WO2016021016A1 - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
WO2016021016A1
WO2016021016A1 PCT/JP2014/070859 JP2014070859W WO2016021016A1 WO 2016021016 A1 WO2016021016 A1 WO 2016021016A1 JP 2014070859 W JP2014070859 W JP 2014070859W WO 2016021016 A1 WO2016021016 A1 WO 2016021016A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging optical
bandpass filter
less
Prior art date
Application number
PCT/JP2014/070859
Other languages
French (fr)
Japanese (ja)
Inventor
典久 坂上
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to PCT/JP2014/070859 priority Critical patent/WO2016021016A1/en
Priority to JP2015137655A priority patent/JP5884113B1/en
Publication of WO2016021016A1 publication Critical patent/WO2016021016A1/en
Priority to US15/204,728 priority patent/US10365539B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to an imaging optical system including a bandpass filter.
  • the sun Background noise such as light can be reduced.
  • the full width at half maximum of the bandpass filter is, for example, ⁇ 100 nanometers or less.
  • the bandpass filter has been disposed between the optical system and the image plane for reasons such as ease of assembly (for example, FIG. 1 of Patent Document 1).
  • the F number is defined as the reciprocal of the sine of the angle formed by the principal ray and the peripheral ray at the intersection of the optical axis and the image plane, with the line connecting all the optical centers of the lenses of the imaging optical system as the optical axis. . Therefore, in an imaging optical system having a small F number of 1.1 or less, the angle formed between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane is large.
  • the angle formed by the principal ray and the peripheral ray also increases at the incident surface of the bandpass filter arranged near the image plane, the incident angle of the peripheral ray to the bandpass filter increases, and the transmittance is increased.
  • the problem of decreasing was inevitable.
  • an imaging optical system that includes a bandpass filter having a small F number of 1.1 or less and a half-width of a band of ⁇ 100 nanometers or less and that does not reduce the transmittance of the bandpass filter. .
  • An imaging optical system includes a first lens that is a negative lens from the object side to the image side, a second lens that is a meniscus lens having a convex surface directed to the image side, a diaphragm, the diaphragm and the image Two or more lenses including at least one positive lens between the surface and a half width of the band of ⁇ 100 on the object side or the image side of the stop adjacent to the stop.
  • a band pass filter having a nanometer or less is provided, and an F number is 1.1 or less.
  • the first lens which is a negative lens
  • the second lens which is a meniscus lens having a convex surface facing the image side
  • the stop are arranged in this order from the object side to the image side.
  • a band pass filter is disposed adjacent to the stop on the object side or the image side of the stop.
  • the imaging optical system according to the first embodiment of the present invention includes a third lens that is a glass positive lens, a fourth lens that is an aspheric lens, and a positive lens between the stop and the image plane. And a fifth lens which is a lens.
  • the imaging optical system according to the second embodiment of the present invention is the imaging optical system according to the first embodiment, and the third lens is a spherical lens.
  • the cost of the lens can be reduced by making the third glass lens a spherical lens.
  • the imaging optical system according to the third embodiment of the present invention is the imaging optical system according to the first or second embodiment, and the fourth lens is a negative lens.
  • spherical aberration can be reduced by making the fourth lens a negative lens.
  • the imaging optical system according to the fourth embodiment of the present invention is the imaging optical system according to the third embodiment, wherein the overall focal length is f and the focal length of the fourth lens is f4. f4 / f ⁇ -4 Meet.
  • spherical aberration can be reduced by relatively increasing the focal length of the fourth lens.
  • the focal length of the fourth lens relatively long, the sensitivity of manufacturing error can be reduced, the manufacturing yield can be improved, and the cost can be reduced.
  • the imaging optical system according to the fifth embodiment of the present invention is the imaging optical system according to the first embodiment, and a third lens that is a positive aspheric lens between the stop and the image plane, And a positive fourth lens.
  • spherical aberration can be reduced by making the third lens a positive aspheric lens.
  • the incident angle of the principal ray on the image plane can be reduced by giving the fourth lens positive power.
  • the imaging optical system according to the sixth embodiment of the present invention is the imaging optical system according to any one of the first to fifth embodiments, and has a diaphragm radius larger than the image height.
  • the incident angle of the principal ray on the image plane can be reduced by making the aperture radius larger than the image height.
  • the imaging optical system according to the seventh embodiment of the present invention is the imaging optical system according to any one of the first to sixth embodiments, and the half angle of view is 55 degrees or less.
  • the half angle of view by setting the half angle of view to 55 degrees or less, it is possible to limit the incident angle of the light beam to the bandpass filter.
  • the imaging optical system according to the eighth embodiment of the present invention is the imaging optical system according to any one of the first to seventh embodiments, where the center thickness of the first lens is t1, and the total focal length is f. , t1 / f> 1.2 Meet.
  • the influence of stray light reflected on the image plane side of the first lens can be reduced by relatively increasing the center thickness of the first lens.
  • the image pickup optical system according to the ninth embodiment of the present invention is the image pickup optical system according to any one of the first to eighth embodiments, and the center thickness of the second lens is t2, and the total focal length is f. , t2 / f> 1.2 Meet.
  • the imaging optical system according to the tenth embodiment of the present invention is the imaging optical system according to any one of the first to ninth embodiments, and the object side of the first lens is a convex surface.
  • the image pickup optical system according to the eleventh embodiment of the present invention is the image pickup optical system according to any one of the first to tenth embodiments, and the incident angle of light rays on the bandpass filter is 25 degrees or less. It is configured.
  • the transmittance of the bandpass filter can be maintained at a predetermined value or more by setting the incident angle of the light beam to the bandpass filter to 25 degrees or less.
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system according to Example 1.
  • FIG. FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of an imaging optical system of Example 3.
  • FIG. 1 is a diagram illustrating a configuration of an imaging optical system 100 according to an embodiment (Example 1 described later) of the present invention.
  • the imaging optical system includes a first lens 101 that is a negative lens from the object side to the image side, a second lens 102 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 103, and a diaphragm 104. And a third lens 105 that is a positive lens, a fourth lens 106 that is a negative lens, and a fifth lens 108 that is a positive lens.
  • a negative lens means a lens having a negative power with respect to a paraxial ray
  • a positive lens means a lens having a positive power with respect to a paraxial ray. Means.
  • the imaging optical system of the present invention is used together with a light projecting system including a light source that emits signal light in a specific wavelength range.
  • a band-pass filter that matches a specific wavelength region of signal light, it is possible to reduce background noise such as sunlight without reducing the signal light.
  • the band width of the bandpass filter is ⁇ 100 nanometers or less.
  • the bandpass filter of an imaging optical system for a near-infrared camera has a bandwidth of 700 to 900 nanometers.
  • the F number of the imaging optical system of the present invention is 1.1 or less.
  • the F number is defined as the reciprocal of the sine of the angle between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane. . Therefore, in an imaging optical system having a small F number of 1.1 or less, the angle formed between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane is large.
  • the principal ray is indicated by a one-dot chain line
  • the peripheral ray is indicated by a dotted line.
  • the bandpass filter is disposed between the optical system and the image plane for reasons such as ease of assembly.
  • the imaging optical system having the above-described arrangement having a small F-number of 1.1 or less the angle formed by the principal ray and the peripheral ray is large even on the incident surface of the bandpass filter arranged near the image plane. Therefore, the incident angle of the peripheral ray to the bandpass filter increases, and the transmittance decreases.
  • the maximum value of the incident angle of the light beam on the bandpass filter arranged near the image plane is, for example, an example described later. Similarly, when the F number was 0.9, it was 34 degrees or more.
  • a first lens that is a negative lens, a second lens that is a meniscus lens having a convex surface facing the image side, a bandpass filter, and an aperture are arranged from the object side to the image side. , Arranged in the above order.
  • the first lens negative the incident angle of the chief ray to the bandpass filter can be reduced.
  • the second lens a meniscus lens having a convex surface directed to the image side, the incident angle of the peripheral ray to the bandpass filter can be reduced.
  • each optical element of the imaging optical system is as follows. An x-axis and a y-axis orthogonal to each other are defined in a plane perpendicular to the optical axis with a line connecting all optical centers of the lenses of the imaging optical system as an optical axis.
  • the coordinate Z is determined with the direction from the intersection of the optical axis and the surface of each optical element toward the image side along the optical axis being positive.
  • h is the distance from the optical axis
  • R is the radius of curvature
  • c is the curvature.
  • k represents a conic constant
  • A represents an aspherical coefficient.
  • i and m are integers.
  • FIG. 1 is a diagram illustrating a configuration of the imaging optical system 100 according to the first embodiment.
  • the imaging optical system 100 includes a first lens 101 that is a negative lens from the object side to the image side, a second lens 102 that is a meniscus lens having a convex surface directed to the image side, a band-pass filter 103, a diaphragm 104, a third lens 105 that is a positive lens, a fourth lens 106 that is a negative lens, a wavelength filter 107, a sixth lens 108 that is a positive lens, and a cover glass 109.
  • the image plane is indicated at 110.
  • the material of the third lens 105 is glass, and the other lens material is cycloolefin polymer (COP).
  • the material of the band pass filter 103 is glass, and the material of the wavelength filter 107 is polycarbonate.
  • the diaphragm 104 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis such that the circular center coincides with the optical axis.
  • the band of the band pass filter 103 is 700 nanometers to 900 nanometers.
  • the wavelength filter 107 is used as an auxiliary to the band-pass filter 103 and blocks light in the visible light region so that no problem occurs even if the transmittance of the band-pass filter 103 in the visible light region is slightly increased.
  • the third lens 105 that is a positive lens, the fourth lens 106 that is a negative lens, and the fifth lens 108 that is a positive lens are configured to have an F number of 1.1 or less. .
  • Table 1 is a table showing the optical arrangement of the imaging optical system 100 of the first embodiment.
  • Surface number 1 indicates the object side surface of the first lens 101
  • surface number 2 indicates the image side surface of the first lens 101.
  • the surface interval corresponding to the surface number 1 indicates the center thickness of the first lens 101
  • the surface interval corresponding to the surface number 2 is the object side surface of the second lens 102 adjacent to the image side surface of the first lens 101. The center distance between is shown.
  • Table 2 is a table showing coefficients of the surface definition formulas of the surfaces of the first lens 101, the second lens 102, and the third lens 105.
  • Table 3 is a table showing the coefficients of the surface definition formulas of the surfaces of the fourth lens 106 and the fifth lens 108.
  • Numerical values representing the main optical performance of the imaging optical system of Example 1 are as follows. Overall focal length: 2.64mm F number: 0.9 Half angle of view: 48 degrees Incident angle to the bandpass filter: 22 degrees or less Incident angle of the chief ray to the image plane: 3 degrees or less
  • the incident angle to the bandpass filter is the incident angle of all rays including the principal ray and peripheral rays is there.
  • FIG. 2 is a diagram illustrating a configuration of the imaging optical system 200 according to the second embodiment.
  • the imaging optical system 200 includes a first lens 201 that is a negative lens from the object side to the image side, a second lens 202 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 203, a diaphragm 204, a third lens 205 that is a positive lens, a wavelength filter 206, a fourth lens 207 that is a positive lens, and a cover glass 208.
  • the image plane is indicated at 209.
  • the material of the third lens 205 is glass, and the other lens material is cycloolefin polymer (COP).
  • the material of the band pass filter 203 is glass, and the material of the wavelength filter 206 is polycarbonate.
  • the diaphragm 204 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis so that the center of the circle coincides with the optical axis.
  • the band of the band pass filter 203 is 700 nanometers to 900 nanometers.
  • the wavelength filter 206 is used as an auxiliary to the bandpass filter 203 and blocks light in the visible light region so that no problem occurs even if the transmittance of the bandpass filter 203 in the visible light region is slightly increased.
  • the third lens 205 which is a positive lens
  • the fourth lens 207 which is a positive lens, are configured so that the F number is 1.1 or less.
  • Table 4 is a table showing an optical arrangement of the imaging optical system 200 according to the second embodiment.
  • Surface number 1 indicates the object side surface of the first lens 201
  • surface number 2 indicates the image side surface of the first lens 201.
  • the surface interval corresponding to surface number 1 indicates the center thickness of the first lens 201
  • the surface interval corresponding to surface number 2 is the object side surface of the second lens 202 adjacent to the image side surface of the first lens 201. The center distance between is shown.
  • Table 5 is a table showing the coefficients of the surface definition formulas of the surfaces of the first lens 201, the second lens 202, and the third lens 205.
  • Table 6 is a table showing the coefficients of the surface definition formula of each surface of the fourth lens 207.
  • Numerical values representing main optical performance of the imaging optical system of Example 2 are as follows. Overall focal length: 2.56mm F number: 0.9 Half angle of view: 47 degrees Incident angle to bandpass filter: 22 degrees or less Principal ray incident angle to image plane: 5 degrees or less
  • FIG. 3 is a diagram illustrating a configuration of the imaging optical system 300 according to the third embodiment.
  • the imaging optical system 300 includes a first lens 301 that is a negative lens from the object side to the image side, a second lens 302 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 303, a diaphragm 304, a third lens 305 that is a positive lens, a wavelength filter 306, a second lens 307 that is a positive lens, and a cover glass 308.
  • the image plane is indicated at 309.
  • the material of the third lens 305 is glass, and the other lens material is cycloolefin polymer (COP).
  • the material of the band pass filter 303 is glass, and the material of the wavelength filter 306 is polycarbonate.
  • the diaphragm 304 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis such that the circular center coincides with the optical axis.
  • the band of the band pass filter 303 is 700 nanometers to 900 nanometers.
  • the wavelength filter 306 is used as an auxiliary to the bandpass filter 303 and blocks light in the visible light region so that no problem occurs even if the transmittance of the bandpass filter 303 in the visible light region is slightly increased.
  • the third lens 305 which is a positive lens
  • the fourth lens 307 which is a positive lens, are configured so that the F number is 1.1 or less.
  • Table 7 is a table showing the optical arrangement of the imaging optical system 300 of the third embodiment.
  • Surface number 1 indicates the object side surface of the first lens 301
  • surface number 2 indicates the image side surface of the first lens 301.
  • the surface interval corresponding to the surface number 1 indicates the center thickness of the first lens 301
  • the surface interval corresponding to the surface number 2 is the object side surface of the second lens 302 adjacent to the image side surface of the first lens 301. The center distance between is shown.
  • Table 8 is a table showing the coefficients of the surface definition equations for the surfaces of the first lens 301, the second lens 302, and the third lens 305.
  • Table 9 is a table showing the coefficients of the surface definition formula of each surface of the fourth lens 307.
  • Table 10 is a table showing the focal length of the entire imaging optical system and each lens in Examples 1 to 3. The unit of the focal length is millimeter.
  • Table 11 is a table showing the relationship between the center thickness of the lens and the focal length.
  • F indicates the overall focal length
  • f4 indicates the focal length of the fourth lens
  • t1 and t2 indicate center thicknesses of the first lens and the second lens, respectively.
  • Table 12 is a table showing numerical values representing main optical performances of the imaging optical systems of Examples 1 to 3.
  • the unit of length in Table 12 is millimeter.
  • the image height is a vertical distance from the intersection of the optical axis and the image plane with the optical axis as the horizontal direction.
  • y tan ⁇ It is.
  • the aperture radius is the radius of a circle that forms the aperture of the aperture.
  • the maximum value of the incident angle of all the light rays including the principal ray and the peripheral rays to the bandpass filter is 22 degrees.
  • the maximum value of the incident angle of the light beam on the bandpass filter of the conventional imaging optical system is about 24 degrees.
  • the number is 0.9, it is 34 degrees or more.
  • the imaging optical system of the present invention even when the F number is 0.9, the incident angle of the light beam to the bandpass filter does not increase, and the incident angle of the light beam to the bandpass filter decreases. There is nothing. Therefore, according to the imaging optical system of the present invention, even when the F number is 0.9, the same optical performance as when the F number is larger can be obtained.

Abstract

The purpose of the present invention is to provide an imaging optical system that has a small F number less than or equal to 1.1, is equipped with a bandpass filter having a half bandwidth less than or equal to ±100 nanometers, and is capable of preventing a decrease in the transmittance of the bandpass filter. The imaging optical system according to the present invention comprises, in order from the object side toward the image side: a first lens which is a negative lens; a second lens which is a meniscus lens with a convex surface facing the image side; a diaphragm; two or more lenses between the diaphragm and the image surface, including at least one positive lens. The imaging optical system further comprises a bandpass filter having a half bandwidth less than or equal to ±100 nanometers, provided adjacent to the diaphragm on the object side or the image side. The F number thereof is less than or equal to 1.1.

Description

撮像光学系Imaging optical system
 本発明は、バンドパスフィルタを備えた撮像光学系に関する。 The present invention relates to an imaging optical system including a bandpass filter.
 特定の波長域の信号光を発する光源を含む投光系と、信号光の特定の波長域に合わせたバンドパスフィルタを含む撮像光学系を使用することで、信号光を減少させることなく、太陽光などの背景雑音を低減することが可能となる。バンドパスフィルタの帯域の半値幅は、たとえば、±100ナノメータ以下である。 By using a projection system that includes a light source that emits signal light in a specific wavelength range and an imaging optical system that includes a band-pass filter that matches the specific wavelength range of the signal light, without reducing the signal light, the sun Background noise such as light can be reduced. The full width at half maximum of the bandpass filter is, for example, ± 100 nanometers or less.
 従来、このような撮像光学系において、組み立ての容易さなどの理由により、バンドパスフィルタは、光学系と像面との間に配置されていた(たとえば、特許文献1の図1)。 Conventionally, in such an imaging optical system, the bandpass filter has been disposed between the optical system and the image plane for reasons such as ease of assembly (for example, FIG. 1 of Patent Document 1).
 他方、このような撮像光学系を赤外域で使用する場合などに、撮像光学系のFナンバーを小さくする必要がある。Fナンバーは、撮像光学系のレンズの全ての光学中心を結んだ線を光軸として、光軸と像面との交点における、主光線と周辺光線とのなす角度の正弦の逆数として定義される。したがって、1.1以下の小さなFナンバーを有する撮像光学系においては、光軸と像面との交点における、主光線と周辺光線とのなす角度が大きくなる。その結果、像面の近くに配置されたバンドパスフィルタの入射面においても、主光線と周辺光線とのなす角度が大きくなり、周辺光線のバンドパスフィルタへの入射角度が増加し、透過率が減少してしまうという問題が避けられなかった。 On the other hand, when such an imaging optical system is used in the infrared region, it is necessary to reduce the F-number of the imaging optical system. The F number is defined as the reciprocal of the sine of the angle formed by the principal ray and the peripheral ray at the intersection of the optical axis and the image plane, with the line connecting all the optical centers of the lenses of the imaging optical system as the optical axis. . Therefore, in an imaging optical system having a small F number of 1.1 or less, the angle formed between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane is large. As a result, the angle formed by the principal ray and the peripheral ray also increases at the incident surface of the bandpass filter arranged near the image plane, the incident angle of the peripheral ray to the bandpass filter increases, and the transmittance is increased. The problem of decreasing was inevitable.
WO2010/103595A1WO2010 / 103595A1
 したがって、1.1以下の小さなFナンバーを有し、帯域の半値幅が±100ナノメータ以下であるバンドパスフィルタを備え、バンドパスフィルタの透過率を減少させることのない撮像光学系に対するニーズがある。 Therefore, there is a need for an imaging optical system that includes a bandpass filter having a small F number of 1.1 or less and a half-width of a band of ± 100 nanometers or less and that does not reduce the transmittance of the bandpass filter. .
 本発明による撮像光学系は、物体側から像側に、負のレンズである第一のレンズと、像側に凸面を向けたメニスカスレンズである第二のレンズと、絞りと、該絞りと像面との間に、少なくとも一つの正のレンズを含む2個以上のレンズと、を備え、さらに、該絞りの物体側または像側に、該絞りに隣接して、帯域の半値幅が±100ナノメータ以下であるバンドパスフィルタを備え、Fナンバーが1.1以下である。 An imaging optical system according to the present invention includes a first lens that is a negative lens from the object side to the image side, a second lens that is a meniscus lens having a convex surface directed to the image side, a diaphragm, the diaphragm and the image Two or more lenses including at least one positive lens between the surface and a half width of the band of ± 100 on the object side or the image side of the stop adjacent to the stop. A band pass filter having a nanometer or less is provided, and an F number is 1.1 or less.
 本発明では、負のレンズである第一のレンズと、像側に凸面を向けたメニスカスレンズである第二のレンズと、絞りと、を、物体側から像側に、上記の順で配置した。さらに、該絞りの物体側または像側に、該絞りに隣接して、バンドパスフィルタを配置した。第一のレンズを負とすることにより、主光線のバンドパスフィルタへの入射角度を低減することができる。また、第二のレンズを、像側に凸面を向けたメニスカスレンズとすることにより、周辺光線のバンドパスフィルタへの入射角度を低減することができる。このように、光線のバンドパスフィルタへの入射角度を低減することにより、バンドパスフィルタの透過率を所定値以上に維持することができる。 In the present invention, the first lens, which is a negative lens, the second lens, which is a meniscus lens having a convex surface facing the image side, and the stop are arranged in this order from the object side to the image side. . Further, a band pass filter is disposed adjacent to the stop on the object side or the image side of the stop. By making the first lens negative, the incident angle of the chief ray to the bandpass filter can be reduced. In addition, by making the second lens a meniscus lens having a convex surface directed to the image side, the incident angle of the peripheral ray to the bandpass filter can be reduced. Thus, by reducing the incident angle of the light beam to the bandpass filter, the transmittance of the bandpass filter can be maintained at a predetermined value or more.
 本発明の第1の実施形態による撮像光学系は、該絞りと像面との間に、ガラスの正のレンズである第三のレンズと、非球面レンズである第四のレンズと、正のレンズである第五のレンズと、を備えている。 The imaging optical system according to the first embodiment of the present invention includes a third lens that is a glass positive lens, a fourth lens that is an aspheric lens, and a positive lens between the stop and the image plane. And a fifth lens which is a lens.
 本実施形態においては、第三のレンズをガラスの正のレンズとすることにより、温度変化による焦点ずれを低減することができる。また、第四レンズを非球面レンズとすることにより球面収差を低減できる。さらに、第五レンズに正パワーを持たせることにより像面への主光線の入射角度を低減することができる。 In the present embodiment, the third lens is a glass positive lens, so that defocus due to temperature change can be reduced. In addition, spherical aberration can be reduced by using an aspheric lens as the fourth lens. Furthermore, the incident angle of the chief ray on the image plane can be reduced by giving the fifth lens positive power.
 本発明の第2の実施形態による撮像光学系は、第1の実施形態による撮像光学系であって、第三のレンズが球面レンズである。 The imaging optical system according to the second embodiment of the present invention is the imaging optical system according to the first embodiment, and the third lens is a spherical lens.
 本実施形態においては、ガラスの第3のレンズを球面レンズとすることによって、レンズのコストを低減することができる。 In the present embodiment, the cost of the lens can be reduced by making the third glass lens a spherical lens.
 本発明の第3の実施形態による撮像光学系は、第1または第2の実施形態による撮像光学系であって、第四のレンズが負のレンズである。 The imaging optical system according to the third embodiment of the present invention is the imaging optical system according to the first or second embodiment, and the fourth lens is a negative lens.
 本実施形態においては、第4のレンズを負のレンズとすることによって球面収差を低減することができる。 In this embodiment, spherical aberration can be reduced by making the fourth lens a negative lens.
 本発明の第4の実施形態による撮像光学系は、第3の実施形態による撮像光学系であって、全体の焦点距離をf、第四のレンズの焦点距離をf4として、
  f4/f<-4
を満たす。
The imaging optical system according to the fourth embodiment of the present invention is the imaging optical system according to the third embodiment, wherein the overall focal length is f and the focal length of the fourth lens is f4.
f4 / f <-4
Meet.
 本実施形態においては、第四のレンズの焦点距離を相対的に長くすることにより、球面収差を低減することができる。また、第四のレンズの焦点距離を相対的に長くすることにより、製造誤差感度が減少し、製造歩留まりが向上し、コストを低減することができる。 In this embodiment, spherical aberration can be reduced by relatively increasing the focal length of the fourth lens. In addition, by making the focal length of the fourth lens relatively long, the sensitivity of manufacturing error can be reduced, the manufacturing yield can be improved, and the cost can be reduced.
 本発明の第5の実施形態による撮像光学系は、第1の実施形態による撮像光学系であって、該絞りと像面との間に、正の非球面レンズである第三のレンズと、正の第四のレンズと、を備えている。 The imaging optical system according to the fifth embodiment of the present invention is the imaging optical system according to the first embodiment, and a third lens that is a positive aspheric lens between the stop and the image plane, And a positive fourth lens.
 レンズが四枚ある構成の光学系において、第三のレンズを正の非球面レンズとすることにより球面収差を低減することができる。レンズが四枚ある構成の光学系において、第四のレンズに正パワーを持たせることにより像面への主光線の入射角度を低減することができる。 In an optical system having four lenses, spherical aberration can be reduced by making the third lens a positive aspheric lens. In an optical system having four lenses, the incident angle of the principal ray on the image plane can be reduced by giving the fourth lens positive power.
 本発明の第6の実施形態による撮像光学系は、第1乃至第5のいずれかの実施形態による撮像光学系であって、絞り半径が像高よりも大きい。 The imaging optical system according to the sixth embodiment of the present invention is the imaging optical system according to any one of the first to fifth embodiments, and has a diaphragm radius larger than the image height.
 本実施形態においては、絞り半径を像高よりも大きくすることにより、主光線の像面への入射角度を低減することができる。 In the present embodiment, the incident angle of the principal ray on the image plane can be reduced by making the aperture radius larger than the image height.
 本発明の第7の実施形態による撮像光学系は、第1乃至第6のいずれかの実施形態による撮像光学系であって、半画角が55度以下である。 The imaging optical system according to the seventh embodiment of the present invention is the imaging optical system according to any one of the first to sixth embodiments, and the half angle of view is 55 degrees or less.
 本実施形態においては、半画角を55度以下とすることにより、光線のバンドパスフィルタへの入射角度を制限することができる。 In the present embodiment, by setting the half angle of view to 55 degrees or less, it is possible to limit the incident angle of the light beam to the bandpass filter.
 本発明の第8の実施形態による撮像光学系は、第1乃至第7のいずれかの実施形態による撮像光学系であって、第一のレンズの中心厚をt1、全体の焦点距離をfとして、
  t1/f>1.2
を満たす。
The imaging optical system according to the eighth embodiment of the present invention is the imaging optical system according to any one of the first to seventh embodiments, where the center thickness of the first lens is t1, and the total focal length is f. ,
t1 / f> 1.2
Meet.
 本実施形態においては、第一のレンズの中心厚を相対的に大きくすることにより、第1のレンズの像面側で反射した迷光の影響を小さくすることができる。 In the present embodiment, the influence of stray light reflected on the image plane side of the first lens can be reduced by relatively increasing the center thickness of the first lens.
 本発明の第9の実施形態による撮像光学系は、第1乃至第8のいずれかの実施形態による撮像光学系であって、第二のレンズの中心厚をt2、全体の焦点距離をfとして、
  t2/f>1.2
を満たす。
The image pickup optical system according to the ninth embodiment of the present invention is the image pickup optical system according to any one of the first to eighth embodiments, and the center thickness of the second lens is t2, and the total focal length is f. ,
t2 / f> 1.2
Meet.
 本実施形態においては、第二のレンズの中心厚を相対的に大きくすることにより、周辺光線のバンドパスフィルタへの入射角度を低減することができる。 In the present embodiment, by making the center thickness of the second lens relatively large, the incident angle of the peripheral rays to the bandpass filter can be reduced.
 本発明の第10の実施形態による撮像光学系は、第1乃至第9のいずれかの実施形態による撮像光学系であって、第一のレンズの物体側が凸面である。 The imaging optical system according to the tenth embodiment of the present invention is the imaging optical system according to any one of the first to ninth embodiments, and the object side of the first lens is a convex surface.
 本発明の第11の実施形態による撮像光学系は、第1乃至第10のいずれかの実施形態による撮像光学系であって、該バンドパスフィルタへの光線の入射角度が25度以下であるように構成されている。 The image pickup optical system according to the eleventh embodiment of the present invention is the image pickup optical system according to any one of the first to tenth embodiments, and the incident angle of light rays on the bandpass filter is 25 degrees or less. It is configured.
 本実施形態においては、バンドパスフィルタへの光線の入射角度を25度以下とすることにより、バンドパスフィルタの透過率を所定値以上に維持することができる。 In this embodiment, the transmittance of the bandpass filter can be maintained at a predetermined value or more by setting the incident angle of the light beam to the bandpass filter to 25 degrees or less.
実施例1の撮像光学系の構成を示す図である。1 is a diagram illustrating a configuration of an imaging optical system according to Example 1. FIG. 実施例2の撮像光学系の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an imaging optical system according to a second embodiment. 実施例3の撮像光学系の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an imaging optical system of Example 3.
 図1は、本発明の一実施形態(後で説明する実施例1)の撮像光学系100の構成を示す図である。撮像光学系は、物体側から像側に、負のレンズである第一のレンズ101と、像側に凸面を向けたメニスカスレンズである第二のレンズ102と、バンドパスフィルタ103と、絞り104と、正のレンズである第三のレンズ105と、負のレンズである第四のレンズ106と、正のレンズである第五のレンズ108と、を備えている。本明細書及び特許請求の範囲において、負のレンズとは、近軸光線に対して負のパワーを有するレンズを意味し、正のレンズとは、近軸光線に対して正のパワーを有するレンズを意味する。 FIG. 1 is a diagram illustrating a configuration of an imaging optical system 100 according to an embodiment (Example 1 described later) of the present invention. The imaging optical system includes a first lens 101 that is a negative lens from the object side to the image side, a second lens 102 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 103, and a diaphragm 104. And a third lens 105 that is a positive lens, a fourth lens 106 that is a negative lens, and a fifth lens 108 that is a positive lens. In the present specification and claims, a negative lens means a lens having a negative power with respect to a paraxial ray, and a positive lens means a lens having a positive power with respect to a paraxial ray. Means.
 本発明の撮像光学系は、特定の波長域の信号光を発する光源を含む投光系とともに使用される。信号光の特定の波長域に合わせたバンドパスフィルタを使用することで、信号光を減少させることなく、太陽光などの背景雑音を低減することが可能となる。信号光の波長域を考慮して、バンドパスフィルタの帯域の半値幅は、±100ナノメータ以下である。一例として、近赤外線カメラ用の撮像光学系のバンドパスフィルタの帯域は、700ナノメータから900ナノメータである。 The imaging optical system of the present invention is used together with a light projecting system including a light source that emits signal light in a specific wavelength range. By using a band-pass filter that matches a specific wavelength region of signal light, it is possible to reduce background noise such as sunlight without reducing the signal light. Considering the wavelength range of the signal light, the band width of the bandpass filter is ± 100 nanometers or less. As an example, the bandpass filter of an imaging optical system for a near-infrared camera has a bandwidth of 700 to 900 nanometers.
 また、本発明の撮像光学系のFナンバーは1.1以下である。撮像光学系のレンズの全ての光学中心を結んだ線を光軸として、Fナンバーは、光軸と像面との交点における、主光線と周辺光線とのなす角度の正弦の逆数として定義される。したがって、1.1以下の小さなFナンバーを有する撮像光学系においては、光軸と像面との交点における、主光線と周辺光線とのなす角度が大きくなる。 Further, the F number of the imaging optical system of the present invention is 1.1 or less. With the line connecting all optical centers of the lenses of the imaging optical system as the optical axis, the F number is defined as the reciprocal of the sine of the angle between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane. . Therefore, in an imaging optical system having a small F number of 1.1 or less, the angle formed between the principal ray and the peripheral ray at the intersection of the optical axis and the image plane is large.
 図1乃至図3において、主光線を一点鎖線で示し、周辺光線を点線で示す。 1 to 3, the principal ray is indicated by a one-dot chain line, and the peripheral ray is indicated by a dotted line.
 従来の撮像光学系において、組み立ての容易さなどの理由により、バンドパスフィルタは、光学系と像面との間に配置されていた。1.1以下の小さなFナンバーを有する、上記の配置の撮像光学系において、像面の近くに配置されたバンドパスフィルタの入射面においても、主光線と周辺光線とのなす角度が大きくなる。したがって、周辺光線のバンドパスフィルタへの入射角度が増加し、透過率が減少してしまう。1.1以下の小さなFナンバーを有する、上記の配置の従来の撮像光学系において、像面の近くに配置されたバンドパスフィルタへの光線の入射角度の最大値は、たとえば、後述の実施例と同様に、Fナンバーが0.9の場合には、34度以上であった。 In a conventional imaging optical system, the bandpass filter is disposed between the optical system and the image plane for reasons such as ease of assembly. In the imaging optical system having the above-described arrangement having a small F-number of 1.1 or less, the angle formed by the principal ray and the peripheral ray is large even on the incident surface of the bandpass filter arranged near the image plane. Therefore, the incident angle of the peripheral ray to the bandpass filter increases, and the transmittance decreases. In the conventional imaging optical system having the above-described arrangement having a small F-number of 1.1 or less, the maximum value of the incident angle of the light beam on the bandpass filter arranged near the image plane is, for example, an example described later. Similarly, when the F number was 0.9, it was 34 degrees or more.
 そこで、本発明では、負のレンズである第一のレンズと、像側に凸面を向けたメニスカスレンズである第二のレンズと、バンドパスフィルタと、絞りと、を、物体側から像側に、上記の順で配置した。第一のレンズを負とすることにより、主光線のバンドパスフィルタへの入射角度を低減することができる。また、第二のレンズを、像側に凸面を向けたメニスカスレンズとすることにより、周辺光線のバンドパスフィルタへの入射角度を低減することができる。 Therefore, in the present invention, a first lens that is a negative lens, a second lens that is a meniscus lens having a convex surface facing the image side, a bandpass filter, and an aperture are arranged from the object side to the image side. , Arranged in the above order. By making the first lens negative, the incident angle of the chief ray to the bandpass filter can be reduced. In addition, by making the second lens a meniscus lens having a convex surface directed to the image side, the incident angle of the peripheral ray to the bandpass filter can be reduced.
 本発明の実施例について以下に説明する。 Examples of the present invention will be described below.
 撮像光学系の各光学素子の面定義式は、以下のとおりである。
Figure JPOXMLDOC01-appb-M000001
撮像光学系のレンズの全ての光学中心を結んだ線を光軸として、光軸に垂直な面内に互いに直交するx軸及びy軸を定める。光軸と各光学素子の面との交点から、光軸に沿って像側に向かう方向を正として、座標Zを定める。hは光軸からの距離、Rは曲率半径、cは曲率を示す。kはコーニック定数、Aは非球面係数を示す。i及びmは整数を示す。
The surface definition formula of each optical element of the imaging optical system is as follows.
Figure JPOXMLDOC01-appb-M000001
An x-axis and a y-axis orthogonal to each other are defined in a plane perpendicular to the optical axis with a line connecting all optical centers of the lenses of the imaging optical system as an optical axis. The coordinate Z is determined with the direction from the intersection of the optical axis and the surface of each optical element toward the image side along the optical axis being positive. h is the distance from the optical axis, R is the radius of curvature, and c is the curvature. k represents a conic constant, and A represents an aspherical coefficient. i and m are integers.
実施例1
 図1は、実施例1の撮像光学系100の構成を示す図である。撮像光学系100は、物体側から像側に、負のレンズである第一のレンズ101と、像側に凸面を向けたメニスカスレンズである第二のレンズ102と、バンドパスフィルタ103と、絞り104と、正のレンズである第三のレンズ105と、負のレンズである第四のレンズ106と、波長フィルタ107と、正のレンズである第六のレンズ108と、カバーガラス109と、を備えている。像面は、110で示される。
Example 1
FIG. 1 is a diagram illustrating a configuration of the imaging optical system 100 according to the first embodiment. The imaging optical system 100 includes a first lens 101 that is a negative lens from the object side to the image side, a second lens 102 that is a meniscus lens having a convex surface directed to the image side, a band-pass filter 103, a diaphragm 104, a third lens 105 that is a positive lens, a fourth lens 106 that is a negative lens, a wavelength filter 107, a sixth lens 108 that is a positive lens, and a cover glass 109. I have. The image plane is indicated at 110.
 第三のレンズ105の材料はガラスであり、その他のレンズの材料は、シクロオレフィンポリマー(COP)である。バンドパスフィルタ103の材料は、ガラスであり、波長フィルタ107の材料は、ポリカーボネートである。絞り104は、板状で、円形の開口部とその周囲の光遮断部とを有し、光軸に垂直な面内に円形の中心が光軸と一致するように配置される。 The material of the third lens 105 is glass, and the other lens material is cycloolefin polymer (COP). The material of the band pass filter 103 is glass, and the material of the wavelength filter 107 is polycarbonate. The diaphragm 104 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis such that the circular center coincides with the optical axis.
 バンドパスフィルタ103の帯域は、700ナノメータから900ナノメータである。波長フィルタ107は、バンドパスフィルタ103の補助として使用され、バンドパスフィルタ103の可視光域の透過率が若干上昇しても問題を生じないように、可視光域の光を阻止する。 The band of the band pass filter 103 is 700 nanometers to 900 nanometers. The wavelength filter 107 is used as an auxiliary to the band-pass filter 103 and blocks light in the visible light region so that no problem occurs even if the transmittance of the band-pass filter 103 in the visible light region is slightly increased.
 正のレンズである第三のレンズ105、負のレンズである第四のレンズ106、及び正のレンズである第五のレンズ108は、Fナンバーが1.1以下となるように構成されている。 The third lens 105 that is a positive lens, the fourth lens 106 that is a negative lens, and the fifth lens 108 that is a positive lens are configured to have an F number of 1.1 or less. .
 表1は、実施例1の撮像光学系100の光学配置を示す表である。面番号1は、第一のレンズ101の物体側面を示し、面番号2は第一のレンズ101の像側面を示す。面番号1に対応する面間隔は、第一のレンズ101の中心厚を示し、面番号2に対応する面間隔は、第一のレンズ101の像側面と隣接する第二のレンズ102の物体側面との間の中心間隔を示す。
Figure JPOXMLDOC01-appb-T000002
Table 1 is a table showing the optical arrangement of the imaging optical system 100 of the first embodiment. Surface number 1 indicates the object side surface of the first lens 101, and surface number 2 indicates the image side surface of the first lens 101. The surface interval corresponding to the surface number 1 indicates the center thickness of the first lens 101, and the surface interval corresponding to the surface number 2 is the object side surface of the second lens 102 adjacent to the image side surface of the first lens 101. The center distance between is shown.
Figure JPOXMLDOC01-appb-T000002
 表2は、第一のレンズ101、第二のレンズ102、及び第三のレンズ105の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000003
Table 2 is a table showing coefficients of the surface definition formulas of the surfaces of the first lens 101, the second lens 102, and the third lens 105.
Figure JPOXMLDOC01-appb-T000003
 表3は、第四のレンズ106、及び第五のレンズ108の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000004
Table 3 is a table showing the coefficients of the surface definition formulas of the surfaces of the fourth lens 106 and the fifth lens 108.
Figure JPOXMLDOC01-appb-T000004
 実施例1の撮像光学系の主要な光学性能を表す数値は以下のとおりである。
 全体の焦点距離:2.64mm 
 Fナンバー:0.9 
 半画角:48度 
 バンドパスフィルタへの入射角度:22度以下
 像面への主光線入射角度:3度以下
ここで、バンドパスフィルタへの入射角度とは、主光線及び周辺光線を含むすべての光線の入射角度である。
Numerical values representing the main optical performance of the imaging optical system of Example 1 are as follows.
Overall focal length: 2.64mm
F number: 0.9
Half angle of view: 48 degrees
Incident angle to the bandpass filter: 22 degrees or less Incident angle of the chief ray to the image plane: 3 degrees or less Here, the incident angle to the bandpass filter is the incident angle of all rays including the principal ray and peripheral rays is there.
実施例2
 図2は、実施例2の撮像光学系200の構成を示す図である。撮像光学系200は、物体側から像側に、負のレンズである第一のレンズ201と、像側に凸面を向けたメニスカスレンズである第二のレンズ202と、バンドパスフィルタ203と、絞り204と、正のレンズである第三のレンズ205と、波長フィルタ206と、正のレンズである第四のレンズ207と、カバーガラス208と、を備えている。像面は、209で示される。
Example 2
FIG. 2 is a diagram illustrating a configuration of the imaging optical system 200 according to the second embodiment. The imaging optical system 200 includes a first lens 201 that is a negative lens from the object side to the image side, a second lens 202 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 203, a diaphragm 204, a third lens 205 that is a positive lens, a wavelength filter 206, a fourth lens 207 that is a positive lens, and a cover glass 208. The image plane is indicated at 209.
 第三のレンズ205の材料はガラスであり、その他のレンズの材料は、シクロオレフィンポリマー(COP)である。バンドパスフィルタ203の材料は、ガラスであり、波長フィルタ206の材料は、ポリカーボネートである。絞り204は、板状で、円形の開口部とその周囲の光遮断部とを有し、光軸に垂直な面内に円形の中心が光軸と一致するように配置される。 The material of the third lens 205 is glass, and the other lens material is cycloolefin polymer (COP). The material of the band pass filter 203 is glass, and the material of the wavelength filter 206 is polycarbonate. The diaphragm 204 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis so that the center of the circle coincides with the optical axis.
 バンドパスフィルタ203の帯域は、700ナノメータから900ナノメータである。波長フィルタ206は、バンドパスフィルタ203の補助として使用され、バンドパスフィルタ203の可視光域の透過率が若干上昇しても問題を生じないように、可視光域の光を阻止する。 The band of the band pass filter 203 is 700 nanometers to 900 nanometers. The wavelength filter 206 is used as an auxiliary to the bandpass filter 203 and blocks light in the visible light region so that no problem occurs even if the transmittance of the bandpass filter 203 in the visible light region is slightly increased.
 正のレンズである第三のレンズ205、及び正のレンズである第四のレンズ207は、Fナンバーが1.1以下となるように構成されている。 The third lens 205, which is a positive lens, and the fourth lens 207, which is a positive lens, are configured so that the F number is 1.1 or less.
 表4は、実施例2の撮像光学系200の光学配置を示す表である。面番号1は、第一のレンズ201の物体側面を示し、面番号2は第一のレンズ201の像側面を示す。面番号1に対応する面間隔は、第一のレンズ201の中心厚を示し、面番号2に対応する面間隔は、第一のレンズ201の像側面と隣接する第二のレンズ202の物体側面との間の中心間隔を示す。
Figure JPOXMLDOC01-appb-T000005
Table 4 is a table showing an optical arrangement of the imaging optical system 200 according to the second embodiment. Surface number 1 indicates the object side surface of the first lens 201, and surface number 2 indicates the image side surface of the first lens 201. The surface interval corresponding to surface number 1 indicates the center thickness of the first lens 201, and the surface interval corresponding to surface number 2 is the object side surface of the second lens 202 adjacent to the image side surface of the first lens 201. The center distance between is shown.
Figure JPOXMLDOC01-appb-T000005
 表5は、第一のレンズ201、第二のレンズ202、及び第三のレンズ205の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000006

Table 5 is a table showing the coefficients of the surface definition formulas of the surfaces of the first lens 201, the second lens 202, and the third lens 205.
Figure JPOXMLDOC01-appb-T000006

 表6は、第四のレンズ207の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000007
Table 6 is a table showing the coefficients of the surface definition formula of each surface of the fourth lens 207.
Figure JPOXMLDOC01-appb-T000007
 実施例2の撮像光学系の主要な光学性能を表す数値は以下のとおりである。
 全体の焦点距離:2.56mm
 Fナンバー:0.9 
 半画角:47度 
 バンドパスフィルタへの入射角度:22度以下
 像面への主光線入射角度:5度以下
Numerical values representing main optical performance of the imaging optical system of Example 2 are as follows.
Overall focal length: 2.56mm
F number: 0.9
Half angle of view: 47 degrees
Incident angle to bandpass filter: 22 degrees or less Principal ray incident angle to image plane: 5 degrees or less
実施例3
 図3は、実施例3の撮像光学系300の構成を示す図である。撮像光学系300は、物体側から像側に、負のレンズである第一のレンズ301と、像側に凸面を向けたメニスカスレンズである第二のレンズ302と、バンドパスフィルタ303と、絞り304と、正のレンズである第三のレンズ305と、波長フィルタ306と、正のレンズである第二のレンズ307と、カバーガラス308と、を備えている。像面は、309で示される。
Example 3
FIG. 3 is a diagram illustrating a configuration of the imaging optical system 300 according to the third embodiment. The imaging optical system 300 includes a first lens 301 that is a negative lens from the object side to the image side, a second lens 302 that is a meniscus lens having a convex surface directed to the image side, a bandpass filter 303, a diaphragm 304, a third lens 305 that is a positive lens, a wavelength filter 306, a second lens 307 that is a positive lens, and a cover glass 308. The image plane is indicated at 309.
 第三のレンズ305の材料はガラスであり、その他のレンズの材料は、シクロオレフィンポリマー(COP)である。バンドパスフィルタ303の材料は、ガラスであり、波長フィルタ306の材料は、ポリカーボネートである。絞り304は、板状で、円形の開口部とその周囲の光遮断部とを有し、光軸に垂直な面内に円形の中心が光軸と一致するように配置される。 The material of the third lens 305 is glass, and the other lens material is cycloolefin polymer (COP). The material of the band pass filter 303 is glass, and the material of the wavelength filter 306 is polycarbonate. The diaphragm 304 is plate-shaped, has a circular opening and a surrounding light blocking portion, and is arranged in a plane perpendicular to the optical axis such that the circular center coincides with the optical axis.
 バンドパスフィルタ303の帯域は、700ナノメータから900ナノメータである。波長フィルタ306は、バンドパスフィルタ303の補助として使用され、バンドパスフィルタ303の可視光域の透過率が若干上昇しても問題を生じないように、可視光域の光を阻止する。 The band of the band pass filter 303 is 700 nanometers to 900 nanometers. The wavelength filter 306 is used as an auxiliary to the bandpass filter 303 and blocks light in the visible light region so that no problem occurs even if the transmittance of the bandpass filter 303 in the visible light region is slightly increased.
 正のレンズである第三のレンズ305、及び正のレンズである第四のレンズ307は、Fナンバーが1.1以下となるように構成されている。 The third lens 305, which is a positive lens, and the fourth lens 307, which is a positive lens, are configured so that the F number is 1.1 or less.
 表7は、実施例3の撮像光学系300の光学配置を示す表である。面番号1は、第一のレンズ301の物体側面を示し、面番号2は第一のレンズ301の像側面を示す。面番号1に対応する面間隔は、第一のレンズ301の中心厚を示し、面番号2に対応する面間隔は、第一のレンズ301の像側面と隣接する第二のレンズ302の物体側面との間の中心間隔を示す。
Figure JPOXMLDOC01-appb-T000008
Table 7 is a table showing the optical arrangement of the imaging optical system 300 of the third embodiment. Surface number 1 indicates the object side surface of the first lens 301, and surface number 2 indicates the image side surface of the first lens 301. The surface interval corresponding to the surface number 1 indicates the center thickness of the first lens 301, and the surface interval corresponding to the surface number 2 is the object side surface of the second lens 302 adjacent to the image side surface of the first lens 301. The center distance between is shown.
Figure JPOXMLDOC01-appb-T000008
 表8は、第一のレンズ301、第二のレンズ302、及び第三のレンズ305の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000009
Table 8 is a table showing the coefficients of the surface definition equations for the surfaces of the first lens 301, the second lens 302, and the third lens 305.
Figure JPOXMLDOC01-appb-T000009
 表9は、第四のレンズ307の各面の面定義式の係数を示す表である。
Figure JPOXMLDOC01-appb-T000010
Table 9 is a table showing the coefficients of the surface definition formula of each surface of the fourth lens 307.
Figure JPOXMLDOC01-appb-T000010
 実施例3の撮像光学系の主要な光学性能を表す数値は以下のとおりである。
 全体の焦点距離:2.56mm
 Fナンバー:0.9 
 半画角:47度 
 バンドパスフィルタへの入射角度:22度以下
 像面への主光線入射角度:5度以下
Numerical values representing the main optical performance of the imaging optical system of Example 3 are as follows.
Overall focal length: 2.56mm
F number: 0.9
Half angle of view: 47 degrees
Incident angle to bandpass filter: 22 degrees or less Principal ray incident angle to image plane: 5 degrees or less
 表10は、実施例1乃至3の、撮像光学系全体及び各レンズの焦点距離を示す表である。焦点距離の単位はミリメータである。
Figure JPOXMLDOC01-appb-T000011
Table 10 is a table showing the focal length of the entire imaging optical system and each lens in Examples 1 to 3. The unit of the focal length is millimeter.
Figure JPOXMLDOC01-appb-T000011
 表11は、レンズの中心厚と焦点距離との関係を示す表である。
Figure JPOXMLDOC01-appb-T000012
Table 11 is a table showing the relationship between the center thickness of the lens and the focal length.
Figure JPOXMLDOC01-appb-T000012
 fは、全体の焦点距離を示し、f4は第四のレンズの焦点距離を示す。t1及びt2は、それぞれ、第一のレンズ及び第二のレンズの中心厚を示す。 F indicates the overall focal length, and f4 indicates the focal length of the fourth lens. t1 and t2 indicate center thicknesses of the first lens and the second lens, respectively.
 表12は、実施例1乃至実施例3の撮像光学系の主要な光学性能を表す数値を示す表である。表12における長さの単位はミリメータである。
Figure JPOXMLDOC01-appb-T000013
Table 12 is a table showing numerical values representing main optical performances of the imaging optical systems of Examples 1 to 3. The unit of length in Table 12 is millimeter.
Figure JPOXMLDOC01-appb-T000013
 像高とは、光軸と像面との交点から、光軸を水平方向として鉛直方向の距離である。像高をy、半画角をθで表すと、
 y=tanθ
である。絞り半径とは、絞りの開口部を形成する円の半径である。
The image height is a vertical distance from the intersection of the optical axis and the image plane with the optical axis as the horizontal direction. When the image height is represented by y and the half angle of view is represented by θ,
y = tan θ
It is. The aperture radius is the radius of a circle that forms the aperture of the aperture.
 表12に示すように、実施例1乃至実施例3の撮像光学系において、主光線及び周辺光線を含むすべての光線の、バンドパスフィルタへの入射角度の最大値は22度である。従来の撮像光学系のバンドパスフィルタへの光線の入射角度の最大値は、たとえば、Fナンバーが1.2の場合には、約24度であるが、実施例1乃至3と同様に、Fナンバーが0.9の場合には、34度以上である。このように、従来の撮像光学系においては、Fナンバーを小さくする(明るくする)と、バンドパスフィルタへの光線の入射角度が増加し、バンドパスフィルタの透過率が低下する。しかし、本発明の撮像光学系によれば、Fナンバーが0.9の場合でも、バンドパスフィルタへの光線の入射角度が増加することはなく、バンドパスフィルタへの光線の入射角度が低下することもない。したがって、本発明の撮像光学系によれば、Fナンバーが0.9の場合でも、Fナンバーがより大きな場合と同等の光学性能が得られる。 As shown in Table 12, in the imaging optical systems of Examples 1 to 3, the maximum value of the incident angle of all the light rays including the principal ray and the peripheral rays to the bandpass filter is 22 degrees. For example, when the F number is 1.2, the maximum value of the incident angle of the light beam on the bandpass filter of the conventional imaging optical system is about 24 degrees. When the number is 0.9, it is 34 degrees or more. As described above, in the conventional imaging optical system, when the F number is decreased (lightened), the incident angle of the light beam to the bandpass filter increases and the transmittance of the bandpass filter decreases. However, according to the imaging optical system of the present invention, even when the F number is 0.9, the incident angle of the light beam to the bandpass filter does not increase, and the incident angle of the light beam to the bandpass filter decreases. There is nothing. Therefore, according to the imaging optical system of the present invention, even when the F number is 0.9, the same optical performance as when the F number is larger can be obtained.

Claims (12)

  1.  物体側から像側に、負のレンズである第一のレンズと、像側に凸面を向けたメニスカスレンズである第二のレンズと、絞りと、該絞りと像面との間に、少なくとも一つの正のレンズを含む2個以上のレンズと、を備え、さらに、該絞りの物体側または像側に、該絞りに隣接して、帯域の半値幅が±100ナノメータ以下であるバンドパスフィルタを備えた、Fナンバーが1.1以下である撮像光学系。 At least one of a first lens that is a negative lens from the object side to the image side, a second lens that is a meniscus lens having a convex surface facing the image side, a stop, and the stop and the image surface. Two or more lenses including two positive lenses, and further, on the object side or the image side of the diaphragm, adjacent to the diaphragm, a bandpass filter having a band half-value width of ± 100 nanometers or less An imaging optical system having an F number of 1.1 or less.
  2.  該絞りと像面との間に、ガラスの正のレンズである第三のレンズと、非球面レンズである第四のレンズと、正のレンズである第五のレンズと、を備えた請求項1に記載の撮像光学系。 A third lens that is a glass positive lens, a fourth lens that is an aspherical lens, and a fifth lens that is a positive lens are provided between the stop and the image plane. The imaging optical system according to 1.
  3.  第三のレンズが球面レンズである請求項2に記載の撮像光学系。 The imaging optical system according to claim 2, wherein the third lens is a spherical lens.
  4.  第四のレンズが負のレンズである請求項2または3に記載の撮像光学系。 The imaging optical system according to claim 2 or 3, wherein the fourth lens is a negative lens.
  5.  全体の焦点距離をf、第四のレンズの焦点距離をf4として、
      f4/f<-4
    を満たす請求項4に記載の撮像光学系。
    Assuming that the overall focal length is f and the focal length of the fourth lens is f4,
    f4 / f <-4
    The imaging optical system according to claim 4, wherein:
  6.  該絞りと像面との間に、正の非球面レンズである第三のレンズと、正の第四のレンズと、を備えた請求項1に記載の撮像光学系。 The imaging optical system according to claim 1, further comprising a third lens that is a positive aspherical lens and a positive fourth lens between the stop and the image plane.
  7.  絞り半径が像高よりも大きい請求項1から6のいずれかに記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 6, wherein the aperture radius is larger than the image height.
  8.  半画角が55度以下である請求項1から7のいずれかに記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 7, wherein the half angle of view is 55 degrees or less.
  9.  第一のレンズの中心厚をt1、全体の焦点距離をfとして、
      t1/f>1.2
    を満たす請求項1から8のいずれかに記載の撮像光学系。
    The center thickness of the first lens is t1, and the overall focal length is f.
    t1 / f> 1.2
    The imaging optical system according to claim 1, wherein:
  10.  第二のレンズの中心厚をt2、全体の焦点距離をfとして、
      t2/f>1.2
    を満たす請求項1から9のいずれかに記載の撮像光学系。
    The center thickness of the second lens is t2, and the overall focal length is f.
    t2 / f> 1.2
    The imaging optical system according to claim 1, wherein:
  11.  第一のレンズの物体側が凸面である請求項1から10のいずれかに記載の撮像光学系。 The imaging optical system according to claim 1, wherein the object side of the first lens is a convex surface.
  12.  該バンドパスフィルタへの光線の入射角度が25度以下であるように構成された請求項1から11のいずれかに記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 11, wherein an incident angle of a light beam to the band pass filter is 25 degrees or less.
PCT/JP2014/070859 2014-08-07 2014-08-07 Imaging optical system WO2016021016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/070859 WO2016021016A1 (en) 2014-08-07 2014-08-07 Imaging optical system
JP2015137655A JP5884113B1 (en) 2014-08-07 2015-07-09 Imaging optical system
US15/204,728 US10365539B2 (en) 2014-08-07 2016-07-07 Optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070859 WO2016021016A1 (en) 2014-08-07 2014-08-07 Imaging optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/204,728 Continuation-In-Part US10365539B2 (en) 2014-08-07 2016-07-07 Optical imaging system

Publications (1)

Publication Number Publication Date
WO2016021016A1 true WO2016021016A1 (en) 2016-02-11

Family

ID=55263322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070859 WO2016021016A1 (en) 2014-08-07 2014-08-07 Imaging optical system

Country Status (1)

Country Link
WO (1) WO2016021016A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657280B (en) * 2017-07-26 2019-04-21 先進光電科技股份有限公司 Optical image capturing system
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227973A (en) * 1997-02-17 1998-08-25 Konica Corp Photographic lens
JP2002303789A (en) * 2001-04-03 2002-10-18 Canon Inc Photographing lens and optical equipment using it
JP2003057539A (en) * 2001-08-21 2003-02-26 Sony Corp Image pickup lens
JP2006243092A (en) * 2005-03-01 2006-09-14 Konica Minolta Opto Inc Wide angle lens
JP2008107391A (en) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp Object optical system for endoscope
JP2008158198A (en) * 2006-12-22 2008-07-10 Olympus Imaging Corp Image formation optical system and imaging apparatus using the same
JP2009230042A (en) * 2008-03-25 2009-10-08 Brother Ind Ltd Wide-angle imaging lens
JP2010139842A (en) * 2008-12-12 2010-06-24 Nittoh Kogaku Kk Lens system and display device
WO2010103595A1 (en) * 2009-03-13 2010-09-16 ナルックス株式会社 Filter for light receiving element, and light receiving device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227973A (en) * 1997-02-17 1998-08-25 Konica Corp Photographic lens
JP2002303789A (en) * 2001-04-03 2002-10-18 Canon Inc Photographing lens and optical equipment using it
JP2003057539A (en) * 2001-08-21 2003-02-26 Sony Corp Image pickup lens
JP2006243092A (en) * 2005-03-01 2006-09-14 Konica Minolta Opto Inc Wide angle lens
JP2008107391A (en) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp Object optical system for endoscope
JP2008158198A (en) * 2006-12-22 2008-07-10 Olympus Imaging Corp Image formation optical system and imaging apparatus using the same
JP2009230042A (en) * 2008-03-25 2009-10-08 Brother Ind Ltd Wide-angle imaging lens
JP2010139842A (en) * 2008-12-12 2010-06-24 Nittoh Kogaku Kk Lens system and display device
WO2010103595A1 (en) * 2009-03-13 2010-09-16 ナルックス株式会社 Filter for light receiving element, and light receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657280B (en) * 2017-07-26 2019-04-21 先進光電科技股份有限公司 Optical image capturing system
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device

Similar Documents

Publication Publication Date Title
JP5884113B1 (en) Imaging optical system
KR102494776B1 (en) Image pickup lens
TWI660194B (en) Optical system
KR101719880B1 (en) Lens module
CN106249380B (en) Optical imaging system
CN106154497B (en) Optical imaging system
KR101709838B1 (en) Lens module
TWI479188B (en) Electronic device and optical imaging lens thereof
CN106324802B (en) Optical imaging system
KR101740772B1 (en) Lens module
CN106483630B (en) Optical imaging system
TWI459027B (en) Optical imaging lens and electronic device comprising the same
TWI498623B (en) Optical imaging lens and eletronic device comprising the same
KR200492211Y1 (en) Near-infrared imaging lens
US10228537B2 (en) Optical image capturing system
WO2015020006A1 (en) Wide-angle lens
CN106353878B (en) Optical imaging system
TWI529411B (en) Optical imaging lens and eletronic device comprising the same
TWI559027B (en) Mini wide angle lens
TWI493220B (en) Five-aspheric-surface wafer-level lens systems and lens systems having wide viewing angle
KR101606974B1 (en) Lens module
TW201804207A (en) Wide viewing angle imaging camera module including four lenses and aperture diaphragm and capable of correcting system aberration effectively while achieving a wide viewing angle
KR102628422B1 (en) Image pickup lens, camera module and digital device including the same
TWM482071U (en) Image capturing lens
TW201939094A (en) Lens and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899357

Country of ref document: EP

Kind code of ref document: A1