WO2014050442A1 - Optical communication lens and optical communication module - Google Patents

Optical communication lens and optical communication module Download PDF

Info

Publication number
WO2014050442A1
WO2014050442A1 PCT/JP2013/073495 JP2013073495W WO2014050442A1 WO 2014050442 A1 WO2014050442 A1 WO 2014050442A1 JP 2013073495 W JP2013073495 W JP 2013073495W WO 2014050442 A1 WO2014050442 A1 WO 2014050442A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
optical communication
optical fiber
fiber side
Prior art date
Application number
PCT/JP2013/073495
Other languages
French (fr)
Japanese (ja)
Inventor
雄三 中塚
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201380050159.8A priority Critical patent/CN104662461A/en
Priority to JP2014538311A priority patent/JPWO2014050442A1/en
Publication of WO2014050442A1 publication Critical patent/WO2014050442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present invention relates to a lens for optical communication and an optical communication module which are used for optical communication or the like and couple light from an optical element such as a semiconductor laser to an optical fiber or a light receiving element.
  • an optical coupling lens is used in order to efficiently perform optical coupling between a semiconductor laser or a light receiving element and an optical fiber.
  • the structure which mainly supports a glass lens with a stainless steel leg part is widely used.
  • a glass lens having an aspheric surface is generally expensive, and there is a problem that the cost is significantly increased. Therefore, is it possible to replace the plastic lens, which enables easy high-precision aspherical molding and mass production, with a glass lens and realize optical coupling between the semiconductor laser or light receiving element and the optical fiber? There is an attempt.
  • one of the features of plastic lenses compared to glass lenses is that the refractive index change with respect to temperature change is relatively large.
  • the inside of an optical communication module may be exposed to a wide range of temperatures from -40 ° C to + 100 ° C.
  • the refractive index changes according to changes in the environmental temperature. The position will be changed.
  • the coupling efficiency of light to the end face of the optical fiber is determined by the transverse mode (beam diameter) of the light source, if the best focus position varies due to the change in the refractive index of the lens, the coupling efficiency varies greatly.
  • glass lenses having a relatively small linear expansion coefficient have been heavily used.
  • an aspheric lens made of glass is more expensive than plastic, and there is a strong need to use a plastic lens in order to reduce the cost of an optical communication module.
  • wavelength-dependent diffraction structure is added to a plastic lens, and wavelength fluctuation (d ⁇ / dT) due to the temperature of the semiconductor laser is used to cancel the focus position fluctuation when the environmental temperature changes.
  • wavelength fluctuation (d ⁇ / dT) due to the temperature of the semiconductor laser is used to cancel the focus position fluctuation when the environmental temperature changes.
  • d ⁇ / dT wavelength fluctuation due to temperature change of the semiconductor laser
  • a general semiconductor laser used for optical communication tends to be used preferably having a small wavelength variation (d ⁇ / dT) due to temperature change.
  • the correction effect by the diffraction structure is reduced even when the wavelength changes because the wavelength variation is small.
  • the focus position fluctuation correction function cannot be fully exhibited. That is, in a lens for optical communication, since the correction effect by the diffraction structure is small, a stronger diffraction power is required.
  • it can be considered to make the diffraction structure finer. However, if the diffractive structure becomes finer, the manufacturing difficulty such as processability and moldability of the molding die increases, and manufacturing errors tend to occur.
  • Patent Document 2 discloses a lens for optical communication in which a diffractive structure is formed on one optical surface. However, the diffractive structure of the lens of Patent Document 2 is used for transmitting light and receiving light. Utilizing the fact that the wavelengths of light are different from each other, the optical path is distributed by the diffractive structure, and the focus position fluctuation caused by the temperature change is not corrected.
  • the present invention has been made in view of such problems, and is capable of reducing costs and is easy to manufacture, and realizes highly accurate optical communication by suppressing focus position fluctuations even when a large environmental temperature change occurs.
  • An object of the present invention is to provide a lens for optical communication and an optical communication module using the same.
  • the lens for optical communication according to claim 1 is a lens for optical communication that collects a light beam emitted from an optical element or an optical fiber
  • the optical communication lens is a single lens formed of a plastic material, and an optical surface (S2 surface) on the optical fiber side having a diffractive structure for correcting a focus position variation caused by a temperature change; And an optical surface (S1 surface) on the side opposite to the optical fiber that is a convex surface, and satisfies the following expression.
  • ⁇ SF Effective diameter of the optical surface on the optical fiber side (mm)
  • ⁇ SL Effective diameter of the optical surface on the side opposite to the optical fiber (mm)
  • SgFmax Maximum sag amount (mm) of the optical surface on the optical fiber side
  • SgFmin Minimum sag amount (mm) of the optical surface on the optical fiber side
  • the diffractive structure for correcting the focus position fluctuation caused by the temperature change is used.
  • the fact that the wavelength of the light incident on the lens changes according to temperature changes the focus position due to the refractive index change of the plastic lens, and changes the diffraction power of the light that has passed through the diffraction structure. Therefore, it is possible to cancel, that is, the focus position fluctuation when the environmental temperature change occurs can be suppressed, and the optical coupling efficiency can be increased.
  • the effective diameter of the optical surface on the optical fiber side is increased so that the optical surface on the anti-fiber side has a larger effective diameter so that the NA of the fiber-side light beam can be reduced.
  • the power balance of each optical surface can be secured, and a design capable of securing sufficient on-axis performance can be performed.
  • the diffraction pitch can be increased as compared with the case where diffraction is provided on the S1 surface, and the ease of manufacture can be improved.
  • the difference between the most protruding amount (SgFmax) and the most retracted amount (SgFmin) of the optical surface on the optical fiber side is reduced, and the optical surface providing the diffraction structure is flat. Close to.
  • the expected angle (inclination angle with respect to the axis) of the surrounding transfer surface is increased, resulting in tool interference. It becomes easier.
  • the “optical surface” is a surface in a range where a diffractive structure is formed through which a light beam emitted from the optical element or the optical fiber can pass.
  • the “optical element” for example, a semiconductor laser can be used.
  • the effective diameter means a light beam that contributes to optical coupling from the optical element to the optical fiber, or a condensing light from the optical fiber into the optical element, among the light beams emitted from the optical element or the optical fiber.
  • This is the diameter of the luminous flux passing through each optical surface.
  • the sag amount represents the amount of displacement in the optical axis direction when a plane that passes through the intersection of the optical surface and the optical axis and is perpendicular to the optical axis is used as the reference plane. Is the maximum sag amount, and the difference between the intersection and the position closest to the light source is the minimum sag amount, and the range is the entire optical surface.
  • the optical communication lens according to claim 2 is characterized in that, in the invention according to claim 1, the diffraction structure includes a rotationally symmetric diffraction surface.
  • the diffractive power by the diffractive structure can be used to correct focus position variation due to environmental changes.
  • the optical surface on the optical fiber side is formed by forming the diffractive structure on a spherical surface or an aspheric surface. To do.
  • the surface forming the diffractive structure a rotationally symmetric simple spherical surface.
  • the surface forming the diffractive structure a rotationally symmetric aspherical surface, the on-axis performance can be secured and the sine condition can be corrected better, and the off-axis performance can be sufficiently secured.
  • the optical surface on the optical fiber side may be a flat surface.
  • the optical surface on the optical fiber side has an inflection point.
  • the “inflection point” is the direction of the tangent line drawn on the optical surface when taking a cross section in the optical axis direction of the lens, depending on the position, from the positive direction to the negative direction, or vice versa, across the optical axis orthogonal direction. When changing, it means a position facing in the direction perpendicular to the optical axis.
  • the optical communication lens according to claim 5 is characterized in that, in the invention according to claim 3 or 4, ⁇ sag on the optical surface on the optical fiber side has an inflection point.
  • ⁇ sag refers to the rate of change of the sag amount on the optical surface.
  • the lens for optical communication according to claim 6 is the invention according to any one of claims 1 to 5, wherein the lens is used in a range of ⁇ 40 ° C. to + 100 ° C.
  • the lens of the present invention can sufficiently suppress focus position fluctuations even when used in such a wide temperature environment.
  • the optical communication lens according to claim 7 is the optical communication lens according to any one of claims 1 to 6, wherein the wavelength variation (d ⁇ / dT) of the optical element is 0 ⁇ (d ⁇ / dT) ⁇ 0. 2 (nm / ° C.).
  • the wavelength variation (d ⁇ / dT) of the optical element for optical communication is often 0 ⁇ (d ⁇ / dT) ⁇ 0.2 (nm / ° C.). Under this condition, the focus position variation caused by the temperature change is not observed. The effect of correction by the diffractive structure is small. Therefore, since the diffractive structure tends to become finer in order to enhance the correction function, the lens of the present invention is particularly suitable.
  • the optical communication lens according to claim 8 is the invention according to any one of claims 1 to 7, wherein the lens condenses the light beam emitted from the optical element on the end face of the optical fiber.
  • the lens of the present invention having a small focus position fluctuation is used for condensing the light beam emitted from the optical element on the end face of the optical fiber.
  • the light beam emitted from the optical fiber may be used for condensing the light receiving element.
  • An optical communication module is characterized in that the optical communication lens according to any one of claims 1 to 8 is assembled to a substrate that supports an optical element.
  • a lens for optical communication capable of reducing costs and realizing high-accuracy optical communication by suppressing focus position fluctuations even when a large environmental temperature change occurs, and cost can be reduced, and light using the same.
  • a communication module can be provided.
  • FIG. 1 is a cross-sectional view in the optical axis direction of an optical communication module 10 according to the present embodiment. It is sectional drawing of the lens concerning a comparative example.
  • 1 is a cross-sectional view of a lens according to Example 1.
  • FIG. 6 is a cross-sectional view of a lens according to Example 2.
  • FIG. 6 is a cross-sectional view of a lens according to Example 3.
  • the horizontal axis represents the height from the optical axis
  • the vertical axis represents ⁇ sag.
  • It is a figure which shows the optical coupling rate change by the temperature change in Example 1.
  • FIG. It is a figure which shows the optical coupling factor change by the temperature change in Example 2.
  • FIG. It is a figure which shows the optical coupling rate change by the temperature change in Example 3.
  • FIG. 1 is a cross-sectional view in the optical axis direction of an optical communication module 10 according to the present embodiment.
  • a temperature change can occur in the range of ⁇ 40 ° C. to + 100 ° C.
  • a chip mounting portion 13 is attached to the center of a disk-shaped stem 12 having rod-shaped terminals 11 for feeding power, and a laser chip 15 as a light emitting element is attached to a side surface of the chip mounting portion 13 via a heat sink 14. Yes.
  • the laser chip 15 is connected to the terminal 11 via a wiring (not shown), and the wavelength variation (d ⁇ / dT) is 0 ⁇ (d ⁇ / dT) ⁇ 0.2 (nm / ° C.).
  • the lens 20 is arranged so as to cover the outside of the laser chip 15.
  • the lens 20 is made of plastic, and is integrally formed from a substantially cylindrical leg portion 21 and a lens portion 22 provided at an end portion of the leg portion 21.
  • the lens 20 is attached to the stem (substrate that supports the optical element) 12 by bonding the tip 21b of the leg 21 to the stem 12.
  • the tip 21b of the leg 21 is an attachment reference plane. Further, the lens 20 may be fixed to the stem 12 with a separate holder without providing a leg portion.
  • the lens unit 22 has an optical surface (S2 surface) on the optical fiber side that is a rotationally symmetrical convex or concave spherical surface or aspherical surface (however, it may be a flat surface), and is used to correct focus position fluctuations caused by temperature changes.
  • a diffraction structure D is formed.
  • the diffractive structure D shown exaggerated in FIG. 1 has a plurality of ring-shaped shapes around the optical axis, includes a diffractive surface, and has a diffraction pitch of 3 ⁇ m or more.
  • the optical surface (S2 surface) on the optical fiber side preferably has an inflection point.
  • the optical surface (S1 surface) on the side opposite to the optical fiber is a convex spherical surface or aspherical surface that is rotationally symmetric. Furthermore, the lens unit 22 satisfies the following expression. ⁇ SF> ⁇ SL (1) ⁇ SgFmax-SgFmin ⁇ ⁇ 0.05 (2) However, ⁇ SF: Effective diameter (mm) of the optical surface S2 on the optical fiber side ⁇ SL: Effective diameter (mm) of the optical surface S1 on the side opposite to the optical fiber SgFmax: Maximum sag amount (mm) of the optical surface S2 on the optical fiber side SgFmin: Minimum sag amount (mm) of the optical surface S1 on the optical fiber side
  • a cylindrical stainless steel holder 30 is attached to the outside of the lens 20 in the direction orthogonal to the optical axis so as to be welded to the stem 12 with a gap.
  • a cylindrical sleeve 31 having a smaller diameter is fixed to the tip of the holder 30, and a ferrule 32 into which the optical fiber FB is inserted is inserted therein.
  • the end of the optical fiber FB faces the lens unit 22. ing.
  • the optical communication module 10 of the present embodiment When power is supplied through the terminal 11, the laser chip 15 emits light, and the emitted light beam enters the lens unit 22, but is refracted by the optical surface S1, and further diffracted by the diffraction surface of the optical surface S2.
  • the optical surface S2 is a refracting surface, refraction power is added, and this action causes light to be condensed on the end surface of the optical fiber FB and then propagated through the optical fiber FB.
  • a temperature change occurs in the optical communication module 10
  • a wavelength change occurs in the light emitted from the laser chip 15.
  • the focus position fluctuation is caused by the refractive index change caused by the temperature change of the lens unit 22, but the focus position fluctuation can be canceled by the diffraction power change caused by the wavelength change of the incident light. Therefore, the optical coupling efficiency can be maintained even when the environmental temperature changes in the range of ⁇ 40 ° C. to + 100 ° C.
  • the leg portion 21 is integrally formed of plastic, there is also an effect that the focus position change is canceled by the thermal expansion of the leg portion 21 in an auxiliary manner.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 3 ) may be expressed using E (for example, 2.5 ⁇ E ⁇ 3).
  • the optical surfaces (S1 surface, S2 surface) of the lens are formed as aspherical surfaces that are axisymmetric about the optical axis and are defined by mathematical formulas obtained by substituting the coefficients shown in Table 1 into Formula 1.
  • X is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a 2i is an aspherical coefficient
  • h is a height from the optical axis
  • r is a paraxial radius of curvature.
  • the optical path difference given to the light flux of the light source wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient C 1 shown in the formula 2 for the optical path difference function.
  • ⁇ B is the wavelength used
  • h is the distance from the optical axis in the direction perpendicular to the optical axis
  • C 1 is the optical path difference function coefficient
  • FIG. 2 is a cross-sectional view of a lens LS according to a comparative example.
  • Table 1 shows the lens data of the comparative example. Note that the optical path difference function coefficient C 1 of the comparative example is ⁇ 0.175.
  • LD is a light emitting part, and FB is an end face of the optical fiber.
  • the lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface.
  • the effective diameter ⁇ SL of the S1 surface is 1.205 mm
  • the effective diameter ⁇ SF of the S2 surface is 0.821 mm.
  • the radius of curvature of the S2 surface is smaller than that of the S1 surface.
  • FIG. 3 is a cross-sectional view of the lens LS according to the first embodiment.
  • Table 2 shows lens data of Example 1. Note that the optical path difference function coefficient C 1 of Example 1 is ⁇ 0.285.
  • LD is a light emitting part, and FB is an end face of the optical fiber.
  • the lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface.
  • the effective diameter ⁇ SL of the S1 surface is 1.345 mm
  • the effective diameter ⁇ SF of the S2 surface is 0.999 mm.
  • the S2 surface is nearly flat, the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
  • FIG. 4 is a cross-sectional view of the lens LS according to the second embodiment.
  • Table 3 shows lens data of Example 2. Note that the optical path difference function coefficient C 1 in Example 2 is ⁇ 0.306.
  • LD is a light emitting part, and FB is an end face of the optical fiber.
  • the lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface.
  • the effective diameter ⁇ SL of the S1 surface is 1.331 mm
  • the effective diameter ⁇ SF of the S2 surface is 1.003 mm.
  • the S2 surface is nearly flat, and the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
  • FIG. 5 is a cross-sectional view of the lens LS according to the third embodiment.
  • Table 4 shows lens data of Example 3. Note that the optical path difference function coefficient C 1 of Example 3 is ⁇ 0.337.
  • LD is a light emitting part, and FB is an end face of the optical fiber.
  • the lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface.
  • the effective diameter ⁇ SL of the S1 surface is 1.314 mm
  • the effective diameter ⁇ SF of the S2 surface is 1.008 mm.
  • the S2 surface is nearly flat, and the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
  • Table 5 summarizes the values of
  • the position of SgFmax is on the axis, and the position of SgFmin is the outer edge of the optical surface.
  • the position of SgFmax is the outer edge of the optical surface, and the position of SgFmin is the position of the inflection point.
  • FIG. 6 is a diagram showing the height from the optical axis on the horizontal axis and ⁇ sag on the vertical axis in the comparative example and Examples 1 to 3.
  • ⁇ sag of the comparative example monotonically becomes negative as it goes away from the optical axis and does not have an inflection point.
  • ⁇ sag of Examples 1 to 3 goes negative as it goes away from the optical axis. Then it goes positive, so it has an inflection point.
  • FIG. 7 is a diagram showing a change in the optical coupling rate with respect to a temperature change according to the comparative example
  • FIGS. 8 to 10 are diagrams showing a change in the optical coupling rate with respect to the temperature change according to the comparative example.
  • the comparative example shown in FIG. 7 it can be seen that when the environmental temperature increases from room temperature (20 ° C.) to + 100 ° C., the optical coupling efficiency decreases by nearly 30%.
  • any of Examples 1 to 3 can suppress the decrease in optical coupling efficiency to within 10%.
  • Example 3 has almost no decrease in optical coupling efficiency and has optical performance comparable to a glass lens.
  • the lens of the present invention may be used to collect light emitted from an optical fiber on a light receiving element.

Abstract

An optical communication lens (20) for condensing light flux emitted from an optical element or an optical fiber is a single lens formed from a plastic material, and has an optical-fiber-side optical surface (S2 surface) having a diffraction structure (D) for correcting focus-position fluctuations caused by temperature changes, and an opposite-optical-fiber-side optical surface (S1 surface) which is convex. The optical communication lens (20) is characterized by satisfying these formulas: φSF>φSL (1); │SgFmax-SgFmin│<0.05 (2). Additionally, φSF: effective diameter (mm) of optical-fiber-side optical surface; φSL: effective diameter (mm) of opposite-optical-fiber-side optical surface; SgFmax: maximum sag (mm) of optical-fiber-side optical surface; SgFmin: minimum sag (mm) of optical-fiber-side optical surface.

Description

光通信用のレンズ及び光通信モジュールOptical communication lens and optical communication module
 本発明は、光通信等に用いられ、例えば半導体レーザ等の光学素子からの光を光ファイバーもしくは受光素子に結合する光通信用のレンズ及び光通信モジュールに関する。 The present invention relates to a lens for optical communication and an optical communication module which are used for optical communication or the like and couple light from an optical element such as a semiconductor laser to an optical fiber or a light receiving element.
 光通信モジュールにおいて、半導体レーザまたは受光素子と、光ファイバーとの間で効率よく光結合させるために、光結合用のレンズが用いられている。ところで、従来の光結合用のレンズでは、主にガラスレンズをステンレス製の脚部で支持する構成が広く用いられている。しかるに、非球面を有するガラスレンズは一般的に高価であり、顕著なコスト高を招くという問題がある。そこで、高精度な非球面の成形が容易で大量生産を可能とするプラスチック製のレンズを、ガラス製のレンズに置き換えて、半導体レーザまたは受光素子と、光ファイバーとの間で光結合を実現できないかという試みがある。 In an optical communication module, an optical coupling lens is used in order to efficiently perform optical coupling between a semiconductor laser or a light receiving element and an optical fiber. By the way, in the conventional lens for optical coupling, the structure which mainly supports a glass lens with a stainless steel leg part is widely used. However, a glass lens having an aspheric surface is generally expensive, and there is a problem that the cost is significantly increased. Therefore, is it possible to replace the plastic lens, which enables easy high-precision aspherical molding and mass production, with a glass lens and realize optical coupling between the semiconductor laser or light receiving element and the optical fiber? There is an attempt.
 ここで、ガラスレンズと比較してプラスチックレンズの特徴の一つに、温度変化に対する屈折率変化が比較的大きいということがある。光通信用モジュール内部は-40℃~+100℃という幅広い温度環境下にさらされる可能性があるが、一般的なプラスチックレンズの場合、環境温度変化に応じて屈折率が変化するので、それによりピント位置の変動を招くことになる。しかるに、光ファイバー端面への光の結合効率が光源の横モード(ビーム径)で決まることから、レンズの屈折率変化によりベストフォーカス位置が変動すると、結合効率が大きく変動してしまうという光通信用光学系に固有の問題がある。そのために、線膨張係数が比較的小さいガラス製のレンズが重用されてきたという実情がある。しかし、上述したようにガラス製の非球面レンズはプラスチック製と比較して高価であり、光通信用モジュールのコスト削減のためにはプラスチック製のレンズを用いたいという強いニーズがある。 Here, one of the features of plastic lenses compared to glass lenses is that the refractive index change with respect to temperature change is relatively large. The inside of an optical communication module may be exposed to a wide range of temperatures from -40 ° C to + 100 ° C. However, in the case of a general plastic lens, the refractive index changes according to changes in the environmental temperature. The position will be changed. However, since the coupling efficiency of light to the end face of the optical fiber is determined by the transverse mode (beam diameter) of the light source, if the best focus position varies due to the change in the refractive index of the lens, the coupling efficiency varies greatly. There are problems inherent to the system. For this reason, there is a fact that glass lenses having a relatively small linear expansion coefficient have been heavily used. However, as described above, an aspheric lens made of glass is more expensive than plastic, and there is a strong need to use a plastic lens in order to reduce the cost of an optical communication module.
 プラスチック製のレンズを用いる際の対策として、特許文献1に記載されたように、温度変化によって光学素子-レンズ間隔が変化するような構成とすることで、環境温度変化によるピント位置変動を抑えることができるが、その効果は屈折率変化による影響を完全に打ち消すほどに十分とはいえない。 As a countermeasure when using a plastic lens, as described in Patent Document 1, by adopting a configuration in which the optical element-lens distance is changed by a temperature change, the focus position fluctuation due to the environmental temperature change is suppressed. However, the effect is not sufficient to completely cancel the influence of the refractive index change.
特開2011-003857号公報JP 2011-003857 A 特開2006-235293号公報JP 2006-235293 A
 これに対し、プラスチック製のレンズに波長依存性のある回折構造を付加し、半導体レーザの温度による波長変動(dλ/dT)が生じることを利用して、環境温度変化時のピント位置変動をキャンセルするという技術思想がある。しかるに、半導体レーザの温度変化による波長変動(dλ/dT)が大きい方が、温度変化に伴うピント位置変動の補正には有効であるが、光通信では光の波長が略一定であることを前提に情報通信を行っているので、光通信に用いられる一般的な半導体レーザは、温度変化による波長変動(dλ/dT)が小さいものが好んで用いられる傾向がある。従って、このような温度変化による波長変動(dλ/dT)が小さい半導体レーザを用いると、波長の変動が小さいため波長が変化した場合であっても回折構造による補正効果が小さくなり、温度変化時のピント位置変動補正機能を十分に発揮できなくなる。つまり光通信用のレンズにおいては回折構造による補正効果が小さいため、より強い回折パワーが求められることになる。これに対し、回折パワーによる補正機能をより高めるためには、回折構造をより微細とすることも考えられる。
しかし回折構造が微細になると成形金型の加工性や成形性など製造難易度が高まり、製造誤差が生じやすくなる。成形したレンズの回折構造に製造誤差が生じると回折効率が低下し、レンズの結合効率が低下するとともに不要光も増加する。このような結合効率の低下や不要光の増加は、プラスチック製のレンズを光通信に用いる際の障害となっている。
In contrast, a wavelength-dependent diffraction structure is added to a plastic lens, and wavelength fluctuation (dλ / dT) due to the temperature of the semiconductor laser is used to cancel the focus position fluctuation when the environmental temperature changes. There is a technical idea to do. However, a larger wavelength fluctuation (dλ / dT) due to temperature change of the semiconductor laser is more effective in correcting focus position fluctuation due to temperature change, but in optical communication, it is assumed that the wavelength of light is substantially constant. Therefore, a general semiconductor laser used for optical communication tends to be used preferably having a small wavelength variation (dλ / dT) due to temperature change. Therefore, when a semiconductor laser having such a small wavelength variation (dλ / dT) due to a temperature change is used, the correction effect by the diffraction structure is reduced even when the wavelength changes because the wavelength variation is small. The focus position fluctuation correction function cannot be fully exhibited. That is, in a lens for optical communication, since the correction effect by the diffraction structure is small, a stronger diffraction power is required. On the other hand, in order to further improve the correction function based on the diffraction power, it can be considered to make the diffraction structure finer.
However, if the diffractive structure becomes finer, the manufacturing difficulty such as processability and moldability of the molding die increases, and manufacturing errors tend to occur. If a manufacturing error occurs in the diffractive structure of the molded lens, the diffraction efficiency decreases, the coupling efficiency of the lens decreases, and unnecessary light increases. Such a decrease in coupling efficiency and an increase in unnecessary light are obstacles in using a plastic lens for optical communication.
 尚、特許文献2には、回折構造を一方の光学面に形成してなる光通信用のレンズが開示されているが、特許文献2のレンズの回折構造は、送信用の光と受信用の光の波長が相互に異なることを利用して、回折構造で光路の振り分けを行うものであり、温度変化に起因したピント位置変動を補正するものではない。 Patent Document 2 discloses a lens for optical communication in which a diffractive structure is formed on one optical surface. However, the diffractive structure of the lens of Patent Document 2 is used for transmitting light and receiving light. Utilizing the fact that the wavelengths of light are different from each other, the optical path is distributed by the diffractive structure, and the focus position fluctuation caused by the temperature change is not corrected.
 本発明は、このような問題点に鑑みてなされたものであり、コストを低減でき、製造容易でありながら、大きい環境温度変化が生じてもピント位置変動を抑えて高精度な光通信を実現できる光通信用のレンズ及びそれを用いた光通信モジュールを提供することを目的とする。 The present invention has been made in view of such problems, and is capable of reducing costs and is easy to manufacture, and realizes highly accurate optical communication by suppressing focus position fluctuations even when a large environmental temperature change occurs. An object of the present invention is to provide a lens for optical communication and an optical communication module using the same.
 請求項1に記載の光通信用のレンズは、光学素子もしくは光ファイバーから出射された光束を集光する光通信用のレンズであって、
 前記光通信用のレンズは、プラスチック素材から形成された単一のレンズであり、温度変化に起因したピント位置変動を補正するための回折構造を有した光ファイバー側の光学面(S2面)と、凸面である反光ファイバー側の光学面(S1面)とを有し、以下の式を満足することを特徴とする。
 φSF>φSL   (1)
 │SgFmax-SgFmin│<0.05   (2)
但し、
 φSF:前記光ファイバー側の光学面の有効径(mm)
 φSL:前記反光ファイバー側の光学面の有効径(mm)
 SgFmax:前記光ファイバー側の光学面の最大サグ量(mm)
 SgFmin:前記光ファイバー側の光学面の最小サグ量(mm)
The lens for optical communication according to claim 1 is a lens for optical communication that collects a light beam emitted from an optical element or an optical fiber,
The optical communication lens is a single lens formed of a plastic material, and an optical surface (S2 surface) on the optical fiber side having a diffractive structure for correcting a focus position variation caused by a temperature change; And an optical surface (S1 surface) on the side opposite to the optical fiber that is a convex surface, and satisfies the following expression.
φSF> φSL (1)
│SgFmax-SgFmin│ <0.05 (2)
However,
φSF: Effective diameter of the optical surface on the optical fiber side (mm)
φSL: Effective diameter of the optical surface on the side opposite to the optical fiber (mm)
SgFmax: Maximum sag amount (mm) of the optical surface on the optical fiber side
SgFmin: Minimum sag amount (mm) of the optical surface on the optical fiber side
 本発明によれば、温度変化に起因したピント位置変動を補正するための回折構造を用いている。これにより、前記レンズに入射した光の波長が温度に応じて変化することを利用し、前記プラスチックレンズの屈折率変化によるピント位置の変動を、前記回折構造を通過した光の回折パワーを変化させることによってキャンセルすることができ、すなわち環境温度変化が生じたときのピント位置変動を抑制でき、光結合効率を高めることができる。更に、(1)式を満たすように、前記光ファイバー側の光学面の有効径が、前記反ファイバー側の光学面の有効径を大きくすることで、特にファイバー側光束のNAが反ファイバー側光束のNAより小さい場合に、各光学面のパワーバランスを確保でき、十分な軸上性能を確保できる設計を行える。又、有効径が大きな前記光ファイバー側の光学面に回折構造を設けることで、S1面に回折を設けるよりも回折ピッチを大きくすることができ、製造容易性を高めることができる。加えて、(2)式を満たすことで、前記光ファイバー側の光学面の最も出っ張った量(SgFmax)と、最も引っ込んだ量(SgFmin)の差が小さくなり、回折構造を付与する光学面が平面に近くなる。例えば深い曲面に回折構造を形成するような場合、回折構造を成形する転写面を有する金型の加工において、周囲の転写面の見込み角(軸線に対する傾き角)が大きくなり、工具の干渉が生じてやすくなる。これに対し、本発明のように光学面を平面に近づけることで、回折構造を形成しやすくなり、製造容易性を高めることができる。尚、「光学面」とは、前記光学素子もしくは前記光ファイバーから出射された光束が通過しうる、回折構造を形成した範囲の面である。「光学素子」とは、例えば半導体レーザを用いることができる。また有効径とは、前記光学素子もしくは前記光ファイバーから出射された光束の中で、前記光学素子から前記光ファイバーへの光結合に寄与する光束、もしくは前記光ファイバーから前記光学素子内への集光に寄与する光束の、各光学面を通過する際の直径である。またサグ量とは、光学面と光軸との交点を通り、かつ、光軸に垂直な面を基準面としたときの、光軸方向への変位量を表わすものであり、交点と光ファイバー側に最も近づいた位置との差が最大サグ量、交点と光源側に最も近づいた位置との差が最小サグ量であって、範囲は光学面全体とする。 According to the present invention, the diffractive structure for correcting the focus position fluctuation caused by the temperature change is used. Thus, the fact that the wavelength of the light incident on the lens changes according to temperature changes the focus position due to the refractive index change of the plastic lens, and changes the diffraction power of the light that has passed through the diffraction structure. Therefore, it is possible to cancel, that is, the focus position fluctuation when the environmental temperature change occurs can be suppressed, and the optical coupling efficiency can be increased. Further, the effective diameter of the optical surface on the optical fiber side is increased so that the optical surface on the anti-fiber side has a larger effective diameter so that the NA of the fiber-side light beam can be reduced. When it is smaller than NA, the power balance of each optical surface can be secured, and a design capable of securing sufficient on-axis performance can be performed. Further, by providing a diffractive structure on the optical surface on the side of the optical fiber having a large effective diameter, the diffraction pitch can be increased as compared with the case where diffraction is provided on the S1 surface, and the ease of manufacture can be improved. In addition, by satisfying the expression (2), the difference between the most protruding amount (SgFmax) and the most retracted amount (SgFmin) of the optical surface on the optical fiber side is reduced, and the optical surface providing the diffraction structure is flat. Close to. For example, when a diffractive structure is formed on a deep curved surface, when processing a mold having a transfer surface for forming the diffractive structure, the expected angle (inclination angle with respect to the axis) of the surrounding transfer surface is increased, resulting in tool interference. It becomes easier. On the other hand, by making the optical surface close to a plane as in the present invention, it becomes easy to form a diffractive structure, and the ease of manufacture can be improved. The “optical surface” is a surface in a range where a diffractive structure is formed through which a light beam emitted from the optical element or the optical fiber can pass. As the “optical element”, for example, a semiconductor laser can be used. Also, the effective diameter means a light beam that contributes to optical coupling from the optical element to the optical fiber, or a condensing light from the optical fiber into the optical element, among the light beams emitted from the optical element or the optical fiber. This is the diameter of the luminous flux passing through each optical surface. The sag amount represents the amount of displacement in the optical axis direction when a plane that passes through the intersection of the optical surface and the optical axis and is perpendicular to the optical axis is used as the reference plane. Is the maximum sag amount, and the difference between the intersection and the position closest to the light source is the minimum sag amount, and the range is the entire optical surface.
 請求項2に記載の光通信用のレンズは、請求項1に記載の発明において、前記回折構造は、回転対称な回折面を含むことを特徴とする。 The optical communication lens according to claim 2 is characterized in that, in the invention according to claim 1, the diffraction structure includes a rotationally symmetric diffraction surface.
 回転対称な回折面を設けることで、前記回折構造による回折パワーを環境変化によるピント位置変動の補正に使用できる。 By providing a rotationally symmetric diffractive surface, the diffractive power by the diffractive structure can be used to correct focus position variation due to environmental changes.
 請求項3に記載の光通信用のレンズは、請求項1又は2に記載の発明において、前記光ファイバー側の光学面は、球面もしくは非球面上に前記回折構造を形成してなることを特徴とする。 According to a third aspect of the present invention, in the optical communication lens of the first or second aspect, the optical surface on the optical fiber side is formed by forming the diffractive structure on a spherical surface or an aspheric surface. To do.
 特に、回折構造を形成する面を回転対称な単純球面とすることで、正弦条件を補正することが可能となる。一方、回折構造を形成する面を回転対称な非球面とすることで、軸上性能を確保するとともに正弦条件をさらに良く補正でき、軸外性能を十分確保することが可能となる。但し、前記光ファイバー側の光学面を平面としても良い。 Especially, it is possible to correct the sine condition by making the surface forming the diffractive structure a rotationally symmetric simple spherical surface. On the other hand, by making the surface forming the diffractive structure a rotationally symmetric aspherical surface, the on-axis performance can be secured and the sine condition can be corrected better, and the off-axis performance can be sufficiently secured. However, the optical surface on the optical fiber side may be a flat surface.
 請求項4に記載の光通信用のレンズは、請求項3に記載の発明において、前記光ファイバー側の光学面は、変曲点を有することを特徴とする。 According to a fourth aspect of the present invention, in the optical communication lens according to the third aspect, the optical surface on the optical fiber side has an inflection point.
 これにより、より高い軸上性能/軸外性能を確保することが可能となる。「変曲点」とは、レンズの光軸方向断面をとったとき、光学面に引いた接線の向きが、その位置により光軸直交方向を挟んで正方向から負方向へ、あるいはその逆に変化するとき、光軸直交方向に向く位置をいうものとする。 This makes it possible to ensure higher on-axis performance / off-axis performance. The “inflection point” is the direction of the tangent line drawn on the optical surface when taking a cross section in the optical axis direction of the lens, depending on the position, from the positive direction to the negative direction, or vice versa, across the optical axis orthogonal direction. When changing, it means a position facing in the direction perpendicular to the optical axis.
 請求項5に記載の光通信用のレンズは、請求項3又は4に記載の発明において、前記光ファイバー側の光学面におけるΔsagは、変曲点を有することを特徴とする。 The optical communication lens according to claim 5 is characterized in that, in the invention according to claim 3 or 4, Δsag on the optical surface on the optical fiber side has an inflection point.
 これにより、より高い軸上性能/軸外性能を確保することが可能となる。Δsagとは、光学面のサグ量の変化率をいう。 This makes it possible to ensure higher on-axis performance / off-axis performance. Δsag refers to the rate of change of the sag amount on the optical surface.
 請求項6に記載の光通信用のレンズは、請求項1~5のいずれかに記載の発明において、前記レンズは、-40℃~+100℃の範囲で使用されることを特徴とする。 The lens for optical communication according to claim 6 is the invention according to any one of claims 1 to 5, wherein the lens is used in a range of −40 ° C. to + 100 ° C.
 本発明のレンズは、かかる幅広い温度環境下で使用された場合でも、ピント位置変動を十分に抑えることができる。 The lens of the present invention can sufficiently suppress focus position fluctuations even when used in such a wide temperature environment.
 請求項7に記載の光通信用のレンズは、請求項1~6のいずれかに記載の発明において、前記光学素子の波長変動(dλ/dT)は、0<(dλ/dT)<0.2(nm/℃)であることを特徴とする。 The optical communication lens according to claim 7 is the optical communication lens according to any one of claims 1 to 6, wherein the wavelength variation (dλ / dT) of the optical element is 0 <(dλ / dT) <0. 2 (nm / ° C.).
 光通信用の光学素子の波長変動(dλ/dT)は、0<(dλ/dT)<0.2(nm/℃)であることが多く、この条件では温度変化に起因したピント位置変動を回折構造により補正する効果が小さい。よって補正機能を高めるため回折構造をより微細とする傾向となるため、特に本発明のレンズは好適である。 The wavelength variation (dλ / dT) of the optical element for optical communication is often 0 <(dλ / dT) <0.2 (nm / ° C.). Under this condition, the focus position variation caused by the temperature change is not observed. The effect of correction by the diffractive structure is small. Therefore, since the diffractive structure tends to become finer in order to enhance the correction function, the lens of the present invention is particularly suitable.
 請求項8に記載の光通信用のレンズは、請求項1~7のいずれかに記載の発明において、前記レンズは、前記光学素子から出射した光束を前記光ファイバーの端面に集光することを特徴とする。 The optical communication lens according to claim 8 is the invention according to any one of claims 1 to 7, wherein the lens condenses the light beam emitted from the optical element on the end face of the optical fiber. And
 光ファイバーの端面の面積が小さいことから、ピント位置変動は直ちに光結合効率の低下に影響を及ぼすこととなる。従って、ピント位置変動が小さい本発明のレンズは、前記光学素子から出射した光束を前記光ファイバーの端面に集光するのに用いられると好適である。但し、光ファイバーから出射した光束を受光素子に集光させるために用いても良い。 Because the area of the end face of the optical fiber is small, fluctuations in the focus position will immediately affect the decrease in optical coupling efficiency. Therefore, it is preferable that the lens of the present invention having a small focus position fluctuation is used for condensing the light beam emitted from the optical element on the end face of the optical fiber. However, the light beam emitted from the optical fiber may be used for condensing the light receiving element.
 請求項9に記載の光通信モジュールは、請求項1~8のいずれかに記載の光通信用のレンズを、光学素子を支持する基板に組み付けてなることを特徴とする。 An optical communication module according to claim 9 is characterized in that the optical communication lens according to any one of claims 1 to 8 is assembled to a substrate that supports an optical element.
 本発明によれば、コストを低減でき、製造容易でありながら、大きい環境温度変化が生じてもピント位置変動を抑えて高精度な光通信を実現できる光通信用のレンズ及びそれを用いた光通信モジュールを提供することができる。 According to the present invention, a lens for optical communication capable of reducing costs and realizing high-accuracy optical communication by suppressing focus position fluctuations even when a large environmental temperature change occurs, and cost can be reduced, and light using the same. A communication module can be provided.
本実施の形態にかかる光通信モジュール10の光軸方向断面図である。1 is a cross-sectional view in the optical axis direction of an optical communication module 10 according to the present embodiment. 比較例にかかるレンズの断面図である。It is sectional drawing of the lens concerning a comparative example. 実施例1にかかるレンズの断面図である。1 is a cross-sectional view of a lens according to Example 1. FIG. 実施例2にかかるレンズの断面図である。6 is a cross-sectional view of a lens according to Example 2. FIG. 実施例3にかかるレンズの断面図である。6 is a cross-sectional view of a lens according to Example 3. FIG. 比較例と実施例1~3において、光軸からの高さを横軸にとり、縦軸にΔsagをとって示す図である。In the comparative example and Examples 1 to 3, the horizontal axis represents the height from the optical axis, and the vertical axis represents Δsag. 比較例における温度変化による光結合率変化を示す図である。It is a figure which shows the optical coupling rate change by the temperature change in a comparative example. 実施例1における温度変化による光結合率変化を示す図である。It is a figure which shows the optical coupling rate change by the temperature change in Example 1. FIG. 実施例2における温度変化による光結合率変化を示す図である。It is a figure which shows the optical coupling factor change by the temperature change in Example 2. FIG. 実施例3における温度変化による光結合率変化を示す図である。It is a figure which shows the optical coupling rate change by the temperature change in Example 3. FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる光通信モジュール10の光軸方向断面図である。光通信モジュール10内は、-40℃~+100℃の範囲で温度変化が生じうる。給電用の棒状の端子11を有する円板状のステム12の中央に、チップ搭載部13が取り付けられ、チップ搭載部13の側面にヒートシンク14を介して発光素子としてのレーザチップ15が取り付けられている。レーザチップ15は、不図示の配線を介して端子11に接続されており、その波長変動(dλ/dT)は、0<(dλ/dT)<0.2(nm/℃)である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view in the optical axis direction of an optical communication module 10 according to the present embodiment. In the optical communication module 10, a temperature change can occur in the range of −40 ° C. to + 100 ° C. A chip mounting portion 13 is attached to the center of a disk-shaped stem 12 having rod-shaped terminals 11 for feeding power, and a laser chip 15 as a light emitting element is attached to a side surface of the chip mounting portion 13 via a heat sink 14. Yes. The laser chip 15 is connected to the terminal 11 via a wiring (not shown), and the wavelength variation (dλ / dT) is 0 <(dλ / dT) <0.2 (nm / ° C.).
 レーザチップ15の外側を覆うようにして、レンズ20が配置されている。レンズ20は、プラスチック製であり、略円筒状の脚部21と、脚部21の端部に設けられたレンズ部22とから一体的に形成されている。脚部21の先端21bをステム12に接着することで、レンズ20はステム(光学素子を支持する基板)12に取り付けられている。尚、脚部21の先端21bは、取り付け基準面である。又、レンズ20に脚部を設けず、別体のホルダでステム12に固定しても良い。 The lens 20 is arranged so as to cover the outside of the laser chip 15. The lens 20 is made of plastic, and is integrally formed from a substantially cylindrical leg portion 21 and a lens portion 22 provided at an end portion of the leg portion 21. The lens 20 is attached to the stem (substrate that supports the optical element) 12 by bonding the tip 21b of the leg 21 to the stem 12. The tip 21b of the leg 21 is an attachment reference plane. Further, the lens 20 may be fixed to the stem 12 with a separate holder without providing a leg portion.
 レンズ部22は、光ファイバー側の光学面(S2面)を回転対称である凸状もしくは凹状の球面もしくは非球面としており(但し平面でも良い)、温度変化に起因したピント位置変動を補正するための回折構造Dを形成している。図1では誇張して示された回折構造Dは、光軸を中心とした複数の輪帯形状であって回折面を含み、回折ピッチは3μm以上である。光ファイバー側の光学面(S2面)は、変曲点を有すると好ましい。又、レンズ部22は、反光ファイバー側の光学面(S1面)を回転対称である凸面の球面もしくは非球面としている。更にレンズ部22は、以下の式を満足する。
 φSF>φSL   (1)
 │SgFmax-SgFmin│<0.05   (2)
但し、
 φSF:光ファイバー側の光学面S2の有効径(mm)
 φSL:反光ファイバー側の光学面S1の有効径(mm)
 SgFmax:光ファイバー側の光学面S2の最大サグ量(mm)
 SgFmin:光ファイバー側の光学面S1の最小サグ量(mm)
The lens unit 22 has an optical surface (S2 surface) on the optical fiber side that is a rotationally symmetrical convex or concave spherical surface or aspherical surface (however, it may be a flat surface), and is used to correct focus position fluctuations caused by temperature changes. A diffraction structure D is formed. The diffractive structure D shown exaggerated in FIG. 1 has a plurality of ring-shaped shapes around the optical axis, includes a diffractive surface, and has a diffraction pitch of 3 μm or more. The optical surface (S2 surface) on the optical fiber side preferably has an inflection point. In the lens unit 22, the optical surface (S1 surface) on the side opposite to the optical fiber is a convex spherical surface or aspherical surface that is rotationally symmetric. Furthermore, the lens unit 22 satisfies the following expression.
φSF> φSL (1)
│SgFmax-SgFmin│ <0.05 (2)
However,
φSF: Effective diameter (mm) of the optical surface S2 on the optical fiber side
φSL: Effective diameter (mm) of the optical surface S1 on the side opposite to the optical fiber
SgFmax: Maximum sag amount (mm) of the optical surface S2 on the optical fiber side
SgFmin: Minimum sag amount (mm) of the optical surface S1 on the optical fiber side
 レンズ20の光軸直交方向外側に、隙間を空けて円筒状のステンレス製であるホルダ30が、ステム12に溶接されるようにして取り付けられている。ホルダ30の先端には、より小さい径の円筒状のスリーブ31が固定され、その内部に光ファイバーFBが挿入されているフェルール32が挿入されており、光ファイバーFBの端部はレンズ部22に対向している。 A cylindrical stainless steel holder 30 is attached to the outside of the lens 20 in the direction orthogonal to the optical axis so as to be welded to the stem 12 with a gap. A cylindrical sleeve 31 having a smaller diameter is fixed to the tip of the holder 30, and a ferrule 32 into which the optical fiber FB is inserted is inserted therein. The end of the optical fiber FB faces the lens unit 22. ing.
 本実施の形態の光通信モジュール10の動作を説明する。端子11を介して給電が行われると、レーザチップ15が発光し、その出射光束は、レンズ部22に入射するが、光学面S1で屈折され、更に光学面S2の回折面で回折され、且つ光学面S2が屈折面であるときは屈折パワーが加わり、この作用で、光ファイバーFBの端面に集光し、その後光ファイバーFB内を伝播することとなる。ここで、光通信モジュール10内で温度変化が生じた場合、レーザチップ15の発光光に波長変化が生じる。一方、レンズ部22の温度変化に起因した屈折率変化によりピント位置変動が生じるが、入射光の波長変化により生じた回折パワー変化によって、かかるピント位置変動をキャンセルできる。従って、-40℃~+100℃の範囲で環境温度変化が生じても、光結合効率を維持できる。尚、本実施の形態では、脚部21をプラスチックで一体成形しているので、脚部21の熱膨張によりピント位置変動を補助的にキャンセルする効果もある。 The operation of the optical communication module 10 of the present embodiment will be described. When power is supplied through the terminal 11, the laser chip 15 emits light, and the emitted light beam enters the lens unit 22, but is refracted by the optical surface S1, and further diffracted by the diffraction surface of the optical surface S2. When the optical surface S2 is a refracting surface, refraction power is added, and this action causes light to be condensed on the end surface of the optical fiber FB and then propagated through the optical fiber FB. Here, when a temperature change occurs in the optical communication module 10, a wavelength change occurs in the light emitted from the laser chip 15. On the other hand, the focus position fluctuation is caused by the refractive index change caused by the temperature change of the lens unit 22, but the focus position fluctuation can be canceled by the diffraction power change caused by the wavelength change of the incident light. Therefore, the optical coupling efficiency can be maintained even when the environmental temperature changes in the range of −40 ° C. to + 100 ° C. In the present embodiment, since the leg portion 21 is integrally formed of plastic, there is also an effect that the focus position change is canceled by the thermal expansion of the leg portion 21 in an auxiliary manner.
 以下、比較例と比較して、本実施の形態に好適な実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、レンズの光学面(S1面、S2面)は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。 Hereinafter, examples suitable for the present embodiment will be described in comparison with comparative examples. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). Further, the optical surfaces (S1 surface, S2 surface) of the lens are formed as aspherical surfaces that are axisymmetric about the optical axis and are defined by mathematical formulas obtained by substituting the coefficients shown in Table 1 into Formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Xは光軸方向の軸(光の進行方向を正とする)、κは円錐係数、A2iは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, A 2i is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature.
 また、回折構造を用いた実施例の場合、その回折構造により光源波長の光束に対して与えられる光路差は、数2式の光路差関数に、それぞれ示す係数C1を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of the light source wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient C 1 shown in the formula 2 for the optical path difference function. The
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、λB:使用波長、h:光軸から光軸垂直方向の距離、C1:光路差関数係数である。 Where λ B is the wavelength used, h is the distance from the optical axis in the direction perpendicular to the optical axis, and C 1 is the optical path difference function coefficient.
(比較例)
 図2は、比較例にかかるレンズLSの断面図である。表1に,比較例のレンズデータを示す。尚、比較例の光路差関数係数C1=-0.175である。LDは発光部であり、FBが光ファイバーの端面である。レンズLSは、S1面及びS2面が凸状の非球面であって、S2面に回折構造を設けている。S1面の有効径φSL=1.205mmであり、S2面の有効径φSF=0.821mmである。図2に示すように、比較例では、S1面に比べS2面の曲率半径が小さくなっている。
(Comparative example)
FIG. 2 is a cross-sectional view of a lens LS according to a comparative example. Table 1 shows the lens data of the comparative example. Note that the optical path difference function coefficient C 1 of the comparative example is −0.175. LD is a light emitting part, and FB is an end face of the optical fiber. The lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface. The effective diameter φSL of the S1 surface is 1.205 mm, and the effective diameter φSF of the S2 surface is 0.821 mm. As shown in FIG. 2, in the comparative example, the radius of curvature of the S2 surface is smaller than that of the S1 surface.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例1)
 図3は、実施例1にかかるレンズLSの断面図である。表2に,実施例1のレンズデータを示す。尚、実施例1の光路差関数係数C1=-0.285である。LDは発光部であり、FBが光ファイバーの端面である。レンズLSは、S1面及びS2面が凸状の非球面であって、S2面に回折構造を設けている。実施例1においては、S1面の有効径φSL=1.345mmであり、S2面の有効径φSF=0.999mmである。図3に示すように、実施例1では、S2面は平坦に近くなり、光軸付近が凸状で周辺が凹状で,すなわち変曲点を持つ。
(Example 1)
FIG. 3 is a cross-sectional view of the lens LS according to the first embodiment. Table 2 shows lens data of Example 1. Note that the optical path difference function coefficient C 1 of Example 1 is −0.285. LD is a light emitting part, and FB is an end face of the optical fiber. The lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface. In Example 1, the effective diameter φSL of the S1 surface is 1.345 mm, and the effective diameter φSF of the S2 surface is 0.999 mm. As shown in FIG. 3, in Example 1, the S2 surface is nearly flat, the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例2)
 図4は、実施例2にかかるレンズLSの断面図である。表3に,実施例2のレンズデータを示す。尚、実施例2の光路差関数係数C1=-0.306である。LDは発光部であり、FBが光ファイバーの端面である。レンズLSは、S1面及びS2面が凸状の非球面であって、S2面に回折構造を設けている。実施例2においては、S1面の有効径φSL=1.331mmであり、S2面の有効径φSF=1.003mmである。図4に示すように、実施例2では、S2面は平坦に近くなり、光軸付近が凸状で周辺が凹状で,すなわち変曲点を持つ。
(Example 2)
FIG. 4 is a cross-sectional view of the lens LS according to the second embodiment. Table 3 shows lens data of Example 2. Note that the optical path difference function coefficient C 1 in Example 2 is −0.306. LD is a light emitting part, and FB is an end face of the optical fiber. The lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface. In Example 2, the effective diameter φSL of the S1 surface is 1.331 mm, and the effective diameter φSF of the S2 surface is 1.003 mm. As shown in FIG. 4, in Example 2, the S2 surface is nearly flat, and the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例3)
 図5は、実施例3にかかるレンズLSの断面図である。表4に,実施例3のレンズデータを示す。尚、実施例3の光路差関数係数C1=-0.337である。LDは発光部であり、FBが光ファイバーの端面である。レンズLSは、S1面及びS2面が凸状の非球面であって、S2面に回折構造を設けている。実施例3においては、S1面の有効径φSL=1.314mmであり、S2面の有効径φSF=1.008mmである。図5に示すように、実施例3では、S2面は平坦に近くなり、光軸付近が凸状で周辺が凹状で,すなわち変曲点を持つ。
(Example 3)
FIG. 5 is a cross-sectional view of the lens LS according to the third embodiment. Table 4 shows lens data of Example 3. Note that the optical path difference function coefficient C 1 of Example 3 is −0.337. LD is a light emitting part, and FB is an end face of the optical fiber. The lens LS has a convex aspheric surface on the S1 and S2 surfaces, and a diffractive structure is provided on the S2 surface. In Example 3, the effective diameter φSL of the S1 surface is 1.314 mm, and the effective diameter φSF of the S2 surface is 1.008 mm. As shown in FIG. 5, in Example 3, the S2 surface is nearly flat, and the vicinity of the optical axis is convex and the periphery is concave, that is, has an inflection point.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に、比較例と実施例1~3において、│SgFmax-SgFmin│の値をまとめて示す。比較例では、SgFmaxの位置は軸上であり、SgFminの位置は光学面外縁である。一方、実施例1~3では、SgFmaxの位置は、光学面の外縁であり、SgFminの位置は、変曲点の位置である。 Table 5 summarizes the values of | SgFmax−SgFmin | in the comparative example and Examples 1 to 3. In the comparative example, the position of SgFmax is on the axis, and the position of SgFmin is the outer edge of the optical surface. On the other hand, in Examples 1 to 3, the position of SgFmax is the outer edge of the optical surface, and the position of SgFmin is the position of the inflection point.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図6は、比較例と実施例1~3において、光軸からの高さを横軸にとり、縦軸にΔsagをとって示す図である。図6から明らかなように、比較例のΔsagは光軸から離れるにつれて単調に負に向かい変曲点を持たないが、実施例1~3のΔsagは、光軸から離れるにつれて負に向かうが、その後正に向かうので変曲点を持つ。 FIG. 6 is a diagram showing the height from the optical axis on the horizontal axis and Δsag on the vertical axis in the comparative example and Examples 1 to 3. As is clear from FIG. 6, Δsag of the comparative example monotonically becomes negative as it goes away from the optical axis and does not have an inflection point. However, Δsag of Examples 1 to 3 goes negative as it goes away from the optical axis. Then it goes positive, so it has an inflection point.
 図7は、比較例にかかる温度変化に対する光結合率の変化を示す図であり、図8~10は、比較例にかかる温度変化に対する光結合率の変化を示す図である。図7に示す比較例の場合、環境温度が常温(20℃)から+100℃に上昇すると、光結合効率は30%近く低下することがわかる。これに対し、図8~10に示すように、実施例1~3のいずれも、光結合効率の低下を10%以内に抑えることができる。特に、実施例3は光結合効率の低下が殆どなく、ガラス製のレンズに匹敵する光学性能を有する。 FIG. 7 is a diagram showing a change in the optical coupling rate with respect to a temperature change according to the comparative example, and FIGS. 8 to 10 are diagrams showing a change in the optical coupling rate with respect to the temperature change according to the comparative example. In the case of the comparative example shown in FIG. 7, it can be seen that when the environmental temperature increases from room temperature (20 ° C.) to + 100 ° C., the optical coupling efficiency decreases by nearly 30%. On the other hand, as shown in FIGS. 8 to 10, any of Examples 1 to 3 can suppress the decrease in optical coupling efficiency to within 10%. In particular, Example 3 has almost no decrease in optical coupling efficiency and has optical performance comparable to a glass lens.
 本発明は、明細書に記載の実施形態・実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態・実施例・技術思想から本分野の当業者にとって明らかである。例えば、光ファイバーから出射した光を受光素子に集光するために、本発明のレンズを用いても良い。 The present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications based on the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art. For example, the lens of the present invention may be used to collect light emitted from an optical fiber on a light receiving element.
10      光通信モジュール
11      端子
12      ステム
13      チップ搭載部
14      ヒートシンク
15      レーザチップ
20      レンズ
21      脚部
21b     先端
22      レンズ部
30      ホルダ
31      スリーブ
32      フェルール
FB      光ファイバー
DESCRIPTION OF SYMBOLS 10 Optical communication module 11 Terminal 12 Stem 13 Chip mounting part 14 Heat sink 15 Laser chip 20 Lens 21 Leg 21b Tip 22 Lens part 30 Holder 31 Sleeve 32 Ferrule FB Optical fiber

Claims (9)

  1.  光学素子もしくは光ファイバーから出射された光束を集光する光通信用のレンズであって、
     前記光通信用のレンズは、プラスチック素材から形成された単一のレンズであり、温度変化に起因したピント位置変動を補正するための回折構造を有した光ファイバー側の光学面(S2面)と、凸面である反光ファイバー側の光学面(S1面)とを有し、以下の式を満足することを特徴とする光通信用のレンズ。
     φSF>φSL   (1)
     │SgFmax-SgFmin│<0.05   (2)
    但し、
     φSF:前記光ファイバー側の光学面の有効径(mm)
     φSL:前記反光ファイバー側の光学面の有効径(mm)
     SgFmax:前記光ファイバー側の光学面の最大サグ量(mm)
     SgFmin:前記光ファイバー側の光学面の最小サグ量(mm)
    A lens for optical communication that collects a light beam emitted from an optical element or an optical fiber,
    The optical communication lens is a single lens formed of a plastic material, and an optical surface (S2 surface) on the optical fiber side having a diffractive structure for correcting a focus position variation caused by a temperature change; An optical communication lens having a convex anti-optical fiber side optical surface (S1 surface) and satisfying the following expression:
    φSF> φSL (1)
    │SgFmax-SgFmin│ <0.05 (2)
    However,
    φSF: Effective diameter of the optical surface on the optical fiber side (mm)
    φSL: Effective diameter of the optical surface on the side opposite to the optical fiber (mm)
    SgFmax: Maximum sag amount (mm) of the optical surface on the optical fiber side
    SgFmin: Minimum sag amount (mm) of the optical surface on the optical fiber side
  2.  前記回折構造は、回転対称な回折面を含むことを特徴とする請求項1に記載の光通信用のレンズ。 2. The lens for optical communication according to claim 1, wherein the diffractive structure includes a rotationally symmetric diffractive surface.
  3.  前記光ファイバー側の光学面は、球面もしくは非球面上に前記回折構造を形成してなることを特徴とする請求項1又は2に記載の光通信用のレンズ。 3. The optical communication lens according to claim 1, wherein the optical surface on the optical fiber side is formed by forming the diffractive structure on a spherical surface or an aspherical surface.
  4.  前記光ファイバー側の光学面は、変曲点を有することを特徴とする請求項3に記載の光通信用のレンズ。 4. The lens for optical communication according to claim 3, wherein the optical surface on the optical fiber side has an inflection point.
  5.  前記光ファイバー側の光学面におけるΔsagは、変曲点を有することを特徴とする請求項3又は4に記載の光通信用のレンズ。 The optical communication lens according to claim 3 or 4, wherein Δsag on the optical surface on the optical fiber side has an inflection point.
  6.  前記レンズは、-40℃~+100℃の範囲で使用されることを特徴とする請求項1~5のいずれかに記載の光通信用のレンズ。 6. The lens for optical communication according to claim 1, wherein the lens is used in a range of −40 ° C. to + 100 ° C.
  7.  前記光学素子の波長変動(dλ/dT)は、0<(dλ/dT)<0.2(nm/℃)であることを特徴とする請求項1~6のいずれかに記載の光通信用のレンズ。 The optical communication according to any one of claims 1 to 6, wherein a wavelength variation (dλ / dT) of the optical element is 0 <(dλ / dT) <0.2 (nm / ° C.). Lens.
  8.  前記レンズは、前記光学素子から出射した光束を前記光ファイバーの端面に集光することを特徴とする請求項1~7のいずれかに記載の光通信用のレンズ。 The optical communication lens according to any one of claims 1 to 7, wherein the lens condenses a light beam emitted from the optical element on an end face of the optical fiber.
  9.  請求項1~8のいずれかに記載の光通信用のレンズを、光学素子を支持する基板に組み付けてなることを特徴とする光通信モジュール。 9. An optical communication module comprising: the optical communication lens according to claim 1 assembled on a substrate that supports an optical element.
PCT/JP2013/073495 2012-09-28 2013-09-02 Optical communication lens and optical communication module WO2014050442A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380050159.8A CN104662461A (en) 2012-09-28 2013-09-02 Optical communication lens and optical communication module
JP2014538311A JPWO2014050442A1 (en) 2012-09-28 2013-09-02 Optical communication lens and optical communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216563 2012-09-28
JP2012216563 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050442A1 true WO2014050442A1 (en) 2014-04-03

Family

ID=50387851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073495 WO2014050442A1 (en) 2012-09-28 2013-09-02 Optical communication lens and optical communication module

Country Status (3)

Country Link
JP (1) JPWO2014050442A1 (en)
CN (1) CN104662461A (en)
WO (1) WO2014050442A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613655B (en) * 2019-01-17 2020-12-15 苏州旭创科技有限公司 Optical assembly and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068878A (en) * 1996-07-18 1998-03-10 Eastman Kodak Co Lens
JPH11142696A (en) * 1997-02-26 1999-05-28 Matsushita Electric Ind Co Ltd Semiconductor laser module and semiconductor laser light source device
JPH11274646A (en) * 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd Plastic lens and semiconductor laser module employing it
WO2000017691A1 (en) * 1998-09-17 2000-03-30 Matsushita Electric Industrial Co., Ltd. Coupling lens and semiconductor laser module
JP2009015237A (en) * 2007-07-09 2009-01-22 Enplas Corp Optical element, optical module holder equipped with the same, optical module and optical connector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597519B2 (en) * 2001-04-26 2003-07-22 Konica Corporation Objective lens, optical pick-up apparatus and optical information recording reproducing apparatus
KR100461300B1 (en) * 2002-10-21 2004-12-16 삼성전자주식회사 Collimating lens and optical scanning apparatus using the same
JP4349853B2 (en) * 2003-06-30 2009-10-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical system, optical pickup device, sound and / or image recording device, and / or sound and / or image reproducing device.
DE602006002417D1 (en) * 2005-04-21 2008-10-09 Konica Minolta Opto Inc Optical transmission module and optical element for an optical transmission module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068878A (en) * 1996-07-18 1998-03-10 Eastman Kodak Co Lens
JPH11142696A (en) * 1997-02-26 1999-05-28 Matsushita Electric Ind Co Ltd Semiconductor laser module and semiconductor laser light source device
JPH11274646A (en) * 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd Plastic lens and semiconductor laser module employing it
WO2000017691A1 (en) * 1998-09-17 2000-03-30 Matsushita Electric Industrial Co., Ltd. Coupling lens and semiconductor laser module
JP2009015237A (en) * 2007-07-09 2009-01-22 Enplas Corp Optical element, optical module holder equipped with the same, optical module and optical connector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI ASAKURA ET AL.: "Athermal laser moduls for Gbit transmission systems", IEICE TECHNICAL REPORT, vol. 98, no. 251, 27 August 1998 (1998-08-27), pages 73 - 77 *

Also Published As

Publication number Publication date
CN104662461A (en) 2015-05-27
JPWO2014050442A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JPH01305587A (en) Semiconductor laser beam source
WO2014057666A1 (en) Optical coupling element and optical module provided with same
EP1715364B1 (en) Optical communication module and optical element for optical communication module
JP2016020935A (en) Laser device
US6829284B2 (en) Light source device and optical pickup
JP4724648B2 (en) OPTICAL ELEMENT AND OPTICAL MODULE HOLDER INCLUDING THE SAME, OPTICAL MODULE, AND OPTICAL CONNECTOR
JP5786934B2 (en) Optical communication lens and semiconductor module
WO2019176181A1 (en) Laser module
WO2014050442A1 (en) Optical communication lens and optical communication module
WO2014073305A1 (en) Optical communication module and lens for optical communication
TW200541087A (en) Optical semiconductor device module and bidirectional module
WO2005106566A1 (en) Beam shaping optical system and optical system of laser beam printer
JP5546410B2 (en) Optical member, optical communication module using the same, and alignment method
JP4713908B2 (en) Lens system and photoelectric encoder using the same
JP2005024617A (en) Optical transmitter
JP2008268459A (en) Collimator lens and optical communication module
WO2016021016A1 (en) Imaging optical system
JP4293952B2 (en) Scanning lens
JP4111802B2 (en) Coupling optics
JP2006227366A (en) Coupling lens for optical communications, and optical communication module
JP2009258154A (en) Optical transmission module and manufacturing method therefor
JP2012212753A (en) Optical communication lens unit and semiconductor module
WO2016147378A1 (en) Optical system and optical element
JP4341068B2 (en) Optical system and optical communication device
JP2006323369A (en) Optical communication module, and optical element for optical communication module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842037

Country of ref document: EP

Kind code of ref document: A1