for manufacturing ceramics turbo blade |
US10988417B2 (en) | 2016-05-11 | 2021-04-27 | Safran Ceramics | Composite material part |
FR3051187A1 (en) * | 2016-05-11 | 2017-11-17 | Herakles | PIECE OF COMPOSITE MATERIAL |
WO2017194886A1 (en) * | 2016-05-11 | 2017-11-16 | Safran Ceramics | Ceramic matrix composite part |
WO2019220057A1 (en) * | 2018-05-15 | 2019-11-21 | Safran | Method for manufacturing a cmc part |
CN112313192A (en) * | 2018-05-15 | 2021-02-02 | 赛峰集团 | Method for manufacturing CMC parts |
US11897816B2 (en) | 2018-05-15 | 2024-02-13 | Safran | Method for manufacturing a CMC part |
WO2021005286A1 (en) * | 2019-07-10 | 2021-01-14 | Safran Ceramics | Process for manufacturing a fibrous preform for reinforcement of parts made of composite material with a high local variation in thickness |
FR3098435A1 (en) * | 2019-07-10 | 2021-01-15 | Safran Ceramics | A method of manufacturing a fiber preform for reinforcing parts made of composite material with a strong local variation in thickness |
US11738521B2 (en) | 2019-07-10 | 2023-08-29 | Safran Ceramics | Process for manufacturing a fibrous preform for reinforcement of parts made of composite material with a high local variation in thickness |
US11820717B2 (en) | 2021-08-30 | 2023-11-21 | Rtx Corporation | PVB-based sacrificial tackifier for CMC |
US11858861B2 (en) | 2021-08-30 | 2024-01-02 | Rtx Corporation | Localized PVB based tackifier application for CMC |
CN114800797A (en) * | 2022-05-19 | 2022-07-29 | 西北工业大学 | Multipurpose mold and application thereof |
Also Published As
Publication number | Publication date |
---|---|
FR2996549B1 (en) | 2016-01-29 |
FR2996549A1 (en) | 2014-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2356085B1 (en) | Method for smoothing the surface of a part made from a cmc material | |
EP2414305B1 (en) | Process for smoothing the surface of a part made of cmc material. | |
EP3830056B1 (en) | Method for manufacturing a part made from cmc | |
WO2014053751A1 (en) | Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform | |
EP3164373A1 (en) | Part coated with a surface coating and associated methods | |
EP2349687B1 (en) | Method for manufacturing a complexly shaped composite material part | |
EP2154119B1 (en) | Method of producing a part from a thermostructural composite material and part thus obtained | |
EP2785665B1 (en) | Cmc material part manufacture method | |
EP1587773B1 (en) | Method for treating the surface of a part made of a heat-structured composite material and use thereof in brazing parts made of a heat-structured composite material | |
FR3062336A1 (en) | PROCESS FOR MANUFACTURING A PIECE OF COMPOSITE MATERIAL | |
FR3023212B1 (en) | METHOD FOR MANUFACTURING A COATED PART BY A SURFACE COATING COMPRISING AN ALLOY | |
EP4355982A1 (en) | Abradable coating having a honeycomb structure made of composite material having a ceramic matrix made of short fibres | |
WO2019058069A1 (en) | Method for manufacturing a part using cmc | |
EP3793963B1 (en) | Process for manufacturing a cmc part | |
EP2906517A1 (en) | Method for locally treating a part made from porous composite material | |
EP4373796A1 (en) | Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers | |
FR3081156A1 (en) | PROCESS FOR MANUFACTURING A COATED CMC PART | |
US11267763B2 (en) | Rapid processing of laminar composite components | |
EP4264016A1 (en) | Blade made of composite material with at least partially ceramic matrix | |
WO2022185007A1 (en) | Fibrous texture for a thin-edged composite blade | |
FR3118095A1 (en) | SHORT FIBER CERAMIC MATRIX COMPOSITE BLADE HEEL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13782760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13782760 Country of ref document: EP Kind code of ref document: A1 |