WO2014051104A1 - Polishing pad - Google Patents
Polishing pad Download PDFInfo
- Publication number
- WO2014051104A1 WO2014051104A1 PCT/JP2013/076397 JP2013076397W WO2014051104A1 WO 2014051104 A1 WO2014051104 A1 WO 2014051104A1 JP 2013076397 W JP2013076397 W JP 2013076397W WO 2014051104 A1 WO2014051104 A1 WO 2014051104A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- polishing pad
- contact angle
- resin
- polyurethane
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
Definitions
- the present invention relates to a polishing pad, and in particular, by a wet film formation method, carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation are formed without addition,
- the present invention relates to a polishing pad including a soft plastic sheet in which foam is continuously formed.
- polishing using a polishing pad has been performed in order to planarize an object to be polished such as a semiconductor wafer, glass, or magnetic disk.
- an object to be polished such as a semiconductor wafer, glass, or magnetic disk.
- semiconductor objects to be polished semiconductor devices have been miniaturized, and scratches (scratches) that have not been a problem in conventional polishing processes can be fatal defects. For this reason, demands for defect-free and flattening are increasing even for polishing pads used for polishing.
- polishing processes even if fine scratches are allowed in the primary polishing process (rough polishing process), in the final polishing process, it is important how to flatten without generating scratches. Yes.
- a soft plastic sheet made of polyurethane resin or the like in which foam is formed by a wet film formation method is used for a polishing pad for finishing (see, for example, Japanese Patent Application Laid-Open No. 2002-059356).
- carbon black is usually added to a resin solution for the purpose of stabilizing foam formation. By adding carbon black, it acts as a coagulation stabilizer (or nucleating agent) for polyurethane resin, thereby suppressing the formation of foam nonuniformly, and as a result, contributes to stabilization of foam formation. .
- this carbon black is a hard component, when the obtained soft plastic sheet is used as a polishing pad, there is a possibility that fine scratches are generated on the object to be polished. If carbon black is not added to suppress scratching, foam formation may not be stabilized, and high-precision flattening may be difficult.
- the polishing pad technology allows the abrasive layer in the slurry to have a suitable roughness by making the specific surface area of the polishing layer in the range of 0.5 to 1.0 m 2 / g. Is disclosed (see Japanese Patent Application Laid-Open No. 2010-153004).
- the specific surface area of the polishing layer is optimized before the polishing process, but the polishing layer wears with the polishing process, so the roughness of the polishing surface changes. Resulting in. Therefore, the surface condition of the polishing pad changes with time, and the polishing rate and the like fluctuate to reduce the polishing stability.
- a hydrophilic additive having a function of promoting foam formation can also be used.
- the hydrophilic additive remaining in the soft plastic sheet elutes with time during the polishing process, so that the polishing rate varies and the polishing stability is affected. Therefore, if the rise time at the time of polishing can be shortened and a stable polishing rate can be obtained without causing scratches, it is effective for polishing of an object to be polished, particularly a semiconductor device.
- an object of the present invention is to provide a polishing pad capable of reducing the rise time during polishing and improving the flatness.
- the present invention is formed by a wet film forming method without containing carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation
- the soft plastic sheet In a polishing pad provided with a soft plastic sheet in which foaming is continuously formed, the soft plastic sheet has an opening formed in a polishing surface for polishing an object to be polished.
- the contact angle 0.5 seconds after dropping water droplets on the polished surface is CA1
- the contact angle 10.5 seconds after dropping water droplets is CA2
- the contact angle change rate represented by the formula is characterized by being in the range of 20% to 50%.
- grooving or embossing may be performed on the polishing surface side of the soft plastic sheet.
- a groove having at least one pattern shape selected from a radial pattern, a lattice pattern, and a spiral pattern can be formed on the polishing surface side of the soft plastic sheet.
- the soft plastic sheet may be made of a polyurethane resin having a resin modulus of 10 MPa or less.
- the average value of the ratio of the part of the foam formed in the soft plastic sheet to the hole diameter at a depth position of at least 200 ⁇ m from the polishing surface of the hole diameter on the polishing surface is 0.65 to 0.95. Range. At this time, it is preferable that the average value of the ratio of the hole diameter of the opening on the polishing surface to the hole diameter at a depth position of at least 200 ⁇ m from the polishing surface is in the range of 0.75 to 0.95.
- the opening is formed on the polishing surface and the contact angle change rate on the polishing surface is in the range of 20% to 50%, the polishing liquid supplied at the time of polishing processing can easily penetrate and the soft plastic. Since the familiarity between the sheet and the polishing liquid is improved, the rise time during polishing can be shortened, and the soft plastic sheet does not contain carbon black, which is a hard component. It is possible to obtain an effect of reducing and improving the flatness.
- the polishing pad 10 of this embodiment includes a polyurethane sheet 2 as a soft plastic sheet formed of a polyurethane resin by a wet film forming method.
- the polyurethane sheet 2 is a state in which carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation are not added during wet film formation, that is, carbon black and ionic surfactant are added. It is formed without containing.
- the skin layer formed on the surface side by the wet film forming method is removed by buffing.
- the surface after the buffing process constitutes a polishing surface P for polishing the object to be polished.
- the length in the thickness direction is 70% or more of the thickness of the polyurethane sheet 2
- the long foam 3 is rounded along the thickness direction, and the length in the thickness direction is thick. It is formed so that the foam 4 of less than half the thickness is uniformly dispersed.
- long foam 3 and foam 4 are opened, and an opening 5 and an opening 6 are formed, respectively.
- the foam 4 is formed between the long foams 3 at a position biased toward the polishing surface P, and the length of the polyurethane sheet 2 in the thickness direction varies. For this reason, the foam 4 is formed substantially evenly between the long foams 3 formed substantially evenly.
- the pore diameters of the long foam 3 and foam 4 are formed such that the size on the polishing surface P side is smaller than the opposite surface side of the polishing surface P.
- the long foam 3 and the foam 4 are communicated in a three-dimensional mesh shape with communication holes not shown.
- the polyurethane sheet 2 has a continuous foam structure in which foaming is continuously formed.
- the opening 5 and the opening 6 formed on the polished surface P have an opening diameter adjusted to a range of 40 ⁇ 5 ⁇ m. Further, the aperture ratio expressed as a percentage of the total area of the aperture 5 and the aperture 6 per unit area of the polished surface P is adjusted in the range of 25% to 30%.
- the hole diameter and the hole area ratio can be adjusted by the film forming conditions by the wet film forming method, the buffing conditions, and the like.
- the opening diameter D1 of the opening 5 on the polishing surface P of the long foam 3 is such that the average value of the ratio with respect to the hole diameter D2 at a depth position of at least 200 ⁇ m from the polishing surface P is 0.65 to 0.95.
- the range is adjusted.
- the opening diameter of the opening 5 in the polishing surface P is larger than the opening diameter before being used for the polishing process until the thickness of at least 200 ⁇ m of the polyurethane sheet 2 is worn by the polishing process. , 1.05 to 1.54 times.
- the rate at which the contact angle of water on the polishing surface P changes with time is adjusted to a certain range. That is, in the polyurethane sheet 2, when the contact angle 0.5 seconds after dropping water droplets on the polishing surface P is CA1, and the contact angle 10.5 seconds after dropping water droplets is CA2, ⁇ (CA1 The contact angle change rate represented by ⁇ CA2) / CA1 ⁇ ⁇ 100 is adjusted to a range of 20 to 50%.
- the contact angle change rate can be adjusted by the degree of hydrophilicity of the polyurethane resin used for producing the polyurethane sheet 2.
- the polishing pad 10 has a double-sided tape 8 attached to the polishing machine 10 on the opposite side of the polishing surface P.
- the double-sided tape 8 has, for example, a pressure-sensitive adhesive layer (not shown) such as an acrylic pressure-sensitive adhesive formed on both surfaces of a base material (not shown) of a flexible film such as a film made of polyethylene terephthalate (hereinafter abbreviated as PET). ing.
- PET polyethylene terephthalate
- the double-sided tape 8 is bonded to the polyurethane sheet 2 with an adhesive layer on one side of the substrate, and the adhesive layer on the other side (opposite side to the polyurethane sheet 2) is covered with a release paper (not shown).
- the polyurethane sheet 2 is produced by a wet film forming method, and the obtained polyurethane sheet 2 and the double-sided tape 8 are bonded together.
- a resin solution in which a polyurethane resin is dissolved in an organic solvent is continuously applied to the film-forming substrate, the resin solution is solidified in an aqueous coagulation liquid, and the polyurethane resin is regenerated into a sheet shape and washed. After drying, a belt-like (long shape) polyurethane sheet 2 is produced.
- a resin solution in which a polyurethane resin is dissolved in an organic solvent is continuously applied to the film-forming substrate, the resin solution is solidified in an aqueous coagulation liquid, and the polyurethane resin is regenerated into a sheet shape and washed. After drying, a belt-like (long shape) polyurethane sheet 2 is produced.
- it demonstrates in order of a process.
- the polyurethane resin is dissolved by mixing the polyurethane resin and a water-miscible organic solvent capable of dissolving the polyurethane resin.
- a water-miscible organic solvent capable of dissolving the polyurethane resin.
- the organic solvent N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide, or the like can be used.
- DMF N, N-dimethylformamide
- the polyurethane resin is dissolved so that the concentration becomes 20 to 50%. If the concentration of the polyurethane resin is less than 20%, the bulk density of the resulting polyurethane sheet is low. On the other hand, if it exceeds 50%, the density becomes too high and the desired foam cannot be formed.
- the resin solution is not added with an additive such as a pigment such as carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation.
- ionic surfactants are soluble in an organic solvent used to dissolve the polyurethane resin, and examples thereof include anionic surfactants, cationic surfactants and amphoteric surfactants having ionic properties.
- anionic surfactant include carboxylate, sulfonate, sulfate ester salt, phosphate ester salt and the like.
- Specific examples of the cationic surfactant include amine salt and quaternary ammonium salt. And the like.
- the amphoteric surfactant includes both characteristics.
- the surfactant When dissolved in water, the surfactant exhibits the properties of an anionic surfactant in the alkaline region and the properties of the cationic surfactant in the acidic region. It is. In this example, none of these ionic surfactants are added.
- the obtained solution is degassed under reduced pressure to obtain a resin solution.
- a soft resin having a resin modulus of 10 MPa or less is selected from polyester, polyether, and polycarbonate resins.
- the polyurethane resin is obtained by reacting a polyvalent isocyanate component having two or more isocyanate groups in the molecule with a polyhydric alcohol component having two or more hydroxyl groups in the molecule.
- the resin modulus is an index representing the hardness of the resin, and is a value obtained by dividing the load applied when the non-foamed resin sheet is stretched 100% (up to twice the original length) by the unit area ( Hereinafter, it may be referred to as 100% modulus). It means that it is a hard resin, so that this value becomes large.
- a diisocyanate compound, a triisocyanate compound or the like can be used, and two or more of a diisocyanate compound and a triisocyanate compound may be used in combination.
- a diol compound, a triol compound, or the like can be used as the polyhydric alcohol component.
- polyether polyol compounds such as polyethylene glycol (PEG) and polytetramethylene glycol (PTMG), and polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid, which are conventionally used in general wet film formation methods
- Polycarbonate polyol compounds and the like can be used.
- hydrophilic diol compound since the carbon black and the ionic surfactant are not added, it is preferable to use a hydrophilic diol compound in order to stabilize foam formation.
- the “hydrophilic diol compound” used in this example is not in a specific range as a measure of hydrophilicity or the like, but has improved hydrophilicity over a conventionally used diol compound.
- a hydrophilic diol compound can be obtained by increasing the ratio of oxygen atoms to methylene groups in the diol compound, introducing a hydrophilic functional group, or the like.
- adipic acid is replaced with succinic acid for a compound obtained by the reaction of a conventionally used polyester diol compound, adipic acid, and a polyol containing 1,4-butanediol or ethylene glycol.
- the hydrophilicity can be improved by using a compound in which the molar ratio of ethylene glycol in the polyol is increased. That is, the number of methylene groups is 4 for adipic acid, but 2 for succinic acid, and the number of methylene groups per repeating unit of the polymer is 4 for 1,4-butanediol.
- ethylene glycol has two. For this reason, in any case, the ratio of oxygen atoms to methylene groups is increased, and hydrophilicity is improved.
- the resulting polyurethane resin has improved hydrophilicity. That is, the higher the degree of hydrophilicity of the diol compound, the higher the hydrophilicity of the polyurethane resin. For this reason, in the obtained polyurethane sheet 2, the affinity with respect to water increases, and the contact angle of water decreases in a short time. In other words, the contact angle change rate of the polyurethane sheet 2 can be increased by increasing the hydrophilicity of the diol compound.
- the resin solution prepared in the preparation process is coated on a belt-shaped film forming substrate at room temperature using a coating device such as a knife coater.
- the application thickness (application amount) of the resin solution is adjusted by adjusting the gap (clearance) of the application device.
- the film-forming base material is described below as a PET film.
- the resin solution applied to the film forming substrate in the application process is immersed in a coagulation liquid (water-based coagulation liquid) whose main component is water which is a poor solvent for the polyurethane resin.
- a coagulation liquid water-based coagulation liquid
- the resin solution coagulates and the polyurethane resin is regenerated into a sheet on the film-forming substrate. That is, when DMF is removed from the resin solution and DMF and the coagulating liquid are replaced, long foam 3 and foam 4 are formed inside the skin layer (in the polyurethane resin).
- a communication hole (not shown) that communicates in a mesh shape is formed. Since the PET film of the film-forming substrate does not allow water to permeate, desolvation occurs on the skin layer side, and a long foam 3 having a larger film-forming substrate side than the skin layer side is formed.
- the progress of substitution between the DMF and the coagulation liquid in the resin solution is delayed. Further, when the temperature of the coagulating liquid is increased, the formation of the skin layer is accelerated, and the progress of substitution between the DMF in the resin solution and the coagulating liquid is further delayed.
- the coagulating liquid temperature is appropriately adjusted in the range of 20 to 50 ° C. If the coagulating liquid temperature is less than 20 ° C., the bulk density is low, the number of foaming in the vicinity of the surface is increased, and the pore diameter is decreased, which is not preferable. In particular, when the coating thickness is 1.0 mm or more, if the coagulation liquid temperature is too low, it is not preferable because the coagulation liquid cannot be completely solidified and brought into the drying process.
- the formation of the long foam 3 and the foam 4 will be described.
- a polyurethane resin having a hydrophilicity enhanced by a diol compound that has been made hydrophilic without adding carbon black and an ionic surfactant to the resin solution and using a hydrophilic diol compound is used.
- the long foams 3 are formed in an almost uniformly dispersed manner inside the polyurethane resin inside the skin layer.
- the foam 4 is elongated between the long foams 3 at a position biased toward the skin layer.
- the polyurethane resin coagulated and regenerated in the coagulation regeneration process (hereinafter referred to as film forming resin) is peeled off from the film forming substrate and remains in the film forming resin by washing in a cleaning solution such as water. Remove DMF.
- the film forming resin is dried with a cylinder dryer.
- the cylinder dryer includes a cylinder having a heat source therein.
- the film-forming resin is dried by passing along the peripheral surface of the cylinder.
- the film-forming resin after drying is wound up in a roll shape.
- the skin layer side of the film-forming resin after drying is buffed. That is, the surface of the pressure welding jig having a substantially flat surface is pressed against the surface opposite to the skin layer, and the skin layer side is buffed.
- the continuously formed film-forming resin is strip-shaped, the skin layer side is continuously buffed while pressing the pressing roller against the surface opposite to the skin layer.
- the skin layer is removed, and openings 5 and 6 are formed in the polishing surface P of the polyurethane sheet 2.
- the thickness of the polyurethane sheet 2 becomes substantially uniform by performing this buffing process.
- the change rate of the contact angle on the polished surface P is in the range of 30 to 50% because the hydrophilicity of the used polyurethane resin is enhanced.
- the resin modulus of the polyurethane resin is 10 MPa or less
- the hardness is in the range of 11 to 16 degrees for the Shore A type
- the compression rate is in the range of 32 to 42%
- the compression modulus is in the range of 95 to 100%.
- Hardness, compression rate, and compression modulus are not particularly limited, but if it is too soft, it becomes difficult to stably polish the object to be polished. On the other hand, if it is too hard, scratches are likely to occur on the object to be polished. It is preferable that These numerical values can be adjusted by the type and concentration of the polyurethane resin used.
- the surface opposite to the polishing surface P of the buffed polyurethane sheet 2 and the double-sided tape 8 are bonded together. Then, it is cut into a desired shape such as a circle, and inspections such as confirming that there is no adhesion of dirt, foreign matter, etc. are performed to complete the polishing pad 10.
- a single-side polishing machine When performing polishing of an object to be polished with the obtained polishing pad 10, for example, a single-side polishing machine is used.
- a polishing pad 10 In a single-side polishing machine, a polishing pad 10 is mounted on a polishing surface plate.
- the release paper of the double-sided tape 8 is peeled off and attached with the exposed adhesive layer.
- the object to be polished is held on a holding surface plate arranged opposite to the polishing surface plate, and a polishing liquid (slurry) containing abrasive particles is supplied between the processed surface of the object to be polished and the polishing surface P of the polishing pad 10.
- the processing surface of the object to be polished is polished by rotating the polishing surface plate or holding surface plate while applying pressure between the object to be polished and the polishing pad 10.
- the contact angle change rate when a water droplet is dropped on the polishing surface P is adjusted to a range of 20 to 50%. For this reason, the slurry supplied at the time of a grinding
- the polyurethane sheet 2 contains carbon black for stabilizing foam formation in the resin solution during wet film formation, and an ionic surfactant having a function of promoting foam formation. It is formed in an additive-free state. Since carbon black is a hard component, if it is contained in a polyurethane sheet, it may be exposed on the polishing surface during polishing, and may cause scratches on the object to be polished. In addition, if an ionic surfactant is blended during wet film formation, the ionic surfactant remaining in the polyurethane sheet may elute over time during polishing, resulting in fluctuations in the polishing rate. May impair the stability.
- polishing pad 10 since carbon black, which is a hard component, is not added, scratches on the object to be polished can be reduced and flatness can be improved. In addition, since no ionic surfactant is added, the ionic surfactant is not eluted during polishing, and fluctuations in the polishing rate are suppressed, so that stable polishing can be performed.
- a polyurethane resin having a resin modulus of 10 MPa or less is used for producing the polyurethane sheet 2. For this reason, since the obtained polyurethane sheet 2 becomes soft and can come into soft contact with the object to be polished during polishing, scratches can be reduced.
- the conventional polyurethane film formed by the wet film forming method is made of a polyurethane resin using a polyether polyol compound, a polyester polyol compound, a polycarbonate polyol compound or the like as a polyhydric alcohol component, and carbon black or ion is added to the resin solution. It is common to add a surfactant.
- the polyurethane resin formed by reaction with the polyvalent isocyanate component and the polyhydric alcohol component is used for the production of the polyurethane sheet 2, and the polyhydric alcohol component is used as the polyhydric alcohol component. Hydrophilic diol compounds are used.
- the polyurethane sheet 2 having a continuous foamed structure with an opening diameter of 40 ⁇ 5 ⁇ m and an opening ratio of 25% to 30% on the polished surface P can be produced.
- the range of the aperture diameter is preferably adjusted to a range of 35 to 45 ⁇ m by grinding the surface of the polyurethane sheet.
- the range of the aperture diameter is preferably adjusted to a range of 35 to 45 ⁇ m by grinding the surface of the polyurethane sheet.
- the number of small-diameter holes having an opening diameter of less than 35 ⁇ m is increased, clogging due to slurry or polishing debris is likely to occur.
- polishing scraps and the like are likely to be accumulated on the bottom side of the long foam 3 and foam 4, and the polyurethane sheet 2 is caused by wear accompanying the progress of the polishing process.
- the thickness is reduced, the accumulated polishing waste and the like are released, and the possibility of causing scratches on the object to be polished increases.
- the range of the hole area ratio is preferably in the range of 25 to 30%.
- the open area ratio is within this range, 75 to 70% is secured as an area that can be a contact point of slurry (especially abrasive particles contained in the slurry) with the object to be polished, so that the polishing rate can be improved. it can.
- the open area ratio is less than 25%, the slurry circulation retention is insufficient and the rising of the polishing process is worsened.
- the hole area ratio exceeds 30%, the area that can be a contact point of the slurry is reduced, which leads to a decrease in the polishing rate.
- the foamed foam 3 having a length of 70% or more of the length in the thickness direction is formed on the polyurethane sheet 2, and the long foamed foam 3 is opened on the polishing surface P.
- the average value of the ratio of the hole diameter D1 to the hole diameter D2 at a depth position of at least 200 ⁇ m from the polishing surface P is adjusted in the range of 0.65 to 0.95 (see also FIG. 2). For this reason, even if the polyurethane sheet 2 is worn during the polishing process, the expansion of the hole diameter is suppressed, so that the ratio of the holes occupying the polishing surface P, that is, the hole area ratio is hardly changed.
- the object to be polished can be polished flatly for a long time, and the life of the polishing pad 10 can be improved.
- the polishing pad 10 of the present embodiment since the long foam 3 and the foam 4 communicate with each other through the communication holes, the slurry moves between the long foam 3 and the foam 4 through the communication holes. Slurry can be supplied approximately evenly between the pads 10. As a result, the object to be polished is polished substantially evenly, so that the processed surface can be uniformly polished and the flatness can be improved. Moreover, in the polishing pad 10 of this embodiment, the double-sided tape 8 which has the base material of the film made from PET on the opposite side to the grinding
- the pattern shape of the groove to be formed may be any of a radial shape, a lattice shape, a spiral shape, and the like, or a combination thereof.
- the cross-sectional shape of the groove is not particularly limited, and may be any shape such as a rectangular shape, a U shape, a V shape, and a semicircular shape.
- the pitch, width, and depth of the grooves are not particularly limited as long as the polishing waste can be discharged and the slurry can be moved.
- the method for forming the groove is not particularly limited as long as it is a method capable of forming a desired groove. Considering that the polyurethane sheet 2 is soft, embossing with heating and pressing can be performed.
- the skin layer is removed by buffing the film-forming resin after wet film formation to form an opening
- the present invention is not limited to this.
- a method of forming the opening in the polished surface P any method that can remove the skin layer may be used.
- a slicing process may be performed.
- the slicing process considering that the film-forming resin is flexible and elastic, for example, a substantially flat polyurethane sheet 2 from which the skin layer has been removed can be obtained by performing the slicing process while applying tension. .
- the present invention is not limited to this, and for example, a nonwoven fabric or a woven fabric is used. It may be.
- the double-sided tape 8 may be bonded to the surface opposite to the polyurethane resin after washing and drying without peeling.
- polishing pad 10 can be more easily transported and handled.
- the polyurethane sheet 2 is exemplified by a polyurethane resin such as a polyester-based, polyether-based, or polycarbonate-based material.
- a polyurethane resin such as a polyester-based, polyether-based, or polycarbonate-based material.
- the present invention is not limited to this, for example, a polyester resin or the like. It may be used. If a polyurethane resin is used, a sheet having a foam structure in which long foam 3 and foam 4 are formed by a wet film forming method can be easily formed.
- polishing pad 10 manufactured according to the present embodiment examples of the polishing pad 10 manufactured according to the present embodiment will be described.
- a comparative polishing pad manufactured for comparison is also shown.
- Example 1 In Example 1, as a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 5: 5). ) And 30 parts of a 30% polyester MDI (diphenylmethane diisocyanate) polyurethane resin solution containing a polyester diol obtained by reaction with 36 parts of DMF for viscosity adjustment was mixed to prepare a resin solution. The resin modulus of the polyurethane resin used is 6 MPa.
- a polyurethane sheet 2 was produced by a wet film-forming method with a coating thickness of 1.30 mm when the resin solution was applied to the film-forming substrate.
- the polyurethane layer 2 was buffed on the skin layer side with a buff treatment amount of 0.14 mm using a sandpaper of buff count # 180, and a double-sided tape 8 was bonded to produce a polishing pad 10.
- Example 2 As a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 4: 6).
- a resin solution was prepared in the same manner as in Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting was prepared, and a polishing pad 10 was produced.
- the resin modulus of the polyurethane resin used is 6 MPa.
- Example 3 was the same as Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting malonic acid with a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin. Thus, a resin solution was prepared and a polishing pad 10 was manufactured. The resin modulus of the polyurethane resin used is 6 MPa.
- Example 4 A polishing pad 10 was produced in the same manner as in Example 1 except that a groove was formed on the polishing surface P side of the polyurethane sheet 2 produced in Example 1.
- grooves of a lattice pattern having a rectangular cross section with a groove width of 1 mm and a groove interval of 3 mm were formed by embossing.
- Comparative Example 1 a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin.
- the resin modulus of the polyurethane resin used is 6 MPa.
- SLS hydrophilic additive sodium lauryl sulfate
- DMF DMF for viscosity adjustment
- Comparative Example 2 In Comparative Example 2, a polishing pad was produced in the same manner as in Example 1 except that carbon black was added to the resin solution at a ratio of 5.0% by mass of the total solid content and mixed.
- Comparative Example 3 a polishing pad was produced in the same manner as in Example 1 except that a polyurethane resin having a resin modulus of 15 MPa was used.
- Comparative Example 4 a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin, and no hydrophilic additive was added. A resin solution was prepared. The resin modulus of the polyurethane resin used is 6 MPa. When a polyurethane sheet was produced by a wet film formation method using the obtained resin solution, it could not be produced as a polishing pad due to film formation failure.
- the contact angle change rate of water was calculated for each polishing pad of the example and the comparative example.
- the contact angle was measured using a solid-liquid interface analyzer (DropMaster 500: manufactured by Kyowa Interface Science Co., Ltd.) as a contact angle meter.
- a solid-liquid interface analyzer DropMaster 500: manufactured by Kyowa Interface Science Co., Ltd.
- one drop of water was dropped on the surface of the polishing pad from the injection needle under the conditions of a temperature of 20 ° C. and a humidity of 60%, and after 0.5 seconds to 10.5 seconds after dropping.
- the time-dependent change of the dynamic contact angle for 10 seconds was measured.
- the rate of change was calculated.
- the results of the contact angles CA1, CA2 and the contact angle change rate are shown in Table 1 below. In addition, the measurement was performed 4 times and the average value was shown.
- the contact angle change rate of the polishing pad of Comparative Example 1 was 15%.
- the contact angle change rates were 47%, 39%, 28%, and 22%, respectively.
- the contact angle gradually decreased with time and showed about 50 degrees even after 100 seconds. It was.
- the contact angle rapidly decreased and decreased to about 10 degrees after 20 to 30 seconds.
- the polyurethane sheet 2 was made of a polyurethane resin whose hydrophilicity was increased by a diol compound that was made hydrophilic, so that water penetrated into the polyurethane sheet 2. This is considered to be because the contact angle became small in a short time. It has been confirmed that Example 4 has the same result. On the other hand, it can be considered that the contact angle change rate in Example 4 was decreased because the measured value of the contact angle CA1 was increased. The cause of this is not clear, but since embossing was used when forming the groove on the polishing surface P side, it was expected that the degree of hydrophilicity of the resin on the surface was affected.
- the water absorption speed evaluation was calculated using the solid-liquid interface analyzer used in the contact angle evaluation. In the measurement, under the conditions of a temperature of 20 ° C. and a humidity of 60%, one drop of water was dropped from the injection needle onto the surface of the polishing pad, and the speed until the contact angle decreased 10 degrees from the contact angle immediately after dropping (degree / Sec) was measured. That is, the water absorption speed was calculated by 10 / t, where time t (seconds) required to decrease by 10 degrees from the contact angle immediately after dropping the water droplet was used. The results of water absorption speed are shown in Table 1. In addition, the measurement was performed 4 times and the average value was shown.
- the water absorption speed of the polishing pad of Comparative Example 1 was 0.6.
- the water absorption speeds were 4.3, 5.0, 3.3, and 2.5, respectively.
- the results of the water absorption speed revealed that Examples 1 to 4 were easier to adjust to water than Comparative Example 1. Therefore, in the polishing pad 10 of the first to fourth embodiments, the familiarity of the slurry supplied during the polishing process is improved, and the rise time can be expected to be shortened.
- the water absorption speed of the comparative example 2 and the comparative example 3 it became a result larger than the thing of the comparative example 1 similarly to the result of a contact angle change rate.
- the cut-off value (lower limit) of the hole diameter was 11 ⁇ m, and noise components were excluded.
- the area of 2 mm square of the land surface that directly contributes to the polishing process was observed, and the minimum portion surrounded by the lattice-like grooves One land surface (corresponding to a polished surface) was measured at one place, a total of nine places.
- the aperture diameter ratio for the aperture diameter of the long foam 3, from the cross-sectional photograph (scanning electron microscope) of the polyurethane sheet 2, the aperture diameter D1 on the polishing surface P and the thickness of the polyurethane sheet 2 from the polishing surface P.
- Table 1 also shows the measurement results of the average hole diameter, the hole area ratio, and the hole diameter ratio.
- the average opening diameter was in the range of 35 to 45 ⁇ m, and the coating thickness on the film forming substrate was 1.30 mm.
- the aperture diameter ratio was in the range of 0.65 to 0.95.
- polishing evaluation Using the polishing pads of the examples and comparative examples, 100 wafers of TEOS (Tetro Ethyl Silicon Silicate) -coated silicon wafers were repeatedly subjected to polishing processing under the following conditions to determine the polishing rate, rising condition, and polishing rate. Stability was evaluated. The polishing rate is expressed by dividing the polishing amount, which is the difference in film thickness before and after polishing, by the polishing time, and was obtained from the average value of the thickness measurement results at 121 locations for each of the silicon wafers before and after polishing. . For the thickness measurement, an optical film thickness measuring device (manufactured by KLA Tencor, trade name “ASET-F5x”, measurement: DBS mode) was used.
- polishing rate after polishing 25 silicon wafers are shown in Table 2 below.
- Polishing machine used Product name “F-REX300” manufactured by Ebara Corporation Polishing speed (rotation speed of surface plate): 70 rpm Processing pressure: 176 g / cm 2
- Slurry Colloidal silica slurry (pH: 11.5)
- Slurry flow rate 200mL / min Polishing time: 60 seconds
- Object to be polished Silicon wafer with TEOS
- the polishing rate was 542 mm.
- the polishing rates were 643 mm, 622 mm, 617 mm, and 594 mm, respectively, which were higher than those in Comparative Example 1 and the rising of the polishing process was good. This is probably because the polyurethane sheet 2 is made of a polyurethane resin having improved hydrophilicity, so that the familiarity of the slurry is improved and the circulation retention of the slurry is improved.
- Comparative Example 2 since carbon black was added to the resin solution, it was considered that the carbon black was exposed to the polished surface due to abrasion of the polyurethane sheet accompanying the polishing process, and the polishing rate was increased.
- Comparative Example 3 it is considered that the polyurethane sheet was hardened and the polishing rate was increased because a polyurethane resin having a resin modulus of 15 MPa was used.
- FIG. 4 shows changes in the polishing rate of Example 1 and Comparative Example 1.
- the polishing pad of Comparative Example 1 With the polishing pad of Comparative Example 1, the polishing rate gradually increased even when polishing was performed up to 100 sheets, and fluctuations in the polishing rate were also observed.
- the polishing pad 10 of Example 1 it was found that the polishing rate rapidly increased up to about 20 sheets, and thereafter the polishing rate was stabilized. It was confirmed that the results of the polishing pad 10 of Examples 2 to 4 and the polishing pads of Comparative Examples 2 to 3 were the same as those of Example 1. Therefore, in the polishing pad 10 of each example in which the contact angle change rate is in the range of 20 to 50%, it becomes clear that the time until the polishing rate is stabilized is shortened and the stable polishing rate can be maintained for a long time. It was.
- Defect evaluation Defects were evaluated using the polishing pads of Examples and Comparative Examples. In the defect evaluation, 25 TEOS silicon wafers were repeatedly polished 3 times in total (for a total of 75 wafers), and the unpatterned wafer surface inspection was performed on 5 71 to 75 silicon wafers after polishing. Defects were measured in a high-sensitivity measurement mode of the apparatus (Surfscan SP1DLS, manufactured by KLA Tencor), and defects on the substrate surface were evaluated. At the time of measurement, the measurement was performed twice under two conditions of Wide (wide), which is a mode capable of detecting defects of 0.16 ⁇ m or more, and Narrow (mode), which is a mode capable of detecting defects of 0.20 ⁇ m or more. Defect evaluation results are also shown in Table 2. In the defect column in Table 2, Wide is a result of measurement for a defect having a size of 0.16 ⁇ m or more, and Narrow is a measurement of 0.20 ⁇ m or more.
- the polishing pad 10 of Examples 1 to 4 showed 58 to 74 defects in Wide mode and 26 to 39 defects in Narrow mode. Also in Comparative Example 1, there were 75 in the Wide mode and 35 in the Narrow mode. This is considered to be because in Examples 1 to 4 and Comparative Example 1, carbon black was not added to the resin solution, so that defects on the object to be polished could be suppressed. On the other hand, in Comparative Example 2 in which carbon black was added, the defects increased remarkably in both the Wide mode and the Narrow mode. Further, in Comparative Example 3 using a polyurethane resin having a resin modulus of 15 MPa, the defect increased in both the Wide mode and the Narrow mode due to the hardened polyurethane sheet.
- the present invention provides a polishing pad that can shorten the rise time during polishing and improve the flatness, it contributes to the manufacture and sale of the polishing pad, and thus has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Provided is a polishing pad capable of shortening the time for the polishing process to start and of improving smoothness. A polishing pad (10) comprises a polyurethane sheet (2) formed by the wet deposition method. The polyurethane sheet (2) is formed in a state without carbon black or ionic surfactants being added. On the polyurethane sheet (2), a polishing face (P) is configured by way of a surface with the skin layer removed. An opening (5) and an opening (6) are formed in the polishing face (P). For the polyurethane sheet (2), a contact angle change ratio, indicated by {(CA1 - CA2) / CA1} × 100, where CA1 is the contact angle 0.5 seconds after a water drop is dropped onto the polishing face (P) and CA2 is the contact angle 10.5 seconds after the water drop is dropped, is adjusted to a range of 20 to 50%. The slurry supplied during the polishing process easily penetrates the polyurethane sheet (2).
Description
本発明は、研磨パッドに係り、特に、湿式成膜法により、発泡形成を安定化させるためのカーボンブラックおよび発泡形成を促進させる機能を有するイオン性界面活性剤が無添加の状態で形成され、発泡が連続状に形成された軟質プラスチックシートを備えた研磨パッドに関する。
The present invention relates to a polishing pad, and in particular, by a wet film formation method, carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation are formed without addition, The present invention relates to a polishing pad including a soft plastic sheet in which foam is continuously formed.
従来半導体ウェハ、ガラス、磁気ディスク等の被研磨物を平坦化するために研磨パッドを用いた研磨加工が行われている。被研磨物の中でも半導体デバイスでは、微細化が進行しているため、今までの研磨加工で問題とならなかったようなキズ(スクラッチ)が致命的な欠陥(ディフェクト)となることがある。このため、研磨加工に用いる研磨パッドに対しても、無欠陥化、平坦化への要求がますます強くなっている。研磨加工の中でも、一次研磨加工(粗研磨加工)では微小なスクラッチが許容されるとしても、最終仕上げの研磨加工においては、いかにスクラッチを生じることなく平坦化するか、ということが重要となっている。
Conventionally, polishing using a polishing pad has been performed in order to planarize an object to be polished such as a semiconductor wafer, glass, or magnetic disk. Among semiconductor objects to be polished, semiconductor devices have been miniaturized, and scratches (scratches) that have not been a problem in conventional polishing processes can be fatal defects. For this reason, demands for defect-free and flattening are increasing even for polishing pads used for polishing. Among the polishing processes, even if fine scratches are allowed in the primary polishing process (rough polishing process), in the final polishing process, it is important how to flatten without generating scratches. Yes.
一般に、仕上げ用の研磨パッドには、湿式成膜法で発泡が形成されたポリウレタン樹脂製等の軟質プラスチックシートが使用されている(例えば、日本国特開2002-059356号公報参照)。湿式成膜法では、発泡形成を安定化させる目的で、通常、樹脂溶液にカーボンブラックが添加されている。カーボンブラックの添加により、ポリウレタン樹脂の凝集安定剤(または核剤)として作用することで、発泡が不均一に形成されることを抑制し、結果として、発泡形成の安定化に寄与することとなる。ところが、このカーボンブラックが硬質成分であるために、得られた軟質プラスチックシートを研磨パッドに使用すると、被研磨物に微小なスクラッチを生じる可能性がある。スクラッチを抑制するために、カーボンブラックを添加しない場合は、発泡形成が安定化せず、高精度の平坦化が難しくなる可能性がある。
Generally, a soft plastic sheet made of polyurethane resin or the like in which foam is formed by a wet film formation method is used for a polishing pad for finishing (see, for example, Japanese Patent Application Laid-Open No. 2002-059356). In the wet film forming method, carbon black is usually added to a resin solution for the purpose of stabilizing foam formation. By adding carbon black, it acts as a coagulation stabilizer (or nucleating agent) for polyurethane resin, thereby suppressing the formation of foam nonuniformly, and as a result, contributes to stabilization of foam formation. . However, since this carbon black is a hard component, when the obtained soft plastic sheet is used as a polishing pad, there is a possibility that fine scratches are generated on the object to be polished. If carbon black is not added to suppress scratching, foam formation may not be stabilized, and high-precision flattening may be difficult.
また、ポリウレタン樹脂で構成される軟質プラスチックシートでは、ポリウレタン樹脂が本来疎水性であるために、研磨加工時に供給される研磨液(スラリ)のなじみが悪く、スラリをはじいてしまうことがある。このため、研磨パッドの表面(研磨面)内でスラリの分布が不均一となり、被研磨物の平坦性を損なうこととなる。これを回避するためには、研磨面全体にスラリが行きわたり、研磨パッドがスラリに十分になじむまでの時間が必要となる。研磨加工初期から、研磨レートが高水準で安定化するまでの立ち上がり時間が長くなるほど、生産性(研磨加工の効率)が低下することとなる。立ち上がり時間の短縮を図るために、研磨層の比表面積を0.5~1.0m2/gの範囲とすることでスラリ中の砥粒が付着し易い適度な粗さにした研磨パッドの技術が開示されている(日本国特開2010-153004号公報参照)。
In addition, in a soft plastic sheet composed of a polyurethane resin, since the polyurethane resin is inherently hydrophobic, the familiarity of the polishing liquid (slurry) supplied during the polishing process is poor, and the slurry may be repelled. For this reason, the distribution of the slurry becomes non-uniform in the surface (polishing surface) of the polishing pad, and the flatness of the object to be polished is impaired. In order to avoid this, it takes time for the slurry to spread over the entire polishing surface, or for the polishing pad to become fully adapted to the slurry. The longer the rise time from the initial stage of the polishing process until the polishing rate is stabilized at a high level, the lower the productivity (the efficiency of the polishing process). In order to shorten the rise time, the polishing pad technology allows the abrasive layer in the slurry to have a suitable roughness by making the specific surface area of the polishing layer in the range of 0.5 to 1.0 m 2 / g. Is disclosed (see Japanese Patent Application Laid-Open No. 2010-153004).
しかしながら、日本国特開2010-153004号公報の技術では、研磨加工前に、研磨層の比表面積が最適化されるものの、研磨加工に伴い研磨層が摩耗するため、研磨面の粗さが変化してしまう。それゆえ、研磨パッドの表面状態が経時的に変化し、研磨レート等が変動することで研磨安定性を低下させることとなる。一方、スラリとのなじみをよくする観点から、発泡形成を促進させる機能も有する親水性添加剤を用いることもできる。ところが、親水性添加剤を用いると、研磨加工時に、軟質プラスチックシート内に残留した親水性添加剤が経時的に溶出するため、研磨レートが変動し研磨安定性にかける。従って、研磨加工時の立ち上がり時間を短縮することができ、スクラッチを生じることなく安定した研磨レートを得ることができれば、被研磨物、とりわけ、半導体デバイスの研磨加工に有効となる。
However, in the technique of Japanese Patent Application Laid-Open No. 2010-153004, the specific surface area of the polishing layer is optimized before the polishing process, but the polishing layer wears with the polishing process, so the roughness of the polishing surface changes. Resulting in. Therefore, the surface condition of the polishing pad changes with time, and the polishing rate and the like fluctuate to reduce the polishing stability. On the other hand, from the viewpoint of improving compatibility with the slurry, a hydrophilic additive having a function of promoting foam formation can also be used. However, if a hydrophilic additive is used, the hydrophilic additive remaining in the soft plastic sheet elutes with time during the polishing process, so that the polishing rate varies and the polishing stability is affected. Therefore, if the rise time at the time of polishing can be shortened and a stable polishing rate can be obtained without causing scratches, it is effective for polishing of an object to be polished, particularly a semiconductor device.
本発明は上記事案に鑑み、研磨加工時の立ち上がり時間を短縮し、平坦性向上を図ることができる研磨パッドを提供することを課題とする。
In view of the above cases, an object of the present invention is to provide a polishing pad capable of reducing the rise time during polishing and improving the flatness.
上記課題を解決するために、本発明は、湿式成膜法により、発泡形成を安定化させるためのカーボンブラックおよび発泡形成を促進させる機能を有するイオン性界面活性剤を含有させずに形成され、発泡が連続状に形成された軟質プラスチックシートを備えた研磨パッドにおいて、前記軟質プラスチックシートは、被研磨物を研磨加工するための研磨面に開孔が形成されており、前記研磨面は、該研磨面に水滴を滴下して0.5秒後の接触角をCA1とし、水滴の滴下から10.5秒後の接触角をCA2としたときに、{(CA1-CA2)/CA1}×100で表される接触角変化率が20%~50%の範囲であることを特徴とする。
In order to solve the above problems, the present invention is formed by a wet film forming method without containing carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation, In a polishing pad provided with a soft plastic sheet in which foaming is continuously formed, the soft plastic sheet has an opening formed in a polishing surface for polishing an object to be polished. When the contact angle 0.5 seconds after dropping water droplets on the polished surface is CA1, and the contact angle 10.5 seconds after dropping water droplets is CA2, {(CA1-CA2) / CA1} × 100 The contact angle change rate represented by the formula is characterized by being in the range of 20% to 50%.
この場合において、軟質プラスチックシートの研磨面側に溝加工またはエンボス加工が施されていてもよい。このとき、軟質プラスチックシートの研磨面側に、放射状パターン、格子状パターンおよび螺旋状パターンから選択される少なくとも1つのパターン形状の溝が形成されるようにすることができる。軟質プラスチックシートを、樹脂モジュラスが10MPa以下のポリウレタン樹脂製としてもよい。また、軟質プラスチックシートに形成された発泡のうち一部の発泡を、研磨面における開孔の孔径の研磨面から少なくとも200μmの深さ位置の孔径に対する割合の平均値が0.65~0.95の範囲とすることができる。このとき、研磨面における開孔の孔径の研磨面から少なくとも200μmの深さ位置の孔径に対する割合の平均値を0.75~0.95の範囲とすることが好ましい。
In this case, grooving or embossing may be performed on the polishing surface side of the soft plastic sheet. At this time, a groove having at least one pattern shape selected from a radial pattern, a lattice pattern, and a spiral pattern can be formed on the polishing surface side of the soft plastic sheet. The soft plastic sheet may be made of a polyurethane resin having a resin modulus of 10 MPa or less. In addition, the average value of the ratio of the part of the foam formed in the soft plastic sheet to the hole diameter at a depth position of at least 200 μm from the polishing surface of the hole diameter on the polishing surface is 0.65 to 0.95. Range. At this time, it is preferable that the average value of the ratio of the hole diameter of the opening on the polishing surface to the hole diameter at a depth position of at least 200 μm from the polishing surface is in the range of 0.75 to 0.95.
本発明によれば、研磨面に開孔が形成されており、研磨面における接触角変化率が20%~50%の範囲のため、研磨加工時に供給される研磨液が浸透しやすくなり軟質プラスチックシートと研磨液とのなじみが良化するので、研磨加工時の立ち上がり時間を短縮することができるとともに、軟質プラスチックシートには硬質成分であるカーボンブラックが無添加のため、被研磨物に対するスクラッチを低減し平坦性向上を図ることができる、という効果を得ることができる。
According to the present invention, since the opening is formed on the polishing surface and the contact angle change rate on the polishing surface is in the range of 20% to 50%, the polishing liquid supplied at the time of polishing processing can easily penetrate and the soft plastic. Since the familiarity between the sheet and the polishing liquid is improved, the rise time during polishing can be shortened, and the soft plastic sheet does not contain carbon black, which is a hard component. It is possible to obtain an effect of reducing and improving the flatness.
以下、図面を参照して、本発明を適用した研磨パッドの実施の形態について説明する。
Hereinafter, an embodiment of a polishing pad to which the present invention is applied will be described with reference to the drawings.
(構成)
図1に示すように、本実施形態の研磨パッド10は、湿式成膜法によりポリウレタン樹脂で形成された軟質プラスチックシートとしてのポリウレタンシート2を備えている。ポリウレタンシート2は、湿式成膜時に、発泡形成を安定化させるためのカーボンブラックおよび発泡形成の促進機能を有するイオン性界面活性剤が無添加の状態、つまり、カーボンブラックおよびイオン性界面活性剤を含有させずに形成されたものである。 (Constitution)
As shown in FIG. 1, thepolishing pad 10 of this embodiment includes a polyurethane sheet 2 as a soft plastic sheet formed of a polyurethane resin by a wet film forming method. The polyurethane sheet 2 is a state in which carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation are not added during wet film formation, that is, carbon black and ionic surfactant are added. It is formed without containing.
図1に示すように、本実施形態の研磨パッド10は、湿式成膜法によりポリウレタン樹脂で形成された軟質プラスチックシートとしてのポリウレタンシート2を備えている。ポリウレタンシート2は、湿式成膜時に、発泡形成を安定化させるためのカーボンブラックおよび発泡形成の促進機能を有するイオン性界面活性剤が無添加の状態、つまり、カーボンブラックおよびイオン性界面活性剤を含有させずに形成されたものである。 (Constitution)
As shown in FIG. 1, the
ポリウレタンシート2では、湿式成膜法で表面側に形成されたスキン層がバフ処理により除去されている。バフ処理後の表面により、被研磨物を研磨加工するための研磨面Pが構成されている。ポリウレタンシート2の内部には、厚さ方向の長さがポリウレタンシート2の厚さの7割以上であり厚さ方向に沿って丸みを帯びた長発泡3と、厚さ方向の長さが厚さの半分以下の発泡4とが一様に分散するように形成されている。研磨面Pでは、長発泡3、発泡4が開孔しており、それぞれ開孔5、開孔6が形成されている。
In the polyurethane sheet 2, the skin layer formed on the surface side by the wet film forming method is removed by buffing. The surface after the buffing process constitutes a polishing surface P for polishing the object to be polished. Inside the polyurethane sheet 2, the length in the thickness direction is 70% or more of the thickness of the polyurethane sheet 2, and the long foam 3 is rounded along the thickness direction, and the length in the thickness direction is thick. It is formed so that the foam 4 of less than half the thickness is uniformly dispersed. On the polished surface P, long foam 3 and foam 4 are opened, and an opening 5 and an opening 6 are formed, respectively.
発泡4は、研磨面P側に偏った位置で長発泡3同士の間に形成されており、ポリウレタンシート2の厚さ方向の長さにバラツキを有している。このため、略均等に形成された長発泡3同士の間に発泡4が略均等に形成されていることとなる。長発泡3および発泡4の孔径は、研磨面P側の大きさが研磨面Pの反対面側より小さく形成されている。長発泡3および発泡4は、図示を省略した連通孔で立体網目状に連通している。換言すれば、ポリウレタンシート2は、発泡が連続状に形成された連続発泡構造を有している。
The foam 4 is formed between the long foams 3 at a position biased toward the polishing surface P, and the length of the polyurethane sheet 2 in the thickness direction varies. For this reason, the foam 4 is formed substantially evenly between the long foams 3 formed substantially evenly. The pore diameters of the long foam 3 and foam 4 are formed such that the size on the polishing surface P side is smaller than the opposite surface side of the polishing surface P. The long foam 3 and the foam 4 are communicated in a three-dimensional mesh shape with communication holes not shown. In other words, the polyurethane sheet 2 has a continuous foam structure in which foaming is continuously formed.
研磨面Pに形成された開孔5および開孔6は、開孔径が40±5μmの範囲に調整されている。また、研磨面Pの単位面積あたりの、開孔5および開孔6の合計面積の百分率で表される開孔率は、25%~30%の範囲に調整されている。開孔径や開孔率は、湿式成膜法による成膜条件やバフ処理条件等により調整することができる。
The opening 5 and the opening 6 formed on the polished surface P have an opening diameter adjusted to a range of 40 ± 5 μm. Further, the aperture ratio expressed as a percentage of the total area of the aperture 5 and the aperture 6 per unit area of the polished surface P is adjusted in the range of 25% to 30%. The hole diameter and the hole area ratio can be adjusted by the film forming conditions by the wet film forming method, the buffing conditions, and the like.
図2に示すように、長発泡3の研磨面Pにおける開孔5の開孔径D1は、研磨面Pから少なくとも200μmの深さ位置における孔径D2に対する割合の平均値が0.65~0.95の範囲に調整されている。換言すれば、長発泡3では、ポリウレタンシート2の少なくとも200μmの厚さ分が研磨加工により摩耗するまで、研磨面Pにおける開孔5の開孔径が研磨加工に使用する前の開孔径に対して、1.05~1.54倍までの範囲に維持されることとなる。
As shown in FIG. 2, the opening diameter D1 of the opening 5 on the polishing surface P of the long foam 3 is such that the average value of the ratio with respect to the hole diameter D2 at a depth position of at least 200 μm from the polishing surface P is 0.65 to 0.95. The range is adjusted. In other words, in the long foaming 3, the opening diameter of the opening 5 in the polishing surface P is larger than the opening diameter before being used for the polishing process until the thickness of at least 200 μm of the polyurethane sheet 2 is worn by the polishing process. , 1.05 to 1.54 times.
ポリウレタンシート2は、研磨面Pにおける水の接触角が経時で変化する割合が一定の範囲に調整されている。すなわち、ポリウレタンシート2では、研磨面Pに水滴を滴下して0.5秒後の接触角をCA1とし、水滴の滴下から10.5秒後の接触角をCA2としたときに、{(CA1-CA2)/CA1}×100で表される接触角変化率が、20~50%の範囲に調整されている。接触角変化率は、ポリウレタンシート2の作製に用いるポリウレタン樹脂の親水性の度合により調整することができる。
In the polyurethane sheet 2, the rate at which the contact angle of water on the polishing surface P changes with time is adjusted to a certain range. That is, in the polyurethane sheet 2, when the contact angle 0.5 seconds after dropping water droplets on the polishing surface P is CA1, and the contact angle 10.5 seconds after dropping water droplets is CA2, {(CA1 The contact angle change rate represented by −CA2) / CA1} × 100 is adjusted to a range of 20 to 50%. The contact angle change rate can be adjusted by the degree of hydrophilicity of the polyurethane resin used for producing the polyurethane sheet 2.
また、図1に示すように、研磨パッド10は、研磨面Pの反対面側に、研磨機に研磨パッド10を装着するための両面テープ8が貼り合わされている。両面テープ8は、例えば、ポリエチレンテレフタレート(以下、PETと略記する。)製フィルム等の可撓性フィルムの基材(不図示)の両面にアクリル系粘着剤等の図示しない粘着剤層が形成されている。両面テープ8は、基材の一面側の粘着剤層でポリウレタンシート2と貼り合わされており、他面側(ポリウレタンシート2と反対側)の粘着剤層が不図示の剥離紙で覆われている。
Also, as shown in FIG. 1, the polishing pad 10 has a double-sided tape 8 attached to the polishing machine 10 on the opposite side of the polishing surface P. The double-sided tape 8 has, for example, a pressure-sensitive adhesive layer (not shown) such as an acrylic pressure-sensitive adhesive formed on both surfaces of a base material (not shown) of a flexible film such as a film made of polyethylene terephthalate (hereinafter abbreviated as PET). ing. The double-sided tape 8 is bonded to the polyurethane sheet 2 with an adhesive layer on one side of the substrate, and the adhesive layer on the other side (opposite side to the polyurethane sheet 2) is covered with a release paper (not shown). .
(製造)
研磨パッド10の製造では、湿式成膜法によりポリウレタンシート2を作製し、得られたポリウレタンシート2と両面テープ8とを貼り合わせる。湿式成膜法では、有機溶媒にポリウレタン樹脂を溶解させた樹脂溶液を成膜基材に連続的に塗布し、水系凝固液中で樹脂溶液を凝固させてポリウレタン樹脂をシート状に再生させ、洗浄後乾燥させて帯状(長尺状)のポリウレタンシート2を作製する。以下、工程順に説明する。 (Manufacturing)
In the production of thepolishing pad 10, the polyurethane sheet 2 is produced by a wet film forming method, and the obtained polyurethane sheet 2 and the double-sided tape 8 are bonded together. In the wet film-forming method, a resin solution in which a polyurethane resin is dissolved in an organic solvent is continuously applied to the film-forming substrate, the resin solution is solidified in an aqueous coagulation liquid, and the polyurethane resin is regenerated into a sheet shape and washed. After drying, a belt-like (long shape) polyurethane sheet 2 is produced. Hereinafter, it demonstrates in order of a process.
研磨パッド10の製造では、湿式成膜法によりポリウレタンシート2を作製し、得られたポリウレタンシート2と両面テープ8とを貼り合わせる。湿式成膜法では、有機溶媒にポリウレタン樹脂を溶解させた樹脂溶液を成膜基材に連続的に塗布し、水系凝固液中で樹脂溶液を凝固させてポリウレタン樹脂をシート状に再生させ、洗浄後乾燥させて帯状(長尺状)のポリウレタンシート2を作製する。以下、工程順に説明する。 (Manufacturing)
In the production of the
準備工程では、ポリウレタン樹脂、ポリウレタン樹脂を溶解可能な水混和性の有機溶媒を混合してポリウレタン樹脂を溶解させる。有機溶媒としては、N,N-ジメチルホルムアミド(以下、DMFと略記する。)やN,N-ジメチルアセトアミド等を用いることができるが、本例では、DMFを用いる。ポリウレタン樹脂は、濃度が20~50%となるように溶解させる。ポリウレタン樹脂の濃度が20%に満たないと、得られるポリウレタンシートのかさ密度が低くなり、反対に50%を超えると、密度が高くなりすぎて所望の発泡形成ができなくなるので好ましくない。また、樹脂溶液には、発泡形成を安定化させるためのカーボンブラック等の顔料、発泡形成の促進機能を有するイオン性界面活性剤等の添加剤を添加せず、無添加の状態とする。一般的に用いられるイオン性界面活性剤は、ポリウレタン樹脂の溶解に用いる有機溶媒に可溶性であり、イオン性を有するアニオン界面活性剤、カチオン界面活性剤または両性界面活性剤が挙げられる。アニオン界面活性剤の具体例としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、燐酸エステル塩等を挙げることができ、カチオン界面活性剤の具体例としては、アミン塩と第4級アンモニウム塩の化合物等を挙げることができる。両性界面活性剤としては、双方の特性を含むものであり、水に溶けたときに、アルカリ領域ではアニオン界面活性剤の性質を、酸性領域ではカチオン界面活性剤の性質を、それぞれ示す界面活性剤である。本例では、これらのようなイオン性界面活性剤を、いずれも、添加しないものである。得られた溶液を減圧下で脱泡して樹脂溶液を得る。
In the preparation step, the polyurethane resin is dissolved by mixing the polyurethane resin and a water-miscible organic solvent capable of dissolving the polyurethane resin. As the organic solvent, N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide, or the like can be used. In this example, DMF is used. The polyurethane resin is dissolved so that the concentration becomes 20 to 50%. If the concentration of the polyurethane resin is less than 20%, the bulk density of the resulting polyurethane sheet is low. On the other hand, if it exceeds 50%, the density becomes too high and the desired foam cannot be formed. Further, the resin solution is not added with an additive such as a pigment such as carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation. Commonly used ionic surfactants are soluble in an organic solvent used to dissolve the polyurethane resin, and examples thereof include anionic surfactants, cationic surfactants and amphoteric surfactants having ionic properties. Specific examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt, phosphate ester salt and the like. Specific examples of the cationic surfactant include amine salt and quaternary ammonium salt. And the like. The amphoteric surfactant includes both characteristics. When dissolved in water, the surfactant exhibits the properties of an anionic surfactant in the alkaline region and the properties of the cationic surfactant in the acidic region. It is. In this example, none of these ionic surfactants are added. The obtained solution is degassed under reduced pressure to obtain a resin solution.
ポリウレタン樹脂には、ポリエステル系、ポリエーテル系、ポリカーボネート系等の樹脂の中から、樹脂モジュラスが10MPa以下の軟質のものを用いる。ポリウレタン樹脂は、分子内に2つ以上のイソシアネート基を有する多価イソシアネート成分と、分子内に2つ以上の水酸基を有する多価アルコール成分とを反応させ得られたものである。樹脂モジュラスは、樹脂の硬さを表す指標であり、無発泡の樹脂シートを100%(元の長さの2倍の長さまで)伸ばしたときにかかる荷重を単位面積で除した値である(以下、100%モジュラスと呼称することがある)。この値が大きくなるほど、硬い樹脂であることを意味する。
As the polyurethane resin, a soft resin having a resin modulus of 10 MPa or less is selected from polyester, polyether, and polycarbonate resins. The polyurethane resin is obtained by reacting a polyvalent isocyanate component having two or more isocyanate groups in the molecule with a polyhydric alcohol component having two or more hydroxyl groups in the molecule. The resin modulus is an index representing the hardness of the resin, and is a value obtained by dividing the load applied when the non-foamed resin sheet is stretched 100% (up to twice the original length) by the unit area ( Hereinafter, it may be referred to as 100% modulus). It means that it is a hard resin, so that this value becomes large.
多価イソシアネート成分としては、ジイソシアネート化合物、トリイソシアネート化合物等を用いることができ、ジイソシアネート化合物やトリイソシアネート化合物の2種以上を併用してもよい。一方、多価アルコール成分としては、ジオール化合物、トリオール化合物等を用いることができる。例えば、従来一般的な湿式成膜法で用いられるような、ポリエチレングリコール(PEG)やポリテトラメチレングリコール(PTMG)等のポリエーテルポリオール化合物、エチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物、ポリカーボネートポリオール化合物等を使用することができる。本例では、カーボンブラックおよびイオン性界面活性剤を無添加の状態とするため、発泡形成の安定化を図ることから、親水化されたジオール化合物を用いることが好ましい。本例で用いる「親水化されたジオール化合物」は、親水度等の尺度として特定範囲のものではなく、従来用いられたジオール化合物に対して、親水性を向上させたものである。例えば、ジオール化合物中のメチレン基に対する酸素原子の割合を増加させること、親水性の官能基を導入すること等により、親水化されたジオール化合物を得ることができる。具体的には、例えば、従来用いられたポリエステルジオール化合物であるアジピン酸と1,4-ブタンジオールないしエチレングリコールを含むポリオールとの反応により得られた化合物に対して、アジピン酸をコハク酸に代えた化合物、ないし、ポリオール中のエチレングリコールの存在モル比率を高めた化合物とすることで、親水性を向上させることができる。すなわち、メチレン基の数がアジピン酸では4つであるのに対して、コハク酸では2つであり、また、ポリマの繰り返し単位あたりのメチレン基の数が1,4-ブタンジオールでは4つであるのに対して、エチレングリコールでは2つである。このため、いずれの場合も、メチレン基に対する酸素原子の割合が増加し、親水性が向上することとなる。
As the polyvalent isocyanate component, a diisocyanate compound, a triisocyanate compound or the like can be used, and two or more of a diisocyanate compound and a triisocyanate compound may be used in combination. On the other hand, a diol compound, a triol compound, or the like can be used as the polyhydric alcohol component. For example, polyether polyol compounds such as polyethylene glycol (PEG) and polytetramethylene glycol (PTMG), and polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid, which are conventionally used in general wet film formation methods Polycarbonate polyol compounds and the like can be used. In this example, since the carbon black and the ionic surfactant are not added, it is preferable to use a hydrophilic diol compound in order to stabilize foam formation. The “hydrophilic diol compound” used in this example is not in a specific range as a measure of hydrophilicity or the like, but has improved hydrophilicity over a conventionally used diol compound. For example, a hydrophilic diol compound can be obtained by increasing the ratio of oxygen atoms to methylene groups in the diol compound, introducing a hydrophilic functional group, or the like. Specifically, for example, adipic acid is replaced with succinic acid for a compound obtained by the reaction of a conventionally used polyester diol compound, adipic acid, and a polyol containing 1,4-butanediol or ethylene glycol. The hydrophilicity can be improved by using a compound in which the molar ratio of ethylene glycol in the polyol is increased. That is, the number of methylene groups is 4 for adipic acid, but 2 for succinic acid, and the number of methylene groups per repeating unit of the polymer is 4 for 1,4-butanediol. In contrast, ethylene glycol has two. For this reason, in any case, the ratio of oxygen atoms to methylene groups is increased, and hydrophilicity is improved.
親水化されたジオール化合物と多価イソシアネート化合物とを反応させることにより、得られるポリウレタン樹脂は、親水性が高められることとなる。すなわち、ジオール化合物の親水性の度合を高めるほど、ポリウレタン樹脂の親水性が高められる。このため、得られるポリウレタンシート2では、水に対する親和性が高まり、水の接触角が短時間で小さくなる。換言すれば、ジオール化合物の親水性を高めることにより、ポリウレタンシート2の接触角変化率を大きくすることができる。
By reacting the hydrophilic diol compound with the polyvalent isocyanate compound, the resulting polyurethane resin has improved hydrophilicity. That is, the higher the degree of hydrophilicity of the diol compound, the higher the hydrophilicity of the polyurethane resin. For this reason, in the obtained polyurethane sheet 2, the affinity with respect to water increases, and the contact angle of water decreases in a short time. In other words, the contact angle change rate of the polyurethane sheet 2 can be increased by increasing the hydrophilicity of the diol compound.
塗布工程では、準備工程で調製された樹脂溶液を常温下でナイフコータ等の塗布装置により帯状の成膜基材に塗布する。このとき、塗布装置の間隙(クリアランス)を調整することで、樹脂溶液の塗布厚さ(塗布量)を調整する。本例では、上述した発泡構造を形成させるために、塗布厚さを1.0~3.0mmの範囲で適宜調整することが好ましい。塗布厚さが1.0mmに満たないと、表面から少なくとも200μmの深さ位置における孔径が、表面近傍における孔径より大きくなりやすくなり、上述したポリウレタンシート2を得ることができなくなる。一方、塗布厚さが3.0mmを超えると、樹脂溶液が水系凝固液に浸漬される前に液垂れや塗布斑が生じやすくなるうえに、上述した発泡構造が形成されにくくなる。また、成膜基材には、可撓性フィルム、不織布、織布等を用いることができるが、本例では、成膜基材をPET製フィルムとして、以下、説明する。
In the coating process, the resin solution prepared in the preparation process is coated on a belt-shaped film forming substrate at room temperature using a coating device such as a knife coater. At this time, the application thickness (application amount) of the resin solution is adjusted by adjusting the gap (clearance) of the application device. In this example, in order to form the above-described foamed structure, it is preferable to adjust the coating thickness as appropriate in the range of 1.0 to 3.0 mm. If the coating thickness is less than 1.0 mm, the hole diameter at a depth of at least 200 μm from the surface tends to be larger than the hole diameter in the vicinity of the surface, and the polyurethane sheet 2 described above cannot be obtained. On the other hand, when the coating thickness exceeds 3.0 mm, dripping and coating spots are likely to occur before the resin solution is immersed in the aqueous coagulation liquid, and the above-described foamed structure is difficult to be formed. Moreover, although a flexible film, a nonwoven fabric, a woven fabric, etc. can be used for the film-forming base material, in this example, the film-forming base material is described below as a PET film.
凝固再生工程では、塗布工程で成膜基材に塗布された樹脂溶液を、ポリウレタン樹脂に対して貧溶媒である水を主成分とする凝固液(水系凝固液)に浸漬する。凝固液中では、まず、樹脂溶液の表面側に厚さ数μm程度のスキン層が形成される。DMFと凝固液との置換の進行により、樹脂溶液が凝固し、ポリウレタン樹脂が成膜基材上にシート状に再生する。すなわち、DMFが樹脂溶液から脱溶媒し、DMFと凝固液とが置換することにより、スキン層の内側(ポリウレタン樹脂中)に長発泡3および発泡4が形成され、長発泡3および発泡4を立体網目状に連通する図示を省略した連通孔が形成される。成膜基材のPET製フィルムが水を浸透させないため、スキン層側で脱溶媒が生じて成膜基材側がスキン層側より大きな長発泡3が形成される。ポリウレタン樹脂の親水性を高めること、樹脂溶液の塗布厚さを大きくすることにより、樹脂溶液中のDMFと凝固液との置換の進行が遅くなる。また、凝固液の温度を上げるとスキン層の形成が早まり、樹脂溶液中のDMFと凝固液との置換の進行が更に遅くなる。本例では、上述した発泡構造を形成させるため、凝固液温度を20~50℃の範囲で適宜調整する。凝固液温度が20℃に満たないと、かさ密度が低く、表面近傍における発泡の数が増加し、孔径が小さくなるので好ましくない。特に、塗布厚を1.0mm以上とした場合、凝固液温度が低すぎると、凝固しきれずに乾燥工程に持ち込まれてしまうので好ましくない。反対に高すぎると、スキン層の形成が早まりすぎて、樹脂溶液中のDMFと凝固液との置換の進行が極端に遅くなり、上述した発泡構造が形成されにくくなるうえに、作業環境が悪化するので好ましくない。
In the coagulation regeneration process, the resin solution applied to the film forming substrate in the application process is immersed in a coagulation liquid (water-based coagulation liquid) whose main component is water which is a poor solvent for the polyurethane resin. In the coagulation liquid, first, a skin layer having a thickness of about several μm is formed on the surface side of the resin solution. As the substitution of DMF and coagulating liquid proceeds, the resin solution coagulates and the polyurethane resin is regenerated into a sheet on the film-forming substrate. That is, when DMF is removed from the resin solution and DMF and the coagulating liquid are replaced, long foam 3 and foam 4 are formed inside the skin layer (in the polyurethane resin). A communication hole (not shown) that communicates in a mesh shape is formed. Since the PET film of the film-forming substrate does not allow water to permeate, desolvation occurs on the skin layer side, and a long foam 3 having a larger film-forming substrate side than the skin layer side is formed. By increasing the hydrophilicity of the polyurethane resin and increasing the coating thickness of the resin solution, the progress of substitution between the DMF and the coagulation liquid in the resin solution is delayed. Further, when the temperature of the coagulating liquid is increased, the formation of the skin layer is accelerated, and the progress of substitution between the DMF in the resin solution and the coagulating liquid is further delayed. In this example, in order to form the above-described foamed structure, the coagulating liquid temperature is appropriately adjusted in the range of 20 to 50 ° C. If the coagulating liquid temperature is less than 20 ° C., the bulk density is low, the number of foaming in the vicinity of the surface is increased, and the pore diameter is decreased, which is not preferable. In particular, when the coating thickness is 1.0 mm or more, if the coagulation liquid temperature is too low, it is not preferable because the coagulation liquid cannot be completely solidified and brought into the drying process. On the other hand, if it is too high, the formation of the skin layer becomes too early, the progress of the substitution of the DMF and the coagulating liquid in the resin solution becomes extremely slow, the above-mentioned foam structure is difficult to form, and the working environment is deteriorated. This is not preferable.
ここで、長発泡3および発泡4の形成について説明する。本例では、樹脂溶液にカーボンブラックおよびイオン性界面活性剤を添加せずに無添加の状態とし、親水化されたジオール化合物により親水性を高めたポリウレタン樹脂を用いている。このため、DMFと凝固液との置換速度が遅くなるので、スキン層より内側のポリウレタン樹脂内部には、長発泡3が概ね均等に分散して形成される。また、脱溶媒がスキン層を通じて生じるため、スキン層側に偏った位置で長発泡3同士の間に発泡4が細長く形成される。
Here, the formation of the long foam 3 and the foam 4 will be described. In this example, a polyurethane resin having a hydrophilicity enhanced by a diol compound that has been made hydrophilic without adding carbon black and an ionic surfactant to the resin solution and using a hydrophilic diol compound is used. For this reason, since the replacement speed of DMF and the coagulating liquid becomes slow, the long foams 3 are formed in an almost uniformly dispersed manner inside the polyurethane resin inside the skin layer. Further, since the solvent removal occurs through the skin layer, the foam 4 is elongated between the long foams 3 at a position biased toward the skin layer.
洗浄・乾燥工程では、凝固再生工程で凝固再生したポリウレタン樹脂(以下、成膜樹脂という。)を成膜基材から剥離し、水等の洗浄液中で洗浄することで成膜樹脂中に残留するDMFを除去する。洗浄後、成膜樹脂をシリンダ乾燥機で乾燥させる。シリンダ乾燥機は内部に熱源を有するシリンダを備えている。成膜樹脂がシリンダの周面に沿って通過することで乾燥する。乾燥後の成膜樹脂は、ロール状に巻き取られる。
In the cleaning / drying process, the polyurethane resin coagulated and regenerated in the coagulation regeneration process (hereinafter referred to as film forming resin) is peeled off from the film forming substrate and remains in the film forming resin by washing in a cleaning solution such as water. Remove DMF. After cleaning, the film forming resin is dried with a cylinder dryer. The cylinder dryer includes a cylinder having a heat source therein. The film-forming resin is dried by passing along the peripheral surface of the cylinder. The film-forming resin after drying is wound up in a roll shape.
バフ処理工程では、乾燥後の成膜樹脂のスキン層側にバフ処理を施す。すなわち、スキン層と反対側の面に、表面が略平坦な圧接用治具の表面を圧接し、スキン層側をバフ処理する。本例では、連続的に製造された成膜樹脂が帯状のため、スキン層と反対側の面に圧接ローラを圧接しながら、スキン層側を連続的にバフ処理する。これにより、図1に示すように、スキン層が除去され、ポリウレタンシート2の研磨面Pには開孔5、開孔6が形成される。また、このバフ処理を施すことにより、ポリウレタンシート2の厚さがほぼ一様となる。ここで得られたポリウレタンシート2では、用いたポリウレタン樹脂の親水性が高められたことで、研磨面Pにおける接触角変化率が30~50%の範囲となる。また、ポリウレタン樹脂の樹脂モジュラスが10MPa以下のため、硬度がショアA型で11~16度の範囲、圧縮率が32~42%の範囲、圧縮弾性率が95~100%の範囲である。硬度、圧縮率、圧縮弾性率は、特に限定されないが、軟らかすぎると被研磨物の安定した研磨加工が難しくなり、反対に硬すぎると被研磨物にスクラッチが発生しやすくなるため、上述した範囲とすることが好ましい。これらの数値は、用いるポリウレタン樹脂の種類や濃度等で調整することができる。
In the buffing process, the skin layer side of the film-forming resin after drying is buffed. That is, the surface of the pressure welding jig having a substantially flat surface is pressed against the surface opposite to the skin layer, and the skin layer side is buffed. In this example, since the continuously formed film-forming resin is strip-shaped, the skin layer side is continuously buffed while pressing the pressing roller against the surface opposite to the skin layer. Thereby, as shown in FIG. 1, the skin layer is removed, and openings 5 and 6 are formed in the polishing surface P of the polyurethane sheet 2. Moreover, the thickness of the polyurethane sheet 2 becomes substantially uniform by performing this buffing process. In the polyurethane sheet 2 obtained here, the change rate of the contact angle on the polished surface P is in the range of 30 to 50% because the hydrophilicity of the used polyurethane resin is enhanced. Further, since the resin modulus of the polyurethane resin is 10 MPa or less, the hardness is in the range of 11 to 16 degrees for the Shore A type, the compression rate is in the range of 32 to 42%, and the compression modulus is in the range of 95 to 100%. Hardness, compression rate, and compression modulus are not particularly limited, but if it is too soft, it becomes difficult to stably polish the object to be polished. On the other hand, if it is too hard, scratches are likely to occur on the object to be polished. It is preferable that These numerical values can be adjusted by the type and concentration of the polyurethane resin used.
ラミネート加工工程では、バフ処理されたポリウレタンシート2の研磨面Pと反対側の面と、両面テープ8とを貼り合わせる。そして、円形等の所望の形状に裁断し、汚れや異物等の付着がないことを確認する等の検査を行い研磨パッド10を完成させる。
In the laminating process, the surface opposite to the polishing surface P of the buffed polyurethane sheet 2 and the double-sided tape 8 are bonded together. Then, it is cut into a desired shape such as a circle, and inspections such as confirming that there is no adhesion of dirt, foreign matter, etc. are performed to complete the polishing pad 10.
得られた研磨パッド10で被研磨物の研磨加工を行うときは、例えば、片面研磨機が用いられる。片面研磨機では、研磨定盤に研磨パッド10を装着する。研磨パッド10の装着時には、両面テープ8の剥離紙を剥離し露出した粘着剤層で貼着する。研磨加工時には、研磨定盤と対向配置された保持定盤に被研磨物を保持させ、被研磨物の加工面および研磨パッド10の研磨面P間に研磨粒子を含む研磨液(スラリ)を供給しつつ、被研磨物および研磨パッド10間を加圧しながら研磨定盤ないし保持定盤を回転させることで、被研磨物の加工面を研磨加工する。
When performing polishing of an object to be polished with the obtained polishing pad 10, for example, a single-side polishing machine is used. In a single-side polishing machine, a polishing pad 10 is mounted on a polishing surface plate. When the polishing pad 10 is mounted, the release paper of the double-sided tape 8 is peeled off and attached with the exposed adhesive layer. At the time of polishing, the object to be polished is held on a holding surface plate arranged opposite to the polishing surface plate, and a polishing liquid (slurry) containing abrasive particles is supplied between the processed surface of the object to be polished and the polishing surface P of the polishing pad 10. However, the processing surface of the object to be polished is polished by rotating the polishing surface plate or holding surface plate while applying pressure between the object to be polished and the polishing pad 10.
(作用)
次に、本実施形態の研磨パッド10の作用等について説明する。 (Function)
Next, the operation and the like of thepolishing pad 10 of this embodiment will be described.
次に、本実施形態の研磨パッド10の作用等について説明する。 (Function)
Next, the operation and the like of the
本実施形態の研磨パッド10では、研磨面Pに水滴を滴下したときの接触角変化率が20~50%の範囲に調整されている。このため、研磨加工時に供給されるスラリがポリウレタンシート2に浸透しやすくなり、ポリウレタンシート2とスラリとのなじみが良化する。これにより、研磨加工初期には、スラリが研磨面Pの全体に行きわたり、研磨面Pにスラリがなじみやすくなるので、立ち上がり時間を短縮することができ、生産性向上を図ることができる。
In the polishing pad 10 of the present embodiment, the contact angle change rate when a water droplet is dropped on the polishing surface P is adjusted to a range of 20 to 50%. For this reason, the slurry supplied at the time of a grinding | polishing process becomes easy to osmose | permeate the polyurethane sheet 2, and familiarity with the polyurethane sheet 2 and slurry improves. As a result, at the initial stage of polishing, the slurry reaches the entire polishing surface P, or the slurry is easily adapted to the polishing surface P, so that the rise time can be shortened and productivity can be improved.
また、本実施形態の研磨パッド10では、ポリウレタンシート2が、湿式成膜時の樹脂溶液に、発泡形成を安定化させるためのカーボンブラック、発泡形成を促進させる機能を有するイオン性界面活性剤が無添加の状態で形成されている。カーボンブラックは、硬質成分であるため、ポリウレタンシートに含有されていると、研磨加工時に研磨面に露出することがあり、被研磨物にスクラッチを生じる可能性がある。また、湿式成膜時にイオン性界面活性剤が配合されると、研磨加工時に、ポリウレタンシート内に残留したイオン性界面活性剤が経時的に溶出することがあり、研磨レートの変動を招き研磨加工の安定性を損なうことがある。研磨パッド10では、硬質成分であるカーボンブラックが無添加のため、被研磨物に対するスクラッチを低減し平坦性向上を図ることができる。また、イオン性界面活性剤が無添加のため、研磨加工時に溶出することがなく、研磨レートの変動が抑制されるので、安定した研磨加工を行うことができる。
Further, in the polishing pad 10 of the present embodiment, the polyurethane sheet 2 contains carbon black for stabilizing foam formation in the resin solution during wet film formation, and an ionic surfactant having a function of promoting foam formation. It is formed in an additive-free state. Since carbon black is a hard component, if it is contained in a polyurethane sheet, it may be exposed on the polishing surface during polishing, and may cause scratches on the object to be polished. In addition, if an ionic surfactant is blended during wet film formation, the ionic surfactant remaining in the polyurethane sheet may elute over time during polishing, resulting in fluctuations in the polishing rate. May impair the stability. In the polishing pad 10, since carbon black, which is a hard component, is not added, scratches on the object to be polished can be reduced and flatness can be improved. In addition, since no ionic surfactant is added, the ionic surfactant is not eluted during polishing, and fluctuations in the polishing rate are suppressed, so that stable polishing can be performed.
更に、本実施形態の研磨パッド10では、ポリウレタンシート2の作製に、樹脂モジュラスが10MPa以下のポリウレタン樹脂が用いられている。このため、得られたポリウレタンシート2が軟質となり、研磨加工時に被研磨物に対してソフトに接触可能となるので、スクラッチを低減することができる。
Furthermore, in the polishing pad 10 of the present embodiment, a polyurethane resin having a resin modulus of 10 MPa or less is used for producing the polyurethane sheet 2. For this reason, since the obtained polyurethane sheet 2 becomes soft and can come into soft contact with the object to be polished during polishing, scratches can be reduced.
また更に、従来湿式成膜法によるポリウレタンシートでは、多価アルコール成分としてポリエーテルポリオール化合物、ポリエステルポリオール化合物、ポリカーボネートポリオール化合物等を用いたポリウレタン樹脂で作製されており、その樹脂溶液にカーボンブラックやイオン性界面活性剤を添加することが一般的である。これに対して、本実施形態の研磨パッド10では、ポリウレタンシート2の作製に、多価イソシアネート成分および多価アルコール成分との反応により形成されたポリウレタン樹脂が用いられており、多価アルコール成分として親水化されたジオール化合物が用いられている。このため、上述したように、カーボンブラックやイオン性界面活性剤が無添加の状態でも、発泡形成を安定化させることができる。これにより、研磨面Pにおける開孔の開孔径が40±5μmの範囲、開孔率が25%~30%の範囲であり、連続発泡構造を有するポリウレタンシート2を作製することができる。
Furthermore, the conventional polyurethane film formed by the wet film forming method is made of a polyurethane resin using a polyether polyol compound, a polyester polyol compound, a polycarbonate polyol compound or the like as a polyhydric alcohol component, and carbon black or ion is added to the resin solution. It is common to add a surfactant. On the other hand, in the polishing pad 10 of this embodiment, the polyurethane resin formed by reaction with the polyvalent isocyanate component and the polyhydric alcohol component is used for the production of the polyurethane sheet 2, and the polyhydric alcohol component is used as the polyhydric alcohol component. Hydrophilic diol compounds are used. For this reason, as described above, foam formation can be stabilized even when carbon black or an ionic surfactant is not added. As a result, the polyurethane sheet 2 having a continuous foamed structure with an opening diameter of 40 ± 5 μm and an opening ratio of 25% to 30% on the polished surface P can be produced.
開孔径の範囲については、ポリウレタンシートの表面を研削することにより、開孔径35~45μmの範囲に調整することが望ましい。開孔径が35μmに満たない小径の開孔の数が増えると、スラリや研磨屑による目詰まりを起こしやすくなる。反対に、開孔径が45μmを超える大径の開孔の数が増えると、研磨屑等が長発泡3や発泡4の底部側に堆積しやすくなり、研磨加工の進行に伴う摩耗によりポリウレタンシート2の厚さが減じたときに、堆積した研磨屑等が放出され被研磨物にスクラッチを生じさせる可能性が高くなる。また、開孔率の範囲については、開孔率が25~30%の範囲であることが望ましい。開孔率がこの範囲にあると、被研磨物に対するスラリ(とりわけ、スラリに含まれる研磨粒子)の接触点となりえる領域として75~70%が確保されるため、研磨レートの向上を図ることができる。開孔率が25%に満たないと、スラリの循環保持性が不十分となり、研磨加工の立ち上がりを悪化させることとなる。反対に、開孔率が30%を超えると、スラリの接触点となりえる領域が減少するため、研磨レートの低下を招くこととなる。
The range of the aperture diameter is preferably adjusted to a range of 35 to 45 μm by grinding the surface of the polyurethane sheet. When the number of small-diameter holes having an opening diameter of less than 35 μm is increased, clogging due to slurry or polishing debris is likely to occur. On the other hand, when the number of large-diameter holes having an opening diameter of more than 45 μm is increased, polishing scraps and the like are likely to be accumulated on the bottom side of the long foam 3 and foam 4, and the polyurethane sheet 2 is caused by wear accompanying the progress of the polishing process. When the thickness is reduced, the accumulated polishing waste and the like are released, and the possibility of causing scratches on the object to be polished increases. The range of the hole area ratio is preferably in the range of 25 to 30%. When the open area ratio is within this range, 75 to 70% is secured as an area that can be a contact point of slurry (especially abrasive particles contained in the slurry) with the object to be polished, so that the polishing rate can be improved. it can. If the open area ratio is less than 25%, the slurry circulation retention is insufficient and the rising of the polishing process is worsened. On the other hand, when the hole area ratio exceeds 30%, the area that can be a contact point of the slurry is reduced, which leads to a decrease in the polishing rate.
更にまた、本実施形態の研磨パッド10では、ポリウレタンシート2に、厚さ方向の長さの7割以上の長さを有する長発泡3が形成されており、長発泡3の研磨面Pにおける開孔径D1が、研磨面Pから少なくとも200μmの深さ位置における孔径D2に対する割合の平均値が0.65~0.95の範囲に調整されている(図2も参照)。このため、研磨加工時にポリウレタンシート2が摩耗しても、開孔径の拡大が抑制されるので、研磨面Pに占める開孔の割合、つまり開孔率が変化しにくくなる。また、研磨面Pから少なくとも200μmの厚さ範囲では、細長い発泡形状を有することで毛細管現象が生じるため、スラリの吸水性を高めることができる。従って、研磨加工時のスラリの貯留や供給が安定化されるので、長期間に亘り被研磨物を平坦に研磨加工することができるとともに、研磨パッド10の寿命向上を図ることができる。スラリの貯留や供給の安定性を向上させることを考慮すれば、開孔径D1の孔径D2に対する割合の平均値を0.75~0.95の範囲に調整することが好ましい。このことは、例えば、湿式成膜法における成膜条件により実現することができる。
Furthermore, in the polishing pad 10 of the present embodiment, the foamed foam 3 having a length of 70% or more of the length in the thickness direction is formed on the polyurethane sheet 2, and the long foamed foam 3 is opened on the polishing surface P. The average value of the ratio of the hole diameter D1 to the hole diameter D2 at a depth position of at least 200 μm from the polishing surface P is adjusted in the range of 0.65 to 0.95 (see also FIG. 2). For this reason, even if the polyurethane sheet 2 is worn during the polishing process, the expansion of the hole diameter is suppressed, so that the ratio of the holes occupying the polishing surface P, that is, the hole area ratio is hardly changed. Further, in the thickness range of at least 200 μm from the polishing surface P, a capillary phenomenon occurs due to the elongated foam shape, so that the water absorption of the slurry can be increased. Accordingly, since the storage and supply of the slurry during the polishing process is stabilized, the object to be polished can be polished flatly for a long time, and the life of the polishing pad 10 can be improved. In consideration of improving the storage and supply stability of the slurry, it is preferable to adjust the average value of the ratio of the opening diameter D1 to the hole diameter D2 in the range of 0.75 to 0.95. This can be realized, for example, by film forming conditions in a wet film forming method.
また、本実施形態の研磨パッド10では、長発泡3および発泡4が連通孔で連通しているため、スラリが連通孔を通じて長発泡3および発泡4間を移動することから、被研磨物および研磨パッド10間にスラリを略均等に供給することができる。これにより、被研磨物が略均等に研磨加工されるので、加工面の均一な研磨加工が可能となり平坦性向上を図ることができる。また、本実施形態の研磨パッド10では、ポリウレタンシート2の研磨面Pと反対面側にPET製フィルムの基材を有する両面テープ8が貼り合わされている。このため、柔軟なポリウレタンシート2が両面テープ8の基材に支持されるので、研磨パッド10の搬送時や研磨機への装着時の取り扱いを容易にすることができる。
Further, in the polishing pad 10 of the present embodiment, since the long foam 3 and the foam 4 communicate with each other through the communication holes, the slurry moves between the long foam 3 and the foam 4 through the communication holes. Slurry can be supplied approximately evenly between the pads 10. As a result, the object to be polished is polished substantially evenly, so that the processed surface can be uniformly polished and the flatness can be improved. Moreover, in the polishing pad 10 of this embodiment, the double-sided tape 8 which has the base material of the film made from PET on the opposite side to the grinding | polishing surface P of the polyurethane sheet 2 is bonded together. For this reason, since the flexible polyurethane sheet 2 is supported by the base material of the double-sided tape 8, the handling at the time of conveyance of the polishing pad 10 or attachment to a polishing machine can be facilitated.
なお、本実施形態では、特に言及していないが、スラリの供給や研磨屑の排出を考慮して研磨パッド10の研磨面P側に溝加工やエンボス加工を施すようにしてもよい。形成される溝のパターン形状については、放射状、格子状、螺旋状等のいずれでもよく、これらを組み合わせてもよい。また、溝の断面形状についても、特に制限されるものではなく、矩形状、U字状、V字状、半円状等のいずれの形状としてもよい。さらに、溝のピッチ、幅、深さについては、研磨屑の排出やスラリの移動が可能であればよく、特に制限されるものではない。溝を形成する方法としては、特に制限されるものではなく、所望の溝を形成することができる方法であればよい。ポリウレタンシート2が軟質であることを考慮すれば、加熱加圧を伴うエンボス加工とすることも可能である。
Although not particularly mentioned in the present embodiment, grooving or embossing may be performed on the polishing surface P side of the polishing pad 10 in consideration of supply of slurry and discharge of polishing debris. The pattern shape of the groove to be formed may be any of a radial shape, a lattice shape, a spiral shape, and the like, or a combination thereof. Further, the cross-sectional shape of the groove is not particularly limited, and may be any shape such as a rectangular shape, a U shape, a V shape, and a semicircular shape. Furthermore, the pitch, width, and depth of the grooves are not particularly limited as long as the polishing waste can be discharged and the slurry can be moved. The method for forming the groove is not particularly limited as long as it is a method capable of forming a desired groove. Considering that the polyurethane sheet 2 is soft, embossing with heating and pressing can be performed.
また、本実施形態では、湿式成膜後の成膜樹脂にバフ処理を施すことでスキン層を除去し開孔を形成させる例を示したが、本発明はこれに限定されるものではない。研磨面Pに開孔を形成させる方法としては、スキン層を除去できる方法であればよく、例えば、スライス処理を施すようにしてもよい。スライス処理を施す場合は、成膜樹脂が柔軟で弾性を有することを考慮すれば、例えば、張力をかけながらスライス処理を施すことでスキン層を除去した略平坦なポリウレタンシート2を得ることができる。
In the present embodiment, an example is shown in which the skin layer is removed by buffing the film-forming resin after wet film formation to form an opening, but the present invention is not limited to this. As a method of forming the opening in the polished surface P, any method that can remove the skin layer may be used. For example, a slicing process may be performed. When the slicing process is performed, considering that the film-forming resin is flexible and elastic, for example, a substantially flat polyurethane sheet 2 from which the skin layer has been removed can be obtained by performing the slicing process while applying tension. .
更に、本実施形態では、湿式成膜時の成膜基材にPET製フィルムを用いる例を示したが、本発明はこれに限定されるものではなく、例えば、不織布や織布等を用いるようにしてもよい。この場合は、凝固再生したポリウレタン樹脂を成膜基材から剥離することが難しいため、剥離せずそのまま洗浄、乾燥させた後、ポリウレタン樹脂と反対側の面に両面テープ8を貼り合わせればよい。また、ポリウレタンシート2の研磨面Pと反対側の面に両面テープ8を貼り合わせる例を示したが、例えば、ポリウレタンシート2と両面テープ8との間に、ポリウレタンシート2を支持する支持材を貼り合わせるようにしてもよい。このようにすれば、研磨パッド10の搬送や取り扱いを一層容易にすることができる。
Furthermore, in the present embodiment, an example in which a PET film is used as a film formation substrate at the time of wet film formation is shown, but the present invention is not limited to this, and for example, a nonwoven fabric or a woven fabric is used. It may be. In this case, since it is difficult to peel off the solidified and regenerated polyurethane resin from the film-forming substrate, the double-sided tape 8 may be bonded to the surface opposite to the polyurethane resin after washing and drying without peeling. Moreover, although the example which affixes the double-sided tape 8 on the surface on the opposite side to the grinding | polishing surface P of the polyurethane sheet 2 was shown, the support material which supports the polyurethane sheet 2 between the polyurethane sheet 2 and the double-sided tape 8 is shown, for example. You may make it stick together. In this way, the polishing pad 10 can be more easily transported and handled.
また更に、本実施形態では、ポリウレタンシート2の材質にポリエステル系、ポリエーテル系、ポリカーボネート系等のポリウレタン樹脂を例示したが、本発明はこれに限定されるものではなく、例えば、ポリエステル樹脂等を用いてもよい。ポリウレタン樹脂を用いれば、湿式成膜法で長発泡3や発泡4が形成された発泡構造のシートを容易に形成することができる。
Furthermore, in the present embodiment, the polyurethane sheet 2 is exemplified by a polyurethane resin such as a polyester-based, polyether-based, or polycarbonate-based material. However, the present invention is not limited to this, for example, a polyester resin or the like. It may be used. If a polyurethane resin is used, a sheet having a foam structure in which long foam 3 and foam 4 are formed by a wet film forming method can be easily formed.
以下、本実施形態に従い製造した研磨パッド10の実施例について説明する。なお、比較のために製造した比較例の研磨パッドについても併記する。
Hereinafter, examples of the polishing pad 10 manufactured according to the present embodiment will be described. A comparative polishing pad manufactured for comparison is also shown.
(実施例1)
実施例1では、ポリウレタン樹脂として、コハク酸と、エチレングリコールおよび1,4-ブタンジオールを構成単位とするポリオール(エチレングリコールと1,4-ブタンジオールとの構成単位比率は5:5の当量比)とを反応させて得られるポリエステルジオールを含む30%ポリエステルMDI(ジフェニルメタンジイソシアネート)ポリウレタン樹脂溶液の100部に対して、粘度調整用のDMFの36部を混合し樹脂溶液を調製した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。得られた樹脂溶液を用い、成膜基材に樹脂溶液を塗布するときの塗布厚を1.30mmとして、湿式成膜法によりポリウレタンシート2を作製した。得られたポリウレタンシート2のスキン層側をバフ処理量0.14mmとしバフ番手♯180のサンドペーパーを使用してバフ処理し、両面テープ8を貼り合わせて研磨パッド10を製造した。 (Example 1)
In Example 1, as a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 5: 5). ) And 30 parts of a 30% polyester MDI (diphenylmethane diisocyanate) polyurethane resin solution containing a polyester diol obtained by reaction with 36 parts of DMF for viscosity adjustment was mixed to prepare a resin solution. The resin modulus of the polyurethane resin used is 6 MPa. Using the obtained resin solution, apolyurethane sheet 2 was produced by a wet film-forming method with a coating thickness of 1.30 mm when the resin solution was applied to the film-forming substrate. The polyurethane layer 2 was buffed on the skin layer side with a buff treatment amount of 0.14 mm using a sandpaper of buff count # 180, and a double-sided tape 8 was bonded to produce a polishing pad 10.
実施例1では、ポリウレタン樹脂として、コハク酸と、エチレングリコールおよび1,4-ブタンジオールを構成単位とするポリオール(エチレングリコールと1,4-ブタンジオールとの構成単位比率は5:5の当量比)とを反応させて得られるポリエステルジオールを含む30%ポリエステルMDI(ジフェニルメタンジイソシアネート)ポリウレタン樹脂溶液の100部に対して、粘度調整用のDMFの36部を混合し樹脂溶液を調製した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。得られた樹脂溶液を用い、成膜基材に樹脂溶液を塗布するときの塗布厚を1.30mmとして、湿式成膜法によりポリウレタンシート2を作製した。得られたポリウレタンシート2のスキン層側をバフ処理量0.14mmとしバフ番手♯180のサンドペーパーを使用してバフ処理し、両面テープ8を貼り合わせて研磨パッド10を製造した。 (Example 1)
In Example 1, as a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 5: 5). ) And 30 parts of a 30% polyester MDI (diphenylmethane diisocyanate) polyurethane resin solution containing a polyester diol obtained by reaction with 36 parts of DMF for viscosity adjustment was mixed to prepare a resin solution. The resin modulus of the polyurethane resin used is 6 MPa. Using the obtained resin solution, a
(実施例2)
実施例2では、ポリウレタン樹脂として、コハク酸と、エチレングリコールおよび1,4-ブタンジオールを構成単位とするポリオール(エチレングリコールと1,4-ブタンジオールとの構成単位比率は4:6の当量比)とを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いたこと以外は実施例1と同様にして、樹脂溶液を調製し、研磨パッド10を製造した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。 (Example 2)
In Example 2, as a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 4: 6). A resin solution was prepared in the same manner as in Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting was prepared, and apolishing pad 10 was produced. The resin modulus of the polyurethane resin used is 6 MPa.
実施例2では、ポリウレタン樹脂として、コハク酸と、エチレングリコールおよび1,4-ブタンジオールを構成単位とするポリオール(エチレングリコールと1,4-ブタンジオールとの構成単位比率は4:6の当量比)とを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いたこと以外は実施例1と同様にして、樹脂溶液を調製し、研磨パッド10を製造した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。 (Example 2)
In Example 2, as a polyurethane resin, a polyol having succinic acid and ethylene glycol and 1,4-butanediol as structural units (the structural unit ratio of ethylene glycol and 1,4-butanediol is an equivalent ratio of 4: 6). A resin solution was prepared in the same manner as in Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting was prepared, and a
(実施例3)
実施例3では、ポリウレタン樹脂として、マロン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いたこと以外は実施例1と同様にして、樹脂溶液を調製し、研磨パッド10を製造した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。 (Example 3)
Example 3 was the same as Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting malonic acid with a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin. Thus, a resin solution was prepared and apolishing pad 10 was manufactured. The resin modulus of the polyurethane resin used is 6 MPa.
実施例3では、ポリウレタン樹脂として、マロン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いたこと以外は実施例1と同様にして、樹脂溶液を調製し、研磨パッド10を製造した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。 (Example 3)
Example 3 was the same as Example 1 except that a polyester MDI polyurethane resin containing a polyester diol obtained by reacting malonic acid with a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin. Thus, a resin solution was prepared and a
(実施例4)
実施例1で作製したポリウレタンシート2の研磨面P側に溝を形成すること以外は実施例1と同様にして研磨パッド10を製造した。溝の形成では、溝幅を1mm、溝間隔を3mmとした断面矩形状で格子パターンの溝を、エンボス加工により形成した。 Example 4
Apolishing pad 10 was produced in the same manner as in Example 1 except that a groove was formed on the polishing surface P side of the polyurethane sheet 2 produced in Example 1. In the formation of the grooves, grooves of a lattice pattern having a rectangular cross section with a groove width of 1 mm and a groove interval of 3 mm were formed by embossing.
実施例1で作製したポリウレタンシート2の研磨面P側に溝を形成すること以外は実施例1と同様にして研磨パッド10を製造した。溝の形成では、溝幅を1mm、溝間隔を3mmとした断面矩形状で格子パターンの溝を、エンボス加工により形成した。 Example 4
A
(比較例1)
比較例1では、ポリウレタン樹脂として、アジピン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いた。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。この30%ポリウレタン樹脂溶液の100部に対して、親水性添加剤のラウリル硫酸ナトリウム(SLS)の5部を添加し、粘度調整用のDMFの36部を混合し樹脂溶液を調製した。得られた樹脂溶液を用い、湿式成膜法によりポリウレタンシートを作製し、研磨パッドを製造した。 (Comparative Example 1)
In Comparative Example 1, a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin. The resin modulus of the polyurethane resin used is 6 MPa. To 100 parts of this 30% polyurethane resin solution, 5 parts of hydrophilic additive sodium lauryl sulfate (SLS) was added, and 36 parts of DMF for viscosity adjustment were mixed to prepare a resin solution. Using the obtained resin solution, a polyurethane sheet was produced by a wet film forming method to produce a polishing pad.
比較例1では、ポリウレタン樹脂として、アジピン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用いた。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。この30%ポリウレタン樹脂溶液の100部に対して、親水性添加剤のラウリル硫酸ナトリウム(SLS)の5部を添加し、粘度調整用のDMFの36部を混合し樹脂溶液を調製した。得られた樹脂溶液を用い、湿式成膜法によりポリウレタンシートを作製し、研磨パッドを製造した。 (Comparative Example 1)
In Comparative Example 1, a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin. The resin modulus of the polyurethane resin used is 6 MPa. To 100 parts of this 30% polyurethane resin solution, 5 parts of hydrophilic additive sodium lauryl sulfate (SLS) was added, and 36 parts of DMF for viscosity adjustment were mixed to prepare a resin solution. Using the obtained resin solution, a polyurethane sheet was produced by a wet film forming method to produce a polishing pad.
(比較例2)
比較例2では、樹脂溶液にカーボンブラックを全固形分量の5.0質量%の割合で添加し、混合した以外は実施例1と同様にして研磨パッドを製造した。 (Comparative Example 2)
In Comparative Example 2, a polishing pad was produced in the same manner as in Example 1 except that carbon black was added to the resin solution at a ratio of 5.0% by mass of the total solid content and mixed.
比較例2では、樹脂溶液にカーボンブラックを全固形分量の5.0質量%の割合で添加し、混合した以外は実施例1と同様にして研磨パッドを製造した。 (Comparative Example 2)
In Comparative Example 2, a polishing pad was produced in the same manner as in Example 1 except that carbon black was added to the resin solution at a ratio of 5.0% by mass of the total solid content and mixed.
(比較例3)
比較例3では、樹脂モジュラスが15MPaのポリウレタン樹脂を用いたこと以外は実施例1と同様にして研磨パッドを製造した。 (Comparative Example 3)
In Comparative Example 3, a polishing pad was produced in the same manner as in Example 1 except that a polyurethane resin having a resin modulus of 15 MPa was used.
比較例3では、樹脂モジュラスが15MPaのポリウレタン樹脂を用いたこと以外は実施例1と同様にして研磨パッドを製造した。 (Comparative Example 3)
In Comparative Example 3, a polishing pad was produced in the same manner as in Example 1 except that a polyurethane resin having a resin modulus of 15 MPa was used.
(比較例4)
比較例4では、ポリウレタン樹脂として、アジピン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用い、親水性添加剤を添加せずに樹脂溶液を調製した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。得られた樹脂溶液を用い、湿式成膜法によりポリウレタンシートを作製したところ、成膜不良のため研磨パッドとして製造することができなかった。 (Comparative Example 4)
In Comparative Example 4, a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin, and no hydrophilic additive was added. A resin solution was prepared. The resin modulus of the polyurethane resin used is 6 MPa. When a polyurethane sheet was produced by a wet film formation method using the obtained resin solution, it could not be produced as a polishing pad due to film formation failure.
比較例4では、ポリウレタン樹脂として、アジピン酸と1,4-ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールを含むポリエステルMDIポリウレタン樹脂を用い、親水性添加剤を添加せずに樹脂溶液を調製した。用いたポリウレタン樹脂の樹脂モジュラスは、6MPaである。得られた樹脂溶液を用い、湿式成膜法によりポリウレタンシートを作製したところ、成膜不良のため研磨パッドとして製造することができなかった。 (Comparative Example 4)
In Comparative Example 4, a polyester MDI polyurethane resin containing a polyester diol obtained by reacting adipic acid and a polyol having 1,4-butanediol as a structural unit was used as the polyurethane resin, and no hydrophilic additive was added. A resin solution was prepared. The resin modulus of the polyurethane resin used is 6 MPa. When a polyurethane sheet was produced by a wet film formation method using the obtained resin solution, it could not be produced as a polishing pad due to film formation failure.
(接触角評価)
実施例および比較例の各研磨パッドについて、水の接触角変化率を算出した。接触角は、接触角計として固液界面解析装置(DropMaster500:協和界面科学株式会社製)を用いて測定した。接触角の測定では、温度20℃、湿度60%の条件の下にて、注射針から水滴1滴を研磨パッド表面に滴下し、滴下して0.5秒後から10.5秒後までの10秒間の動的接触角の経時変化を測定した。すなわち、水滴を滴下して0.5秒後に測定した接触角CA1と、水滴の滴下から10.5秒後に測定した接触角CA2とから、{(CA1-CA2)/CA1}×100により接触角変化率を算出した。接触角CA1、CA2および接触角変化率の結果を下表1に示す。なお、測定は4回行い、その平均値を示した。 (Contact angle evaluation)
The contact angle change rate of water was calculated for each polishing pad of the example and the comparative example. The contact angle was measured using a solid-liquid interface analyzer (DropMaster 500: manufactured by Kyowa Interface Science Co., Ltd.) as a contact angle meter. In the measurement of the contact angle, one drop of water was dropped on the surface of the polishing pad from the injection needle under the conditions of a temperature of 20 ° C. and a humidity of 60%, and after 0.5 seconds to 10.5 seconds after dropping. The time-dependent change of the dynamic contact angle for 10 seconds was measured. That is, a contact angle of {(CA1-CA2) / CA1} × 100 from a contact angle CA1 measured 0.5 seconds after dropping a water drop and a contact angle CA2 measured 10.5 seconds after dropping the water drop. The rate of change was calculated. The results of the contact angles CA1, CA2 and the contact angle change rate are shown in Table 1 below. In addition, the measurement was performed 4 times and the average value was shown.
実施例および比較例の各研磨パッドについて、水の接触角変化率を算出した。接触角は、接触角計として固液界面解析装置(DropMaster500:協和界面科学株式会社製)を用いて測定した。接触角の測定では、温度20℃、湿度60%の条件の下にて、注射針から水滴1滴を研磨パッド表面に滴下し、滴下して0.5秒後から10.5秒後までの10秒間の動的接触角の経時変化を測定した。すなわち、水滴を滴下して0.5秒後に測定した接触角CA1と、水滴の滴下から10.5秒後に測定した接触角CA2とから、{(CA1-CA2)/CA1}×100により接触角変化率を算出した。接触角CA1、CA2および接触角変化率の結果を下表1に示す。なお、測定は4回行い、その平均値を示した。 (Contact angle evaluation)
The contact angle change rate of water was calculated for each polishing pad of the example and the comparative example. The contact angle was measured using a solid-liquid interface analyzer (DropMaster 500: manufactured by Kyowa Interface Science Co., Ltd.) as a contact angle meter. In the measurement of the contact angle, one drop of water was dropped on the surface of the polishing pad from the injection needle under the conditions of a temperature of 20 ° C. and a humidity of 60%, and after 0.5 seconds to 10.5 seconds after dropping. The time-dependent change of the dynamic contact angle for 10 seconds was measured. That is, a contact angle of {(CA1-CA2) / CA1} × 100 from a contact angle CA1 measured 0.5 seconds after dropping a water drop and a contact angle CA2 measured 10.5 seconds after dropping the water drop. The rate of change was calculated. The results of the contact angles CA1, CA2 and the contact angle change rate are shown in Table 1 below. In addition, the measurement was performed 4 times and the average value was shown.
表1に示すように、比較例1の研磨パッドでは、接触角変化率が15%であった。これに対して、実施例1~実施例4の研磨パッド10では、接触角変化率がそれぞれ47%、39%、28%、22%を示した。また、図3に示すように、比較例1では、樹脂溶液に親水性添加剤であるラウリル硫酸ナトリウムを添加したものの、接触角が時間とともに緩やかに低下し、100秒後でも50度程度を示した。これに対して、実施例1~実施例3では、接触角が急速に低下しており、20~30秒後には10度程度まで低下した。これは、実施例1~実施例3では、比較例1と比べて、親水化されたジオール化合物により親水性を高めたポリウレタン樹脂でポリウレタンシート2を作製したことで、水がポリウレタンシート2に浸透しやすくなり、短時間で接触角が小さくなったためと考えられる。実施例4についても、同様の結果であることを確認している。一方、実施例4の接触角変化率が小さくなったことについては、接触角CA1の測定値が大きくなったためと考えられる。この原因は明確ではないが、研磨面P側に溝を形成するときにエンボス加工を用いたことから、表面における樹脂の親水性の程度に影響したことが予想される。また、樹脂溶液にカーボンブラックを添加した比較例2、樹脂モジュラスが10MPaを超える15MPaである比較例3については、ポリウレタン樹脂自体の親水性の程度が実施例1と同等であることから、比較例1のものと比べて、接触角変化率が上昇する結果となった。
As shown in Table 1, the contact angle change rate of the polishing pad of Comparative Example 1 was 15%. On the other hand, in the polishing pads 10 of Examples 1 to 4, the contact angle change rates were 47%, 39%, 28%, and 22%, respectively. In addition, as shown in FIG. 3, in Comparative Example 1, although the hydrophilic additive sodium lauryl sulfate was added to the resin solution, the contact angle gradually decreased with time and showed about 50 degrees even after 100 seconds. It was. On the other hand, in Examples 1 to 3, the contact angle rapidly decreased and decreased to about 10 degrees after 20 to 30 seconds. In Examples 1 to 3, compared with Comparative Example 1, the polyurethane sheet 2 was made of a polyurethane resin whose hydrophilicity was increased by a diol compound that was made hydrophilic, so that water penetrated into the polyurethane sheet 2. This is considered to be because the contact angle became small in a short time. It has been confirmed that Example 4 has the same result. On the other hand, it can be considered that the contact angle change rate in Example 4 was decreased because the measured value of the contact angle CA1 was increased. The cause of this is not clear, but since embossing was used when forming the groove on the polishing surface P side, it was expected that the degree of hydrophilicity of the resin on the surface was affected. Further, in Comparative Example 2 in which carbon black was added to the resin solution and Comparative Example 3 in which the resin modulus was 15 MPa exceeding 10 MPa, the degree of hydrophilicity of the polyurethane resin itself was equivalent to that in Example 1, and thus Comparative Example As a result, the contact angle change rate increased as compared with the case of 1.
(吸水スピード評価)
接触角評価で用いた固液界面解析装置を用いて、吸水スピードを算出した。測定では、温度20℃、湿度60%の条件の下にて、注射針から水滴1滴を研磨パッド表面に滴下し、接触角が滴下直後の接触角から10度低下するまでの速さ(度/秒)を測定した。すなわち、水滴を滴下した直後の接触角から10度低下するまでに要した時間t(秒)としたときに、10/tにより吸水スピードを算出した。吸水スピードの結果を表1に合わせて示している。なお、測定は4回行い、その平均値を示した。 (Water absorption speed evaluation)
The water absorption speed was calculated using the solid-liquid interface analyzer used in the contact angle evaluation. In the measurement, under the conditions of a temperature of 20 ° C. and a humidity of 60%, one drop of water was dropped from the injection needle onto the surface of the polishing pad, and the speed until the contact angle decreased 10 degrees from the contact angle immediately after dropping (degree / Sec) was measured. That is, the water absorption speed was calculated by 10 / t, where time t (seconds) required to decrease by 10 degrees from the contact angle immediately after dropping the water droplet was used. The results of water absorption speed are shown in Table 1. In addition, the measurement was performed 4 times and the average value was shown.
接触角評価で用いた固液界面解析装置を用いて、吸水スピードを算出した。測定では、温度20℃、湿度60%の条件の下にて、注射針から水滴1滴を研磨パッド表面に滴下し、接触角が滴下直後の接触角から10度低下するまでの速さ(度/秒)を測定した。すなわち、水滴を滴下した直後の接触角から10度低下するまでに要した時間t(秒)としたときに、10/tにより吸水スピードを算出した。吸水スピードの結果を表1に合わせて示している。なお、測定は4回行い、その平均値を示した。 (Water absorption speed evaluation)
The water absorption speed was calculated using the solid-liquid interface analyzer used in the contact angle evaluation. In the measurement, under the conditions of a temperature of 20 ° C. and a humidity of 60%, one drop of water was dropped from the injection needle onto the surface of the polishing pad, and the speed until the contact angle decreased 10 degrees from the contact angle immediately after dropping (degree / Sec) was measured. That is, the water absorption speed was calculated by 10 / t, where time t (seconds) required to decrease by 10 degrees from the contact angle immediately after dropping the water droplet was used. The results of water absorption speed are shown in Table 1. In addition, the measurement was performed 4 times and the average value was shown.
表1に示すように、比較例1の研磨パッドでは、吸水スピードが0.6であった。これに対して、実施例1~実施例4の研磨パッド10では、吸水スピードがそれぞれ4.3、5.0、3.3、2.5を示した。接触角変化率の結果と同様に、吸水スピードの結果からも、実施例1~実施例4が比較例1と比べて水になじみやすいことが明らかとなった。従って、実施例1~実施例4の研磨パッド10では、研磨加工時に供給されるスラリのなじみがよくなり、立ち上がり時間の短縮が期待できる。一方、比較例2、比較例3の吸水スピードについては、接触角変化率の結果と同様に、比較例1のものより大きくなる結果となった。
As shown in Table 1, the water absorption speed of the polishing pad of Comparative Example 1 was 0.6. In contrast, in the polishing pads 10 of Examples 1 to 4, the water absorption speeds were 4.3, 5.0, 3.3, and 2.5, respectively. Similar to the results of the contact angle change rate, the results of the water absorption speed revealed that Examples 1 to 4 were easier to adjust to water than Comparative Example 1. Therefore, in the polishing pad 10 of the first to fourth embodiments, the familiarity of the slurry supplied during the polishing process is improved, and the rise time can be expected to be shortened. On the other hand, about the water absorption speed of the comparative example 2 and the comparative example 3, it became a result larger than the thing of the comparative example 1 similarly to the result of a contact angle change rate.
(開孔径評価)
実施例および比較例の各研磨パッドについて、平均開孔径、開孔率および開孔径比を測定した。平均開孔径(μm)、開孔率(%)の測定では、走査型電子顕微鏡(日本電子株式会社製、JSM-5000LV)で約5mm四方の範囲を50倍に拡大し、9箇所について観察した。この画像を画像処理ソフト(Image Analyzer V20LAB Ver.1.3、ニコン製)により二値化処理して開孔個数を確認し、各々の開孔面積から円相当径およびその平均値を平均開孔径として算出した。開孔率の測定においては、開孔径のカットオフ値(下限)を11μmとし、ノイズ成分を除外した。なお、研磨面P側に溝を形成した実施例4の研磨パッド10については、研磨加工に直接的に寄与するランド面の2mm四方の範囲を観察し、格子状の溝に囲まれた最小部分である1つのランド面(研磨面相当部分)について1箇所、合計9箇所について測定した。一方、開孔径比の測定では、長発泡3の開孔径について、ポリウレタンシート2の断面写真(走査型電子顕微鏡)から、研磨面Pでの開孔径D1と、研磨面Pからポリウレタンシート2の厚さ方向に200μmの位置での孔径D2とを測定し、開孔径D1の孔径D2に対する割合(開孔径比=D1/D2)の平均値を算出した。平均開孔径、開孔率および開孔径比の測定結果を表1に合わせて示している。 (Evaluation of hole diameter)
About each polishing pad of an Example and a comparative example, the average hole diameter, the hole area ratio, and the hole diameter ratio were measured. In the measurement of the average hole diameter (μm) and the hole area ratio (%), the range of about 5 mm square was enlarged 50 times with a scanning electron microscope (JSM-5000LV, manufactured by JEOL Ltd.), and nine spots were observed. . This image was binarized by image processing software (Image Analyzer V20LAB Ver. 1.3, manufactured by Nikon) to check the number of holes, and the equivalent circle diameter and the average value were calculated from the respective opening areas as the average hole diameter. Calculated as In the measurement of the hole area ratio, the cut-off value (lower limit) of the hole diameter was 11 μm, and noise components were excluded. For thepolishing pad 10 of Example 4 in which the groove was formed on the polishing surface P side, the area of 2 mm square of the land surface that directly contributes to the polishing process was observed, and the minimum portion surrounded by the lattice-like grooves One land surface (corresponding to a polished surface) was measured at one place, a total of nine places. On the other hand, in the measurement of the aperture diameter ratio, for the aperture diameter of the long foam 3, from the cross-sectional photograph (scanning electron microscope) of the polyurethane sheet 2, the aperture diameter D1 on the polishing surface P and the thickness of the polyurethane sheet 2 from the polishing surface P. The hole diameter D2 at a position of 200 μm in the vertical direction was measured, and the average value of the ratio of the opening diameter D1 to the hole diameter D2 (opening diameter ratio = D1 / D2) was calculated. Table 1 also shows the measurement results of the average hole diameter, the hole area ratio, and the hole diameter ratio.
実施例および比較例の各研磨パッドについて、平均開孔径、開孔率および開孔径比を測定した。平均開孔径(μm)、開孔率(%)の測定では、走査型電子顕微鏡(日本電子株式会社製、JSM-5000LV)で約5mm四方の範囲を50倍に拡大し、9箇所について観察した。この画像を画像処理ソフト(Image Analyzer V20LAB Ver.1.3、ニコン製)により二値化処理して開孔個数を確認し、各々の開孔面積から円相当径およびその平均値を平均開孔径として算出した。開孔率の測定においては、開孔径のカットオフ値(下限)を11μmとし、ノイズ成分を除外した。なお、研磨面P側に溝を形成した実施例4の研磨パッド10については、研磨加工に直接的に寄与するランド面の2mm四方の範囲を観察し、格子状の溝に囲まれた最小部分である1つのランド面(研磨面相当部分)について1箇所、合計9箇所について測定した。一方、開孔径比の測定では、長発泡3の開孔径について、ポリウレタンシート2の断面写真(走査型電子顕微鏡)から、研磨面Pでの開孔径D1と、研磨面Pからポリウレタンシート2の厚さ方向に200μmの位置での孔径D2とを測定し、開孔径D1の孔径D2に対する割合(開孔径比=D1/D2)の平均値を算出した。平均開孔径、開孔率および開孔径比の測定結果を表1に合わせて示している。 (Evaluation of hole diameter)
About each polishing pad of an Example and a comparative example, the average hole diameter, the hole area ratio, and the hole diameter ratio were measured. In the measurement of the average hole diameter (μm) and the hole area ratio (%), the range of about 5 mm square was enlarged 50 times with a scanning electron microscope (JSM-5000LV, manufactured by JEOL Ltd.), and nine spots were observed. . This image was binarized by image processing software (Image Analyzer V20LAB Ver. 1.3, manufactured by Nikon) to check the number of holes, and the equivalent circle diameter and the average value were calculated from the respective opening areas as the average hole diameter. Calculated as In the measurement of the hole area ratio, the cut-off value (lower limit) of the hole diameter was 11 μm, and noise components were excluded. For the
表1に示すように、実施例1~実施例4の研磨パッド10では、いずれも、平均開孔径が35~45μmの範囲となり、成膜基材への塗布厚を1.30mmとしたことにより、開孔径比が0.65~0.95の範囲となった。
As shown in Table 1, in each of the polishing pads 10 of Examples 1 to 4, the average opening diameter was in the range of 35 to 45 μm, and the coating thickness on the film forming substrate was 1.30 mm. The aperture diameter ratio was in the range of 0.65 to 0.95.
(研磨加工評価)
実施例および比較例の研磨パッドを用い、TEOS(Tetro Ethyl Ortho Silicate)膜付きシリコンウェハの100枚に対して、以下の条件にて研磨加工を繰り返し行い、研磨レート、立ち上がりの状況および研磨レートの安定性を評価した。研磨レートは、研磨加工前後の膜厚の差である研磨量を、研磨時間で除して表したものであり、研磨加工前後のシリコンウェハについて各々121箇所の厚み測定結果の平均値から求めた。厚み測定には、光学式膜厚膜質測定器(KLAテンコール社製、商品名「ASET-F5x」、測定:DBSモード)を用いた。シリコンウェハを25枚研磨加工した後の研磨レートの測定結果を下表2に示す。
<研磨条件>
使用研磨機:(株)荏原製作所製、商品名「F-REX300」
研磨速度(定盤回転数):70rpm
加工圧力:176g/cm2
スラリ:コロイダルシリカスラリ(pH:11.5)
スラリ流量:200mL/min
研磨時間:60秒
被研磨物:TEOS付きシリコンウェハ (Polishing evaluation)
Using the polishing pads of the examples and comparative examples, 100 wafers of TEOS (Tetro Ethyl Silicon Silicate) -coated silicon wafers were repeatedly subjected to polishing processing under the following conditions to determine the polishing rate, rising condition, and polishing rate. Stability was evaluated. The polishing rate is expressed by dividing the polishing amount, which is the difference in film thickness before and after polishing, by the polishing time, and was obtained from the average value of the thickness measurement results at 121 locations for each of the silicon wafers before and after polishing. . For the thickness measurement, an optical film thickness measuring device (manufactured by KLA Tencor, trade name “ASET-F5x”, measurement: DBS mode) was used. The measurement results of the polishing rate after polishing 25 silicon wafers are shown in Table 2 below.
<Polishing conditions>
Polishing machine used: Product name “F-REX300” manufactured by Ebara Corporation
Polishing speed (rotation speed of surface plate): 70 rpm
Processing pressure: 176 g / cm 2
Slurry: Colloidal silica slurry (pH: 11.5)
Slurry flow rate: 200mL / min
Polishing time: 60 seconds Object to be polished: Silicon wafer with TEOS
実施例および比較例の研磨パッドを用い、TEOS(Tetro Ethyl Ortho Silicate)膜付きシリコンウェハの100枚に対して、以下の条件にて研磨加工を繰り返し行い、研磨レート、立ち上がりの状況および研磨レートの安定性を評価した。研磨レートは、研磨加工前後の膜厚の差である研磨量を、研磨時間で除して表したものであり、研磨加工前後のシリコンウェハについて各々121箇所の厚み測定結果の平均値から求めた。厚み測定には、光学式膜厚膜質測定器(KLAテンコール社製、商品名「ASET-F5x」、測定:DBSモード)を用いた。シリコンウェハを25枚研磨加工した後の研磨レートの測定結果を下表2に示す。
<研磨条件>
使用研磨機:(株)荏原製作所製、商品名「F-REX300」
研磨速度(定盤回転数):70rpm
加工圧力:176g/cm2
スラリ:コロイダルシリカスラリ(pH:11.5)
スラリ流量:200mL/min
研磨時間:60秒
被研磨物:TEOS付きシリコンウェハ (Polishing evaluation)
Using the polishing pads of the examples and comparative examples, 100 wafers of TEOS (Tetro Ethyl Silicon Silicate) -coated silicon wafers were repeatedly subjected to polishing processing under the following conditions to determine the polishing rate, rising condition, and polishing rate. Stability was evaluated. The polishing rate is expressed by dividing the polishing amount, which is the difference in film thickness before and after polishing, by the polishing time, and was obtained from the average value of the thickness measurement results at 121 locations for each of the silicon wafers before and after polishing. . For the thickness measurement, an optical film thickness measuring device (manufactured by KLA Tencor, trade name “ASET-F5x”, measurement: DBS mode) was used. The measurement results of the polishing rate after polishing 25 silicon wafers are shown in Table 2 below.
<Polishing conditions>
Polishing machine used: Product name “F-REX300” manufactured by Ebara Corporation
Polishing speed (rotation speed of surface plate): 70 rpm
Processing pressure: 176 g / cm 2
Slurry: Colloidal silica slurry (pH: 11.5)
Slurry flow rate: 200mL / min
Polishing time: 60 seconds Object to be polished: Silicon wafer with TEOS
表2に示すように、比較例1では、研磨レートが542Åであった。これに対し、実施例1~実施例4では、研磨レートがそれぞれ643Å、622Å、617Å、594Åを示し、比較例1より高くなり、研磨加工の立ち上がりが良好であった。これは、ポリウレタンシート2が親水性を高めたポリウレタン樹脂製のため、スラリのなじみがよくなり、スラリの循環保持性が良化したためと考えられる。一方、比較例2では、樹脂溶液にカーボンブラックを添加したことから、研磨加工に伴うポリウレタンシートの摩耗によりカーボンブラックが研磨面に露出し、研磨レートの上昇に影響したもの考えられる。また、比較例3では、樹脂モジュラスが15MPaのポリウレタン樹脂を用いたことから、ポリウレタンシートが硬質化し、研磨レートが上昇したものと考えられる。
As shown in Table 2, in Comparative Example 1, the polishing rate was 542 mm. On the other hand, in Examples 1 to 4, the polishing rates were 643 mm, 622 mm, 617 mm, and 594 mm, respectively, which were higher than those in Comparative Example 1 and the rising of the polishing process was good. This is probably because the polyurethane sheet 2 is made of a polyurethane resin having improved hydrophilicity, so that the familiarity of the slurry is improved and the circulation retention of the slurry is improved. On the other hand, in Comparative Example 2, since carbon black was added to the resin solution, it was considered that the carbon black was exposed to the polished surface due to abrasion of the polyurethane sheet accompanying the polishing process, and the polishing rate was increased. In Comparative Example 3, it is considered that the polyurethane sheet was hardened and the polishing rate was increased because a polyurethane resin having a resin modulus of 15 MPa was used.
図4には、実施例1および比較例1の研磨レートの変化を示している。比較例1の研磨パッドでは、100枚までの研磨加工でも研磨レートがゆるやかに上昇し、研磨レートの変動も見られた。これに対して、実施例1の研磨パッド10では、20枚程度までで速やかに研磨レートが上昇しており、その後研磨レートが安定化することが判った。実施例2~実施例4の研磨パッド10、および、比較例2~比較例3の研磨パッドについても実施例1と同様の結果であることを確認している。従って、接触角変化率が20~50%の範囲である各実施例の研磨パッド10では、研磨レートが安定化するまでの時間が短縮され、長期にわたって安定した研磨レートを維持できることが明らかとなった。
FIG. 4 shows changes in the polishing rate of Example 1 and Comparative Example 1. With the polishing pad of Comparative Example 1, the polishing rate gradually increased even when polishing was performed up to 100 sheets, and fluctuations in the polishing rate were also observed. In contrast, with the polishing pad 10 of Example 1, it was found that the polishing rate rapidly increased up to about 20 sheets, and thereafter the polishing rate was stabilized. It was confirmed that the results of the polishing pad 10 of Examples 2 to 4 and the polishing pads of Comparative Examples 2 to 3 were the same as those of Example 1. Therefore, in the polishing pad 10 of each example in which the contact angle change rate is in the range of 20 to 50%, it becomes clear that the time until the polishing rate is stabilized is shortened and the stable polishing rate can be maintained for a long time. It was.
(ディフェクト評価)
実施例および比較例の研磨パッドを用いてディフェクトの評価を行った。ディフェクトの評価では、25枚のTEOS付きシリコンウェハを繰り返し3回連続で(合計75枚分)研磨加工を行い、研磨加工後の71~75枚目のシリコンウェハ5枚について、パターンなしウェハ表面検査装置(KLAテンコール社製、Surfscan SP1DLS)の高感度測定モードにて欠陥を測定し、基板表面におけるディフェクトを評価した。測定時には、0.16μm以上の欠陥を検出可能なモードであるWide(ワイド)、0.20μm以上の欠陥を検出可能なモードであるNarrow(ナロー)の2つの条件で2回測定した。ディフェクトの評価結果を表2に合わせて示している。表2におけるディフェクト欄中、Wideは0.16μm以上、Narrowは0.20μm以上のサイズの欠陥について測定した結果である。 (Defect evaluation)
Defects were evaluated using the polishing pads of Examples and Comparative Examples. In the defect evaluation, 25 TEOS silicon wafers were repeatedly polished 3 times in total (for a total of 75 wafers), and the unpatterned wafer surface inspection was performed on 5 71 to 75 silicon wafers after polishing. Defects were measured in a high-sensitivity measurement mode of the apparatus (Surfscan SP1DLS, manufactured by KLA Tencor), and defects on the substrate surface were evaluated. At the time of measurement, the measurement was performed twice under two conditions of Wide (wide), which is a mode capable of detecting defects of 0.16 μm or more, and Narrow (mode), which is a mode capable of detecting defects of 0.20 μm or more. Defect evaluation results are also shown in Table 2. In the defect column in Table 2, Wide is a result of measurement for a defect having a size of 0.16 μm or more, and Narrow is a measurement of 0.20 μm or more.
実施例および比較例の研磨パッドを用いてディフェクトの評価を行った。ディフェクトの評価では、25枚のTEOS付きシリコンウェハを繰り返し3回連続で(合計75枚分)研磨加工を行い、研磨加工後の71~75枚目のシリコンウェハ5枚について、パターンなしウェハ表面検査装置(KLAテンコール社製、Surfscan SP1DLS)の高感度測定モードにて欠陥を測定し、基板表面におけるディフェクトを評価した。測定時には、0.16μm以上の欠陥を検出可能なモードであるWide(ワイド)、0.20μm以上の欠陥を検出可能なモードであるNarrow(ナロー)の2つの条件で2回測定した。ディフェクトの評価結果を表2に合わせて示している。表2におけるディフェクト欄中、Wideは0.16μm以上、Narrowは0.20μm以上のサイズの欠陥について測定した結果である。 (Defect evaluation)
Defects were evaluated using the polishing pads of Examples and Comparative Examples. In the defect evaluation, 25 TEOS silicon wafers were repeatedly polished 3 times in total (for a total of 75 wafers), and the unpatterned wafer surface inspection was performed on 5 71 to 75 silicon wafers after polishing. Defects were measured in a high-sensitivity measurement mode of the apparatus (Surfscan SP1DLS, manufactured by KLA Tencor), and defects on the substrate surface were evaluated. At the time of measurement, the measurement was performed twice under two conditions of Wide (wide), which is a mode capable of detecting defects of 0.16 μm or more, and Narrow (mode), which is a mode capable of detecting defects of 0.20 μm or more. Defect evaluation results are also shown in Table 2. In the defect column in Table 2, Wide is a result of measurement for a defect having a size of 0.16 μm or more, and Narrow is a measurement of 0.20 μm or more.
表2に示すように、実施例1~実施例4の研磨パッド10では、ディフェクトがWideモードで58~74個、Narrowモードで26~39個を示した。また、比較例1についても、Wideモードで75個、Narrowモードで35個であった。これは、実施例1~実施例4および比較例1では、いずれも、樹脂溶液にカーボンブラックを添加していないため、被研磨物に対する欠陥を抑制することができたものと考えられる。これに対して、カーボンブラックを添加した比較例2では、Wideモード、Narrowモードのいずれについても、ディフェクトが顕著に増加した。また、樹脂モジュラスが15MPaのポリウレタン樹脂を用いた比較例3では、ポリウレタンシートが硬質化したことにより、Wideモード、Narrowモードのいずれについてもディフェクトが増加する結果となった。
As shown in Table 2, the polishing pad 10 of Examples 1 to 4 showed 58 to 74 defects in Wide mode and 26 to 39 defects in Narrow mode. Also in Comparative Example 1, there were 75 in the Wide mode and 35 in the Narrow mode. This is considered to be because in Examples 1 to 4 and Comparative Example 1, carbon black was not added to the resin solution, so that defects on the object to be polished could be suppressed. On the other hand, in Comparative Example 2 in which carbon black was added, the defects increased remarkably in both the Wide mode and the Narrow mode. Further, in Comparative Example 3 using a polyurethane resin having a resin modulus of 15 MPa, the defect increased in both the Wide mode and the Narrow mode due to the hardened polyurethane sheet.
(スラリ保持性評価)
スラリ保持性の評価では、実施例1および比較例1の研磨パッドについて、上述したスラリ流量の200mL/minを、300mL/min、100mL/minに変えた場合の研磨レートの変化を比較した。図5に示すように、比較例1の研磨パッドでは、スラリ保持性に劣るため、スラリ流量の減少に伴い研磨レートも低下した。これに対して、実施例1では、スラリ流量を変えても研磨レートの落ち込みが少ないことが判った。これは、研磨面Pにおける水の接触角変化率を上述した範囲としたことにより、スラリ保持性が高くなったためと考えられる。 (Slurry retention evaluation)
In the evaluation of slurry retention, changes in the polishing rate when the slurry flow rate of 200 mL / min described above was changed to 300 mL / min and 100 mL / min for the polishing pads of Example 1 and Comparative Example 1 were compared. As shown in FIG. 5, the polishing pad of Comparative Example 1 was inferior in slurry retention, so that the polishing rate was reduced with a decrease in the slurry flow rate. On the other hand, in Example 1, it was found that there was little drop in the polishing rate even when the slurry flow rate was changed. This is presumably because the slurry retention was increased by setting the rate of change in the contact angle of water on the polished surface P within the above-described range.
スラリ保持性の評価では、実施例1および比較例1の研磨パッドについて、上述したスラリ流量の200mL/minを、300mL/min、100mL/minに変えた場合の研磨レートの変化を比較した。図5に示すように、比較例1の研磨パッドでは、スラリ保持性に劣るため、スラリ流量の減少に伴い研磨レートも低下した。これに対して、実施例1では、スラリ流量を変えても研磨レートの落ち込みが少ないことが判った。これは、研磨面Pにおける水の接触角変化率を上述した範囲としたことにより、スラリ保持性が高くなったためと考えられる。 (Slurry retention evaluation)
In the evaluation of slurry retention, changes in the polishing rate when the slurry flow rate of 200 mL / min described above was changed to 300 mL / min and 100 mL / min for the polishing pads of Example 1 and Comparative Example 1 were compared. As shown in FIG. 5, the polishing pad of Comparative Example 1 was inferior in slurry retention, so that the polishing rate was reduced with a decrease in the slurry flow rate. On the other hand, in Example 1, it was found that there was little drop in the polishing rate even when the slurry flow rate was changed. This is presumably because the slurry retention was increased by setting the rate of change in the contact angle of water on the polished surface P within the above-described range.
本発明は研磨加工時の立ち上がり時間を短縮し平坦性向上を図ることができる研磨パッドを提供するものであるため、研磨パッドの製造、販売に寄与するので、産業上の利用可能性を有する。
Since the present invention provides a polishing pad that can shorten the rise time during polishing and improve the flatness, it contributes to the manufacture and sale of the polishing pad, and thus has industrial applicability.
Claims (5)
- 湿式成膜法により、発泡形成を安定化させるためのカーボンブラックおよび発泡形成を促進させる機能を有するイオン性界面活性剤を含有させずに形成され、発泡が連続状に形成された軟質プラスチックシートを備えた研磨パッドにおいて、前記軟質プラスチックシートは、被研磨物を研磨加工するための研磨面に開孔が形成されており、前記研磨面は、該研磨面に水滴を滴下して0.5秒後の接触角をCA1とし、水滴の滴下から10.5秒後の接触角をCA2としたときに、{(CA1-CA2)/CA1}×100で表される接触角変化率が20%~50%の範囲であることを特徴とする研磨パッド。 A soft plastic sheet formed without a carbon black for stabilizing foam formation and an ionic surfactant having a function of promoting foam formation by a wet film-forming method, in which foam is continuously formed. In the polishing pad provided, the soft plastic sheet has an opening formed in a polishing surface for polishing an object to be polished, and the polishing surface drops water droplets on the polishing surface for 0.5 seconds. The contact angle change rate represented by {(CA1−CA2) / CA1} × 100 is 20% or more when the subsequent contact angle is CA1 and the contact angle after 10.5 seconds from the dropping of the water droplet is CA2. A polishing pad characterized by being in the range of 50%.
- 前記軟質プラスチックシートは、前記研磨面側に溝加工またはエンボス加工が施されていることを特徴とする請求項1に記載の研磨パッド。 The polishing pad according to claim 1, wherein the soft plastic sheet is grooved or embossed on the polishing surface side.
- 前記軟質プラスチックシートは、前記研磨面側に、放射状パターン、格子状パターンおよび螺旋状パターンから選択される少なくとも1つのパターン形状の溝が形成されたことを特徴とする請求項2に記載の研磨パッド。 3. The polishing pad according to claim 2, wherein the soft plastic sheet has grooves of at least one pattern shape selected from a radial pattern, a lattice pattern, and a spiral pattern on the polishing surface side. .
- 前記軟質プラスチックシートは、樹脂モジュラスが10MPa以下のポリウレタン樹脂製であることを特徴とする請求項1に記載の研磨パッド。 The polishing pad according to claim 1, wherein the soft plastic sheet is made of a polyurethane resin having a resin modulus of 10 MPa or less.
- 前記軟質プラスチックシートに形成された前記発泡のうち一部の発泡は、前記研磨面における開孔の孔径の前記研磨面から少なくとも200μmの深さ位置の孔径に対する割合の平均値が0.65~0.95の範囲であることを特徴とする請求項1に記載の研磨パッド。 Some of the foams formed on the soft plastic sheet have an average ratio of the ratio of the hole diameter of the opening in the polishing surface to the hole diameter at a depth of at least 200 μm from the polishing surface. The polishing pad according to claim 1, which is in a range of .95.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014538651A JP6228546B2 (en) | 2012-09-28 | 2013-09-27 | Polishing pad |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012217684 | 2012-09-28 | ||
JP2012-217684 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014051104A1 true WO2014051104A1 (en) | 2014-04-03 |
Family
ID=50388495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076397 WO2014051104A1 (en) | 2012-09-28 | 2013-09-27 | Polishing pad |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6228546B2 (en) |
TW (1) | TWI504735B (en) |
WO (1) | WO2014051104A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI655998B (en) * | 2014-04-03 | 2019-04-11 | 美商3M新設資產公司 | Polishing pad, polishing system therewith and method of polishing substrate using polishing pad |
CN111372727A (en) * | 2017-11-21 | 2020-07-03 | 3M创新有限公司 | Coated abrasive discs and methods of making and using the same |
CN114286737A (en) * | 2019-06-19 | 2022-04-05 | 株式会社可乐丽 | Polishing pad, method for producing polishing pad, and polishing method |
CN114770372A (en) * | 2022-05-30 | 2022-07-22 | 南京航空航天大学 | Composite surface pattern polishing pad with uniform material removal function |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10259099B2 (en) * | 2016-08-04 | 2019-04-16 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Tapering method for poromeric polishing pad |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02220838A (en) * | 1989-02-22 | 1990-09-04 | Rodeele Nitta Kk | Laminate and support material of member to be polished and polishing cloth used therewith |
JP2003145413A (en) * | 2001-10-31 | 2003-05-20 | Applied Materials Inc | Polishing pad |
JP2007196336A (en) * | 2006-01-27 | 2007-08-09 | Toyobo Co Ltd | Nonwoven fabric polishing sheet |
JP2009101504A (en) * | 2007-10-03 | 2009-05-14 | Fujibo Holdings Inc | Polishing cloth |
JP2012110970A (en) * | 2010-11-19 | 2012-06-14 | Fujibo Holdings Inc | Polishing pad and method for manufacturing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334745A (en) * | 2005-06-03 | 2006-12-14 | Inoac Corp | Adsorption pad for polishing and its manufacturing method |
CN101268111B (en) * | 2005-09-22 | 2012-07-18 | 可乐丽股份有限公司 | Polymer material, foam obtained from same, and polishing pad using those |
-
2013
- 2013-09-27 JP JP2014538651A patent/JP6228546B2/en active Active
- 2013-09-27 WO PCT/JP2013/076397 patent/WO2014051104A1/en active Application Filing
- 2013-09-30 TW TW102135314A patent/TWI504735B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02220838A (en) * | 1989-02-22 | 1990-09-04 | Rodeele Nitta Kk | Laminate and support material of member to be polished and polishing cloth used therewith |
JP2003145413A (en) * | 2001-10-31 | 2003-05-20 | Applied Materials Inc | Polishing pad |
JP2007196336A (en) * | 2006-01-27 | 2007-08-09 | Toyobo Co Ltd | Nonwoven fabric polishing sheet |
JP2009101504A (en) * | 2007-10-03 | 2009-05-14 | Fujibo Holdings Inc | Polishing cloth |
JP2012110970A (en) * | 2010-11-19 | 2012-06-14 | Fujibo Holdings Inc | Polishing pad and method for manufacturing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI655998B (en) * | 2014-04-03 | 2019-04-11 | 美商3M新設資產公司 | Polishing pad, polishing system therewith and method of polishing substrate using polishing pad |
CN111372727A (en) * | 2017-11-21 | 2020-07-03 | 3M创新有限公司 | Coated abrasive discs and methods of making and using the same |
CN114286737A (en) * | 2019-06-19 | 2022-04-05 | 株式会社可乐丽 | Polishing pad, method for producing polishing pad, and polishing method |
CN114770372A (en) * | 2022-05-30 | 2022-07-22 | 南京航空航天大学 | Composite surface pattern polishing pad with uniform material removal function |
CN114770372B (en) * | 2022-05-30 | 2023-08-22 | 南京航空航天大学 | Composite surface pattern polishing pad with uniform material removal function |
Also Published As
Publication number | Publication date |
---|---|
JP6228546B2 (en) | 2017-11-08 |
TW201418435A (en) | 2014-05-16 |
TWI504735B (en) | 2015-10-21 |
JPWO2014051104A1 (en) | 2016-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI405638B (en) | Polishing pad | |
JP4555559B2 (en) | Abrasive cloth and method for producing abrasive cloth | |
CN101745852B (en) | Glass substrate for magnetic disk and method for producing the same | |
KR101999418B1 (en) | Polishing pad and method for producing polishing pad | |
JP6228546B2 (en) | Polishing pad | |
JP6178191B2 (en) | Polishing pad | |
JP6608239B2 (en) | Polishing pad | |
JP6178190B2 (en) | Polishing pad | |
JP4948935B2 (en) | Polishing cloth | |
TW201519994A (en) | Polishing pad and method for preparing the same | |
JP5274286B2 (en) | Polishing pad manufacturing method | |
JP2016190313A (en) | Polishing pad | |
JP5534694B2 (en) | Polishing pad and method of manufacturing polishing pad | |
JP4364291B1 (en) | Polishing pad | |
JP6587464B2 (en) | Polishing pad | |
JP5502560B2 (en) | Polishing pad and method of manufacturing polishing pad | |
JP5421839B2 (en) | Polishing pad and method of manufacturing polishing pad | |
JP5968179B2 (en) | Holding pad | |
JP2011036979A (en) | Polishing pad | |
JP5355004B2 (en) | Polishing pad and manufacturing method thereof | |
JP5324962B2 (en) | Polishing pad | |
JP6357291B2 (en) | Polishing pad | |
JP2022189539A (en) | Method for evaluating resin sheet, polishing cloth, method for manufacturing polishing cloth, and polishing processing method | |
JP2010201590A (en) | Polishing pad | |
JP2011212806A (en) | Method of selecting sheet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13841232 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014538651 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13841232 Country of ref document: EP Kind code of ref document: A1 |