WO2014051096A1 - Optical modulator and optical modulation method - Google Patents

Optical modulator and optical modulation method Download PDF

Info

Publication number
WO2014051096A1
WO2014051096A1 PCT/JP2013/076385 JP2013076385W WO2014051096A1 WO 2014051096 A1 WO2014051096 A1 WO 2014051096A1 JP 2013076385 W JP2013076385 W JP 2013076385W WO 2014051096 A1 WO2014051096 A1 WO 2014051096A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase
modulated
branched
optical
Prior art date
Application number
PCT/JP2013/076385
Other languages
French (fr)
Japanese (ja)
Inventor
孝知 伊藤
篠崎 稔
志展 矢澤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to JP2013548659A priority Critical patent/JPWO2014051096A1/en
Publication of WO2014051096A1 publication Critical patent/WO2014051096A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/18Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 parallel

Definitions

  • the present invention relates to an optical modulator that outputs a quadrature amplitude modulation (QAM) signal.
  • QAM quadrature amplitude modulation
  • QAM modulators are known as multi-level modulation type modulators (see, for example, Patent Documents 1 and 2).
  • a loss part (6 dB) is provided in the arm output part on one side, and a 16QAM signal is obtained by superimposing QPSK signals having an output difference of 6 dB.
  • the structure which formed the branch part of input / output as a planar optical waveguide (PLC) on a glass substrate, and this glass substrate was optically connected with the lithium niobate substrate was employ
  • the optical power ratio is adjusted to 1 ⁇ 4 by providing an optical power adjustment unit on one arm and providing an optical attenuation of ⁇ 6 dB.
  • the power branching ratio of light is preferably 2: 1 in the configuration of Patent Document 1 and 1: 1 in the configuration of Patent Document 2, but in reality, it is rare that power splits ideally in the optical branching section. Depends on manufacturing error. For this reason, the variation due to the power branching ratio of the light and the adjustment due to the attenuation in the optical power adjustment unit result in the loss of light. If the balance between the power branching ratio of these lights and the QPSK modulation unit is lost, the desired constellation figure of the QAM signal cannot be obtained, and the amplitude and phase distance between symbols is lost and the reading accuracy of the QAM signal is lowered, resulting in transmission. This leads to a decrease in distance.
  • An embodiment of the present invention provides an optical modulator and an optical modulation method configured to suppress optical loss.
  • An optical modulator is a generation unit including a first generation unit and a second generation unit, wherein the first generation unit is modulated to a predetermined phase and has a first light intensity. Configured to generate phase-modulated light, and wherein the second generation unit is configured to generate phase-modulated light that is modulated to a predetermined phase and has a second light intensity different from the first light intensity.
  • the generation unit and the two phase-modulated lights generated by the generation unit are set to polarization directions perpendicular to each other, and the two phase-modulated lights are combined to output a modulated signal light.
  • a photosynthesis unit configured as described above.
  • the light combining unit is configured to convert a polarization direction of the first phase modulated light out of the two phase modulated lights, and the polarization rotation A polarization beam splitter configured to combine the first phase-modulated light whose polarization direction is converted by the element and second phase-modulated light different from the first phase-modulated light;
  • the generation unit includes an optical branching unit configured to branch input light into a pair of branched lights having different light intensities, and the pair of branches branched by the optical branching unit. And a phase modulation unit configured to output the first phase modulated light and the second phase modulated light.
  • the optical branching unit includes a beam splitter.
  • the generation unit is configured to branch the input light into first branched light, second branched light, third branched light, and fourth branched light.
  • the first branch light, the second branched light, the third branched light, and the fourth branched light, respectively, and the first branched light and the second branched light are combined to produce the first phase modulated light.
  • a phase modulation unit configured to output light, combine the third branched light and the fourth branched light, and output the second phase modulated light.
  • the generation unit condenses the optical branching unit configured to split the input light into a pair of branched lights having different light intensities, and the pair of branched lights. And a phase modulation section configured to phase-modulate the pair of condensed light beams and output the first phase-modulated light and the second phase-modulated light, respectively.
  • the light modulation method generates two phase-modulated lights that are modulated to have a predetermined phase and have different light intensities, and the two phase-modulated lights thus generated are polarized perpendicular to each other.
  • the two phase-modulated lights are combined by polarization and modulated signal light is output.
  • outputting the modulated signal light includes converting a polarization direction of the first phase modulated light out of the two phase modulated lights and converting the polarization direction. Polarization synthesis of the first phase modulated light and the second phase modulated light different from the first phase modulated light.
  • the generation of the two phase-modulated lights includes branching the input light into a pair of branched lights having different light intensities and the pair of the branched branched lights. Respectively phase-modulating and outputting the first phase-modulated light and the second phase-modulated light.
  • generating the two phase-modulated lights branches the input light into a first branched light, a second branched light, a third branched light, and a fourth branched light.
  • the first branched light, the second branched light, the third branched light, and the fourth branched light, respectively, and the first branched light and the second branched light are combined to form the first phase modulated light.
  • the generation of the two phase-modulated lights includes branching the input light into a pair of branched lights having different light intensities, and collecting the pair of branched lights by a rod lens. Illuminating and phase-modulating each of the pair of condensed branched lights and outputting the first phase-modulated light and the second phase-modulated light.
  • two phase-modulated lights that are modulated to a predetermined phase and have different light intensities have polarization directions that are perpendicular to each other, and two phases that have the polarization directions perpendicular to each other.
  • FIG. 1 is a plan view of an optical modulator according to a first embodiment.
  • FIG. 1 is a plan view of the optical modulator according to the first embodiment.
  • the optical modulator 100 of the first embodiment outputs a quadrature amplitude modulation (QAM) signal.
  • QAM quadrature amplitude modulation
  • the optical modulator 100 includes an optical branching unit 110, a microlens array 120, and an optical waveguide element 130.
  • an optical fiber collimator 15 for allowing collimated light to enter the optical modulator 100 is disposed.
  • An optical fiber 11 having a proximal end connected to a laser light source (not shown) is connected to the optical fiber collimator 15.
  • An optical fiber 12 is connected to the light output side of the optical modulator 100, and the optical fiber 12 is connected to the processing device 17.
  • the light branching unit 110 has a configuration in which a beam splitter 112 and a mirror 113 arranged in parallel to each other are provided inside the glass substrate 111.
  • the beam splitter 110 splits the incident laser beam into two laser beams by the beam splitter 112, and emits the laser beam transmitted through the beam splitter 112 and the laser beam reflected by the beam splitter 112 and the mirror 113.
  • the beam splitter 112 is set to a transmittance of 80% and a reflectance of 20% for the laser light input from the optical fiber collimator 15.
  • the mirror 113 is a total reflection mirror.
  • An antireflection film (AR coating) or the like may be formed on the light incident surface or light exit surface of the light branching unit 110.
  • the microlens array 120 includes a rectangular parallelepiped transparent base 121 and two microlenses 122 and 123 formed on one surface of the base 121 (surface on the light branching portion 110 side).
  • the optical axes of the two microlenses 122 and 123 are arranged coaxially with the optical axes of the two laser beams emitted from the optical branching unit 110.
  • the surface of the base 121 opposite to the microlenses 122 and 123 is optically bonded to the optical waveguide element 130.
  • the base 121 has a thickness corresponding to the focal length of the microlenses 122 and 123.
  • the laser light incident on the microlenses 122 and 123 is condensed on the input end of the optical waveguide formed on the side end surface of the optical waveguide element 130.
  • the optical waveguide device 130 includes a substrate 131 and an optical waveguide and an electrode formed on the substrate 131.
  • the substrate 131 is a lithium niobate (LiNbO 3) substrate.
  • lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used.
  • the light modulator 140 has nested Mach-Zehnder waveguides 134 and 135.
  • the nested Mach-Zehnder waveguide 134 includes phase modulation units 141 and 142.
  • the nested Mach-Zehnder waveguide 135 includes phase modulation units 143 and 144.
  • Each of the phase modulation units 141 to 144 includes a Mach-Zehnder waveguide and an electrode.
  • Two input waveguides 132 and 133 extend from the side edge of the substrate 131 joined to the microlens array 120.
  • the input waveguides 132 and 133 are respectively connected to nested Mach-Zehnder waveguides 134 and 135 having two arms.
  • Phase modulation units 141 and 142 are provided on the respective arms of the nested Mach-Zehnder waveguide 134.
  • a bias electrode part 134 a is provided on the output end side of the nested Mach-Zehnder waveguide 134.
  • Each of the arms of the nested Mach-Zehnder waveguide 135 is provided with phase modulators 143 and 144.
  • a bias electrode portion 135a is provided on the output end side of the nested Mach-Zehnder waveguide 135.
  • the phase modulators 141 to 144 perform bi-phase modulation (BPSK) on the input optical signal and output it.
  • the phase modulators 141 and 142 are set so that their phase changes are orthogonal to each other.
  • the phase modulators 143 and 144 are also set so that their phase changes are orthogonal to each other.
  • the nested Mach-Zehnder waveguides 134 and 135 each constitute a QPSK (four-phase phase shift keying) optical modulator.
  • the optical signals modulated by the nested Mach-Zehnder waveguides 134 and 135 are output through the output waveguides 136 and 137, respectively.
  • the optical waveguide device 130 has a microlens array 145 on the output waveguides 136 and 137 side.
  • the microlens array 145 includes a rectangular parallelepiped transparent base 146 and two microlenses 147 and 148 formed on one surface of the base 146 (the surface on the photosynthesis unit 150 side).
  • the optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively.
  • the surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130.
  • the base 146 has a thickness corresponding to the focal length of the microlenses 147 and 148.
  • the laser light incident on the microlenses 147 and 148 is output to the light combining unit 150.
  • the light combining unit 150 includes a half-wave plate 151 as a polarization rotation element that rotates the polarization direction by 90 °, and a polarization beam splitter 152 provided with a beam splitter 154 and a mirror 153 that are arranged in parallel with each other inside the glass substrate. And an optical fiber collimator 16 for coupling light.
  • the half-wave plate 151 is emitted by rotating the polarization direction of the laser light emitted from the microlens 147 by 90 °.
  • the mirror 153 reflects the laser light emitted from the half-wave plate 151 toward the beam splitter 154 side.
  • the beam splitter 154 reflects the laser light reflected by the mirror 153 and transmits the laser light emitted from the microlens 148. For this reason, the polarization beam splitter 152 combines the two laser beams without causing interference.
  • the two laser beams emitted from the polarization beam splitter 152 are input to the optical fiber collimator 16 and combined. In this manner, the optical signals QPSK1 and QPSK2 output from the nested Mach-Zehnder waveguides 134 and 135 are combined in the optical combining unit 150 so as to maintain the intensity ratio thereof, and 16QAM-compatible signal light is generated.
  • the two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12.
  • the processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
  • optical modulator 100 of the first embodiment having the above configuration will be described.
  • Laser light supplied through the optical fiber 11 and expanded to a predetermined diameter by the optical fiber collimator 15 is incident on the optical modulator 100.
  • Incident light is incident on the beam splitter 112 of the optical branching unit 110.
  • the beam splitter 112 transmits 80% of incident light and reflects 20%.
  • the light transmitted through the beam splitter 112 is incident on the microlens 122 and is collected by the microlens 122 at the input end of the input waveguide 132.
  • the light reflected by the beam splitter 112 is reflected by the mirror 113, enters the microlens 123, and is collected by the microlens 123 at the input end of the input waveguide 133.
  • the light introduced into the input waveguide 132 is branched at the input end of the nested Mach-Zehnder waveguide 134, modulated by the phase modulation units 141 and 142, and then applied to the bias electrode unit 134a by a predetermined voltage.
  • the phase difference is adjusted to be ⁇ / 2.
  • the light whose phase difference has been adjusted is combined at the output end of the nested Mach-Zehnder waveguide 134 to become an optical signal QPSK1.
  • the optical signal QPSK 1 is collimated by the microlens 147, the polarization direction is converted by 90 ° by the half-wave plate 151 of the light combining unit 150, and then reflected by the mirror 153 to the beam splitter 154.
  • the light introduced into the input waveguide 133 is branched at the input end of the nested Mach-Zehnder waveguide 135, modulated by the phase modulation units 143 and 144, and then applied to the bias electrode unit 135a by a predetermined voltage.
  • the phase difference is adjusted to be ⁇ / 2.
  • the light whose phase difference has been adjusted is synthesized at the output end of the nested Mach-Zehnder waveguide 135 to become an optical signal QPSK2.
  • the optical signal QPSK2 is collimated by the microlens 148 and output to the beam splitter 154 without changing the polarization direction.
  • optical signal QPSK 1 and the optical signal QPSK 2 are combined without interference in the beam splitter 154 and input to the optical fiber collimator 16 for polarization combining.
  • the light introduced into the input waveguide 133 is light having an intensity of 20% branched by the beam splitter 112. Therefore, the optical signal QPSK2 output from the nested Mach-Zehnder waveguide 135 has a power that is 1 ⁇ 4 that of the optical signal QPSK1 generated from light having an intensity of 80%. Then, in the optical combining unit 150, the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined to generate a 16QAM compatible signal.
  • the power ratio (4: 1) of the optical signals QPSK 1 and QPSK 2 may be slightly shifted due to a manufacturing error of the optical modulator 100.
  • the ratio may be 3: 1 or 5: 1.
  • the ratio can also be adjusted by the transmittance and reflectance of the beam splitter 112 in the light branching section 110.
  • the two optical signals QPSK1 and QPSK2 that are modulated to have a predetermined phase and have different light intensities have the polarization directions perpendicular to each other, and the two lights having the polarization directions perpendicular to each other.
  • the laser beam is split at a predetermined power ratio in the optical branching unit 110, and these laser beams are introduced into the optical waveguide device 130 through the microlens array 120. ing.
  • optical loss hardly occurs when the laser beam is split, so that the optical loss is greatly reduced compared to the conventional configuration in which the optical signal power adjusting unit is provided on the lithium niobate substrate. be able to.
  • the optical modulator 100 when the incident laser beam is split into two and each generates a QPSK signal and the intensity of one QPSK signal is adjusted to 1 ⁇ 4, the intensity of the output 16QAM compatible signal is 62.5% with respect to the emitted laser light.
  • the optical modulator 100 according to the first embodiment is improved by 1.6 dB (37.5%) only by the theoretical optical loss.
  • the power adjustment unit as described above in the conventional configuration is formed on the lithium niobate substrate, whereas in the first embodiment, a QPSK modulator that does not include the power adjustment unit and a light combining unit are provided. That's fine. Therefore, the substrate 131 made of lithium niobate or the like can be reduced in size with respect to the configuration in which the power adjustment unit is provided.
  • the laser light branched by the light branching unit 110 is condensed by the microlenses 122 and 123 onto the input waveguides 132 and 133 and introduced into the optical waveguide device 130. . Therefore, there is no difficulty in manufacturing as in the case where optical waveguides formed on different substrates are connected, and there is no problem of damage due to a difference in expansion coefficient between substrates or light loss due to misalignment.
  • FIG. 2 is a diagram illustrating an optical modulator according to the second embodiment.
  • symbol is attached
  • the optical modulator 200 of the second embodiment includes an optical branching unit 110A, a microlens array 120A, and an optical waveguide element 130A.
  • optical branching parts have the structure by which the beam splitters 114, 115, and 116 and the mirror 113 which were arrange
  • the optical branching unit 110A splits the incident laser light into four laser lights by the beam splitters 114 to 116, and emits them to the outside.
  • An antireflection film (AR coating) or the like may be formed on the light incident surface or the light exit surface of the light branching portion 110A.
  • the beam splitter 114 is set to have a transmittance of 40% and a reflectance of 60% with respect to incident light.
  • the beam splitter 115 is set to have a transmittance of 33% and a reflectance of 67% with respect to incident light.
  • the beam splitter 116 is set to have a transmittance of 50% and a reflectance of 50% with respect to incident light.
  • the mirror 113 is a total reflection mirror.
  • the microlens array 120A includes a rectangular parallelepiped transparent base 121, and four microlenses 124, 125, 126, and 127 formed on one surface of the base 121 (the surface on the light branching portion 110A side).
  • the optical axes of the four microlenses 124 to 127 are arranged coaxially with the optical axes of the four laser beams emitted from the optical branching unit 110A.
  • the surface of the base 121 opposite to the microlenses 124 to 127 is optically bonded to the optical waveguide element 130A.
  • the base 121 has a thickness corresponding to the focal length of the microlenses 124 to 127.
  • the laser light incident on the microlenses 124 to 127 is focused on the input end of the optical waveguide formed on the side end face of the optical waveguide element 130A.
  • the optical waveguide element 130A includes a substrate 131, and an optical waveguide and an electrode formed on the substrate 131.
  • An optical modulation unit 140A is formed by these optical waveguides and electrodes.
  • the optical modulation unit 140A includes four phase modulation units 141 to 144.
  • Four input waveguides 231 to 234 extend from the side edges of the substrate 131 joined to the microlens array 120A.
  • the input waveguide 231 is connected to the input end of the phase modulation unit 141.
  • the input waveguide 232 is connected to the input end of the phase modulation unit 142.
  • the input waveguide 233 is connected to the input end of the phase modulation unit 143.
  • the input waveguide 234 is connected to the input end of the phase modulation unit 144.
  • the output side of the phase modulators 141 and 142 is connected at the light combining point 247.
  • the output sides of the phase modulators 143 and 144 are connected at the light combining point 248.
  • the phase modulators 141 to 144 perform bi-phase modulation (BPSK) on the input optical signal and output it.
  • the phase modulators 141 and 142 are set so that their phase changes are orthogonal to each other.
  • the phase modulators 143 and 144 are also set so that their phase changes are orthogonal to each other.
  • the phase modulators 141 and 142 and the light combining point 247 constitute a QPSK optical modulator
  • the phase modulators 143 and 144 and the light combining point 248 constitute a QPSK optical modulator.
  • the optical signals modulated by the respective optical modulators are output to the light combining unit 150 via the microlenses 147 and 148 of the microlens array 145 disposed on the output waveguides 136 and 137 side.
  • the optical waveguide element 130A has a microlens array 145 on the output waveguides 136 and 137 side, as in the first embodiment.
  • the microlens array 145 includes a base 146 and two microlenses 147 and 148.
  • the optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively.
  • the surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130A.
  • the light combining unit 150 includes a half-wave plate 151, a polarizing beam splitter 152, and an optical fiber collimator 16 as in the first embodiment.
  • the light combining unit 150 combines the optical signals QPSK1 and QPSK2 so as to maintain the intensity ratio, and generates 16QAM compatible signal light.
  • the two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12.
  • the processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
  • the laser light is incident on the beam splitter 114 of the optical branching unit 110A from the optical fiber collimator 15.
  • the beam splitter 114 transmits 40% of incident light and reflects 60%.
  • the light that has passed through the beam splitter 114 enters the microlens 124 and is collected by the microlens 124 at the input end of the input waveguide 231.
  • the light reflected by the beam splitter 114 enters the beam splitter 115.
  • the beam splitter 115 transmits 33% of incident light and reflects 67%.
  • the light reflected by the beam splitter 115 enters the microlens 125 and is collected by the microlens 125 at the input end of the input waveguide 232.
  • the light transmitted through the beam splitter 115 enters the beam splitter 116.
  • the beam splitter 116 transmits 50% of incident light and reflects 50%.
  • the light reflected by the beam splitter 116 enters the microlens 126 and is collected by the microlens 126 at the input end of the input waveguide 233.
  • the light transmitted through the beam splitter 116 is reflected by the mirror 113, enters the microlens 127, and is collected by the microlens 127 at the input end of the input waveguide 234.
  • the light introduced into the input waveguides 231 and 232 is modulated by the phase modulation units 141 and 142, and then adjusted to a predetermined phase difference ( ⁇ / 2) by applying a voltage to the bias electrode unit 134a. Thereafter, the signal is combined at the light combining point 247 to be an optical signal QPSK 1 and output to the light combining unit 150.
  • the light introduced into the input waveguides 233 and 234 is modulated by the phase modulation units 143 and 144, and then adjusted to a predetermined phase difference ( ⁇ / 2) by applying a voltage to the bias electrode unit 135a. Thereafter, the signals are combined at the light combining point 248 to become an optical signal QPSK 2 and output to the light combining unit 150.
  • the light introduced into the input waveguides 231 and 232 is light having an intensity of 40% with respect to the light input from the optical fiber collimator 15, respectively.
  • the light introduced into the input waveguides 233 and 234 is light having an intensity of 10%. Therefore, the optical signal QPSK2 generated at the light combining point 248 has a power of 1/4 with respect to the optical signal QPSK1.
  • the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined so as to maintain the intensity ratio thereof, thereby generating a 16QAM compatible signal.
  • the two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12.
  • the processing device 17 generates a 16QAM signal based on the 16QAM compatible signal.
  • the power ratio (4: 1) of the optical signals QPSK1 and QPSK2 may be slightly shifted due to a manufacturing error of the optical modulator 200.
  • the ratio may be 3: 1 or 5: 1.
  • the power ratio can also be adjusted by the transmittance and reflectance of the beam splitter in the light branching section 110A.
  • the optical modulator 200 of the second embodiment is configured to split the laser light into four at the optical branching section 110A and introduce each laser light into the phase modulation sections 141 to 144 by the microlens array 120A. That is, the branching point of the laser beam provided in the nested Mach-Zehnder waveguides 134 and 135 in the optical modulator 100 according to the first embodiment is provided outside the substrate as the optical branching unit 110A in the second embodiment. Yes.
  • the laser beam branched by the optical branching unit 110A is condensed on the input waveguides 231 to 234 by the microlenses 124 to 127 and introduced into the optical waveguide device 130A. Yes. Therefore, there is no difficulty in manufacturing as in the case where optical waveguides formed on different substrates are connected, and there is no problem of damage due to a difference in expansion coefficient between substrates or light loss due to misalignment.
  • the two optical signals QPSK1 and QPSK2 that are modulated to have a predetermined phase and have different light intensities are made to have mutually perpendicular polarization directions, and the polarization directions are
  • the optical loss can be suppressed as compared with a system that causes a loss in one arm.
  • FIG. 3 is a diagram illustrating an optical modulator according to the third embodiment.
  • symbol is attached
  • the optical modulator 300 of the third embodiment includes an optical branching unit 110, a rod lens 120B, and an optical waveguide element 130B.
  • the optical branching unit 110 is common to the first embodiment.
  • the rod lens 120B has a curved lens surface.
  • a flat surface opposite to the lens surface is optically bonded to the side end surface of the optical waveguide element 130B.
  • Two laser beams branched and emitted by the light branching unit 110 are incident on the lens surface of the rod lens 120B.
  • the laser light incident on the rod lens 120B is focused on the input end of the optical waveguide formed on the side end surface of the optical waveguide element 130B.
  • the optical waveguide element 130B includes a substrate 131, and an optical waveguide and an electrode formed on the substrate 131.
  • the optical modulator 140B is formed by these optical waveguides and electrodes.
  • the light modulation unit 140B has substantially the same configuration as that of the light modulation unit 140 according to the first embodiment, and is different in that it includes input waveguides 236 and 237 that intersect each other.
  • the input waveguides 236 and 237 each have an input end on a side end surface of the substrate 131 to which the rod lens 120B is bonded, intersect each other at a position extending inward from the end edge of the substrate 131, and then each include a nested Mach-Zehnder guide. It is connected to the waveguides 134 and 135.
  • the optical waveguide element 130B has the microlens array 145 on the output waveguides 136 and 137 side as in the first embodiment.
  • the microlens array 145 includes a base 146 and two microlenses 147 and 148.
  • the optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively.
  • the surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130B.
  • the light combining unit 150 includes a half-wave plate 151, a polarizing beam splitter 152, and an optical fiber collimator 16 as in the first embodiment.
  • the light combining unit 150 combines the optical signals QPSK1 and QPSK2 so as to maintain the intensity ratio, and generates 16QAM compatible signal light.
  • the two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12.
  • the processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
  • the laser light emitted from the optical fiber collimator 15 enters the beam splitter 112 of the optical branching unit 110.
  • the beam splitter 112 transmits 80% of incident light and reflects 20%.
  • the light that has passed through the beam splitter 112 is incident on the rod lens 120B, and is condensed on the input end of the input waveguide 237 by the rod lens 120B.
  • the light introduced into the input waveguide 237 is input to the nested Mach-Zehnder waveguide 135.
  • the light reflected by the beam splitter 112 is reflected by the mirror 113, then enters the rod lens 120B, and is condensed at the input end of the input waveguide 236 by the rod lens 120B.
  • the light introduced into the input waveguide 236 is input to the nested Mach-Zehnder waveguide 134.
  • the intensity ratio of the light input to the nested Mach-Zehnder waveguides 134 and 135 is opposite to that of the first embodiment.
  • the light introduced into the nested Mach-Zehnder waveguide 134 is branched at the input end, modulated by the phase modulation units 141 and 142, and then applied with a voltage to the bias electrode unit 134a to obtain a predetermined phase difference ( ⁇ / 2). It is adjusted to become. After that, the signal is synthesized at the output end of the nested Mach-Zehnder waveguide 134 to become an optical signal QPSK 1, and is output to the optical synthesis unit 150 through the microlens 147.
  • the light introduced into the nested Mach-Zehnder waveguide 135 is branched at the input end, modulated by the phase modulation units 143 and 144, and then applied with a voltage to the bias electrode unit 135a to obtain a predetermined phase difference ( ⁇ / 2). It is adjusted to become. After that, the signal is synthesized at the output end of the nested Mach-Zehnder waveguide 135 to become an optical signal QPSK 2, which is output to the optical synthesis unit 150 via the microlens 148.
  • the optical signal QPSK1 output from the nested Mach-Zehnder waveguide 134 is In the nested Mach-Zehnder waveguide 135, the power is reduced to 1 ⁇ 4 with respect to the optical signal QPSK2 generated from light having an intensity of 80%.
  • the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined so as to maintain the intensity ratio thereof, thereby generating a 16QAM compatible signal.
  • the two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12.
  • the processing device 17 generates a 16QAM signal based on the 16QAM compatible signal.
  • the power ratio (1: 4) of the optical signals QPSK1 and QPSK2 may slightly deviate due to a manufacturing error of the optical modulator 300, and the power ratio is adjusted until the output signal reaches the polarization beam combiner. There is no need.
  • the ratio may be 1: 3 or 1: 5.
  • the power ratio can also be adjusted by the transmittance and reflectance of the beam splitter 112 in the optical branching section 110, and these can be easily changed by exchanging parts to be used, unlike the branching section of the waveguide. .
  • the laser beam is split at a predetermined power ratio in the optical branching unit 110, and these laser beams are introduced into the optical waveguide element 130B via the rod lens 120B. . Even when the rod lens 120B is used, the same effects as those of the first embodiment can be obtained.
  • the two optical signals QPSK1 and QPSK2 that are modulated to a predetermined phase and have different light intensities are set to have mutually perpendicular polarization directions.
  • a method of generating 16-level QAM-compliant signal light has been shown by taking quaternary phase-modulated light using a QPSK modulator as two phase-modulated lights having different light intensities. It is also possible to apply other methods for generating multilevel modulated light.
  • a 6-level phase modulator having a phase shift amount of ⁇ / 3 is used, 36-level QAM-compatible signal light can be generated.
  • Optical modulator 110 Optical branching unit 120 Microlens array 130, 130A, 130B Optical waveguide element 141-144 Phase modulation unit 145 Microlens array 150 Photosynthesis unit 151 Half-wave plate 152 Polarization beam splitter 153 Mirror 154 Beam splitter

Abstract

This optical modulator is provided with a generating unit and a beam synthesizing unit. The generating unit is provided with a first generating unit and a second generating unit. The first generating unit is configured in such a manner as to provide modulation to a prescribed phase, generating a phase-modulated beam having a first light intensity. The second generating unit is configured in such a manner as to provide modulation to a prescribed phase, generating a phase-modulated beam having a second light intensity that differs from the first light intensity. The beam synthesizing unit is configured in such a manner that the two phase-modulated beams generated by the generating unit are emitted in polarization directions that are perpendicular to each other, and polarization synthesis is performed on the two phase-modulated beams, and an optical modulation signal is outputted.

Description

光変調器及び光変調方法Optical modulator and optical modulation method
 本発明は、直交振幅変調(QAM:quadrature amplitude modulation)信号を出力する光変調器に関するものである。
 本願は、2012年9月28日に日本に出願された特願2012-215675に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to an optical modulator that outputs a quadrature amplitude modulation (QAM) signal.
This application claims the priority based on Japanese Patent Application No. 2012-215675 for which it applied to Japan on September 28, 2012, and uses the content here.
 多値変調方式の変調器として、QAM変調器が知られている(例えば、特許文献1及び2参照)。 QAM modulators are known as multi-level modulation type modulators (see, for example, Patent Documents 1 and 2).
 特許文献1記載の変調器は、片側のアーム出力部に損失部(6dB)を設け、出力差が6dBのQPSK信号同士を重ね合わせることにより16QAM信号を得ていた。また、入出力の分岐部をガラス基板上の平面光導波路(PLC)として形成し、このガラス基板をニオブ酸リチウム基板と光学的に接続した構成が採用されていた。一方、特許文献2記載の光変調器においても、片側のアームに光パワー調整部を設け、-6dBの光減衰量を与えることで光パワー比を1/4に調整していた。また、光のパワー分岐比は特許文献1の構成では2:1、特許文献2の構成では1:1が望ましいとしているが、実際には光分岐部において理想的にパワー分岐されることは少なく、製造誤差などによりばらつきを伴う。このため、光のパワー分岐比のばらつきと光パワー調整部での減衰による調整が光の損失となる。 
 仮にこれらの光のパワー分岐比とQPSK変調部のバランスが崩れると望ましいQAM信号のコンスタレーション図形が得られず、シンボル間の振幅・位相距離が崩れてQAM信号の読み取り精度が下がり、結果として伝送距離の低下に繋がる。
In the modulator described in Patent Document 1, a loss part (6 dB) is provided in the arm output part on one side, and a 16QAM signal is obtained by superimposing QPSK signals having an output difference of 6 dB. Moreover, the structure which formed the branch part of input / output as a planar optical waveguide (PLC) on a glass substrate, and this glass substrate was optically connected with the lithium niobate substrate was employ | adopted. On the other hand, also in the optical modulator described in Patent Document 2, the optical power ratio is adjusted to ¼ by providing an optical power adjustment unit on one arm and providing an optical attenuation of −6 dB. Further, the power branching ratio of light is preferably 2: 1 in the configuration of Patent Document 1 and 1: 1 in the configuration of Patent Document 2, but in reality, it is rare that power splits ideally in the optical branching section. Depends on manufacturing error. For this reason, the variation due to the power branching ratio of the light and the adjustment due to the attenuation in the optical power adjustment unit result in the loss of light.
If the balance between the power branching ratio of these lights and the QPSK modulation unit is lost, the desired constellation figure of the QAM signal cannot be obtained, and the amplitude and phase distance between symbols is lost and the reading accuracy of the QAM signal is lowered, resulting in transmission. This leads to a decrease in distance.
 特許文献1及び2記載の変調器においては、光の分岐部のパワー分岐比がばらつきを伴い、さらに片側のアームにおいて光信号を減衰させていたため光損失が大きい。 In the modulators described in Patent Documents 1 and 2, the power branching ratio of the light branching portion varies, and the optical signal is attenuated in the arm on one side, so that the optical loss is large.
日本国特開2009-94988号公報Japanese Unexamined Patent Publication No. 2009-94988 日本国特開2009-244682号公報Japanese Unexamined Patent Publication No. 2009-244682
 本発明の一態様は、光損失を抑制するように構成された光変調器及び光変調方法を提供する。 An embodiment of the present invention provides an optical modulator and an optical modulation method configured to suppress optical loss.
 本発明の一態様の光変調器は、第一生成部及び第二生成部を備えた生成部であって、前記第一生成部が、所定の位相に変調され、第一の光強度を有する位相変調光を生成するように構成され、前記第二生成部が、所定の位相に変調され、前記第一の光強度とは異なる第二の光強度を有する位相変調光を生成するように構成された、前記生成部と、前記生成部によって生成された前記2つの位相変調光を互いに垂直な偏光方向にすると共に、前記2つの位相変調光を偏波合成して、変調信号光を出力するように構成された光合成部とを備える。 An optical modulator according to an aspect of the present invention is a generation unit including a first generation unit and a second generation unit, wherein the first generation unit is modulated to a predetermined phase and has a first light intensity. Configured to generate phase-modulated light, and wherein the second generation unit is configured to generate phase-modulated light that is modulated to a predetermined phase and has a second light intensity different from the first light intensity. The generation unit and the two phase-modulated lights generated by the generation unit are set to polarization directions perpendicular to each other, and the two phase-modulated lights are combined to output a modulated signal light. A photosynthesis unit configured as described above.
 本発明の一態様の光変調器は、前記光合成部は、前記2つの位相変調光のうち第一位相変調光の偏光方向を変換するように構成された偏波回転素子と、前記偏波回転素子によって偏光方向が変換された前記第一位相変調光と、前記第一位相変調光とは異なる第二位相変調光とを偏波合成するように構成された偏光ビームスプリッターとを有する。 In the optical modulator of one aspect of the present invention, the light combining unit is configured to convert a polarization direction of the first phase modulated light out of the two phase modulated lights, and the polarization rotation A polarization beam splitter configured to combine the first phase-modulated light whose polarization direction is converted by the element and second phase-modulated light different from the first phase-modulated light;
 本発明の一態様の光変調器は、前記生成部は、入力光を光強度の異なる一対の分岐光に分岐するように構成された光分岐部と、前記光分岐部で分岐された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力するように構成された位相変調部と有する。 In the optical modulator of one aspect of the present invention, the generation unit includes an optical branching unit configured to branch input light into a pair of branched lights having different light intensities, and the pair of branches branched by the optical branching unit. And a phase modulation unit configured to output the first phase modulated light and the second phase modulated light.
 本発明の一態様の光変調器は、前記光分岐部は、ビームスプリッターを有する。 In the optical modulator according to one aspect of the present invention, the optical branching unit includes a beam splitter.
 本発明の一態様の光変調器は、前記生成部は、入力光を、第一分岐光、第二分岐光、第三分岐光、および第四分岐光に分岐するように構成された光分岐部と、前記第一分岐光、第二分岐光、第三分岐光、および第四分岐光をそれぞれ位相変調し、前記第一分岐光と第二分岐光とを合成して前記第一位相変調光を出力し、前記第三分岐光と第四分岐光とを合成して前記第二位相変調光を出力するように構成された位相変調部と有する。 In the optical modulator of one aspect of the present invention, the generation unit is configured to branch the input light into first branched light, second branched light, third branched light, and fourth branched light. The first branch light, the second branched light, the third branched light, and the fourth branched light, respectively, and the first branched light and the second branched light are combined to produce the first phase modulated light. A phase modulation unit configured to output light, combine the third branched light and the fourth branched light, and output the second phase modulated light.
 本発明の一態様の光変調器は、前記生成部は、入力光を光強度の異なる一対の分岐光に分岐するように構成された光分岐部と、前記一対の分岐光を集光するように構成されたロッドレンズと、集光された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力するように構成された位相変調部と有する。 In the optical modulator according to one aspect of the present invention, the generation unit condenses the optical branching unit configured to split the input light into a pair of branched lights having different light intensities, and the pair of branched lights. And a phase modulation section configured to phase-modulate the pair of condensed light beams and output the first phase-modulated light and the second phase-modulated light, respectively.
 本発明の一態様の光変調方法は、所定の位相に変調され光強度が互いに異なる2つの位相変調光を生成し、生成された前記2つの位相変調光を互いに垂直な偏光方向にすると共に、前記2つの位相変調光を偏波合成して、変調信号光を出力する。 The light modulation method according to one aspect of the present invention generates two phase-modulated lights that are modulated to have a predetermined phase and have different light intensities, and the two phase-modulated lights thus generated are polarized perpendicular to each other. The two phase-modulated lights are combined by polarization and modulated signal light is output.
 本発明の一態様の光変調方法は、前記変調信号光を出力することは、前記2つの位相変調光のうち第一位相変調光の偏光方向を変換することと、前記偏光方向が変換された前記第一位相変調光と、前記第一位相変調光とは異なる第二位相変調光とを偏波合成することとを含む。 In the light modulation method of one aspect of the present invention, outputting the modulated signal light includes converting a polarization direction of the first phase modulated light out of the two phase modulated lights and converting the polarization direction. Polarization synthesis of the first phase modulated light and the second phase modulated light different from the first phase modulated light.
 本発明の一態様の光変調方法は、前記2つの位相変調光を生成することは、入力光を光強度の異なる一対の分岐光に分岐することと、前記分岐された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力することとを含む。 In the light modulation method according to one aspect of the present invention, the generation of the two phase-modulated lights includes branching the input light into a pair of branched lights having different light intensities and the pair of the branched branched lights. Respectively phase-modulating and outputting the first phase-modulated light and the second phase-modulated light.
 本発明の一態様の光変調方法は、前記2つの位相変調光を生成することは、入力光を、第一分岐光、第二分岐光、第三分岐光、および第四分岐光に分岐することと、前記第一分岐光、第二分岐光、第三分岐光、および第四分岐光をそれぞれ位相変調し、前記第一分岐光と第二分岐光とを合成して前記第一位相変調光を出力し、前記第三分岐光と第四分岐光とを合成して前記第二位相変調光を出力することとを含む。 In the light modulation method of one aspect of the present invention, generating the two phase-modulated lights branches the input light into a first branched light, a second branched light, a third branched light, and a fourth branched light. The first branched light, the second branched light, the third branched light, and the fourth branched light, respectively, and the first branched light and the second branched light are combined to form the first phase modulated light. Outputting light, combining the third branched light and the fourth branched light, and outputting the second phase modulated light.
 本発明の一態様の光変調方法は、前記2つの位相変調光を生成することは、入力光を光強度の異なる一対の分岐光に分岐することと、ロッドレンズにより前記一対の分岐光を集光することと、集光された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力することと含む。 In the light modulation method of one aspect of the present invention, the generation of the two phase-modulated lights includes branching the input light into a pair of branched lights having different light intensities, and collecting the pair of branched lights by a rod lens. Illuminating and phase-modulating each of the pair of condensed branched lights and outputting the first phase-modulated light and the second phase-modulated light.
 本発明の一態様によれば、QAM変調器において、所定の位相に変調され光強度の異なる2つの位相変調光を互いに垂直となる偏光方向にすると共に、偏光方向が垂直となった2つの位相変調光を偏波合成することで、片側のアームに損失を生じさせる方式に比べて、光損失を抑制することができる。 According to one aspect of the present invention, in a QAM modulator, two phase-modulated lights that are modulated to a predetermined phase and have different light intensities have polarization directions that are perpendicular to each other, and two phases that have the polarization directions perpendicular to each other. By combining the modulated light with polarization, light loss can be suppressed as compared with a method in which loss is caused in one arm.
第1実施形態に係る光変調器の平面図。1 is a plan view of an optical modulator according to a first embodiment. 第2実施形態に係る光変調器を示す図。The figure which shows the optical modulator which concerns on 2nd Embodiment. 第3実施形態に係る光変調器を示す図。The figure which shows the optical modulator which concerns on 3rd Embodiment.
 (第1実施形態) 
 以下、本発明の一態様の実施の形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, embodiments of one embodiment of the present invention will be described with reference to the drawings.
 図1は、第1実施形態に係る光変調器の平面図である。本第1実施形態の光変調器100は、直交振幅変調(QAM:quadrature amplitude modulation)信号を出力する。 FIG. 1 is a plan view of the optical modulator according to the first embodiment. The optical modulator 100 of the first embodiment outputs a quadrature amplitude modulation (QAM) signal.
 光変調器100は、光分岐部110と、マイクロレンズアレイ120と、光導波路素子130と、を備えている。光変調器100の光入力側には、光変調器100にコリメート光を入射させる光ファイバーコリメーター15が配置されている。光ファイバーコリメーター15には、基端側を図示略のレーザー光源に接続された光ファイバー11が接続されている。光変調器100の光出力側には、光ファイバー12が接続されており、光ファイバー12は処理装置17に接続されている。 The optical modulator 100 includes an optical branching unit 110, a microlens array 120, and an optical waveguide element 130. On the light input side of the optical modulator 100, an optical fiber collimator 15 for allowing collimated light to enter the optical modulator 100 is disposed. An optical fiber 11 having a proximal end connected to a laser light source (not shown) is connected to the optical fiber collimator 15. An optical fiber 12 is connected to the light output side of the optical modulator 100, and the optical fiber 12 is connected to the processing device 17.
 光分岐部110は、ガラス基材111の内部に、互いに平行に配置されたビームスプリッター112と、ミラー113とが設けられた構成を有する。光分岐部110は、入射するレーザー光をビームスプリッター112により2本のレーザー光に分岐させ、ビームスプリッター112を透過したレーザー光と、ビームスプリッター112及びミラー113で反射されたレーザー光とを射出する。本第1実施形態の場合、ビームスプリッター112は、光ファイバーコリメーター15から入力されるレーザー光に対して、透過率80%、反射率20%に設定されている。ミラー113は全反射ミラーである。光分岐部110の光入射面や光射出面には、反射防止膜(ARコート)などが形成されていてもよい。 The light branching unit 110 has a configuration in which a beam splitter 112 and a mirror 113 arranged in parallel to each other are provided inside the glass substrate 111. The beam splitter 110 splits the incident laser beam into two laser beams by the beam splitter 112, and emits the laser beam transmitted through the beam splitter 112 and the laser beam reflected by the beam splitter 112 and the mirror 113. . In the case of the first embodiment, the beam splitter 112 is set to a transmittance of 80% and a reflectance of 20% for the laser light input from the optical fiber collimator 15. The mirror 113 is a total reflection mirror. An antireflection film (AR coating) or the like may be formed on the light incident surface or light exit surface of the light branching unit 110.
 マイクロレンズアレイ120は、直方体状の透明な基体121と、基体121の一方の面(光分岐部110側の面)に形成された2つのマイクロレンズ122、123とを有する。2つのマイクロレンズ122、123のそれぞれの光軸は、光分岐部110から射出される2本のレーザー光の光軸と同軸に配置されている。基体121のマイクロレンズ122、123と反対側の面は、光導波路素子130と光学的に接着されている。基体121は、マイクロレンズ122、123の焦点距離に相当する厚さを有する。マイクロレンズ122、123に入射したレーザー光は、光導波路素子130の側端面に形成された光導波路の入力端に集光される。 The microlens array 120 includes a rectangular parallelepiped transparent base 121 and two microlenses 122 and 123 formed on one surface of the base 121 (surface on the light branching portion 110 side). The optical axes of the two microlenses 122 and 123 are arranged coaxially with the optical axes of the two laser beams emitted from the optical branching unit 110. The surface of the base 121 opposite to the microlenses 122 and 123 is optically bonded to the optical waveguide element 130. The base 121 has a thickness corresponding to the focal length of the microlenses 122 and 123. The laser light incident on the microlenses 122 and 123 is condensed on the input end of the optical waveguide formed on the side end surface of the optical waveguide element 130.
 光導波路素子130は、基板131と、基板131上に形成された光導波路及び電極とを有する。基板131は、本第1実施形態の場合、ニオブ酸リチウム(LiNbO3)基板である。基板131としては、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料、及びこれらの組み合わせが利用可能である。 The optical waveguide device 130 includes a substrate 131 and an optical waveguide and an electrode formed on the substrate 131. In the case of the first embodiment, the substrate 131 is a lithium niobate (LiNbO 3) substrate. As the substrate 131, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used.
 光変調部140は、ネスト型マッハツェンダー導波路134、135を有する。ネスト型マッハツェンダー導波路134は、位相変調部141、142を有する。ネスト型マッハツェンダー導波路135は、位相変調部143、144を有する。位相変調部141~144は、それぞれマッハツェンダー導波路と電極とを有する。 The light modulator 140 has nested Mach- Zehnder waveguides 134 and 135. The nested Mach-Zehnder waveguide 134 includes phase modulation units 141 and 142. The nested Mach-Zehnder waveguide 135 includes phase modulation units 143 and 144. Each of the phase modulation units 141 to 144 includes a Mach-Zehnder waveguide and an electrode.
 基板131のマイクロレンズアレイ120と接合された辺端から、2本の入力導波路132、133が延びている。入力導波路132、133は、2本のアームを有するネスト型マッハツェンダー導波路134、135にそれぞれ接続されている。ネスト型マッハツェンダー導波路134の各々のアームには位相変調部141、142が設けられている。
 ネスト型マッハツェンダー導波路134の出力端側にバイアス電極部134aが設けられている。ネスト型マッハツェンダー導波路135の各々のアームには位相変調部143、144が設けられている。ネスト型マッハツェンダー導波路135の出力端側にはバイアス電極部135aが設けられている。
Two input waveguides 132 and 133 extend from the side edge of the substrate 131 joined to the microlens array 120. The input waveguides 132 and 133 are respectively connected to nested Mach- Zehnder waveguides 134 and 135 having two arms. Phase modulation units 141 and 142 are provided on the respective arms of the nested Mach-Zehnder waveguide 134.
A bias electrode part 134 a is provided on the output end side of the nested Mach-Zehnder waveguide 134. Each of the arms of the nested Mach-Zehnder waveguide 135 is provided with phase modulators 143 and 144. On the output end side of the nested Mach-Zehnder waveguide 135, a bias electrode portion 135a is provided.
 位相変調部141~144は、入力される光信号に対して二位相変調(BPSK)を施して出力する。位相変調部141、142は、それらの位相変化が互いに直交するように動作設定される。また位相変調部143、144も、それらの位相変化が互いに直交するように動作設定される。ネスト型マッハツェンダー導波路134、135は、それぞれQPSK(四相位相偏移変調)方式の光変調器を構成している。ネスト型マッハツェンダー導波路134、135でそれぞれ変調された光信号は、出力導波路136、137を介して出力される。 The phase modulators 141 to 144 perform bi-phase modulation (BPSK) on the input optical signal and output it. The phase modulators 141 and 142 are set so that their phase changes are orthogonal to each other. The phase modulators 143 and 144 are also set so that their phase changes are orthogonal to each other. The nested Mach- Zehnder waveguides 134 and 135 each constitute a QPSK (four-phase phase shift keying) optical modulator. The optical signals modulated by the nested Mach- Zehnder waveguides 134 and 135 are output through the output waveguides 136 and 137, respectively.
 また、光導波路素子130は、出力導波路136、137側にマイクロレンズアレイ145を有する。マイクロレンズアレイ145は、直方体状の透明な基体146と、基体146の一方の面(光合成部150側の面)に形成された2つのマイクロレンズ147、148とを有する。2つのマイクロレンズ147、148のそれぞれの光軸は、光出力導波路136、137から射出される2本のレーザー光の光軸と同軸に配置されている。基体146のマイクロレンズ147、148と反対側の面は、光導波路素子130と光学的に接着されている。基体146は、マイクロレンズ147、148の焦点距離に相当する厚さを有する。マイクロレンズ147、148に入射したレーザー光は、光合成部150へ出力される。 The optical waveguide device 130 has a microlens array 145 on the output waveguides 136 and 137 side. The microlens array 145 includes a rectangular parallelepiped transparent base 146 and two microlenses 147 and 148 formed on one surface of the base 146 (the surface on the photosynthesis unit 150 side). The optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively. The surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130. The base 146 has a thickness corresponding to the focal length of the microlenses 147 and 148. The laser light incident on the microlenses 147 and 148 is output to the light combining unit 150.
 光合成部150は、偏光方向を90°回転させる偏波回転素子としての半波長板151と、ガラス基材の内部に互いに平行に配置されたビームスプリッター154及びミラー153が設けられた偏光ビームスプリッター152と、光を結合する光ファイバーコリメーター16と、を有する。なお、偏波回転素子として、上記の半波長板151以外の他の素子を用いてもよい。半波長板151は、マイクロレンズ147から射出されたレーザー光の偏光方向を90°回転させて射出する。ミラー153は、半波長板151から射出されたレーザー光をビームスプリッター154側へ反射する。ビームスプリッター154は、ミラー153で反射されたレーザー光を反射すると共に、マイクロレンズ148から射出されるレーザー光を透過する。このため、偏光ビームスプリッター152は、2つのレーザー光を干渉させずに合成する。偏光ビームスプリッター152から射出された2つのレーザー光は、光ファイバーコリメーター16に入力されて結合される。このように、ネスト型マッハツェンダー導波路134、135から出力される光信号QPSK1、QPSK2は、それらの強度比を維持するように光合成部150において合成され、16QAM対応信号光が生成される。16QAM対応信号を生成する2つの光信号QPSK1と光信号QPSK2とは、光ファイバーコリメーター16に入力されることにより光ファイバー12に結合され、光ファイバー12を介して処理装置17に送信される。処理装置17は、16QAM対応信号に基づいて16QAM信号を求める処理を行う。 The light combining unit 150 includes a half-wave plate 151 as a polarization rotation element that rotates the polarization direction by 90 °, and a polarization beam splitter 152 provided with a beam splitter 154 and a mirror 153 that are arranged in parallel with each other inside the glass substrate. And an optical fiber collimator 16 for coupling light. In addition, you may use elements other than said half-wave plate 151 as a polarization rotation element. The half-wave plate 151 is emitted by rotating the polarization direction of the laser light emitted from the microlens 147 by 90 °. The mirror 153 reflects the laser light emitted from the half-wave plate 151 toward the beam splitter 154 side. The beam splitter 154 reflects the laser light reflected by the mirror 153 and transmits the laser light emitted from the microlens 148. For this reason, the polarization beam splitter 152 combines the two laser beams without causing interference. The two laser beams emitted from the polarization beam splitter 152 are input to the optical fiber collimator 16 and combined. In this manner, the optical signals QPSK1 and QPSK2 output from the nested Mach- Zehnder waveguides 134 and 135 are combined in the optical combining unit 150 so as to maintain the intensity ratio thereof, and 16QAM-compatible signal light is generated. The two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12. The processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
 次に、上記構成を備えた本第1実施形態の光変調器100について説明する。
 光変調器100には、光ファイバー11を介して供給され、光ファイバーコリメーター15により所定の径に広げられたレーザー光が入射される。入射光は、光分岐部110のビームスプリッター112に入射する。ビームスプリッター112は、入射光の80%を透過し、20%を反射する。
Next, the optical modulator 100 of the first embodiment having the above configuration will be described.
Laser light supplied through the optical fiber 11 and expanded to a predetermined diameter by the optical fiber collimator 15 is incident on the optical modulator 100. Incident light is incident on the beam splitter 112 of the optical branching unit 110. The beam splitter 112 transmits 80% of incident light and reflects 20%.
 ビームスプリッター112を透過した光は、マイクロレンズ122に入射し、マイクロレンズ122により入力導波路132の入力端に集光される。一方、ビームスプリッター112で反射された光は、ミラー113で反射された後、マイクロレンズ123に入射し、マイクロレンズ123により入力導波路133の入力端に集光される。 The light transmitted through the beam splitter 112 is incident on the microlens 122 and is collected by the microlens 122 at the input end of the input waveguide 132. On the other hand, the light reflected by the beam splitter 112 is reflected by the mirror 113, enters the microlens 123, and is collected by the microlens 123 at the input end of the input waveguide 133.
 入力導波路132に導入された光は、ネスト型マッハツェンダー導波路134の入力端で分岐された後、位相変調部141、142で変調後、バイアス電極部134aへの電圧印加により、所定の位相差(π/2)となるように調整される。位相差を調整された光は、ネスト型マッハツェンダー導波路134の出力端で合成されて光信号QPSK1となる。光信号QPSK1は、マイクロレンズ147によって平行化され、光合成部150の半波長板151によって偏光方向が90°変換された後、ミラー153によってビームスプリッター154へ反射される。 The light introduced into the input waveguide 132 is branched at the input end of the nested Mach-Zehnder waveguide 134, modulated by the phase modulation units 141 and 142, and then applied to the bias electrode unit 134a by a predetermined voltage. The phase difference is adjusted to be π / 2. The light whose phase difference has been adjusted is combined at the output end of the nested Mach-Zehnder waveguide 134 to become an optical signal QPSK1. The optical signal QPSK 1 is collimated by the microlens 147, the polarization direction is converted by 90 ° by the half-wave plate 151 of the light combining unit 150, and then reflected by the mirror 153 to the beam splitter 154.
 入力導波路133に導入された光は、ネスト型マッハツェンダー導波路135の入力端で分岐された後、位相変調部143、144で変調後、バイアス電極部135aへの電圧印加により、所定の位相差(π/2)となるように調整される。位相差を調整された光は、ネスト型マッハツェンダー導波路135の出力端で合成されて光信号QPSK2となる。光信号QPSK2は、マイクロレンズ148によって平行化され、偏光方向が変換されること無く、ビームスプリッター154へ出力される。 The light introduced into the input waveguide 133 is branched at the input end of the nested Mach-Zehnder waveguide 135, modulated by the phase modulation units 143 and 144, and then applied to the bias electrode unit 135a by a predetermined voltage. The phase difference is adjusted to be π / 2. The light whose phase difference has been adjusted is synthesized at the output end of the nested Mach-Zehnder waveguide 135 to become an optical signal QPSK2. The optical signal QPSK2 is collimated by the microlens 148 and output to the beam splitter 154 without changing the polarization direction.
 光信号QPSK1及び光信号QPSK2は、ビームスプリッター154において干渉することなく合成され、光ファイバーコリメーター16に入力されることにより偏波合成される。 The optical signal QPSK 1 and the optical signal QPSK 2 are combined without interference in the beam splitter 154 and input to the optical fiber collimator 16 for polarization combining.
 本第1実施形態の場合、入力導波路133に導入される光は、ビームスプリッター112で分岐された強度20%の光である。そのため、ネスト型マッハツェンダー導波路135から出力される光信号QPSK2は、強度80%の光から生成された光信号QPSK1に対してパワーが1/4になる。そして、光合成部150において、上記のパワー比の光信号QPSK1と光信号QPSK2とが合成されることにより、16QAM対応信号が生成される。 In the case of the first embodiment, the light introduced into the input waveguide 133 is light having an intensity of 20% branched by the beam splitter 112. Therefore, the optical signal QPSK2 output from the nested Mach-Zehnder waveguide 135 has a power that is ¼ that of the optical signal QPSK1 generated from light having an intensity of 80%. Then, in the optical combining unit 150, the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined to generate a 16QAM compatible signal.
 光信号QPSK1、QPSK2のパワー比率(4:1)は、光変調器100の製造誤差によって多少ずれていてもよい。例えば、上記比率が3:1や5:1となる場合もある。上記比率は、光分岐部110におけるビームスプリッター112の透過率及び反射率により調整することもできる。 The power ratio (4: 1) of the optical signals QPSK 1 and QPSK 2 may be slightly shifted due to a manufacturing error of the optical modulator 100. For example, the ratio may be 3: 1 or 5: 1. The ratio can also be adjusted by the transmittance and reflectance of the beam splitter 112 in the light branching section 110.
 以上、本第1実施形態によれば、所定の位相に変調され光強度の異なる2つの光信号QPSK1及び光信号QPSK2を互いに垂直な偏光方向にすると共に、偏光方向が垂直となった2つの光信号QPSK1及び光信号QPSK2を偏波合成することで、片側のアームに損失を生じさせる方式に比べて、光損失を抑制することができる。 As described above, according to the first embodiment, the two optical signals QPSK1 and QPSK2 that are modulated to have a predetermined phase and have different light intensities have the polarization directions perpendicular to each other, and the two lights having the polarization directions perpendicular to each other. By combining the signals QPSK1 and the optical signal QPSK2 with polarization, optical loss can be suppressed as compared with a method in which loss is caused in one arm.
 なお、本第1実施形態の光変調器100では、光分岐部110において所定のパワー比でレーザー光を分岐し、これらのレーザー光を、マイクロレンズアレイ120を介して光導波路素子130に導入している。光分岐部110では、レーザー光を分岐する際に光損失がほとんど生じないため、ニオブ酸リチウム基板上に光信号のパワー調整部を設けていた従来構成と比較して光損失を大幅に低減することができる。 In the optical modulator 100 of the first embodiment, the laser beam is split at a predetermined power ratio in the optical branching unit 110, and these laser beams are introduced into the optical waveguide device 130 through the microlens array 120. ing. In the optical branching unit 110, optical loss hardly occurs when the laser beam is split, so that the optical loss is greatly reduced compared to the conventional configuration in which the optical signal power adjusting unit is provided on the lithium niobate substrate. be able to.
 具体的に、入射されたレーザー光を2つに分岐してそれぞれQPSK信号を生成した後、一方のQPSK信号の強度を1/4に調整する場合、出力される16QAM対応信号の強度は、入射されたレーザー光に対して62.5%となる。このような構成に対しては、本第1実施形態の光変調器100は、理論上の光損失分だけで1.6dB(37.5%)の改善となる。 Specifically, when the incident laser beam is split into two and each generates a QPSK signal and the intensity of one QPSK signal is adjusted to ¼, the intensity of the output 16QAM compatible signal is 62.5% with respect to the emitted laser light. For such a configuration, the optical modulator 100 according to the first embodiment is improved by 1.6 dB (37.5%) only by the theoretical optical loss.
 また、従来構成における上記のようなパワー調整部は、ニオブ酸リチウム基板上に形成されるのに対して、本第1実施形態ではパワー調整部を備えないQPSK変調器と光合成部とを設ければよい。したがって、パワー調整部を設けた構成に対して、ニオブ酸リチウム等からなる基板131を小型化することができる。 Further, the power adjustment unit as described above in the conventional configuration is formed on the lithium niobate substrate, whereas in the first embodiment, a QPSK modulator that does not include the power adjustment unit and a light combining unit are provided. That's fine. Therefore, the substrate 131 made of lithium niobate or the like can be reduced in size with respect to the configuration in which the power adjustment unit is provided.
 また本第1実施形態の光変調器100では、光分岐部110で分岐したレーザー光を、マイクロレンズ122、123により入力導波路132、133に集光させて光導波路素子130に導入している。したがって、異種基板上に形成された光導波路同士を接続する場合のような製造の困難性もなく、基板同士の膨張率差による破損や、接合ズレに起因する光損失の問題も生じない。 Further, in the optical modulator 100 according to the first embodiment, the laser light branched by the light branching unit 110 is condensed by the microlenses 122 and 123 onto the input waveguides 132 and 133 and introduced into the optical waveguide device 130. . Therefore, there is no difficulty in manufacturing as in the case where optical waveguides formed on different substrates are connected, and there is no problem of damage due to a difference in expansion coefficient between substrates or light loss due to misalignment.
 (第2実施形態) 
 次に、図2を参照しつつ第2実施形態について説明する。 
 図2は、第2実施形態に係る光変調器を示す図である。 
 以下の実施形態において、先の実施形態と共通の構成要素には同一の符号を付し、それらについての詳細な説明は簡略化又は省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG.
FIG. 2 is a diagram illustrating an optical modulator according to the second embodiment.
In the following embodiment, the same code | symbol is attached | subjected to the same component as previous embodiment, and the detailed description about them is simplified or abbreviate | omitted.
 本第2実施形態の光変調器200は、図2に示すように、光分岐部110Aと、マイクロレンズアレイ120Aと、光導波路素子130Aとを有する。 As shown in FIG. 2, the optical modulator 200 of the second embodiment includes an optical branching unit 110A, a microlens array 120A, and an optical waveguide element 130A.
 光分岐部110Aは、ガラス基材111の内部に、互いに平行に配置されたビームスプリッター114、115、116と、ミラー113とが設けられた構成を有する。光分岐部110Aは、入射するレーザー光をビームスプリッター114~116により4本のレーザー光に分岐させ、外部へ射出する。光分岐部110Aの光入射面や光射出面には、反射防止膜(ARコート)などが形成されていてもよい。 110 A of optical branching parts have the structure by which the beam splitters 114, 115, and 116 and the mirror 113 which were arrange | positioned mutually parallel inside the glass base material 111 were provided. The optical branching unit 110A splits the incident laser light into four laser lights by the beam splitters 114 to 116, and emits them to the outside. An antireflection film (AR coating) or the like may be formed on the light incident surface or the light exit surface of the light branching portion 110A.
 光分岐部110Aからは、ビームスプリッター114を透過したレーザー光と、ビームスプリッター114及びビームスプリッター115で反射されたレーザー光と、ビームスプリッター115を透過した後、ビームスプリッター116で反射されたレーザー光と、ビームスプリッター116を透過した後、ミラー113で反射されたレーザー光とが射出される。 From the optical branching unit 110A, laser light that has passed through the beam splitter 114, laser light that has been reflected by the beam splitter 114 and the beam splitter 115, laser light that has passed through the beam splitter 115 and then has been reflected by the beam splitter 116, and After passing through the beam splitter 116, the laser beam reflected by the mirror 113 is emitted.
 本第2実施形態の場合、ビームスプリッター114は、入射光に対して透過率40%、反射率60%に設定されている。ビームスプリッター115は、入射光に対して透過率33%、反射率67%に設定されている。ビームスプリッター116は、入射光に対して透過率50%、反射率50%に設定されている。ミラー113は全反射ミラーである。 In the case of the second embodiment, the beam splitter 114 is set to have a transmittance of 40% and a reflectance of 60% with respect to incident light. The beam splitter 115 is set to have a transmittance of 33% and a reflectance of 67% with respect to incident light. The beam splitter 116 is set to have a transmittance of 50% and a reflectance of 50% with respect to incident light. The mirror 113 is a total reflection mirror.
 マイクロレンズアレイ120Aは、直方体状の透明な基体121と、基体121の一方の面(光分岐部110A側の面)に形成された4つのマイクロレンズ124、125、126、127とを有する。4つのマイクロレンズ124~127のそれぞれの光軸は、光分岐部110Aから射出される4本のレーザー光の光軸と同軸に配置されている。 The microlens array 120A includes a rectangular parallelepiped transparent base 121, and four microlenses 124, 125, 126, and 127 formed on one surface of the base 121 (the surface on the light branching portion 110A side). The optical axes of the four microlenses 124 to 127 are arranged coaxially with the optical axes of the four laser beams emitted from the optical branching unit 110A.
 基体121のマイクロレンズ124~127と反対側の面は、光導波路素子130Aと光学的に接着されている。基体121は、マイクロレンズ124~127の焦点距離に相当する厚さを有する。マイクロレンズ124~127に入射したレーザー光は、光導波路素子130Aの側端面に形成された光導波路の入力端に集光される。 The surface of the base 121 opposite to the microlenses 124 to 127 is optically bonded to the optical waveguide element 130A. The base 121 has a thickness corresponding to the focal length of the microlenses 124 to 127. The laser light incident on the microlenses 124 to 127 is focused on the input end of the optical waveguide formed on the side end face of the optical waveguide element 130A.
 光導波路素子130Aは、基板131と、基板131上に形成された光導波路及び電極とを有する。これらの光導波路及び電極により、光変調部140Aが形成されている。 The optical waveguide element 130A includes a substrate 131, and an optical waveguide and an electrode formed on the substrate 131. An optical modulation unit 140A is formed by these optical waveguides and electrodes.
 光変調部140Aは、4つの位相変調部141~144を有する。 
 基板131のマイクロレンズアレイ120Aと接合された辺端から、4本の入力導波路231~234が延びている。入力導波路231は位相変調部141の入力端に接続されている。入力導波路232は位相変調部142の入力端に接続されている。入力導波路233は位相変調部143の入力端に接続されている。入力導波路234は位相変調部144の入力端に接続されている。
The optical modulation unit 140A includes four phase modulation units 141 to 144.
Four input waveguides 231 to 234 extend from the side edges of the substrate 131 joined to the microlens array 120A. The input waveguide 231 is connected to the input end of the phase modulation unit 141. The input waveguide 232 is connected to the input end of the phase modulation unit 142. The input waveguide 233 is connected to the input end of the phase modulation unit 143. The input waveguide 234 is connected to the input end of the phase modulation unit 144.
 位相変調部141、142の出力側は、光合成点247において接続されている。また位相変調部143、144の出力側は、光合成点248において接続されている。 The output side of the phase modulators 141 and 142 is connected at the light combining point 247. The output sides of the phase modulators 143 and 144 are connected at the light combining point 248.
 位相変調部141~144は、入力される光信号に対して二位相変調(BPSK)を施して出力する。位相変調部141、142は、それらの位相変化が互いに直交するように動作設定される。また位相変調部143、144も、それらの位相変化が互いに直交するように動作設定される。 The phase modulators 141 to 144 perform bi-phase modulation (BPSK) on the input optical signal and output it. The phase modulators 141 and 142 are set so that their phase changes are orthogonal to each other. The phase modulators 143 and 144 are also set so that their phase changes are orthogonal to each other.
 本第2実施形態の場合、位相変調部141、142と光合成点247とによりQPSK方式の光変調器が構成され、位相変調部143、144と光合成点248とによりQPSK方式の光変調器が構成されている。上記それぞれの光変調器で変調された光信号は、出力導波路136、137側に配置されたマイクロレンズアレイ145のマイクロレンズ147、148を介して光合成部150へ出力される。 In the case of the second embodiment, the phase modulators 141 and 142 and the light combining point 247 constitute a QPSK optical modulator, and the phase modulators 143 and 144 and the light combining point 248 constitute a QPSK optical modulator. Has been. The optical signals modulated by the respective optical modulators are output to the light combining unit 150 via the microlenses 147 and 148 of the microlens array 145 disposed on the output waveguides 136 and 137 side.
 光導波路素子130Aは、第1実施形態と同様、出力導波路136、137側にマイクロレンズアレイ145を有する。マイクロレンズアレイ145は、基体146、2つのマイクロレンズ147、148を有する。2つのマイクロレンズ147、148のそれぞれの光軸は、光出力導波路136、137から射出される2本のレーザー光の光軸と同軸に配置されている。基体146のうちマイクロレンズ147、148と反対側の面は、光導波路素子130Aと光学的に接着されている。 The optical waveguide element 130A has a microlens array 145 on the output waveguides 136 and 137 side, as in the first embodiment. The microlens array 145 includes a base 146 and two microlenses 147 and 148. The optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively. The surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130A.
 光合成部150は、第1実施形態と同様、半波長板151、偏光ビームスプリッター152及び光ファイバーコリメーター16を有する。光合成部150は、光信号QPSK1、QPSK2の強度比を維持するようにこれらを合成し、16QAM対応信号光を生成する。16QAM対応信号を生成する2つの光信号QPSK1と光信号QPSK2とは、光ファイバーコリメーター16に入力されることにより光ファイバー12に結合され、光ファイバー12を介して処理装置17に送信される。処理装置17は、16QAM対応信号に基づいて16QAM信号を求める処理を行う。 The light combining unit 150 includes a half-wave plate 151, a polarizing beam splitter 152, and an optical fiber collimator 16 as in the first embodiment. The light combining unit 150 combines the optical signals QPSK1 and QPSK2 so as to maintain the intensity ratio, and generates 16QAM compatible signal light. The two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12. The processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
 上記構成を備えた本第2実施形態の光変調器200では、光ファイバーコリメーター15から光分岐部110Aのビームスプリッター114にレーザー光が入射する。ビームスプリッター114は、入射光の40%を透過し、60%を反射する。 In the optical modulator 200 of the second embodiment having the above-described configuration, the laser light is incident on the beam splitter 114 of the optical branching unit 110A from the optical fiber collimator 15. The beam splitter 114 transmits 40% of incident light and reflects 60%.
 ビームスプリッター114を透過した光は、マイクロレンズ124に入射し、マイクロレンズ124により入力導波路231の入力端に集光される。一方、ビームスプリッター114で反射された光は、ビームスプリッター115に入射する。ビームスプリッター115は入射光の33%を透過し、67%を反射する。 The light that has passed through the beam splitter 114 enters the microlens 124 and is collected by the microlens 124 at the input end of the input waveguide 231. On the other hand, the light reflected by the beam splitter 114 enters the beam splitter 115. The beam splitter 115 transmits 33% of incident light and reflects 67%.
 ビームスプリッター115で反射された光は、マイクロレンズ125に入射し、マイクロレンズ125により入力導波路232の入力端に集光される。一方、ビームスプリッター115を透過した光は、ビームスプリッター116に入射する。ビームスプリッター116は、入射光の50%を透過し、50%を反射する。 The light reflected by the beam splitter 115 enters the microlens 125 and is collected by the microlens 125 at the input end of the input waveguide 232. On the other hand, the light transmitted through the beam splitter 115 enters the beam splitter 116. The beam splitter 116 transmits 50% of incident light and reflects 50%.
 ビームスプリッター116で反射された光は、マイクロレンズ126に入射し、マイクロレンズ126により入力導波路233の入力端に集光される。一方、ビームスプリッター116を透過した光は、ミラー113で反射された後、マイクロレンズ127に入射し、マイクロレンズ127により入力導波路234の入力端に集光される。 The light reflected by the beam splitter 116 enters the microlens 126 and is collected by the microlens 126 at the input end of the input waveguide 233. On the other hand, the light transmitted through the beam splitter 116 is reflected by the mirror 113, enters the microlens 127, and is collected by the microlens 127 at the input end of the input waveguide 234.
 入力導波路231、232に導入された光は、位相変調部141、142で変調後、バイアス電極部134aへの電圧印加により所定の位相差(π/2)に調整される。その後、光合成点247で合成されて光信号QPSK1となり、光合成部150へ出力される。 The light introduced into the input waveguides 231 and 232 is modulated by the phase modulation units 141 and 142, and then adjusted to a predetermined phase difference (π / 2) by applying a voltage to the bias electrode unit 134a. Thereafter, the signal is combined at the light combining point 247 to be an optical signal QPSK 1 and output to the light combining unit 150.
 入力導波路233、234に導入された光は、位相変調部143、144で変調後、バイアス電極部135aへの電圧印加により所定の位相差(π/2)に調整される。その後、光合成点248で合成されて光信号QPSK2となり、光合成部150へ出力される。 The light introduced into the input waveguides 233 and 234 is modulated by the phase modulation units 143 and 144, and then adjusted to a predetermined phase difference (π / 2) by applying a voltage to the bias electrode unit 135a. Thereafter, the signals are combined at the light combining point 248 to become an optical signal QPSK 2 and output to the light combining unit 150.
 本第2実施形態の場合、入力導波路231、232に導入される光は、光ファイバーコリメーター15から入力された光に対してそれぞれ強度40%の光である。一方、入力導波路233、234に導入される光は、それぞれ強度10%の光である。したがって、光合成点248で生成される光信号QPSK2は、光信号QPSK1に対してパワーが1/4になる。 In the case of the second embodiment, the light introduced into the input waveguides 231 and 232 is light having an intensity of 40% with respect to the light input from the optical fiber collimator 15, respectively. On the other hand, the light introduced into the input waveguides 233 and 234 is light having an intensity of 10%. Therefore, the optical signal QPSK2 generated at the light combining point 248 has a power of 1/4 with respect to the optical signal QPSK1.
 光合成部150において、上記パワー比の光信号QPSK1と光信号QPSK2とが、それらの強度比を維持するように合成されることにより、16QAM対応信号が生成される。16QAM対応信号を生成する2つの光信号QPSK1と光信号QPSK2とは、光ファイバーコリメーター16に入力されることにより光ファイバー12に結合され、光ファイバー12を介して処理装置17に送信される。処理装置17では、この16QAM対応信号に基づいて16QAM信号が生成される。 In the optical combining unit 150, the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined so as to maintain the intensity ratio thereof, thereby generating a 16QAM compatible signal. The two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12. The processing device 17 generates a 16QAM signal based on the 16QAM compatible signal.
 なお、光信号QPSK1、QPSK2のパワー比率(4:1)は、光変調器200の製造誤差によって多少ずれていてもよい。例えば、上記比率が3:1や5:1となる場合もある。上記パワー比率は、光分岐部110Aにおけるビームスプリッターの透過率及び反射率により調整することもできる。 Note that the power ratio (4: 1) of the optical signals QPSK1 and QPSK2 may be slightly shifted due to a manufacturing error of the optical modulator 200. For example, the ratio may be 3: 1 or 5: 1. The power ratio can also be adjusted by the transmittance and reflectance of the beam splitter in the light branching section 110A.
 本第2実施形態の光変調器200は、光分岐部110Aにおいてレーザー光を4分岐し、それぞれのレーザー光をマイクロレンズアレイ120Aにより位相変調部141~144に導入するように構成される。すなわち、第1実施形態に係る光変調器100においてネスト型マッハツェンダー導波路134、135に設けられていたレーザー光の分岐点を、本第2実施形態では光分岐部110Aとして基板外に設けている。 The optical modulator 200 of the second embodiment is configured to split the laser light into four at the optical branching section 110A and introduce each laser light into the phase modulation sections 141 to 144 by the microlens array 120A. That is, the branching point of the laser beam provided in the nested Mach- Zehnder waveguides 134 and 135 in the optical modulator 100 according to the first embodiment is provided outside the substrate as the optical branching unit 110A in the second embodiment. Yes.
 これにより、光導波路における光損失の原因となる光分岐点を減らすことができ、光導波路の製造誤差によって起こる特性のばらつきがさらに許容され得る。そして第1実施形態と比較しても光損失の少ない光変調器とすることができる。また、光分岐のための導波路構造が不要であるため、ニオブ酸リチウム等からなる基板131を小型化することができる。 This makes it possible to reduce the number of light branch points that cause optical loss in the optical waveguide, and tolerate variations in characteristics caused by manufacturing errors of the optical waveguide. In addition, an optical modulator with less optical loss can be obtained as compared with the first embodiment. In addition, since a waveguide structure for optical branching is unnecessary, the substrate 131 made of lithium niobate or the like can be reduced in size.
 また本第2実施形態の光変調器200においても、光分岐部110Aで分岐したレーザー光を、マイクロレンズ124~127により入力導波路231~234に集光させて光導波路素子130Aに導入している。したがって、異種基板上に形成された光導波路同士を接続する場合のような製造の困難性もなく、基板同士の膨張率差による破損や、接合ズレに起因する光損失の問題も生じない。 Also in the optical modulator 200 of the second embodiment, the laser beam branched by the optical branching unit 110A is condensed on the input waveguides 231 to 234 by the microlenses 124 to 127 and introduced into the optical waveguide device 130A. Yes. Therefore, there is no difficulty in manufacturing as in the case where optical waveguides formed on different substrates are connected, and there is no problem of damage due to a difference in expansion coefficient between substrates or light loss due to misalignment.
 以上の本第2実施形態においては、第一実施形態と同様に、所定の位相に変調され光強度の異なる2つの光信号QPSK1及び光信号QPSK2を互いに垂直な偏光方向にすると共に、偏光方向が垂直となった2つの光信号QPSK1及び光信号QPSK2を偏波合成することで、片側のアームに損失を生じさせる方式に比べて、光損失を抑制することができる。 In the second embodiment described above, as in the first embodiment, the two optical signals QPSK1 and QPSK2 that are modulated to have a predetermined phase and have different light intensities are made to have mutually perpendicular polarization directions, and the polarization directions are By combining the two optical signals QPSK1 and QPSK2 that are perpendicular to each other, the optical loss can be suppressed as compared with a system that causes a loss in one arm.
 (第3実施形態) 
 次に、図3を参照しつつ第3実施形態について説明する。 
 図3は、第3実施形態に係る光変調器を示す図である。 
 以下の実施形態において、先の実施形態と共通の構成要素には同一の符号を付し、それらについての詳細な説明は簡略化又は省略する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.
FIG. 3 is a diagram illustrating an optical modulator according to the third embodiment.
In the following embodiment, the same code | symbol is attached | subjected to the same component as previous embodiment, and the detailed description about them is simplified or abbreviate | omitted.
 本第3実施形態の光変調器300は、図3に示すように、光分岐部110と、ロッドレンズ120Bと、光導波路素子130Bとを有する。光分岐部110は、第1実施形態と共通である。 As shown in FIG. 3, the optical modulator 300 of the third embodiment includes an optical branching unit 110, a rod lens 120B, and an optical waveguide element 130B. The optical branching unit 110 is common to the first embodiment.
 ロッドレンズ120Bは、曲面形状のレンズ面を有する。ロッドレンズ120Bは、上記レンズ面と反対側の平坦面を光導波路素子130Bの側端面に光学的に接着されている。ロッドレンズ120Bのレンズ面には、光分岐部110で分岐され射出された2本のレーザー光が入射される。ロッドレンズ120Bに入射したレーザー光は、光導波路素子130Bの側端面に形成された光導波路の入力端に集光される。 The rod lens 120B has a curved lens surface. In the rod lens 120B, a flat surface opposite to the lens surface is optically bonded to the side end surface of the optical waveguide element 130B. Two laser beams branched and emitted by the light branching unit 110 are incident on the lens surface of the rod lens 120B. The laser light incident on the rod lens 120B is focused on the input end of the optical waveguide formed on the side end surface of the optical waveguide element 130B.
 光導波路素子130Bは、基板131と、基板131上に形成された光導波路及び電極とを有する。これらの光導波路及び電極により、光変調部140Bが形成されている。 The optical waveguide element 130B includes a substrate 131, and an optical waveguide and an electrode formed on the substrate 131. The optical modulator 140B is formed by these optical waveguides and electrodes.
 光変調部140Bは、第1実施形態に係る光変調部140とほぼ同様の構成であり、互いに交差する入力導波路236、237を備えた点において異なっている。入力導波路236、237は、ロッドレンズ120Bが接合される基板131の側端面に入力端を有し、基板131の端縁から内側に延びた位置で互いに交差した後、各々ネスト型マッハツェンダー導波路134、135に接続されている。 The light modulation unit 140B has substantially the same configuration as that of the light modulation unit 140 according to the first embodiment, and is different in that it includes input waveguides 236 and 237 that intersect each other. The input waveguides 236 and 237 each have an input end on a side end surface of the substrate 131 to which the rod lens 120B is bonded, intersect each other at a position extending inward from the end edge of the substrate 131, and then each include a nested Mach-Zehnder guide. It is connected to the waveguides 134 and 135.
 光導波路素子130Bは、第一実施形態と同様、出力導波路136、137側にマイクロレンズアレイ145を有する。マイクロレンズアレイ145は、基体146、2つのマイクロレンズ147、148を有する。2つのマイクロレンズ147、148のそれぞれの光軸は、光出力導波路136、137から射出される2本のレーザー光の光軸と同軸に配置されている。基体146のうちマイクロレンズ147、148と反対側の面は、光導波路素子130Bと光学的に接着されている。 The optical waveguide element 130B has the microlens array 145 on the output waveguides 136 and 137 side as in the first embodiment. The microlens array 145 includes a base 146 and two microlenses 147 and 148. The optical axes of the two microlenses 147 and 148 are arranged coaxially with the optical axes of the two laser beams emitted from the optical output waveguides 136 and 137, respectively. The surface of the base 146 opposite to the microlenses 147 and 148 is optically bonded to the optical waveguide element 130B.
 光合成部150は、第1実施形態と同様、半波長板151、偏光ビームスプリッター152及び光ファイバーコリメーター16を有する。光合成部150は、光信号QPSK1、QPSK2の強度比を維持するようにこれらを合成し、16QAM対応信号光を生成する。16QAM対応信号を生成する2つの光信号QPSK1と光信号QPSK2とは、光ファイバーコリメーター16に入力されることにより光ファイバー12に結合され、光ファイバー12を介して処理装置17に送信される。処理装置17は、16QAM対応信号に基づいて16QAM信号を求める処理を行う。 The light combining unit 150 includes a half-wave plate 151, a polarizing beam splitter 152, and an optical fiber collimator 16 as in the first embodiment. The light combining unit 150 combines the optical signals QPSK1 and QPSK2 so as to maintain the intensity ratio, and generates 16QAM compatible signal light. The two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12. The processing device 17 performs processing for obtaining a 16QAM signal based on the 16QAM compatible signal.
 上記構成を備えた本第3実施形態の光変調器300では、光ファイバーコリメーター15から射出されたレーザー光が光分岐部110のビームスプリッター112に入射する。ビームスプリッター112は、入射光の80%を透過し、20%を反射する。 In the optical modulator 300 of the third embodiment having the above-described configuration, the laser light emitted from the optical fiber collimator 15 enters the beam splitter 112 of the optical branching unit 110. The beam splitter 112 transmits 80% of incident light and reflects 20%.
 ビームスプリッター112を透過した光は、ロッドレンズ120Bに入射し、ロッドレンズ120Bにより入力導波路237の入力端に集光される。入力導波路237に導入された光は、ネスト型マッハツェンダー導波路135に入力される。 The light that has passed through the beam splitter 112 is incident on the rod lens 120B, and is condensed on the input end of the input waveguide 237 by the rod lens 120B. The light introduced into the input waveguide 237 is input to the nested Mach-Zehnder waveguide 135.
 一方、ビームスプリッター112で反射された光は、ミラー113で反射された後、ロッドレンズ120Bに入射し、ロッドレンズ120Bにより入力導波路236の入力端に集光される。入力導波路236に導入された光は、ネスト型マッハツェンダー導波路134に入力される。 On the other hand, the light reflected by the beam splitter 112 is reflected by the mirror 113, then enters the rod lens 120B, and is condensed at the input end of the input waveguide 236 by the rod lens 120B. The light introduced into the input waveguide 236 is input to the nested Mach-Zehnder waveguide 134.
 したがって、本第3実施形態の光変調器300では、ネスト型マッハツェンダー導波路134、135に入力される光の強度比が第1実施形態とは逆になる。 Therefore, in the optical modulator 300 of the third embodiment, the intensity ratio of the light input to the nested Mach- Zehnder waveguides 134 and 135 is opposite to that of the first embodiment.
 ネスト型マッハツェンダー導波路134に導入された光は、入力端で分岐された後、位相変調部141、142で変調後、バイアス電極部134aへの電圧印加により所定の位相差(π/2)となるように調整される。その後、ネスト型マッハツェンダー導波路134の出力端で合成されて光信号QPSK1となり、マイクロレンズ147を介して光合成部150へ出力される。 The light introduced into the nested Mach-Zehnder waveguide 134 is branched at the input end, modulated by the phase modulation units 141 and 142, and then applied with a voltage to the bias electrode unit 134a to obtain a predetermined phase difference (π / 2). It is adjusted to become. After that, the signal is synthesized at the output end of the nested Mach-Zehnder waveguide 134 to become an optical signal QPSK 1, and is output to the optical synthesis unit 150 through the microlens 147.
 ネスト型マッハツェンダー導波路135に導入された光は、入力端で分岐された後、位相変調部143、144で変調後、バイアス電極部135aへの電圧印加により所定の位相差(π/2)となるように調整される。その後、ネスト型マッハツェンダー導波路135の出力端で合成されて光信号QPSK2となり、マイクロレンズ148を介して光合成部150へ出力される。 The light introduced into the nested Mach-Zehnder waveguide 135 is branched at the input end, modulated by the phase modulation units 143 and 144, and then applied with a voltage to the bias electrode unit 135a to obtain a predetermined phase difference (π / 2). It is adjusted to become. After that, the signal is synthesized at the output end of the nested Mach-Zehnder waveguide 135 to become an optical signal QPSK 2, which is output to the optical synthesis unit 150 via the microlens 148.
 本第3実施形態の場合、入力導波路236に導入される光は、ビームスプリッター112で分岐された強度20%の光であるため、ネスト型マッハツェンダー導波路134から出力される光信号QPSK1は、ネスト型マッハツェンダー導波路135において強度80%の光から生成された光信号QPSK2に対してパワーが1/4になる。 In the case of the third embodiment, since the light introduced into the input waveguide 236 is light having an intensity of 20% branched by the beam splitter 112, the optical signal QPSK1 output from the nested Mach-Zehnder waveguide 134 is In the nested Mach-Zehnder waveguide 135, the power is reduced to ¼ with respect to the optical signal QPSK2 generated from light having an intensity of 80%.
 そして、光合成部150において、上記パワー比の光信号QPSK1と光信号QPSK2とが、それらの強度比を維持するように合成されることにより、16QAM対応信号が生成される。16QAM対応信号を生成する2つの光信号QPSK1と光信号QPSK2とは、光ファイバーコリメーター16に入力されることにより光ファイバー12に結合され、光ファイバー12を介して処理装置17に送信される。処理装置17では、当該16QAM対応信号に基づいて16QAM信号が生成される。 Then, in the optical combining unit 150, the optical signal QPSK1 and the optical signal QPSK2 having the above power ratio are combined so as to maintain the intensity ratio thereof, thereby generating a 16QAM compatible signal. The two optical signals QPSK1 and QPSK2 that generate a 16QAM compatible signal are input to the optical fiber collimator 16 to be coupled to the optical fiber 12 and transmitted to the processing device 17 via the optical fiber 12. The processing device 17 generates a 16QAM signal based on the 16QAM compatible signal.
 光信号QPSK1、QPSK2のパワー比率(1:4)は、光変調器300の製造誤差によって多少ずれていてもよく、また出力された信号が偏波合成部に到達するまでにパワー比率を調節する必要もない。例えば、上記比率が1:3や1:5となる場合もある。上記パワー比率は、光分岐部110におけるビームスプリッター112の透過率及び反射率により調整することもでき、これらは導波路の分岐部とは異なり、使用する部品の交換により容易に変更することができる。 The power ratio (1: 4) of the optical signals QPSK1 and QPSK2 may slightly deviate due to a manufacturing error of the optical modulator 300, and the power ratio is adjusted until the output signal reaches the polarization beam combiner. There is no need. For example, the ratio may be 1: 3 or 1: 5. The power ratio can also be adjusted by the transmittance and reflectance of the beam splitter 112 in the optical branching section 110, and these can be easily changed by exchanging parts to be used, unlike the branching section of the waveguide. .
 なお、本第3実施形態の光変調器300では、光分岐部110において所定のパワー比でレーザー光を分岐し、これらのレーザー光をロッドレンズ120Bを介して光導波路素子130Bに導入している。ロッドレンズ120Bを用いた場合にも、先の第1実施形態と同様の作用効果を得ることができる。 In the optical modulator 300 of the third embodiment, the laser beam is split at a predetermined power ratio in the optical branching unit 110, and these laser beams are introduced into the optical waveguide element 130B via the rod lens 120B. . Even when the rod lens 120B is used, the same effects as those of the first embodiment can be obtained.
 以上の本第3実施形態においては、上記第1および第2実施形態と同様に、所定の位相に変調され光強度の異なる2つの光信号QPSK1及び光信号QPSK2を互いに垂直な偏光方向にすると共に、偏光方向が垂直となった2つの光信号QPSK1及び光信号QPSK2を偏波合成することで、片側のアームに損失を生じさせる方式に比べて、光損失を抑制することができる。 In the third embodiment described above, as in the first and second embodiments described above, the two optical signals QPSK1 and QPSK2 that are modulated to a predetermined phase and have different light intensities are set to have mutually perpendicular polarization directions. By combining the two optical signals QPSK1 and QPSK2 whose polarization directions are perpendicular to each other, the optical loss can be suppressed as compared with a method in which a loss is caused in one arm.
 上述の実施形態おいては光強度が異なる2つの位相変調光としてQPSK変調器を用いた4値の位相変調光を例として16値QAM対応信号光の生成する方式を示したが、位相変調光として他の多値変調光を生成する方式も適用可能である。位相シフト量がπ/3である6値位相変調器を用いる場合、36値のQAM対応信号光が生成可能である。 In the above-described embodiment, a method of generating 16-level QAM-compliant signal light has been shown by taking quaternary phase-modulated light using a QPSK modulator as two phase-modulated lights having different light intensities. It is also possible to apply other methods for generating multilevel modulated light. When a 6-level phase modulator having a phase shift amount of π / 3 is used, 36-level QAM-compatible signal light can be generated.
 100、200、300  光変調器
 110  光分岐部
 120  マイクロレンズアレイ
 130、130A、130B  光導波路素子
 141~144  位相変調部
 145  マイクロレンズアレイ
 150  光合成部
 151  半波長板
 152  偏光ビームスプリッター
 153  ミラー
 154  ビームスプリッター
100, 200, 300 Optical modulator 110 Optical branching unit 120 Microlens array 130, 130A, 130B Optical waveguide element 141-144 Phase modulation unit 145 Microlens array 150 Photosynthesis unit 151 Half-wave plate 152 Polarization beam splitter 153 Mirror 154 Beam splitter

Claims (11)

  1.  第一生成部及び第二生成部を備えた生成部であって、前記第一生成部が、所定の位相に変調され、第一の光強度を有する位相変調光を生成するように構成され、前記第二生成部が、所定の位相に変調され、前記第一の光強度とは異なる第二の光強度を有する位相変調光を生成するように構成された、前記生成部と、 前記生成部によって生成された前記2つの位相変調光を互いに垂直な偏光方向にすると共に、前記2つの位相変調光を偏波合成して、変調信号光を出力するように構成された光合成部と
     を備える光変調器。
    A generating unit including a first generating unit and a second generating unit, wherein the first generating unit is configured to generate phase-modulated light that is modulated to a predetermined phase and has a first light intensity; The generation unit, wherein the second generation unit is configured to generate phase-modulated light that is modulated to a predetermined phase and has a second light intensity different from the first light intensity, and the generation unit A light combining unit configured to cause the two phase-modulated lights generated by the above to have polarization directions perpendicular to each other and to combine the two phase-modulated lights with polarization to output modulated signal light. Modulator.
  2.  前記光合成部は、
     前記2つの位相変調光のうち第一位相変調光の偏光方向を変換するように構成された偏波回転素子と、
     前記偏波回転素子によって偏光方向が変換された前記第一位相変調光と、前記第一位相変調光とは異なる第二位相変調光とを偏波合成するように構成された偏光ビームスプリッターと
     を有する
     請求項1に記載の光変調器。
    The photosynthesis unit
    A polarization rotation element configured to convert a polarization direction of the first phase modulation light of the two phase modulation lights;
    A polarization beam splitter configured to combine the first phase modulated light whose polarization direction is converted by the polarization rotation element and the second phase modulated light different from the first phase modulated light. The optical modulator according to claim 1.
  3.  前記生成部は、
     入力光を光強度の異なる一対の分岐光に分岐するように構成された光分岐部と、
     前記光分岐部で分岐された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力するように構成された位相変調部と
     有する
     請求項2に記載の光変調器。
    The generator is
    A light branching section configured to branch the input light into a pair of branched lights having different light intensities;
    The phase modulation unit configured to phase-modulate the pair of branched lights branched by the light branching unit and output the first phase modulated light and the second phase modulated light, respectively. Light modulator.
  4.  前記光分岐部は、ビームスプリッターを有する
     請求項3に記載の光変調器。
    The optical modulator according to claim 3, wherein the optical branching unit includes a beam splitter.
  5.  前記生成部は、
     入力光を、第一分岐光、第二分岐光、第三分岐光、および第四分岐光に分岐するように構成された光分岐部と、
     前記第一分岐光、第二分岐光、第三分岐光、および第四分岐光をそれぞれ位相変調し、前記第一分岐光と第二分岐光とを合成して前記第一位相変調光を出力し、前記第三分岐光と第四分岐光とを合成して前記第二位相変調光を出力するように構成された位相変調部と
     有する
     請求項2に記載の光変調器。
    The generator is
    A light branching unit configured to branch the input light into a first branched light, a second branched light, a third branched light, and a fourth branched light;
    The first branched light, the second branched light, the third branched light, and the fourth branched light are respectively phase modulated, and the first branched light and the second branched light are combined to output the first phase modulated light. The optical modulator according to claim 2, further comprising: a phase modulation unit configured to combine the third branched light and the fourth branched light and output the second phase modulated light.
  6.  前記生成部は、
     入力光を光強度の異なる一対の分岐光に分岐するように構成された光分岐部と、
     前記一対の分岐光を集光するように構成されたロッドレンズと、
     集光された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力するように構成された位相変調部と
     有する
     請求項2に記載の光変調器。
    The generator is
    A light branching section configured to branch the input light into a pair of branched lights having different light intensities;
    A rod lens configured to collect the pair of branched lights;
    The optical modulator according to claim 2, further comprising: a phase modulation unit configured to phase-modulate each of the collected pair of branched lights and output the first phase-modulated light and the second phase-modulated light.
  7.  所定の位相に変調され光強度が互いに異なる2つの位相変調光を生成し、
     生成された前記2つの位相変調光を互いに垂直な偏光方向にすると共に、前記2つの位相変調光を偏波合成して、変調信号光を出力する
     光変調方法。
    Generating two phase-modulated lights modulated to a predetermined phase and having different light intensities,
    An optical modulation method in which the generated two phase-modulated lights are polarized in directions perpendicular to each other, and the two phase-modulated lights are combined by polarization to output modulated signal light.
  8.  前記変調信号光を出力することは、
     前記2つの位相変調光のうち第一位相変調光の偏光方向を変換することと、
     前記偏光方向が変換された前記第一位相変調光と、前記第一位相変調光とは異なる第二位相変調光とを偏波合成することと
     を含む
     請求項7に記載の光変調方法。
    To output the modulated signal light,
    Converting the polarization direction of the first phase modulated light of the two phase modulated lights;
    The light modulation method according to claim 7, further comprising: combining the first phase-modulated light whose polarization direction has been converted and second phase-modulated light different from the first phase-modulated light.
  9.  前記2つの位相変調光を生成することは、
     入力光を光強度の異なる一対の分岐光に分岐することと、
     前記分岐された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力することと
     を含む
     請求項8に記載の光変調方法。
    Generating the two phase-modulated lights
    Branching input light into a pair of branched lights having different light intensities;
    The light modulation method according to claim 8, further comprising: phase-modulating each of the pair of branched light beams to output the first phase-modulated light and the second phase-modulated light.
  10.  前記2つの位相変調光を生成することは、
     入力光を、第一分岐光、第二分岐光、第三分岐光、および第四分岐光に分岐することと、
     前記第一分岐光、第二分岐光、第三分岐光、および第四分岐光をそれぞれ位相変調し、前記第一分岐光と第二分岐光とを合成して前記第一位相変調光を出力し、前記第三分岐光と第四分岐光とを合成して前記第二位相変調光を出力することと
     を含む
     請求項8に記載の光変調方法。
    Generating the two phase-modulated lights
    Branching input light into first branched light, second branched light, third branched light, and fourth branched light;
    The first branched light, the second branched light, the third branched light, and the fourth branched light are respectively phase modulated, and the first branched light and the second branched light are combined to output the first phase modulated light. The light modulation method according to claim 8, further comprising: combining the third branched light and the fourth branched light and outputting the second phase modulated light.
  11.  前記2つの位相変調光を生成することは、
     入力光を光強度の異なる一対の分岐光に分岐することと、
     ロッドレンズにより前記一対の分岐光を集光することと、
     集光された前記一対の分岐光をそれぞれ位相変調し、前記第一位相変調光および第二位相変調光を出力することと
     含む
     請求項8に記載の光変調器。
    Generating the two phase-modulated lights
    Branching input light into a pair of branched lights having different light intensities;
    Condensing the pair of branched lights by a rod lens;
    The optical modulator according to claim 8, further comprising: phase-modulating each of the pair of condensed branched lights and outputting the first phase-modulated light and the second phase-modulated light.
PCT/JP2013/076385 2012-09-28 2013-09-27 Optical modulator and optical modulation method WO2014051096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548659A JPWO2014051096A1 (en) 2012-09-28 2013-09-27 Optical modulator and optical modulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012215675 2012-09-28
JP2012-215675 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051096A1 true WO2014051096A1 (en) 2014-04-03

Family

ID=50388487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076385 WO2014051096A1 (en) 2012-09-28 2013-09-27 Optical modulator and optical modulation method

Country Status (2)

Country Link
JP (1) JPWO2014051096A1 (en)
WO (1) WO2014051096A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186127A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Polarization combiner, and optical modulator having the same
JP2016142809A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Optical modulator
JP2017037253A (en) * 2015-08-12 2017-02-16 富士通オプティカルコンポーネンツ株式会社 Light modulation device
WO2017170195A1 (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181859A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
WO2017170194A1 (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181861A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181860A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
EP3779575A4 (en) * 2018-03-27 2021-12-15 Sumitomo Osaka Cement Co., Ltd. Optical modulation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470723A (en) * 1987-09-10 1989-03-16 Fujitsu Ltd Optical switch
JP2009094988A (en) * 2007-09-18 2009-04-30 National Institute Of Information & Communication Technology Quadrature amplitude modulation signal generating device
JP2009244682A (en) * 2008-03-31 2009-10-22 Fujitsu Ltd Optical modulator, controlling method and apparatus thereof, optical transmitter, and optical transmission system
JP2010250125A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2011040339A1 (en) * 2009-09-30 2011-04-07 住友大阪セメント株式会社 Optical waveguide device
JP2011197484A (en) * 2010-03-19 2011-10-06 National Institute Of Information & Communication Technology Polarization multiplexing circuit
JP2012047953A (en) * 2010-08-26 2012-03-08 Sumitomo Osaka Cement Co Ltd Polarization control device
JP2012137583A (en) * 2010-12-27 2012-07-19 Nippon Telegr & Teleph Corp <Ntt> Polarization multiplexing optical modulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542071B2 (en) * 2011-01-26 2014-07-09 日本電信電話株式会社 Optical integrated circuit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470723A (en) * 1987-09-10 1989-03-16 Fujitsu Ltd Optical switch
JP2009094988A (en) * 2007-09-18 2009-04-30 National Institute Of Information & Communication Technology Quadrature amplitude modulation signal generating device
JP2009244682A (en) * 2008-03-31 2009-10-22 Fujitsu Ltd Optical modulator, controlling method and apparatus thereof, optical transmitter, and optical transmission system
JP2010250125A (en) * 2009-04-16 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2011040339A1 (en) * 2009-09-30 2011-04-07 住友大阪セメント株式会社 Optical waveguide device
JP2011197484A (en) * 2010-03-19 2011-10-06 National Institute Of Information & Communication Technology Polarization multiplexing circuit
JP2012047953A (en) * 2010-08-26 2012-03-08 Sumitomo Osaka Cement Co Ltd Polarization control device
JP2012137583A (en) * 2010-12-27 2012-07-19 Nippon Telegr & Teleph Corp <Ntt> Polarization multiplexing optical modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I. MOROHASHI ET AL.: "16 Quadrature Amplitude Modulation Using Polarization-Multiplexing QPSK Modulator", 15TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2010) TECHNICAL DIGEST, vol. 8B1-3, 5 July 2010 (2010-07-05), pages 446 - 447 *
M. SUDO ET AL.: "40Gb/s DP- NRZ-QPSK Signal Generation using a Dual-Polarization Quad- Parallel Mach-Zehnder Modulator", 15TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2010) TECHNICAL DIGEST, vol. 8B2-3, 5 July 2010 (2010-07-05), pages 456 - 457 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186127A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Polarization combiner, and optical modulator having the same
JP2016142809A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Optical modulator
JP2017037253A (en) * 2015-08-12 2017-02-16 富士通オプティカルコンポーネンツ株式会社 Light modulation device
US9709743B2 (en) 2015-08-12 2017-07-18 Fujitsu Optical Components Limited Optical modulator
WO2017170195A1 (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181859A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
WO2017170194A1 (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181861A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181860A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
JP2017181862A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Optical modulation device
US10422956B2 (en) 2016-03-31 2019-09-24 Sumitomo Osaka Cement Co., Ltd. Optical modulation device
EP3779575A4 (en) * 2018-03-27 2021-12-15 Sumitomo Osaka Cement Co., Ltd. Optical modulation device

Also Published As

Publication number Publication date
JPWO2014051096A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014051096A1 (en) Optical modulator and optical modulation method
JP4937325B2 (en) Optical waveguide device
JP6446955B2 (en) Optical transmission module
WO2013176270A1 (en) Optical modulator
JP4740994B2 (en) Light modulator
WO2014119450A1 (en) Optical modulator
JP5621861B2 (en) Optical device
JP5551475B2 (en) Phase modulator and optical modulator
JP5589926B2 (en) Light modulator
JP5659631B2 (en) Polarization controller
JP2010237300A (en) 90-degree hybrid, optical module, and optical receiver
WO2014162924A1 (en) Optical module and light exposure device
JP5673283B2 (en) Polarization synthesizer
JP6769378B2 (en) Light modulator
JP5108042B2 (en) Light modulator
JP6938894B2 (en) Optical modulators and optical modules
JP6233366B2 (en) Light modulator
JP2016045256A (en) Polarized wave multiplexer and optical transmitter using the same
US11175140B2 (en) Resonator fiber optic gyroscope with integrated photonics interface
JP2012211971A (en) Polarized wave synthesizer
WO2022118790A1 (en) Optical module
JP5267070B2 (en) Demodulator and receiving device having the same
JP2010139888A (en) Receiving device
WO2019188093A1 (en) Optical modulation device
JPH0843776A (en) Optical modulator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548659

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840260

Country of ref document: EP

Kind code of ref document: A1