WO2014051057A1 - Gelling agent - Google Patents

Gelling agent Download PDF

Info

Publication number
WO2014051057A1
WO2014051057A1 PCT/JP2013/076276 JP2013076276W WO2014051057A1 WO 2014051057 A1 WO2014051057 A1 WO 2014051057A1 JP 2013076276 W JP2013076276 W JP 2013076276W WO 2014051057 A1 WO2014051057 A1 WO 2014051057A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
group
ionic liquid
gelling agent
linear
Prior art date
Application number
PCT/JP2013/076276
Other languages
French (fr)
Japanese (ja)
Inventor
達生 丸山
Original Assignee
国立大学法人神戸大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 日産化学工業株式会社 filed Critical 国立大学法人神戸大学
Priority to JP2014538633A priority Critical patent/JP6304820B2/en
Publication of WO2014051057A1 publication Critical patent/WO2014051057A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/52Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • C07C323/59Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton with acylated amino groups bound to the carbon skeleton

Definitions

  • the present invention relates to a gelling agent for an ionic liquid and a method for producing an electrolyte gel using the gelling agent and the ionic liquid.
  • gelling agents have been used as those having the function of gelling or solidifying liquids such as water and oil (animal and vegetable oils, esters, polyols, ethers, alcohols, hydrocarbons, etc.).
  • a low molecular gelling agent and a high molecular gelling agent are used.
  • the gelling agent is a low molecular gelling agent (for example, a gelling agent having a molecular weight of less than 900 g / mol) or a high molecular gelling agent (for example, a gelling agent having a molecular weight of 900 g / mol or more).
  • a three-dimensional network structure is formed. When the liquids are taken into the three-dimensional network structure, the liquids are gelled.
  • the low molecular weight gelling agent self-assembles in a liquid by non-covalent interaction to form a fibrous structure.
  • This fiber structure is entangled to form a three-dimensional network structure. Gelation is said to occur when liquids are taken into the three-dimensional network structure of the fiber structure.
  • Gelation with a low molecular weight gelling agent includes desolvation of the low molecular weight gelling agent in a liquid, non-covalent interaction between low molecular weight gelling agents (for example, hydrogen bond or ⁇ - ⁇ bond),
  • a phenomenon involving the self-organization of low molecular weight gelators based on non-covalent interactions a phenomenon in which randomly dispersed molecules form an ordered structure spontaneously under a given external environment). is there.
  • gelation with a low molecular weight gelling agent is a phenomenon involving multiple factors (desolvation, non-covalent interaction, self-assembly). Development is slower than gelling agents, and there are few known low-molecular gelling agents (Patent Documents 2 and 3, Non-Patent Document 1).
  • an ionic liquid is a salt formed from an organic anion derived from a strong acid and an organic cation derived from a weak base, and is also called a room temperature molten salt or an ionic liquid.
  • ionic liquids are liquid even at room temperature and are not compatible with water or oil (organic solvent). Therefore, ionic liquids are attracting attention as the third liquid after water and oil (organic solvent). Yes. Ionic liquids exhibit flame retardancy, non-volatility, and ionic conductivity, and do not decompose even at high temperatures of several hundred degrees, so they can be used as organic reaction solvents and lubricants with low environmental impact instead of conventional organic solvents. Is being considered.
  • An ionic liquid is a liquid that is particularly excellent in non-volatile properties and ionic conductivity, and can be used for a fuel cell or a secondary battery because it can pass a current without adding a supporting electrolyte and has a wide potential window. It is attracting attention as a useful electrolyte. In fuel cells and secondary batteries, electrolyte leakage and self-discharge are a problem. For the purpose of suppressing these problems, investigations have conventionally been made to gel the electrolyte into various electrolyte gels. ing. Further, in the development of artificial actuators, investigations have been made on gel materials having characteristics of electrical conductivity and flexible elasticity (Patent Document 1, Non-Patent Documents 2, 3, and 4).
  • JP 2011-236328 A (first to third pages) JP 2000-72736 A (pages 1 and 2) JP 2005-533134 A (pages 1 to 3)
  • An ionic liquid is a salt composed of an organic anion and an organic cation and exists as a liquid at room temperature. Therefore, conventionally known polymer gelling agents are difficult to dissolve or disperse in ionic liquids, and it is difficult to gel ionic liquids using polymer gelling agents. Moreover, in the polymer gelling agent designed so that an ionic liquid may be gelatinized, in order to improve mechanical strength, a crosslinked structure may be partially introduced in the case of gelatinization. However, when a crosslinked structure is formed, there is a problem that the electrical conductivity and ionic conductivity of the gel obtained by gelling the ionic liquid are smaller than the electrical conductivity or ionic conductivity of the ionic liquid itself.
  • the low molecular weight gelling agent when a low molecular weight gelling agent is applied to an ionic liquid, the low molecular weight gelling agent must exhibit a non-covalent interaction in the presence of an interaction between an organic anion and an organic cation of the ionic liquid. is there. At the same time, in order to obtain a state in which the ionic liquid is taken into the three-dimensional network structure, the low-molecular gelling agent must be uniformly dispersed or dissolved in the ionic liquid. For this reason, in the application of a low-molecular gelling agent in an ionic liquid, it is necessary to have a contradictory property of sufficient noncovalent interaction and dispersibility or solubility in the ionic liquid.
  • Patent Documents 2 and 3 and Non-Patent Document 1 even low-molecular gelling agents that exhibit gelling ability in water or organic solvents do not always exhibit gelling ability with respect to ionic liquids. Therefore, it is difficult to predict the behavior of the low-molecular gelling agent.
  • the present inventor was able to gel the ionic liquid even when the concentration of the gelling agent was low, using a predetermined gelling agent, and obtained
  • the present invention was completed by finding that the rate of decrease in electrical conductivity of the electrolyte gel was low.
  • the ionic liquid gelling agent according to the present invention is characterized by containing a compound represented by the general formula (1).
  • R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms.
  • the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—).
  • R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
  • R 1 to R 3 are the same or different and are each selected from methyl group, 2-propyl group, 2-methylpropyl group, 1-methylpropyl group and methylthioethyl group. It is preferably one group selected from the group consisting of, and more preferably one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, and a methylthioethyl group.
  • R 4 to R 6 are preferably methyl groups.
  • the gelling agent for ionic liquid of the present invention is preferably used for producing an electrolyte gel by mixing with an ionic liquid. In the production of the electrolyte gel, it is preferable to heat and cool the mixture of the ionic liquid gelling agent of the present invention and the ionic liquid.
  • the ionic liquid forming the electrolyte gel includes an imidazolium ion, a pyridinium ion, a piperidinium ion, a pyrrolidinium ion, a phosphonium ion, an ammonium ion and a sulfonium ion, a halogen ion, a carboxylate ion, Sulfate ion, sulfonate ion, thiocyanate ion, nitrate ion, aluminate ion, borate ion, phosphate ion, amide ion, antimonate ion, imide ion, methide ion, amino acid ion, N-acyl acidic amino acid ion and N-acyl neutral amino acid
  • An ionic liquid composed of an organic anion selected from the group consisting of ions is preferred.
  • the ionic liquid forming the electrolyte gel is 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butylpyridinium bis (trifluoromethylsulfonyl) amide, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-3- It is one ionic liquid selected from the group consisting of methylimidazolium trifluoromethanesulfonate.
  • the present invention also includes a compound represented by the general formula (1).
  • each of R 1 to R 3 is the same or different and is selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, a 1-methylpropyl group, and a methylthioethyl group. It is preferably a group, more preferably one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, and a methylthioethyl group.
  • R 4 to R 6 are preferably methyl groups.
  • the gelling agent for ionic liquid of the present invention can keep the gel structure stable while maintaining various characteristics of the ionic liquid, such as low vapor pressure, non-volatility, and high specific heat capacity.
  • the electrolyte gel manufactured including the step of mixing the ionic liquid gelling agent and the ionic liquid of the present invention maintains the characteristics of the ionic liquid, particularly the electrical conductivity. For this reason, application to electrolyte materials and artificial actuators used for fuel cells and secondary batteries can be expected.
  • FIG. 1 is a photograph of an electrolyte gel using [bmim] [TFSA] as an ionic liquid in the electrolyte gel of Example 2 observed with a field emission scanning electron microscope (FE-SEM) at a magnification of 2,000 times. It is.
  • FIG. 2 shows an electrolyte gel using [bmim] [CF 3 SO 3 ] as an ionic liquid among the electrolyte gels of Example 2 using a field emission scanning electron microscope (FE-SEM) at a magnification of 2,000 times. It is an observed photograph.
  • FE-SEM field emission scanning electron microscope
  • Gelling agent 1-1 Gelling agent (1)
  • the gelling agent of the ionic liquid of the present invention is characterized by containing a compound represented by the general formula (1) (hereinafter sometimes referred to as “gelling agent (1)”).
  • R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms.
  • the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—).
  • R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
  • Examples of the linear or branched alkyl group having 1 to 9 carbon atoms in R 1 to R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a methylpropyl group, a pentyl group, a methylbutyl group, and dimethylpropyl.
  • the linear or branched alkyl group represented by R 1 to R 3 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
  • the gelling agent (1) of the present invention since the carbon number of the linear or branched alkyl group of R 1 to R 3 is 1 or more, the gelling agent (1) non-covalent bonding between molecules It has a moderate effect and dissolves in ionic liquids. However, if the alkyl group of R 1 to R 3 has too many carbon atoms, the noncovalent interaction between the gelling agent (1) molecules is inhibited, and the ionic liquid cannot be gelled. Therefore, the number of carbon atoms in the alkyl group of R 1 to R 3 is preferably within the above range.
  • Examples of the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) include, for example, a methylthiomethyl group, a methylthioethyl group, a methylthio group Alkyl groups having a methylthio group such as propyl group and methylthiobutyl group; alkyl groups having an ethylthio group such as ethylthiomethyl group, ethylthioethyl group and ethylthiopropyl group; propylthio such as propylthiomethyl group and propylthioethyl group An alkyl group having a group; an alkyl group having a butylthio group such as a butylthiomethyl group.
  • the alkylthio group is a hydrophilic group and has a high polarity and therefore contributes to noncovalent interaction (hydrogen bond).
  • the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) is preferably an alkyl group having a methylthio group or An alkyl group having an ethylthio group, more preferably an alkyl group having a methylthio group, and particularly preferably a methylthioethyl group.
  • the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) Agent (1) It is preferable that the number of carbon atoms is 3 or more from the viewpoint of setting the non-covalent interaction between molecules within an appropriate range. However, in the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced with a sulfide bond (—S—), the sulfur atom is also calculated as having 1 carbon atom. Shall.
  • the gelling agent (1) non-covalent between molecules
  • the binding interaction is moderate and dissolves in ionic liquids.
  • the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is replaced with a sulfide bond (—S—)
  • the noncovalent interaction is reduced by the gelling agent ( 1) It tends to occur at the end of the molecule, the formation of an ordered structure (self-assembly) is inhibited, and the ionic liquid cannot be gelled.
  • the carbon number of the group in which the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) is preferably 6 or less, and preferably 5 or less. More preferably, it is more preferably 4 or less.
  • Examples of the linear or branched alkyl group having 1 to 4 carbon atoms in R 4 to R 6 include those listed as the linear or branched alkyl group having 1 to 4 carbon atoms in R 1 to R 3. The same can be mentioned, preferably a linear or branched alkyl group having 1 to 3 carbon atoms, more preferably a linear or branched alkyl group having 1 to 2 carbon atoms, particularly preferably. Is a methyl group.
  • the linear or branched alkyl group of R 4 to R 6 has 1 or more carbon atoms and is electrically stable. Suitable as The larger the carbon number of the alkyl group of R 4 to R 6 is, the more stable the gelling agent (1) is. However, if the number of carbon atoms of the alkyl group of R 4 to R 6 is too large, the gelling agent (1) The non-covalent interaction between each other is inhibited, and the ionic liquid cannot be gelled. Therefore, the number of carbon atoms in the groups R 4 to R 6 is preferably within the above range.
  • the gelling agent (1) of the present invention one amide bond and one ester bond are bonded to the 1,3,5-position of the benzene ring through one carbon atom, and defined by R 1 to R 6 Can be dissolved in the ionic liquid, and even in the ionic liquid, it can efficiently self-assemble to form a fibrous aggregate, A structure can be formed.
  • the gelling agent (1) of the present invention can gel the ionic liquid.
  • the ionic liquid is a salt composed of an organic anion and an organic cation that exists as a liquid at room temperature
  • the self-organization behavior of the gelling agent in the ionic liquid depends on the hydrophilicity of the substituent. It varies greatly depending on the degree of property and hydrophobicity. Therefore, it is difficult to predict the self-organization behavior of the gelling agent.
  • gelling agent (1) a compound represented by the formula (1-1) (hereinafter sometimes referred to as gelling agent (1-1)) is preferable.
  • R 11 represents a linear or branched alkyl group having 1 to 9 carbon atoms.
  • the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 11 may be replaced with a sulfide bond (—S—).
  • R 12 represents a linear or branched alkyl group having 1 to 4 carbon atoms]
  • Examples of the linear or branched alkyl group having 1 to 4 carbon atoms for R 12 include the same groups as those exemplified as the alkyl group for R 4 to R 6 .
  • the ionic liquid that forms an electrolyte gel together with the gelling agent of the present invention is preferably an ionic liquid composed of an organic anion and an organic cation.
  • the organic anion include imidazolium ion, pyridinium ion, piperidinium ion, pyrrolidini.
  • An organic cation (preferably one organic cation) selected from the group consisting of a humium ion, a phosphonium ion, an ammonium ion, and a sulfonium ion can be preferably used.
  • the organic anion selected from the group consisting of N- acyl acidic amino acid ions and N- acyl neutral amino acid ion (preferably an organic anion of 1) can be preferably used.
  • Each of the organic cation and the organic anion may have a substituent.
  • the organic cation is more preferably one organic cation selected from the group consisting of an imidazolium ion, a pyridinium ion, and an ammonium ion, and more preferably an imidazolium ion or a pyridinium ion.
  • the organic anion is more preferably one organic cation selected from the group consisting of a sulfonate ion, a borate ion, a phosphate ion, and an amide ion, and still more preferably a sulfonate ion or an amide ion.
  • an imidazolium ion is used as an organic cation
  • an ionic liquid using an amide ion as an organic anion a pyridinium ion as an organic cation
  • an ionic liquid using an amide ion as an organic anion an imidazolium as an organic cation
  • Ionic liquids using ions and sulfonate ions as organic anions are preferred, such as 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) ) Amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butylpyridinium bis (trifluoromethylsulfonyl) amide, 1-ethyl-3-methylimidazole 1 ionic liquid is more preferably selected from
  • the gelling agent (1) is preferably contained in an amount of 50% by mass or more and 100% by mass or less with respect to 100% by mass of the total amount of the ionic liquid gelling agent. It is preferably 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and particularly preferably 100% by mass. That is, it is preferable that the gelling agent of the ionic liquid does not contain any other components other than the gelling agent (1).
  • the gelling agent (1) of the present invention can be easily synthesized by the following reaction.
  • R a represents the same group as R 1 to R 3 in the general formula (1)
  • R b represents the same group as R 4 to R 6 in the general formula (1).
  • the amino acid alkyl ester (H 2 N—CH (R a ) —COOR b ) represented by the general formula (A) can be synthesized by a conventionally known method, for example, H 2 N—CH in the presence of an acid catalyst. It can be obtained by dehydrating condensation of an amino acid represented by (R a ) —COOH and an alcohol represented by R b OH.
  • the gelling agent (1) of the present invention can be obtained by reacting the amino acid alkyl ester with the benzenecarboxylic acid chloride represented by the general formula (B).
  • X 1 to X 3 represent a halogen atom, preferably a chlorine atom.
  • the method and conditions are not particularly limited.
  • an amino acid alkyl ester represented by the general formula (A) and a benzenecarboxylic acid chloride represented by the general formula (B) are mixed with a base such as triethylamine at a predetermined reaction equivalent.
  • a condensation reaction may be carried out in a dry solvent. This reaction can be carried out at a temperature of 0 ° C. to 50 ° C. for 16 hours to 20 hours using an amino acid alkyl ester and benzene tricarboxylic acid chloride in a molar ratio of about 3: 1.
  • the reaction product can be purified by means such as distillation under reduced pressure or solvent fractionation.
  • purification of the reaction product is performed by washing with pure water, removing unreacted materials under reduced pressure, recrystallization with an organic solvent such as acetone, treatment with adsorbent such as activated clay, activated carbon, silica gel, alumina, etc. These may be applied alone or in combination as necessary.
  • adsorbent such as activated clay, activated carbon, silica gel, alumina, etc.
  • the ionic liquid gelling agent of the present invention may contain a component (2) other than the gelling agent (1).
  • the component (2) include surfactants, swelling agents, antifreeze agents, viscosity modifiers, ionic strength modifiers, and the like. A conventionally well-known thing can be used for surfactant.
  • the swelling agent plays a role of expanding the molecular assembly, and examples thereof include trimethylbenzene, triethylbenzene, and triisopropylbenzene.
  • the content of the component (2) is 0.1% by mass or more and 50% by mass with respect to 100% by mass of the total amount of the ionic liquid gelling agent.
  • % Is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less.
  • the method for producing an electrolyte gel of the present invention includes a step of mixing a gelling agent of the ionic liquid of the present invention and an ionic liquid.
  • the ionic liquid used for the production of the electrolyte gel of the present invention a conventionally known ionic liquid can be used.
  • an ionic liquid composed of an organic anion and an organic cation is preferable, and the organic anion is composed of an imidazolium ion, a pyridinium ion, a piperidinium ion, a pyrrolidinium ion, a phosphonium ion, an ammonium ion, and a sulfonium ion.
  • One organic cation selected from the group can be preferably used, and examples of the organic cation include halogen ions, carboxylate ions, sulfate ions, sulfonate ions, thiocyanate ions, nitrate ions, aluminate ions, borate ions, phosphate ions, Consists of amide ion, antimonate ion, imide ion, methide ion, amino acid ion, N-acyl acidic amino acid ion and N-acyl neutral amino acid ion It can be preferably used one organic anion selected from.
  • amino acids examples include aspartic acid, glutamic acid, proline, glycine, alanine, valine, leucine, isoleucine, and phenylalanine.
  • N-acyl acidic amino acids and N-acyl neutral amino acids are these N-acyl derivatives. is there.
  • an acetyl group is mentioned as an acyl group.
  • Each of the organic cation and the organic anion may have a substituent.
  • the imidazolium ion includes 1,3-dimethylimidazolium ion, 1,3-diethylimidazolium ion, 1,3-dipropylimidazolium ion, 1-ethyl- 1,3-dialkylimidazolium ions such as 3-methylimidazolium ion, 1-methyl-3-propylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1-isopropyl-3-propylimidazolium ion; 1,2,3-trimethylimidazolium ion, 1,2,3-triethylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 2- Such as ethyl-1,3-dimethylimidazolium ion ,
  • Examples of the pyridinium ion include N-alkylpyridinium ions such as N-methylpyridinium ion, N-ethylpyridinium ion, and N-propylpyridinium ion; 1-methyl-1-propylpyrrolidinium ion, 1-ethyl-1-methylpyrrole N-alkylpyrrolidinium ions such as dinium ions and 1-butyl-1-methylpyrrolidinium ions;
  • Examples of the ammonium ion include tetraalkylammonium ions such as N, N, N-trimethyl-N-propylammonium and methyltrioctylammonium.
  • Examples of the phosphonium ion include tetraalkylphosphonium ions such as tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, trimethylethylphosphonium ion, and triethylmethylphosphonium ion.
  • tetraalkylphosphonium ions such as tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, trimethylethylphosphonium ion, and triethylmethylphosphonium ion.
  • sulfonium ion examples include trialkylsulfonium ions such as trimethylsulfonium ion, triethylsulfonium ion, tripropylsulfonium ion, tributylsulfonium ion, dimethylethylsulfonium ion, diethylmethylsulfonium ion, and dimethylpropylsulfonium ion.
  • the organic cation constituting the ionic liquid is more preferably one organic cation selected from the group consisting of an imidazolium ion, a pyridinium ion, and an ammonium ion, and more preferably an imidazolium ion or a pyridinium ion. .
  • examples of the sulfonate ion include trifluoromethanesulfonate ion.
  • borate ions include tetrafluoroborate ions.
  • examples of phosphate ions include hexafluorophosphate ions.
  • Antimonate ions include hexafluoroantimonate ions.
  • examples of the imide ion include bis (trifluoromethylsulfonyl) imide ion, bis (fluorosulfonyl) imide ion, and nitrate ion.
  • examples of the amide ion include bis (trifluoromethylsulfonyl) amide ion.
  • carboxylate ions include trifluoromethylcarboxylate ions and carboxylate ions.
  • a chloroaluminate ion is mentioned as an aluminate ion.
  • the organic anion constituting the ionic liquid is more preferably one organic cation selected from the group consisting of a sulfonate ion, a borate ion, a phosphate ion, and an amide ion, and further preferably a sulfonate ion or an amide ion.
  • the ionic liquid composed of the organic cation and the organic anion includes 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethyl).
  • Ionic liquids using imidazolium ions as organic cations and amide ions as organic anions such as sulfonyl) amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide; 1-butylpyridinium bis (tri Ionic liquids using pyridinium ions as organic cations such as fluoromethylsulfonyl) amide and amide ions as organic anions; 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methyl Using imidazolium ions as organic cations, such as imidazolium trifluoromethanesulfonate, ionic liquids using a sulfonate ion as the organic anion is particularly preferred.
  • an inorganic salt can be added to the ionic liquid.
  • the inorganic salt include inorganic sulfate, inorganic phosphate, hydroxylated inorganic salt, hexafluorophosphate inorganic salt, trifluorosulfonic acid inorganic salt, perchloric acid inorganic salt, tetrafluoroborate inorganic salt, bis (fluorosulfonyl)
  • An imide inorganic salt, a bis (trifluoromethylsulfonyl) amide inorganic salt, an inorganic cobalt salt, or the like is preferably used.
  • the inorganic salt is more preferably Li 2 SO 4 , Li 2 PO 4 , LiOH, LiPF 6 , CF 3 SO 3 Li, LiClO 4 , LiBF 4 , (CF 3 SO 2 ) 2 NLi or LiCoO 2 .
  • the content of the inorganic salt may be 0.01% by mass or more, more preferably 0.02% by mass or more, and still more preferably 0.05% by mass or more with respect to 100% by mass of the ionic liquid. May be.
  • an electrolyte gel having excellent conductivity can be obtained.
  • 0.2 mass% or less is preferable with respect to 100 mass% of ionic liquids, and, as for content of an inorganic salt, 0.15 mass% or less is more preferable, and 0.12 mass% or less is further more preferable. The smaller the content of the inorganic salt, the more easily the electrolyte gel can be obtained.
  • the content of the gelling agent of the ionic liquid of the present invention is preferably 0.1% by mass or more with respect to 100% by mass of the total amount of the obtained electrolyte gel. It is more preferably 5% by mass or more, and further preferably 1.0% by mass or more.
  • the content of the gelling agent in the ionic liquid is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 2.0% by mass with respect to 100% by mass of the total amount of the electrolyte gel obtained. More preferably, it is% or less.
  • the content of the gelling agent of the present invention is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the ionic liquid, and 1 part by mass or more. More preferably.
  • the content of the gelling agent of the present invention is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and more preferably 2 parts by mass or less with respect to 100 parts by mass of the ionic liquid. Is more preferable.
  • the content of the gelling agent in the ionic liquid the easier it is to gel the ionic liquid, but if the content of the gelling agent is too much, there is a risk that the electrical conductivity when the electrolyte gel is made decreases. is there.
  • the electrolyte gel obtained by the production method of the present invention if the content of the gelling agent of the ionic liquid is in the above range, the gelling ability and the electric conductivity of the electrolyte gel can be compatible.
  • the method of mixing the gelling agent and the ionic liquid is not particularly limited, and a conventionally known method such as a shaking method or a stirring method can be used. From the viewpoint of uniformly dissolving the gelling agent in the ionic liquid, the shaking method is preferred.
  • the method for producing an electrolyte gel of the present invention preferably further includes a step of heating and cooling the mixture of the gelling agent and the ionic liquid.
  • the temperature for heating the mixture of the gelling agent and the ionic liquid is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower.
  • the heating temperature is less than 100 ° C., it is difficult to dissolve the gelling agent sufficiently in the ionic liquid and dissolve it uniformly.
  • the higher the heating temperature the better the solubility of the ionic liquid gelling agent of the present invention in the ionic liquid.
  • the heating temperature exceeds 250 ° C., the gelling agent may be decomposed, which is not preferable. .
  • the electrolyte gel is defined as a mixture of the ionic liquid and the gelling agent (1) that exhibits abnormal viscosity due to the effect of the gelling agent and loses fluidity.
  • a plurality of ionic liquid gelling agents are self-assembled by non-covalent bonding between gelling agent molecules to form a fiber-like structure, and the fiber structure is entangled to form a three-dimensional network structure.
  • the electrolyte gel is formed by the ionic liquid being taken into the three-dimensional network structure. Examples of the non-covalent interaction include a hydrogen bond and a ⁇ - ⁇ bond.
  • the method for determining gelation is not particularly limited, and a conventionally known method can be used.
  • a falling ball method, a viscoelasticity measuring method, a test tube inversion method, or the like is used. Can do.
  • the test tube inversion method is preferably used from the viewpoint of simplicity of equipment and the like.
  • a reaction solution obtained by mixing an ionic liquid gelling agent and an ionic liquid is placed in a test tube, and gelled depending on whether the reaction solution flows when the test tube is turned upside down. Determine.
  • the gelling agent of the ionic liquid of the present invention can form a stable gel while maintaining various characteristics of the ionic liquid, such as high heat resistance and flame retardancy.
  • the electrical conductivity is as good as 0% or more and 25% or less, more preferably 0% or more and 10% or less, in terms of a decrease in electrical conductivity compared to the original electrical conductivity.
  • the gelling agent of the present invention and the electrolyte gel obtained by the production method of the present invention are electrolytes for fuel cells, secondary batteries, dye-sensitized solar cells, artificial actuators, electrochemical sensors, light-emitting display devices, impacts It can be used as an absorbent material (for example, running shoes, bedding, vibration suppression affecting a precision instrument or acoustic device, packing material, etc.).
  • the electrolyte gel obtained by the production method of the present invention has strength, elasticity, flexibility, stretchability, and stretchability, it is an optical material, electrical and electronic material, building material, pharmaceutical / medical material, antistatic agent, light It can be widely used in various industries such as leak-proof films and pressure-sensitive adhesives for optical members.
  • NMR measurement 1 H NMR measurement was performed using an NMR apparatus (BRUKER AVANCE 500 type digital, manufactured by BRUKER).
  • the synthesized gelling agent was dissolved in deuterated dimethyl sulfoxide at a concentration of 20 mM, and the measurement was performed at a resonance frequency of 500 MHz.
  • Gelation test Gelation of the electrolyte gel was determined by the test tube inversion method. Specifically, 0.5 mL of a mixture of the gelling agent obtained in Examples 1 to 4 and Comparative Examples 1 to 8 and the ionic liquid shown in Table 1 was placed in a test tube with a lid having a diameter of 8 mm and a height of 15 mm. And dissolved while shaking at 130 ° C. for 1 minute. This was allowed to stand at room temperature (25 ° C.) for 1 to 24 hours, and then turned upside down to determine gelation. The concentration of the gelling agent was 2% with respect to 100% of the total amount of the mixture of the gelling agent and the ionic liquid.
  • the electrolyte gel obtained by the production method of the present invention was immersed in pure water for several days to replace the ionic liquid in the three-dimensional network structure with pure water and freeze-dried.
  • the xerogel obtained by freeze-drying was coated with palladium, and the three-dimensional network structure was observed with a field emission scanning electron microscope (FE-SEM, JSM-7500F, manufactured by JEOL Ltd.).
  • the acceleration voltage was 5 kV and the observation magnification was 2,000 times.
  • Conductivity measurement A mixed solution of an ionic liquid and a gelling agent was placed in a U-shaped sample tube, and an electrode was inserted.
  • the U-shaped sample tube was allowed to stand in a 25 ° C. water bath, and after an hour or more had elapsed, impedance measurement was performed using an AC four-terminal method with an input resistance of 2 M ⁇ , an input capacitance of 20 pF, and CMRR of 50 d or more.
  • a chemical impedance meter 3532-80 manufactured by Hioki Electric Co., Ltd.
  • the measured impedance (Z, ⁇ ) was Cole-Cole plotted, the resistance R was calculated from the intersection with the X axis by extrapolating the straight line portion.
  • the cell constant K of the sample tube was determined.
  • the electrical conductivity of electrolyte gel was calculated
  • Cell constant (K) sample tube resistance (R 0 ) ⁇ conductivity (k 0 ) (2)
  • Electrolyte gel conductivity (k) cell constant (K) ⁇ electrolyte gel resistance (R) (3)
  • Example 1 L-alanine methyl ester hydrochloride (16.5 mmol) was dispersed in 200 mL of anhydrous dichloromethane, cooled to 0 ° C., and 4.5 mL of triethylamine was added. A solution of trimesoyl chloride (5.5 mmol) dissolved in 15 mL of anhydrous dichloromethane was added dropwise. It returned to normal temperature (25 degreeC), and stirred for 18 hours.
  • Example 2 A white solid gelling agent was prepared in the same manner as in Example 1, except that L-valine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows. 1 H-NMR, (DMSO-d 6 , 500 MHz) ⁇ 8.98 (d, 1H), 8.43 (s, 1H), 4.33 (t, 1H), 3.67 (s, 3H), 2 .20 (m, 1H), 1.01 (d, 3H), 0.96 (d, 3H) The results of elemental analysis were as follows. Calcd. for C 27 H 39 O 9 N 3: C, 59.00; H, 7.15; N, 7.65. Found: C, 58.59; H, 6.84; N, 7.62.
  • Example 3 A white solid gelling agent was prepared in the same manner as in Example 1, except that L-leucine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
  • Example 4 A white solid gelling agent was prepared in the same manner as in Example 1 except that L-methionine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows. 1 H-NMR, (DMSO-d 6 , 500 MHz) ⁇ 9.16 (d, 1H), 8.51 (s, 1H), 4.63 (m, 1H), 3.67 (s, 3H), 2 .58 (m, 2H), 2.07 (m, 5H) The results of elemental analysis were as follows. Calcd. for C 27 H 39 O 9 N 3 S 3: C, 50.21; H, 6.09; N, 6.51. Found: C, 50.17; H, 5.79; N, 6.47.
  • Comparative Example 1 A white solid was obtained in the same manner as in Example 1 except that L-glycine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows. 1 H-NMR, (DMSO-d 6 , 500 MHz) ⁇ 9.26 (m, 1H), 8.51 (t, 1H), 4.06 (m, 2H), 3.67 (t, 3H) The results of mass spectrometry were as follows. Calcd. for C 18 H 21 O 9 N 3 ([M + Na +]) 446.7, found 446.0
  • Comparative Example 2 A white solid was obtained in the same manner as in Example 1 except that L-phenylalanine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows. 1 H-NMR, (DMSO-d 6 , 500 MHz) ⁇ 9.18 (m, 1H), 8.36 (t, 1H), 7.28 (m, 5H), 4.70 (m, 1H), 3 .64 (m, 3H), 3.33 (t, 1H), 3.15 (m, 1H) The results of elemental analysis were as follows. Calcd.
  • Comparative Example 3 The white solid (2.14 mmol) obtained in Comparative Example 1 was dissolved in 30 mL of methanol and cooled to 0 ° C. After adding 2M NaOH aqueous solution, it returned to normal temperature and hydrolyzed by stirring for 22 hours. The precipitated white solid was collected by filtration, and the residue was dissolved in pure water. The pH was adjusted to 3 or less by adding 1M hydrochloric acid. After standing still for several hours, the supernatant was removed by centrifugation to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
  • Example 5 The white solid (2.80 mmol) obtained in Example 4 was dissolved in 100 mL of 1,4-dioxane and 1 mL of pure water, added with 25 mL of 2M NaOH aqueous solution, and hydrolyzed by stirring at room temperature for 30 hours. The pH was adjusted to 5-6 by adding 2M hydrochloric acid, and the solvent was distilled off under reduced pressure with an evaporator. The obtained white solid was dissolved in 2M NaOH aqueous solution. 1M hydrochloric acid was added to adjust the pH to 4-5. The precipitated white solid was collected with a funnel and dried under vacuum to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1.
  • Comparative Example 6 The white solid obtained in Comparative Example 2 was dissolved in 100 mL of methanol and cooled to 0 ° C. 30 mL of 2M NaOH aqueous solution was added, it returned to normal temperature, and it hydrolyzed by stirring for 22 hours. 100 mL of pure water was added to the reaction solution, and the pH was adjusted to 3 or less by adding 1 M hydrochloric acid. After standing still for several hours, the supernatant was removed by centrifugation to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
  • Comparative Example 7 0.76 mmol (0.5 g) of the white solid obtained in Comparative Example 4, 0.76 mmol (87.5 mg) of N-hydroxysuccinimide (NHS), 1-ethyl-3- (3-dimethylaminopropyl) ) 0.76 mmol (146 mg) of carbodiimide hydrochloride (WSC), 0.80 mmol (166 mg) of NH 2 — (CH 2 CH 2 O) 4 —CH 3, 0.76 mmol (76.9 mg) of triethylamine, and dimethyl It was dissolved in 3 mL of formamide and stirred at room temperature (25 ° C.) for 20 hours. The solvent was distilled off using an evaporator.
  • Comparative Example 8 In Comparative Example 8, a yellow solid was obtained in the same manner as Comparative Example 9 except that the white solid obtained in Comparative Example 6 was used instead of the white solid obtained in Comparative Example 4. The resulting yellow solid was subjected to a gelation test. The results are shown in Table 1.
  • [emim] [TFSA] represents 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide
  • [bmim] [TFSA] represents 1-butyl-3-methylimidazolium bis (trifluoro).
  • [hmim] [TFSA] is 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide
  • [bpy] [TFSA] is 1-butylpyridinium bis (trifluoromethylsulfonyl).
  • the gelling agents of Examples 1 to 4 are gelling agents that satisfy the requirements defined in the present invention, and are ionic liquids [emim] [TFSA], [bmim] [TFSA], [hmim] [TFSA]. ], [Bpy] [TFSA], [emim] [CF 3 SO 3 ] and [bmim] [CF 3 SO 3 ], and at the same time showed excellent gelling ability.
  • the terminal groups of the compounds are carboxyl groups or polyethers.
  • the gelling agent of the present invention makes it easy to dissolve the gelling agent in the ionic liquid and at the same time gel the ionic liquid. Can be said to be easy.
  • Table 2 shows the minimum gelling agent concentration at which the ionic liquid could be gelled in the gelling agents of Examples 1 to 4.
  • the gelling agent of the present invention was able to gel the ionic liquid even when the content was as small as 2% by mass or less. If the concentration of the gelling agent is low, an electrolyte gel can be obtained without impairing the excellent electrical conductivity of the ionic liquid.
  • Example 5 The electrolyte gel obtained in Example 2 was subjected to conductivity measurement. The results are shown in Table 3.
  • the rate of decrease in electrical conductivity in the case of an electrolyte gel produced by adding the gelling agent of the present invention to an ionic liquid is 0.1% to 5% compared to the original ionic liquid.
  • the electric conductivity was almost the same as that of the original ionic liquid. Therefore, the gelling agent of the present invention can be suitably used for the preparation of electrolytes such as fuel cells, secondary electrons, and dye-sensitized type batteries that require high electrical conductivity.
  • Example 6 Of the electrolyte gel obtained in Example 2, an electrolyte gel using [bmim] [TFSA] and [bmim] [CF 3 SO 3 ] as the ionic liquid was analyzed using a field emission scanning electron microscope (FE-SEM). The results of the observation are shown in FIGS.
  • FE-SEM field emission scanning electron microscope
  • FIGS. 1 and 2 show that the gelling agent of the present invention forms a fiber-like three-dimensional network structure by self-organization in an ionic liquid. It can be said that it has the ability.
  • the gelling agent of the ionic liquid of the present invention can form a stable gel while maintaining various characteristics of the ionic liquid, such as high heat resistance and flame retardancy.
  • the gelling agent of the present invention and the electrolyte gel obtained by the production method of the present invention are electrolytes for fuel cells, secondary batteries, dye-sensitized solar cells, artificial actuators, electrochemical sensors, light-emitting display devices, impacts It can be used for an absorbent material (for example, running shoes, bedding, vibration suppression affecting a precision instrument or an acoustic device, a packing material, etc.) and a lubricating liquid.
  • the electrolyte gel obtained by the production method of the present invention has strength, elasticity, flexibility, stretchability, and stretchability, it is an optical material, electrical and electronic material, building material, pharmaceutical / medical material, antistatic agent, light It can be widely used in various industries such as leak-proof films and pressure-sensitive adhesives for optical members.

Abstract

The purpose of the present invention is to provide a gelling agent that enables an ionic liquid to be converted into a gel, even if the concentration of the ionic liquid is low, thereby providing an electrolyte gel having a low rate of decrease of electrical conductivity. This ionic liquid gelling agent is characterized by containing a compound represented by general formula (1). [In formula (1), R1 to R3 are each the same or different, and represent a linear or branched alkyl group with a carbon number of one to nine. However, a methylene group (-CH2-) included in the linear or branched alkyl groups of R1 to R3 may be replaced by a sulfide bond (-S-). R4 to R6 are each the same or different, and represent a linear or branched alkyl group with a carbon number of one to four.]

Description

ゲル化剤Gelling agent
 本発明は、イオン液体のゲル化剤、および該ゲル化剤とイオン液体を用いた電解質ゲルの製造方法に関する。 The present invention relates to a gelling agent for an ionic liquid and a method for producing an electrolyte gel using the gelling agent and the ionic liquid.
 従来、水や油等の液体類(動植物油脂、エステル、ポリオール、エーテル、アルコール、炭化水素等)をゲル化または固化する機能を有するものとして、ゲル化剤が用いられており、ゲル化剤としては、低分子ゲル化剤および高分子ゲル化剤が用いられている。ゲル化剤は、低分子ゲル化剤(例えば、分子量が900g/mol未満のゲル化剤)であるか、高分子ゲル化剤(例えば、分子量が900g/mol以上のゲル化剤)であるかに関わらず、液体類に溶解された後に、三次元網目構造を形成する。この三次元網目構造の中に液体類が取り込まれることによって液体類のゲル化が起こる。 Conventionally, gelling agents have been used as those having the function of gelling or solidifying liquids such as water and oil (animal and vegetable oils, esters, polyols, ethers, alcohols, hydrocarbons, etc.). A low molecular gelling agent and a high molecular gelling agent are used. Whether the gelling agent is a low molecular gelling agent (for example, a gelling agent having a molecular weight of less than 900 g / mol) or a high molecular gelling agent (for example, a gelling agent having a molecular weight of 900 g / mol or more). Regardless, after being dissolved in liquids, a three-dimensional network structure is formed. When the liquids are taken into the three-dimensional network structure, the liquids are gelled.
 低分子ゲル化剤は、液体中で、非共有結合性相互作用により自己組織化して、ファイバー状の構造体となる。このファイバー構造体は絡まり合い三次元網目構造を形成する。ゲル化は、このファイバー構造体による三次元網目構造の中に液体類が取り込まれることにより起こるとされている。低分子ゲル化剤によるゲル化は、液体中における低分子ゲル化剤の脱溶媒和や、低分子ゲル化剤同士の非共有結合性相互作用(例えば、水素結合やπ-π結合等)、非共有結合性相互作用に基づく低分子ゲル化剤の自己組織化(所定の外部環境の下、ランダムに分散している分子が自発的に秩序構造を形成する現象をいう)が関与する現象である。この様に、低分子ゲル化剤によるゲル化は、複数の要因(脱溶媒和、非共有結合性相互作用、自己組織化)が関与する現象であるため、低分子ゲル化剤は、高分子ゲル化剤に比べて開発が遅く、知られている低分子ゲル化剤の種類は少ない(特許文献2、3、非特許文献1)。 The low molecular weight gelling agent self-assembles in a liquid by non-covalent interaction to form a fibrous structure. This fiber structure is entangled to form a three-dimensional network structure. Gelation is said to occur when liquids are taken into the three-dimensional network structure of the fiber structure. Gelation with a low molecular weight gelling agent includes desolvation of the low molecular weight gelling agent in a liquid, non-covalent interaction between low molecular weight gelling agents (for example, hydrogen bond or π-π bond), A phenomenon involving the self-organization of low molecular weight gelators based on non-covalent interactions (a phenomenon in which randomly dispersed molecules form an ordered structure spontaneously under a given external environment). is there. Thus, gelation with a low molecular weight gelling agent is a phenomenon involving multiple factors (desolvation, non-covalent interaction, self-assembly). Development is slower than gelling agents, and there are few known low-molecular gelling agents (Patent Documents 2 and 3, Non-Patent Document 1).
 一方、イオン液体は、強酸由来の有機アニオンと弱塩基由来の有機カチオンから形成される塩であり、常温溶融塩やイオン性液体とも呼ばれている。イオン液体は、一般的な塩とは異なって、常温でも液体であり、水や油(有機溶媒)とも相溶しないため、水および油(有機溶媒)に次ぐ第三の液体として注目を集めている。イオン液体は、難燃性、不揮発性、イオン伝導性を示し、数百度の高温でも分解しないといった特性を持つことから、従来の有機溶媒に代わる環境負荷の小さい有機反応溶媒や潤滑剤としての利用が検討されている。 On the other hand, an ionic liquid is a salt formed from an organic anion derived from a strong acid and an organic cation derived from a weak base, and is also called a room temperature molten salt or an ionic liquid. Unlike general salts, ionic liquids are liquid even at room temperature and are not compatible with water or oil (organic solvent). Therefore, ionic liquids are attracting attention as the third liquid after water and oil (organic solvent). Yes. Ionic liquids exhibit flame retardancy, non-volatility, and ionic conductivity, and do not decompose even at high temperatures of several hundred degrees, so they can be used as organic reaction solvents and lubricants with low environmental impact instead of conventional organic solvents. Is being considered.
 イオン液体は、特に、不揮発性やイオン伝導性に優れた液体であり、支持電解質を添加しなくとも電流を流すことができ、さらに電位窓も広いことから、燃料電池や二次電池に用いられる有用な電解液として注目を集めている。燃料電池や二次電池では、電解液の漏えいや自己放電が問題になっており、これらの抑制等を目的として、従来から電解液をゲル化させて種々の電解質ゲルとするための検討がなされている。また、人工アクチュエータの開発においても、電気伝導性があり且つ伸縮自在な柔軟性を有する特徴を持つゲル素材の検討が為されている(特許文献1、非特許文献2、3、4)。 An ionic liquid is a liquid that is particularly excellent in non-volatile properties and ionic conductivity, and can be used for a fuel cell or a secondary battery because it can pass a current without adding a supporting electrolyte and has a wide potential window. It is attracting attention as a useful electrolyte. In fuel cells and secondary batteries, electrolyte leakage and self-discharge are a problem. For the purpose of suppressing these problems, investigations have conventionally been made to gel the electrolyte into various electrolyte gels. ing. Further, in the development of artificial actuators, investigations have been made on gel materials having characteristics of electrical conductivity and flexible elasticity (Patent Document 1, Non-Patent Documents 2, 3, and 4).
特開2011-236328号公報(第1~3頁)JP 2011-236328 A (first to third pages) 特開2000-72736号公報(第1~2頁)JP 2000-72736 A (pages 1 and 2) 特表2005-533134号公報(第1~3頁)JP 2005-533134 A (pages 1 to 3)
 イオン液体は、有機アニオンと有機カチオンとで構成される塩であり、常温で液体として存在する。そのため、従来から知られる高分子ゲル化剤は、イオン液体に溶解または分散させるのが困難であり、高分子ゲル化剤を用いてイオン液体をゲル化させることは困難である。また、イオン液体をゲル化させるように設計された高分子ゲル化剤では、機械的強度を改善するため、ゲル化の際に部分的に架橋構造が導入されることがある。しかし、架橋構造が形成されると、イオン液体をゲル化して得られるゲルの電気伝導度やイオン伝導度は、イオン液体そのものが有する電気伝導度またはイオン伝導度よりも小さくなるとの問題がある。 An ionic liquid is a salt composed of an organic anion and an organic cation and exists as a liquid at room temperature. Therefore, conventionally known polymer gelling agents are difficult to dissolve or disperse in ionic liquids, and it is difficult to gel ionic liquids using polymer gelling agents. Moreover, in the polymer gelling agent designed so that an ionic liquid may be gelatinized, in order to improve mechanical strength, a crosslinked structure may be partially introduced in the case of gelatinization. However, when a crosslinked structure is formed, there is a problem that the electrical conductivity and ionic conductivity of the gel obtained by gelling the ionic liquid are smaller than the electrical conductivity or ionic conductivity of the ionic liquid itself.
 一方、低分子ゲル化剤をイオン液体に適用する場合、低分子ゲル化剤は、イオン液体の有機アニオンと有機カチオンとの相互作用の存在下で、非共有結合性相互作用を発揮する必要がある。同時に、三次元網目構造の中にイオン液体が取り込まれた状態とするためには、低分子ゲル化剤はイオン液体中に一様に分散または溶解されなければならない。このため、イオン液体における低分子ゲル化剤の適用においては、充分な非共有結合性相互作用と、イオン液体への分散性または溶解性という、相反する性質を併せ持つ必要がある。このため、特許文献2、3および非特許文献1の様に、水や有機溶媒においてゲル化能を示す低分子ゲル化剤であっても、イオン液体に対してゲル化能を示すとは限らず、低分子ゲル化剤の挙動を予測することは困難である。 On the other hand, when a low molecular weight gelling agent is applied to an ionic liquid, the low molecular weight gelling agent must exhibit a non-covalent interaction in the presence of an interaction between an organic anion and an organic cation of the ionic liquid. is there. At the same time, in order to obtain a state in which the ionic liquid is taken into the three-dimensional network structure, the low-molecular gelling agent must be uniformly dispersed or dissolved in the ionic liquid. For this reason, in the application of a low-molecular gelling agent in an ionic liquid, it is necessary to have a contradictory property of sufficient noncovalent interaction and dispersibility or solubility in the ionic liquid. Therefore, as in Patent Documents 2 and 3 and Non-Patent Document 1, even low-molecular gelling agents that exhibit gelling ability in water or organic solvents do not always exhibit gelling ability with respect to ionic liquids. Therefore, it is difficult to predict the behavior of the low-molecular gelling agent.
 また、上述の様に、イオン液体は有機アニオンと有機カチオンの相互作用により液体として存在しているため、低分子ゲル化剤によりイオン液体をゲル化させるためには、特許文献1および非特許文献2~4の様に、多くの低分子ゲル化剤を添加する必要があった。また、これらの低分子ゲル化剤により形成されたゲルでは、電気伝導度がゲル化前のイオン液体が持つ電気伝導度よりも大きく低下するといった問題があった。 Further, as described above, since the ionic liquid exists as a liquid due to the interaction between the organic anion and the organic cation, in order to gel the ionic liquid with the low molecular gelling agent, Patent Document 1 and Non-Patent Document As in 2-4, it was necessary to add many low molecular gelling agents. Moreover, in the gel formed with these low molecular gelling agents, there existed a problem that an electrical conductivity fell large rather than the electrical conductivity which the ionic liquid before gelatinization has.
 本発明者は、前記課題を解決するために鋭意研究を重ねた結果、所定のゲル化剤を用いれば、ゲル化剤の濃度が低くてもイオン液体をゲル化させることができ、得られた電解質ゲルの電気伝導度低下率が低いことを見出して、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventor was able to gel the ionic liquid even when the concentration of the gelling agent was low, using a predetermined gelling agent, and obtained The present invention was completed by finding that the rate of decrease in electrical conductivity of the electrolyte gel was low.
 すなわち、本発明に係るイオン液体のゲル化剤は、一般式(1)で示される化合物を含むことを特徴とする。 That is, the ionic liquid gelling agent according to the present invention is characterized by containing a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 [式(1)中、R1~R3は、それぞれ同一または異なって、炭素数1~9の直鎖状または分岐鎖状アルキル基を表す。ただし、R1~R3の直鎖状または分岐鎖状アルキル基に含まれるメチレン基(-CH2-)は、スルフィド結合(-S-)で置き換わっていてもよい。R4~R6は、それぞれ同一または異なって、炭素数1~4の直鎖状または分岐鎖状アルキル基を表す] [In the formula (1), R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms. However, the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—). R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
 また、本発明のイオン液体のゲル化剤は、R1~R3が、それぞれ同一または異なって、メチル基、2-プロピル基、2-メチルプロピル基、1-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基であることが好ましく、メチル基、2-プロピル基、2-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基であることがより好ましい。また、R4~R6が、メチル基であることが好ましい。 In the ionic liquid gelling agent of the present invention, R 1 to R 3 are the same or different and are each selected from methyl group, 2-propyl group, 2-methylpropyl group, 1-methylpropyl group and methylthioethyl group. It is preferably one group selected from the group consisting of, and more preferably one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, and a methylthioethyl group. R 4 to R 6 are preferably methyl groups.
 本発明のイオン液体のゲル化剤は、好ましくは、イオン液体と混合することにより電解質ゲルの製造に供される。また、該電解質ゲルの製造に際し、本発明のイオン液体のゲル化剤とイオン液体の混合物を加熱し、冷却することが好ましい。 The gelling agent for ionic liquid of the present invention is preferably used for producing an electrolyte gel by mixing with an ionic liquid. In the production of the electrolyte gel, it is preferable to heat and cool the mixture of the ionic liquid gelling agent of the present invention and the ionic liquid.
 電解質ゲルを形成するイオン液体としては、イミダゾリウムイオン、ピリジニウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ホスホニウムイオン、アンモニウムイオンおよびスルホニウムイオンよりなる群から選ばれる有機カチオンと、ハロゲンイオン、カルボキシレートイオン、サルフェートイオン、スルホネートイオン、チオシアネートイオン、ニトレートイオン、アルミネートイオン、ボレートイオン、ホスフェートイオン、アミドイオン、アンチモネートイオン、イミドイオン、メチドイオン、アミノ酸イオン、N-アシル酸性アミノ酸イオンおよびN-アシル中性アミノ酸イオンよりなる群から選ばれる有機アニオンとから構成されるイオン液体が好ましい。 The ionic liquid forming the electrolyte gel includes an imidazolium ion, a pyridinium ion, a piperidinium ion, a pyrrolidinium ion, a phosphonium ion, an ammonium ion and a sulfonium ion, a halogen ion, a carboxylate ion, Sulfate ion, sulfonate ion, thiocyanate ion, nitrate ion, aluminate ion, borate ion, phosphate ion, amide ion, antimonate ion, imide ion, methide ion, amino acid ion, N-acyl acidic amino acid ion and N-acyl neutral amino acid An ionic liquid composed of an organic anion selected from the group consisting of ions is preferred.
 電解質ゲルを形成するイオン液体としては、より好ましくは、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミド、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートおよび1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートよりなる群から選ばれる1のイオン液体である。 More preferably, the ionic liquid forming the electrolyte gel is 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butylpyridinium bis (trifluoromethylsulfonyl) amide, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-3- It is one ionic liquid selected from the group consisting of methylimidazolium trifluoromethanesulfonate.
 さらに、電解質ゲルとして、無機硫酸塩、無機リン酸塩、水酸化無機塩、ヘキサフルオロホスフェート無機塩、トリフルオロスルホン酸無機塩、過クロル酸無機塩、テトラフルオロボレート無機塩、ビス(フルオロスルホニル)イミド無機塩、ビス(トリフルオロメチルスルホニル)アミド無機塩および、無機コバルト酸塩よりなる群から選ばれる1又は2の塩を含有することが好ましい。
 本発明には、上記一般式(1)で示される化合物も包含される。本発明の化合物は、R1~R3が、それぞれ同一または異なって、メチル基、2-プロピル基、2-メチルプロピル基、1-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基であることが好ましく、メチル基、2-プロピル基、2-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基であることがより好ましい。また、R4~R6が、メチル基であることが好ましい。
Further, as an electrolyte gel, inorganic sulfate, inorganic phosphate, hydroxylated inorganic salt, hexafluorophosphate inorganic salt, trifluorosulfonic acid inorganic salt, perchloric acid inorganic salt, tetrafluoroborate inorganic salt, bis (fluorosulfonyl) It is preferable to contain one or two salts selected from the group consisting of an imide inorganic salt, a bis (trifluoromethylsulfonyl) amide inorganic salt, and an inorganic cobalt salt.
The present invention also includes a compound represented by the general formula (1). In the compound of the present invention, each of R 1 to R 3 is the same or different and is selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, a 1-methylpropyl group, and a methylthioethyl group. It is preferably a group, more preferably one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, and a methylthioethyl group. R 4 to R 6 are preferably methyl groups.
 また、イオン液体をゲル化するための、上記一般式(1)で示される化合物の使用も本発明の範囲に包含される。 Also, the use of the compound represented by the general formula (1) for gelling an ionic liquid is also encompassed in the scope of the present invention.
 本発明のイオン液体のゲル化剤は、イオン液体の種々の特性、例えば、低蒸気圧、不揮発性、高比熱容量を保持したままゲル構造を安定に保つことができる。本発明のイオン液体のゲル化剤とイオン液体とを混合する工程を含んで製造される電解質ゲルは、上記イオン液体の特性、特に電気伝導性を維持している。このため、燃料電池や二次電池に使用される電解質材料、人工アクチュエータなどへの応用が期待できる。 The gelling agent for ionic liquid of the present invention can keep the gel structure stable while maintaining various characteristics of the ionic liquid, such as low vapor pressure, non-volatility, and high specific heat capacity. The electrolyte gel manufactured including the step of mixing the ionic liquid gelling agent and the ionic liquid of the present invention maintains the characteristics of the ionic liquid, particularly the electrical conductivity. For this reason, application to electrolyte materials and artificial actuators used for fuel cells and secondary batteries can be expected.
図1は、実施例2の電解質ゲルのうち、イオン液体として[bmim][TFSA]を用いた電解質ゲルを倍率2,000倍の電界放射型走査型電子顕微鏡(FE-SEM)で観察した写真である。FIG. 1 is a photograph of an electrolyte gel using [bmim] [TFSA] as an ionic liquid in the electrolyte gel of Example 2 observed with a field emission scanning electron microscope (FE-SEM) at a magnification of 2,000 times. It is. 図2は、実施例2の電解質ゲルのうち、イオン液体として[bmim][CF3SO3]を用いた電解質ゲルを倍率2,000倍の電界放射型走査型電子顕微鏡(FE-SEM)で観察した写真である。FIG. 2 shows an electrolyte gel using [bmim] [CF 3 SO 3 ] as an ionic liquid among the electrolyte gels of Example 2 using a field emission scanning electron microscope (FE-SEM) at a magnification of 2,000 times. It is an observed photograph.
1.ゲル化剤
1-1.ゲル化剤(1)
 本発明のイオン液体のゲル化剤は、一般式(1)で示される化合物(以下、「ゲル化剤(1)」という場合がある)を含むことを特徴とする。
1. Gelling agent 1-1. Gelling agent (1)
The gelling agent of the ionic liquid of the present invention is characterized by containing a compound represented by the general formula (1) (hereinafter sometimes referred to as “gelling agent (1)”).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R1~R3は、それぞれ同一または異なって、炭素数1~9の直鎖状または分岐鎖状アルキル基を表す。ただし、R1~R3の直鎖状または分岐鎖状アルキル基に含まれるメチレン基(-CH2-)は、スルフィド結合(-S-)で置き換わっていてもよい。R4~R6は、それぞれ同一または異なって、炭素数1~4の直鎖状または分岐鎖状アルキル基を表す] [In Formula (1), R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms. However, the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—). R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
 R1~R3における炭素数1~9の直鎖状または分岐鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、メチルプロピル基、ペンチル基、メチルブチル基、ジメチルプロピル基、ヘキシル基、メチルペンチル基、ジメチルブチル基、ヘプチル基、メチルヘキシル基、ジメチルペンチル基、エチルペンチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、エチルヘキシル基、トリメチルペンチル基、メチルエチルペンチル基、ノニル基、メチルオクチル基、ジメチルヘプチル基、エチルヘプチル基、トリメチルヘキシル基、メチルエチルヘキシル基等が挙げられる。 Examples of the linear or branched alkyl group having 1 to 9 carbon atoms in R 1 to R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a methylpropyl group, a pentyl group, a methylbutyl group, and dimethylpropyl. Group, hexyl group, methylpentyl group, dimethylbutyl group, heptyl group, methylhexyl group, dimethylpentyl group, ethylpentyl group, octyl group, methylheptyl group, dimethylhexyl group, ethylhexyl group, trimethylpentyl group, methylethylpentyl group , Nonyl group, methyloctyl group, dimethylheptyl group, ethylheptyl group, trimethylhexyl group, methylethylhexyl group and the like.
 R1~R3の直鎖状または分岐鎖状アルキル基は、好ましくは炭素数1~6の直鎖状または分岐鎖状アルキル基であり、より好ましくは炭素数1~5の直鎖状または分岐鎖状アルキル基であり、さらに好ましくは炭素数1~4の直鎖状または分岐鎖状アルキル基であり、特に好ましくはメチル基、2-プロピル基、2-メチルプロピル基、1-メチルプロピル基およびn-ブチル基よりなる群から選ばれる1つの基である。 The linear or branched alkyl group represented by R 1 to R 3 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 5 carbon atoms. A branched alkyl group, more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group, a 2-propyl group, a 2-methylpropyl group, or a 1-methylpropyl group. One group selected from the group consisting of a group and an n-butyl group.
 本発明のゲル化剤(1)は、R1~R3の直鎖状または分岐鎖状アルキル基の炭素数が1以上であるため、ゲル化剤(1)分子間の非共有結合性相互作用が適度であり、イオン液体にも溶解する。しかしながら、R1~R3のアルキル基の炭素数が多すぎると、ゲル化剤(1)分子間の非共有結合性相互作用が阻害されるため、イオン液体をゲル化させることができなくなる。そのため、R1~R3のアルキル基の炭素数は上記範囲であることが好ましい。 In the gelling agent (1) of the present invention, since the carbon number of the linear or branched alkyl group of R 1 to R 3 is 1 or more, the gelling agent (1) non-covalent bonding between molecules It has a moderate effect and dissolves in ionic liquids. However, if the alkyl group of R 1 to R 3 has too many carbon atoms, the noncovalent interaction between the gelling agent (1) molecules is inhibited, and the ionic liquid cannot be gelled. Therefore, the number of carbon atoms in the alkyl group of R 1 to R 3 is preferably within the above range.
 R1~R3の直鎖状または分岐鎖状アルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基としては、例えば、メチルチオメチル基、メチルチオエチル基、メチルチオプロピル基、メチルチオブチル基等のメチルチオ基を有するアルキル基;エチルチオメチル基、エチルチオエチル基、エチルチオプロピル基等のエチルチオ基を有するアルキル基;プロピルチオメチル基、プロピルチオエチル基等のプロピルチオ基を有するアルキル基;ブチルチオメチル基等のブチルチオ基を有するアルキル基が挙げられる。アルキルチオ基は、親水性基であり、極性が高いため、非共有結合性相互作用(水素結合)に寄与するものであり、スルフィド結合がゲル化剤(1)分子の末端に近いほど、非共有結合性相互作用(水素結合)が生じやすくなると考えられる。したがって、R1~R3の直鎖状または分岐鎖状アルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基としては、好ましくはメチルチオ基を有するアルキル基またはエチルチオ基を有するアルキル基であり、より好ましくはメチルチオ基を有するアルキル基であり、特に好ましくはメチルチオエチル基である。 Examples of the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) include, for example, a methylthiomethyl group, a methylthioethyl group, a methylthio group Alkyl groups having a methylthio group such as propyl group and methylthiobutyl group; alkyl groups having an ethylthio group such as ethylthiomethyl group, ethylthioethyl group and ethylthiopropyl group; propylthio such as propylthiomethyl group and propylthioethyl group An alkyl group having a group; an alkyl group having a butylthio group such as a butylthiomethyl group. The alkylthio group is a hydrophilic group and has a high polarity and therefore contributes to noncovalent interaction (hydrogen bond). The closer the sulfide bond is to the end of the gelling agent (1) molecule, the more noncovalent It is considered that a bonding interaction (hydrogen bond) is likely to occur. Accordingly, the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) is preferably an alkyl group having a methylthio group or An alkyl group having an ethylthio group, more preferably an alkyl group having a methylthio group, and particularly preferably a methylthioethyl group.
 本発明のゲル化剤(1)では、R1~R3の直鎖状または分岐鎖状アルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基は、ゲル化剤(1)分子間の非共有結合性相互作用を適度な範囲とする観点から、炭素数が3以上であることが好ましい。ただし、R1~R3の直鎖状または分岐鎖状アルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基においては、硫黄原子も炭素数1として計算するものとする。R1~R3のアルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基の炭素数が3以上であると、ゲル化剤(1)分子間の非共有結合性相互作用が適度であり、イオン液体にも溶解する。しかし、R1~R3のアルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基の炭素数が多すぎると、非共有結合性相互作用がゲル化剤(1)分子の末端で起きやすくなり、秩序構造の形成(自己組織化)が阻害され、イオン液体をゲル化させることができなくなる。そのため、R1~R3のアルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基の炭素数は、6以下であることが好ましく、5以下であることがより好ましく、4以下であることがさらに好ましい。 In the gelling agent (1) of the present invention, the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) Agent (1) It is preferable that the number of carbon atoms is 3 or more from the viewpoint of setting the non-covalent interaction between molecules within an appropriate range. However, in the group in which the methylene group (—CH 2 —) of the linear or branched alkyl group of R 1 to R 3 is replaced with a sulfide bond (—S—), the sulfur atom is also calculated as having 1 carbon atom. Shall. When the carbon number of the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) is 3 or more, the gelling agent (1) non-covalent between molecules The binding interaction is moderate and dissolves in ionic liquids. However, if the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is replaced with a sulfide bond (—S—), the noncovalent interaction is reduced by the gelling agent ( 1) It tends to occur at the end of the molecule, the formation of an ordered structure (self-assembly) is inhibited, and the ionic liquid cannot be gelled. Therefore, the carbon number of the group in which the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is replaced by a sulfide bond (—S—) is preferably 6 or less, and preferably 5 or less. More preferably, it is more preferably 4 or less.
 R4~R6における炭素数1~4の直鎖状または分岐鎖状アルキル基としては、R1~R3の炭素数1~4の直鎖状または分岐鎖状アルキル基として挙げたものと同様のものが挙げられ、好ましくは炭素数1~3の直鎖状または分岐鎖状アルキル基であり、より好ましくは炭素数1~2の直鎖状または分岐鎖状アルキル基であり、特に好ましくはメチル基である。 Examples of the linear or branched alkyl group having 1 to 4 carbon atoms in R 4 to R 6 include those listed as the linear or branched alkyl group having 1 to 4 carbon atoms in R 1 to R 3. The same can be mentioned, preferably a linear or branched alkyl group having 1 to 3 carbon atoms, more preferably a linear or branched alkyl group having 1 to 2 carbon atoms, particularly preferably. Is a methyl group.
 本発明のゲル化剤(1)では、R4~R6の直鎖状または分岐鎖状アルキル基は、炭素数が1以上であり、電気的に安定であるため、イオン液体のゲル化剤として適している。R4~R6のアルキル基の炭素数が多いほど、ゲル化剤(1)電気的に安定であるが、R4~R6のアルキル基の炭素数が多すぎるとゲル化剤(1)同士の非共有結合性相互作用が阻害され、イオン液体をゲル化させることができなくなる。そのため、R4~R6の基の炭素数は上記範囲であることが好ましい。 In the gelling agent (1) of the present invention, the linear or branched alkyl group of R 4 to R 6 has 1 or more carbon atoms and is electrically stable. Suitable as The larger the carbon number of the alkyl group of R 4 to R 6 is, the more stable the gelling agent (1) is. However, if the number of carbon atoms of the alkyl group of R 4 to R 6 is too large, the gelling agent (1) The non-covalent interaction between each other is inhibited, and the ionic liquid cannot be gelled. Therefore, the number of carbon atoms in the groups R 4 to R 6 is preferably within the above range.
 本発明のゲル化剤(1)は、ベンゼン環の1,3,5-位に、1つのアミド結合と1つのエステル結合が炭素原子1つを介して結合し、R1~R6で定義される所定の置換基を有する置換基を有するため、イオン液体中に溶解することができ、また、イオン液体中であっても、効率よく自己組織化してファイバー状の集合体を形成し、網目構造を形成することができる。該自己組織化により、本発明のゲル化剤(1)はイオン液体をゲル化することができる。 In the gelling agent (1) of the present invention, one amide bond and one ester bond are bonded to the 1,3,5-position of the benzene ring through one carbon atom, and defined by R 1 to R 6 Can be dissolved in the ionic liquid, and even in the ionic liquid, it can efficiently self-assemble to form a fibrous aggregate, A structure can be formed. By the self-assembly, the gelling agent (1) of the present invention can gel the ionic liquid.
 なお、イオン液体は、有機アニオンと有機カチオンとで構成される塩が常温で液体として存在しているものであるため、ゲル化剤のイオン液体中での自己組織化挙動は、置換基の親水性および疎水性の度合により大きく変化する。そのため、ゲル化剤の自己組織化挙動を予測することは困難である。 Since the ionic liquid is a salt composed of an organic anion and an organic cation that exists as a liquid at room temperature, the self-organization behavior of the gelling agent in the ionic liquid depends on the hydrophilicity of the substituent. It varies greatly depending on the degree of property and hydrophobicity. Therefore, it is difficult to predict the self-organization behavior of the gelling agent.
 ゲル化剤(1)としては、式(1-1)で表される化合物(以下、ゲル化剤(1-1)という場合がある)が好ましい。 As the gelling agent (1), a compound represented by the formula (1-1) (hereinafter sometimes referred to as gelling agent (1-1)) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 [式(1-1)中、R11は、炭素数1~9の直鎖状または分岐鎖状アルキル基を表す。ただし、R11の直鎖状または分岐鎖状アルキル基に含まれるメチレン基(-CH2-)は、スルフィド結合(-S-)で置き換わっていてもよい。R12は、炭素数1~4の直鎖状または分岐鎖状アルキル基を表す] [In the formula (1-1), R 11 represents a linear or branched alkyl group having 1 to 9 carbon atoms. However, the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 11 may be replaced with a sulfide bond (—S—). R 12 represents a linear or branched alkyl group having 1 to 4 carbon atoms]
 R11における炭素数1~9の直鎖状または分岐鎖状アルキル基としては、前記R1~R3のアルキル基として挙げたものと同様の基が挙げられ、R11の直鎖状または分岐鎖状アルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基としては、前記R1~R3のアルキル基のメチレン基(-CH2-)がスルフィド結合(-S-)で置き換わった基と同様の基が挙げられる。 The linear or branched alkyl group having 1-9 carbon atoms in R 11, wherein include the same groups as those of the alkyl group of R 1 ~ R 3, linear or branched R 11 As the group in which the methylene group (—CH 2 —) of the chain alkyl group is replaced with a sulfide bond (—S—), the methylene group (—CH 2 —) of the alkyl group of R 1 to R 3 is a sulfide bond ( Examples thereof include the same groups as those replaced with -S-).
 R12における炭素数1~4の直鎖状または分岐鎖状アルキル基としては、R4~R6のアルキル基として挙げたものと同様の基が挙げられる。 Examples of the linear or branched alkyl group having 1 to 4 carbon atoms for R 12 include the same groups as those exemplified as the alkyl group for R 4 to R 6 .
 本発明のゲル化剤とともに電解質ゲルを形成するイオン液体としては、有機アニオンと有機カチオンとで構成されるイオン液体が好ましく、有機アニオンとしては、イミダゾリウムイオン、ピリジニウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ホスホニウムイオン、アンモニウムイオンおよびスルホニウムイオンよりなる群から選ばれる有機カチオン(好ましくは1の有機カチオン)を好ましく用いることができ、有機カチオンとしては、ハロゲンイオン、カルボキシレートイオン、サルフェートイオン、スルホネートイオン、チオシアネートイオン、ニトレートイオン、アルミネートイオン、ボレートイオン、ホスフェートイオン、アミドイオン、アンチモネートイオン、イミドイオン、メチドイオン、アミノ酸イオン、N-アシル酸性アミノ酸イオンおよびN-アシル中性アミノ酸イオンよりなる群から選ばれる有機アニオン(好ましくは1の有機アニオン)を好ましく用いることができる。前記有機カチオンおよび有機アニオンは、それぞれ、置換基を有していてもよい。前記有機カチオンとしては、より好ましくは、イミダゾリウムイオン、ピリジニウムイオン、およびアンモニウムイオンよりなる群から選ばれる1の有機カチオンであり、さらに好ましくは、イミダゾリウムイオンまたはピリジニウムイオンである。また、前記有機アニオンとしては、より好ましくは、スルホネートイオン、ボレートイオン、ホスフェートイオン、アミドイオンよりなる群から選ばれる1の有機カチオンであり、さらに好ましくはスルホネートイオンまたはアミドイオンである。 The ionic liquid that forms an electrolyte gel together with the gelling agent of the present invention is preferably an ionic liquid composed of an organic anion and an organic cation. Examples of the organic anion include imidazolium ion, pyridinium ion, piperidinium ion, pyrrolidini. An organic cation (preferably one organic cation) selected from the group consisting of a humium ion, a phosphonium ion, an ammonium ion, and a sulfonium ion can be preferably used. , Thiocyanate ion, nitrate ion, aluminate ion, borate ion, phosphate ion, amide ion, antimonate ion, imide ion, methide ion, amino acid ion The organic anion selected from the group consisting of N- acyl acidic amino acid ions and N- acyl neutral amino acid ion (preferably an organic anion of 1) can be preferably used. Each of the organic cation and the organic anion may have a substituent. The organic cation is more preferably one organic cation selected from the group consisting of an imidazolium ion, a pyridinium ion, and an ammonium ion, and more preferably an imidazolium ion or a pyridinium ion. The organic anion is more preferably one organic cation selected from the group consisting of a sulfonate ion, a borate ion, a phosphate ion, and an amide ion, and still more preferably a sulfonate ion or an amide ion.
 前記イオン液体としては、有機カチオンとしてイミダゾリウムイオンを用い、有機アニオンとしてアミドイオンを用いたイオン液体、有機カチオンとしてピリジニウムイオンを用い、有機アニオンとしてアミドイオンを用いたイオン液体、有機カチオンとしてイミダゾリウムイオンを用い、有機アニオンとしてスルホネートイオンを用いたイオン液体が好ましく、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミド、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートおよび1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートよりなる群からから選ばれる1のイオン液体がより好ましい。 As the ionic liquid, an imidazolium ion is used as an organic cation, an ionic liquid using an amide ion as an organic anion, a pyridinium ion as an organic cation, an ionic liquid using an amide ion as an organic anion, and an imidazolium as an organic cation Ionic liquids using ions and sulfonate ions as organic anions are preferred, such as 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) ) Amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butylpyridinium bis (trifluoromethylsulfonyl) amide, 1-ethyl-3-methylimidazole 1 ionic liquid is more preferably selected from the ium trifluoromethanesulfonate and 1-butyl-3-methylimidazolium group consisting trifluoromethanesulfonate.
 本発明のイオン液体のゲル化剤において、ゲル化剤(1)は、イオン液体のゲル化剤の総量100質量%に対して50質量%以上含まれていることが好ましく、100質量%以下含まれていることが好ましく、より好ましくは90質量%以上100質量%以下、さらに好ましくは95質量%以上100質量%以下、特に好ましくは100質量%である。すなわち、イオン液体のゲル化剤はゲル化剤(1)以外の他の成分を全く含まないことが好ましい。 In the ionic liquid gelling agent of the present invention, the gelling agent (1) is preferably contained in an amount of 50% by mass or more and 100% by mass or less with respect to 100% by mass of the total amount of the ionic liquid gelling agent. It is preferably 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and particularly preferably 100% by mass. That is, it is preferable that the gelling agent of the ionic liquid does not contain any other components other than the gelling agent (1).
1-2.ゲル化剤(1)の製造方法
 本発明のゲル化剤(1)は、以下の反応により容易に合成することができる。
1-2. Production method of gelling agent (1) The gelling agent (1) of the present invention can be easily synthesized by the following reaction.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(A)で表されるアミノ酸アルキルエステル(H2N-CH(Ra)-COORb)において、Raは、一般式(1)におけるR1~R3と同様の基を表し、Rbは、一般式(1)におけるR4~R6と同様の基を表す。一般式(A)で表されるアミノ酸アルキルエステル(H2N-CH(Ra)-COORb)は、従来公知の方法により合成することができ、例えば、酸触媒下、H2N-CH(Ra)-COOHで表されるアミノ酸と、RbOHで表されるアルコールとを脱水縮合させること等により得ることができる。 In the amino acid alkyl ester (H 2 N—CH (R a ) —COOR b ) represented by the general formula (A), R a represents the same group as R 1 to R 3 in the general formula (1), R b represents the same group as R 4 to R 6 in the general formula (1). The amino acid alkyl ester (H 2 N—CH (R a ) —COOR b ) represented by the general formula (A) can be synthesized by a conventionally known method, for example, H 2 N—CH in the presence of an acid catalyst. It can be obtained by dehydrating condensation of an amino acid represented by (R a ) —COOH and an alcohol represented by R b OH.
 アミノ酸アルキルエステルに対して一般式(B)で示されるベンゼンカルボン酸クロリド等を反応させることにより、本発明のゲル化剤(1)を得ることができる。なお、一般式(B)において、X1~X3は、ハロゲン原子を表し、好ましくは塩素原子である。その方法や条件は特に限定されないが、例えば一般式(A)で表されるアミノ酸アルキルエステルと、一般式(B)で表されるベンゼンカルボン酸クロリドとを、所定の反応当量でトリエチルアミン等の塩基の存在下、乾燥溶媒中で縮合反応させればよい。この反応は、アミノ酸アルキルエステルとベンゼントリカルボン酸クロリドとをモル比ほぼ3:1で用い、0℃ないし50℃の温度で16時間ないし20時間行うことができる。 The gelling agent (1) of the present invention can be obtained by reacting the amino acid alkyl ester with the benzenecarboxylic acid chloride represented by the general formula (B). In the general formula (B), X 1 to X 3 represent a halogen atom, preferably a chlorine atom. The method and conditions are not particularly limited. For example, an amino acid alkyl ester represented by the general formula (A) and a benzenecarboxylic acid chloride represented by the general formula (B) are mixed with a base such as triethylamine at a predetermined reaction equivalent. In the presence of, a condensation reaction may be carried out in a dry solvent. This reaction can be carried out at a temperature of 0 ° C. to 50 ° C. for 16 hours to 20 hours using an amino acid alkyl ester and benzene tricarboxylic acid chloride in a molar ratio of about 3: 1.
 反応物中に未反応の原料や副生成物が残存する場合には、減圧留去、溶剤分別等の手段で精製することができる。例えば、反応物の精製は、純水による洗浄、減圧下での未反応物等の除去、アセトン等の有機溶媒による再結晶、活性白土、活性炭、シリカゲル、アルミナ等の吸着材処理、その他により行うことができ、必要に応じてこれらを単独でもしくは組み合わせて適用すればよい。なお、本発明の化合物をイオン液体のゲル化剤として使用する際には、若干(数質量%未満)のベンゼンカルボン酸および/またはアミノ酸アルキルエステル等の未反応原料や副生成物の混在は特に差支えない。 If unreacted raw materials and by-products remain in the reaction product, the reaction product can be purified by means such as distillation under reduced pressure or solvent fractionation. For example, purification of the reaction product is performed by washing with pure water, removing unreacted materials under reduced pressure, recrystallization with an organic solvent such as acetone, treatment with adsorbent such as activated clay, activated carbon, silica gel, alumina, etc. These may be applied alone or in combination as necessary. When the compound of the present invention is used as an ionic liquid gelling agent, a slight amount (less than several mass%) of unreacted raw materials such as benzenecarboxylic acid and / or amino acid alkyl ester and by-products are particularly mixed. There is no problem.
1-3.その他の成分
 本発明のイオン液体のゲル化剤は、ゲル化剤(1)以外の成分(2)を含んでいてもよい。成分(2)としては、例えば、界面活性剤、膨潤剤、不凍剤、粘度調節剤、イオン強度調節剤等が挙げられる。界面活性剤は、従来公知のものを用いることができる。膨潤剤は、分子集合体を膨張させる役割を果たすものであり、例えば、トリメチルベンゼン、トリエチルベンゼン、トリイソプロピルベンゼン等が挙げられる。
 本発明のイオン液体のゲル化剤において、成分(2)を含む場合、成分(2)の含有量は、イオン液体のゲル化剤の総量100質量%に対して0.1質量%以上50質量%以下であることが好ましく、より好ましくは0.1質量%以上10質量%以下であり、さらに好ましくは1質量%以上5質量%以下である。
1-3. Other Components The ionic liquid gelling agent of the present invention may contain a component (2) other than the gelling agent (1). Examples of the component (2) include surfactants, swelling agents, antifreeze agents, viscosity modifiers, ionic strength modifiers, and the like. A conventionally well-known thing can be used for surfactant. The swelling agent plays a role of expanding the molecular assembly, and examples thereof include trimethylbenzene, triethylbenzene, and triisopropylbenzene.
In the ionic liquid gelling agent of the present invention, when the component (2) is contained, the content of the component (2) is 0.1% by mass or more and 50% by mass with respect to 100% by mass of the total amount of the ionic liquid gelling agent. % Is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less.
2.電解質ゲルの製造方法
 本発明の電解質ゲルの製造方法は、本発明イオン液体のゲル化剤とイオン液体とを混合する工程を含む。
2. Method for Producing Electrolyte Gel The method for producing an electrolyte gel of the present invention includes a step of mixing a gelling agent of the ionic liquid of the present invention and an ionic liquid.
 本発明の電解質ゲルの製造に用いられるイオン液体としては、イオン液体として従来公知のものを用いることができる。イオン液体としては、有機アニオンと有機カチオンとで構成されるイオン液体が好ましく、有機アニオンとしては、イミダゾリウムイオン、ピリジニウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ホスホニウムイオン、アンモニウムイオンおよびスルホニウムイオンよりなる群から選ばれる1の有機カチオンを好ましく用いることができ、有機カチオンとしては、ハロゲンイオン、カルボキシレートイオン、サルフェートイオン、スルホネートイオン、チオシアネートイオン、ニトレートイオン、アルミネートイオン、ボレートイオン、ホスフェートイオン、アミドイオン、アンチモネートイオン、イミドイオン、メチドイオン、アミノ酸イオン、N-アシル酸性アミノ酸イオンおよびN-アシル中性アミノ酸イオンよりなる群から選ばれる1の有機アニオンを好ましく用いることができる。ここで、アミノ酸としてはアスパラギン酸、グルタミン酸、プロリン、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニンなどが挙げられ、N-アシル酸性アミノ酸とN-アシル中性アミノ酸は、これらのN-アシル誘導体である。なお、アシル基としては、アセチル基が挙げられる。前記有機カチオンおよび有機アニオンは、それぞれ、置換基を有していてもよい。 As the ionic liquid used for the production of the electrolyte gel of the present invention, a conventionally known ionic liquid can be used. As the ionic liquid, an ionic liquid composed of an organic anion and an organic cation is preferable, and the organic anion is composed of an imidazolium ion, a pyridinium ion, a piperidinium ion, a pyrrolidinium ion, a phosphonium ion, an ammonium ion, and a sulfonium ion. One organic cation selected from the group can be preferably used, and examples of the organic cation include halogen ions, carboxylate ions, sulfate ions, sulfonate ions, thiocyanate ions, nitrate ions, aluminate ions, borate ions, phosphate ions, Consists of amide ion, antimonate ion, imide ion, methide ion, amino acid ion, N-acyl acidic amino acid ion and N-acyl neutral amino acid ion It can be preferably used one organic anion selected from. Examples of amino acids include aspartic acid, glutamic acid, proline, glycine, alanine, valine, leucine, isoleucine, and phenylalanine. N-acyl acidic amino acids and N-acyl neutral amino acids are these N-acyl derivatives. is there. In addition, an acetyl group is mentioned as an acyl group. Each of the organic cation and the organic anion may have a substituent.
 前記イオン液体を構成する有機カチオンのうち、前記イミダゾリウムイオンとしては、1,3-ジメチルイミダゾリウムイオン、1,3-ジエチルイミダゾリウムイオン、1,3-ジプロピルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-プロピルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-イソプロピル-3-プロピルイミダゾリウムイオン等の1,3-ジアルキルイミダゾリウムイオン;1,2,3-トリメチルイミダゾリウムイオン、1,2,3-トリエチルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、2-エチル-1,3-ジメチルイミダゾリウムイオン等の1,2,3-トリアルキルイミダゾリウムイオン;等が挙げられる。前記ピリジニウムイオンとしては、N-メチルピリジニウムイオン、N-エチルピリジニウムイオンおよびN-プロピルピリジニウムイオン等のN-アルキルピリジニウムイオン;1-メチル-1-プロピルピロリジニウムイオン、1-エチル-1-メチルピロリジニウムイオン、1-ブチル-1-メチルピロリジニウムイオン等のN-アルキルピロリジニウムイオン;等が挙げられる。前記アンモニウムイオンとしては、N,N,N-トリメチル-N-プロピルアンモニウム、メチルトリオクチルアンモニウム等のテトラアルキルアンモニウムイオン等が挙げられる。前記ホスホニウムイオンとしては、テトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、トリメチルエチルホスホニウムイオン、トリエチルメチルホスホニウムイオン等のテトラアルキルホスホニウムイオン等が挙げられる。また、前記スルホニウムイオンとしては、トリメチルスルホニウムイオン、トリエチルスルホニウムイオン、トリプロピルスルホニウムイオン、トリブチルスルホニウムイオン、ジメチルエチルスルホニウムイオン、ジエチルメチルスルホニウムイオン、ジメチルプロピルスルホニウムイオン等のトリアルキルスルホニウムイオンが挙げられる。前記イオン液体を構成する有機カチオンとしては、より好ましくは、イミダゾリウムイオン、ピリジニウムイオン、およびアンモニウムイオンよりなる群から選ばれる1の有機カチオンであり、さらに好ましくは、イミダゾリウムイオンまたはピリジニウムイオンである。 Among the organic cations constituting the ionic liquid, the imidazolium ion includes 1,3-dimethylimidazolium ion, 1,3-diethylimidazolium ion, 1,3-dipropylimidazolium ion, 1-ethyl- 1,3-dialkylimidazolium ions such as 3-methylimidazolium ion, 1-methyl-3-propylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1-isopropyl-3-propylimidazolium ion; 1,2,3-trimethylimidazolium ion, 1,2,3-triethylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 2- Such as ethyl-1,3-dimethylimidazolium ion , 2,3-trialkyl imidazolium ion; and the like. Examples of the pyridinium ion include N-alkylpyridinium ions such as N-methylpyridinium ion, N-ethylpyridinium ion, and N-propylpyridinium ion; 1-methyl-1-propylpyrrolidinium ion, 1-ethyl-1-methylpyrrole N-alkylpyrrolidinium ions such as dinium ions and 1-butyl-1-methylpyrrolidinium ions; Examples of the ammonium ion include tetraalkylammonium ions such as N, N, N-trimethyl-N-propylammonium and methyltrioctylammonium. Examples of the phosphonium ion include tetraalkylphosphonium ions such as tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, trimethylethylphosphonium ion, and triethylmethylphosphonium ion. Examples of the sulfonium ion include trialkylsulfonium ions such as trimethylsulfonium ion, triethylsulfonium ion, tripropylsulfonium ion, tributylsulfonium ion, dimethylethylsulfonium ion, diethylmethylsulfonium ion, and dimethylpropylsulfonium ion. The organic cation constituting the ionic liquid is more preferably one organic cation selected from the group consisting of an imidazolium ion, a pyridinium ion, and an ammonium ion, and more preferably an imidazolium ion or a pyridinium ion. .
 前記イオン液体を構成する有機アニオンのうち、前記スルホネートイオンとしては、トリフルオロメタンスルホネートイオンが挙げられる。ボレートイオンとしては、テトラフルオロボレートイオンが挙げられる。ホスフェートイオンとしては、ヘキサフルオロホスフェートイオンが挙げられる。アンチモネートイオンとしては、ヘキサフルオロアンチモネートイオンが挙げられる。イミドイオンとしては、ビス(トリフルオロメチルスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ニトレートイオンが挙げられる。アミドイオンとしては、ビス(トリフルオロメチルスルホニル)アミドイオンが挙げられる。カルボキシレートイオンとしては、トリフルオロメチルカルボキシレートイオン、カルボキシレートイオンが挙げられる。また、アルミネートイオンとしては、クロロアルミネートイオンが挙げられる。前記イオン液体を構成する有機アニオンとしては、より好ましくは、スルホネートイオン、ボレートイオン、ホスフェートイオン、アミドイオンよりなる群から選ばれる1の有機カチオンであり、さらに好ましくはスルホネートイオンまたはアミドイオンである。 Among the organic anions constituting the ionic liquid, examples of the sulfonate ion include trifluoromethanesulfonate ion. Examples of borate ions include tetrafluoroborate ions. Examples of phosphate ions include hexafluorophosphate ions. Antimonate ions include hexafluoroantimonate ions. Examples of the imide ion include bis (trifluoromethylsulfonyl) imide ion, bis (fluorosulfonyl) imide ion, and nitrate ion. Examples of the amide ion include bis (trifluoromethylsulfonyl) amide ion. Examples of carboxylate ions include trifluoromethylcarboxylate ions and carboxylate ions. Moreover, a chloroaluminate ion is mentioned as an aluminate ion. The organic anion constituting the ionic liquid is more preferably one organic cation selected from the group consisting of a sulfonate ion, a borate ion, a phosphate ion, and an amide ion, and further preferably a sulfonate ion or an amide ion.
 さらに、前記有機カチオンと有機アニオンとから構成されるイオン液体としては、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド等の有機カチオンとしてイミダゾリウムイオンを用い、有機アニオンとしてアミドイオンを用いたイオン液体;1-ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミド等の有機カチオンとしてピリジニウムイオンを用い、有機アニオンとしてアミドイオンを用いたイオン液体;1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート等の有機カチオンとしてイミダゾリウムイオンを用い、有機アニオンとしてスルホネートイオンを用いたイオン液体が特に好ましい。 Further, the ionic liquid composed of the organic cation and the organic anion includes 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethyl). Ionic liquids using imidazolium ions as organic cations and amide ions as organic anions, such as sulfonyl) amide, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide; 1-butylpyridinium bis (tri Ionic liquids using pyridinium ions as organic cations such as fluoromethylsulfonyl) amide and amide ions as organic anions; 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methyl Using imidazolium ions as organic cations, such as imidazolium trifluoromethanesulfonate, ionic liquids using a sulfonate ion as the organic anion is particularly preferred.
 本発明では、前記イオン液体に無機塩を加えることができる。無機塩としては、例えば、無機硫酸塩、無機リン酸塩、水酸化無機塩、ヘキサフルオロホスフェート無機塩、トリフルオロスルホン酸無機塩、過クロル酸無機塩、テトラフルオロボレート無機塩、ビス(フルオロスルホニル)イミド無機塩、ビス(トリフルオロメチルスルホニル)アミド無機塩または無機コバルト酸塩等が好ましく用いられる。無機塩としては、より好ましくは、Li2SO4、Li2PO4、LiOH、LiPF6、CF3SO3Li、LiClO4,LiBF4、(CF3SO22NLiまたはLiCoO2である。 In the present invention, an inorganic salt can be added to the ionic liquid. Examples of the inorganic salt include inorganic sulfate, inorganic phosphate, hydroxylated inorganic salt, hexafluorophosphate inorganic salt, trifluorosulfonic acid inorganic salt, perchloric acid inorganic salt, tetrafluoroborate inorganic salt, bis (fluorosulfonyl) An imide inorganic salt, a bis (trifluoromethylsulfonyl) amide inorganic salt, an inorganic cobalt salt, or the like is preferably used. The inorganic salt is more preferably Li 2 SO 4 , Li 2 PO 4 , LiOH, LiPF 6 , CF 3 SO 3 Li, LiClO 4 , LiBF 4 , (CF 3 SO 2 ) 2 NLi or LiCoO 2 .
 前記無機塩の含有量は、イオン液体100質量%に対して、0.01質量%以上であってもよく、より好ましくは0.02質量%以上、さらに好ましくは0.05質量%以上であってもよい。無機塩の含有量が多いほど、導電性に優れた電解質ゲルを得ることができる。また、無機塩の含有量は、イオン液体100質量%に対して、0.2質量%以下が好ましく、0.15質量%以下がより好ましく、0.12質量%以下がさらに好ましい。無機塩の含有量が少ないほど、より容易に電解質ゲルを得ることができる。 The content of the inorganic salt may be 0.01% by mass or more, more preferably 0.02% by mass or more, and still more preferably 0.05% by mass or more with respect to 100% by mass of the ionic liquid. May be. As the content of the inorganic salt is increased, an electrolyte gel having excellent conductivity can be obtained. Moreover, 0.2 mass% or less is preferable with respect to 100 mass% of ionic liquids, and, as for content of an inorganic salt, 0.15 mass% or less is more preferable, and 0.12 mass% or less is further more preferable. The smaller the content of the inorganic salt, the more easily the electrolyte gel can be obtained.
 本発明の電解質ゲルの製造方法において、本発明のイオン液体のゲル化剤の含有量は、得られる電解質ゲルの総量100質量%に対して0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。また、イオン液体のゲル化剤の含有量は、得られる電解質ゲルの総量100質量%に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2.0質量%以下であることがさらに好ましい。本発明のゲル化剤の含有量は、イオン液体100質量部に対して0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることがさらに好ましい。また、本発明のゲル化剤の含有量は、イオン液体100質量部に対して、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。 In the method for producing an electrolyte gel of the present invention, the content of the gelling agent of the ionic liquid of the present invention is preferably 0.1% by mass or more with respect to 100% by mass of the total amount of the obtained electrolyte gel. It is more preferably 5% by mass or more, and further preferably 1.0% by mass or more. The content of the gelling agent in the ionic liquid is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 2.0% by mass with respect to 100% by mass of the total amount of the electrolyte gel obtained. More preferably, it is% or less. The content of the gelling agent of the present invention is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the ionic liquid, and 1 part by mass or more. More preferably. The content of the gelling agent of the present invention is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and more preferably 2 parts by mass or less with respect to 100 parts by mass of the ionic liquid. Is more preferable.
 イオン液体のゲル化剤の含有量が多いほどイオン液体をゲル化させることが容易であるが、ゲル化剤の含有量が多すぎると、電解質ゲルとしたときの電気伝導度が低下するおそれがある。本発明の製造方法により得られる電解質ゲルにおいて、イオン液体のゲル化剤の含有量が上記の範囲であれば、ゲル化能と電解質ゲルの電気伝導度を両立することができる。 The more the content of the gelling agent in the ionic liquid, the easier it is to gel the ionic liquid, but if the content of the gelling agent is too much, there is a risk that the electrical conductivity when the electrolyte gel is made decreases. is there. In the electrolyte gel obtained by the production method of the present invention, if the content of the gelling agent of the ionic liquid is in the above range, the gelling ability and the electric conductivity of the electrolyte gel can be compatible.
 ゲル化剤とイオン液体とを混合する方法としては、特に限定されず、振とう法や撹拌法等の従来公知の方法を用いることができる。ゲル化剤をイオン液体中に一様に溶解させる観点から、振とう法であることが好ましい。 The method of mixing the gelling agent and the ionic liquid is not particularly limited, and a conventionally known method such as a shaking method or a stirring method can be used. From the viewpoint of uniformly dissolving the gelling agent in the ionic liquid, the shaking method is preferred.
 本発明の電解質ゲルの製造方法は、ゲル化剤とイオン液体との混合物を加熱し、冷却する工程をさらに含むことが好ましい。ゲル化剤とイオン液体との混合物を加熱する温度は、100℃以上250℃以下であることが好ましく、より好ましくは100℃以上200℃以下である。加熱する温度が100℃未満であると、ゲル化剤をイオン液体に十分に溶解させ、一様に溶解させることが困難である。加熱温度が高いほど、本発明のイオン液体のゲル化剤の、イオン液体への溶解性が向上するが、加熱温度が250℃を超えると、ゲル化剤の分解を招く恐れがあるため好ましくない。 The method for producing an electrolyte gel of the present invention preferably further includes a step of heating and cooling the mixture of the gelling agent and the ionic liquid. The temperature for heating the mixture of the gelling agent and the ionic liquid is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower. When the heating temperature is less than 100 ° C., it is difficult to dissolve the gelling agent sufficiently in the ionic liquid and dissolve it uniformly. The higher the heating temperature, the better the solubility of the ionic liquid gelling agent of the present invention in the ionic liquid. However, if the heating temperature exceeds 250 ° C., the gelling agent may be decomposed, which is not preferable. .
 本発明において、電解質ゲルは、ゲル化剤の効果によりイオン液体とゲル化剤(1)との混合物全体が異常粘性を示し、流動性を失ったものと定義される。本発明では、複数のイオン液体のゲル化剤がゲル化剤分子間における非共有結合性相互作用により自己組織化してファイバー状の構造体となり、このファイバー構造体が絡まり合うことで三次元網目構造を構成し、さらに、イオン液体が該三次元網目構造の内部に取り込まれることによって電解質ゲルが形成されると考えられる。非共有結合性相互作用としては、例えば、水素結合やπ-π結合等が挙げられる。 In the present invention, the electrolyte gel is defined as a mixture of the ionic liquid and the gelling agent (1) that exhibits abnormal viscosity due to the effect of the gelling agent and loses fluidity. In the present invention, a plurality of ionic liquid gelling agents are self-assembled by non-covalent bonding between gelling agent molecules to form a fiber-like structure, and the fiber structure is entangled to form a three-dimensional network structure. Furthermore, it is considered that the electrolyte gel is formed by the ionic liquid being taken into the three-dimensional network structure. Examples of the non-covalent interaction include a hydrogen bond and a π-π bond.
 本発明の電解質ゲルの製造方法において、ゲル化を判定する方法としては特に限定されず従来公知の方法を用いることができ、例えば、落球法、粘弾性測定法、試験管倒置法等を用いることができる。本発明では、設備の簡易性等の観点から、試験管倒置法が好ましく用いられる。試験管倒置法では、イオン液体のゲル化剤とイオン液体を混合して得られる反応液を試験管に入れ、該試験管を上下反転した際に、反応液が流動するか否かによってゲル化を判定する。 In the method for producing an electrolyte gel of the present invention, the method for determining gelation is not particularly limited, and a conventionally known method can be used. For example, a falling ball method, a viscoelasticity measuring method, a test tube inversion method, or the like is used. Can do. In the present invention, the test tube inversion method is preferably used from the viewpoint of simplicity of equipment and the like. In the test tube inversion method, a reaction solution obtained by mixing an ionic liquid gelling agent and an ionic liquid is placed in a test tube, and gelled depending on whether the reaction solution flows when the test tube is turned upside down. Determine.
 本発明のイオン液体のゲル化剤は、イオン液体の種々の特性、例えば、高耐熱性や難燃性を保持したまま安定なゲルを形成することができる。例えば、電気伝導度は、元の電気伝導度と比較した電気伝導度低下率が0%以上25%以下、より好ましい態様では0%以上10%以下と良好である。このため、本発明のゲル化剤および本発明の製造方法により得られる電解質ゲルは、燃料電池や二次電池、色素増感型太陽電池の電解質、人工アクチュエータ、電気化学センサ、発光表示装置、衝撃吸収材(例えば、ランニングシューズ、寝具、精密機器や音響装置へ影響する振動抑制、梱包材など)に用いることができる。さらに、本発明の製造方法により得られる電解質ゲルは、強度、弾性、柔軟性、伸張性、伸縮性を有するため、光学材料、電気電子材料、建築材料、医薬・医療材料、帯電防止剤、光漏れ防止膜、光学部材用粘着剤などの各種産業に幅広く利用することができる。 The gelling agent of the ionic liquid of the present invention can form a stable gel while maintaining various characteristics of the ionic liquid, such as high heat resistance and flame retardancy. For example, the electrical conductivity is as good as 0% or more and 25% or less, more preferably 0% or more and 10% or less, in terms of a decrease in electrical conductivity compared to the original electrical conductivity. For this reason, the gelling agent of the present invention and the electrolyte gel obtained by the production method of the present invention are electrolytes for fuel cells, secondary batteries, dye-sensitized solar cells, artificial actuators, electrochemical sensors, light-emitting display devices, impacts It can be used as an absorbent material (for example, running shoes, bedding, vibration suppression affecting a precision instrument or acoustic device, packing material, etc.). Furthermore, since the electrolyte gel obtained by the production method of the present invention has strength, elasticity, flexibility, stretchability, and stretchability, it is an optical material, electrical and electronic material, building material, pharmaceutical / medical material, antistatic agent, light It can be widely used in various industries such as leak-proof films and pressure-sensitive adhesives for optical members.
 本願は、2012年9月27日に出願された日本国特許出願第2012-214499号に基づく優先権の利益を主張するものである。2012年9月27日に出願された日本国特許出願第2012-214499号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2012-214499 filed on September 27, 2012. The entire contents of Japanese Patent Application No. 2012-214499 filed on September 27, 2012 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
 また、以下の実験における測定条件や試験条件などは、以下に示すとおりである。 In addition, the measurement conditions and test conditions in the following experiments are as shown below.
 NMR測定
 NMR装置(BRUKER AVANCE 500型デジタル、BRUKER社製)を用いて、1H NMR測定を行った。合成したゲル化剤を20mMの濃度で重水素化ジメチルスルホキシドに溶解させ、共鳴周波数を500MHzとして測定を行った。
NMR measurement 1 H NMR measurement was performed using an NMR apparatus (BRUKER AVANCE 500 type digital, manufactured by BRUKER). The synthesized gelling agent was dissolved in deuterated dimethyl sulfoxide at a concentration of 20 mM, and the measurement was performed at a resonance frequency of 500 MHz.
 ゲル化試験
 試験管倒置法により、電解質ゲルのゲル化を判定した。具体的には、直径8mm、高さ15mmの蓋付き試験管に実施例1~4および比較例1~8で得られたゲル化剤と表1に示すイオン液体との混合物を0.5mL入れ、130℃で一分間振とうさせながら溶解させた。これを室温(25℃)で1時間から24時間静置した後に、上下反転させることによってゲル化を判定した。ゲル化剤の濃度は、ゲル化剤とイオン液体の混合物の総量100%に対して2%とした。上下反転した際に、反応液の流動が全く起きなかった場合をゲル化(G)、反応液の一部が流動し、一部は流動しなかった場合を部分ゲル化(PG)、粘性挙動を示しながら反応液の全てが流動した場合をゾル(Sol)、粘性挙動を示さずに反応液の全てが流動した場合を溶液(S)とした。また、静置した後に、ゲル化剤が析出した場合を凝集(P)、130℃10分間振とうさせてもゲル化剤がイオン液体に溶解しなかった場合を不溶(I)とした。
 さらに、ゲル化が観察されたゲル化剤に関しては、濃度を2%より低くして、さらにゲル化試験を行った。
Gelation test Gelation of the electrolyte gel was determined by the test tube inversion method. Specifically, 0.5 mL of a mixture of the gelling agent obtained in Examples 1 to 4 and Comparative Examples 1 to 8 and the ionic liquid shown in Table 1 was placed in a test tube with a lid having a diameter of 8 mm and a height of 15 mm. And dissolved while shaking at 130 ° C. for 1 minute. This was allowed to stand at room temperature (25 ° C.) for 1 to 24 hours, and then turned upside down to determine gelation. The concentration of the gelling agent was 2% with respect to 100% of the total amount of the mixture of the gelling agent and the ionic liquid. When upside down, the reaction solution does not flow at all when gelled (G), when part of the reaction solution flows, and when some does not flow, partially gelates (PG), viscous behavior , The case where all of the reaction liquid flowed was designated as sol (Sol), and the case where all of the reaction liquid flowed without exhibiting viscous behavior was designated as solution (S). Further, the case where the gelling agent was deposited after standing was agglomerated (P), and the case where the gelling agent was not dissolved in the ionic liquid even when shaken at 130 ° C. for 10 minutes was defined as insoluble (I).
Furthermore, with respect to the gelling agent in which gelation was observed, the gelling test was further performed at a concentration lower than 2%.
 電界放射型走査型電子顕微鏡観察
 本発明の製造方法により得られた電解質ゲルを数日間純水中に浸して三次元網目構造内のイオン液体を純水で置換し、凍結乾燥させた。凍結乾燥して得られたキセロゲルをパラジウムコーティングし、電界放射型走査型電子顕微鏡(FE-SEM、JSM-7500F,日本電子株式会社製)により三次元網目構造の観察を行った。加速電圧は5kV、観察倍率は2,000倍とした。
Field Emission Scanning Electron Microscope Observation The electrolyte gel obtained by the production method of the present invention was immersed in pure water for several days to replace the ionic liquid in the three-dimensional network structure with pure water and freeze-dried. The xerogel obtained by freeze-drying was coated with palladium, and the three-dimensional network structure was observed with a field emission scanning electron microscope (FE-SEM, JSM-7500F, manufactured by JEOL Ltd.). The acceleration voltage was 5 kV and the observation magnification was 2,000 times.
 導電率測定
 イオン液体とゲル化剤の混合液をU字型のサンプル管に入れ、電極を差し込んだ。25℃の水浴中に前記U字型のサンプル管を静置し、1時間以上経過した後に交流四端子法により入力抵抗2MΩ、入力容量20pF、CMRR50d以上としてインピーダンス測定を行った。測定には、ケミカルインピーダンスメータ 3532-80(日置電機株式会社製)を用いた。
Conductivity measurement A mixed solution of an ionic liquid and a gelling agent was placed in a U-shaped sample tube, and an electrode was inserted. The U-shaped sample tube was allowed to stand in a 25 ° C. water bath, and after an hour or more had elapsed, impedance measurement was performed using an AC four-terminal method with an input resistance of 2 MΩ, an input capacitance of 20 pF, and CMRR of 50 d or more. For the measurement, a chemical impedance meter 3532-80 (manufactured by Hioki Electric Co., Ltd.) was used.
 測定したインピーダンス(Z,θ)をCole-Coleプロットし、直線部分を外挿してX軸との交点により抵抗Rを計算した。JIS K0130-1995の標準値(7.437g/Lの塩化カリウム水溶液の25℃での導電率k0が12.86mS/cm)を用い、抵抗Rを以下の式(2)に代入することにより前記サンプル管のセル定数Kを求めた。そして、式(3)により電解質ゲルの導電率を求めた。
 セル定数(K)=サンプル管の抵抗(R0)×導電率(k0)   (2)
 電解質ゲルの導電率(k)=セル定数(K)×電解質ゲルの抵抗(R)    (3)
The measured impedance (Z, θ) was Cole-Cole plotted, the resistance R was calculated from the intersection with the X axis by extrapolating the straight line portion. By using the standard value of JIS K0130-1995 (conductivity k 0 of 7.437 g / L potassium chloride aqueous solution at 25 ° C. is 12.86 mS / cm) and substituting resistance R into the following formula (2) The cell constant K of the sample tube was determined. And the electrical conductivity of electrolyte gel was calculated | required by Formula (3).
Cell constant (K) = sample tube resistance (R 0 ) × conductivity (k 0 ) (2)
Electrolyte gel conductivity (k) = cell constant (K) × electrolyte gel resistance (R)   (3)
 実施例1
 L-アラニンメチルエステル塩酸塩(16.5mmol)を無水ジクロロメタン200mLに分散させ、0℃に冷却し、トリエチルアミン4.5mLを加えた。トリメゾイルクロライド(5.5mmol)を無水ジクロロメタン15mLに溶解させたものを滴下した。常温(25℃)に戻して18時間攪拌した。
Example 1
L-alanine methyl ester hydrochloride (16.5 mmol) was dispersed in 200 mL of anhydrous dichloromethane, cooled to 0 ° C., and 4.5 mL of triethylamine was added. A solution of trimesoyl chloride (5.5 mmol) dissolved in 15 mL of anhydrous dichloromethane was added dropwise. It returned to normal temperature (25 degreeC), and stirred for 18 hours.
 塩酸10mM水溶液100mLで2回、純水各100mLで洗浄し、有機層をエバポレータで濃縮し、白色固体のゲル化剤を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.14(d,1H),8.50(s,1H),4.52(m,1H),3.66(s,3H),1.43(d,1H)
また、元素分析の結果は以下の通りであった。
Calcd. for C212793:C,54.19;H,5.85;N,9.03.Found:C,52.38;H,5.36;N,8.42.
This was washed twice with 100 mL of 10 mM aqueous hydrochloric acid and with 100 mL each of pure water, and the organic layer was concentrated with an evaporator to obtain a white solid gelling agent. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.14 (d, 1H), 8.50 (s, 1H), 4.52 (m, 1H), 3.66 (s, 3H), 1 .43 (d, 1H)
The results of elemental analysis were as follows.
Calcd. for C 21 H 27 O 9 N 3 : C, 54.19; H, 5.85; N, 9.03. Found: C, 52.38; H, 5.36; N, 8.42.
 実施例2
 実施例1において、L-アラニンメチルエステル塩酸塩(16.5mmol)の代わりにL-バリンメチルエステル塩酸塩(16.5mmol)を用いた以外は実施例1と同様にして白色固体のゲル化剤を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ8.98(d,1H),8.43(s,1H),4.33(t,1H),3.67(s,3H),2.20(m,1H),1.01(d,3H),0.96(d,3H)
また、元素分析の結果は以下の通りであった。
Calcd. for C273993:C,59.00;H,7.15;N,7.65.Found:C,58.59;H,6.84;N,7.62.
Example 2
A white solid gelling agent was prepared in the same manner as in Example 1, except that L-valine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 8.98 (d, 1H), 8.43 (s, 1H), 4.33 (t, 1H), 3.67 (s, 3H), 2 .20 (m, 1H), 1.01 (d, 3H), 0.96 (d, 3H)
The results of elemental analysis were as follows.
Calcd. for C 27 H 39 O 9 N 3: C, 59.00; H, 7.15; N, 7.65. Found: C, 58.59; H, 6.84; N, 7.62.
 実施例3
 実施例1において、L-アラニンメチルエステル塩酸塩(16.5mmol)の代わりにL-ロイシンメチルエステル塩酸塩(16.5mmol)を用いた以外は実施例1と同様にして白色固体のゲル化剤を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.10(d,1H),8.49(s,1H),4.54(m,1H),3.66(s,1H),1.81(m,1H),1.72(m,1H),1.59(m,1H),0.94(d,3H),0.90(d,3H)
また、元素分析の結果は以下の通りであった。
Calcd. for C304593:C,60.90;H,7.67;N,7.10.Found:C,60.84;H,7.41;N,7.08.
Example 3
A white solid gelling agent was prepared in the same manner as in Example 1, except that L-leucine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.10 (d, 1H), 8.49 (s, 1H), 4.54 (m, 1H), 3.66 (s, 1H), 1 .81 (m, 1H), 1.72 (m, 1H), 1.59 (m, 1H), 0.94 (d, 3H), 0.90 (d, 3H)
The results of elemental analysis were as follows.
Calcd. for C 30 H 45 O 9 N 3: C, 60.90; H, 7.67; N, 7.10. Found: C, 60.84; H, 7.41; N, 7.08.
 実施例4
 実施例1において、L-アラニンメチルエステル塩酸塩(16.5mmol)の代わりにL-メチオニンメチルエステル塩酸塩(16.5mmol)を用いた以外は実施例1と同様にして白色固体のゲル化剤を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.16(d,1H),8.51(s,1H),4.63(m,1H),3.67(s,3H),2.58(m,2H),2.07(m,5H)
また、元素分析の結果は以下の通りであった。
Calcd. for C2739933:C,50.21;H,6.09;N,6.51.Found:C,50.17;H,5.79;N,6.47.
Example 4
A white solid gelling agent was prepared in the same manner as in Example 1 except that L-methionine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). Got. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.16 (d, 1H), 8.51 (s, 1H), 4.63 (m, 1H), 3.67 (s, 3H), 2 .58 (m, 2H), 2.07 (m, 5H)
The results of elemental analysis were as follows.
Calcd. for C 27 H 39 O 9 N 3 S 3: C, 50.21; H, 6.09; N, 6.51. Found: C, 50.17; H, 5.79; N, 6.47.
 比較例1
 実施例1において、L-アラニンメチルエステル塩酸塩(16.5mmol)の代わりにL-グリシンメチルエステル塩酸塩(16.5mmol)を用いた以外は実施例1と同様にして白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.26(m,1H),8.51(t,1H),4.06(m,2H),3.67(t,3H)
質量分析の結果は以下の通りであった。
Calcd. for C182193([M+Na+])446.7,found 446.0
Comparative Example 1
A white solid was obtained in the same manner as in Example 1 except that L-glycine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.26 (m, 1H), 8.51 (t, 1H), 4.06 (m, 2H), 3.67 (t, 3H)
The results of mass spectrometry were as follows.
Calcd. for C 18 H 21 O 9 N 3 ([M + Na +]) 446.7, found 446.0
 比較例2
 実施例1において、L-アラニンメチルエステル塩酸塩(16.5mmol)の代わりにL-フェニルアラニンメチルエステル塩酸塩(16.5mmol)を用いた以外は実施例1と同様にして白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.18(m,1H),8.36(t,1H),7.28(m,5H),4.70(m,1H),3.64(m,3H),3.33(t,1H),3.15(m,1H)
また、元素分析の結果は以下の通りであった。
Calcd. for C393993:C,66.4;H,5.10;N,6.45.Found:C,67.2;H.4.91;N,6.19.
質量分析の結果は以下の通りであった。
Calcd. for C393993([M+Na+])716.7,found 4715.2
Comparative Example 2
A white solid was obtained in the same manner as in Example 1 except that L-phenylalanine methyl ester hydrochloride (16.5 mmol) was used instead of L-alanine methyl ester hydrochloride (16.5 mmol). The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.18 (m, 1H), 8.36 (t, 1H), 7.28 (m, 5H), 4.70 (m, 1H), 3 .64 (m, 3H), 3.33 (t, 1H), 3.15 (m, 1H)
The results of elemental analysis were as follows.
Calcd. for C 39 H 39 O 9 N 3: C, 66.4; H, 5.10; N, 6.45. Found: C, 67.2; 4.91; N, 6.19.
The results of mass spectrometry were as follows.
Calcd. for C 39 H 39 O 9 N 3 ([M + Na +]) 716.7, found 4715.2
 比較例3
 比較例1で得られた白色固体(2.14mmol)をメタノール30mLに溶解させ、0℃に冷却した。2MNaOH水溶液を加えた後、常温に戻し22時間攪拌することにより加水分解した。析出した白色固体をろ過により回収し、残渣を純水に溶解させた。1M塩酸を加えることによりpHを3以下とした。数時間静置した後に上澄みを遠心分離により除去し、白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ9.26(m,1H),8.51(st,1H),4.06(m,2H),3.67(t,3H)
また、質量分析の結果は以下の通りであった。
Calcd. for C151593([M+Na+])404.3,found 404.0
Comparative Example 3
The white solid (2.14 mmol) obtained in Comparative Example 1 was dissolved in 30 mL of methanol and cooled to 0 ° C. After adding 2M NaOH aqueous solution, it returned to normal temperature and hydrolyzed by stirring for 22 hours. The precipitated white solid was collected by filtration, and the residue was dissolved in pure water. The pH was adjusted to 3 or less by adding 1M hydrochloric acid. After standing still for several hours, the supernatant was removed by centrifugation to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 9.26 (m, 1H), 8.51 (st, 1H), 4.06 (m, 2H), 3.67 (t, 3H)
Moreover, the result of mass spectrometry was as follows.
Calcd. for C 15 H 15 O 9 N 3 ([M + Na +]) 404.3, found 404.0
 比較例4
 実施例2で得られた白色固体(2.98mmol)をテトラヒドロフラン200mL、純水2mLに溶解させ、2MNaOH水溶液35mLを加え常温で30時間攪拌することにより加水分解した。2M塩酸を加えることによりpHを5~6の範囲となる様調整した。エバポレータで溶媒を減圧留去した。得られた白色固体を2MNaOH水溶液に溶解させた。1M塩酸を加えてpH4~5に調整した。析出した白色固体をロートで回収し、真空乾燥して白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ12.7(s,1H),8.78(d,1H),8.40(s,1H),4.32(t,3H),2.21(m,1H),0.99(t,6H)
Comparative Example 4
The white solid (2.98 mmol) obtained in Example 2 was dissolved in 200 mL of tetrahydrofuran and 2 mL of pure water, added with 35 mL of 2M NaOH aqueous solution, and hydrolyzed by stirring at room temperature for 30 hours. The pH was adjusted to be in the range of 5-6 by adding 2M hydrochloric acid. The solvent was distilled off under reduced pressure using an evaporator. The obtained white solid was dissolved in 2M NaOH aqueous solution. 1M hydrochloric acid was added to adjust the pH to 4-5. The precipitated white solid was collected with a funnel and dried under vacuum to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 12.7 (s, 1H), 8.78 (d, 1H), 8.40 (s, 1H), 4.32 (t, 3H), 2 .21 (m, 1H), 0.99 (t, 6H)
 比較例5
 実施例4で得られた白色固体(2.80mmol)を1,4-ジオキサン100mL、純水1mLに溶解させ、2MNaOH水溶液25mLを加え常温で30時間攪拌することにより加水分解した。2M塩酸を加えることによりpHを5~6に調整し、エバポレータで溶媒を減圧留去した。得られた白色固体を2MNaOH水溶液に溶解させた。1M塩酸を加え、pHを4~5に調整した。析出した白色固体をロートで回収し、真空乾燥して白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ12.8(s,1H),9.00(d,1H),8.48(s,1H),4.56(m,1H),2.57(m,2H),2.07(m,5H)
Comparative Example 5
The white solid (2.80 mmol) obtained in Example 4 was dissolved in 100 mL of 1,4-dioxane and 1 mL of pure water, added with 25 mL of 2M NaOH aqueous solution, and hydrolyzed by stirring at room temperature for 30 hours. The pH was adjusted to 5-6 by adding 2M hydrochloric acid, and the solvent was distilled off under reduced pressure with an evaporator. The obtained white solid was dissolved in 2M NaOH aqueous solution. 1M hydrochloric acid was added to adjust the pH to 4-5. The precipitated white solid was collected with a funnel and dried under vacuum to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 12.8 (s, 1H), 9.00 (d, 1H), 8.48 (s, 1H), 4.56 (m, 1H), 2 .57 (m, 2H), 2.07 (m, 5H)
 比較例6
 比較例2で得られた白色固体をメタノール100mLに溶解させ、0℃に冷却した。2MNaOH水溶液を30mL加え、常温に戻して22時間攪拌することにより加水分解した。反応液に純水100mLを加え、1M塩酸を加えることによりpHを3以下に調整した。数時間静置した後に上澄みを遠心分離により除去し、白色固体を得た。得られた白色固体についてゲル化試験を行った。結果を表1に示す。NMR測定の結果は以下の通りであった。
1H-NMR,(DMSO-d6,500MHz)δ12.8(s,1H),8.98(m,1H),8.31(m,1H),7.29(m,5H),4.65(m,1H),3.20(m,1H),3.08(m,1H)
Comparative Example 6
The white solid obtained in Comparative Example 2 was dissolved in 100 mL of methanol and cooled to 0 ° C. 30 mL of 2M NaOH aqueous solution was added, it returned to normal temperature, and it hydrolyzed by stirring for 22 hours. 100 mL of pure water was added to the reaction solution, and the pH was adjusted to 3 or less by adding 1 M hydrochloric acid. After standing still for several hours, the supernatant was removed by centrifugation to obtain a white solid. The resulting white solid was subjected to a gelation test. The results are shown in Table 1. The results of NMR measurement were as follows.
1 H-NMR, (DMSO-d 6 , 500 MHz) δ 12.8 (s, 1H), 8.98 (m, 1H), 8.31 (m, 1H), 7.29 (m, 5H), 4 .65 (m, 1H), 3.20 (m, 1H), 3.08 (m, 1H)
 比較例7
 比較例4で得られた白色固体を0.76mmol(0.5g)、N-ヒドロキシコハク酸イミド(NHS)を0.76mmol(87.5mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を0.76mmol(146mg)、NH2-(CH2CH2O)4-CH30.80mmol(166mg)、トリエチルアミンを0.76mmol(76.9mg)秤量し、ジメチルホルムアミド3mLに溶解させ、室温(25℃)で20時間攪拌した。エバポレータを用いて溶媒留去した。得られた反応液にメタノール4mLを加え、60℃に加熱して均一溶液とした後、純水30mLを加えた。遠心分離して上澄みを除いた後、再びメタノールを加え、加熱し、純水を添加して遠心分離する操作を行った。得られた黄色沈澱を凍結乾燥した。得られた黄色固体についてゲル化試験を行った。結果を表1に示す。
 なお、NH2-(CH2CH2O)4-CH3は、国際公開第2009/109035号に記載の方法で合成した。
Comparative Example 7
0.76 mmol (0.5 g) of the white solid obtained in Comparative Example 4, 0.76 mmol (87.5 mg) of N-hydroxysuccinimide (NHS), 1-ethyl-3- (3-dimethylaminopropyl) ) 0.76 mmol (146 mg) of carbodiimide hydrochloride (WSC), 0.80 mmol (166 mg) of NH 2 — (CH 2 CH 2 O) 4 —CH 3, 0.76 mmol (76.9 mg) of triethylamine, and dimethyl It was dissolved in 3 mL of formamide and stirred at room temperature (25 ° C.) for 20 hours. The solvent was distilled off using an evaporator. 4 mL of methanol was added to the obtained reaction solution, heated to 60 ° C. to obtain a uniform solution, and then 30 mL of pure water was added. After centrifuging and removing the supernatant, methanol was added again, followed by heating, adding pure water and centrifuging. The resulting yellow precipitate was lyophilized. The resulting yellow solid was subjected to a gelation test. The results are shown in Table 1.
NH 2 — (CH 2 CH 2 O) 4 —CH 3 was synthesized by the method described in International Publication No. 2009/109035.
 比較例8
 比較例8において、比較例4で得られた白色固体の代わりに比較例6で得られた白色固体を用いたこと以外は、比較例9と同様にして黄色固体を得た。得られた黄色固体についてゲル化試験を行った。結果を表1に示す。
Comparative Example 8
In Comparative Example 8, a yellow solid was obtained in the same manner as Comparative Example 9 except that the white solid obtained in Comparative Example 6 was used instead of the white solid obtained in Comparative Example 4. The resulting yellow solid was subjected to a gelation test. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1において、[emim][TFSA]は1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミドを、[bmim][TFSA]は1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミドを、[hmim][TFSA]は1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミドを、[bpy][TFSA]は1-ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミドを、[emim][CF3SO3]は1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートを、[bmim][CF3SO3]は1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートをそれぞれ表す。 In Table 1, [emim] [TFSA] represents 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, and [bmim] [TFSA] represents 1-butyl-3-methylimidazolium bis (trifluoro). Methylsulfonyl) amide, [hmim] [TFSA] is 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, and [bpy] [TFSA] is 1-butylpyridinium bis (trifluoromethylsulfonyl). Amide, [emim] [CF 3 SO 3 ] is 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, and [bmim] [CF 3 SO 3 ] is 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Represent each.
 表1中、実施例1~4のゲル化剤は本発明で規定する要件を満足するゲル化剤であり、イオン液体[emim][TFSA]、[bmim][TFSA]、[hmim][TFSA]、[bpy][TFSA]、[emim][CF3SO3]及び[bmim][CF3SO3]に対して溶解すると同時に優れたゲル化能を示した。特に、一般式(1)におけるR1~R3のアルキル基の炭素数が3又は4である実施例2~4のゲル化剤では、ほぼ全てのイオン液体に溶解し、優れたゲル化能を示した。 In Table 1, the gelling agents of Examples 1 to 4 are gelling agents that satisfy the requirements defined in the present invention, and are ionic liquids [emim] [TFSA], [bmim] [TFSA], [hmim] [TFSA]. ], [Bpy] [TFSA], [emim] [CF 3 SO 3 ] and [bmim] [CF 3 SO 3 ], and at the same time showed excellent gelling ability. In particular, the gelling agents of Examples 2 to 4 in which the carbon number of the alkyl group of R 1 to R 3 in the general formula (1) is 3 or 4 dissolves in almost all ionic liquids and has excellent gelling ability. showed that.
 一方、比較例1~8の化合物は、化合物の末端基がカルボキシル基であるか、ポリエーテルである。その結果、イオン液体に溶解して均一溶液とすることも困難であり、溶解できたとしても、ゲル化能を示さない、またはゲル化剤が再析出する現象が確認された。 On the other hand, in the compounds of Comparative Examples 1 to 8, the terminal groups of the compounds are carboxyl groups or polyethers. As a result, it was difficult to make a uniform solution by dissolving in an ionic liquid, and even if it was able to be dissolved, it was confirmed that a gelling ability was not exhibited or a gelling agent was reprecipitated.
 実施例1~4と比較例1~8とを比較すると、本発明のゲル化剤を用いれば、ゲル化剤をイオン液体に溶解させることが容易であると同時に、イオン液体をゲル化させることが容易であるといえる。 When Examples 1 to 4 and Comparative Examples 1 to 8 are compared, the gelling agent of the present invention makes it easy to dissolve the gelling agent in the ionic liquid and at the same time gel the ionic liquid. Can be said to be easy.
 また、実施例1~4のゲル化剤において、イオン液体をゲル化することができた最小のゲル化剤濃度を表2に示す。 Table 2 shows the minimum gelling agent concentration at which the ionic liquid could be gelled in the gelling agents of Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2において、[emim][TFSA]、[bmim][TFSA]、[hmim][TFSA]、[bpy][TFSA]、[emim][CF3SO3]及び[bmim][CF3SO3]は上記と同じ意味を表す。 In Table 2, [emim] [TFSA], [bmim] [TFSA], [hmim] [TFSA], [bpy] [TFSA], [emim] [CF 3 SO 3 ] and [bmim] [CF 3 SO 3 ] Represents the same meaning as described above.
 また、表2に示す結果のとおり本発明のゲル化剤は、含有量が濃度2質量%以下とごく少量であっても、イオン液体をゲル化させることができた。ゲル化剤の濃度が低ければ、イオン液体の持つ優れた電気伝導度を損なうことなく電解質ゲルとすることができる。 Further, as shown in the results shown in Table 2, the gelling agent of the present invention was able to gel the ionic liquid even when the content was as small as 2% by mass or less. If the concentration of the gelling agent is low, an electrolyte gel can be obtained without impairing the excellent electrical conductivity of the ionic liquid.
 実施例5
 実施例2で得られた電解質ゲルについて、導電率測定を行った。結果を表3に示す。
Example 5
The electrolyte gel obtained in Example 2 was subjected to conductivity measurement. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3において、[emim][TFSA]、[bmim][TFSA]、[hmim][TFSA]及び[bmim][CF3SO3]は上記と同じ意味を表す。比電気伝導度は、ゲル化剤無しのイオン液体の電気伝導度を100%とした際の比を示す。 In Table 3, [emim] [TFSA], [bmim] [TFSA], [hmim] [TFSA], and [bmim] [CF 3 SO 3 ] have the same meaning as described above. The specific electric conductivity indicates a ratio when the electric conductivity of an ionic liquid without a gelling agent is 100%.
 表3に示す結果のとおり、イオン液体へ本発明のゲル化剤を添加して製造した電解質ゲルとした場合の電気伝導度低下率は、元のイオン液体に比べて0.1%~5%の範囲であり、元のイオン液体とほぼ同等の電気伝導度を有していた。したがって、本発明のゲル化剤は、高い電気伝導度が必要とされる燃料電池や二次電子、色素増感型態様電池等の電解質の調製に好適に用いることができる。 As shown in Table 3, the rate of decrease in electrical conductivity in the case of an electrolyte gel produced by adding the gelling agent of the present invention to an ionic liquid is 0.1% to 5% compared to the original ionic liquid. The electric conductivity was almost the same as that of the original ionic liquid. Therefore, the gelling agent of the present invention can be suitably used for the preparation of electrolytes such as fuel cells, secondary electrons, and dye-sensitized type batteries that require high electrical conductivity.
 実施例6
 実施例2で得られた電解質ゲルのうち、イオン液体として[bmim][TFSA]及び[bmim][CF3SO3]を用いた電解質ゲルについて、電界放射型走査型電子顕微鏡(FE-SEM)観察を行った結果を図1、2に示す。
Example 6
Of the electrolyte gel obtained in Example 2, an electrolyte gel using [bmim] [TFSA] and [bmim] [CF 3 SO 3 ] as the ionic liquid was analyzed using a field emission scanning electron microscope (FE-SEM). The results of the observation are shown in FIGS.
 実施例2により得られたゲル化剤は水に不溶であるため、FE-SEM観察の試料調製過程で行う純水への溶媒置換により、溶解することはない。また、凍結乾燥は、微細構造を破壊することなく乾燥することができる乾燥法である。したがって、図1、2の三次元網目構造は、ゲル化剤がイオン液体中で形成している三次元網目構造と同一のものといえる。また、図1、2は、本発明のゲル化剤がイオン液体中で自己組織化によるファイバー状三次元網目構造を形成することを示しており、この様なゲル化剤は、良好なゲル化能を持つものといえる。 Since the gelling agent obtained in Example 2 is insoluble in water, it is not dissolved by solvent replacement with pure water performed in the sample preparation process of FE-SEM observation. Freeze-drying is a drying method that allows drying without destroying the fine structure. Therefore, it can be said that the three-dimensional network structure of FIGS. 1 and 2 is the same as the three-dimensional network structure formed by the gelling agent in the ionic liquid. FIGS. 1 and 2 show that the gelling agent of the present invention forms a fiber-like three-dimensional network structure by self-organization in an ionic liquid. It can be said that it has the ability.
 本発明のイオン液体のゲル化剤は、イオン液体の種々の特性、例えば、高耐熱性や難燃性を保持したまま安定なゲルを形成することができる。このため、本発明のゲル化剤および本発明の製造方法により得られる電解質ゲルは、燃料電池や二次電池、色素増感型太陽電池の電解質、人工アクチュエータ、電気化学センサ、発光表示装置、衝撃吸収材(例えば、ランニングシューズ、寝具、精密機器や音響装置へ影響する振動抑制、梱包材など)、潤滑液に用いることができる。さらに、本発明の製造方法により得られる電解質ゲルは、強度、弾性、柔軟性、伸張性、伸縮性を有するため、光学材料、電気電子材料、建築材料、医薬・医療材料、帯電防止剤、光漏れ防止膜、光学部材用粘着剤などの各種産業に幅広く利用することができる。 The gelling agent of the ionic liquid of the present invention can form a stable gel while maintaining various characteristics of the ionic liquid, such as high heat resistance and flame retardancy. For this reason, the gelling agent of the present invention and the electrolyte gel obtained by the production method of the present invention are electrolytes for fuel cells, secondary batteries, dye-sensitized solar cells, artificial actuators, electrochemical sensors, light-emitting display devices, impacts It can be used for an absorbent material (for example, running shoes, bedding, vibration suppression affecting a precision instrument or an acoustic device, a packing material, etc.) and a lubricating liquid. Furthermore, since the electrolyte gel obtained by the production method of the present invention has strength, elasticity, flexibility, stretchability, and stretchability, it is an optical material, electrical and electronic material, building material, pharmaceutical / medical material, antistatic agent, light It can be widely used in various industries such as leak-proof films and pressure-sensitive adhesives for optical members.

Claims (12)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、
     R1~R3は、それぞれ同一または異なって、炭素数1~9の直鎖状または分岐鎖状アルキル基を表す。ただし、R1~R3の直鎖状または分岐鎖状アルキル基に含まれるメチレン基(-CH2-)は、スルフィド結合(-S-)で置き換わっていてもよい。
     R4~R6は、それぞれ同一または異なって、炭素数1~4の直鎖状または分岐鎖状アルキル基を表す]
    で示される化合物を含むことを特徴とする、イオン液体のゲル化剤。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001

    [In Formula (1),
    R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms. However, the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—).
    R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
    An ionic liquid gelling agent comprising the compound represented by the formula:
  2.  R1~R3が、それぞれ同一または異なって、メチル基、2-プロピル基、2-メチルプロピル基、1-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基である請求項1に記載のイオン液体のゲル化剤。 2. The R 1 to R 3 are the same or different and each is one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, a 1-methylpropyl group, and a methylthioethyl group. The gelling agent of the ionic liquid as described in 1.
  3.  R4~R6が、メチル基である請求項1または2に記載のイオン液体のゲル化剤。 3. The ionic liquid gelling agent according to claim 1, wherein R 4 to R 6 are methyl groups.
  4.  請求項1乃至3のいずれか1項に記載のゲル化剤とイオン液体とを混合する工程を含むことを特徴とする電解質ゲルの製造方法。 A method for producing an electrolyte gel comprising a step of mixing the gelling agent according to any one of claims 1 to 3 and an ionic liquid.
  5.  ゲル化剤とイオン液体の混合物を加熱し、冷却する工程をさらに含む請求項4に記載の電解質ゲルの製造方法。 The method for producing an electrolyte gel according to claim 4, further comprising a step of heating and cooling the mixture of the gelling agent and the ionic liquid.
  6.  請求項1乃至3のいずれか1項に記載のイオン液体のゲル化剤およびイオン液体を含み、イオン液体が前記ゲル化剤によりゲル化されているものである電解質ゲル。 An electrolyte gel comprising the ionic liquid gelling agent according to any one of claims 1 to 3 and an ionic liquid, wherein the ionic liquid is gelled by the gelling agent.
  7.  イオン液体が、イミダゾリウムイオン、ピリジニウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ホスホニウムイオン、アンモニウムイオンおよびスルホニウムイオンよりなる群から選ばれる有機カチオンと、ハロゲンイオン、カルボキシレートイオン、サルフェートイオン、スルホネートイオン、チオシアネートイオン、ニトレートイオン、アルミネートイオン、ボレートイオン、ホスフェートイオン、アミドイオン、アンチモネートイオン、イミドイオン、メチドイオン、アミノ酸イオン、N-アシル酸性アミノ酸イオンおよびN-アシル中性アミノ酸イオンよりなる群から選ばれる有機アニオンとから構成されるものである請求項6に記載の電解質ゲル。 An organic cation selected from the group consisting of an imidazolium ion, a pyridinium ion, a piperidinium ion, a pyrrolidinium ion, a phosphonium ion, an ammonium ion and a sulfonium ion, a halogen ion, a carboxylate ion, a sulfate ion, a sulfonate ion, Selected from the group consisting of thiocyanate ion, nitrate ion, aluminate ion, borate ion, phosphate ion, amide ion, antimonate ion, imide ion, methide ion, amino acid ion, N-acyl acidic amino acid ion and N-acyl neutral amino acid ion The electrolyte gel according to claim 6, comprising an organic anion.
  8.  イオン液体が、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド、1-ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミド、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートおよび1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネートよりなる群から選ばれるイオン液体である請求項7に記載の電解質ゲル。 The ionic liquid is 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide, 1-hexyl-3-methylimidazolium bis (Trifluoromethylsulfonyl) amide, 1-butylpyridinium bis (trifluoromethylsulfonyl) amide, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate The electrolyte gel according to claim 7, which is an ionic liquid selected.
  9.  さらに、無機硫酸塩、無機リン酸塩、水酸化無機塩、ヘキサフルオロホスフェート無機塩、トリフルオロスルホン酸無機塩、過クロル酸無機塩、テトラフルオロボレート無機塩、ビス(フルオロスルホニル)イミド無機塩、ビス(トリフルオロメチルスルホニル)アミド無機塩および無機コバルト酸塩よりなる群から選ばれる1または2の塩を含有することを特徴とする請求項7または8に記載の電解質ゲル。 Furthermore, inorganic sulfate, inorganic phosphate, hydroxylated inorganic salt, hexafluorophosphate inorganic salt, trifluorosulfonic acid inorganic salt, perchloric acid inorganic salt, tetrafluoroborate inorganic salt, bis (fluorosulfonyl) imide inorganic salt, The electrolyte gel according to claim 7 or 8, which contains one or two salts selected from the group consisting of bis (trifluoromethylsulfonyl) amide inorganic salts and inorganic cobaltates.
  10.  一般式(1)
    Figure JPOXMLDOC01-appb-C000002

    [式(1)中、
     R1~R3は、それぞれ同一または異なって、炭素数1~9の直鎖状または分岐鎖状アルキル基を表す。ただし、R1~R3の直鎖状または分岐鎖状アルキル基に含まれるメチレン基(-CH2-)は、スルフィド結合(-S-)で置き換わっていてもよい。
     R4~R6は、それぞれ同一または異なって、炭素数1~4の直鎖状または分岐鎖状アルキル基を表す]
    で示される化合物。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000002

    [In Formula (1),
    R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 9 carbon atoms. However, the methylene group (—CH 2 —) contained in the linear or branched alkyl group of R 1 to R 3 may be replaced with a sulfide bond (—S—).
    R 4 to R 6 are the same or different and each represents a linear or branched alkyl group having 1 to 4 carbon atoms]
    A compound represented by
  11.  R1~R3が、それぞれ同一または異なって、メチル基、2-プロピル基、2-メチルプロピル基、1-メチルプロピル基およびメチルチオエチル基よりなる群から選ばれる1つの基である請求項10に記載の化合物。 R 1 to R 3 are the same or different and each is one group selected from the group consisting of a methyl group, a 2-propyl group, a 2-methylpropyl group, a 1-methylpropyl group, and a methylthioethyl group. Compound described in 1.
  12.  R4~R6が、メチル基である請求項10または11に記載の化合物。 The compound according to claim 10 or 11, wherein R 4 to R 6 are methyl groups.
PCT/JP2013/076276 2012-09-27 2013-09-27 Gelling agent WO2014051057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538633A JP6304820B2 (en) 2012-09-27 2013-09-27 Gelling agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214499 2012-09-27
JP2012-214499 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014051057A1 true WO2014051057A1 (en) 2014-04-03

Family

ID=50388451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076276 WO2014051057A1 (en) 2012-09-27 2013-09-27 Gelling agent

Country Status (2)

Country Link
JP (1) JP6304820B2 (en)
WO (1) WO2014051057A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157481A (en) * 2016-03-03 2017-09-07 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode and manufacturing method thereof, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793965B (en) * 2021-09-01 2024-01-09 西安交通大学 Multi-material printing device and method for flexible ion gel battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072736A (en) * 1998-09-01 2000-03-07 Nisshin Oil Mills Ltd:The Benzenecarboxamide compound and gelling agent or solidifying agent for organic liquid
JP2001167629A (en) * 1998-10-19 2001-06-22 Canon Inc Gel electolyte, battery and electrochromic element
JP2005533134A (en) * 2002-05-22 2005-11-04 アプライド ナノシステムズ ビー.ブイ. Gelling agent
JP2006328268A (en) * 2005-05-27 2006-12-07 Koei Chem Co Ltd Gel composition
JP2007515390A (en) * 2003-05-22 2007-06-14 アプライド ナノシステムズ ベー.フェー. Generation of fine particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072736A (en) * 1998-09-01 2000-03-07 Nisshin Oil Mills Ltd:The Benzenecarboxamide compound and gelling agent or solidifying agent for organic liquid
JP2001167629A (en) * 1998-10-19 2001-06-22 Canon Inc Gel electolyte, battery and electrochromic element
JP2005533134A (en) * 2002-05-22 2005-11-04 アプライド ナノシステムズ ビー.ブイ. Gelling agent
JP2007515390A (en) * 2003-05-22 2007-06-14 アプライド ナノシステムズ ベー.フェー. Generation of fine particles
JP2006328268A (en) * 2005-05-27 2006-12-07 Koei Chem Co Ltd Gel composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157481A (en) * 2016-03-03 2017-09-07 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode and manufacturing method thereof, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide

Also Published As

Publication number Publication date
JPWO2014051057A1 (en) 2016-08-25
JP6304820B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Jeong et al. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes
CN102015666B (en) Reactive ionic liquids
JP5067728B2 (en) Polymer electrolyte and method for producing the same
JP7330894B2 (en) Salts used in electrolyte compositions or as additives in electrodes
JP6304820B2 (en) Gelling agent
JP2010534393A (en) Electrolyte preparations for energy accumulators based on ionic liquids
WO2013039071A1 (en) Gel composition containing an ionic liquid, thin film gel, and production method thereof
Wang et al. Novel chemically cross-linked chitosan-cellulose based ionogel with self-healability, high ionic conductivity, and high thermo-mechanical stability
JP5766942B2 (en) Ionic gelling agent, gel, method for producing gel and crosslinking agent
JP2006137677A (en) Solvent for slightly soluble polysaccharides and composition comprising the solvent and the polysaccharides
JP2001167629A (en) Gel electolyte, battery and electrochromic element
Davino et al. Cross-linked gel electrolytes with self-healing functionalities for smart lithium batteries
Sai Prasanna et al. PVC/PEMA‐based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano‐ZrO2 for zinc ion batteries
Leones et al. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties
Zain et al. The influences of ionic liquid to the properties of poly (ethylmethacrylate) based electrolyte
WO2013146745A1 (en) Method of producing gel containing ionic liquid
JP5829972B2 (en) Silicone-modified zwitterionic compound and process for producing the same
Chelfouh et al. Apple pectin-based hydrogel electrolyte for energy storage applications
JP5682936B2 (en) Gel ion conductor
JP2010215512A (en) Ionic liquid, method for producing ionic liquid, electrolyte and lithium secondary battery
Yeon et al. Poly (vinylidenefluoride)-hexafluoropropylene gel electrolytes based on N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids
JP2011236328A (en) Ionic liquid-gelling agent and gel
JP6572601B2 (en) Composition having ionic conductivity
Wang et al. Nanostructure of Locally Concentrated Ionic Liquids in the Bulk and at Graphite and Gold Electrodes
JP2022136032A (en) Novel fluorinated aromatic ester compound and gelator containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842217

Country of ref document: EP

Kind code of ref document: A1