WO2014050602A1 - Lens and molding die - Google Patents

Lens and molding die Download PDF

Info

Publication number
WO2014050602A1
WO2014050602A1 PCT/JP2013/074742 JP2013074742W WO2014050602A1 WO 2014050602 A1 WO2014050602 A1 WO 2014050602A1 JP 2013074742 W JP2013074742 W JP 2013074742W WO 2014050602 A1 WO2014050602 A1 WO 2014050602A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
diameter
optical axis
optical surface
Prior art date
Application number
PCT/JP2013/074742
Other languages
French (fr)
Japanese (ja)
Inventor
下間剛
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014050602A1 publication Critical patent/WO2014050602A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/02Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lens for controlling a luminous flux from an LED or the like and a molding die for manufacturing the lens.
  • the lens used for controlling the illumination light beam is also called a light beam control member, and has a special optical surface and is disposed so as to cover the light source.
  • a lens includes a first optical surface having a deep concave shape and a small diameter, and a second optical surface having a convex shape as a whole and having a relatively small curvature, and is a flat surface provided around the first optical surface.
  • Three leg portions are formed so as to protrude from the bottom portion in an even arrangement (see Patent Document 1).
  • the three legs Since the bottom surface provided on the lens also serves as a reflecting surface for effective use of light, the three legs have a peak light amount when the reflected light from the second optical surface is incident on the flat surface. It is arranged inside the circumferential region. By arranging the legs in this way, the influence on the optical characteristics can be suppressed to a small extent, and not only the lens mounting area on the support substrate can be reduced, but also cracks in the legs due to the difference in thermal expansion. It can also be prevented.
  • the lens leg is placed in the vicinity of the LED, the light beam from the LED is directly incident on the leg, and then the optical characteristics of the entire lens are unexpected due to reflection and transmission. End up. This is a serious problem particularly in lenses for backlight illumination that are desired to have a uniform light distribution.
  • the LED is arranged further inside the leg portion arranged on the inner side, which restricts the size of the LED.
  • the LED may be high-powered, and if the leg portion is disposed in the vicinity of the LED, the light is incident from the LED. Not only changes in optical characteristics, but also distortion and cracks of the leg due to heat from the LED occur.
  • the present invention has been made in view of the above-described background art, and the light distribution is not uniform due to light directly incident on the leg portion from the light source, and is arranged while suppressing distortion or cracking of the leg portion.
  • An object of the present invention is to provide a lens having a high degree of freedom in the size of the light source and a molding die for manufacturing the lens.
  • a lens according to the present invention is a lens that controls the traveling direction of a light beam emitted from a light emitting element, and includes a first optical surface and a second diameter that is larger than the first optical surface.
  • the lens diameter is D
  • the lens is arranged outside a circle having a diameter of 0.37D with respect to the optical axis.
  • that the leg is outside the circle having a diameter of 0.37D means that the portion of the leg that is closest to the optical axis is outside the circle having a diameter of 0.37D.
  • the legs can be arranged sufficiently away from the optical axis. Thereby, it can suppress that the light ray radiate
  • the degree of freedom of the size of the light emitting element disposed between the plurality of leg portions facing the first optical surface can be increased.
  • the plurality of legs can be separated from the light emitting element to some extent, local heating inside the legs can be suppressed, and formation of cracks or distortion around the legs can be suppressed. Furthermore, since the position of the leg portion is not too much inside the lens, it is easy to attach the lens to the substrate with the leg portion as a contact point.
  • the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis.
  • the leg portion exists in the inner region from the diameter 0.8D where the light reflected by the second optical surface is relatively small, and the influence of the light reflected by the leg portion on the light distribution characteristics is extremely small. Can be kept to a small amount. Further, the leg portion does not approach the lens periphery too much, the substrate to which the lens is attached can be made small, and cracks due to the difference in thermal expansion coefficient are less likely to occur.
  • the plurality of leg portions are arranged in a range from 0.5D to 0.7D in diameter with respect to the optical axis.
  • the diameter is set to 0.5D or more, the influence on the optical characteristics due to the presence of the leg portion can be further reduced, and the degree of freedom of the size of the light emitting element can be further increased.
  • the diameter is set to 0.7D or less, it is possible to further reduce the influence on the light distribution characteristics while ensuring a sufficient space for arranging the legs.
  • the peripheral portion of the flat surface also has a function as a reflecting surface, and it is desirable that the leg portion be separated to some extent from the outer edge of the flat surface.
  • the plurality of legs have traces of protruding pins for release on the bottom surface.
  • a pin mark from remaining on the flat surface of the lens. Since there are no traces of pins protruding on a flat surface or the like, it is possible to prevent light reflected by the second optical surface from protruding and becoming unexpected stray light on the pin traces, and to prevent deterioration of the optical performance of the lens. it can.
  • the leg portion is 0.37D or more and 0.8D or less because distortion of the lens due to protrusion is small.
  • the plurality of leg portions are arranged at equal intervals on a circumference centered on the optical axis.
  • the lens can be supported on the support substrate with a good balance.
  • the plurality of leg portions have a circular shape or an elliptical outline having a long axis in the radial direction centered on the optical axis when projected onto a plane perpendicular to the optical axis.
  • the support range can be expanded compared to the area thereof, so that the stability of the support can be ensured while preventing the deterioration of the optical characteristics of the lens.
  • the area is smaller than a circle whose diameter is the major axis of the ellipse, so that the influence on the optical characteristics is small, and it is possible to stably adhere to a wide substrate or a narrow substrate. it can.
  • the plurality of legs have a roughened surface. In this case, since light diffuses on the surface of the leg portion, stray light generated by light that is directly or indirectly incident on the leg portion can be suppressed.
  • the first optical surface has a concave shape having a relatively large curvature compared to the second optical surface
  • the second optical surface has a convex shape as a whole and is locally located in the center. It has a typical concave area.
  • the lens is for LED backlight illumination.
  • the LEDs enable uniform and efficient illumination on the liquid crystal panel and other display elements.
  • a molding die is a molding die having a transfer surface for injection molding a lens for controlling the traveling direction of a light beam emitted from a light emitting element.
  • the plurality of legs are arranged outside the circle having a diameter of 0.37D with respect to the optical axis, where D is the lens diameter.
  • the molding die forms a transfer surface for forming the first optical surface, a transfer surface for forming the second optical surface, a transfer surface for forming a flat surface, and a plurality of legs. And a plurality of leg portions provided on the lens by the leg transfer surface are arranged as described above.
  • the first optical surface, the second optical surface, the flat surface, and the transfer surfaces for the plurality of legs are arranged outside the circle having a diameter of 0.37D with respect to the optical axis.
  • the light beam from the light emitting element can be prevented from being obstructed by the leg portion, and the light utilization efficiency can be increased.
  • the degree of freedom of the size of the light emitting element disposed between the plurality of leg portions facing the first optical surface can be increased.
  • the plurality of legs can be separated from the light emitting element to some extent, local heating inside the legs can be suppressed, and cracks can be prevented from being formed around the legs.
  • the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis.
  • the plurality of leg portions are arranged in a range from 0.5D to 0.7D in diameter with respect to the optical axis.
  • a release pin for release is provided at a portion where the bottom surface of the plurality of leg portions is transferred.
  • the first mold includes a first mold that molds the first optical surface side of the lens and a second mold that molds the second optical surface side of the lens.
  • the portion that transfers from the portion corresponding to the leg portion to the portion adjacent to the core portion does not become too thin, so that the mold processing becomes easy.
  • FIG. 1A is a rear view of the lens of the first embodiment
  • FIG. 1B is a cross-sectional view taken along arrow AA in FIG. 1A
  • FIG. 1C is a front view of the lens in FIG. 1A
  • 2A and 2B are diagrams illustrating the lens shape and functions shown in FIG. 1A and the like.
  • 3A is an enlarged cross-sectional view of a molding die for molding the lens of FIG. 1
  • FIG. 3B is an end view of a movable die in the die of FIG. 3A. It is a reverse view of the lens of 2nd Embodiment.
  • a lens 10 shown in FIGS. 1A to 1C is a lens (light flux controlling member) that controls a light beam for illumination from an LED (Light Emitting Diode) or the like, that is, a traveling direction of a light flux emitted from a light emitting element. That is, the lens 10 is an illumination optical system for LED backlight illumination, for example, and constitutes a part of the backlight light source. As shown in FIGS. 1A to 1C, the lens 10 includes an optical part 10a, an outer peripheral part 10b, a protruding part 10c, and a leg part 10d.
  • the lens 10 includes an optical part 10a, an outer peripheral part 10b, a protruding part 10c, and a leg part 10d.
  • the optical part 10a is a part having an optical function, and has a pair of opposed first and second optical surfaces S1 and S2 and a flat surface S6 extending from the periphery of the first optical surface S1.
  • the first optical surface S1 has a concave shape
  • the second optical surface S2 has an overall convex shape.
  • the first optical surface S1 has a concave shape having a relatively larger curvature than the second optical surface S2, and is deeply recessed toward the center of the second optical surface S2.
  • the second optical surface S2 has a shallow concave region at the center, and has a larger diameter than the first optical surface S1.
  • the center of the optical unit 10a is thin, and the periphery of the center is thick.
  • the lens 10 is a lens having a high thickness deviation ratio.
  • the flat surface S6 extends substantially perpendicular to the optical axis OA and is on the same plane as the first outer peripheral surface S3 of the outer peripheral portion 10b.
  • a light-emitting element such as an LED, which will be described later, is disposed so as to face the first optical surface S1 side.
  • the outer peripheral part 10b extends around the optical part 10a.
  • the outer peripheral part 10b has a pair of opposing first and second outer peripheral surfaces S3 and S4, and an outer peripheral side surface S5 connecting the first and second outer peripheral surfaces S3 and S4.
  • the first and second outer peripheral surfaces S3 and S4 extend perpendicular to the optical axis OA of the lens 10.
  • the protrusion 10c protrudes from the outer peripheral side surface S5 of the outer peripheral portion 10b in the outer peripheral direction.
  • the protruding portion 10c is provided so as to extend to the outside of the outer peripheral portion 10b.
  • the protrusion 10c is a flat portion, and specifically, has a rectangular plate shape or block shape.
  • the protrusion 10c has a pair of first and second protrusion surfaces S7 and S8 perpendicular to the optical axis OA, and a protrusion side surface S10 sandwiched between the first and second protrusion surfaces S7 and S8. .
  • a gate cut trace GS is formed on the second projection surface S8 on the second optical surface S2 side of the first and second projection surfaces S7 and S8.
  • the gate cut trace GS is formed in the depression 10g and is not protruding from the second protrusion surface S8.
  • the protruding side surface S10 of the protruding portion 10c is connected to the outer peripheral side surface S5 of the outer peripheral portion 10b at both ends.
  • the leg part 10d is a part attached to the support substrate 60 (refer FIG. 2B) of a light emitting element.
  • the leg portion 10d is a thin cylindrical or low trapezoidal portion, and protrudes in a direction parallel to the optical axis OA from the flat surface S6 of the optical portion 10a.
  • the leg portions 10d are provided at three locations at equal intervals on the same circumference around the optical axis OA of the flat surface S6.
  • Each leg 10d has a side wall S21 and a top surface S22.
  • the top surface S22 is parallel to the surrounding flat surface S6.
  • the trace 71 of the protrusion pin 31 mentioned later is formed in the top
  • the side wall S21 and the top surface S22 of the leg 10d can be roughened. In this case, stray light can be prevented from being generated by the light LB3 (see FIG. 2B) that is directly or indirectly incident on the leg 10d.
  • the roughening of the leg 10d can be achieved by roughening the transfer surface of the mold, which will be described later, but it can also be roughened in a later step.
  • the three leg portions 10d are disposed outside an inner non-arrangement region AC that is a circular region centered on the optical axis OA.
  • the diameter AR of the inner non-arrangement region AC is 0.37 D, where D is the diameter of the lens 10. That is, the three leg portions 10d are arranged outside including the circumference of a circle having a diameter of 0.37D with respect to the optical axis OA.
  • the leg portion 10d may be formed outside the inner non-arrangement area AC, but is preferably formed inside the outer non-arrangement area AC2 (on the optical axis OA side).
  • the diameter AR2 of the outer non-arrangement region AC2 (the inner diameter of the non-arrangement region AC2) is 0.8D, where D is the diameter of the lens 10. That is, the leg portion 10d is in a region having a diameter of 0.37D to 0.8D centered on the optical axis OA, and more preferably in a region having a diameter of 0.5D to 0.7D. More preferably, the leg 10d is in the region of 0.55D to 0.65D.
  • the leg 10d is in the region having a diameter of 0.37D to 0.8D means that the point closest to the optical axis OA of the leg 10d is outside the circle having a diameter of 0.37D and the leg 10d It means that the point farthest from the optical axis OA is inside the circle having a diameter of 0.8D.
  • the non-arrangement regions AC and AC2 do not include the circumferences of 0.37D and 0.8D, that is, on the boundary line, and the leg portions 10d can be disposed on the boundary line.
  • the light beam LB2 emitted from the light emitting element 50 enters the lens 10 from the first optical surface S1 side, passes through the second optical surface S2 as it is, and becomes illumination light. Further, the light beam LB2 partially reflected by the second optical surface S2 is partially reflected again by the flat surface S6, and then passes through the second optical surface S2, thereby contributing as illumination light. Note that the illumination light such as the light beam LB2 emitted from the light emitting element 50 and whose luminous flux is controlled by the lens 10 is used as a backlight for illuminating a liquid crystal panel and other display elements.
  • these leg portions 10d can be sufficiently separated from the optical axis OA and the light emitting element 50. Thereby, it can suppress that the light ray LB1 inject
  • the size of the light emitting element 50 can be increased, and the degree of freedom of the size of the light emitting element 50 can be increased.
  • the three leg portions 10d are sufficiently separated from the light emitting element 50, and local heating inside the leg portion 10d is performed. It is possible to suppress the formation of cracks in the base portion 10j of the leg portion 10d and the like, and the occurrence of changes in optical performance due to distortion caused by local heating. As described above, by arranging the leg portion 10d outside the non-arrangement area AC, it is possible to obtain a highly reliable lens while making the light distribution characteristics of the lens uniform.
  • leg portions 10d By arranging the three leg portions 10d inside the non-arrangement region AC2 as described above (on the optical axis OA side), these leg portions 10d pass the light beam LB2 reflected by the second optical surface S2. Is present in a relatively small inner region, and the influence on the light distribution characteristics by the light reflected by the leg 10d can be suppressed to a very small amount. Further, the leg portion 10d does not come too close to the peripheral portion of the lens 10, the support substrate 60 to which the lens 10 is attached can be made small, and cracks due to the difference in thermal expansion coefficient are less likely to occur.
  • the light emitting element 50 and the lens 10 are aligned with each other and fixed on the support substrate 60. At this time, the end surface (top surface S22) of the leg 10d is bonded to the support substrate 60, and the arrangement of the lens 10 with respect to the support substrate 60 is adjusted.
  • a molding die 100 for manufacturing the lens 10 shown in FIG. 1A and the like includes a fixed die 11, a movable die 12, a pinpoint gate mechanism 40, and an ejecting mechanism 30. .
  • the movable mold 12 is supported by a movable plate (not shown) as a first mold and can move forward and backward with respect to the fixed mold 11.
  • the movable mold 12 includes a core portion 12i disposed around the axis AX, and a peripheral portion 12j disposed around or outside the core portion 12i.
  • the movable mold 12 has a first optical surface transfer surface T1, a first outer peripheral surface transfer surface T3, an outer peripheral side surface transfer surface T5, and a flat surface transfer surface T6 on the mold matching surface PP side facing the fixed mold 11.
  • the first protrusion transfer surface T7, the protrusion side transfer surface T10, and the leg transfer surfaces T21 and T22 are examples of the first protrusion transfer surface T7, the protrusion side transfer surface T10, and the leg transfer surfaces T21 and T22.
  • the first optical surface transfer surface T1 is provided on the surface of the core portion 12i.
  • the other transfer surfaces T3, T5, T6, T7, T10, T21, and T22 are provided on the surface of the peripheral portion 12j.
  • the first optical surface transfer surface T1 corresponds to the shape of the first optical surface S1 of the lens 10 and has a shape obtained by inverting this. That is, the first optical surface transfer surface T1 has a convex shape.
  • the first outer peripheral surface transfer surface T3 corresponds to the shape of the first outer peripheral surface S3 of the lens 10.
  • the outer peripheral side transfer surface T5 corresponds to the shape of the outer peripheral side surface S5 of the lens 10.
  • the flat surface transfer surface T6 corresponds to the shape of the flat surface S6 of the lens 10.
  • the first protrusion transfer surface T7 corresponds to the shape of the first protrusion surface S7 of the lens 10.
  • the protrusion side transfer surface T10 corresponds to the shape of the protrusion side surface S10 of the lens 10.
  • the leg transfer surfaces T21 and T22 correspond to the shape of the leg 10d of the lens 10.
  • the leg transfer surface T21 corresponds to the side wall S21 of the leg 10d and has a shape obtained by inverting it.
  • the leg transfer surface T22 corresponds to the top surface S22 of the leg 10d and has a shape obtained by inverting it.
  • a central portion of the leg transfer surface T22 is a tip surface 31a of a protrusion pin 31 described later.
  • the movable mold 12 is provided with a cooling path (not shown). This cooling path is for flowing cooling water or the like, and is provided for preventing overheating of the movable mold (first mold) 12 and cooling the molten resin.
  • the movable mold 12 includes the core portion 12i for forming the first optical surface S1 by transfer, and the peripheral portion 12j disposed around the core portion 12i to form the flat surface S6 and the plurality of leg portions 10d. And have.
  • the peripheral portion 12j the portion that transfers from the protruding pin 31 or the like corresponding to the leg portion 10d to the portion adjacent to the core portion 12i does not become too thin, so that the mold processing becomes easy.
  • the fixed mold 11 is supported and fixed by a fixed plate (not shown) as a second mold.
  • the fixed mold 11 has a second optical surface transfer surface T2, a second outer peripheral surface transfer surface T4, and a second protrusion transfer surface T8 on the mold matching surface PP side facing the movable mold 12.
  • These transfer surfaces T2, T4, and T8 serve as a second transfer surface 11a that forms the second optical surface S2 side of the lens 10.
  • the second optical surface transfer surface T2 corresponds to the shape of the second optical surface S2 of the lens 10 and has a shape obtained by inverting this. That is, the second optical surface transfer surface T2 has a concave shape as a whole.
  • the second outer peripheral surface transfer surface T4 corresponds to the shape of the second outer peripheral surface S4 of the lens 10.
  • the second protrusion transfer surface T8 corresponds to the shape of the second protrusion surface S8 of the lens 10.
  • a mold space (cavity) CV is formed between the fixed mold 11 and the movable mold 12 by clamping.
  • a gate 41 of a pinpoint gate mechanism 40 which will be described later, communicates with the cavity CV via the second protrusion transfer surface T8.
  • the cavity CV corresponds to the outer shape of the lens 10 shown in FIGS. 1A to 1C and the like.
  • the cavity CV is a space with a high thickness deviation ratio that is thin at the center and has a large thickness difference between the center and the periphery thereof.
  • the fixed mold 11 is provided with a cooling path (not shown). This cooling path is for flowing cooling water or the like, and is provided to prevent overheating of the fixed mold (second mold) 11 and to cool the molten resin.
  • the movable mold 12 has a plurality of first transfer surfaces 12a.
  • the fixed mold 11 also has a plurality of second transfer surfaces 11a facing the plurality of second transfer surfaces 12a.
  • the shape characteristic of the molding die 100 shown to FIG. 3A is demonstrated.
  • the three leg transfer surfaces T22 correspond to the leg 10d shown in FIG. 1A and the like.
  • the leg transfer surface T22 is disposed outside the inner non-arrangement region AC that is a circular region centered on the axis AX.
  • the diameter AR of the inner non-arrangement region AC is 0.37D, where D is the diameter of the cavity CV corresponding to the diameter of the lens 10.
  • the leg transfer surface T22 is formed on the inner side (axis AX side) of the outer non-arrangement region AC2 larger than the diameter 0.8D.
  • the leg transfer surface T22 is in a region having a diameter of 0.37D to 0.8D centered on the axis AX, and more preferably in a region having a diameter of 0.5D to 0.7D. It is in. More preferably, the leg transfer surface T22 is in the region of 0.55D to 0.65D.
  • the pinpoint gate mechanism 40 shown in FIG. 3A has a structure that automatically performs gate cutting by mold opening.
  • the molding mold 100 is provided with a runner removal mold (not shown) on the fixed mold 11 side.
  • the runner removal mold is closed to the fixed mold 11 side during molding and separated from the fixed mold 11 during mold release.
  • the pinpoint gate mechanism 40 has a gate 41 that tapers toward the cavity CV on the die matching surface PP side.
  • the tip 41a of the gate 41 is arranged in a state of protruding from the mold matching surface PP toward the movable mold 12 side.
  • the ejecting mechanism 30 is urged by a drive device (not shown) and can be advanced and retracted at a desired timing along the AB direction along the axis AX of the molding die 100.
  • the protrusion mechanism 30 includes a plurality of protrusion pins 31. Each protruding pin 31 is inserted into a pin hole 12 d (see FIG. 3A) provided in the movable mold 12. Three pin holes 12d are provided in correspondence with the leg transfer surface T22. As already described, the tip of the protrusion pin 31 is the central portion of the leg transfer surface T22 that faces the cavity CV in the illustrated state where the fixed mold 11 and the movable mold 12 are clamped.
  • the fixed mold 11 and the movable mold 12 which are separated from each other are adjusted to a predetermined temperature in the standby state.
  • the movable mold 12 is operated to close the fixed mold 11 and the movable mold 12, and the molds 11 and 12 are clamped with a predetermined pressure.
  • a cavity CV is formed between the molds 11 and 12.
  • the molten resin guided to the gate 41 of the pinpoint gate mechanism 40 in a state where the molds 11 and 12 are clamped is injected into the cavity CV from the opening of the tip 41a.
  • the molten resin in the cavity CV is cooled by both molds 11 and 12, and the lens 10 as a molded product is obtained.
  • the runner removal mold (not shown) of the pinpoint gate mechanism 40 is separated from the fixed mold 11. Thereby, unnecessary parts (not shown) such as a gate part and a runner part other than the lens 10 are pulled out from the fixed mold 11. That is, the lens 10 is released by opening the fixed mold 11 and the movable mold 12, and the gate is automatically cut.
  • the plurality of leg portions 10d are arranged outside the circle having a diameter of 0.37D (D is the diameter of the lens 10) with respect to the optical axis OA, It can arrange
  • the plurality of leg portions 10d in the range outside the circle of 0.37D, the size of the light emitting element 50 arranged between the plurality of leg portions 10d facing the first optical surface S1. The degree of freedom can be increased.
  • the plurality of legs 10d can be separated from the light emitting element 50 to some extent, local heating inside the legs 10d can be suppressed, and cracks and the like can be prevented from being formed around the legs 10d. .
  • the pinpoint gate mechanism 40 can be replaced with a hot runner mechanism or the like.
  • the lens and the mold according to the second embodiment will be described.
  • the lens and the molding die of the second embodiment are partially modified from the lens and the molding die of the first embodiment, and items not specifically described are the same as those of the lens and the molding die of the first embodiment. It is.
  • the contours transferred to the surfaces perpendicular to the optical axis OA of each leg 2010d provided on the lens 10 are elliptical, and the major axis extends in the radial direction.
  • the lens 10 can be securely fixed in correspondence with both the support substrate 60A having a narrow width and the support substrate 60B having a wide width indicated by the imaginary line.
  • the legs 2010d are not elliptical but circular, but if the legs are simply circular, the area of the legs increases and the area of the flat surface S6 decreases, and the use of light rays. As the efficiency decreases, the optical characteristics deteriorate.
  • an elliptical shape extending in the radial direction like the leg portion 2010d provided on the lens 10 of the present embodiment it is possible to prevent deterioration of optical characteristics while supporting various support substrates 60A and 60B.
  • the optical part 10a and the outer peripheral part 10b of the lens 10 have a circular outline, but the optical part 10a and the outer peripheral part 10b may have a rectangular or oval (including elliptical) outline. .
  • the circular leg portion 10d and the elliptical leg portion 2010d have been described.
  • the contour shape of the leg portion can be changed as appropriate according to the application, and the like, such as a triangle, a rectangle, an ellipse (including an ellipse) It can be set as various shapes.
  • the light emitting element 50 is not limited to an LED, and may be an LD (LaserLaDiode), a VCSEL (Vertical Cavity Surface Emitting Laser), or the like.
  • the molding die 100 is used as a horizontal die or a saddle die.
  • the fixed mold 11 and the movable mold 12 are arranged to face each other in the horizontal direction.
  • the fixed mold 11 and the movable mold 12 are arranged to face each other in the vertical direction.
  • the fixed mold 11 and the movable mold 12 can be replaced. That is, the first optical surface S1 and the like can be formed on the fixed mold 11 side, and the second optical surface S2 and the like can be formed on the movable mold 12 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Provided is a lens capable of improving the efficiency of taking light from a light source and increasing the degree of freedom in the size of the disposed light source. A plurality of leg parts (10d) are arranged outside a circle with a diameter of 0.37 D (D is the diameter of a lens (10)) with the optical axis (OA) as the center, thus preventing the obstruction of a light beam (LB1) from a light emitting element (50) by the leg parts (10d). As a result, the utilization efficiency of light may be improved. Further, by arranging the plurality of leg parts (10d) in the area outside the circle of 0.37 D, it is possible to increase the degree of freedom in size of the light emitting element (50) arranged between the plurality of leg parts (10d) opposite a first optical surface (S1). Further, it is possible to distance the plurality of leg parts (10d) from the light emitting element (50) to some extent, to prevent localized heating inward of the leg parts (10d), and to minimize the formation of cracks in the periphery of the leg parts (10d).

Description

レンズ及び成形金型Lens and mold
 本発明は、LED等からの照明用の光束を制御するためのレンズ及び当該レンズを製造するための成形金型に関する。 The present invention relates to a lens for controlling a luminous flux from an LED or the like and a molding die for manufacturing the lens.
 照明光束を制御するために用いられるレンズは、光束制御部材とも呼ばれ、特殊な光学面を有し光源を覆うように配置される。このようなレンズは、深い凹形状で小径の第1の光学面と、全体として凸形状で曲率が比較的小さな第2の光学面とを備え、第1の光学面の周囲に設けた平坦な底面部から均等な配置で突出するように3つの脚部が形成されている(特許文献1参照)。 The lens used for controlling the illumination light beam is also called a light beam control member, and has a special optical surface and is disposed so as to cover the light source. Such a lens includes a first optical surface having a deep concave shape and a small diameter, and a second optical surface having a convex shape as a whole and having a relatively small curvature, and is a flat surface provided around the first optical surface. Three leg portions are formed so as to protrude from the bottom portion in an even arrangement (see Patent Document 1).
 上記レンズに設けた底面部は、光を有効利用するため反射面ともなっているため、3つの脚部は、第2の光学面からの反射光が平坦面に入射する際の光量がピークになる円周領域よりも内側に配置されている。このように脚部を内側に配置することにより、光学特性に与える影響を小さく抑えることができ、支持基板においてレンズの取付け領域を小さくできるだけでなく、熱膨張差により脚部にクラックが生じるのを防ぐこともできるとある。 Since the bottom surface provided on the lens also serves as a reflecting surface for effective use of light, the three legs have a peak light amount when the reflected light from the second optical surface is incident on the flat surface. It is arranged inside the circumferential region. By arranging the legs in this way, the influence on the optical characteristics can be suppressed to a small extent, and not only the lens mounting area on the support substrate can be reduced, but also cracks in the legs due to the difference in thermal expansion. It can also be prevented.
 しかしながら、レンズの脚部をLEDの近傍に配置してしまうと、LEDからの光線が直接脚部に入射してしまい、その後、反射や透過をすることによりレンズ全体としての光学特性が予期しないものとなってしまう。これは、特に均一な配光となることを所望されるバックライト照明用のレンズにおいて重大な問題となる。また、かなり内側に配置された脚部のさらに内側にLEDを配置することになり、LEDのサイズに制約が生じることになる。加えて、より一層の明るさや広範囲かつ均一な配光を達成するために、LEDがハイパワー化していることもあり、脚部がLED近傍に配置されてしまうと、LEDからの光の入射による光学特性の変化だけでなく、LEDからの熱による脚部の歪みやクラックが生じてしまう。 However, if the lens leg is placed in the vicinity of the LED, the light beam from the LED is directly incident on the leg, and then the optical characteristics of the entire lens are unexpected due to reflection and transmission. End up. This is a serious problem particularly in lenses for backlight illumination that are desired to have a uniform light distribution. In addition, the LED is arranged further inside the leg portion arranged on the inner side, which restricts the size of the LED. In addition, in order to achieve even more brightness and a wide range and uniform light distribution, the LED may be high-powered, and if the leg portion is disposed in the vicinity of the LED, the light is incident from the LED. Not only changes in optical characteristics, but also distortion and cracks of the leg due to heat from the LED occur.
特開2012-4078号公報JP 2012-4078 A
 本発明は、上記背景技術に鑑みてなされたものであり、光源から脚部に直接入射する光により配光性が均一でなくなってしまうことや、脚部の歪み又はクラックを抑制しつつ、配置される光源のサイズの自由度を高めたレンズ及び当該レンズを製造するための成形金型を提供することを目的とする。 The present invention has been made in view of the above-described background art, and the light distribution is not uniform due to light directly incident on the leg portion from the light source, and is arranged while suppressing distortion or cracking of the leg portion. An object of the present invention is to provide a lens having a high degree of freedom in the size of the light source and a molding die for manufacturing the lens.
 上記目的を達成するため、本発明に係るレンズは、発光素子から出射された光線の進行方向を制御するレンズであって、第1光学面と、第1光学面よりも大きな直径を有する第2光学面と、第1光学面の周囲に設けられて光軸に略垂直に延びる平坦面と、当該平坦面から突出するように形成されている複数の脚部とを備え、複数の脚部は、レンズ直径をDとしたとき、光軸を基準として直径0.37Dの円の外側に配置されている。ここで、脚部が直径0.37Dの円の外側にあるとは、脚部のうち光軸に最も近い部分が直径0.37Dの円の外側にあることを意味する。 In order to achieve the above object, a lens according to the present invention is a lens that controls the traveling direction of a light beam emitted from a light emitting element, and includes a first optical surface and a second diameter that is larger than the first optical surface. An optical surface, a flat surface provided around the first optical surface and extending substantially perpendicular to the optical axis, and a plurality of legs formed so as to protrude from the flat surface. When the lens diameter is D, the lens is arranged outside a circle having a diameter of 0.37D with respect to the optical axis. Here, that the leg is outside the circle having a diameter of 0.37D means that the portion of the leg that is closest to the optical axis is outside the circle having a diameter of 0.37D.
 上記レンズでは、複数の脚部が光軸を基準として直径0.37Dの円の外側に配置されているので、脚部を光軸から十分に離して配置することができる。これにより、発光素子から出射された光線が脚部に入射することを抑制でき、予期しない光線によってレンズの光学特性が劣化することを防止できる。上記レンズでは、発光素子からの光線が脚部に妨げられることを抑制でき、光の利用効率を高めることができる。また、複数の脚部を上記の範囲に配置することで、第1光学面に対向して複数の脚部の間に配置される発光素子のサイズの自由度を高めることができる。また、複数の脚部を発光素子からある程度離すことができることから、脚部の内側の局所的な加熱を抑えることができ、脚部の周辺でクラック又は歪みが形成されることを抑制できる。さらに、脚部の位置がレンズの内側すぎないため、脚部を接触点としたレンズの基板への取り付けが容易となる。 In the above lens, since the plurality of legs are arranged outside the circle having a diameter of 0.37D with respect to the optical axis, the legs can be arranged sufficiently away from the optical axis. Thereby, it can suppress that the light ray radiate | emitted from the light emitting element enters into a leg part, and can prevent that the optical characteristic of a lens deteriorates by the unexpected light ray. In the said lens, it can suppress that the light ray from a light emitting element is prevented by a leg part, and can improve the utilization efficiency of light. In addition, by arranging the plurality of leg portions in the above range, the degree of freedom of the size of the light emitting element disposed between the plurality of leg portions facing the first optical surface can be increased. Further, since the plurality of legs can be separated from the light emitting element to some extent, local heating inside the legs can be suppressed, and formation of cracks or distortion around the legs can be suppressed. Furthermore, since the position of the leg portion is not too much inside the lens, it is easy to attach the lens to the substrate with the leg portion as a contact point.
 本発明の具体的な側面では、上記レンズにおいて、複数の脚部は、光軸を基準として直径0.8Dの円の内側に配置されている。この場合、第2光学面で反射された光の通過が比較的少ない直径0.8Dより内側領域に脚部が存在することになり、脚部で反射した光による配光特性への影響をごく少量に抑えることができる。また、脚部がレンズ周辺に近づきすぎず、レンズを取り付ける基板を小さくでき、熱膨張係数の差によるクラックが発生しにくくなる。 In a specific aspect of the present invention, in the lens, the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis. In this case, the leg portion exists in the inner region from the diameter 0.8D where the light reflected by the second optical surface is relatively small, and the influence of the light reflected by the leg portion on the light distribution characteristics is extremely small. Can be kept to a small amount. Further, the leg portion does not approach the lens periphery too much, the substrate to which the lens is attached can be made small, and cracks due to the difference in thermal expansion coefficient are less likely to occur.
 本発明の別の側面では、複数の脚部は、光軸を基準として直径0.5Dから0.7Dまでの範囲内に配置されている。この場合、直径0.5D以上とすることで脚部の存在による光学特性への影響をより一層低減し、発光素子のサイズの自由度等をより高めることができる。一方、直径0.7D以下とすることで、脚部を配置するためのスペースを十分に確保しつつ配光特性への影響をより低減することができる。また、平坦面の周辺部は、反射面としての機能もあり、脚部は、平坦面の外縁からある程度離れることが望ましい。 In another aspect of the present invention, the plurality of leg portions are arranged in a range from 0.5D to 0.7D in diameter with respect to the optical axis. In this case, by setting the diameter to 0.5D or more, the influence on the optical characteristics due to the presence of the leg portion can be further reduced, and the degree of freedom of the size of the light emitting element can be further increased. On the other hand, by setting the diameter to 0.7D or less, it is possible to further reduce the influence on the light distribution characteristics while ensuring a sufficient space for arranging the legs. Further, the peripheral portion of the flat surface also has a function as a reflecting surface, and it is desirable that the leg portion be separated to some extent from the outer edge of the flat surface.
 本発明のさらに別の側面では、複数の脚部は、底面に離型用の突出しピンの跡を有する。この場合、レンズの平坦面等に突出しピンの跡が残ることを防止できる。平坦面等に突出しピンの跡が残らないため、第2光学面にて反射された光が突出しピン跡で予期せぬ迷光となることを防止でき、レンズの光学的性能が低下することを防止できる。また、成形後のレンズの突出しに際して、レンズが変形することを極力抑えることができ、この観点でもレンズの光学的性能の劣化を抑制できる。特に、脚部が0.37D以上0.8D以下にあると、突き出しによるレンズの歪みが少なく好ましい。 In yet another aspect of the present invention, the plurality of legs have traces of protruding pins for release on the bottom surface. In this case, it is possible to prevent a pin mark from remaining on the flat surface of the lens. Since there are no traces of pins protruding on a flat surface or the like, it is possible to prevent light reflected by the second optical surface from protruding and becoming unexpected stray light on the pin traces, and to prevent deterioration of the optical performance of the lens. it can. In addition, it is possible to suppress the deformation of the lens as much as possible when the lens is protruded after molding, and from this viewpoint, it is possible to suppress the deterioration of the optical performance of the lens. In particular, it is preferable that the leg portion is 0.37D or more and 0.8D or less because distortion of the lens due to protrusion is small.
 本発明のさらに別の側面では、複数の脚部は、光軸を中心とする円周上に等間隔で配置されている。この場合、レンズを支持基板上にバランスよく支持することができる。 In yet another aspect of the present invention, the plurality of leg portions are arranged at equal intervals on a circumference centered on the optical axis. In this case, the lens can be supported on the support substrate with a good balance.
 本発明のさらに別の側面では、複数の脚部は、光軸に垂直な面に投影した場合、円形又は光軸を中心とする半径方向に長軸を有する楕円の輪郭を有する。特に、楕円である場合、その面積に比して支持範囲を広げることができるので、レンズの光学特性の劣化を防止しつつ支持の安定も確保できる。つまり、楕円である場合、楕円の長軸を直径とした円よりも面積が小さくなるため、光学特性への影響が小さくてすみ、かつ広い基板にも狭い基板にも安定して接着することができる。 In yet another aspect of the present invention, the plurality of leg portions have a circular shape or an elliptical outline having a long axis in the radial direction centered on the optical axis when projected onto a plane perpendicular to the optical axis. In particular, in the case of an ellipse, the support range can be expanded compared to the area thereof, so that the stability of the support can be ensured while preventing the deterioration of the optical characteristics of the lens. In other words, in the case of an ellipse, the area is smaller than a circle whose diameter is the major axis of the ellipse, so that the influence on the optical characteristics is small, and it is possible to stably adhere to a wide substrate or a narrow substrate. it can.
 本発明のさらに別の側面では、複数の脚部は、粗面化された表面を有する。この場合、脚部の表面で光が拡散するため、脚部に直接的又は間接的に入射した光によって生じる迷光を抑制できる。 In yet another aspect of the present invention, the plurality of legs have a roughened surface. In this case, since light diffuses on the surface of the leg portion, stray light generated by light that is directly or indirectly incident on the leg portion can be suppressed.
 本発明のさらに別の側面では、第1光学面は、第2光学面に比較して相対的に曲率が大きい凹形状であり、第2光学面は、全体として凸形状であり、中央に局所的な凹形状の領域を有する。 In still another aspect of the present invention, the first optical surface has a concave shape having a relatively large curvature compared to the second optical surface, and the second optical surface has a convex shape as a whole and is locally located in the center. It has a typical concave area.
 本発明のさらに別の側面では、レンズは、LEDバックライト照明用である。この場合、LEDにより液晶パネルその他の表示素子に対して均一で効率のよい照明が可能になる。 In yet another aspect of the present invention, the lens is for LED backlight illumination. In this case, the LEDs enable uniform and efficient illumination on the liquid crystal panel and other display elements.
 上記目的を達成するため、本発明に係る成形金型は、発光素子から出射された光線の進行方向を制御するレンズを射出成形するための転写面を有する成形金型であって、レンズは、第1光学面と、第1光学面よりも大きな直径を有する第2光学面と、第1光学面の周囲に設けられて光軸に略垂直に延びる平坦面と、平坦面から突出するように形成されている複数の脚部とを備え、複数の脚部は、レンズ直径をDとしたとき、光軸を基準として直径0.37Dの円の外側に配置されている。つまり、成形金型は、第1光学面を形成するための転写面と、第2光学面を形成するための転写面と、平坦面を形成するための転写面と、複数の脚部を形成するための転写面とを備え、脚部用の転写面によってレンズに設けられる複数の脚部が上述のような配置になるようにしている。 In order to achieve the above object, a molding die according to the present invention is a molding die having a transfer surface for injection molding a lens for controlling the traveling direction of a light beam emitted from a light emitting element. A first optical surface, a second optical surface having a larger diameter than the first optical surface, a flat surface provided around the first optical surface and extending substantially perpendicular to the optical axis, and protruding from the flat surface The plurality of legs are arranged outside the circle having a diameter of 0.37D with respect to the optical axis, where D is the lens diameter. That is, the molding die forms a transfer surface for forming the first optical surface, a transfer surface for forming the second optical surface, a transfer surface for forming a flat surface, and a plurality of legs. And a plurality of leg portions provided on the lens by the leg transfer surface are arranged as described above.
 上記成形金型では、第1光学面、第2光学面、平坦面及び複数の脚部用の転写面によって、複数の脚部が光軸を基準として直径0.37Dの円の外側に配置されているレンズを射出成形できるので、得られたレンズにおいて、発光素子からの光線が脚部に妨げられることを抑制でき、光の利用効率を高めることができる。また、複数の脚部を上記の範囲に配置することで、第1光学面に対向して複数の脚部の間に配置される発光素子のサイズの自由度を高めることができる。また、複数の脚部を発光素子からある程度離すことができることから、脚部の内側の局所的な加熱を抑えることができ、脚部の周辺でクラックが形成されることを抑制できる。 In the molding die, the first optical surface, the second optical surface, the flat surface, and the transfer surfaces for the plurality of legs are arranged outside the circle having a diameter of 0.37D with respect to the optical axis. In the obtained lens, the light beam from the light emitting element can be prevented from being obstructed by the leg portion, and the light utilization efficiency can be increased. In addition, by arranging the plurality of leg portions in the above range, the degree of freedom of the size of the light emitting element disposed between the plurality of leg portions facing the first optical surface can be increased. Further, since the plurality of legs can be separated from the light emitting element to some extent, local heating inside the legs can be suppressed, and cracks can be prevented from being formed around the legs.
 本発明の具体的な側面では、上記成形金型において、複数の脚部は、光軸を基準として直径0.8Dの円の内側に配置されている。 In a specific aspect of the present invention, in the molding die, the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis.
 本発明の別の側面では、複数の脚部は、光軸を基準として直径0.5Dから0.7Dまでの範囲内に配置されている。 In another aspect of the present invention, the plurality of leg portions are arranged in a range from 0.5D to 0.7D in diameter with respect to the optical axis.
 本発明の別の側面では、複数の脚部の底面を転写する部分に配置された離型用の突出しピンを備える。 In another aspect of the present invention, a release pin for release is provided at a portion where the bottom surface of the plurality of leg portions is transferred.
 本発明のさらに別の側面では、レンズの第1光学面側を成形する第1の金型と、レンズの第2光学面側を成形する第2の金型とを備え、第1の金型は、第1光学面を転写によって形成するためのコア部と、コア部の周囲に配置されて平坦面及び複数の脚部を形成する周辺部とを有する。この場合、周辺部において、脚部に相当する部分からコア部に隣接する部分までを転写する部分が薄くなりすぎないため、金型加工が容易になる。 In still another aspect of the present invention, the first mold includes a first mold that molds the first optical surface side of the lens and a second mold that molds the second optical surface side of the lens. Has a core part for forming the first optical surface by transfer, and a peripheral part arranged around the core part to form a flat surface and a plurality of legs. In this case, in the peripheral portion, the portion that transfers from the portion corresponding to the leg portion to the portion adjacent to the core portion does not become too thin, so that the mold processing becomes easy.
図1Aは、第1実施形態のレンズの裏面図であり、図1Bは、図1AのAA矢視断面図であり、図1Cは、図1Aのレンズの正面図である。1A is a rear view of the lens of the first embodiment, FIG. 1B is a cross-sectional view taken along arrow AA in FIG. 1A, and FIG. 1C is a front view of the lens in FIG. 1A. 図2A及び2Bは、図1A等に示すレンズ形状や機能を説明する図である。2A and 2B are diagrams illustrating the lens shape and functions shown in FIG. 1A and the like. 図3Aは、図1のレンズを成形するための成形金型の拡大断面図であり、図3Bは、図3Aの金型のうち可動金型の端面図である。3A is an enlarged cross-sectional view of a molding die for molding the lens of FIG. 1, and FIG. 3B is an end view of a movable die in the die of FIG. 3A. 第2実施形態のレンズの裏面図である。It is a reverse view of the lens of 2nd Embodiment.
〔第1実施形態〕
 本発明に係るレンズ及び成形金型の第1実施形態について、図面を参照して説明する。
[First Embodiment]
A lens and a mold according to a first embodiment of the present invention will be described with reference to the drawings.
 図1A~1Cに示すレンズ10は、LED(Light Emitting Diode)等からの照明用の光線を制御する、つまり発光素子から射出された光束の進行方向を制御するレンズ(光束制御部材)である。つまり、レンズ10は、例えばLEDバックライト照明用の照明光学系であり、バックライト光源の一部を構成する。図1A~1Cに示すように、レンズ10は、光学部10aと、外周部10bと、突起部10cと、脚部10dとを有する。 A lens 10 shown in FIGS. 1A to 1C is a lens (light flux controlling member) that controls a light beam for illumination from an LED (Light Emitting Diode) or the like, that is, a traveling direction of a light flux emitted from a light emitting element. That is, the lens 10 is an illumination optical system for LED backlight illumination, for example, and constitutes a part of the backlight light source. As shown in FIGS. 1A to 1C, the lens 10 includes an optical part 10a, an outer peripheral part 10b, a protruding part 10c, and a leg part 10d.
 光学部10aは、光学的機能を有する部分であり、一対の対向する第1及び第2光学面S1,S2と、第1光学面S1の周囲から延びる平坦面S6とを有する。第1光学面S1は、凹形状であり、第2光学面S2は、全体的に凸形状である。ここで、第1光学面S1は、第2光学面S2よりも相対的に曲率が大きい凹形状であり、第2光学面S2の中央に向けて深く窪んでいる。第2光学面S2は、中央に浅い凹形状の領域を有し、第1光学面S1よりも大きな直径を有する。結果的に、光学部10aの中央は肉薄となっており、中央の周辺は肉厚となっている。つまり、レンズ10は、偏肉比の高いレンズとなっている。平坦面S6は、光軸OAに略垂直に延びており、外周部10bの第1外周面S3と同一平面上にある。後述するLED等の発光素子は、第1光学面S1側に臨むように配置される。 The optical part 10a is a part having an optical function, and has a pair of opposed first and second optical surfaces S1 and S2 and a flat surface S6 extending from the periphery of the first optical surface S1. The first optical surface S1 has a concave shape, and the second optical surface S2 has an overall convex shape. Here, the first optical surface S1 has a concave shape having a relatively larger curvature than the second optical surface S2, and is deeply recessed toward the center of the second optical surface S2. The second optical surface S2 has a shallow concave region at the center, and has a larger diameter than the first optical surface S1. As a result, the center of the optical unit 10a is thin, and the periphery of the center is thick. That is, the lens 10 is a lens having a high thickness deviation ratio. The flat surface S6 extends substantially perpendicular to the optical axis OA and is on the same plane as the first outer peripheral surface S3 of the outer peripheral portion 10b. A light-emitting element such as an LED, which will be described later, is disposed so as to face the first optical surface S1 side.
 外周部10bは、光学部10aの周囲に延在する。外周部10bは、一対の対向する第1及び第2外周面S3,S4と、第1及び第2外周面S3,S4を連結する外周側面S5とを有する。第1及び第2外周面S3,S4は、レンズ10の光軸OAに垂直に延びている。 The outer peripheral part 10b extends around the optical part 10a. The outer peripheral part 10b has a pair of opposing first and second outer peripheral surfaces S3 and S4, and an outer peripheral side surface S5 connecting the first and second outer peripheral surfaces S3 and S4. The first and second outer peripheral surfaces S3 and S4 extend perpendicular to the optical axis OA of the lens 10.
 突起部10cは、外周部10bの外周側面S5から外周方向に突出する。突起部10cは、外周部10bの外側に拡張するように設けられている。突起部10cは、扁平に形成された部分であり、具体的には、矩形の板状又はブロック状部分となっている。突起部10cは、光軸OAに対して垂直な一対の第1及び第2突起部表面S7,S8と、第1及び第2突起部表面S7,S8間に挟まれた突起側面S10とを有する。第1及び第2突起部表面S7,S8のうち第2光学面S2側の第2突起部表面S8上には、ゲートカット跡GSが形成されている。ゲートカット跡GSは、窪み10gに形成されており第2突起部表面S8から突出していない状態となっている。突起部10cの突起側面S10は、外周部10bの外周側面S5と両端でつながっている。 The protrusion 10c protrudes from the outer peripheral side surface S5 of the outer peripheral portion 10b in the outer peripheral direction. The protruding portion 10c is provided so as to extend to the outside of the outer peripheral portion 10b. The protrusion 10c is a flat portion, and specifically, has a rectangular plate shape or block shape. The protrusion 10c has a pair of first and second protrusion surfaces S7 and S8 perpendicular to the optical axis OA, and a protrusion side surface S10 sandwiched between the first and second protrusion surfaces S7 and S8. . A gate cut trace GS is formed on the second projection surface S8 on the second optical surface S2 side of the first and second projection surfaces S7 and S8. The gate cut trace GS is formed in the depression 10g and is not protruding from the second protrusion surface S8. The protruding side surface S10 of the protruding portion 10c is connected to the outer peripheral side surface S5 of the outer peripheral portion 10b at both ends.
 脚部10dは、発光素子の支持基板60(図2B参照)に取り付けられる部分である。脚部10dは、薄い円筒状又は低い台状の部分であり、光学部10aの平坦面S6から光軸OAに平行な方向に突出する。本実施形態の場合、脚部10dは、平坦面S6の光軸OAを中心とする同一円周上に等間隔で3箇所に設けられている。各脚部10dは、側壁S21と天面S22とを有する。天面S22は、周囲の平坦面S6と平行になっている。なお、脚部10dの天面S22には、後述する突出しピン31の跡71が形成されている。脚部10dの側壁S21や天面S22については、これを粗面化することができる。この場合、脚部10dに直接的又は間接的に入射した光LB3(図2B参照)によって迷光が発生することを抑制できる。脚部10dの粗面化は、後述する金型の転写面の粗面化によって達成できるが、後工程で粗面に仕上げることもできる。 The leg part 10d is a part attached to the support substrate 60 (refer FIG. 2B) of a light emitting element. The leg portion 10d is a thin cylindrical or low trapezoidal portion, and protrudes in a direction parallel to the optical axis OA from the flat surface S6 of the optical portion 10a. In the case of the present embodiment, the leg portions 10d are provided at three locations at equal intervals on the same circumference around the optical axis OA of the flat surface S6. Each leg 10d has a side wall S21 and a top surface S22. The top surface S22 is parallel to the surrounding flat surface S6. In addition, the trace 71 of the protrusion pin 31 mentioned later is formed in the top | upper surface S22 of the leg part 10d. The side wall S21 and the top surface S22 of the leg 10d can be roughened. In this case, stray light can be prevented from being generated by the light LB3 (see FIG. 2B) that is directly or indirectly incident on the leg 10d. The roughening of the leg 10d can be achieved by roughening the transfer surface of the mold, which will be described later, but it can also be roughened in a later step.
 図2A及び2Bを参照して、図1A等に示すレンズ10の形状的な特徴について説明する。図2Aに示すように、3つの脚部10dは、光軸OAを中心とする円形領域である内側の非配置領域ACの外側に配置されている。内側の非配置領域ACの直径ARは、レンズ10の直径をDとしたとき、0.37Dとなっている。つまり、3つの脚部10dは、光軸OAを基準として直径0.37Dの円の円周上を含む外側に配置されている。脚部10dは、内側の非配置領域ACの外側に形成されていればよいが、好ましくは外側の非配置領域AC2の内側(光軸OA側)に形成される。外側の非配置領域AC2の直径AR2(非配置領域AC2の内径)は、レンズ10の直径をDとしたとき、0.8Dとなっている。つまり、脚部10dは、光軸OAを中心とする直径0.37D~0.8Dの領域内にあり、より好ましくは直径0.5D~0.7Dの領域内にある。さらに好ましくは、脚部10dは0.55D~0.65Dの領域内にある。なお、脚部10dが直径0.37D~0.8Dの領域内にあるとは、脚部10dの光軸OAに最も近い点が直径0.37Dの円の外側にあり、かつ脚部10dの光軸OAに最も遠い点が直径0.8Dの円の内側にあることをいう。なお、非配置領域AC及びAC2は0.37D及び0.8Dの周上すなわち境界線上を含まず、かかる境界線上に脚部10dを配置することができる。 Referring to FIGS. 2A and 2B, the shape feature of the lens 10 shown in FIG. 1A and the like will be described. As shown in FIG. 2A, the three leg portions 10d are disposed outside an inner non-arrangement region AC that is a circular region centered on the optical axis OA. The diameter AR of the inner non-arrangement region AC is 0.37 D, where D is the diameter of the lens 10. That is, the three leg portions 10d are arranged outside including the circumference of a circle having a diameter of 0.37D with respect to the optical axis OA. The leg portion 10d may be formed outside the inner non-arrangement area AC, but is preferably formed inside the outer non-arrangement area AC2 (on the optical axis OA side). The diameter AR2 of the outer non-arrangement region AC2 (the inner diameter of the non-arrangement region AC2) is 0.8D, where D is the diameter of the lens 10. That is, the leg portion 10d is in a region having a diameter of 0.37D to 0.8D centered on the optical axis OA, and more preferably in a region having a diameter of 0.5D to 0.7D. More preferably, the leg 10d is in the region of 0.55D to 0.65D. Note that the leg 10d is in the region having a diameter of 0.37D to 0.8D means that the point closest to the optical axis OA of the leg 10d is outside the circle having a diameter of 0.37D and the leg 10d It means that the point farthest from the optical axis OA is inside the circle having a diameter of 0.8D. The non-arrangement regions AC and AC2 do not include the circumferences of 0.37D and 0.8D, that is, on the boundary line, and the leg portions 10d can be disposed on the boundary line.
 図2Bに示すように、発光素子50から射出された光線LB2は、第1光学面S1側からレンズ10内に入射し、そのまま第2光学面S2を通過して照明光となる。また、第2光学面S2で部分的に反射された光線LB2は、平坦面S6で再度部分的に反射され、その後第2光学面S2を通過することで照明光として寄与する。なお、発光素子50から射出されレンズ10によって光束が制御された光線LB2等の照明光は、液晶パネルその他の表示素子を照明するためのバックライトとして用いられる。 As shown in FIG. 2B, the light beam LB2 emitted from the light emitting element 50 enters the lens 10 from the first optical surface S1 side, passes through the second optical surface S2 as it is, and becomes illumination light. Further, the light beam LB2 partially reflected by the second optical surface S2 is partially reflected again by the flat surface S6, and then passes through the second optical surface S2, thereby contributing as illumination light. Note that the illumination light such as the light beam LB2 emitted from the light emitting element 50 and whose luminous flux is controlled by the lens 10 is used as a backlight for illuminating a liquid crystal panel and other display elements.
 本実施形態において3つの脚部10dを上記のような非配置領域ACの外側に配置することにより、これらの脚部10dを光軸OAや発光素子50から十分に離すことができる。これにより、発光素子50から射出された光線LB1が脚部10dに入射することを抑制でき、このような予期しない光線LB1が迷光となってしまい、レンズ10の配光特性(光学性能)が劣化することを防止できる。また、3つの脚部10dを上記のような非配置領域ACの外側に配置することにより、発光素子50のサイズを大きくすることができ、発光素子50のサイズの自由度を高めることができる。さらに、3つの脚部10dを上記のような非配置領域ACの外側に配置することにより、3つの脚部10dを発光素子50から十分離すことになり、脚部10dの内側の局所的な加熱を抑えることができ、脚部10dの根元部分10j等にクラックが形成されることや局所的な加熱による歪みに起因した光学性能の変化が生じることを抑制できる。以上のように脚部10dを非配置領域ACの外側に配置することによって、レンズの配光特性を均一なものとしつつ信頼性の高いレンズとすることができる。 In the present embodiment, by arranging the three leg portions 10d outside the non-arrangement region AC as described above, these leg portions 10d can be sufficiently separated from the optical axis OA and the light emitting element 50. Thereby, it can suppress that the light ray LB1 inject | emitted from the light emitting element 50 injects into the leg part 10d, Such an unexpected light ray LB1 becomes stray light, and the light distribution characteristic (optical performance) of the lens 10 deteriorates. Can be prevented. In addition, by arranging the three leg portions 10d outside the non-arrangement region AC as described above, the size of the light emitting element 50 can be increased, and the degree of freedom of the size of the light emitting element 50 can be increased. Furthermore, by arranging the three leg portions 10d outside the non-arrangement region AC as described above, the three leg portions 10d are sufficiently separated from the light emitting element 50, and local heating inside the leg portion 10d is performed. It is possible to suppress the formation of cracks in the base portion 10j of the leg portion 10d and the like, and the occurrence of changes in optical performance due to distortion caused by local heating. As described above, by arranging the leg portion 10d outside the non-arrangement area AC, it is possible to obtain a highly reliable lens while making the light distribution characteristics of the lens uniform.
 なお、3つの脚部10dを上記のような非配置領域AC2の内側(光軸OA側)に配置することにより、これらの脚部10dが、第2光学面S2で反射された光線LB2の通過が比較的少ない内側領域に存在することになり、脚部10dで反射された光による配光特性への影響をごく少量に抑えることができる。また、脚部10dがレンズ10の周辺部に近づきすぎず、レンズ10を取り付ける支持基板60を小さくでき、熱膨張係数の差に起因するクラックが発生しにくくなる。 By arranging the three leg portions 10d inside the non-arrangement region AC2 as described above (on the optical axis OA side), these leg portions 10d pass the light beam LB2 reflected by the second optical surface S2. Is present in a relatively small inner region, and the influence on the light distribution characteristics by the light reflected by the leg 10d can be suppressed to a very small amount. Further, the leg portion 10d does not come too close to the peripheral portion of the lens 10, the support substrate 60 to which the lens 10 is attached can be made small, and cracks due to the difference in thermal expansion coefficient are less likely to occur.
 なお、発光素子50とレンズ10とは互いに位置合わせされて、支持基板60上に固定されている。この際、脚部10dの端面(天面S22)が支持基板60に接着され、支持基板60に対するレンズ10の配置が調整される。 The light emitting element 50 and the lens 10 are aligned with each other and fixed on the support substrate 60. At this time, the end surface (top surface S22) of the leg 10d is bonded to the support substrate 60, and the arrangement of the lens 10 with respect to the support substrate 60 is adjusted.
 図3Aに示すように、図1A等に示すレンズ10を製造するための成形金型100は、固定金型11と、可動金型12と、ピンポイントゲート機構40と、突き出し機構30とを備える。 As shown in FIG. 3A, a molding die 100 for manufacturing the lens 10 shown in FIG. 1A and the like includes a fixed die 11, a movable die 12, a pinpoint gate mechanism 40, and an ejecting mechanism 30. .
 可動金型12は、第1の金型として不図示の可動盤に支持されて固定金型11に対して進退可能になっている。可動金型12は、軸AXの周辺に配置されるコア部12iと、コア部12iの周囲又は外側に配置される周辺部12jとを備える。可動金型12は、固定金型11に対向する型合わせ面PP側に第1光学面転写面T1と、第1外周面転写面T3と、外周側面転写面T5と、平坦面転写面T6と、第1突起転写面T7と、突起側面転写面T10と、脚部転写面T21,T22とを有する。これらの転写面T1,T3,T5,T6,T7,T10,T21,T22は、レンズ10の第1光学面S1側を形成する第1転写面12aとなる。これらのうち、第1光学面転写面T1は、コア部12iの表面に設けられている。その他の転写面T3,T5,T6,T7,T10,T21,T22は、周辺部12jの表面に設けられている。第1光学面転写面T1は、レンズ10の第1光学面S1の形状に対応し、これを反転した形状を有する。つまり、第1光学面転写面T1は、凸形状となっている。第1外周面転写面T3は、レンズ10の第1外周面S3の形状に対応する。外周側面転写面T5は、レンズ10の外周側面S5の形状に対応する。平坦面転写面T6は、レンズ10の平坦面S6の形状に対応する。第1突起転写面T7は、レンズ10の第1突起部表面S7の形状に対応する。突起側面転写面T10は、レンズ10の突起側面S10の形状に対応する。脚部転写面T21,T22は、レンズ10の脚部10dの形状に対応する。ここで、脚部転写面T21は、脚部10dの側壁S21に対応し、これを反転した形状を有する。また、脚部転写面T22は、脚部10dの天面S22に対応し、これを反転した形状を有する。脚部転写面T22の中央部は、後述する突き出しピン31の先端面31aとなっている。その他、可動金型12には、不図示の冷却路が設けられている。この冷却路は、冷却水等を流すためのものであり、可動金型(第1の金型)12の過熱を防止するとともに溶融した樹脂を冷却するために設けられている。 The movable mold 12 is supported by a movable plate (not shown) as a first mold and can move forward and backward with respect to the fixed mold 11. The movable mold 12 includes a core portion 12i disposed around the axis AX, and a peripheral portion 12j disposed around or outside the core portion 12i. The movable mold 12 has a first optical surface transfer surface T1, a first outer peripheral surface transfer surface T3, an outer peripheral side surface transfer surface T5, and a flat surface transfer surface T6 on the mold matching surface PP side facing the fixed mold 11. The first protrusion transfer surface T7, the protrusion side transfer surface T10, and the leg transfer surfaces T21 and T22. These transfer surfaces T1, T3, T5, T6, T7, T10, T21, and T22 become the first transfer surface 12a that forms the first optical surface S1 side of the lens 10. Among these, the first optical surface transfer surface T1 is provided on the surface of the core portion 12i. The other transfer surfaces T3, T5, T6, T7, T10, T21, and T22 are provided on the surface of the peripheral portion 12j. The first optical surface transfer surface T1 corresponds to the shape of the first optical surface S1 of the lens 10 and has a shape obtained by inverting this. That is, the first optical surface transfer surface T1 has a convex shape. The first outer peripheral surface transfer surface T3 corresponds to the shape of the first outer peripheral surface S3 of the lens 10. The outer peripheral side transfer surface T5 corresponds to the shape of the outer peripheral side surface S5 of the lens 10. The flat surface transfer surface T6 corresponds to the shape of the flat surface S6 of the lens 10. The first protrusion transfer surface T7 corresponds to the shape of the first protrusion surface S7 of the lens 10. The protrusion side transfer surface T10 corresponds to the shape of the protrusion side surface S10 of the lens 10. The leg transfer surfaces T21 and T22 correspond to the shape of the leg 10d of the lens 10. Here, the leg transfer surface T21 corresponds to the side wall S21 of the leg 10d and has a shape obtained by inverting it. The leg transfer surface T22 corresponds to the top surface S22 of the leg 10d and has a shape obtained by inverting it. A central portion of the leg transfer surface T22 is a tip surface 31a of a protrusion pin 31 described later. In addition, the movable mold 12 is provided with a cooling path (not shown). This cooling path is for flowing cooling water or the like, and is provided for preventing overheating of the movable mold (first mold) 12 and cooling the molten resin.
 以上において、可動金型12は、第1光学面S1を転写によって形成するためのコア部12iと、コア部12iの周囲に配置されて平坦面S6及び複数の脚部10dを形成する周辺部12jとを有している。この場合、周辺部12jにおいて脚部10dに相当する突き出しピン31等からコア部12iに隣接する部分までを転写する部分が薄くなりすぎないため、金型加工が容易になる。 In the above, the movable mold 12 includes the core portion 12i for forming the first optical surface S1 by transfer, and the peripheral portion 12j disposed around the core portion 12i to form the flat surface S6 and the plurality of leg portions 10d. And have. In this case, in the peripheral portion 12j, the portion that transfers from the protruding pin 31 or the like corresponding to the leg portion 10d to the portion adjacent to the core portion 12i does not become too thin, so that the mold processing becomes easy.
 固定金型11は、第2の金型として不図示の固定盤に支持されて固定されている。固定金型11は、可動金型12に対向する型合わせ面PP側に第2光学面転写面T2と、第2外周面転写面T4と、第2突起転写面T8とを有する。これらの転写面T2,T4,T8は、レンズ10の第2光学面S2側を形成する第2転写面11aとなる。第2光学面転写面T2は、レンズ10の第2光学面S2の形状に対応し、これを反転した形状を有する。つまり、第2光学面転写面T2は、全体で凹形状となっている。第2外周面転写面T4は、レンズ10の第2外周面S4の形状に対応する。第2突起転写面T8は、レンズ10の第2突起部表面S8の形状に対応する。固定金型11と可動金型12との間には、型締めによって型空間(キャビティ)CVが形成される。後述するピンポイントゲート機構40のゲート41は、第2突起転写面T8を介してキャビティCVに連通する。このキャビティCVは、図1A~1C等に示すレンズ10の外形に対応するものとなっている。つまり、キャビティCVは、中央側が薄く、中央とその周辺とで厚み差の大きな高偏肉比の空間となっている。その他、固定金型11には、不図示の冷却路が設けられている。この冷却路は、冷却水等を流すためのものであり、固定金型(第2の金型)11の過熱を防止するとともに溶融した樹脂を冷却するために設けられている。 The fixed mold 11 is supported and fixed by a fixed plate (not shown) as a second mold. The fixed mold 11 has a second optical surface transfer surface T2, a second outer peripheral surface transfer surface T4, and a second protrusion transfer surface T8 on the mold matching surface PP side facing the movable mold 12. These transfer surfaces T2, T4, and T8 serve as a second transfer surface 11a that forms the second optical surface S2 side of the lens 10. The second optical surface transfer surface T2 corresponds to the shape of the second optical surface S2 of the lens 10 and has a shape obtained by inverting this. That is, the second optical surface transfer surface T2 has a concave shape as a whole. The second outer peripheral surface transfer surface T4 corresponds to the shape of the second outer peripheral surface S4 of the lens 10. The second protrusion transfer surface T8 corresponds to the shape of the second protrusion surface S8 of the lens 10. A mold space (cavity) CV is formed between the fixed mold 11 and the movable mold 12 by clamping. A gate 41 of a pinpoint gate mechanism 40, which will be described later, communicates with the cavity CV via the second protrusion transfer surface T8. The cavity CV corresponds to the outer shape of the lens 10 shown in FIGS. 1A to 1C and the like. In other words, the cavity CV is a space with a high thickness deviation ratio that is thin at the center and has a large thickness difference between the center and the periphery thereof. In addition, the fixed mold 11 is provided with a cooling path (not shown). This cooling path is for flowing cooling water or the like, and is provided to prevent overheating of the fixed mold (second mold) 11 and to cool the molten resin.
 図示を省略するが、可動金型12には、複数の第1転写面12aが形成されている。また、固定金型11にも、上記複数の第2転写面12aに対向して複数の第2転写面11aが形成されている。 Although not shown, the movable mold 12 has a plurality of first transfer surfaces 12a. The fixed mold 11 also has a plurality of second transfer surfaces 11a facing the plurality of second transfer surfaces 12a.
 図3B等を参照して、図3Aに示す成形金型100の形状的な特徴について説明する。可動金型12において、3つの脚部転写面T22は、図1A等に示す脚部10dに対応するものである。脚部転写面T22は、軸AXを中心とする円形領域である内側の非配置領域ACの外側に配置されている。内側の非配置領域ACの直径ARは、レンズ10の直径に対応するキャビティCVの直径をDとしたとき、直径0.37Dとなっている。また、脚部転写面T22は、図示の実施形態の場合、直径0.8Dより大きい外側の非配置領域AC2の内側(軸AX側)に形成されている。つまり、脚部転写面T22は、脚部10dと同様に、軸AXを中心とする直径0.37D~0.8Dの領域内にあり、より好ましくは直径0.5D~0.7Dの領域内にある。さらに好ましくは、脚部転写面T22は0.55D~0.65Dの領域内にある。 With reference to FIG. 3B etc., the shape characteristic of the molding die 100 shown to FIG. 3A is demonstrated. In the movable mold 12, the three leg transfer surfaces T22 correspond to the leg 10d shown in FIG. 1A and the like. The leg transfer surface T22 is disposed outside the inner non-arrangement region AC that is a circular region centered on the axis AX. The diameter AR of the inner non-arrangement region AC is 0.37D, where D is the diameter of the cavity CV corresponding to the diameter of the lens 10. In the illustrated embodiment, the leg transfer surface T22 is formed on the inner side (axis AX side) of the outer non-arrangement region AC2 larger than the diameter 0.8D. That is, like the leg portion 10d, the leg transfer surface T22 is in a region having a diameter of 0.37D to 0.8D centered on the axis AX, and more preferably in a region having a diameter of 0.5D to 0.7D. It is in. More preferably, the leg transfer surface T22 is in the region of 0.55D to 0.65D.
 図3Aに示すピンポイントゲート機構40は、型開きによって自動的にゲートカットをする構造を有する。つまり、成形金型100には、固定金型11及び可動金型12の他に、固定金型11側に不図示のランナー除去型が設けられている。ランナー除去型は、成形の際に固定金型11側に型閉じされ、離型の際に固定金型11から分離する。 The pinpoint gate mechanism 40 shown in FIG. 3A has a structure that automatically performs gate cutting by mold opening. In other words, in addition to the fixed mold 11 and the movable mold 12, the molding mold 100 is provided with a runner removal mold (not shown) on the fixed mold 11 side. The runner removal mold is closed to the fixed mold 11 side during molding and separated from the fixed mold 11 during mold release.
 ピンポイントゲート機構40は、型合わせ面PP側にキャビティCVに向けて先が細くなるゲート41を有する。ゲート41の先端41aは、型合わせ面PPよりも可動金型12側に突き出した状態で配置されている。 The pinpoint gate mechanism 40 has a gate 41 that tapers toward the cavity CV on the die matching surface PP side. The tip 41a of the gate 41 is arranged in a state of protruding from the mold matching surface PP toward the movable mold 12 side.
 突き出し機構30は、不図示の駆動装置に付勢されて、成形金型100の軸AXに沿ったAB方向に沿って所望のタイミングで進退させることができる。図3Bに示すように、突き出し機構30は、複数の突き出しピン31で構成される。各突き出しピン31は、可動金型12に設けたピン孔12d(図3A参照)に挿入されている。ピン孔12dは、脚部転写面T22に対応させて3箇所設けられている。既に説明したように、突き出しピン31の先端は、固定金型11と可動金型12とが型締めされた図示の状態でキャビティCVに臨む脚部転写面T22の中央部となる。 The ejecting mechanism 30 is urged by a drive device (not shown) and can be advanced and retracted at a desired timing along the AB direction along the axis AX of the molding die 100. As shown in FIG. 3B, the protrusion mechanism 30 includes a plurality of protrusion pins 31. Each protruding pin 31 is inserted into a pin hole 12 d (see FIG. 3A) provided in the movable mold 12. Three pin holes 12d are provided in correspondence with the leg transfer surface T22. As already described, the tip of the protrusion pin 31 is the central portion of the leg transfer surface T22 that faces the cavity CV in the illustrated state where the fixed mold 11 and the movable mold 12 are clamped.
 以下、レンズ10の製造方法について説明する。まず、互いに離間した型開き状態の固定金型11と可動金型12とは、待機状態において所定の温度に調節される。次に、可動金型12を動作させて固定金型11と可動金型12とを型閉じし、所定の圧力で両金型11,12を型締めする。この際、両金型11,12間にはキャビティCVが形成される。次に、両金型11,12を型締めした状態でピンポイントゲート機構40のゲート41に導かれた溶融樹脂が先端41aの開口からキャビティCV中に射出される。次に、キャビティCV中の溶融樹脂は、両金型11,12によって冷却され、成形品としてのレンズ10が得られる。この状態で可動金型12を固定金型11から離間させる型開きを行うと、レンズ10は、固定金型11から離型され、可動金型12に付着した状態となる。次に、突き出し機構30を前進させて突き出しピン31に突き出しを行わせると、レンズ10が可動金型12から剥離され、レンズ10の離型が完了する。 Hereinafter, a method for manufacturing the lens 10 will be described. First, the fixed mold 11 and the movable mold 12 which are separated from each other are adjusted to a predetermined temperature in the standby state. Next, the movable mold 12 is operated to close the fixed mold 11 and the movable mold 12, and the molds 11 and 12 are clamped with a predetermined pressure. At this time, a cavity CV is formed between the molds 11 and 12. Next, the molten resin guided to the gate 41 of the pinpoint gate mechanism 40 in a state where the molds 11 and 12 are clamped is injected into the cavity CV from the opening of the tip 41a. Next, the molten resin in the cavity CV is cooled by both molds 11 and 12, and the lens 10 as a molded product is obtained. In this state, when the mold opening for separating the movable mold 12 from the fixed mold 11 is performed, the lens 10 is separated from the fixed mold 11 and is attached to the movable mold 12. Next, when the protrusion mechanism 30 is advanced to cause the protrusion pin 31 to protrude, the lens 10 is peeled off from the movable mold 12 and the release of the lens 10 is completed.
 なお、両金型11,12の型開きに際して、ピンポイントゲート機構40のランナー除去型(不図示)が固定金型11から分離する。これにより、レンズ10以外のゲート部やランナー部等の不要部分(不図示)が固定金型11から引き抜かれる。つまり、固定金型11及び可動金型12の型開きによってレンズ10が離型されるとともに、自動的にゲートカットがなされる。 In addition, when the molds 11 and 12 are opened, the runner removal mold (not shown) of the pinpoint gate mechanism 40 is separated from the fixed mold 11. Thereby, unnecessary parts (not shown) such as a gate part and a runner part other than the lens 10 are pulled out from the fixed mold 11. That is, the lens 10 is released by opening the fixed mold 11 and the movable mold 12, and the gate is automatically cut.
 上記第1実施形態のレンズ10では、複数の脚部10dが光軸OAを基準として直径0.37D(Dはレンズ10の直径)の円の外側に配置されているので、脚部10dを光軸OAから十分に離して配置することができ、発光素子50からの光線LB1が脚部10dに妨げられることを抑制でき、光の利用効率を高めることができる。また、複数の脚部10dを上記0.37Dの円の外側の範囲に配置することで、第1光学面S1に対向して複数の脚部10dの間に配置される発光素子50のサイズの自由度を高めることができる。また、複数の脚部10dを発光素子50からある程度離すことができ、脚部10dの内側の局所的な加熱を抑えることができ、脚部10dの周辺でクラック等が形成されることを抑制できる。 In the lens 10 of the first embodiment, since the plurality of leg portions 10d are arranged outside the circle having a diameter of 0.37D (D is the diameter of the lens 10) with respect to the optical axis OA, It can arrange | position enough away from the axis | shaft OA, can suppress that the light ray LB1 from the light emitting element 50 is prevented by the leg part 10d, and can improve the utilization efficiency of light. In addition, by arranging the plurality of leg portions 10d in the range outside the circle of 0.37D, the size of the light emitting element 50 arranged between the plurality of leg portions 10d facing the first optical surface S1. The degree of freedom can be increased. In addition, the plurality of legs 10d can be separated from the light emitting element 50 to some extent, local heating inside the legs 10d can be suppressed, and cracks and the like can be prevented from being formed around the legs 10d. .
 上記第1実施形態の成形金型(金型)100において、ピンポイントゲート機構40は、ホットランナー機構等に置き換えることができる。 In the molding die (die) 100 of the first embodiment, the pinpoint gate mechanism 40 can be replaced with a hot runner mechanism or the like.
〔第2実施形態〕
 以下、第2実施形態のレンズ及び成形金型について説明する。第2実施形態のレンズ及び成形金型は、第1実施形態のレンズ及び成形金型を部分的に変更したものであり、特に説明しない事項は、第1実施形態のレンズ及び成形金型と同様である。
[Second Embodiment]
Hereinafter, the lens and the mold according to the second embodiment will be described. The lens and the molding die of the second embodiment are partially modified from the lens and the molding die of the first embodiment, and items not specifically described are the same as those of the lens and the molding die of the first embodiment. It is.
 図4に示すように、本実施形態では、レンズ10に設けた各脚部2010dの光軸OAに垂直な面に転写した輪郭が楕円形となっており、その長軸が半径方向に延びている。この場合、仮想線の示す幅の狭い支持基板60Aや幅の広い支持基板60Bの双方に対応して、レンズ10の確実な固定が可能になる。ここで、脚部2010dを楕円形とせず円形とすることも考えられるが、単純に円形の脚部とした場合、脚部の面積が増加して平坦面S6の面積が減少し、光線の利用効率が低下し延いては光学特性が劣化する。本実施形態のレンズ10に設けた脚部2010dのように、半径方向に延びる楕円形状とすることにより、多様な支持基板60A,60Bに対応しつつ光学特性の劣化を防止することができる。 As shown in FIG. 4, in this embodiment, the contours transferred to the surfaces perpendicular to the optical axis OA of each leg 2010d provided on the lens 10 are elliptical, and the major axis extends in the radial direction. Yes. In this case, the lens 10 can be securely fixed in correspondence with both the support substrate 60A having a narrow width and the support substrate 60B having a wide width indicated by the imaginary line. Here, it is conceivable that the legs 2010d are not elliptical but circular, but if the legs are simply circular, the area of the legs increases and the area of the flat surface S6 decreases, and the use of light rays. As the efficiency decreases, the optical characteristics deteriorate. By adopting an elliptical shape extending in the radial direction like the leg portion 2010d provided on the lens 10 of the present embodiment, it is possible to prevent deterioration of optical characteristics while supporting various support substrates 60A and 60B.
 以上、実施形態に即して本発明を説明したが本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、レンズ10の光学部10aや外周部10bが円形の輪郭を有するとしているが、光学部10aや外周部10bは矩形又は長円(楕円を含む)の輪郭を有する場合もある。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, in the above embodiment, the optical part 10a and the outer peripheral part 10b of the lens 10 have a circular outline, but the optical part 10a and the outer peripheral part 10b may have a rectangular or oval (including elliptical) outline. .
 上記実施形態では、円形の脚部10dや楕円形の脚部2010dについて説明したが、脚部の輪郭形状は、用途等に応じて適宜変更でき、三角形、矩形、長円(楕円を含む)等の各種形状とすることができる。また、発光素子50は、LEDに限らず、LD(Laser Diode)、VCSEL(Vertical Cavity Surface Emitting Laser)等であってもよい。 In the above-described embodiment, the circular leg portion 10d and the elliptical leg portion 2010d have been described. However, the contour shape of the leg portion can be changed as appropriate according to the application, and the like, such as a triangle, a rectangle, an ellipse (including an ellipse) It can be set as various shapes. The light emitting element 50 is not limited to an LED, and may be an LD (LaserLaDiode), a VCSEL (Vertical Cavity Surface Emitting Laser), or the like.
 上記実施形態において、成形金型100は、横型又は竪型として用いられる。横型の場合、固定金型11と可動金型12とが水平方向に対向して配置され、竪型の場合、固定金型11と可動金型12とが鉛直方向に対向して配置される。 In the above embodiment, the molding die 100 is used as a horizontal die or a saddle die. In the case of the horizontal type, the fixed mold 11 and the movable mold 12 are arranged to face each other in the horizontal direction. In the case of the vertical type, the fixed mold 11 and the movable mold 12 are arranged to face each other in the vertical direction.
 上記実施形態において、固定金型11と可動金型12とは置き換えることができる。つまり、第1光学面S1等を固定金型11側で形成し、第2光学面S2等を可動金型12側で形成することができる。 In the above embodiment, the fixed mold 11 and the movable mold 12 can be replaced. That is, the first optical surface S1 and the like can be formed on the fixed mold 11 side, and the second optical surface S2 and the like can be formed on the movable mold 12 side.

Claims (14)

  1.  発光素子から出射された光線の進行方向を制御するレンズであって、
     第1光学面と、
     前記第1光学面よりも大きな直径を有する第2光学面と、
     前記第1光学面の周囲に設けられて光軸に略垂直に延びる平坦面と、
     前記平坦面から突出するように形成されている複数の脚部とを備え、
     前記複数の脚部は、レンズ直径をDとしたとき、前記光軸を基準として直径0.37Dの円の外側に配置されているレンズ。
    A lens for controlling the traveling direction of light emitted from the light emitting element,
    A first optical surface;
    A second optical surface having a larger diameter than the first optical surface;
    A flat surface provided around the first optical surface and extending substantially perpendicular to the optical axis;
    A plurality of legs formed so as to protrude from the flat surface;
    The plurality of legs are lenses arranged outside a circle having a diameter of 0.37D with respect to the optical axis, where D is a lens diameter.
  2.  前記複数の脚部は、前記光軸を基準として直径0.8Dの円の内側に配置されている、請求項1に記載のレンズ。 The lens according to claim 1, wherein the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis.
  3.  前記複数の脚部は、前記光軸を基準として直径0.5Dから0.7Dまでの範囲内に配置されている、請求項1又は2に記載のレンズ。 The lens according to claim 1 or 2, wherein the plurality of leg portions are disposed within a range of a diameter of 0.5D to 0.7D with respect to the optical axis.
  4.  前記複数の脚部は、底面に離型用の突出しピンの跡を有する、請求項1から3のいずれか一項に記載のレンズ。 The lens according to any one of claims 1 to 3, wherein the plurality of legs have traces of a release pin for release on a bottom surface.
  5.  前記複数の脚部は、光軸を中心とする円周上に等間隔で配置されている、請求項1から4のいずれか一項に記載のレンズ。 The lens according to any one of claims 1 to 4, wherein the plurality of leg portions are arranged at equal intervals on a circumference centered on the optical axis.
  6.  前記複数の脚部は、前記光軸に垂直な面に投影した場合、円形又は光軸を中心とする半径方向に長軸を有する楕円の輪郭を有する、請求項1から5のいずれか一項に記載のレンズ。 6. The plurality of legs according to claim 1, wherein when projected onto a plane perpendicular to the optical axis, the plurality of legs have a circular shape or an elliptical outline having a major axis in a radial direction centered on the optical axis. The lens described in 1.
  7.  前記複数の脚部は、粗面化された表面を有する、請求項1から6のいずれか一項に記載のレンズ。 The lens according to any one of claims 1 to 6, wherein the plurality of leg portions have a roughened surface.
  8.  前記第1光学面は、前記第2光学面に比較して相対的に曲率が大きい凹形状であり、前記第2光学面は、全体として凸形状であり、中央に局所的な凹形状の領域を有する、請求項1から7のいずれか一項に記載のレンズ。 The first optical surface has a concave shape having a relatively large curvature compared to the second optical surface, and the second optical surface has a convex shape as a whole, and has a locally concave shape in the center. The lens according to any one of claims 1 to 7, comprising:
  9.  前記レンズはLEDバックライト照明用である、請求項1から8のいずれか一項に記載のレンズ。 The lens according to claim 1, wherein the lens is for LED backlight illumination.
  10.  発光素子から出射された光線の進行方向を制御するレンズを射出成形するための転写面を有する成形金型であって、
     前記レンズは、第1光学面と、前記第1光学面よりも大きな直径を有する第2光学面と、前記第1光学面の周囲に設けられて光軸に略垂直に延びる平坦面と、前記平坦面から突出するように形成されている複数の脚部とを備え、
     前記複数の脚部は、レンズ直径をDとしたとき、前記光軸を基準として直径0.37Dの円の外側に配置されている成形金型。
    A molding die having a transfer surface for injection molding a lens for controlling the traveling direction of light emitted from the light emitting element,
    The lens includes a first optical surface, a second optical surface having a larger diameter than the first optical surface, a flat surface provided around the first optical surface and extending substantially perpendicular to the optical axis, A plurality of legs formed so as to protrude from the flat surface;
    The plurality of legs are molding dies arranged outside a circle having a diameter of 0.37D with the optical axis as a reference when the lens diameter is D.
  11.  前記複数の脚部は、前記光軸を基準として直径0.8Dの円の内側に配置されている、請求項10に記載の成形金型。 The molding die according to claim 10, wherein the plurality of leg portions are arranged inside a circle having a diameter of 0.8D with respect to the optical axis.
  12.  前記複数の脚部は、前記光軸を基準として直径0.5Dから0.7Dまでの範囲内に配置されている、請求項10又は11に記載の成形金型。 The molding die according to claim 10 or 11, wherein the plurality of leg portions are arranged in a range from a diameter of 0.5D to 0.7D with respect to the optical axis.
  13.  前記複数の脚部の底面を転写する部分に配置された離型用の突出しピンを備える、請求項10から12のいずれか一項に記載の成形金型。 The molding die according to any one of claims 10 to 12, comprising a release pin for release that is disposed in a portion to which the bottom surfaces of the plurality of leg portions are transferred.
  14.  前記レンズの前記第1光学面側を成形する第1の金型と、前記レンズの前記第2光学面側を成形する第2の金型とを備え、
     前記第1の金型は、前記第1光学面を転写によって形成するためのコア部と、前記コア部の周囲に配置されて前記平坦面及び前記複数の脚部を形成する周辺部とを有する、請求項10から13のいずれか一項に記載の成形金型。
    A first mold for molding the first optical surface side of the lens; and a second mold for molding the second optical surface side of the lens;
    The first mold includes a core part for forming the first optical surface by transfer, and a peripheral part disposed around the core part to form the flat surface and the plurality of leg parts. The molding die according to any one of claims 10 to 13.
PCT/JP2013/074742 2012-09-29 2013-09-12 Lens and molding die WO2014050602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-218918 2012-09-29
JP2012218918 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014050602A1 true WO2014050602A1 (en) 2014-04-03

Family

ID=50388009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074742 WO2014050602A1 (en) 2012-09-29 2013-09-12 Lens and molding die

Country Status (1)

Country Link
WO (1) WO2014050602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005872A (en) * 2014-06-20 2016-01-14 コニカミノルタ株式会社 Mold device and optical element
WO2018181387A1 (en) * 2017-03-28 2018-10-04 株式会社エンプラス Luminous flux control member, light-emitting device, and method for manufacturing light-emitting device
WO2019003879A1 (en) * 2017-06-29 2019-01-03 日本電産サンキョー株式会社 Method for producing plastic lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111212A (en) * 1984-06-28 1986-01-18 Toshiba Corp Manufacture of optical component part
JP2008094658A (en) * 2006-10-12 2008-04-24 Canon Inc Method for producing optical element and optical element
WO2011062089A1 (en) * 2009-11-17 2011-05-26 シャープ株式会社 Surface light-emitting unit and display device provided with the same
JP2012004078A (en) * 2010-06-21 2012-01-05 Enplas Corp Light-emitting device, surface light source device, display device, and luminous flux control member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111212A (en) * 1984-06-28 1986-01-18 Toshiba Corp Manufacture of optical component part
JP2008094658A (en) * 2006-10-12 2008-04-24 Canon Inc Method for producing optical element and optical element
WO2011062089A1 (en) * 2009-11-17 2011-05-26 シャープ株式会社 Surface light-emitting unit and display device provided with the same
JP2012004078A (en) * 2010-06-21 2012-01-05 Enplas Corp Light-emitting device, surface light source device, display device, and luminous flux control member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005872A (en) * 2014-06-20 2016-01-14 コニカミノルタ株式会社 Mold device and optical element
WO2018181387A1 (en) * 2017-03-28 2018-10-04 株式会社エンプラス Luminous flux control member, light-emitting device, and method for manufacturing light-emitting device
US10754194B2 (en) 2017-03-28 2020-08-25 Enplas Corporation Luminous flux control member, light-emitting device, and method for producing light-emitting device
WO2019003879A1 (en) * 2017-06-29 2019-01-03 日本電産サンキョー株式会社 Method for producing plastic lens
CN110869831A (en) * 2017-06-29 2020-03-06 日本电产三协株式会社 Method for manufacturing plastic lens
US11407188B2 (en) 2017-06-29 2022-08-09 Nidec Sankyo Corporation Manufacturing method of plastic lens

Similar Documents

Publication Publication Date Title
US8848300B2 (en) Vehicle lamp
JP5113573B2 (en) LED lighting device
WO2014050602A1 (en) Lens and molding die
JP2000348516A (en) Sheet-form light emitting device and manufacture thereof
EP2687772B1 (en) Light-emitting device and production method for synthetic resin globe for said light-emitting device
JP2012507846A5 (en)
JP2007280924A (en) Light guide lens and manufacturing method of light guide lens
JP2013097960A (en) Light flux control member, light-emitting device, surface light source device and display device
US20140042650A1 (en) Process for manufacturing a headlight lens for a motor vehicle headlight
JP2015097192A (en) Vehicle lamp fitting and manufacturing method of the same
US9163800B2 (en) Outer casing for vehicle lamp, vehicle lamp and manufacturing method for the same
JP6079370B2 (en) Lens, transmissive optical element and lighting apparatus
CN104633531A (en) Lateral entrance type backlight module
TWI472846B (en) Backlight module
US20190121014A1 (en) Light guide plate and fabrication thereof and light source module having the same
TWI520839B (en) Method for manufacturing a flexible optical plate and flexible optical plate fabricated by the method, and backlight module using the flexible optical plate
JP2008216588A5 (en)
US20190146141A1 (en) Lamp assembly and its frameless panel light
US10162158B2 (en) Projection lens with peripheral thick part and vehicle lamp provided with the same
JP2014069325A (en) Mold, lens, and lens manufacturing method
JP5379830B2 (en) Optical fiber fixing structure and optical fiber fixing method
US20140255668A1 (en) Resin joined body and method for manufacturing same
JP2017084692A (en) Vehicle lamp fitting
JP4626575B2 (en) Reflector for vehicle lamp
JP2015153629A (en) Projection lens and vehicular lighting fixture comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP