EP4373796A1 - Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers - Google Patents

Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers

Info

Publication number
EP4373796A1
EP4373796A1 EP21810068.3A EP21810068A EP4373796A1 EP 4373796 A1 EP4373796 A1 EP 4373796A1 EP 21810068 A EP21810068 A EP 21810068A EP 4373796 A1 EP4373796 A1 EP 4373796A1
Authority
EP
European Patent Office
Prior art keywords
raw material
sacrificial core
metal matrix
ceramic
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21810068.3A
Other languages
German (de)
French (fr)
Inventor
Arnaud DELEHOUZE
Eric Bouillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics SA filed Critical Safran Ceramics SA
Publication of EP4373796A1 publication Critical patent/EP4373796A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Definitions

  • the present invention relates to the general field of the manufacture of hollow parts made of composite material with a metal or ceramic matrix.
  • Ceramic (CMC) or metallic (CMM) matrix composite materials are materials consisting of a fibrous reinforcement densified by a ceramic or metallic matrix. These materials have a high level of performance in terms of stiffness and resistance at high temperature.
  • a field of application of the invention is the manufacture of hollow parts used in the hot parts of a turbomachine, for example parts of the turbine, rear body or secondary nozzles of the turbomachine. More specifically, the invention can be used for producing distributors or hollow turbine blades.
  • a turbine stage consists of a fixed blade or distributor belonging to a stator, followed by a mobile blade belonging to a rotor.
  • the first stages of the distributor are generally hollow in order to route air radially from the outside to the inside of the turbine, so as to supply the hub with air to ensure its pressurization and purging as well as its possible cooling. . Part of this air can be intended for cooling the distributor.
  • the moving blades can also be hollow so that cooling air can pass through them.
  • the use of hollow parts also makes it possible to reduce the mass of the turbomachine.
  • Document US2020270180 discloses a process for manufacturing hollow CMC parts which consists of forming a fibrous preform around a core, consolidating the preform and eliminating the core.
  • the fibrous preform is formed with continuous fibers by draping fibrous textures around the core or by weaving a preform comprising a hollow zone intended for the insertion of the core.
  • Short fibers make it possible to obtain small parts. Short fibers also allow the manufacture of composite material parts directly in their final shape (“net shape”) or near final shape (“near net shape”).
  • the object of the present invention is therefore to overcome the aforementioned drawbacks by proposing a method for manufacturing a hollow part made of composite material with a ceramic or metallic matrix comprising the following steps: preparation of a raw material comprising at least short fibers and a ceramic matrix or metal matrix precursor loading, positioning of a sacrificial core in a molding cavity of an injection tool, the molding cavity having dimensions greater than the dimensions of the sacrificial core, shaping of the raw material by injection molding said raw material into the free space between the sacrificial core and an internal wall of the molding cavity so as to obtain a green part comprising the sacrificial core and the shaped raw material , extraction of the green part from the injection tooling, densification of the raw material by flash sintering of the green part so as to transform the charge into a ceramic matrix or a metal matrix, removal or elimination of the sacrificial core so as to obtain a hollow part made of composite material with a ceramic or metal matrix.
  • the manufacturing method of the invention advantageously combines the use of a sacrificial core with the techniques of injection molding and densification by flash sintering.
  • the sacrificial core serves both as a counter-mold during the shaping step to define the shape and dimensions of the cavity to be formed and of the final part ("net shape") and as a conductor which participates in the sintering of the particles of the matrix precursor filler.
  • the method of the invention makes it possible to manufacture hollow parts in CMC or CMM composite material with short fiber reinforcement, even for parts of small dimensions and/or having a complex geometry.
  • the sacrificial core has a geometry capable of being unmolded from the densified raw material after the densification step.
  • the sacrificial core can be coated with a sheet of flexible graphite, a layer of graphite deposited by spraying or a layer of boron nitride paint before the step of injecting the raw material in order to facilitate its mechanical removal.
  • the sacrificial core is eliminated by chemical treatment. This makes it possible to use cores that have complex geometries that cannot be demolded (undercuts) and to form parts with any shape of cavity.
  • the sacrificial core is made with one of the following materials: graphite, zirconia and alumina.
  • the raw material comprises a ceramic matrix precursor filler and short fibers made of a material chosen from one of the following materials: carbon, silicon carbide and alumina.
  • the raw material comprises a metal matrix precursor filler and short fibers made of a material chosen from one of the following materials: silicon carbide and alumina.
  • a load metal typically silicon, can also be added to the raw material to promote final densification.
  • At least one diffusion barrier layer is deposited on the sacrificial core before the injection of the raw material. This avoids possible chemical interactions between the sacrificial core material and the material(s) used in the raw material to form the matrix.
  • the raw material further comprises a binder, the process further comprising a step of debinding the raw material before or during the densification of the raw material. This eliminates the presence of organic matter in the composite material of the final part.
  • Figure 1 is a flowchart showing the steps of a method of manufacturing a hollow part made of composite material with a ceramic or metal matrix with short fiber reinforcement according to the invention
  • Figure 2 is a schematic perspective view of a sacrificial core in accordance with one embodiment of the invention.
  • Figure 3 is a schematic exploded perspective view showing the positioning of a sacrificial core in an injection molding tool according to one embodiment of the invention
  • Figure 4 is a sectional view of the tooling of figure 3 once closed
  • Figure 5 is another sectional view of the tooling of figure 3 once closed
  • Figure 6 is a schematic exploded perspective view showing the extraction of a green part of the tooling of Figures 3, 4 and 5,
  • Figure 7 is a schematic sectional view of a flash sintering tool in which the green part of Figure 6 is placed
  • Figure 8 is a schematic perspective view of a hollow part made of composite material with a ceramic or metal matrix with short fiber reinforcement after removal of the sacrificial core.
  • the process for manufacturing a part made of ceramic matrix composite material (CMC) or of metal matrix composite material (CMM) according to the invention begins with the production of a sacrificial core 10 (step S1 , Figure 2).
  • the sacrificial core is made of a material compatible with the manufacturing steps of the method of the invention and of the desired final material, the material of the core preferably having thermochemical compatibilities with the composite material of the part.
  • the constituent material of the sacrificial core also has mechanical and thermal properties allowing it to withstand the pressures and temperatures used during the manufacture of the part as described below.
  • the sacrificial core can also be electrically conductive to participate in the heating of the green part during the SPS flash sintering step.
  • the sacrificial core material must also be easily removable or removable without damaging the final part.
  • the sacrificial core can be made of graphite, alumina or zirconia.
  • the sacrificial core 10 comprises a body 11 which has a geometry and dimensions corresponding to those of the hollow or the cavity which it is desired to form in the final CMC or CMM part.
  • the core 10 further comprises positioning pins or extra lengths 12 which extend from the body 11 and which are intended to facilitate holding the sacrificial core in position in an injection tool as explained below.
  • the sacrificial core can be obtained by machining or any other means known to those skilled in the art.
  • the next step consists in preparing a raw material (also called “feedstock” in English) comprising (step S2) at least short fibers and a precursor filler of ceramic matrix or metal matrix.
  • the raw material may further comprise a binder, which is the case in the example described here.
  • the short fibers here have a length of between 50 mm and 100 mm.
  • Short fibers allow the manufacture of CMC or CMM parts directly in their final shape ("net shape”) or near final shape ("near net shape”).
  • the short fibers provide isotropic or transverse isotropic reinforcement which improves the creep resistance of the metal matrix of the part. This improves the rigidity of the CMM part at high temperature while reducing its density, which makes it possible to increase the specific mechanical properties.
  • the raw material comprises a ceramic matrix precursor filler and short fibers made of a material chosen from one of the following materials: carbon, silicon carbide, alumina, mullite and magnesia.
  • the ceramic matrix precursor filler consists of a powder of refractory ceramic particles, for example particles of silicon carbide, boron nitride (Si 3 N 4 ) or any mixture of ceramic powders.
  • the raw material comprises a metal matrix precursor filler and short fibers in a material chosen from one of the following materials: silicon carbide and alumina.
  • the metal matrix precursor filler consists of a powder of metal particles, in particular particles of titanium alloy, nickel alloy or aluminum alloy.
  • the binder consists of at least one polymeric binder such as polyethylene glycol (PEG), stearic acid, polypropylene, or even a formulation based on polyoxymethylene (POM).
  • PEG polyethylene glycol
  • POM polyoxymethylene
  • the injection tool 20 comprises a first half-shell 21 comprising an imprint 210 and a second half-shell 22 comprising an imprint 220.
  • the cavities 210 and 220 delimit a molding cavity 23 having dimensions greater than the dimensions of the sacrificial core 10 in order to provide an injection space between the external surface of the core and the wall of the mold cavity.
  • Housings 211 and 221 also extend respectively from cavities 210 and 220.
  • Housings 211 and 221 are intended to cooperate with overlengths 12 of sacrificial core 10 so as to hold the core in position in the cavity of molding to form an injection space 230 between the core and the wall of the cavities 210 and 220 for the raw material (FIGS. 4 and 5).
  • the injection space 230 is sized as a function of the final thickness of the material of the target part, taking account in particular of the influence of sintering and of any debinding on the geometric variation of the part.
  • step S4 The raw material is then shaped by the injection molding technique. More specifically, once the injection tool 20 is closed with the sacrificial core 10 positioned inside, a raw material 30 prepared in step S2 is injected into the free space 230 between the sacrificial core 10 and the wall. inside the mold cavity 23 via an injection port 30 (FIGS. 4 and 5).
  • a green part 40 is obtained, also called a “green body”, comprising the sacrificial core 10 coated on its outer surface with a layer of shaped raw material 30 (figure 6).
  • the green part 40 is then extracted (stripped) from the injection tooling (FIG. 6, step S5).
  • a step of debinding the raw material is carried out before the step of placing the green part in the flash sintering tool so as to eliminate the organic material from the composite material to be manufactured (step S6 ).
  • the debinding step can be carried out by solvent route, thermal route under inert gas, a combination of these two routes, etc. Debinding can also be carried out directly in-situ in the flash sintering tooling by a suitable treatment carried out before the flash sintering.
  • the green part 40 is placed in a flash sintering tool or SPS (“Spark Plasma Sintering”) 50 (FIG. 7, step S7).
  • SPS Spark Plasma Sintering
  • the difference between conventional hot pressing and flash sintering is that the heat source is not external but an electric current (direct - pulsed direct - or alternating) applied via electrodes passes through a conductive mold.
  • flash sintering consists of heat treatment under mechanical stress using a tool to enclose the green part. The application of the heat is carried out by Joule effect as close as possible to the green part by the passage of an electric current, which makes it possible to quickly close the porosity and to very quickly reach a maximum rate of densification (formation of bonds between grains without total fusion of these).
  • the flash sintering tool 50 makes it possible to subject the raw material 30 to pulses (3.3 ms) of direct electric current (typically 0-25 V, 1-20 kA) while applying a pressure of several tens of MPa ( up to 300 MPa) and this in a range of temperatures varying from ambient temperature to 2500°C. Flash sintering is generally carried out under vacuum but it is possible to work under an inert atmosphere (nitrogen, argon).
  • the flash sintering tool 50 comprises for this purpose a mold formed by two half-shells 51 and 52 made of an electrically conductive material such as graphite.
  • the two half-shells 51 and 52 define between them a molding cavity, which may have a complex shape, the dimensions of which are defined according to the dimensions of the final part to be produced.
  • the sacrificial core plays here the role of counter-mold to ensure the densification of the internal walls of the final part.
  • the tool 50 comprises first and second electrodes 55 and 56 connected, on the one hand, to a current generator 57 and, on the other hand, to the half-shells 51 and 52 of the mold respectively via a first piston 53 and a second piston 54.
  • a key tool can be used.
  • the generator 57 emits a current I which circulates through all the tooling 50, namely the electrodes 56 and 57, the pistons 53 and 54 and the half-shells 51 and 52, but also the charge of the raw material 30 and the sacrificial core 10.
  • a mechanical stress P is also applied to the half-shells 51 and 52 by the pistons 53 and 54 during sintering.
  • the parameters of the densification cycle namely mainly the intensity of the electric current, the value of the mechanical stress applied and the nature of the treatment atmosphere, are defined by the nature of the elements to be sintered of the raw material and are well known to those skilled in the art.
  • the electric current is controlled according to the defined thermal cycles (temperature rise/fall ramps, stages, etc.).
  • the mechanical constraint can also be controlled if necessary (release/application of constraint).
  • the molds used are preferably made of graphite and are separated from the powder by a sheet of graphite to avoid any sticking or by any other means known to those skilled in the art, such as in particular a layer of graphite deposited by spraying or a layer of paint of boron nitride.
  • the preform obtained is extracted from the tool 50.
  • the next step consists in removing or eliminating the sacrificial core (step S9). If its geometry allows it, i.e. if the core has no undercut, the core can be removed mechanically. In order to facilitate mechanical removal, the sacrificial core may be wrapped or coated with a sheet of flexible graphite, a layer of spray-deposited graphite or a layer of boron nitride paint before the shaping step. raw material by injection molding.
  • the sacrificial core can also be removed by thermochemical treatment.
  • thermochemical oxidation treatment carried out, for example, in air at a temperature between 400° C. and 600° C. if the material of the part allows it. .
  • a part 60 is obtained in composite material with a ceramic or metal matrix reinforced with short fibres, the part comprising an internal recess 61 whose shape and dimensions have been defined by the sacrificial core. 10.
  • a diffusion barrier layer can be formed on the outer surface of the core before the injection of the raw material.
  • the diffusion barrier can consist of a layer of boron nitride.
  • metallic bases it is possible to deposit alumina or tungsten as a barrier layer).
  • the method of the invention makes it possible to easily and reproducibly produce hollow parts made of composite material with a short fiber ceramic matrix (CMC-FC), the fibers being coated with an interphase and optionally with a protective layer of the interphase.
  • CCM -FC short fiber metal matrix material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

The invention relates to a method for manufacturing a hollow part made of metal matrix or ceramic matrix composite, comprising the following steps: • - preparing a raw material (30) comprising at least short fibers and a ceramic matrix or metal matrix precursor charge, • - positioning a sacrificial core (10) in a molding cavity (23) of injection-molding equipment (20), the molding cavity having dimensions larger than the dimensions of the sacrificial core, • - shaping the raw material (30) by injection molding said raw material into the free space (230) between the sacrificial core (10) and an internal wall of the molding cavity so as to obtain a green part comprising the sacrificial core and the shaped raw material, • - extracting the green part from the injection-molding equipment (20), • - densifying the raw material (30) by flash sintering of the green part so as to transform the charge into a ceramic matrix or into a metal matrix, • - removing or eliminating the sacrificial core (10) so as to obtain a hollow part made of ceramic matrix or metal matrix composite, • wherein the sacrificial core is coated with a flexible graphite sheet, with a graphite layer deposited by spraying or with a boron nitride paint layer before the step of injecting the raw material.

Description

Description Description
Titre de l'invention : Procédé de fabrication d'une pièce creuse en matériau composite à matrice métallique ou céramique renforcée avec des fibres courtes Title of the invention: Process for manufacturing a hollow part in composite material with a metal or ceramic matrix reinforced with short fibers
Domaine Technique Technical area
La présente invention se rapporte au domaine général de la fabrication de pièces creuses en matériau composite à matrice métallique ou céramique. The present invention relates to the general field of the manufacture of hollow parts made of composite material with a metal or ceramic matrix.
Technique antérieure Prior technique
Les matériaux composites à matrice céramique (CMC) ou métallique (CMM) sont des matériaux constitués d'un renfort fibreux densifié par une matrice céramique ou métallique. Ces matériaux ont un haut niveau de performance en raideur et en résistance à haute température. Ceramic (CMC) or metallic (CMM) matrix composite materials are materials consisting of a fibrous reinforcement densified by a ceramic or metallic matrix. These materials have a high level of performance in terms of stiffness and resistance at high temperature.
Un domaine d’application de l’invention est la fabrication de pièces creuses utilisées dans des parties chaudes d’une turbomachine, par exemple des pièces de turbine, d’arrière-corps ou de tuyères secondaires de la turbomachine. Plus précisément, l’invention peut être utilisée pour la réalisation de distributeurs ou d’aubes creuses de turbine. A field of application of the invention is the manufacture of hollow parts used in the hot parts of a turbomachine, for example parts of the turbine, rear body or secondary nozzles of the turbomachine. More specifically, the invention can be used for producing distributors or hollow turbine blades.
Un étage de turbine est constitué d’un aubage fixe ou distributeur appartenant à un stator, suivi d’un aubage mobile appartenant à un rotor. Les premiers étages de distributeur sont généralement creux afin d’acheminer de l’air radialement de l’extérieur vers l’intérieur de la turbine, de façon à alimenter le moyeu en air pour en assurer la pressurisation et la purge ainsi que son éventuel refroidissement. Une partie de cet air peut être destiné au refroidissement du distributeur. A turbine stage consists of a fixed blade or distributor belonging to a stator, followed by a mobile blade belonging to a rotor. The first stages of the distributor are generally hollow in order to route air radially from the outside to the inside of the turbine, so as to supply the hub with air to ensure its pressurization and purging as well as its possible cooling. . Part of this air can be intended for cooling the distributor.
Par ailleurs, les aubes mobiles peuvent également être creuses afin de pouvoir être traversées par de l’air de refroidissement. L’utilisation de pièces creuses permet également de réduire la masse de la turbomachine. In addition, the moving blades can also be hollow so that cooling air can pass through them. The use of hollow parts also makes it possible to reduce the mass of the turbomachine.
Le document US2020270180 divulgue un procédé de fabrication de pièces creuses en CMC qui consiste à former une préforme fibreuse autour d’un noyau, à consolider la préforme et à éliminer le noyau. Dans le document US2020270180 la préforme fibreuse est formée avec des fibres continues par drapage de textures fibreuses autour du noyau ou par tissage d’une préforme comportant une zone creuse destinée à l’insertion du noyau. Document US2020270180 discloses a process for manufacturing hollow CMC parts which consists of forming a fibrous preform around a core, consolidating the preform and eliminating the core. In document US2020270180, the fibrous preform is formed with continuous fibers by draping fibrous textures around the core or by weaving a preform comprising a hollow zone intended for the insertion of the core.
La solution décrite dans le document US2020270180 utilise des strates ou des structures tissées avec des fibres continues qui présentent intrinsèquement une tenue ou cohésion qui permet de les mettre en forme autour d’un noyau avant consolidation. The solution described in the document US2020270180 uses strata or woven structures with continuous fibers which intrinsically have a hold or cohesion which allows them to be shaped around a core before consolidation.
La solution divulguée dans le document US2020270180 n’est pas transposable à la fabrication d’une pièce creuse en CMC à partir de fibres courtes qui sont par définition discontinues et ne peuvent pas être tissées entre elles pour former une structure fibreuse cohérente. The solution disclosed in document US2020270180 cannot be transposed to the manufacture of a hollow CMC part from short fibers which are by definition discontinuous and cannot be woven together to form a coherent fibrous structure.
Les fibres courtes permettent d’obtenir des pièces de petites dimensions. Les fibres courtes permettent également la fabrication de pièces en matériau composite directement dans leur forme finale (« net shape ») ou quasi finale (« near net shape »). Short fibers make it possible to obtain small parts. Short fibers also allow the manufacture of composite material parts directly in their final shape (“net shape”) or near final shape (“near net shape”).
Il serait donc souhaitable de disposer d’une solution permettant de fabriquer des pièces creuses en CMC ou CMM avec des fibres courtes. It would therefore be desirable to have a solution allowing the manufacture of hollow parts in CMC or CMM with short fibers.
Exposé de l’invention Disclosure of Invention
La présente invention a donc pour but de remédier aux inconvénients précités en proposant un procédé de fabrication d’une pièce creuse en matériau composite à matrice céramique ou métallique comprenant les étapes suivantes : préparation d’une matière première comprenant au moins des fibres courtes et une charge précurseur de matrice céramique ou de matrice métallique, positionnement d’un noyau sacrificiel dans une cavité de moulage d’un outillage d’injection, la cavité de moulage présentant des dimensions supérieures aux dimensions du noyau sacrificiel, mise en forme de la matière première par moulage par injection de ladite matière première dans l’espace libre entre le noyau sacrificiel et une paroi interne de la cavité de moulage de manière à obtenir une pièce verte (« green body ») comprenant le noyau sacrificiel et la matière première mise en forme, extraction de la pièce verte de l’outillage d’injection, densification de la matière première par frittage flash de la pièce verte de manière à transformer la charge en matrice céramique ou en matrice métallique, retrait ou élimination du noyau sacrificiel de manière à obtenir une pièce creuse en matériau composite à matrice céramique ou métallique. The object of the present invention is therefore to overcome the aforementioned drawbacks by proposing a method for manufacturing a hollow part made of composite material with a ceramic or metallic matrix comprising the following steps: preparation of a raw material comprising at least short fibers and a ceramic matrix or metal matrix precursor loading, positioning of a sacrificial core in a molding cavity of an injection tool, the molding cavity having dimensions greater than the dimensions of the sacrificial core, shaping of the raw material by injection molding said raw material into the free space between the sacrificial core and an internal wall of the molding cavity so as to obtain a green part comprising the sacrificial core and the shaped raw material , extraction of the green part from the injection tooling, densification of the raw material by flash sintering of the green part so as to transform the charge into a ceramic matrix or a metal matrix, removal or elimination of the sacrificial core so as to obtain a hollow part made of composite material with a ceramic or metal matrix.
Le procédé de fabrication de l’invention combine avantageusement l’utilisation d’un noyau sacrificiel avec les techniques de moulage par injection et de densification par frittage flash. En effet, le noyau sacrificiel sert à la fois de contre-moule lors de l’étape de mise en forme pour définir la forme et les dimensions de la cavité à former et de la pièce finale (« net shape ») et de conducteur qui participe au frittage des particules de la charge précurseur de matrice. The manufacturing method of the invention advantageously combines the use of a sacrificial core with the techniques of injection molding and densification by flash sintering. Indeed, the sacrificial core serves both as a counter-mold during the shaping step to define the shape and dimensions of the cavity to be formed and of the final part ("net shape") and as a conductor which participates in the sintering of the particles of the matrix precursor filler.
Le procédé de l’invention permet de fabriquer des pièces creuses en matériau composite CMC ou CMM à renfort fibres courtes, et ce même pour des pièces de petites dimensions et/ou ayant une géométrie complexe. The method of the invention makes it possible to manufacture hollow parts in CMC or CMM composite material with short fiber reinforcement, even for parts of small dimensions and/or having a complex geometry.
Selon un premier aspect du procédé de l’invention, le noyau sacrificiel présente une géométrie apte à être démoulée de la matière première densifiée après l’étape de densification. Dans ce cas, le noyau sacrificiel peut être revêtu d’une feuille de graphite souple, d’une couche de graphite déposée par spray ou d’une couche de peinture de nitrure de bore avant l’étape d’injection de la matière première afin de faciliter son retrait mécanique. According to a first aspect of the method of the invention, the sacrificial core has a geometry capable of being unmolded from the densified raw material after the densification step. In this case, the sacrificial core can be coated with a sheet of flexible graphite, a layer of graphite deposited by spraying or a layer of boron nitride paint before the step of injecting the raw material in order to facilitate its mechanical removal.
Selon un deuxième aspect du procédé de l’invention, le noyau sacrificiel est éliminé par traitement chimique. Cela permet d’utiliser des noyaux qui présentent des géométries complexes non démoulables (contre-dépouilles) et de former des pièces avec toute forme de cavité. According to a second aspect of the method of the invention, the sacrificial core is eliminated by chemical treatment. This makes it possible to use cores that have complex geometries that cannot be demolded (undercuts) and to form parts with any shape of cavity.
Selon un troisième aspect du procédé de l’invention, le noyau sacrificiel est réalisé avec un des matériaux suivants : graphite, zircone et alumine. According to a third aspect of the process of the invention, the sacrificial core is made with one of the following materials: graphite, zirconia and alumina.
Selon un quatrième aspect du procédé de l’invention, la matière première comprend une charge précurseur de matrice céramique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbone, carbure de silicium et alumine.According to a fourth aspect of the process of the invention, the raw material comprises a ceramic matrix precursor filler and short fibers made of a material chosen from one of the following materials: carbon, silicon carbide and alumina.
Selon un cinquième aspect du procédé de l’invention, la matière première comprend une charge précurseur de matrice métallique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbure de silicium et alumine. Une charge métallique, typiquement du silicium, peut en outre être ajoutée dans la matière première pour favoriser la densification finale. According to a fifth aspect of the process of the invention, the raw material comprises a metal matrix precursor filler and short fibers made of a material chosen from one of the following materials: silicon carbide and alumina. A load metal, typically silicon, can also be added to the raw material to promote final densification.
Selon un sixième aspect du procédé de l’invention, au moins une couche barrière de diffusion est déposée sur le noyau sacrificiel avant l’injection de la matière première. Cela permet d’éviter d’éventuelles interactions chimiques entre le matériau du noyau sacrificiel et le ou les matériaux utilisés dans la matière première pour former la matrice. According to a sixth aspect of the process of the invention, at least one diffusion barrier layer is deposited on the sacrificial core before the injection of the raw material. This avoids possible chemical interactions between the sacrificial core material and the material(s) used in the raw material to form the matrix.
Selon un septième aspect du procédé de l’invention, la matière première comprend en outre un liant, le procédé comprenant en outre une étape de déliantage de la matière première avant ou pendant la densification de la matière première. Cela permet d’éliminer la présence de matière organique dans le matériau composite de la pièce finale. According to a seventh aspect of the process of the invention, the raw material further comprises a binder, the process further comprising a step of debinding the raw material before or during the densification of the raw material. This eliminates the presence of organic matter in the composite material of the final part.
Brève description des dessins Brief description of the drawings
[Fig. 1] La figure 1 est un ordinogramme montrant les étapes d’un procédé de fabrication d’une pièce creuse en matériau composite à matrice céramique ou métallique à renfort en fibres courtes selon l’invention, [Fig. 1] Figure 1 is a flowchart showing the steps of a method of manufacturing a hollow part made of composite material with a ceramic or metal matrix with short fiber reinforcement according to the invention,
[Fig. 2] La figure 2 est une vue schématique en perspective d’un noyau sacrificiel conformément à un mode de réalisation de l’invention, [Fig. 2] Figure 2 is a schematic perspective view of a sacrificial core in accordance with one embodiment of the invention,
[Fig. 3] La figure 3 est une vue schématique en perspective éclatée montrant le positionnement d’un noyau sacrificiel dans un outillage de moulage par injection conformément à un mode de réalisation de l’invention, [Fig. 3] Figure 3 is a schematic exploded perspective view showing the positioning of a sacrificial core in an injection molding tool according to one embodiment of the invention,
[Fig. 4] La figure 4 est une vue en coupe de l’outillage de la figure 3 une fois fermé,[Fig. 4] Figure 4 is a sectional view of the tooling of figure 3 once closed,
[Fig. 5] La figure 5 est une autre vue en coupe de l’outillage de la figure 3 une fois fermé, [Fig. 5] Figure 5 is another sectional view of the tooling of figure 3 once closed,
[Fig. 6] La figure 6 est une vue schématique en perspective éclatée montrant l’extraction d’une pièce verte de l’outillage des figures 3, 4 et 5, [Fig. 6] Figure 6 is a schematic exploded perspective view showing the extraction of a green part of the tooling of Figures 3, 4 and 5,
[Fig. 7] La figure 7 est une vue schématique en coupe d’un outillage de frittage flash dans lequel la pièce verte de la figure 6 est placé, [Fig. 8] La figure 8 est une vue schématique en perspective d’une pièce creuse en matériau composite à matrice céramique ou métallique à renfort fibre courte après retrait du noyau sacrificielle. [Fig. 7] Figure 7 is a schematic sectional view of a flash sintering tool in which the green part of Figure 6 is placed, [Fig. 8] Figure 8 is a schematic perspective view of a hollow part made of composite material with a ceramic or metal matrix with short fiber reinforcement after removal of the sacrificial core.
Description des modes de réalisation Description of embodiments
Comme représenté sur la figure 1 , le procédé de fabrication d’une pièce en matériau composite à matrice céramique (CMC) ou en matériau composite à matrice métallique (CMM) selon l’invention débute par la réalisation d’un noyau sacrificiel 10 (étape S1 , figure 2). Conformément à l’invention, le noyau sacrificiel est réalisé en un matériau compatible avec les étapes de fabrication du procédé de l’invention et du matériau final souhaité, le matériau du noyau présentant préférentiellement des compatibilités thermochimiques avec le matériau composite de la pièce. Le matériau constitutif du noyau sacrificiel présente en outre des propriétés mécaniques et thermiques lui permettant de résister aux pressions et températures mises en œuvre lors de la fabrication de la pièce comme décrit ci-après. Le noyau sacrificiel peut également être conducteur électriquement pour participer à la chauffe de la pièce verte lors de l’étape de frittage flash SPS. Le matériau du noyau sacrificiel doit également être facilement retirable ou éliminable sans détérioration de la pièce finale. A cet effet et de manière non limitative, le noyau sacrificiel peut être réalisé en graphite, en alumine ou en zircone. As represented in FIG. 1, the process for manufacturing a part made of ceramic matrix composite material (CMC) or of metal matrix composite material (CMM) according to the invention begins with the production of a sacrificial core 10 (step S1 , Figure 2). In accordance with the invention, the sacrificial core is made of a material compatible with the manufacturing steps of the method of the invention and of the desired final material, the material of the core preferably having thermochemical compatibilities with the composite material of the part. The constituent material of the sacrificial core also has mechanical and thermal properties allowing it to withstand the pressures and temperatures used during the manufacture of the part as described below. The sacrificial core can also be electrically conductive to participate in the heating of the green part during the SPS flash sintering step. The sacrificial core material must also be easily removable or removable without damaging the final part. For this purpose and in a non-limiting way, the sacrificial core can be made of graphite, alumina or zirconia.
Comme illustré sur la figure 2, le noyau sacrificiel 10 comprend un corps 11 qui présente une géométrie et des dimensions correspondant à celles du creux ou de la cavité que l’on souhaite former dans la pièce finale en CMC ou CMM. Le noyau 10 comprend en outre des pions de positionnement ou sur-longueurs 12 qui s’étendent depuis le corps 11 et qui sont destinés à faciliter le maintien en position du noyau sacrificiel dans un outillage d’injection comme expliqué ci-après. Le noyau sacrificiel peut être obtenu par usinage ou tout autre moyen connu de l’homme du métier.As illustrated in FIG. 2, the sacrificial core 10 comprises a body 11 which has a geometry and dimensions corresponding to those of the hollow or the cavity which it is desired to form in the final CMC or CMM part. The core 10 further comprises positioning pins or extra lengths 12 which extend from the body 11 and which are intended to facilitate holding the sacrificial core in position in an injection tool as explained below. The sacrificial core can be obtained by machining or any other means known to those skilled in the art.
L’étape suivante consiste à préparer une matière première (encore en appelée « feedstock » en anglais) comprenant (étape S2) au moins des fibres courtes et une charge précurseur de matrice céramique ou de matrice métallique. La matière première peut en outre comprendre un liant, ce qui est le cas dans l’exemple décrit ici. Les fibres courtes présentent ici une longueur comprise entre 50 mm et 100 mm.The next step consists in preparing a raw material (also called “feedstock” in English) comprising (step S2) at least short fibers and a precursor filler of ceramic matrix or metal matrix. The raw material may further comprise a binder, which is the case in the example described here. The short fibers here have a length of between 50 mm and 100 mm.
Les fibres courtes permettent la fabrication de pièces en CMC ou CMM directement dans leur forme finale (« net shape ») ou quasi finale (« near net shape »). Dans le cas d’une pièce en CMM, les fibres courtes permettent d’avoir un renforcement isotrope ou isotrope transverse qui permet d’améliorer la tenue au fluage de la matrice métallique de la pièce. On améliore ainsi la rigidité de la pièce en CMM à haute température tout en réduisant sa densité, ce qui permet d’augmenter les propriétés mécaniques spécifiques. Short fibers allow the manufacture of CMC or CMM parts directly in their final shape ("net shape") or near final shape ("near net shape"). In the case of a CMM part, the short fibers provide isotropic or transverse isotropic reinforcement which improves the creep resistance of the metal matrix of the part. This improves the rigidity of the CMM part at high temperature while reducing its density, which makes it possible to increase the specific mechanical properties.
Dans le cas de la fabrication d’une pièce creuse en CMC, la matière première comprend une charge précurseur de matrice céramique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbone, carbure de silicium, alumine, mullite et magnésie. La charge précurseur de matrice céramique est constituée d’une poudre de particules céramiques réfractaires, par exemple des particules de carbure de silicium, de nitrure de bore (Si3N4) ou tout mélange de poudres céramiques. In the case of the manufacture of a hollow CMC part, the raw material comprises a ceramic matrix precursor filler and short fibers made of a material chosen from one of the following materials: carbon, silicon carbide, alumina, mullite and magnesia. The ceramic matrix precursor filler consists of a powder of refractory ceramic particles, for example particles of silicon carbide, boron nitride (Si 3 N 4 ) or any mixture of ceramic powders.
Dans le cas de la fabrication d’une pièce creuse en CMM, la matière première comprend une charge précurseur de matrice métallique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbure de silicium et alumine. La charge précurseur de matrice métallique est constituée d’une poudre de particules métalliques, en particulier de particules d’alliage titane, d’alliage de nickel ou d’alliage d’aluminium. In the case of the manufacture of a CMM hollow part, the raw material comprises a metal matrix precursor filler and short fibers in a material chosen from one of the following materials: silicon carbide and alumina. The metal matrix precursor filler consists of a powder of metal particles, in particular particles of titanium alloy, nickel alloy or aluminum alloy.
Le liant est constitué d’au moins un liant polymérique comme par exemple du polyéthylène Glycol (PEG), de l’acide stéarique, du polypropylène, encore une formulation à base de polyoxyméthylène (POM). The binder consists of at least one polymeric binder such as polyethylene glycol (PEG), stearic acid, polypropylene, or even a formulation based on polyoxymethylene (POM).
Le procédé se poursuit par le positionnement du noyau sacrificiel 10 dans une cavité de moulage 23 d’un outillage d’injection 20 comme illustré sur la figure 4 (étape S3). Plus précisément, l’outillage d’injection 20 comprend une première demi-coquille 21 comportant une empreinte 210 et une deuxième demi-coquille 22 comportant une empreinte 220. Lorsque l’outillage 20 est fermé par réunion des deux demi-coquilles 21 et 22 (figures 4 et 5), les empreintes 210 et 220 délimitent une cavité de moulage 23 présentant des dimensions supérieures aux dimensions du noyau sacrificiel 10 afin de ménager un espace d’injection entre la surface externe du noyau et la paroi de la cavité de moulage. Des logements 211 et 221 s’étendent en outre respectivement à partir des empreintes 210 et 220. Les logements 211 et 221 sont destinés à coopérer avec les sur-longueurs 12 du noyau sacrificiel 10 de manière à maintenir le noyau en position dans la cavité de moulage pour former un espace d’injection 230 entre le noyau et la paroi des empreintes 210 et 220 pour la matière première (figures 4 et 5). L’espace d’injection 230 est dimensionné en fonction de l’épaisseur finale du matériau de la pièce visée en tenant compte notamment de l’influence du frittage et de l’éventuel déliantage sur la variation géométrique de la pièce. The method continues with the positioning of the sacrificial core 10 in a molding cavity 23 of an injection tool 20 as illustrated in FIG. 4 (step S3). More specifically, the injection tool 20 comprises a first half-shell 21 comprising an imprint 210 and a second half-shell 22 comprising an imprint 220. When the tool 20 is closed by joining the two half-shells 21 and 22 (FIGS. 4 and 5), the cavities 210 and 220 delimit a molding cavity 23 having dimensions greater than the dimensions of the sacrificial core 10 in order to provide an injection space between the external surface of the core and the wall of the mold cavity. Housings 211 and 221 also extend respectively from cavities 210 and 220. Housings 211 and 221 are intended to cooperate with overlengths 12 of sacrificial core 10 so as to hold the core in position in the cavity of molding to form an injection space 230 between the core and the wall of the cavities 210 and 220 for the raw material (FIGS. 4 and 5). The injection space 230 is sized as a function of the final thickness of the material of the target part, taking account in particular of the influence of sintering and of any debinding on the geometric variation of the part.
On procède ensuite à la mise en forme de la matière première par la technique de moulage par injection (étape S4). Plus précisément, une fois l’outillage d’injection fermé 20 avec le noyau sacrificiel 10 positionné à l’intérieur, une matière première 30 préparée à l’étape S2 est injectée dans l’espace libre 230 entre le noyau sacrificiel 10 et la paroi interne de la cavité de moulage 23 via un port d’injection 30 (figures 4 et 5). The raw material is then shaped by the injection molding technique (step S4). More specifically, once the injection tool 20 is closed with the sacrificial core 10 positioned inside, a raw material 30 prepared in step S2 is injected into the free space 230 between the sacrificial core 10 and the wall. inside the mold cavity 23 via an injection port 30 (FIGS. 4 and 5).
Une fois l’injection de la matière première terminée, on obtient une pièce verte 40, encore appelé « green body » en anglais, comprenant le noyau sacrificiel 10 revêtu sur sa surface externe d’une couche de matière première 30 mise en forme (figure 6). Once the injection of the raw material is complete, a green part 40 is obtained, also called a “green body”, comprising the sacrificial core 10 coated on its outer surface with a layer of shaped raw material 30 (figure 6).
La pièce verte 40 est alors extraite (démoulée) de l’outillage d’injection (figure 6, étape S5). The green part 40 is then extracted (stripped) from the injection tooling (FIG. 6, step S5).
Lorsque la matière première comprend un liant, une étape de déliantage de la matière première est réalisée avant l’étape de placement de la pièce verte dans l’outillage de frittage flash de manière à éliminer la matière organique du matériau composite à fabriquer (étape S6). L’étape de déliantage peut être réalisée par voie solvant, voie thermique sous gaz inerte, une combinaison de ces deux voies, etc. Le déliantage peut également être réalisé directement in-situ dans l’outillage de frittage flash par un traitement adapté réalisé avant le frittage flash. When the raw material comprises a binder, a step of debinding the raw material is carried out before the step of placing the green part in the flash sintering tool so as to eliminate the organic material from the composite material to be manufactured (step S6 ). The debinding step can be carried out by solvent route, thermal route under inert gas, a combination of these two routes, etc. Debinding can also be carried out directly in-situ in the flash sintering tooling by a suitable treatment carried out before the flash sintering.
La pièce verte 40 est placée dans un outillage de frittage flash ou SPS (« Spark Plasma Sintering ») 50 (figure 7, étape S7). La différence entre le pressage à chaud conventionnel et le frittage flash réside dans le fait que la source de chaleur n'est pas externe mais qu'un courant électrique (continu - continu pulsé - ou alternatif) appliqué via des électrodes passe à travers un moule conducteur. Le "frittage flash" consiste en un traitement thermique sous contrainte mécanique à l’aide d’un outillage permettant d’enfermer la pièce verte. L’application de la thermique est réalisée par effet joule au plus proche de la pièce verte par le passage d'un courant électrique, ce qui permet de refermer rapidement la porosité et d’atteindre très rapidement une taux de densification maximum (formation de liaisons entre grains sans fusion totale de ceux-ci). Cette soudure réalisée par diffusion de matière, s’accompagne d’une densification, c’est-à-dire d’une diminution du taux de porosité et d’un durcissement qui confère de la cohésion à la matière première mise en forme. L’outillage de frittage flash 50 permet de soumettre la matière première 30 à des puises (3,3 ms) de courant électrique continu (typiquement 0-25 V, 1-20 kA) tout en appliquant une pression de plusieurs dizaines de MPa (jusqu’à 300 MPa) et ceci dans une gamme de températures variant de la température ambiante jusqu’à 2500°C. Les frittages flash sont généralement réalisés sous vide mais il est possible de travailler sous atmosphère inerte (azote, argon). The green part 40 is placed in a flash sintering tool or SPS (“Spark Plasma Sintering”) 50 (FIG. 7, step S7). The difference between conventional hot pressing and flash sintering is that the heat source is not external but an electric current (direct - pulsed direct - or alternating) applied via electrodes passes through a conductive mold. "Flash sintering" consists of heat treatment under mechanical stress using a tool to enclose the green part. The application of the heat is carried out by Joule effect as close as possible to the green part by the passage of an electric current, which makes it possible to quickly close the porosity and to very quickly reach a maximum rate of densification (formation of bonds between grains without total fusion of these). This weld, produced by diffusion of material, is accompanied by densification, that is to say a reduction in the level of porosity and hardening which confers cohesion on the shaped raw material. The flash sintering tool 50 makes it possible to subject the raw material 30 to pulses (3.3 ms) of direct electric current (typically 0-25 V, 1-20 kA) while applying a pressure of several tens of MPa ( up to 300 MPa) and this in a range of temperatures varying from ambient temperature to 2500°C. Flash sintering is generally carried out under vacuum but it is possible to work under an inert atmosphere (nitrogen, argon).
L’outillage frittage flash 50 comprend à cet effet un moule formé par deux demi- coquilles 51 et 52 réalisées dans un matériau conducteur de l’électricité comme du graphite. Les deux demi-coquilles 51 et 52 définissent entre elles une cavité de moulage, pouvant avoir une forme complexe, dont les dimensions sont définies en fonction des dimensions de la pièce finale à réaliser. Le noyau sacrificiel joue ici le rôle de contre-moule pour assurer la densification des parois interne de la pièce finale. The flash sintering tool 50 comprises for this purpose a mold formed by two half-shells 51 and 52 made of an electrically conductive material such as graphite. The two half-shells 51 and 52 define between them a molding cavity, which may have a complex shape, the dimensions of which are defined according to the dimensions of the final part to be produced. The sacrificial core plays here the role of counter-mold to ensure the densification of the internal walls of the final part.
L’outillage 50 comprend des première et deuxième électrodes 55 et 56 reliées, d’une part, à un générateur de courant 57 et, d’autre part, aux demi-coquilles 51 et 52 du moule via respectivement un premier piston 53 et un deuxième piston 54. Dans le cas de la formation d’une pièce ayant une géométrie complexe, on peut utiliser un outillage à clés. Le générateur 57 émet un courant I qui circule à travers tout l’outillage 50, à savoir les électrodes 56 et 57, les pistons 53 et 54 et les demi- coquilles 51 et 52, mais également la charge de la matière première 30 et le noyau sacrificiel 10. Une contrainte mécanique P est en outre appliquée sur les demi- coquilles 51 et 52 par les pistons 53 et 54 pendant le frittage. The tool 50 comprises first and second electrodes 55 and 56 connected, on the one hand, to a current generator 57 and, on the other hand, to the half-shells 51 and 52 of the mold respectively via a first piston 53 and a second piston 54. In the case of the formation of a part having a complex geometry, a key tool can be used. The generator 57 emits a current I which circulates through all the tooling 50, namely the electrodes 56 and 57, the pistons 53 and 54 and the half-shells 51 and 52, but also the charge of the raw material 30 and the sacrificial core 10. A mechanical stress P is also applied to the half-shells 51 and 52 by the pistons 53 and 54 during sintering.
Les paramètres du cycle de densification, à savoir principalement l’intensité du courant électrique, la valeur de la contrainte mécanique appliquée et la nature de l’atmosphère de traitement, sont définis par la nature des éléments à fritter de la matière première et sont bien connus de l’homme du métier. Le courant électrique est piloté en fonction des cycles thermiques définis (rampes montée/descente en température, paliers, etc.). La contrainte mécanique peut être également pilotée si nécessaire (relâchement/application contrainte). The parameters of the densification cycle, namely mainly the intensity of the electric current, the value of the mechanical stress applied and the nature of the treatment atmosphere, are defined by the nature of the elements to be sintered of the raw material and are well known to those skilled in the art. The electric current is controlled according to the defined thermal cycles (temperature rise/fall ramps, stages, etc.). The mechanical constraint can also be controlled if necessary (release/application of constraint).
Les moules utilisés sont de préférence en graphite et sont séparés de la poudre par une feuille de graphite pour éviter tout collage ou par tout autre moyen connu de l’homme du métier comme notamment une couche de graphite déposée par spray ou une couche de peinture de nitrure de bore. The molds used are preferably made of graphite and are separated from the powder by a sheet of graphite to avoid any sticking or by any other means known to those skilled in the art, such as in particular a layer of graphite deposited by spraying or a layer of paint of boron nitride.
Une fois la matière première densifiée par frittage flash autour du noyau sacrificiel 10 (étape S8), on extrait la préforme obtenue de l’outillage 50. L’étape suivante consiste à retirer ou éliminer le noyau sacrificiel (étape S9). Si sa géométrie le permet, c’est- à-dire si le noyau ne présente pas de contre-dépouille, le noyau peut être retiré mécaniquement. Afin de faciliter le retrait mécanique, le noyau sacrificiel peut être enveloppé ou revêtu avec une feuille de graphite souple, d’une couche de graphite déposée par spray ou d’une couche de peinture de nitrure de bore avant l’étape de mise en forme de la matière première par moulage par injection. Once the raw material has been densified by flash sintering around the sacrificial core 10 (step S8), the preform obtained is extracted from the tool 50. The next step consists in removing or eliminating the sacrificial core (step S9). If its geometry allows it, i.e. if the core has no undercut, the core can be removed mechanically. In order to facilitate mechanical removal, the sacrificial core may be wrapped or coated with a sheet of flexible graphite, a layer of spray-deposited graphite or a layer of boron nitride paint before the shaping step. raw material by injection molding.
Le noyau sacrificiel peut également être retiré par traitement thermochimique. Dans le cas par exemple d’un noyau sacrificiel en graphite, celui-ci peut être éliminé par traitement thermochimique d’oxydation réalisé par exemple sous air à une température comprise entre 400°C et 600°C si le matériau de la pièce le permet.The sacrificial core can also be removed by thermochemical treatment. In the case, for example, of a sacrificial graphite core, this can be eliminated by thermochemical oxidation treatment carried out, for example, in air at a temperature between 400° C. and 600° C. if the material of the part allows it. .
Après le retrait ou l’élimination du noyau sacrificielle, on obtient une pièce 60 en matériau composite à matrice céramique ou métallique renforcée par des fibres courtes, la pièce comportant un évidement interne 61 dont la forme et les dimensions ont été définies par le noyau sacrificiel 10. After the removal or elimination of the sacrificial core, a part 60 is obtained in composite material with a ceramic or metal matrix reinforced with short fibres, the part comprising an internal recess 61 whose shape and dimensions have been defined by the sacrificial core. 10.
Afin d’éviter d’éventuelles interactions chimiques entre la matrice et les fibres (si celles-ci ne sont pas protégées) de la pièce à fabriquer et le noyau sacrificiel au cours du procédé de fabrication, une couche barrière de diffusion peut être formée sur la surface externe du noyau avant l’injection de la matière première. A titre d’exemple non limitatif, la barrière de diffusion peut être constituée d’une couche de nitrure de bore. Dans le cas de bases métalliques, il est possible de déposer de l’alumine ou du tungstène comme couche barrière). Le procédé de l’invention permet de réaliser facilement et de manière reproductible des pièces creuses en matériau composite à matrice céramique fibres courtes (CMC-FC), les fibres étant revêtues d’une interphase te éventuellement d’une couche protectrice de l’interphase ou en matériau à matrice métallique fibres courtes (CMM -FC), et ce même pour des pièces de petites dimensions, ce qui n’est pas possible avec des fibres continues. L’invention trouve une application particulière mais non exclusives dans la fabrication de pièces creuses de petites dimensions de turbine à gaz telles que par exemple des aubes directrices de sortie ou "OGV" (pour "outlet guide vane") utilisées dans des étages de distributeur de turbine. In order to avoid possible chemical interactions between the matrix and the fibers (if these are not protected) of the part to be manufactured and the sacrificial core during the manufacturing process, a diffusion barrier layer can be formed on the outer surface of the core before the injection of the raw material. By way of non-limiting example, the diffusion barrier can consist of a layer of boron nitride. In the case of metallic bases, it is possible to deposit alumina or tungsten as a barrier layer). The method of the invention makes it possible to easily and reproducibly produce hollow parts made of composite material with a short fiber ceramic matrix (CMC-FC), the fibers being coated with an interphase and optionally with a protective layer of the interphase. or short fiber metal matrix material (CMM -FC), even for small parts, which is not possible with continuous fibers. The invention finds a particular but not exclusive application in the manufacture of hollow parts of small gas turbine dimensions such as, for example, outlet guide vanes or "OGV" (for "outlet guide vane") used in distributor stages turbine.

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication d'une pièce creuse (60) en matériau composite à matrice céramique ou métallique comprenant les étapes suivantes : préparation d'une matière première (30) comprenant au moins des fibres courtes et une charge précurseur de matrice céramique ou de matrice métallique, positionnement d'un noyau sacrificiel (10) dans une cavité de moulage (23) d'un outillage d'injection (20), la cavité de moulage présentant des dimensions supérieures aux dimensions du noyau sacrificiel, mise en forme de la matière première (30) par moulage par injection de ladite matière première dans l'espace libre (230) entre le noyau sacrificiel (10) et une paroi interne de la cavité de moulage de manière à obtenir une pièce verte (40) comprenant le noyau sacrificiel et la matière première mise en forme, extraction de la pièce verte (40) de l'outillage d'injection (20), densification de la matière première (30) par frittage flash de la pièce verte (40) de manière à transformer la charge en matrice céramique ou en matrice métallique, retrait ou élimination du noyau sacrificiel (10) de manière à obtenir une pièce creuse (60) en matériau composite à matrice céramique ou métallique ; dans lequel le noyau sacrificiel est revêtu d'une feuille de graphite souple, d'une couche de graphite déposée par spray ou d'une couche de peinture de nitrure de bore avant l'étape d'injection de la matière première. [Claim 1] Method for manufacturing a hollow part (60) made of composite material with a ceramic or metal matrix, comprising the following steps: preparing a raw material (30) comprising at least short fibers and a ceramic matrix precursor filler or metal matrix, positioning a sacrificial core (10) in a molding cavity (23) of an injection tool (20), the molding cavity having dimensions greater than the dimensions of the sacrificial core, shaping raw material (30) by injection molding said raw material into the free space (230) between the sacrificial core (10) and an internal wall of the molding cavity so as to obtain a green part (40) comprising the sacrificial core and the shaped raw material, extraction of the green part (40) from the injection tooling (20), densification of the raw material (30) by flash sintering of the green part (40) in such a way to transform the c load in ceramic matrix or in metal matrix, removal or elimination of the sacrificial core (10) so as to obtain a hollow part (60) in composite material with ceramic or metal matrix; wherein the sacrificial core is coated with a sheet of flexible graphite, a layer of spray-deposited graphite or a layer of boron nitride paint prior to the step of injecting the raw material.
[Revendication 2] Procédé selon la revendication 1, dans lequel le noyau sacrificiel (10) présente une géométrie apte à être démoulée de la matière première densifiée après l'étape de densification. [Claim 2] Process according to claim 1, in which the sacrificial core (10) has a geometry capable of being demolded from the densified raw material after the densification step.
[Revendication 3] Procédé selon l'une quelconque des revendications 1 à 2, dans lequel le noyau sacrificiel (10) est réalisé avec un des matériaux suivants : graphite, zircone et alumine. [Claim 3] Method according to any one of Claims 1 to 2, in which the sacrificial core (10) is made of one of the following materials: graphite, zirconia and alumina.
[Revendication 4] Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la matière première (30) comprend une charge précurseur de matrice céramique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbone, carbure de silicium et alumine. [Claim 4] Process according to any one of Claims 1 to 3, in which the raw material (30) comprises a ceramic matrix precursor filler and short fibers made of a material chosen from one of the following materials: carbon, silicon carbide and alumina.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la matière première (30) comprend une charge précurseur de matrice métallique et des fibres courtes en un matériau choisi parmi un des matériaux suivants : carbure de silicium et alumine. [Claim 5] A method according to any one of claims 1 to 3, wherein the raw material (30) comprises a metal matrix precursor filler and short fibers of a material selected from one of the following materials: silicon carbide and alumina .
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel au moins une couche barrière de diffusion est déposée sur le noyau sacrificiel (10) avant l'injection de la matière première (30). [Claim 6] A method according to any one of claims 1 to 5, wherein at least one diffusion barrier layer is deposited on the sacrificial core (10) before the injection of the raw material (30).
[Revendication 7] Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la matière première comprend en outre un liant, le procédé comprenant en outre une étape de déliantage de la matière première (30) avant ou pendant la densification de la matière première. [Claim 7] A method according to any one of claims 1 to 6, wherein the raw material further comprises a binder, the method further comprising a step of debinding the raw material (30) before or during the densification of the raw material.
[Revendication 8] Procédé selon la revendication 7, dans lequel l'étape de déliantage de la matière première (30) est réalisée au sein d'un outillage (50) utilisé pour le frittage flash de la pièce verte (40). [Claim 8] Method according to claim 7, in which the step of debinding the raw material (30) is carried out within a tool (50) used for the flash sintering of the green part (40).
EP21810068.3A 2020-10-20 2021-10-12 Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers Pending EP4373796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010738A FR3115280B1 (en) 2020-10-20 2020-10-20 Process for manufacturing a hollow part in a composite material with a metal or ceramic matrix reinforced with short fibers
PCT/FR2021/051767 WO2022084602A1 (en) 2020-10-20 2021-10-12 Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers

Publications (1)

Publication Number Publication Date
EP4373796A1 true EP4373796A1 (en) 2024-05-29

Family

ID=74125428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21810068.3A Pending EP4373796A1 (en) 2020-10-20 2021-10-12 Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers

Country Status (5)

Country Link
US (1) US20230382813A1 (en)
EP (1) EP4373796A1 (en)
CN (1) CN116547253A (en)
FR (1) FR3115280B1 (en)
WO (1) WO2022084602A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745640B (en) * 2022-11-02 2023-09-01 西安鑫垚陶瓷复合材料股份有限公司 Forming process of ceramic matrix composite slender thin-wall pipe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910095A (en) * 1997-02-21 1999-06-08 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite marine engine riser elbow
US6274078B1 (en) * 1999-01-27 2001-08-14 General Electric Company Method of removing cores from ceramic matrix composite articles
US9028744B2 (en) * 2011-08-31 2015-05-12 Pratt & Whitney Canada Corp. Manufacturing of turbine shroud segment with internal cooling passages
FR2996549B1 (en) * 2012-10-04 2016-01-29 Herakles METHOD FOR MANUFACTURING AERODYNAMIC PIECE BY OVERMOLDING A CERAMIC ENVELOPE ON A COMPOSITE PREFORM
US10486378B2 (en) * 2016-08-01 2019-11-26 GM Global Technology Operations LLC Methods of manufacturing vehicle assemblies
FR3069179B1 (en) * 2017-07-21 2019-08-30 Safran Helicopter Engines PROCESS FOR MANUFACTURING COMPLEX FORM PIECES BY INJECTION MOLDING OF METALLIC POWDERS
FR3071830B1 (en) 2017-10-02 2021-03-12 Safran Ceram PROCESS FOR MAKING A HOLLOW PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX
FR3086566B1 (en) * 2018-10-02 2022-05-27 Norimat METHOD FOR MANUFACTURING PARTS WITH A COMPLEX SHAPE BY PRESSURE SINTERING FROM A PREFORM
CN110590374A (en) * 2019-10-28 2019-12-20 中原工学院 MoSi prepared by Flashing method2Method for producing-SiC composite material

Also Published As

Publication number Publication date
WO2022084602A1 (en) 2022-04-28
FR3115280A1 (en) 2022-04-22
CN116547253A (en) 2023-08-04
US20230382813A1 (en) 2023-11-30
FR3115280B1 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
EP2356085B1 (en) Method for smoothing the surface of a part made from a cmc material
EP2414305B1 (en) Process for smoothing the surface of a part made of cmc material.
EP3860785B1 (en) Method for manufacturing a part of complex shape by pressure sintering starting from a preform
WO2016001026A1 (en) Part coated with a surface coating and associated methods
EP3830056A1 (en) Method for manufacturing a part made from cmc
EP3860783B1 (en) Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form
FR2712218A1 (en) Metal or ceramic part with dense outer shell and porous core, as well as its manufacturing process.
US10450235B2 (en) Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
WO2014053751A1 (en) Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform
FR3071830A1 (en) PROCESS FOR PRODUCING A HOLLOW PIECE OF CERAMIC MATRIX COMPOSITE MATERIAL
FR3023212B1 (en) METHOD FOR MANUFACTURING A COATED PART BY A SURFACE COATING COMPRISING AN ALLOY
EP4373796A1 (en) Method for manufacturing a hollow part made of metal matrix or ceramic matrix composite reinforced with short fibers
EP3592716B1 (en) Method for producing a consolidated fibrous preform
EP4355982A1 (en) Abradable coating having a honeycomb structure made of composite material having a ceramic matrix made of short fibres
WO2014170586A1 (en) Holding and loading tool and facility for densifying porous rotating preforms
FR3125239A1 (en) Improved counter-form for the manufacture of metallic aeronautical parts
EP4370260A1 (en) Improved molding core for manufacturing a hollow omc part
WO2023285766A1 (en) Improved foundry core for manufacturing a hollow metal aeronautical part
FR3096912A1 (en) A method of manufacturing a turbomachine part by MIM molding
FR3120811A1 (en) Improved method of making a consolidated fibrous preform

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR