WO2014050398A1 - Optical recording device, optical recording method, and multilayer optical disk - Google Patents

Optical recording device, optical recording method, and multilayer optical disk Download PDF

Info

Publication number
WO2014050398A1
WO2014050398A1 PCT/JP2013/072657 JP2013072657W WO2014050398A1 WO 2014050398 A1 WO2014050398 A1 WO 2014050398A1 JP 2013072657 W JP2013072657 W JP 2013072657W WO 2014050398 A1 WO2014050398 A1 WO 2014050398A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
layer
information
recording layer
focus
Prior art date
Application number
PCT/JP2013/072657
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 下舞
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2014050398A1 publication Critical patent/WO2014050398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24047Substrates
    • G11B7/2405Substrates being also used as track layers of pre-formatted layers

Definitions

  • the present invention relates to an optical recording apparatus, an optical recording method, and a multilayer optical disc that perform recording on a multilayer optical disc having a plurality of recording layers.
  • the recording layer is multi-layered.
  • track king control at the time of recording or reproducing data on a recording layer is performed using a guide track provided in a layer different from the recording layer.
  • tracking control is performed using light (guide light) having a wavelength (red) of 650 nm to 680 nm on a guide track layer provided with a guide track having a groove structure, and one of the plurality of recording layers is recorded.
  • optical disk drive that performs recording using light (recording / reproducing light) having a wavelength (blue) of 390 nm to 420 nm.
  • one of the problems is to accurately focus the recording / reproducing light on the target recording layer among the plurality of recording layers.
  • the following techniques are known for such problems.
  • This optical disk drive since the distance between the guide layer of the multilayer optical disc and the target recording layer is known, in the state where the above distance is set to the focal position of the guide light and the focal position of the recording / reproducing light, The objective lens is moved in the optical axis direction to irradiate the multilayer optical disc with recording / reproducing light and guide light, respectively.
  • This optical disk drive is obtained from the waveform of the focus error signal based on the return light of the recording / reproducing light from each recording layer and the waveform of the focus error signal based on the return light of the guide light from the guide layer obtained during this time. The timing when the recording layer is focused is determined.
  • this optical disc drive performs recording / reproduction from the recording layer at the timing when the S-curve signal waveform indicating that the guide layer is focused in the focus error signal based on the return light of the guide light from the guide layer is generated.
  • the focus error signal based on the return light of the light is gated, and the focus servo is pulled in based on the gated focus error signal.
  • the focus servo may be drawn into a recording layer other than the target recording layer due to the error. There is sex. If the focus servo is drawn into a recording layer other than the target recording layer, the recording layer is regarded as the target recording layer as it is, and recording is performed, which causes various troubles.
  • an object of the present invention is to enable good recording on a plurality of recording layers of a multilayer optical disc.
  • an optical recording apparatus includes a plurality of recording layers capable of recording information, and a guide layer provided with a guide track for tracking.
  • Each of the recording layers is an optical recording apparatus for recording on a multilayer optical disc having a layer information recording area in which layer information for identifying the recording layer of the recording layer is recorded, the light source emitting a light beam, and the light beam
  • An objective lens that focuses the light onto the multilayer optical disc, a light receiving unit that receives the light beam reflected by the multilayer optical disc, and outputs an electrical signal, a focus error generation unit that generates a focus error signal from the output of the light receiving unit, The focus position of the light beam is moved within a range that allows at least the plurality of recording layers to pass, and the focus error generation unit generates the movement along with the movement.
  • the position of the plurality of recording layers is estimated on the basis of the waveform of the focus error signal, and provisional layer information is assigned to each of the estimated positions of the plurality of recording layers, and the user uses the provisional layer information.
  • the focus servo is turned on from a state in which the estimated position of the recording layer selected as the data recording destination is focused, and the layer information is read from the layer information recording area of the recording layer to which the focus servo is drawn, The read layer information is compared with the provisional layer information used to select the recording layer as the recording destination of the user data, and if they match, the recording layer into which the focus servo is drawn is determined as the user data.
  • a control unit that determines the recording layer selected as the data recording destination.
  • the layer information read from the layer information recording area of the recording layer is compared with the temporary layer information assigned to the position of the recording layer selected as the recording destination of the user data. It is possible to logically check whether the recording layer into which the focus servo is drawn is the recording layer selected as the user data recording destination.
  • An optical recording method includes a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers is itself
  • the position of the plurality of recording layers is estimated based on the waveform of the focusing error signal generated along with the movement, and a temporary layer is placed at the estimated position of the plurality of recording layers.
  • Each of the information is assigned and the focus servo is turned on from the state where the estimated position of the recording layer selected as the user data recording destination is focused using the temporary layer information.
  • the layer information is read from the layer information recording area of the recording layer to which the focus servo is drawn, and the provisional layer used for selecting the read layer information and the recording layer as the recording destination of the user data is used.
  • the layer information is compared, and if they match, the recording layer into which the focus servo is drawn is determined as the recording layer selected as the recording destination of the user data.
  • a multilayer optical disc has a plurality of recording layers capable of recording information, and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers has its own recording layer. It has a lead-in area in which management information including layer information for identifying a recording layer is recorded, and the lead-in area is arranged with a position shifted between adjacent recording layers. .
  • This enables the disk drive to read the layer information of the recording layer from the recording layer in which the focus is drawn.
  • the lead-in area of each recording layer is arranged so as to be shifted from each other between the adjacent recording layers, generation of interlayer crosstalk during access of the lead-in area can be suppressed, and layer information is included. Management information can be read stably by the optical recording apparatus.
  • management information including layer information may be recorded in advance in the lead-in area.
  • a multilayer optical disc has a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers has its own recording layer.
  • Layer information for identifying a recording layer has a BCA (Burst_Cutting_Area) recorded in advance, and the BCAs of the plurality of recording layers are arranged at different disk radial positions. Thereby, in the disk drive, the layer information of the recording layer can be read from the BCA of the recording layer in which the focus is drawn.
  • the BCAs of the respective recording layers are arranged at different disk radial positions, it is possible to suppress the occurrence of a reading error due to interference between the BCAs of different recording layers, and the optical recording apparatus can stably store the layer information. Can be read.
  • a disc identifier for identifying a multilayer optical disc may be recorded in advance in the BCA.
  • FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention. It is a figure which shows the accommodation form of the disc cartridge in the optical recording system of FIG. 1, and the several multilayer optical disk in this. It is a figure which shows the structure of the disk cartridge in the optical recording system of FIG. 1, a multilayer optical disk, and a drive unit. It is sectional drawing which shows the structure of a multilayer optical disk.
  • FIG. 5 is a diagram illustrating a configuration of a region divided by radial positions of a guide layer and a recording layer in the multilayer optical disc of FIG.
  • FIG. 6 is a diagram showing a physical format showing a relationship between recording positions of management information of each recording layer in the recording layer lead-in area of FIG. 5.
  • FIG. 5 is a diagram illustrating a configuration of a region divided by radial positions of a guide layer and a recording layer in the multilayer optical disc of FIG.
  • FIG. 6 is a diagram showing a physical format showing a relationship between recording positions of
  • FIG. 6 is a diagram showing a modification of the physical format showing the relationship between the recording positions of the management information of each recording layer in the recording layer lead-in area of FIG. 5. It is a figure which shows the structure of the disk drive in the optical recording system of FIG.
  • FIG. 9 is a diagram illustrating an example of a focus error signal obtained during the swing period of the optical pickup and a binarization signal generated by the binarization unit from the focus error signal in the disk drive of FIG. 8.
  • FIG. 9 is a flowchart of an operation for confirming the alignment between the recording layer selected as the user data recording destination and the recording layer into which the focus servo is actually drawn based on the layer information in the disk drive of FIG. 8.
  • FIG. 12 is a detailed plan view of a BCA portion of the multilayer optical disc in FIG. 11.
  • FIG. 13 is a cross-sectional view taken along the line AA of the multilayer optical disc of FIG.
  • It is a block diagram which shows the structure of the disk drive of 2nd Embodiment which concerns on this invention. It is a flowchart which shows the operation
  • FIG. 1 is a diagram showing the overall configuration of an optical recording system.
  • the optical recording system 1 includes a disk cartridge 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
  • the disc cartridge 10 is a unit in which a plurality of multilayer optical discs 11 which are multilayer optical recording media are individually detachably accommodated. *
  • FIG. 2 is a view showing a storage form of the disk cartridge 10 and a plurality of multilayer optical disks 11 therein.
  • the accommodation form of the plurality of multilayer optical discs 11 in the disc cartridge 10 flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between adjacent multilayer optical discs 11 so that the multilayer optical disc 11 can be smoothly inserted into and removed from the disc cartridge 10.
  • the shape of the disk cartridge 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the multilayer optical disk 11.
  • a rectangular parallelepiped disk cartridge 10 in which a plurality of multilayer optical disks 11 are accommodated in a flat stack is used. *
  • FIG. 3 is a diagram showing the configuration of the disk cartridge 10, the multilayer optical disk 11, and the drive unit 30.
  • At least one side surface of the disc cartridge 10 is provided with an opening 110 for inserting and removing the multilayer optical disc 11 and a door (not shown) for opening and closing the opening 110.
  • the door is opened and closed in conjunction with the operation of loading / unloading the multilayer optical disk 11 from / to the disk cartridge 10 by the disk transport mechanism 20, and is closed at other times.
  • the plurality of multilayer optical disks 11 accommodated in the disk cartridge 10 are taken out by the disk transport mechanism 20 and selectively transported (loaded) to the plurality of disk drives 31 in the drive unit 30. *
  • the configuration of the disk cartridge 10 is not limited to that shown in FIG.
  • Various modifications such as the shape of the disk cartridge 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of multilayer optical disks 11 are possible.
  • the multilayer optical disc 11 accommodated in the disc cartridge 10 is assumed to be a so-called guide layer separation type multilayer optical disc in which the guide layer and the recording layer are separated into separate layers. . *
  • FIG. 4 is a cross-sectional view showing a configuration of a multilayer optical disc 11 that is a guide layer separation type multilayer optical disc.
  • the multilayer optical disk 11 includes a guide layer 112 and a plurality of recording layers 113.
  • the number of recording layers 113 is “4”.
  • An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113.
  • These layers are the protective layer 115, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident.
  • the layer 114, the recording layer 113, the intermediate layer 114, and the guide layer 112 are stacked in this order.
  • Each recording layer 113 is distinguished from the opposite side of the laser beam incident side (guide layer side) as “recording layer L0”, “recording layer L1”, “recording layer L2”, and “recording layer L3”. To do. *
  • a guide track 121 having a land / groove structure is spirally or concentrically provided on the surface of the guide layer 112 facing the recording layer 113.
  • physical address information is formed by wobbling or pit rows on the side wall surface.
  • the guide track 121 is formed with a track pitch (0.64 ⁇ m) corresponding to, for example, red laser light used for recording / reproduction of a DVD (Digital Versatile Disk).
  • the average pitch between the land and the groove is 0.32 ⁇ m.
  • the laser beam of the red laser beam is referred to as “guide light”. *
  • a push-pull method (PP: Push-Pull)
  • DPP Differential-Push-Pull
  • 3 beams in each of the land and groove of the guide track 121 Tracking control is performed by law. By performing tracking control in each of the land and groove of the guide track 121, information can be recorded on the recording layer 113 at a track pitch of 0.32 ⁇ m.
  • the recording layer 113 is a layer on which information is recorded at a track pitch (0.32 ⁇ m) corresponding to blue laser light used for recording / reproducing of a Blu-ray Disc (registered trademark), for example.
  • this blue laser light is referred to as “recording / reproducing light” or “recording light”.
  • the recording layer 113 is composed of, for example, a light absorption layer and a reflection layer.
  • the light absorption layer organic dyes such as cyanine dyes and azo dyes, and inorganic materials such as Si, Cu, Sb, Te, and Ge are used.
  • the target recording layer 113 in the multilayer optical disc 11 When the target recording layer 113 in the multilayer optical disc 11 is irradiated with the recording light, the reflectance of the area irradiated with the recording light is changed, and the area where the reflectance is changed is formed as a recording mark. Information is recorded in layer 113.
  • the tracking control and the acquisition of the physical address and the reference clock at the time of recording information on the recording layer 113 are performed by using the guide track 121 of the guide layer 112. Therefore, the recording layer 113 has a land / groove structure guide track. 121 is not necessary. Therefore, the surface of the recording layer 113 may be flat.
  • FIG. 5 is a diagram showing a configuration of regions divided by radial positions of the guide layer 112 and the recording layer 113 in the multilayer optical disc 11.
  • the guide layer 112 and the recording layer 113 are divided into the lead-in area, the data area, and the lead-out area in common from the inner circumference side depending on the position in the radial direction.
  • management information unique to the multilayer optical disk 11 is recorded in advance by wobbling of guide tracks or pit rows provided in lands and grooves.
  • the management information unique to the multilayer optical disc 11 includes, for example, recommended information such as the number of recording layers, recording method, recording linear velocity, laser power and laser drive pulse waveform during recording / reproduction, position information of the data area, position of the OPC area Contains information.
  • the OPC area is provided, for example, on the inner peripheral side of the lead-in area.
  • the position information (disk radius position) of each recording layer 113 is recorded in advance by wobbling of the guide track or pit rows provided in the land and groove. Has been. *
  • the same information as the information recorded in the lead-in area may be recorded in advance by wobbling of the guide track 121 or a prepit row provided in the land and groove. Good. *
  • the lead-in area of the recording layer 113 (hereinafter referred to as “recording layer lead-in area”) is an area where management information used for recording / reproduction of the recording layer 113 is recorded by a recording mark.
  • Management information used for recording / reproduction of the recording layer 113 includes layer information such as a layer number assigned to which recording layer 113 is assigned, replacement management information regarding replacement processing of a defective area, OPC processing (calibration processing).
  • the recording condition data such as the optimum laser power at the time of recording determined by (1) is included.
  • at least the layer information is, for example, information recorded with a recording mark on each recording layer 113 before the multilayer optical disc 11 is actually used for data recording by the user.
  • Such layer information may be recorded in advance on each recording layer when, for example, a multilayer optical disc is manufactured. If recording is performed when a multilayer optical disc is manufactured, layer information can be recorded for each manufacturing lot, so that layer information can be recorded more accurately without being subject to fluctuations in lot-to-lot variations.
  • FIG. 6 is a diagram showing a physical format showing the relationship between the recording positions of the management information of each recording layer 113 in the recording layer lead-in area.
  • the management information of each recording layer 113 is recorded so that the positions are shifted from each other at least between the adjacent recording layers.
  • the position shifts means “the positions do not overlap”.
  • the lead-in area of the recording layer 113 is divided into at least as many child areas as the number of recording layers depending on the position, and these child areas are assigned to different recording layers as follows, for example. *
  • the child areas are designated as “child area E0”, “child area E1”, “child area E2”, and “child area E3” from the inner peripheral side of the disc.
  • the four recording layers 113 are designated as “recording layer L0”, “recording layer L1”, “recording layer L2”, and “recording layer L3” from the one closest to the guide layer 112
  • the child area E0 is subordinate to the recording layer L0.
  • E1 is assigned to the recording layer L1
  • the child area E2 is assigned to the recording layer L2
  • the child area E3 is assigned to the recording layer L3.
  • the management information of each recording layer 113 is at least adjacent in the recording layer lead-in area.
  • the recording layers are recorded with their positions shifted from each other.
  • the child area of the recording layer L0 and the child area of the recording layer L2 are allocated to the same disk radius position (position E0) in the lead-in area, and the child area and the recording layer of the recording layer L1.
  • the child area of L3 may be assigned to another disk radius position (position E1) in the lead-in area.
  • the management information of each recording layer 113 is recorded at a position shifted between at least adjacent recording layers for the following reason. . *
  • interlayer crosstalk When information is read from an arbitrary recording layer of the multilayer optical disc 11, stray light reflected by a recording layer other than the recording layer to be read becomes noise called interlayer crosstalk and is mixed into return light from the recording layer to be read, It is known to adversely affect tracking control and recording / reproducing user data.
  • the occurrence of interlayer crosstalk is actually caused by factors that cause reflectance fluctuations such as recording marks of recording layers other than the recording layer to be read. For this reason, the management information of each recording layer 113 is recorded by shifting the position between at least adjacent recording layers, thereby suppressing the occurrence of interlayer crosstalk.
  • the disc conveying mechanism 20 takes out the target multilayer optical disk 11 from the disk cartridge 10 and loads it into the disk drive 31 in the drive unit 30, or conversely discharges the multilayer optical disk 11 ejected from the disk drive 31 into a disk This is a mechanism for returning to the cartridge 10.
  • the disk transport mechanism 20 operates independently so that, for example, a plurality of multilayer optical disks 11 can be taken out simultaneously or sequentially from the disk cartridge 10 and can be separately loaded into the plurality of disk drives 31 in the drive unit 30.
  • a plurality of possible transport mechanisms may be provided.
  • a plurality of disk drives 31 are mounted on the drive unit 30. In the example of FIG. 5, five disk drives 31 are mounted. In the example of FIG. 5, five disk drives 31 are mounted.
  • the number of multilayer optical disks 11 accommodated in the disk cartridge 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same.
  • FIG. 8 is a diagram showing a configuration of the disk drive 31 that is an optical recording apparatus.
  • the disk drive 31 includes an optical pickup 32.
  • the optical pickup 32 includes a recording / reproducing optical system corresponding to the recording / reproducing light and a guide optical system corresponding to the guide light.
  • the recording / reproducing optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength plate. 39, an objective lens 60, a first light receiving lens 61, a first light receiving portion 62, and the like.
  • the combining prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the recording / reproducing optical system and a guide optical system described later.
  • the first light source 33 includes a laser diode that emits blue laser light as recording / reproducing light R1.
  • the recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37.
  • the light enters the combining prism 38.
  • the synthesizing prism 38 makes the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to a guide optical system, which will be described later, coincide with each other.
  • And is incident on the objective lens 60 through the quarter-wave plate 39.
  • the incident recording / reproducing light is collected by the objective lens 60 so as to be focused on the target recording layer 113 of the multilayer optical disc 11.
  • the recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction.
  • the first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident.
  • the first light receiving unit 62 includes a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each divided light receiving surface. To do. *
  • the guide optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength plate 39.
  • the second light source 63 emits guide light R2 that is red laser light.
  • the guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67.
  • the light enters the prism 38.
  • the guide light R2 incident on the combining prism 38 is combined by the combining prism 38 so that the optical axis coincides with the recording / reproducing light R1 incident from the second collimator lens 37 of the recording / reproducing optical system.
  • the light enters the objective lens 60 through the quarter-wave plate 39.
  • the incident guide light R ⁇ b> 2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the multilayer optical disk 11. *
  • the guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees.
  • the second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident. *
  • the second light receiving unit 69 is constituted by, for example, a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction.
  • the second light receiving unit 69 outputs a voltage signal corresponding to the amount of received light for each divided light receiving surface.
  • the optical pickup 32 is provided with a tracking actuator 70 and a focus actuator 79.
  • the tracking actuator 70 moves the objective lens 60 in the disk radial direction that is perpendicular to the optical axis under the control of the tracking control unit 71.
  • the focus actuator 79 moves the objective lens 60 in the optical axis direction under the control of the focus control unit 77.
  • the optical pickup 32 guides the guide light R2 and the first relay lens actuator 80 that moves the first relay lens 36 in the optical axis direction in order to switch the recording layer 113 irradiated with the recording / reproducing light.
  • a second relay lens actuator 81 that moves the second relay lens 66 in the optical axis direction is provided.
  • the optical pickup 32 is also provided with a tilt actuator that adjusts the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11. The above is the description of the optical pickup 32. *
  • the disk drive 31 includes a tracking control unit 71, a data modulation unit 72, a first light source drive unit 73, a second light source drive unit 74, an equalizer 75, a data reproduction unit 76, a focus A control unit 77, a binarization unit 78, a tracking error generation unit 82, a controller 83, a first relay control unit 84, a second relay control unit 85, and a focus error generation unit 86 are provided.
  • the disk drive 31 includes a disk motor driving unit that drives the disk motor 91, a feed mechanism that sends the optical pickup 32 in the radial direction of the multilayer optical disk 11, and a pickup vertical feed mechanism that sends the optical pickup 32 in the optical axis direction of the objective lens 60. Etc. These illustrations are omitted. *
  • the data modulator 72 modulates the recording data supplied from the controller 83 and supplies the modulated signal to the first light source driver 73.
  • the first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72.
  • the equalizer 75 performs an equalization process such as PRML (Partial Response Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62 to generate a binary signal.
  • PRML Partial Response Maximum Likelihood
  • the data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 83.
  • the tracking error generation unit 82 generates a tracking error signal based on the output of the second light receiving unit 69 by, for example, a push-pull method, a differential push-pull method, a three-beam method, or the like.
  • the tracking controller 71 performs tracking control by controlling the tracking actuator 70 based on the tracking error signal to move the objective lens 60 in a direction perpendicular to the optical axis.
  • the focus error generation unit 86 generates a focus error signal based on, for example, the astigmatism method based on the output of the first light receiving unit 62.
  • the focus control unit 77 performs focus control by controlling the focus actuator 79 and moving the objective lens 60 in the optical axis direction based on the focus error signal.
  • the binarization unit 78 binarizes the focus error signal generated by the focus error generation unit 86 during the swing of the optical pickup 32 at a predetermined slice level, and supplies the binarization unit 78 to the controller 83 as S-curve information of the focus error signal.
  • the first relay control unit 84 controls the first relay lens actuator 80 so as to switch the recording layer to be recorded.
  • the second relay control unit 85 controls the second relay lens actuator 81 so that the guide light R2 is focused on the guide layer 112.
  • the controller 83 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the controller 83 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM (corresponding to a “control unit” in the claims). *
  • a plurality of the disk drives 31 described above are mounted on the drive unit 30 and can be controlled independently, and information can be recorded and reproduced on the loaded multilayer optical disk 11 simultaneously.
  • RAID Controller 40 A RAID (Redundant Arrays of Inexpensive Disks) controller 40 records data in multiple on one or more disk drives 31 in the drive unit 30 in response to a recording command from the host device 50, or performs striping. RAID control to record in a distributed manner is performed.
  • the controller 83 of each disk drive 31 to which a recording or reproduction instruction is given from the RAID controller 40 performs control for recording or reproducing data on the multilayer optical disk 11.
  • the host device 50 is the highest-level device that controls the optical recording system 1.
  • the host device 50 may be a personal computer.
  • the host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response.
  • the host device 50 includes a CPU 51, a memory 52, a drive I / F 53, a disk transport mechanism I / F 54, and a system bus 56. *
  • the CPU 51 performs arithmetic processing for executing a program stored in the memory 52 and controls exchange of information with each unit through the system bus 56.
  • the memory 52 is a main memory in which programs to be executed by the CPU 51 and calculation results are stored.
  • the drive I / F 53 is an interface for communicating with the plurality of disk drives 31 through the RAID controller 40. *
  • the disk transport mechanism I / F 54 is an interface for communicating with the disk transport mechanism 20.
  • typical operations in the disk drive 31 according to the present embodiment are as follows. Recording of layer information 2. Description will be made in the order of confirmation of the recording layer using the layer information. *
  • the procedure for recording layer information on the multilayer optical disc 11 is, for example, as follows. In the disk drive 31, it is assumed that the push-pull method is used for tracking control and the astigmatism method is used for focus control. *
  • the controller 83 of the disk drive 31 controls a feed mechanism (not shown) to move the optical pickup 32 to a predetermined radial position.
  • the predetermined radial position is, for example, a radial position corresponding to the head of the lead-in area of the guide layer. At this position, the controller 83 adjusts the initial focus offset with respect to the guide layer and the tilt adjustment of the objective lens 60 as follows. *
  • the controller 83 controls the second light source driving unit 74 to turn on the second light source 63.
  • the guide light R2 is irradiated from the objective lens 60 of the optical pickup 32 to the guide layer 112 of the multilayer optical disc 11 through the guide optical system.
  • the return light from the guide layer 112 of the multilayer optical disc 11 is received by the second light receiving unit 69, so that a voltage signal corresponding to the received light intensity is output from each divided region of the second light receiving unit 69.
  • the controller 83 drives the second relay lens actuator 81 through the second relay control unit 85 to move the second relay lens 66 to the initial position in the optical axis direction.
  • the initial position of the second relay lens 66 in the optical axis direction is a position determined in advance so that the guide light R ⁇ b> 2 from the objective lens 60 is focused on the guide layer 112.
  • the controller 83 maximizes the amplitude of the tracking error signal (push-pull signal) generated by the tracking error generator 82 based on the voltage signal corresponding to the received light intensity from each divided region of the second light receiver 69.
  • the focus offset with respect to the guide layer 112 is adjusted.
  • the controller 83 drives a tilt actuator (not shown) in the optical pickup 32 to change the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11, and the amplitude of the tracking error signal.
  • the tilt adjustment in each direction is performed so that becomes maximum.
  • the first focus offset adjustment with respect to the guide layer and the tilt adjustment of the objective lens 60 are completed.
  • the controller 83 supplies a control command to the first light source driving unit 73 so as to emit a laser beam having a power set for searching the recording layer, such as a reproducing power.
  • the first light source 33 emits laser light having the power set for searching the recording layer, and irradiates the multilayer optical disc 11 through the recording / reproducing optical system.
  • the return light from the multilayer optical disk 11 is received by the first light receiving unit 62 in the optical pickup 32, and a voltage signal corresponding to the received light intensity is output from each divided region of the first light receiving unit 62.
  • the controller 83 controls a pickup vertical feed mechanism (not shown) so that the focus position of the recording layer search laser light passes through at least all the recording layers 113 of the multilayer optical disc 11 through the recording / reproducing optical system.
  • the optical pickup 32 is moved (swinged) several times at a constant speed in the optical axis direction of the objective lens 60.
  • the controller 83 changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration.
  • FIG. 9 is a diagram illustrating an example of a focus error signal obtained during the swing period of the optical pickup 32 and a binarized signal generated by the binarization unit 78 from the focus error signal.
  • the controller 83 adjusts the position of the first collimator lens 34 every swing, and The S-shaped voltage at the position of the first collimator lens 34 where the amplitude of the S-shaped voltage is maximum is determined as the S-shaped voltage in a state where the spherical aberration is corrected.
  • the controller 83 obtains, as the S-curve information of the focus error signal, the result of binarizing the S-shaped voltage with the spherical aberration corrected at the predetermined slice level by the binarizing unit 78.
  • the controller 83 records layer information on each recording layer as follows, for example. Note that the recording order of layer information for each recording layer is assumed to be L0, L1, L2, and L3. *
  • the controller 83 moves the optical pickup 32 from a predetermined initial position to a position where the binarized signal becomes the “H” level for the fifth time. Control the focus servo to be pulled in at the position. As a result, the focus servo is drawn into the recording layer L0.
  • the controller 83 detects the light detection signal output from each divided region of the first light receiving unit 62 for the return light from the unrecorded region of the recording layer L0.
  • the focus offset for the recording layer L0 is adjusted so that the sum signal is maximized.
  • the controller 83 adjusts the focus offset with respect to the guide layer 112 again so that the amplitude of the tracking error signal is maximized.
  • the controller 83 performs control so as to draw tracking servo into the guide track 121 of the guide layer 112. At this time, the controller 83 adjusts the tracking offset based on the waveform of the tracking error signal. For example, an intermediate potential between a maximum value and a minimum value in the waveform of the tracking error signal is used as an offset value, and the tracking error signal is adjusted with this offset value.
  • the controller 83 performs control so as to record the layer information on the recording layer L0.
  • the controller 83 is assigned in advance to the recording layer L0 among the plurality of child areas E0 to E3 that divide the recording layer lead-in area. Control is performed so that the layer information is recorded in the child area E0. More specifically, information on the disk radius positions of the small areas E0 to E3 allocated to the respective recording layers is recorded in advance in the lead-in area of the guide layer.
  • the controller 83 reads the information on the disk radial position of each of the small areas E0 to E3 from the lead-in area of the guide layer, identifies the child area for each recording layer based on this information, and stores the layer information here. Control to record. *
  • the controller 83 moves the optical pickup 32 from a predetermined initial position to a position where the binarized signal becomes the “H” level for the fourth time.
  • the focus servo is pulled in at this position.
  • the focus servo is drawn into the recording layer L1, and thereafter, the same processing until the layer information is recorded on the recording layer L1 is performed.
  • the processes until the layer information is recorded on the recording layer L2 and the recording layer L3 are repeated in the same procedure.
  • This operation is started when, for example, the multilayer optical disc 11 on which layer information is recorded is loaded into the disc drive 31. *
  • the controller 83 of the disk drive 31 supplies a control command to the first light source driving unit 73 so that the first light source 33 emits a laser beam having a power set for searching the recording layer such as a reproduction power. To do. Subsequently, the controller 83 moves the focus position of the laser beam for searching the recording layer within a range in which at least all of the recording layers of the multilayer optical disc 11 are passed while the optical pickup 32 is placed at a predetermined initial position. In this manner, the pickup vertical feed mechanism (not shown) is controlled to move (swing) the optical pickup 32 a plurality of times in the direction of the optical axis of the objective lens 60 at a constant speed. At this time, the controller 83 changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration (step S101). *
  • the controller 83 determines the S-shaped voltage at the position of the first collimator lens 34 where the amplitude of the S-shaped voltage of the target recording layer is the maximum among the focus error signals (S-shaped voltage) obtained for each swing. Is obtained as S-curve information of the focus error signal, and the result obtained by binarizing the S-curve voltage at a predetermined slice level by the binarization unit 78 is obtained as the S-curve information of the focus error signal. (Step S102). *
  • the controller 83 estimates the position of each recording layer in the swing range of the optical pickup 32 based on the acquired S-curve information of the focus error signal, and provisional layer information is added to each estimated recording layer position. And the correlation information is stored in a memory in the controller 83.
  • the position of each recording layer is expressed by the amount of movement of the optical pickup 32 from the initial position, for example.
  • the provisional layer information is allocated according to the same allocation rule as the layer information actually recorded in the lead-in area so that the layer information can be compared with the layer information actually recorded in the lead-in area of each recording layer ( Step S103). *
  • a recording layer as a recording destination of user data is selected using temporary layer information.
  • the recording layer L1 is selected as the user data recording destination based on the provisional layer information.
  • the controller 83 reads the position information of the recording layer L1 corresponding to the provisional layer information from the memory, and controls the optical pickup lifting / lowering mechanism (not shown) based on this information to move the optical pickup 32 from the initial position in the optical axis direction. Move (step S104). *
  • the controller 83 sets the feed mechanism so as to move the optical pickup 32 in the disc radial direction to a position where the layer information can be read from the lead-in area in the recording layer L1 selected as the user data recording destination.
  • Control is performed (step S105). More specifically, in order to perform this control, the controller 83 reads in advance the position information (disk radius position) of the lead-in area of each recording layer from the lead-in area of the guide layer and temporarily stores it in the memory in the controller 83. It is necessary to store in association with the layer information.
  • the controller 83 acquires the position information of the lead-in area associated with the temporary layer information of the recording layer L1 selected as the user data recording destination from the memory, and based on this, the lead-in area in the recording layer L1 is read.
  • the feed mechanism is controlled so that the optical pickup 32 is moved in the disk radial direction to a position where the layer information can be read from the area.
  • the controller 83 supplies a control command to the focus control unit 77 so as to start the focus servo pull-in (step S106).
  • the laser beam is focused on the recording layer that is closest to the focus position of the laser beam for searching the recording layer.
  • the recording layer is designated as the recording destination. Whether it is L1 is uncertain.
  • the controller 83 performs control so as to read layer information from the lead-in area of the focused recording layer (step S107).
  • the controller 83 When the controller 83 succeeds in reading the layer information from the lead-in area of the focused recording layer, the read layer information matches the temporary layer information used for selecting the recording layer as the recording destination. Whether or not (step S108). *
  • step S109 the controller 83 performs a predetermined error process. For example, the host device 50 is notified that recording on the multilayer optical disk 11 is impossible due to mismatch of layer information. Alternatively, the position information may be corrected based on the relationship between the read layer information and the provisional layer information used for selecting the recording layer to be recorded, and the focus servo may be pulled again. . *
  • the controller 83 determines the focused recording layer as the recording layer L1 selected as the recording destination (step S110), for example, the next to be executed for the multilayer optical disc 11 Processing, for example, OPC processing, defect replacement processing, and the like are performed, and then user data is recorded. The above operation is performed in a state where the multilayer optical disc 11 is driven by the CLV method or the CAV method.
  • the management information of each recording layer of the multilayer optical disc 11 is recorded so that the positions of the recording layers are shifted from each other at least between adjacent recording layers, thereby managing from the lead-in area of one recording layer. It is possible to eliminate an adverse effect caused by interlayer crosstalk when reading information. As a result, the management information in the lead-in area can be satisfactorily read, and the stability of recording and reproduction is improved.
  • the size of the required lead-in area can be further reduced by alternately assigning a plurality of recording layers of three or more to the two small areas of the lead-in area in the stacking order.
  • the recording capacity of each recording layer can be increased.
  • layer information is recorded in the lead-in area of each recording layer of the multilayer optical disc 11.
  • the layer information may be recorded in any region as long as it can be obtained from the focused recording layer.
  • layer information is recorded in a BCA (Burst Cutting Area) for each recording layer.
  • the BCA is formed by partially burning the recording layer with a high-power laser beam during the manufacturing process of the multilayer optical disc.
  • the light reflectance is different between the burned-out portion and the unburned-out portion, when the multilayer optical disc is rotated and the BCA is focused and irradiated with laser light, for example, as shown in FIG.
  • a signal whose reflection level changes in two steps, BCAtop and BCAbottom is obtained.
  • Data (BCA data) is obtained by demodulating and decoding this signal. *
  • FIG. 11 is an overall plan view of the multilayer optical disk 11A of the present embodiment.
  • FIG. 12 is a detailed plan view of the BCA portion of the multilayer optical disk 11A of FIG. 13 is a cross-sectional view of the multilayer optical disk 11A of FIG.
  • a center hole 101 for disc chucking is provided in the center of the multilayer optical disc 11A.
  • a chucking area 102 for disc chucking is also provided on the outer peripheral side of the center hole 101.
  • a BCA 103 is provided on the outer peripheral side of the chucking area 102, and a recording area 104 including a lead-in area is provided on the outer peripheral side thereof. *
  • the BCA 103 is provided for each recording layer 113.
  • the BCA 103 for each of the recording layers 113 (recording layers L0, L1, L2, and L3) is “BCA (L0)”, “BCA (L1)”, “BCA (L2)”, and “BCA (L3) as necessary for explanation. ) ”.
  • the BCA 103 for each recording layer 113 is provided at different disk radial positions. For example, the radial positions of the multi-layer optical disc 11A are shifted from the inner circumference side to the outer circumference side so as not to overlap each other, as in BCA (L0), BCA (L1), BCA (L2), and BCA (L3). Arranged in ascending order of layer number values. *
  • Each BCA 103 for each recording layer 113 has at least a disc ID and layer information recorded in advance (when the multilayer optical disc 11A is manufactured).
  • the disc ID is a serial number unique to the multilayer optical disc 11A, that is, information for identifying the individual of the multilayer optical disc 11A.
  • the layer information is information for identifying individual recording layers 113 (recording layers L0, L1, L2, and L3) of the multilayer optical disc 11A.
  • the BCA (L0) of the recording layer L0 records layer information that can uniquely identify the layer position of the recording layer L0 in the multilayer optical disc 11A.
  • the BCA (L0), BCA (L1), BCA (L2), and BCA (L3) are arranged so that the disk radial positions are not shifted from each other, thereby causing interference between the BCAs 103 of the plurality of recording layers 113. The occurrence of reading errors can be suppressed.
  • FIG. 14 is a block diagram showing the configuration of the disk drive 31A of the second embodiment.
  • the BCA processing unit 87 reproduces the disk ID and layer information, which are data recorded in the BCA 103, based on the reproduction RF signal from the first light receiving unit 62, and supplies it to the controller 83A.
  • the controller 83A confirms the number of recording layers designated as the user data recording target based on the layer information reproduced by the BCA processing unit 87, for example, as the recording destination of user data. Confirmation of the alignment between the selected recording layer and the recording layer into which the focus servo is actually drawn is performed.
  • Other configurations are the same as those of the disk drive 31 of the first embodiment. *
  • FIG. 15 is a flowchart showing an operation of confirming the recording layer by the disk drive 31A of the second embodiment.
  • the controller 83A of the disk drive 31A causes the first light source 33 to emit a laser beam having a power set for searching the recording layer such as a reproduction power.
  • a control command is supplied to the light source driving unit 73.
  • the controller 83A moves the focus position of the laser beam for searching the recording layer within a range that allows at least all the recording layers of the multilayer optical disc 11A to pass while the optical pickup 32 is placed at a predetermined initial position.
  • the pickup vertical feed mechanism (not shown) is controlled to move (swing) the optical pickup 32 a plurality of times at a constant speed in the optical axis direction of the objective lens 60 (step S201).
  • the controller 83A changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration (step S201).
  • the controller 83A has an S-curve at the position of the first collimator lens 34 where the amplitude of the S-curve voltage of the target recording layer becomes the maximum among the focus error signals (S-curve voltage) obtained for each swing.
  • the voltage is determined as the S-shaped voltage with the spherical aberration corrected, and the result of binarizing the S-shaped voltage at a predetermined slice level by the binarizing unit 78 is used as the S-shaped curve information of the focus error signal.
  • the controller 83A estimates the position of each recording layer in the swing range of the optical pickup 32 based on the acquired S-curve information of the focus error signal, and provisional layer information is added to each estimated recording layer position. And the correlation information is stored in the memory in the controller 83A.
  • the position of each recording layer is expressed by the amount of movement of the optical pickup 32 from the initial position, for example.
  • the temporary layer information is assigned according to the same assignment rule as the layer information actually recorded on the BCA 103 so that the layer information can be compared with the layer information actually recorded on the BCA 103 of each recording layer (step S203). *
  • a recording layer as a recording destination of user data is selected using temporary layer information.
  • the recording layer L1 is selected as the user data recording destination based on the provisional layer information.
  • the controller 83A reads the position information of the recording layer L1 corresponding to the provisional layer information from the memory, and controls the optical pickup lifting / lowering mechanism (not shown) based on the information, thereby moving the optical pickup 32 from the initial position in the optical axis direction. Move (step S204). *
  • the controller 83A moves the optical pickup 32 in the disc radial direction to a position where the layer information can be read from the BCA 103 (L1) in the recording layer L1 selected as the user data recording destination (step S205). More specifically, in order to perform this control, the controller 83A reads in advance the position information (disk radius position) of the BCA 103 for each recording layer from the lead-in area of the guide layer and stores the temporary layer in the memory in the controller 83A. It is necessary to store the information in association with it. The controller 83A acquires the position information of the BCA 103 (L1) associated with the temporary layer information of the recording layer L1 selected as the user data recording destination from the memory, and based on this, the BCA 103 in the recording layer L1 is acquired. The feed mechanism is controlled so that the optical pickup 32 is moved in the disk radial direction to a position where the layer information can be read from (L1). *
  • the controller 83A supplies a control command to the focus control unit 77 so as to start the focus servo pull-in (step S206).
  • the laser beam is focused on the recording layer that is closest to the focus position of the laser beam.
  • the recording layer is the recording layer L1 designated as the recording destination. Is uncertain. *
  • controller 83A performs control so that the BCA processing unit 87 reads layer information from the BCA 103 of the focused recording layer (step S207).
  • the controller 83A determines whether or not the layer information read from the BCA 103 of the focused recording layer matches the temporary layer information used for selecting the recording layer as the recording destination (step S208). *
  • the controller 83A performs a predetermined error process (step S209). For example, the host device 50 is notified that recording on the multilayer optical disc 11A is impossible due to the mismatch of the layer information. Alternatively, the position information may be corrected based on the relationship between the read layer information and the provisional layer information used for selecting the recording layer to be recorded, and the focus servo may be pulled again. . *
  • the controller 83A determines the focused recording layer as the recording layer L1 selected as the recording destination (step S210), and, for example, the next to be executed for the multilayer optical disc 11A. Processing, for example, OPC processing, defect replacement processing, and the like are performed, and then user data is recorded. *
  • BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer are not interfering with each other during reading. Provided at different disk radius positions. Therefore, by assigning layer information in advance to position information (disk radius position) of BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer, the disk drive is focused. Can be determined without depending on the layer information recorded in the BCA 103, and double confirmation can be performed together with the layer information read from the BCA 103. . The specific method will be described below. *
  • FIG. 16 is a block diagram showing the configuration of the disk drive 31B of this modification.
  • This disk drive 31B is obtained by adding an address reproducing unit 88 to the configuration of the disk drive 31A of the second embodiment.
  • the address reproducing unit 88 reproduces physical address information recorded in the guide track of the guide layer 112 after being modulated, for example, into wobbling or a pit row, and supplies it to the controller 83B. To do. *
  • correlation data in which the position information (disk radius position) of BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer is associated with the layer information is stored. Is done.
  • This correlation data is read from, for example, the lead-in area of the guide layer of the multilayer optical disc 11B and stored in the memory.
  • the controller 83B calculates a disk radius position using a predetermined conversion formula or the like based on the physical address information supplied from the address reproducing unit 88, and refers to the correlation data stored in the memory 52 to determine the disk radius.
  • the layer information associated with the position is acquired.
  • the controller 83B determines whether or not the layer information matches the layer information read from the BCA 103. If they match, the controller 83B determines the layer information as the layer information of the focused recording layer. Thereby, it can be logically and more surely confirmed by double determination whether or not the focused recording layer is the recording layer selected as the user data recording destination.
  • the controller 83B calculates the disk radius position using a predetermined conversion formula based on the physical address information supplied from the address reproducing unit 88, and refers to the correlation data stored in the memory.
  • the layer information associated with the disc radius position may be determined as the layer information of the focused recording layer. According to this method, even if no layer information is recorded in the BCA, the controller 83B logically checks whether the focused recording layer is the recording layer selected as the user data recording destination. be able to.

Abstract

[Problem] The present invention enables excellent recording with respect to a plurality of recording layers of a multilayer optical disk. [Solution] A controller (83B) of a disk drive causes the position of a focus of a light beam to move in such a range that the light beam passes through at least a plurality of recording layers; estimates positions of the recording layers based on a waveform of a focus error signal generated in response to this movement by a focus error generation section; assigns pieces of temporary layer information to the estimated positions of the recording layers, respectively; turns on focus servo in a state in which the focus is on the estimated position of the recording layer selected as a recording destination where user data are to be recorded, by using temporary layer information; reads layer information from a lead-in area of a recording layer where the focus servo is drawn in; compares this read layer information and the temporary layer information used for selection of the recording layer as a recording destination where user data are to be recorded; and, if these pieces of information coincide with each other, recognizes that the recording layer where the focus servo is drawn in as the recording layer selected as the recording destination of the user data.

Description

光記録装置、光記録方法及び多層光ディスクOptical recording apparatus, optical recording method, and multilayer optical disk
本発明は、複数の記録層を有する多層光ディスクに対して記録を行う光記録装置および光記録方法と多層光ディスクに関する。 The present invention relates to an optical recording apparatus, an optical recording method, and a multilayer optical disc that perform recording on a multilayer optical disc having a plurality of recording layers.
DVD(Digital Versatile Disk)、ブルーレイディスク(登録商標)などの光ディスクの大容量化を目的として、記録層を多層化することが行われる。記録層の多層化に伴い、記録層へのデータの記録または再生時のトラックキング制御を、記録層とは別の層に設けられたガイドトラックを用いて行う方式も知られている。例えば、溝構造によるガイドトラックが設けられたガイドトラック層に650nm~680nmの波長(赤色)の光(ガイド光)を使用してトラッキング制御を行うとともに、複数の記録層のうちの一つの記録層に390nm~420nmの波長(青色)の光(記録再生光)を使用して記録を行う光ディスクドライブなどがある。  For the purpose of increasing the capacity of an optical disk such as a DVD (Digital Versatile Disk) or a Blu-ray Disc (registered trademark), the recording layer is multi-layered. Along with the increase in the number of recording layers, there is also known a system in which track king control at the time of recording or reproducing data on a recording layer is performed using a guide track provided in a layer different from the recording layer. For example, tracking control is performed using light (guide light) having a wavelength (red) of 650 nm to 680 nm on a guide track layer provided with a guide track having a groove structure, and one of the plurality of recording layers is recorded. In addition, there is an optical disk drive that performs recording using light (recording / reproducing light) having a wavelength (blue) of 390 nm to 420 nm. *
このような光ディスクドライブでは、複数の記録層の中で、目的の記録層に記録再生光の焦点を正確に合わせることが課題の一つとされている。このような課題に対し、次のような技術が知られている。  In such an optical disc drive, one of the problems is to accurately focus the recording / reproducing light on the target recording layer among the plurality of recording layers. The following techniques are known for such problems. *
この公知の光ディスクドライブは、多層光ディスクのガイド層と目的の記録層との距離が既知であることから、ガイド光の焦点位置と記録再生光の焦点位置とに上記の距離を設定した状態で、対物レンズを光軸方向に移動させて記録再生光とガイド光をそれぞれ多層光ディスクに照射する。この光ディスクドライブは、この間に得られる、それぞれの記録層からの記録再生光の戻り光に基づくフォーカスエラー信号の波形と、ガイド層からのガイド光の戻り光に基づくフォーカスエラー信号の波形とから目的の記録層にフォーカスが合ったタイミングを判定する。すなわち、この光ディスクドライブは、ガイド層からのガイド光の戻り光に基づくフォーカスエラー信号においてガイド層に焦点が合ったことを示すS字カーブの信号波形が発生するタイミングで、記録層からの記録再生光の戻り光に基づくフォーカスエラー信号をゲートし、このゲートされたフォーカスエラー信号に基づいてフォーカスサーボを引き込む。これにより、目的以外の記録層にフォーカスサーボが引き込まれるといった不具合を解消することができる。 In this known optical disc drive, since the distance between the guide layer of the multilayer optical disc and the target recording layer is known, in the state where the above distance is set to the focal position of the guide light and the focal position of the recording / reproducing light, The objective lens is moved in the optical axis direction to irradiate the multilayer optical disc with recording / reproducing light and guide light, respectively. This optical disk drive is obtained from the waveform of the focus error signal based on the return light of the recording / reproducing light from each recording layer and the waveform of the focus error signal based on the return light of the guide light from the guide layer obtained during this time. The timing when the recording layer is focused is determined. That is, this optical disc drive performs recording / reproduction from the recording layer at the timing when the S-curve signal waveform indicating that the guide layer is focused in the focus error signal based on the return light of the guide light from the guide layer is generated. The focus error signal based on the return light of the light is gated, and the focus servo is pulled in based on the gated focus error signal. As a result, it is possible to solve the problem that the focus servo is pulled into a recording layer other than the intended one.
特開2010-40093号公報JP 2010-40093 A
しかしながら、フォーカスエラー信号の波形をもとに目的の記録層を判定する方式では、判定された記録層が実際に目的の記録層であるかどうかを論理的に確認することができない。このため例えば、ガイド層と目的の記録層との距離が既知の値に対して実際にはずれているような場合、その誤差によって目的の記録層以外の記録層にフォーカスサーボが引き込まれてしまう可能性がある。そして、もし目的の記録層以外の記録層にフォーカスサーボが引き込まれてしまった場合、そのままその記録層が目的の記録層としてみなされ、記録が行われてしまい、諸々のトラブルの要因となる。  However, in the method of determining the target recording layer based on the waveform of the focus error signal, it is not possible to logically check whether the determined recording layer is actually the target recording layer. For this reason, for example, when the distance between the guide layer and the target recording layer is actually deviated from a known value, the focus servo may be drawn into a recording layer other than the target recording layer due to the error. There is sex. If the focus servo is drawn into a recording layer other than the target recording layer, the recording layer is regarded as the target recording layer as it is, and recording is performed, which causes various troubles. *
以上のような事情に鑑み、本発明の目的は、多層光ディスクの複数の記録層に良好に記録を行うことを可能にすることにある。 In view of the circumstances as described above, an object of the present invention is to enable good recording on a plurality of recording layers of a multilayer optical disc.
上記目的を達成するため、本発明の一形態に係る光記録装置は、情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報が記録された層情報記録領域を有する多層光ディスクに記録を行う光記録装置であって、光ビームを出射する光源と、前記光ビームを前記多層光ディスクに集束させる対物レンズと、前記多層光ディスクで反射された光ビームを受けて電気信号を出力する受光部と、前記受光部の出力からフォーカスエラー信号を生成するフォーカスエラー生成部と、前記光ビームのフォーカスの位置を少なくとも前記複数の記録層を通過させる範囲で移動させ、この移動に伴って前記フォーカスエラー生成部により生成されたフォーカスエラー信号の波形をもとに前記複数の記録層の位置を推定し、前記推定された複数の記録層の位置に仮の層情報をそれぞれ割り当て、当該仮の層情報を用いてユーザデータの記録先として選択された記録層の前記推定された位置にフォーカスを合わせた状態からフォーカスサーボをオンにし、フォーカスサーボの引き込み先の記録層の前記層情報記録領域から前記層情報を読み込み、この読み込まれた層情報と、前記ユーザデータの記録先としての記録層の選択に用いられた前記仮の層情報とを比較し、一致する場合、前記フォーカスサーボが引き込まれた記録層を前記ユーザデータの記録先として選択された記録層として確定する制御部と、を具備する。  In order to achieve the above object, an optical recording apparatus according to an aspect of the present invention includes a plurality of recording layers capable of recording information, and a guide layer provided with a guide track for tracking. Each of the recording layers is an optical recording apparatus for recording on a multilayer optical disc having a layer information recording area in which layer information for identifying the recording layer of the recording layer is recorded, the light source emitting a light beam, and the light beam An objective lens that focuses the light onto the multilayer optical disc, a light receiving unit that receives the light beam reflected by the multilayer optical disc, and outputs an electrical signal, a focus error generation unit that generates a focus error signal from the output of the light receiving unit, The focus position of the light beam is moved within a range that allows at least the plurality of recording layers to pass, and the focus error generation unit generates the movement along with the movement. The position of the plurality of recording layers is estimated on the basis of the waveform of the focus error signal, and provisional layer information is assigned to each of the estimated positions of the plurality of recording layers, and the user uses the provisional layer information. The focus servo is turned on from a state in which the estimated position of the recording layer selected as the data recording destination is focused, and the layer information is read from the layer information recording area of the recording layer to which the focus servo is drawn, The read layer information is compared with the provisional layer information used to select the recording layer as the recording destination of the user data, and if they match, the recording layer into which the focus servo is drawn is determined as the user data. And a control unit that determines the recording layer selected as the data recording destination. *
本発明に係る光記録装置では、記録層の層情報記録領域から読み込んだ層情報と、ユーザデータの記録先として選択された記録層の位置に割り当てられた仮の層情報とを比較することによって、フォーカスサーボが引き込まれた記録層が、ユーザデータの記録先として選択された記録層であるかどうかを論理的に確認することができる。  In the optical recording apparatus according to the present invention, the layer information read from the layer information recording area of the recording layer is compared with the temporary layer information assigned to the position of the recording layer selected as the recording destination of the user data. It is possible to logically check whether the recording layer into which the focus servo is drawn is the recording layer selected as the user data recording destination. *
本発明の別の観点に基づく光記録方法は、情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報を含む管理情報が記録された層情報記録領域を有する多層光ディスクに記録を行う光記録方法であって、光ビームのフォーカスの位置を少なくとも前記複数の記録層を通過させる範囲で移動させ、この移動に伴って生成されたフォーカシングエラー信号の波形をもとに前記複数の記録層の位置を推定し、前記推定された複数の記録層の位置に仮の層情報をそれぞれ割り当て、当該仮の層情報を用いてユーザデータの記録先として選択された記録層の前記推定された位置にフォーカスを合わせた状態からフォーカスサーボをオンにし、フォーカスサーボの引き込み先の記録層の前記層情報記録領域から前記層情報を読み込み、この読み込まれた層情報と、前記ユーザデータの記録先としての記録層の選択に用いられた前記仮の層情報とを比較し、一致する場合、前記フォーカスサーボが引き込まれた記録層を前記ユーザデータの記録先として選択された記録層として確定することを特徴とする。  An optical recording method according to another aspect of the present invention includes a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers is itself An optical recording method for recording on a multi-layer optical disc having a layer information recording area in which management information including layer information for identifying the recording layer is recorded, wherein the focus position of the light beam is at least the plurality of recording layers The position of the plurality of recording layers is estimated based on the waveform of the focusing error signal generated along with the movement, and a temporary layer is placed at the estimated position of the plurality of recording layers. Each of the information is assigned and the focus servo is turned on from the state where the estimated position of the recording layer selected as the user data recording destination is focused using the temporary layer information. The layer information is read from the layer information recording area of the recording layer to which the focus servo is drawn, and the provisional layer used for selecting the read layer information and the recording layer as the recording destination of the user data is used. The layer information is compared, and if they match, the recording layer into which the focus servo is drawn is determined as the recording layer selected as the recording destination of the user data. *
本発明の別の観点に基づく多層光ディスクは、情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層はそれぞれ、自身の記録層を識別するための層情報を含む管理情報が記録されるリードイン領域を有し、前記リードイン領域は隣り合う前記記録層の間で互いに位置をずらして配置されることを特徴とする。 これにより、ディスクドライブにおいて、フォーカスが引き込まれた記録層からその記録層の層情報を読み込むことができる。また、各記録層のリードイン領域は隣り合う前記記録層の間で互いに位置をずらして配置されていることから、リードイン領域のアクセス時の層間クロストークの発生を抑えられ、層情報を含む管理情報を光記録装置が安定して読み込みことができる。  A multilayer optical disc according to another aspect of the present invention has a plurality of recording layers capable of recording information, and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers has its own recording layer. It has a lead-in area in which management information including layer information for identifying a recording layer is recorded, and the lead-in area is arranged with a position shifted between adjacent recording layers. . This enables the disk drive to read the layer information of the recording layer from the recording layer in which the focus is drawn. In addition, since the lead-in area of each recording layer is arranged so as to be shifted from each other between the adjacent recording layers, generation of interlayer crosstalk during access of the lead-in area can be suppressed, and layer information is included. Management information can be read stably by the optical recording apparatus. *
前記多層光ディスクにおいて、リードイン領域に層情報を含む管理情報が予め記録されていてもよい。  In the multilayer optical disc, management information including layer information may be recorded in advance in the lead-in area. *
本発明の別の観点に基づく多層光ディスクは、情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報が予め記録されたBCA(Burst_Cutting_Area)を有し、前記複数の記録層のBCAが互いに異なるディスク半径位置に配置されることを特徴とする。 これにより、ディスクドライブにおいて、フォーカスが引き込まれた記録層のBCAからその記録層の層情報を読み込むことができる。また、各記録層のBCAは互いに異なるディスク半径位置に配置されていることから、異なる記録層のBCA同士の干渉による読み取りエラーの発生を抑えることができ、層情報を光記録装置が安定して読み込みことができる。  A multilayer optical disc according to another aspect of the present invention has a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers has its own recording layer. Layer information for identifying a recording layer has a BCA (Burst_Cutting_Area) recorded in advance, and the BCAs of the plurality of recording layers are arranged at different disk radial positions. Thereby, in the disk drive, the layer information of the recording layer can be read from the BCA of the recording layer in which the focus is drawn. Further, since the BCAs of the respective recording layers are arranged at different disk radial positions, it is possible to suppress the occurrence of a reading error due to interference between the BCAs of different recording layers, and the optical recording apparatus can stably store the layer information. Can be read. *
前記BCAに、さらに、多層光ディスクを識別するためのディスク識別子が予め記録されていてもよい。 A disc identifier for identifying a multilayer optical disc may be recorded in advance in the BCA.
以上のように、本発明によれば、多層光ディスクの複数の記録層に良好に記録を行うことができる。 As described above, according to the present invention, it is possible to perform good recording on a plurality of recording layers of a multilayer optical disc.
本発明の一実施形態に係る光記録システムを示す図である。1 is a diagram showing an optical recording system according to an embodiment of the present invention. 図1の光記録システムにおけるディスクカートリッジとこの中の複数の多層光ディスクの収容形態を示す図である。It is a figure which shows the accommodation form of the disc cartridge in the optical recording system of FIG. 1, and the several multilayer optical disk in this. 図1の光記録システムにおけるディスクカートリッジ、多層光ディスクおよびドライブユニットの構成を示す図である。It is a figure which shows the structure of the disk cartridge in the optical recording system of FIG. 1, a multilayer optical disk, and a drive unit. 多層光ディスクの構成を示す断面図である。It is sectional drawing which shows the structure of a multilayer optical disk. 図4の多層光ディスクにおけるガイド層および記録層の半径方向の位置によって区分される領域の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a region divided by radial positions of a guide layer and a recording layer in the multilayer optical disc of FIG. 図5の記録層リードイン領域における各記録層の管理情報の記録位置の関係を示す物理フォーマットを示す図である。FIG. 6 is a diagram showing a physical format showing a relationship between recording positions of management information of each recording layer in the recording layer lead-in area of FIG. 5. 図5の記録層リードイン領域における各記録層の管理情報の記録位置の関係を示す物理フォーマットの変形例を示す図である。FIG. 6 is a diagram showing a modification of the physical format showing the relationship between the recording positions of the management information of each recording layer in the recording layer lead-in area of FIG. 5. 図1の光記録システムにおけるディスクドライブの構成を示す図である。It is a figure which shows the structure of the disk drive in the optical recording system of FIG. 図8のディスクドライブにおいて、光ピックアップのスイング期間に得られるフォーカスエラー信号と、このフォーカスエラー信号から二値化部にて生成される二値化信号の例を示す図である。FIG. 9 is a diagram illustrating an example of a focus error signal obtained during the swing period of the optical pickup and a binarization signal generated by the binarization unit from the focus error signal in the disk drive of FIG. 8. 図8のディスクドライブにおいて、ユーザデータの記録先として選択された記録層と、実際にフォーカスサーボが引き込まれた記録層との整合を上記の層情報をもとに確認する動作のフローチャートである。FIG. 9 is a flowchart of an operation for confirming the alignment between the recording layer selected as the user data recording destination and the recording layer into which the focus servo is actually drawn based on the layer information in the disk drive of FIG. 8. 本発明に係る第2の実施形態の多層光ディスクの全体的な平面図である。It is a whole top view of the multilayer optical disc of the 2nd embodiment concerning the present invention. 図11の多層光ディスクのBCA部分の詳細な平面図である。FIG. 12 is a detailed plan view of a BCA portion of the multilayer optical disc in FIG. 11. 図12の多層光ディスクのA-A断面図である。FIG. 13 is a cross-sectional view taken along the line AA of the multilayer optical disc of FIG. 本発明に係る第2の実施形態のディスクドライブの構成を示すブロック図である。It is a block diagram which shows the structure of the disk drive of 2nd Embodiment which concerns on this invention. 第2の実施形態のディスクドライブによる記録層の確認の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the confirmation of the recording layer by the disc drive of 2nd Embodiment. 変形例のディスクドライブの構成を示すブロック図である。It is a block diagram which shows the structure of the disk drive of a modification. BCA再生信号の波形を示す図である。It is a figure which shows the waveform of a BCA reproduction signal.
以下、図面を参照しながら、本発明の実施形態を説明する。
 <第1の実施形態>
 図1は光記録システムの全体の構成を示す図である。 この光記録システム1は、ディスクカートリッジ10と、ディスク搬送機構20と、ドライブユニット30と、RAIDコントローラ40と、ホスト装置50とを備える。以下、それぞれの詳細について説明する。 
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram showing the overall configuration of an optical recording system. The optical recording system 1 includes a disk cartridge 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
[ディスクカートリッジ10] ディスクカートリッジ10は、複数の多層光記録媒体である多層光ディスク11が個別に着脱自在に収容されるユニットである。  [Disc Cartridge 10] The disc cartridge 10 is a unit in which a plurality of multilayer optical discs 11 which are multilayer optical recording media are individually detachably accommodated. *
図2はディスクカートリッジ10とこの中の複数の多層光ディスク11の収容形態を示す図である。ディスクカートリッジ10内での複数の多層光ディスク11の収容形態としては平積み、縦並びなどが想定される。いずれの場合も、ディスクカートリッジ10に対して多層光ディスク11の出し入れが円滑に行われるように、隣り合う多層光ディスク11間には一定の隙間が設けられることが好ましい。ディスクカートリッジ10の形状は、ユーザによるハンドリング性、多層光ディスク11の収納効率などの点から、例えば直方体形状、円筒形状などが想定される。図2の例では、複数の多層光ディスク11を平積みで収容した直方体形状のディスクカートリッジ10が用いられる。  FIG. 2 is a view showing a storage form of the disk cartridge 10 and a plurality of multilayer optical disks 11 therein. As the accommodation form of the plurality of multilayer optical discs 11 in the disc cartridge 10, flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between adjacent multilayer optical discs 11 so that the multilayer optical disc 11 can be smoothly inserted into and removed from the disc cartridge 10. The shape of the disk cartridge 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the multilayer optical disk 11. In the example of FIG. 2, a rectangular parallelepiped disk cartridge 10 in which a plurality of multilayer optical disks 11 are accommodated in a flat stack is used. *
図3は、ディスクカートリッジ10、多層光ディスク11およびドライブユニット30の構成を示す図である。 ディスクカートリッジ10の少なくとも一つの側面には多層光ディスク11の出し入れのための開口部110と、この開口部110を開閉する扉(図示せず)とが設けられている。扉はディスク搬送機構20によるディスクカートリッジ10からの多層光ディスク11の出し入れの動作と連動して開閉され、その他のときは閉状態とされる。ディスクカートリッジ10に収容された複数の多層光ディスク11は、ディスク搬送機構20によって取り出され、ドライブユニット30内の複数のディスクドライブ31に選択的に搬送(装填)される。  FIG. 3 is a diagram showing the configuration of the disk cartridge 10, the multilayer optical disk 11, and the drive unit 30. At least one side surface of the disc cartridge 10 is provided with an opening 110 for inserting and removing the multilayer optical disc 11 and a door (not shown) for opening and closing the opening 110. The door is opened and closed in conjunction with the operation of loading / unloading the multilayer optical disk 11 from / to the disk cartridge 10 by the disk transport mechanism 20, and is closed at other times. The plurality of multilayer optical disks 11 accommodated in the disk cartridge 10 are taken out by the disk transport mechanism 20 and selectively transported (loaded) to the plurality of disk drives 31 in the drive unit 30. *
なお、本発明において、ディスクカートリッジ10の構成は図2のものに限定されない。ディスクカートリッジ10の形状、開口部の数や位置、扉の有無、複数の多層光ディスク11の収容形態など、様々な変形が可能である。  In the present invention, the configuration of the disk cartridge 10 is not limited to that shown in FIG. Various modifications such as the shape of the disk cartridge 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of multilayer optical disks 11 are possible. *
[多層光ディスク11] ディスクカートリッジ10に収容される多層光ディスク11は、ガイド層と記録層とが別々の層に分離して形成された、いわゆるガイド層分離型多層光ディスクである場合を想定している。  [Multilayer Optical Disc 11] The multilayer optical disc 11 accommodated in the disc cartridge 10 is assumed to be a so-called guide layer separation type multilayer optical disc in which the guide layer and the recording layer are separated into separate layers. . *
図4はガイド層分離型多層光ディスクである多層光ディスク11の構成を示す断面図である。 多層光ディスク11は、ガイド層112と複数の記録層113とを有する。同図の多層光ディスク11の例では記録層113の層数は"4"である。ガイド層112とこれに最も近い記録層113との間、隣り合う記録層113の間との間には光透過性を有する中間層114がそれぞれ介層されている。これらの層は、光ピックアップ32からの記録再生光R1およびガイド光R2が入射される側から、保護層115、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、ガイド層112の順に積層配置される。 なお、それぞれの記録層113をレーザ光入射側の反対側(ガイド層側)よりそれぞれ「記録層L0」、「記録層L1」、「記録層L2」、「記録層L3」と表記して区別する。  FIG. 4 is a cross-sectional view showing a configuration of a multilayer optical disc 11 that is a guide layer separation type multilayer optical disc. The multilayer optical disk 11 includes a guide layer 112 and a plurality of recording layers 113. In the example of the multilayer optical disk 11 in FIG. 9, the number of recording layers 113 is “4”. An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113. These layers are the protective layer 115, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident. The layer 114, the recording layer 113, the intermediate layer 114, and the guide layer 112 are stacked in this order. Each recording layer 113 is distinguished from the opposite side of the laser beam incident side (guide layer side) as “recording layer L0”, “recording layer L1”, “recording layer L2”, and “recording layer L3”. To do. *
ガイド層112において記録層113に対向する側の面には、ランド・グルーブ構造によるガイドトラック121が螺旋状あるいは同心円状に設けられている。ガイドトラック121には、側壁面のウォブリングあるいはピット列などによって物理アドレス情報が形成されている。ガイドトラック121は、例えばDVD(Digital Versatile Disk)の記録再生に用いられる赤色レーザ光に対応するトラックピッチ(0.64μm)で形成される。ランドとグルーブ間のピッチの平均は0.32μmである。以後、赤色レーザ光のレーザ光を「ガイド光」と呼ぶ。  A guide track 121 having a land / groove structure is spirally or concentrically provided on the surface of the guide layer 112 facing the recording layer 113. In the guide track 121, physical address information is formed by wobbling or pit rows on the side wall surface. The guide track 121 is formed with a track pitch (0.64 μm) corresponding to, for example, red laser light used for recording / reproduction of a DVD (Digital Versatile Disk). The average pitch between the land and the groove is 0.32 μm. Hereinafter, the laser beam of the red laser beam is referred to as “guide light”. *
本実施形態の光記録システム1では、ガイドトラック121のランドとグルーブのそれぞれにおいて、例えば、プッシュプル法(PP:Push-Pull)、差動プッシュプル法(DPP:Differential Push-Pull)、3ビーム法などによるトラッキング制御が行われる。ガイドトラック121のランドとグルーブのそれぞれにおいてトラッキング制御が行われることで、記録層113に対する情報の記録は0.32μmのトラックピッチで行うことが可能である。  In the optical recording system 1 of the present embodiment, for example, a push-pull method (PP: Push-Pull), a differential push-pull method (DPP: Differential-Push-Pull), 3 beams in each of the land and groove of the guide track 121. Tracking control is performed by law. By performing tracking control in each of the land and groove of the guide track 121, information can be recorded on the recording layer 113 at a track pitch of 0.32 μm. *
記録層113は、例えばブルーレイディスク(登録商標)の記録再生に用いられる青色レーザ光に対応するトラックピッチ(0.32μm)で情報の記録が行われる層である。以後、この青色レーザ光を「記録再生光」または「記録光」と呼ぶ。記録層113は、例えば光吸収層と反射層等とにより構成される。光吸収層としてはシアニン系色素やアゾ系色素等の有機色素や、Si、Cu、Sb、Te、Ge等の無機材料が用いられる。記録光が多層光ディスク11における目的の記録層113に照射されると、その記録光が照射された領域の反射率が変化し、反射率が変化した領域が記録マークとして形成されることで、記録層113に情報が記録される。  The recording layer 113 is a layer on which information is recorded at a track pitch (0.32 μm) corresponding to blue laser light used for recording / reproducing of a Blu-ray Disc (registered trademark), for example. Hereinafter, this blue laser light is referred to as “recording / reproducing light” or “recording light”. The recording layer 113 is composed of, for example, a light absorption layer and a reflection layer. As the light absorption layer, organic dyes such as cyanine dyes and azo dyes, and inorganic materials such as Si, Cu, Sb, Te, and Ge are used. When the target recording layer 113 in the multilayer optical disc 11 is irradiated with the recording light, the reflectance of the area irradiated with the recording light is changed, and the area where the reflectance is changed is formed as a recording mark. Information is recorded in layer 113. *
なお、記録層113への情報の記録時のトラッキング制御および物理アドレスならびに基準クロックの取得は、ガイド層112のガイドトラック121を用いて行われるため、記録層113にはランド・グルーブ構造によるガイドトラック121は不要である。したがって、記録層113の表面は平坦でよい。  The tracking control and the acquisition of the physical address and the reference clock at the time of recording information on the recording layer 113 are performed by using the guide track 121 of the guide layer 112. Therefore, the recording layer 113 has a land / groove structure guide track. 121 is not necessary. Therefore, the surface of the recording layer 113 may be flat. *
図5は多層光ディスク11におけるガイド層112および記録層113の半径方向の位置によって区分される領域の構成を示す図である。 ガイド層112および記録層113は、半径方向における位置によって内周側よりリードイン領域、データ領域、リードアウト領域に各層共通に区分される。  FIG. 5 is a diagram showing a configuration of regions divided by radial positions of the guide layer 112 and the recording layer 113 in the multilayer optical disc 11. The guide layer 112 and the recording layer 113 are divided into the lead-in area, the data area, and the lead-out area in common from the inner circumference side depending on the position in the radial direction. *
ガイド層112のリードイン領域には、多層光ディスク11に固有の管理情報がガイドトラックのウォブリング、あるいはランドとグルーブに設けられたピット列などによって予め記録されている。 多層光ディスク11に固有の管理情報は、例えば、記録層の数、記録方式、記録線速度、記録再生時のレーザパワーおよびレーザ駆動パルス波形などの推奨情報、データ領域の位置情報、OPC領域の位置情報などを含む。OPC領域は例えばリードイン領域よりも内周側に設けられる。 また、ガイド層112のリードイン領域には、それぞれの記録層113のリードイン領域の位置情報(ディスク半径位置)が、ガイドトラックのウォブリング、あるいはランドとグルーブに設けられたピット列などによって予め記録されている。  In the lead-in area of the guide layer 112, management information unique to the multilayer optical disk 11 is recorded in advance by wobbling of guide tracks or pit rows provided in lands and grooves. The management information unique to the multilayer optical disc 11 includes, for example, recommended information such as the number of recording layers, recording method, recording linear velocity, laser power and laser drive pulse waveform during recording / reproduction, position information of the data area, position of the OPC area Contains information. The OPC area is provided, for example, on the inner peripheral side of the lead-in area. Also, in the lead-in area of the guide layer 112, the position information (disk radius position) of each recording layer 113 is recorded in advance by wobbling of the guide track or pit rows provided in the land and groove. Has been. *
ガイド層112のデータ領域には、当該データ領域に対して割り当てられた物理アドレス情報が、ガイドトラック121のウォブリング、あるいはランドとグルーブに設けられたプリピット列などによって予め記録されている。  In the data area of the guide layer 112, physical address information assigned to the data area is recorded in advance by wobbling of the guide track 121 or prepit rows provided in lands and grooves. *
なお、ガイド層112のリードアウト領域にも、リードイン領域に記録された情報と同一の情報が、ガイドトラック121のウォブリング、あるいはランドとグルーブに設けられたプリピット列などによって予め記録されていてもよい。  In the lead-out area of the guide layer 112, the same information as the information recorded in the lead-in area may be recorded in advance by wobbling of the guide track 121 or a prepit row provided in the land and groove. Good. *
記録層113のリードイン領域(以下「記録層リードイン領域」と呼ぶ)は、記録層113の記録再生に用いられる管理情報が記録マークによって記録される領域である。記録層113の記録再生に用いられる管理情報は、当該記録層113が何層目であるかを割り当てられた層番号などの層情報、欠陥領域の交替処理に関する交替管理情報、OPC処理(校正処理)によって決定された記録時の最適なレーザパワーなどの記録条件データなどを含む。この中で、少なくとも層情報は、例えば、当該多層光ディスク11がユーザによるデータの記録に実際に利用される以前に各記録層113に記録マークで記録された情報である。このような層情報は、例えば多層光ディスクを製造する際に各記録層に予め記録しておいてもよい。多層光ディスクを製造する際に記録を行えば、製造ロットごとに層情報を記録することができるのでロット間ばらつきの変動を受けることなく、より正確に層情報を記録することが可能である。  The lead-in area of the recording layer 113 (hereinafter referred to as “recording layer lead-in area”) is an area where management information used for recording / reproduction of the recording layer 113 is recorded by a recording mark. Management information used for recording / reproduction of the recording layer 113 includes layer information such as a layer number assigned to which recording layer 113 is assigned, replacement management information regarding replacement processing of a defective area, OPC processing (calibration processing). The recording condition data such as the optimum laser power at the time of recording determined by (1) is included. Among these, at least the layer information is, for example, information recorded with a recording mark on each recording layer 113 before the multilayer optical disc 11 is actually used for data recording by the user. Such layer information may be recorded in advance on each recording layer when, for example, a multilayer optical disc is manufactured. If recording is performed when a multilayer optical disc is manufactured, layer information can be recorded for each manufacturing lot, so that layer information can be recorded more accurately without being subject to fluctuations in lot-to-lot variations. *
図6は記録層リードイン領域における各記録層113の管理情報の記録位置の関係を示す物理フォーマットを示す図である。 同図に示すように、記録層リードイン領域において、それぞれの記録層113の管理情報は、少なくとも隣り合う記録層の間で互いに位置がずれるように記録される。ここで、「位置がずれる」とは「位置が重ならない」ことを意味する。より具体的には、記録層113のリードイン領域は、位置によって少なくとも記録層数分の子領域に区分され、これらの子領域は、例えば、次のように別々の記録層に割り当てられる。  FIG. 6 is a diagram showing a physical format showing the relationship between the recording positions of the management information of each recording layer 113 in the recording layer lead-in area. As shown in the figure, in the recording layer lead-in area, the management information of each recording layer 113 is recorded so that the positions are shifted from each other at least between the adjacent recording layers. Here, “the position shifts” means “the positions do not overlap”. More specifically, the lead-in area of the recording layer 113 is divided into at least as many child areas as the number of recording layers depending on the position, and these child areas are assigned to different recording layers as follows, for example. *
ここで、子領域をディスク内周側のものから「子領域E0」、「子領域E1」、「子領域E2」、「子領域E3」とする。4つの記録層113をガイド層112に近いものから「記録層L0」、「記録層L1」、「記録層L2」、「記録層L3」とすると、 子領域E0は記録層L0に、 子領域E1は記録層L1に、 子領域E2は記録層L2に、 子領域E3は記録層L3に、それぞれ割り当てられる。  Here, the child areas are designated as “child area E0”, “child area E1”, “child area E2”, and “child area E3” from the inner peripheral side of the disc. When the four recording layers 113 are designated as “recording layer L0”, “recording layer L1”, “recording layer L2”, and “recording layer L3” from the one closest to the guide layer 112, the child area E0 is subordinate to the recording layer L0. E1 is assigned to the recording layer L1, the child area E2 is assigned to the recording layer L2, and the child area E3 is assigned to the recording layer L3. *
上記のように、記録層リードイン領域を区分する複数の子領域に対して別々の記録層が割り当てられることで、記録層リードイン領域において、それぞれの記録層113の管理情報は、少なくとも隣り合う記録層の間で互いに位置がずれて記録される。  As described above, by assigning separate recording layers to a plurality of child areas that divide the recording layer lead-in area, the management information of each recording layer 113 is at least adjacent in the recording layer lead-in area. The recording layers are recorded with their positions shifted from each other. *
なお、それぞれの記録層113の管理情報は、少なくとも隣り合う記録層の間で互いに位置がずれるように記録されればよいことから、次のような配置を採用してもよい。  In addition, since the management information of each recording layer 113 should just be recorded so that a position may mutually shift between at least adjacent recording layers, you may employ | adopt the following arrangement | positioning. *
例えば、図7に示すように、 記録層L0の子領域と記録層L2の子領域はリードイン領域内の同じディスク半径位置(E0の位置)に割り当てられ、記録層L1の子領域と記録層L3の子領域はリードイン領域内の別のディスク半径位置(E1の位置)に割り当てられてもよい。  For example, as shown in FIG. 7, the child area of the recording layer L0 and the child area of the recording layer L2 are allocated to the same disk radius position (position E0) in the lead-in area, and the child area and the recording layer of the recording layer L1. The child area of L3 may be assigned to another disk radius position (position E1) in the lead-in area. *
このようにリードイン領域内の同じディスク半径位置に複数の記録層の子領域が割り当てられることによって、必要なリードイン領域のサイズをより小さくすることができ、記録層毎の記録容量の増大を図れる。  By assigning a plurality of recording layer child areas to the same disk radial position in the lead-in area in this way, the size of the required lead-in area can be further reduced, and the recording capacity for each recording layer can be increased. I can plan. *
以上のように、記録層リードイン領域において、それぞれの記録層113の管理情報が、少なくとも隣り合う記録層の間で互いに位置をずらして記録されるようにしたのは、次のような理由による。  As described above, in the recording layer lead-in area, the management information of each recording layer 113 is recorded at a position shifted between at least adjacent recording layers for the following reason. . *
多層光ディスク11の任意の記録層から情報を読み出すとき、読み出し対象の記録層以外の記録層で反射した迷光が層間クロストークと呼ばれるノイズとなって読み出し対象の記録層からの戻り光に混入し、トラッキング制御やユーザデータの記録再生に悪影響を及ぼすことが知られている。ここで、層間クロストークの発生は、実際には、読み出し対象の記録層以外の記録層の記録マークなどの反射率変動をもたらす要素に起因する。このため、それぞれの記録層113の管理情報が、少なくとも隣り合う記録層の間で互いに位置をずらして記録されることによって、層間クロストークの発生が抑えられる。  When information is read from an arbitrary recording layer of the multilayer optical disc 11, stray light reflected by a recording layer other than the recording layer to be read becomes noise called interlayer crosstalk and is mixed into return light from the recording layer to be read, It is known to adversely affect tracking control and recording / reproducing user data. Here, the occurrence of interlayer crosstalk is actually caused by factors that cause reflectance fluctuations such as recording marks of recording layers other than the recording layer to be read. For this reason, the management information of each recording layer 113 is recorded by shifting the position between at least adjacent recording layers, thereby suppressing the occurrence of interlayer crosstalk. *
[ディスク搬送機構20] ディスク搬送機構20は、ディスクカートリッジ10から目的の多層光ディスク11を取り出してドライブユニット30内のディスクドライブ31に装填したり、逆にディスクドライブ31から排出された多層光ディスク11をディスクカートリッジ10に戻したりするための機構である。  [Disc Conveying Mechanism 20] The disc conveying mechanism 20 takes out the target multilayer optical disk 11 from the disk cartridge 10 and loads it into the disk drive 31 in the drive unit 30, or conversely discharges the multilayer optical disk 11 ejected from the disk drive 31 into a disk This is a mechanism for returning to the cartridge 10. *
ディスク搬送機構20は、例えば、ディスクカートリッジ10から同時あるいは順番連続して複数の多層光ディスク11を取り出し、ドライブユニット30内の複数のディスクドライブ31に別々に装填することができるように、独立して動作可能な複数の搬送機構を備えたものであってもよい。  The disk transport mechanism 20 operates independently so that, for example, a plurality of multilayer optical disks 11 can be taken out simultaneously or sequentially from the disk cartridge 10 and can be separately loaded into the plurality of disk drives 31 in the drive unit 30. A plurality of possible transport mechanisms may be provided. *
[ドライブユニット30] ドライブユニット30には複数のディスクドライブ31が搭載される。同図の例では、5機のディスクドライブ
31が搭載される。同図の例では、5機のディスクドライブ31が搭載される。ディスクカートリッジ10に収容される多層光ディスク11の数とドライブユニット30内に搭載されるディスクドライブ31の数は必ずしも同じとする必要はない。 
[Drive Unit 30] A plurality of disk drives 31 are mounted on the drive unit 30. In the example of FIG. 5, five disk drives 31 are mounted. In the example of FIG. 5, five disk drives 31 are mounted. The number of multilayer optical disks 11 accommodated in the disk cartridge 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same.
(ディスクドライブ31の構成) 図8は光記録装置であるディスクドライブ31の構成を示す図である。 このディスクドライブ31は、光ピックアップ32を備える。光ピックアップ32は、記録再生光に対応する記録再生光学系と、ガイド光に対応するガイド光学系とを備える。  (Configuration of Disk Drive 31) FIG. 8 is a diagram showing a configuration of the disk drive 31 that is an optical recording apparatus. The disk drive 31 includes an optical pickup 32. The optical pickup 32 includes a recording / reproducing optical system corresponding to the recording / reproducing light and a guide optical system corresponding to the guide light. *
記録再生光学系は、第1の光源33、第1のコリメータレンズ34、第1の偏光ビームスプリッタ35、第1のリレーレンズ36、第2のコリメータレンズ37、合成プリズム38、1/4波長板39、対物レンズ60、第1の受光レンズ61および第1の受光部62などで構成される。ここで、合成プリズム38、1/4波長板39、対物レンズ60は、当該記録再生光学系と後述するガイド光学系の両方に属する。  The recording / reproducing optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength plate. 39, an objective lens 60, a first light receiving lens 61, a first light receiving portion 62, and the like. Here, the combining prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the recording / reproducing optical system and a guide optical system described later. *
第1の光源33は青色レーザ光を記録再生光R1として出射するレーザダイオードを備える。第1の光源33から出射された記録再生光R1は第1のコリメータレンズ34によって平行光とされ、第1の偏光ビームスプリッタ35、第1のリレーレンズ36及び第2のコリメータレンズ37を介して合成プリズム38に入射する。合成プリズム38は、第2のコリメータレンズ37から入射される記録再生光R1と、後述するガイド光学系に属する第3のコリメータレンズから入射されるガイド光R2とを互いの光軸が一致するように合成し、1/4波長板39を介して対物レンズ60に入射させる。対物レンズ60にて、入射された記録再生光は、多層光ディスク11の目的の記録層113に合焦させるように集光される。  The first light source 33 includes a laser diode that emits blue laser light as recording / reproducing light R1. The recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37. The light enters the combining prism 38. The synthesizing prism 38 makes the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to a guide optical system, which will be described later, coincide with each other. And is incident on the objective lens 60 through the quarter-wave plate 39. The incident recording / reproducing light is collected by the objective lens 60 so as to be focused on the target recording layer 113 of the multilayer optical disc 11. *
記録層113によって反射された記録再生光(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38を入射方向のまま透過して、第2のコリメータレンズ37及び第1のリレーレンズ36を介して第1の偏光ビームスプリッタ35に戻る。第1の偏光ビームスプリッタ35は、第1のリレーレンズ36からの第1の波長の戻り光を約90度の角度で反射して第1の受光レンズ61を介して第1の受光部62に入射させる。  The recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction. Return to the first polarization beam splitter 35 via the collimator lens 37 and the first relay lens 36. The first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident. *
第1の受光部62は、例えば、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子などで構成され、分割された受光面毎に受光強度に応じたレベルの電圧信号を出力する。  For example, the first light receiving unit 62 includes a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each divided light receiving surface. To do. *
ガイド光学系は、第2の光源63、第3のコリメータレンズ64、第2の偏光ビームスプリッタ65、第2のリレーレンズ66、第4のコリメータレンズ67、合成プリズム38、1/4波長板39、対物レンズ60、第2の受光レンズ68および第2の受光部69などで構成される。  The guide optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength plate 39. The objective lens 60, the second light receiving lens 68, the second light receiving portion 69, and the like. *
第2の光源63は、赤色レーザ光であるガイド光R2を出射する。第2の光源63から出射されたガイド光R2は第3のコリメータレンズ64によって平行光とされ、第2の偏光ビームスプリッタ65、第2のリレーレンズ66及び第4のコリメータレンズ67を介して合成プリズム38に入射する。合成プリズム38に入射されたガイド光R2は、前述したように、合成プリズム38にて記録再生光学系の第2のコリメータレンズ37から入射される記録再生光R1と光軸が一致するように合成され、1/4波長板39を介して対物レンズ60に入射される。対物レンズ60にて、入射されたガイド光R2は、多層光ディスク11のガイド層112に合焦させるように集光される。  The second light source 63 emits guide light R2 that is red laser light. The guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67. The light enters the prism 38. As described above, the guide light R2 incident on the combining prism 38 is combined by the combining prism 38 so that the optical axis coincides with the recording / reproducing light R1 incident from the second collimator lens 37 of the recording / reproducing optical system. Then, the light enters the objective lens 60 through the quarter-wave plate 39. The incident guide light R <b> 2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the multilayer optical disk 11. *
ガイド層112によって反射されたガイド光R2(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38にて約90度の角度で反射され、第4のコリメータレンズ67及び第2のリレーレンズ66を介して第2の偏光ビームスプリッタ65に戻る。第2の偏光ビームスプリッタ65は、第2のリレーレンズ66からのガイド光R2の戻り光を、約90度の角度で反射して第2の受光レンズ68を介して第2の受光部69に入射させる。  The guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees. Returning to the second polarizing beam splitter 65 via the fourth collimator lens 67 and the second relay lens 66. The second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident. *
第2の受光部69は、例えば、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子などで構成される。第2の受光部69は、分割された受光面毎に受光量に対応した電圧信号を出力する。  The second light receiving unit 69 is constituted by, for example, a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction. The second light receiving unit 69 outputs a voltage signal corresponding to the amount of received light for each divided light receiving surface. *
また、光ピックアップ32には、トラッキングアクチュエータ70とフォーカスアクチュエータ79が設けられている。トラッキングアクチュエータ70はトラッキング制御部71による制御のもとで対物レンズ60を光軸に対して垂直な方向であるディスク半径方向に移動させる。フォーカスアクチュエータ79はフォーカス制御部77による制御のもと対物レンズ60を光軸方向に移動させる。  The optical pickup 32 is provided with a tracking actuator 70 and a focus actuator 79. The tracking actuator 70 moves the objective lens 60 in the disk radial direction that is perpendicular to the optical axis under the control of the tracking control unit 71. The focus actuator 79 moves the objective lens 60 in the optical axis direction under the control of the focus control unit 77. *
さらに、光ピックアップ32には、記録再生光が照射される記録層113を切り替えるために、第1のリレーレンズ36を光軸方向に移動させる第1のリレーレンズアクチュエータ80と、ガイド光R2をガイド層112に合焦させるために、第2のリレーレンズ66を光軸方向に移動させる第2のリレーレンズアクチュエータ81が設けられている。  Further, the optical pickup 32 guides the guide light R2 and the first relay lens actuator 80 that moves the first relay lens 36 in the optical axis direction in order to switch the recording layer 113 irradiated with the recording / reproducing light. In order to focus on the layer 112, a second relay lens actuator 81 that moves the second relay lens 66 in the optical axis direction is provided. *
また。図示は省略したが、光ピックアップ32には、多層光ディスク11の記録面に対して、対物レンズ60のラジアル方向およびタンジェンシャル方向の傾きを調整するチルトアクチュエータなども設けられている。 以上が、光ピックアップ32の説明である。  Also. Although not shown, the optical pickup 32 is also provided with a tilt actuator that adjusts the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11. The above is the description of the optical pickup 32. *
ディスクドライブ31は、上記の光ピックアップ32のほか、トラッキング制御部71、データ変調部72、第1の光源駆動部73、第2の光源駆動部74、等化器75、データ再生部76、フォーカス制御部77、二値化部78、トラッキングエラー生成部82、コントローラ83、第1のリレー制御部84、第2のリレー制御部85、およびフォーカスエラー生成部86を備える。その他、ディスクドライブ31は、ディスクモータ91を駆動するディスクモータ駆動部、光ピックアップ32を多層光ディスク11の半径方向に送るフィード機構、光ピックアップ32を対物レンズ60の光軸方向に送るピックアップ上下送り機構などを備える。これらの図示は省略する。  In addition to the optical pickup 32, the disk drive 31 includes a tracking control unit 71, a data modulation unit 72, a first light source drive unit 73, a second light source drive unit 74, an equalizer 75, a data reproduction unit 76, a focus A control unit 77, a binarization unit 78, a tracking error generation unit 82, a controller 83, a first relay control unit 84, a second relay control unit 85, and a focus error generation unit 86 are provided. In addition, the disk drive 31 includes a disk motor driving unit that drives the disk motor 91, a feed mechanism that sends the optical pickup 32 in the radial direction of the multilayer optical disk 11, and a pickup vertical feed mechanism that sends the optical pickup 32 in the optical axis direction of the objective lens 60. Etc. These illustrations are omitted. *
データ変調部72は、コントローラ83より供給された記録用のデータを変調し、変調信号を第1の光源駆動部73に供給する。  The data modulator 72 modulates the recording data supplied from the controller 83 and supplies the modulated signal to the first light source driver 73. *
第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33を駆動するための駆動パルスを生成する。  The first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72. *
等化器75は、第1の受光部62からの再生RF信号に対して、例えばPRML(Partial Response Maximum Likelihood)などの等化処理を行って二値信号を生成する。  The equalizer 75 performs an equalization process such as PRML (Partial Response Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62 to generate a binary signal. *
データ再生部76は、等化器75より出力された二値信号からデータを復調し、復調されたデータから誤り訂正などの復号処理を行って再生データを生成し、コントローラ83に供給する。  The data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 83. *
トラッキングエラー生成部82は、第2の受光部69の出力をもとに、例えばプッシュプル法、差動プッシュプル法、3ビーム法などによってトラッキングエラー信号を生成する。  The tracking error generation unit 82 generates a tracking error signal based on the output of the second light receiving unit 69 by, for example, a push-pull method, a differential push-pull method, a three-beam method, or the like. *
トラッキング制御部71は、トラッキングエラー信号をもとにトラッキングアクチュエータ70を制御して対物レンズ60を光軸に対して垂直な方向に移動させることによってトラッキング制御を行う。  The tracking controller 71 performs tracking control by controlling the tracking actuator 70 based on the tracking error signal to move the objective lens 60 in a direction perpendicular to the optical axis. *
フォーカスエラー生成部86は、第1の受光部62の出力をもとに、例えば、非点収差法などによりフォーカスエラー信号を生成する。  The focus error generation unit 86 generates a focus error signal based on, for example, the astigmatism method based on the output of the first light receiving unit 62. *
フォーカス制御部77は、フォーカスエラー信号をもとに、フォーカスアクチュエータ79を制御して対物レンズ60を光軸方向に移動させることによってフォーカス制御を行う。  The focus control unit 77 performs focus control by controlling the focus actuator 79 and moving the objective lens 60 in the optical axis direction based on the focus error signal. *
二値化部78は、光ピックアップ32のスイング時にフォーカスエラー生成部86により生成されたフォーカスエラー信号を所定のスライスレベルで二値化し、フォーカスエラー信号のS字カーブ情報としてコントローラ83に供給する。  The binarization unit 78 binarizes the focus error signal generated by the focus error generation unit 86 during the swing of the optical pickup 32 at a predetermined slice level, and supplies the binarization unit 78 to the controller 83 as S-curve information of the focus error signal. *
第1のリレー制御部84は、記録対象の記録層を切り替えるように第1のリレーレンズアクチュエータ80を制御する。  The first relay control unit 84 controls the first relay lens actuator 80 so as to switch the recording layer to be recorded. *
第2のリレー制御部85は、ガイド光R2をガイド層112に合焦させるように第2のリレーレンズアクチュエータ81を制御する。  The second relay control unit 85 controls the second relay lens actuator 81 so that the guide light R2 is focused on the guide layer 112. *
コントローラ83は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。コントローラ83は、RAMに割り当てられたメインメモリの領域にロードされたプログラムに基づいて、ディスクドライブ31の全体の制御を行う(特許請求の範囲の「制御部」に相当する)。  The controller 83 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like. The controller 83 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM (corresponding to a “control unit” in the claims). *
ドライブユニット30には、上記のディスクドライブ31が複数搭載され、それぞれ独立して制御可能とされ、装填された多層光ディスク11に対する情報の記録および再生をそれぞれ同時に行うことができる。  A plurality of the disk drives 31 described above are mounted on the drive unit 30 and can be controlled independently, and information can be recorded and reproduced on the loaded multilayer optical disk 11 simultaneously. *
[RAIDコントローラ40] RAID(Redundant Arrays of Inexpensive Disks)コントローラ40は、ホスト装置50からの記録命令などに対して、ドライブユニット30内の1以上のディスクドライブ31にデータを多重に記録したり、ストライピングにより分散して記録したりするRAID制御を行う。RAIDコントローラ40より記録または再生の指示が与えられたそれぞれのディスクドライブ31のコントローラ83は、多層光ディスク11に対してデータを記録したり再生したりするための制御を行う。  [RAID Controller 40] A RAID (Redundant Arrays of Inexpensive Disks) controller 40 records data in multiple on one or more disk drives 31 in the drive unit 30 in response to a recording command from the host device 50, or performs striping. RAID control to record in a distributed manner is performed. The controller 83 of each disk drive 31 to which a recording or reproduction instruction is given from the RAID controller 40 performs control for recording or reproducing data on the multilayer optical disk 11. *
[ホスト装置50] ホスト装置50は、本光記録システム1を制御する最上位の装置である。ホスト装置50はパーソナルコンピュータでもよい。ホスト装置50は、記録用のデータを作成または準備し、RAIDコントローラ40に対して当該記録用のデータの記録命令を供給する。また、ホスト装置50は、ユーザなどより指定されたファイル名を含む読出命令をRAIDコントローラ40に供給し、RAIDコントローラ40よりその応答として該当するファイル名のデータを取得する。  [Host device 50] The host device 50 is the highest-level device that controls the optical recording system 1. The host device 50 may be a personal computer. The host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response. *
図3に示したように、ホスト装置50は、CPU51、メモリ52、ドライブI/F53、ディスク搬送機構I/F54、システムバス56を有する。  As illustrated in FIG. 3, the host device 50 includes a CPU 51, a memory 52, a drive I / F 53, a disk transport mechanism I / F 54, and a system bus 56. *
CPU51は、メモリ52に格納されたプログラムを実行するための演算処理を行うとともに、システムバス56を通じて各部との情報のやりとりを制御する。 メモリ52は、CPU51に実行させるプログラムや演算結果などが格納されるメインメモリである。  The CPU 51 performs arithmetic processing for executing a program stored in the memory 52 and controls exchange of information with each unit through the system bus 56. The memory 52 is a main memory in which programs to be executed by the CPU 51 and calculation results are stored. *
ドライブI/F53は、RAIDコントローラ40を通じて複数のディスクドライブ31と通信するためのインタフェースである。  The drive I / F 53 is an interface for communicating with the plurality of disk drives 31 through the RAID controller 40. *
ディスク搬送機構I/F54は、ディスク搬送機構20と通信するためのインタフェースである。 [ディスクドライブ31の動作] 次に、本実施形態に係るディスクドライブ31における代表的な動作を 1.層情報の記録 2.層情報を用いた記録層の確認の順で説明する。  The disk transport mechanism I / F 54 is an interface for communicating with the disk transport mechanism 20. [Operation of Disk Drive 31] Next, typical operations in the disk drive 31 according to the present embodiment are as follows. Recording of layer information 2. Description will be made in the order of confirmation of the recording layer using the layer information. *
(1.層情報の記録) 多層光ディスク11に層情報を記録する場合の手順は、例えば、次の通りである。 なお、ディスクドライブ31においてトラッキング制御にはプッシュプル法が用いられ、フォーカス制御には非点収差法が用いられていることを想定する。  (1. Recording of layer information) The procedure for recording layer information on the multilayer optical disc 11 is, for example, as follows. In the disk drive 31, it is assumed that the push-pull method is used for tracking control and the astigmatism method is used for focus control. *
1.ディスクドライブ31のコントローラ83は、図示しないフィード機構を制御して光ピックアップ32を所定の半径位置に移動させる。なお、所定の半径位置とは、例えば、ガイド層のリードイン領域の先頭に対応する半径位置である。 この位置で、コントローラ83は、ガイド層に対する最初のフォーカスオフセットの調整および対物レンズ60の傾き調整を次のように行う。  1. The controller 83 of the disk drive 31 controls a feed mechanism (not shown) to move the optical pickup 32 to a predetermined radial position. The predetermined radial position is, for example, a radial position corresponding to the head of the lead-in area of the guide layer. At this position, the controller 83 adjusts the initial focus offset with respect to the guide layer and the tilt adjustment of the objective lens 60 as follows. *
2.すなわち、コントローラ83は、第2の光源駆動部74を制御して第2の光源63をオンにする。これにより光ピックアップ32の対物レンズ60からガイド光R2がガイド光学系を通じて多層光ディスク11のガイ
ド層112に照射される。多層光ディスク11のガイド層112からの戻り光は第2の受光部69に受光されることで、第2の受光部69のそれぞれの分割領域から受光強度に対応する電圧信号が出力される。 
2. That is, the controller 83 controls the second light source driving unit 74 to turn on the second light source 63. Thus, the guide light R2 is irradiated from the objective lens 60 of the optical pickup 32 to the guide layer 112 of the multilayer optical disc 11 through the guide optical system. The return light from the guide layer 112 of the multilayer optical disc 11 is received by the second light receiving unit 69, so that a voltage signal corresponding to the received light intensity is output from each divided region of the second light receiving unit 69.
3.続いて、コントローラ83は、第2のリレー制御部85を通じて第2のリレーレンズアクチュエータ81を駆動して第2のリレーレンズ66を光軸方向の初期位置に移動させる。ここで、第2のリレーレンズ66の光軸方向の初期位置とは、対物レンズ60からのガイド光R2がガイド層112に合焦させるために予め決められた位置である。コントローラ83は、第2の受光部69のそれぞれの分割領域から受光強度に対応する電圧信号をもとにトラッキングエラー生成部82で生成されるトラッキングエラー信号(プッシュプル信号)の振幅が最大となるようにガイド層112に対するフォーカスオフセットを調整する。  3. Subsequently, the controller 83 drives the second relay lens actuator 81 through the second relay control unit 85 to move the second relay lens 66 to the initial position in the optical axis direction. Here, the initial position of the second relay lens 66 in the optical axis direction is a position determined in advance so that the guide light R <b> 2 from the objective lens 60 is focused on the guide layer 112. The controller 83 maximizes the amplitude of the tracking error signal (push-pull signal) generated by the tracking error generator 82 based on the voltage signal corresponding to the received light intensity from each divided region of the second light receiver 69. Thus, the focus offset with respect to the guide layer 112 is adjusted. *
4.そして、コントローラ83は、光ピックアップ32内の図示しないチルトアクチュエータを駆動させて、多層光ディスク11の記録面に対して対物レンズ60のラジアル方向およびタンジェンシャル方向の傾きを変更させ、トラッキングエラー信号の振幅が最大となるように上記各方向の傾き調整を行う。 以上により、ガイド層に対する最初のフォーカスオフセット調整と対物レンズ60の傾き調整が完了する。  4). Then, the controller 83 drives a tilt actuator (not shown) in the optical pickup 32 to change the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11, and the amplitude of the tracking error signal. The tilt adjustment in each direction is performed so that becomes maximum. Thus, the first focus offset adjustment with respect to the guide layer and the tilt adjustment of the objective lens 60 are completed. *
5.次に、コントローラ83は、例えば再生用パワーなど、記録層探索用に設定されたパワーのレーザ光を出射させるように第1の光源駆動部73に制御指令を供給する。これにより第1の光源33から記録層探索用に設定されたパワーのレーザ光が出射させ、記録再生光学系を通じて多層光ディスク11に照射される。多層光ディスク11からの戻り光は光ピックアップ32内の第1の受光部62にて受光され、第1の受光部62のそれぞれの分割領域から受光強度に対応する電圧信号が出力される。  5. Next, the controller 83 supplies a control command to the first light source driving unit 73 so as to emit a laser beam having a power set for searching the recording layer, such as a reproducing power. As a result, the first light source 33 emits laser light having the power set for searching the recording layer, and irradiates the multilayer optical disc 11 through the recording / reproducing optical system. The return light from the multilayer optical disk 11 is received by the first light receiving unit 62 in the optical pickup 32, and a voltage signal corresponding to the received light intensity is output from each divided region of the first light receiving unit 62. *
6.続いて、コントローラ83は、記録再生光学系を通して記録層探索用レーザ光のフォーカスの位置を、多層光ディスク11の少なくとも全ての記録層113を通過させるように、図示しないピックアップ上下送り機構を制御して光ピックアップ32を対物レンズ60の光軸方向に一定速度で複数回移動(スイング)させる。このときコントローラ83は、球面収差の補正を確率的に試みるためにスイング回毎に第1のコリメータレンズ34の位置を変更する。  6). Subsequently, the controller 83 controls a pickup vertical feed mechanism (not shown) so that the focus position of the recording layer search laser light passes through at least all the recording layers 113 of the multilayer optical disc 11 through the recording / reproducing optical system. The optical pickup 32 is moved (swinged) several times at a constant speed in the optical axis direction of the objective lens 60. At this time, the controller 83 changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration. *
図9は光ピックアップ32のスイング期間に得られるフォーカスエラー信号と、このフォーカスエラー信号から二値化部78にて生成される二値化信号の例を示す図である。このように、光ピックアップ32のスイング期間、多層光ディスク11の保護層、記録層L3、記録層L2、記録層L1、記録層L0、ガイド層の層間部分をレーザ光の焦点が通過する毎に、フォーカスエラー生成部86にて生成されるフォーカスエラー信号はS字状に変化する。このS字電圧の波形は多層光ディスク11の層間隔により生じる球面収差の成分を含んでいるので、コントローラ83は、スイング回毎に第1のコリメータレンズ34の位置を調整し、目的の記録層のS字電圧の振幅が最大となる第1のコリメータレンズ34の位置でのS字電圧を、球面収差が補正された状態のS字電圧として判定する。  FIG. 9 is a diagram illustrating an example of a focus error signal obtained during the swing period of the optical pickup 32 and a binarized signal generated by the binarization unit 78 from the focus error signal. Thus, every time the focal point of the laser beam passes through the swing period of the optical pickup 32, the protective layer of the multilayer optical disc 11, the recording layer L3, the recording layer L2, the recording layer L1, the recording layer L0, and the interlayer portion of the guide layer. The focus error signal generated by the focus error generator 86 changes to an S shape. Since the waveform of the S-shaped voltage includes a spherical aberration component caused by the layer spacing of the multilayer optical disc 11, the controller 83 adjusts the position of the first collimator lens 34 every swing, and The S-shaped voltage at the position of the first collimator lens 34 where the amplitude of the S-shaped voltage is maximum is determined as the S-shaped voltage in a state where the spherical aberration is corrected. *
7.コントローラ83は、この球面収差が補正された状態のS字電圧を二値化部78にて所定のスライスレベルで二値化した結果をフォーカスエラー信号のS字カーブ情報として取得する。  7). The controller 83 obtains, as the S-curve information of the focus error signal, the result of binarizing the S-shaped voltage with the spherical aberration corrected at the predetermined slice level by the binarizing unit 78. *
次に、コントローラ83は各記録層に層情報を例えば次のように記録する。 なお、各記録層に対する層情報の記録順を仮にL0,L1,L2,L3とする。  Next, the controller 83 records layer information on each recording layer as follows, for example. Note that the recording order of layer information for each recording layer is assumed to be L0, L1, L2, and L3. *
9.まず、コントローラ83は、記録層L0に層情報を記録するために、光ピックアップ32を予め決められた初期位置から、二値化信号が5回目に"H"レベルとなる位置まで移動させ、この位置でフォーカスサーボを引き込むように制御する。この結果、記録層L0に対してフォーカスサーボが引き込まれる。  9. First, in order to record layer information on the recording layer L0, the controller 83 moves the optical pickup 32 from a predetermined initial position to a position where the binarized signal becomes the “H” level for the fifth time. Control the focus servo to be pulled in at the position. As a result, the focus servo is drawn into the recording layer L0. *
10.記録層L0に対してフォーカスサーボが引き込まれた後、コントローラ83は、当該記録層L0の未記録領域からの戻り光に対する第1の受光部62の各分割領域からそれぞれ出力される光検出信号の和信号が最大となるように、当該記録層L0に対するフォーカスオフセットを調整する。  10. After the focus servo is drawn into the recording layer L0, the controller 83 detects the light detection signal output from each divided region of the first light receiving unit 62 for the return light from the unrecorded region of the recording layer L0. The focus offset for the recording layer L0 is adjusted so that the sum signal is maximized. *
11.続いて、コントローラ83は、トラッキングエラー信号の振幅が最大となるようにガイド層112に対するフォーカスオフセットを再度調整する。  11. Subsequently, the controller 83 adjusts the focus offset with respect to the guide layer 112 again so that the amplitude of the tracking error signal is maximized. *
12.続いて、コントローラ83は、ガイド層112のガイドトラック121に対してトラッキングサーボを引き込むように制御を行う。この際、コントローラ83は、トラッキングエラー信号の波形をもとにトラッキングオフセットを調整する。例えば、トラッキングエラー信号の波形における最大値と最小値との間の中間電位をオフセット値として、このオフセット値でトラッキングエラー信号を調整する。  12 Subsequently, the controller 83 performs control so as to draw tracking servo into the guide track 121 of the guide layer 112. At this time, the controller 83 adjusts the tracking offset based on the waveform of the tracking error signal. For example, an intermediate potential between a maximum value and a minimum value in the waveform of the tracking error signal is used as an offset value, and the tracking error signal is adjusted with this offset value. *
この後、コントローラ83は、記録層L0への層情報の記録を行うように制御を行う。なお、層情報を記録する際、コントローラ83は、例えば図6に示したように、記録層リードイン領域を区分する複数の子領域E0-E3の中で、記録層L0に対して予め割り当てられた子領域E0に層情報が記録されるように制御を行う。 より具体的には、ガイド層のリードイン領域にはそれぞれの記録層に割り当てる小領域E0-E3のディスク半径位置の情報が予め記録されている。コントローラ83は、そのガイド層のリードイン領域から、それぞれの小領域E0-E3のディスク半径位置の情報を読み込み、この情報をもとに記録層毎の子領域を特定し、ここに層情報を記録するように制御を行う。  Thereafter, the controller 83 performs control so as to record the layer information on the recording layer L0. When recording layer information, for example, as shown in FIG. 6, the controller 83 is assigned in advance to the recording layer L0 among the plurality of child areas E0 to E3 that divide the recording layer lead-in area. Control is performed so that the layer information is recorded in the child area E0. More specifically, information on the disk radius positions of the small areas E0 to E3 allocated to the respective recording layers is recorded in advance in the lead-in area of the guide layer. The controller 83 reads the information on the disk radial position of each of the small areas E0 to E3 from the lead-in area of the guide layer, identifies the child area for each recording layer based on this information, and stores the layer information here. Control to record. *
続いてコントローラ83は、次の記録層L1に層情報を記録するために、光ピックアップ32を予め決められた初期位置から、二値化信号が4回目に"H"レベルとなる位置まで移動させ、この位置でフォーカスサーボを引き込むように制御する。これにより、記録層L1に対してフォーカスサーボが引き込まれ、以降、同様にその記録層L1に層情報を記録するまでの処理が行われる。記録層L2及び記録層L3に対しても同様の手順で層情報が記録されるまでの処理が繰り返される。  Subsequently, in order to record layer information on the next recording layer L1, the controller 83 moves the optical pickup 32 from a predetermined initial position to a position where the binarized signal becomes the “H” level for the fourth time. The focus servo is pulled in at this position. As a result, the focus servo is drawn into the recording layer L1, and thereafter, the same processing until the layer information is recorded on the recording layer L1 is performed. The processes until the layer information is recorded on the recording layer L2 and the recording layer L3 are repeated in the same procedure. *
なお、以上の層情報の記録の動作は一例であり、多層光ディスク11の各記録層に正しい配置で管理情報を記録することができれば、その他の方法を採用してもよい。  The above layer information recording operation is merely an example, and other methods may be employed as long as management information can be recorded in the correct arrangement on each recording layer of the multilayer optical disc 11. *
(2.層情報を用いた記録層の確認) 本実施形態のディスクドライブ31では、多層光ディスク11に対してユーザデータの記録を行う前に、それぞれの記録層が何層目であるかという確認、例えば、ユーザデータの記録先として選択された記録層と、実際にフォーカスサーボが引き込まれた記録層との整合の確認が行われる。 次に、この動作を図10のフローチャートを用いて説明する。  (2. Confirmation of recording layer using layer information) In the disk drive 31 of this embodiment, before recording user data on the multilayer optical disk 11, confirmation of how many layers each recording layer is. For example, confirmation of the alignment between the recording layer selected as the user data recording destination and the recording layer into which the focus servo is actually drawn is performed. Next, this operation will be described with reference to the flowchart of FIG. *
この動作は、例えば、層情報が記録された多層光ディスク11がディスクドライブ31に装填されることによって開始される。  This operation is started when, for example, the multilayer optical disc 11 on which layer information is recorded is loaded into the disc drive 31. *
ディスクドライブ31のコントローラ83は、第1の光源33より、例えば再生用パワーなど、記録層探索用に設定されたパワーのレーザ光を出射させるように第1の光源駆動部73に制御指令を供給する。続いて、コントローラ83は、光ピックアップ32を所定の初期位置に置いたまま、記録層探索用のレーザ光のフォーカスの位置を、多層光ディスク11の少なくとも全ての記録層を通過させる範囲内で移動させるように、図示しないピックアップ上下送り機構を制御して光ピックアップ32を対物レンズ60の光軸方向に一定速度で複数回移動(スイング)させる。このときコントローラ83は、球面収差の補正を確率的に試みるためにスイング回毎に第1のコリメータレンズ34の位置を変更する(ステップS101)。  The controller 83 of the disk drive 31 supplies a control command to the first light source driving unit 73 so that the first light source 33 emits a laser beam having a power set for searching the recording layer such as a reproduction power. To do. Subsequently, the controller 83 moves the focus position of the laser beam for searching the recording layer within a range in which at least all of the recording layers of the multilayer optical disc 11 are passed while the optical pickup 32 is placed at a predetermined initial position. In this manner, the pickup vertical feed mechanism (not shown) is controlled to move (swing) the optical pickup 32 a plurality of times in the direction of the optical axis of the objective lens 60 at a constant speed. At this time, the controller 83 changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration (step S101). *
コントローラ83は、スイング回毎に得られたフォーカスエラー信号(S字電圧)のなかで、目的の記録層のS字電圧の振幅が最大となる第1のコリメータレンズ34の位置でのS字電圧を、球面収差が補正された状態のS字電圧として判定し、このS字電圧を二値化部78にて所定のスライスレベルで二値化した結果をフォーカスエラー信号のS字カーブ情報として取得する(ステップS102)。  The controller 83 determines the S-shaped voltage at the position of the first collimator lens 34 where the amplitude of the S-shaped voltage of the target recording layer is the maximum among the focus error signals (S-shaped voltage) obtained for each swing. Is obtained as S-curve information of the focus error signal, and the result obtained by binarizing the S-curve voltage at a predetermined slice level by the binarization unit 78 is obtained as the S-curve information of the focus error signal. (Step S102). *
コントローラ83は、取得したフォーカスエラー信号のS字カーブ情報をもとに、光ピックアップ32のスイング範囲におけるそれぞれの記録層の位置を推定し、推定されたそれぞれの記録層の位置に仮の層情報を割り当て、これらの相関情報をコントローラ83内のメモリに保存する。ここで、個々の記録層の位置は、例えば、光ピックアップ32の初期位置からの移動量などによって表現される。仮の層情報は、各記録層のリードイン領域に実際に記録された層情報との比較が可能なように、当該リードイン領域に実際に記録された層情報と同じ割り当て規則に従って割り当てられる(ステップS103)。  The controller 83 estimates the position of each recording layer in the swing range of the optical pickup 32 based on the acquired S-curve information of the focus error signal, and provisional layer information is added to each estimated recording layer position. And the correlation information is stored in a memory in the controller 83. Here, the position of each recording layer is expressed by the amount of movement of the optical pickup 32 from the initial position, for example. The provisional layer information is allocated according to the same allocation rule as the layer information actually recorded in the lead-in area so that the layer information can be compared with the layer information actually recorded in the lead-in area of each recording layer ( Step S103). *
この後、ユーザデータの記録先としての記録層が仮の層情報を用いて選択される。例えば仮の層情報によって記録層L1がユーザデータの記録先として選択されたこととする。コントローラ83は、メモリから当該仮の層情報に対応する記録層L1の位置情報を読み出し、これをもとに図示しない光ピックアップ昇降機構を制御して、光ピックアップ32を初期位置から光軸方向に移動させる(ステップS104)。  Thereafter, a recording layer as a recording destination of user data is selected using temporary layer information. For example, it is assumed that the recording layer L1 is selected as the user data recording destination based on the provisional layer information. The controller 83 reads the position information of the recording layer L1 corresponding to the provisional layer information from the memory, and controls the optical pickup lifting / lowering mechanism (not shown) based on this information to move the optical pickup 32 from the initial position in the optical axis direction. Move (step S104). *
この後、コントローラ83は、ユーザデータの記録先として選択された記録層L1におけるリードイン領域から層情報を読み込むことが可能な位置まで光ピックアップ32をディスク半径方向に移動させるように、フィード機構を制御する(ステップS105)。 より具体的には、この制御を行うためにコントローラ83は、予め、ガイド層のリードイン領域から各記録層のリードイン領域の位置情報(ディスク半径位置)を読み込み、コントローラ83内のメモリに仮の層情報と対応付けて保存する必要がある。コントローラ83は、ユーザデータの記録先として選択された記録層L1の仮の層情報に対応付けられたリードイン領域の位置情報をメモリから取得し、これをもとに、記録層L1におけるリードイン領域から層情報を読み込むことが可能な位置まで光ピックアップ32をディスク半径方向に移動させるようにフィード機構を制御する。  Thereafter, the controller 83 sets the feed mechanism so as to move the optical pickup 32 in the disc radial direction to a position where the layer information can be read from the lead-in area in the recording layer L1 selected as the user data recording destination. Control is performed (step S105). More specifically, in order to perform this control, the controller 83 reads in advance the position information (disk radius position) of the lead-in area of each recording layer from the lead-in area of the guide layer and temporarily stores it in the memory in the controller 83. It is necessary to store in association with the layer information. The controller 83 acquires the position information of the lead-in area associated with the temporary layer information of the recording layer L1 selected as the user data recording destination from the memory, and based on this, the lead-in area in the recording layer L1 is read. The feed mechanism is controlled so that the optical pickup 32 is moved in the disk radial direction to a position where the layer information can be read from the area. *
この後、コントローラ83は、フォーカスサーボの引き込みを開始するようにフォーカス制御部77に制御命令を供給する(ステップS106)。これにより、記録層探索用のレーザ光のフォーカスの位置に最も近い位置に存在する記録層に当該レーザ光のフォーカスが合わせられるが、この時点では、その記録層が記録先として指定された記録層L1であるかどうかは未確定である。  Thereafter, the controller 83 supplies a control command to the focus control unit 77 so as to start the focus servo pull-in (step S106). As a result, the laser beam is focused on the recording layer that is closest to the focus position of the laser beam for searching the recording layer. At this time, the recording layer is designated as the recording destination. Whether it is L1 is uncertain. *
コントローラ83は、フォーカスを合わせた記録層のリードイン領域から層情報を読み込むように制御を行う(ステップS107)。  The controller 83 performs control so as to read layer information from the lead-in area of the focused recording layer (step S107). *
コントローラ83は、フォーカスを合わせた記録層のリードイン領域からの層情報の読み込みに成功すると、読み込んだ層情報が、記録先の記録層を選択するために用いられた仮の層情報と一致するかどうかを判定する(ステップS108)。  When the controller 83 succeeds in reading the layer information from the lead-in area of the focused recording layer, the read layer information matches the temporary layer information used for selecting the recording layer as the recording destination. Whether or not (step S108). *
不一致が判定された場合、コントローラ83は所定のエラー処理を行う(ステップS109)。例えば、ホスト装置50に、層情報の不一致により多層光ディスク11に対する記録が不可であることなどを通知する。あるいは、読み込んだ層情報と、記録先の記録層を選択するために用いられた仮の層情報との関係をもとに位置情報を補正して、フォーカスサーボの引き込みをやり直すようにしてもよい。  If a mismatch is determined, the controller 83 performs a predetermined error process (step S109). For example, the host device 50 is notified that recording on the multilayer optical disk 11 is impossible due to mismatch of layer information. Alternatively, the position information may be corrected based on the relationship between the read layer information and the provisional layer information used for selecting the recording layer to be recorded, and the focus servo may be pulled again. . *
一致が判定された場合、コントローラ83は、フォーカスを合わせた記録層を記録先として選択された記録層L1として確定し(ステップS110)、例えば、当該多層光ディスク11に対して実行されるべき次の処理、例えば、OPC処理、欠陥交替処理などが実行され、その後、ユーザデータの記録などが行われる。なお
、上記の動作は、多層光ディスク11をCLV方式またはCAV方式で駆動させた状態で行われる。 
If coincidence is determined, the controller 83 determines the focused recording layer as the recording layer L1 selected as the recording destination (step S110), for example, the next to be executed for the multilayer optical disc 11 Processing, for example, OPC processing, defect replacement processing, and the like are performed, and then user data is recorded. The above operation is performed in a state where the multilayer optical disc 11 is driven by the CLV method or the CAV method.
(本実施形態の効果) 以上、本実施形態では、次のような効果が得られる。 1.多層光ディスク11の各記録層にそれぞれ層情報が記録されていることで、フォーカスを合わせた記録層がユーザデータの記録先として選択された記録層であるかどうかを論理的に確認した上でユーザデータの記録を行うことができる。これにより、多層光ディスク11の各記録層に対して記録を安定して行うことができ、信頼性が向上する。  (Effect of this embodiment) As mentioned above, in this embodiment, the following effects are acquired. 1. Since the layer information is recorded on each recording layer of the multilayer optical disc 11, it is logically confirmed whether or not the focused recording layer is the recording layer selected as the recording destination of the user data. Data can be recorded. Thereby, it is possible to stably perform recording on each recording layer of the multilayer optical disc 11, and the reliability is improved. *
2.図6に示したように、多層光ディスク11の各記録層の管理情報が、少なくとも隣り合う記録層の間で互いに位置がずれるように記録されることで、1つの記録層のリードイン領域から管理情報を読み出すときの層間クロストークによる悪影響を排除することができる。これにより、リードイン領域の管理情報を良好に読み出すことができ、記録再生の安定性が向上する。  2. As shown in FIG. 6, the management information of each recording layer of the multilayer optical disc 11 is recorded so that the positions of the recording layers are shifted from each other at least between adjacent recording layers, thereby managing from the lead-in area of one recording layer. It is possible to eliminate an adverse effect caused by interlayer crosstalk when reading information. As a result, the management information in the lead-in area can be satisfactorily read, and the stability of recording and reproduction is improved. *
3.さらに、図7に示したように、リードイン領域の2つの小領域に、3以上の複数の記録層が積層順で交互に割り当てられることによって、必要なリードイン領域のサイズをより小さくすることができ、記録層毎の記録容量の増大を図れる。  3. Furthermore, as shown in FIG. 7, the size of the required lead-in area can be further reduced by alternately assigning a plurality of recording layers of three or more to the two small areas of the lead-in area in the stacking order. Thus, the recording capacity of each recording layer can be increased. *
<第2の実施形態>
 上記の第1の実施形態では、層情報が多層光ディスク11の各記録層のリードイン領域に記録される場合を想定した。しかし、層情報は、フォーカスを合わせた記録層から得ることができれば、どの領域に記録されたものであってよい。例えば、記録層毎のBCA(Burst Cutting Area)に層情報が記録されることも想定される。 
<Second Embodiment>
In the first embodiment, it is assumed that layer information is recorded in the lead-in area of each recording layer of the multilayer optical disc 11. However, the layer information may be recorded in any region as long as it can be obtained from the focused recording layer. For example, it is assumed that layer information is recorded in a BCA (Burst Cutting Area) for each recording layer.
BCAは、多層光ディスクの製作過程で、高パワーのレーザ光で記録層を部分的に焼き切ることによって形成される。焼き切られた部分と焼き切られていない部分とで光の反射率が異なることによって、多層光ディスクを回転させた状態でBCAにフォーカスを合わせてレーザ光を照射すると、例えば、図17に示すように、反射レベルがBCAtopとBCAbottomとに2段階に変化する信号が得られる。この信号を復調および復号することによってデータ(BCAデータ)が得られる。  The BCA is formed by partially burning the recording layer with a high-power laser beam during the manufacturing process of the multilayer optical disc. When the light reflectance is different between the burned-out portion and the unburned-out portion, when the multilayer optical disc is rotated and the BCA is focused and irradiated with laser light, for example, as shown in FIG. In addition, a signal whose reflection level changes in two steps, BCAtop and BCAbottom, is obtained. Data (BCA data) is obtained by demodulating and decoding this signal. *
図11は本実施形態の多層光ディスク11Aの全体的な平面図である。図12は図11の多層光ディスク11AのBCA部分の詳細な平面図である。図13は図12の多層光ディスク11AのA-A断面図である。 図11に示すように、多層光ディスク11Aの中央にはディスクチャッキングのためのセンタホール101が設けられている。センタホール101の外周側には同じくディスクチャッキングのためのチャッキングエリア102が設けられている。チャッキングエリア102の外周側にはBCA103が設けられ、さらにその外周側にはリードイン領域を含む記録領域104が設けられている。  FIG. 11 is an overall plan view of the multilayer optical disk 11A of the present embodiment. FIG. 12 is a detailed plan view of the BCA portion of the multilayer optical disk 11A of FIG. 13 is a cross-sectional view of the multilayer optical disk 11A of FIG. As shown in FIG. 11, a center hole 101 for disc chucking is provided in the center of the multilayer optical disc 11A. A chucking area 102 for disc chucking is also provided on the outer peripheral side of the center hole 101. A BCA 103 is provided on the outer peripheral side of the chucking area 102, and a recording area 104 including a lead-in area is provided on the outer peripheral side thereof. *
図12および図13に示すように、BCA103は記録層113毎に設けられる。記録層113(記録層L0,L1,L2,L3)毎のBCA103をそれぞれ説明の必要に応じて「BCA(L0)」、「BCA(L1)」、「BCA(L2)」、「BCA(L3)」と表記する。これら記録層113毎のBCA103は互いに異なるディスク半径位置に設けられる。例えば、多層光ディスク11Aの内周側より外周側に向けて、互いにディスク半径位置が互いに重ならないようにずらしてBCA(L0)、BCA(L1)、BCA(L2)、BCA(L3)のように層番号の値の昇順に配置される。  As shown in FIGS. 12 and 13, the BCA 103 is provided for each recording layer 113. The BCA 103 for each of the recording layers 113 (recording layers L0, L1, L2, and L3) is “BCA (L0)”, “BCA (L1)”, “BCA (L2)”, and “BCA (L3) as necessary for explanation. ) ”. The BCA 103 for each recording layer 113 is provided at different disk radial positions. For example, the radial positions of the multi-layer optical disc 11A are shifted from the inner circumference side to the outer circumference side so as not to overlap each other, as in BCA (L0), BCA (L1), BCA (L2), and BCA (L3). Arranged in ascending order of layer number values. *
記録層113毎のBCA103にはそれぞれ、少なくとも、ディスクIDと層情報が予め(多層光ディスク11Aの製造の際に)記録されている。 ディスクIDは、多層光ディスク11Aに固有のシリアル番号であり、つまり多層光ディスク11Aの個体を識別するための情報である。 層情報は、多層光ディスク11Aの個々の記録層113(記録層L0,L1,L2,L3)を識別するための情報である。例えば、記録層L0のBCA(L0)には、その記録層L0が多層光ディスク11Aにおいてどの層位置にあるものであるかを一意に識別することができる層情報が記録される。  Each BCA 103 for each recording layer 113 has at least a disc ID and layer information recorded in advance (when the multilayer optical disc 11A is manufactured). The disc ID is a serial number unique to the multilayer optical disc 11A, that is, information for identifying the individual of the multilayer optical disc 11A. The layer information is information for identifying individual recording layers 113 (recording layers L0, L1, L2, and L3) of the multilayer optical disc 11A. For example, the BCA (L0) of the recording layer L0 records layer information that can uniquely identify the layer position of the recording layer L0 in the multilayer optical disc 11A. *
BCA(L0)、BCA(L1)、BCA(L2)、BCA(L3)は、互いにディスク半径位置が互いに重ならないようにずらして配置されることで、複数の記録層113のBCA103同士の干渉による読み取りエラーの発生を抑えることができる。  The BCA (L0), BCA (L1), BCA (L2), and BCA (L3) are arranged so that the disk radial positions are not shifted from each other, thereby causing interference between the BCAs 103 of the plurality of recording layers 113. The occurrence of reading errors can be suppressed. *
(ディスクドライブの構成) 次に、第2の実施形態のディスクドライブの構成について説明する。 図14は、第2の実施形態のディスクドライブ31Aの構成を示すブロック図である。 ここで、BCA処理部87は、第1の受光部62からの再生RF信号をもとにBCA103に記録されたデータであるディスクIDおよび層情報を再生し、コントローラ83Aに供給する。 コントローラ83Aは、例えば、BCA処理部87によって再生された層情報をもとに、ユーザデータの記録対象として指定された記録層が何層目であるかという確認、例えば、ユーザデータの記録先として選択された記録層と、実際にフォーカスサーボが引き込まれた記録層との整合の確認などを行う。 その他の構成は第1の実施形態のディスクドライブ31と同じである。  (Configuration of Disk Drive) Next, the configuration of the disk drive of the second embodiment will be described. FIG. 14 is a block diagram showing the configuration of the disk drive 31A of the second embodiment. Here, the BCA processing unit 87 reproduces the disk ID and layer information, which are data recorded in the BCA 103, based on the reproduction RF signal from the first light receiving unit 62, and supplies it to the controller 83A. For example, the controller 83A confirms the number of recording layers designated as the user data recording target based on the layer information reproduced by the BCA processing unit 87, for example, as the recording destination of user data. Confirmation of the alignment between the selected recording layer and the recording layer into which the focus servo is actually drawn is performed. Other configurations are the same as those of the disk drive 31 of the first embodiment. *
(層情報を用いた記録層の確認) 図15は、第2の実施形態のディスクドライブ31Aによる記録層の確認の動作を示すフローチャートである。 多層光ディスク11Aが装填されると、ディスクドライブ31Aのコントローラ83Aは、第1の光源33より、例えば再生用パワーなど、記録層探索用に設定されたパワーのレーザ光を出射させるように第1の光源駆動部73に制御指令を供給する。  (Confirmation of Recording Layer Using Layer Information) FIG. 15 is a flowchart showing an operation of confirming the recording layer by the disk drive 31A of the second embodiment. When the multilayer optical disk 11A is loaded, the controller 83A of the disk drive 31A causes the first light source 33 to emit a laser beam having a power set for searching the recording layer such as a reproduction power. A control command is supplied to the light source driving unit 73. *
続いて、コントローラ83Aは、光ピックアップ32を所定の初期位置に置いたまま、記録層探索用のレーザ光のフォーカスの位置を、多層光ディスク11Aの少なくとも全ての記録層を通過させる範囲内で移動させるように、図示しないピックアップ上下送り機構を制御して光ピックアップ32を対物レンズ60の光軸方向に一定速度で複数回移動(スイング)させる(ステップS201)。このときコントローラ83Aは、球面収差の補正を確率的に試みるためにスイング回毎に第1のコリメータレンズ34の位置を変更する(ステップS201)。  Subsequently, the controller 83A moves the focus position of the laser beam for searching the recording layer within a range that allows at least all the recording layers of the multilayer optical disc 11A to pass while the optical pickup 32 is placed at a predetermined initial position. In this manner, the pickup vertical feed mechanism (not shown) is controlled to move (swing) the optical pickup 32 a plurality of times at a constant speed in the optical axis direction of the objective lens 60 (step S201). At this time, the controller 83A changes the position of the first collimator lens 34 every swing in order to probabilistically try to correct the spherical aberration (step S201). *
コントローラ83Aは、各スイング回毎に得られたフォーカスエラー信号(S字電圧)のなかで、目的の記録層のS字電圧の振幅が最大となる第1のコリメータレンズ34の位置でのS字電圧を、球面収差が補正された状態のS字電圧として判定し、このS字電圧を二値化部78にて所定のスライスレベルで二値化した結果をフォーカスエラー信号のS字カーブ情報として取得する(ステップS202)。  The controller 83A has an S-curve at the position of the first collimator lens 34 where the amplitude of the S-curve voltage of the target recording layer becomes the maximum among the focus error signals (S-curve voltage) obtained for each swing. The voltage is determined as the S-shaped voltage with the spherical aberration corrected, and the result of binarizing the S-shaped voltage at a predetermined slice level by the binarizing unit 78 is used as the S-shaped curve information of the focus error signal. Obtain (step S202). *
コントローラ83Aは、取得したフォーカスエラー信号のS字カーブ情報をもとに、光ピックアップ32のスイング範囲におけるそれぞれの記録層の位置を推定し、推定されたそれぞれの記録層の位置に仮の層情報を割り当て、これらの相関情報をコントローラ83A内のメモリに保存する。ここで、個々の記録層の位置は、例えば、光ピックアップ32の初期位置からの移動量などによって表現される。仮の層情報は、各記録層のBCA103に実際に記録された層情報との比較が可能なように、当該BCA103に実際に記録された層情報と同じ割り当て規則に従って割り当てられる(ステップS203)。  The controller 83A estimates the position of each recording layer in the swing range of the optical pickup 32 based on the acquired S-curve information of the focus error signal, and provisional layer information is added to each estimated recording layer position. And the correlation information is stored in the memory in the controller 83A. Here, the position of each recording layer is expressed by the amount of movement of the optical pickup 32 from the initial position, for example. The temporary layer information is assigned according to the same assignment rule as the layer information actually recorded on the BCA 103 so that the layer information can be compared with the layer information actually recorded on the BCA 103 of each recording layer (step S203). *
この後、ユーザデータの記録先としての記録層が仮の層情報を用いて選択される。例えば仮の層情報によって記録層L1がユーザデータの記録先として選択されたこととする。コントローラ83Aは、メモリから当該仮の層情報に対応する記録層L1の位置情報を読み出し、これをもとに図示しない光ピックアップ昇降機構を制御して、光ピックアップ32を初期位置から光軸方向に移動させる(ステップS204)。  Thereafter, a recording layer as a recording destination of user data is selected using temporary layer information. For example, it is assumed that the recording layer L1 is selected as the user data recording destination based on the provisional layer information. The controller 83A reads the position information of the recording layer L1 corresponding to the provisional layer information from the memory, and controls the optical pickup lifting / lowering mechanism (not shown) based on the information, thereby moving the optical pickup 32 from the initial position in the optical axis direction. Move (step S204). *
コントローラ83Aは、ユーザデータの記録先として選択された記録層L1におけるBCA103(L1)から層情報を読み込むことが可能な位置まで光ピックアップ32をディスク半径方向に移動させる(ステップS205)。 より具体的には、この制御を行うためにコントローラ83Aは、予め、ガイド層のリードイン領域から記録層毎のBCA103の位置情報(ディスク半径位置)を読み込み、コントローラ83A内のメモリに仮の層情報と対応付けて保存する必要がある。コントローラ83Aは、ユーザデータの記録先として選択された記録層L1の仮の層情報に対応付けられたBCA103(L1)の位置情報をメモリから取得し、これをもとに、記録層L1におけるBCA103(L1)から層情報を読み込むことが可能な位置まで光ピックアップ32をディスク半径方向に移動させるようにフィード機構を制御する。  The controller 83A moves the optical pickup 32 in the disc radial direction to a position where the layer information can be read from the BCA 103 (L1) in the recording layer L1 selected as the user data recording destination (step S205). More specifically, in order to perform this control, the controller 83A reads in advance the position information (disk radius position) of the BCA 103 for each recording layer from the lead-in area of the guide layer and stores the temporary layer in the memory in the controller 83A. It is necessary to store the information in association with it. The controller 83A acquires the position information of the BCA 103 (L1) associated with the temporary layer information of the recording layer L1 selected as the user data recording destination from the memory, and based on this, the BCA 103 in the recording layer L1 is acquired. The feed mechanism is controlled so that the optical pickup 32 is moved in the disk radial direction to a position where the layer information can be read from (L1). *
続いて、コントローラ83Aは、フォーカスサーボの引き込みを開始するようにフォーカス制御部77に制御命令を供給する(ステップS206)。これにより、レーザ光のフォーカスの位置に最も近い位置に存在する記録層に当該レーザ光のフォーカスが合わせられるが、この時点では、その記録層が記録先として指定された記録層L1であるかどうかは未確定である。  Subsequently, the controller 83A supplies a control command to the focus control unit 77 so as to start the focus servo pull-in (step S206). Thereby, the laser beam is focused on the recording layer that is closest to the focus position of the laser beam. At this time, whether or not the recording layer is the recording layer L1 designated as the recording destination. Is uncertain. *
続いて、コントローラ83Aは、フォーカスを合わせた記録層のBCA103から層情報をBCA処理部87にて読み込むように制御する(ステップS207)。  Subsequently, the controller 83A performs control so that the BCA processing unit 87 reads layer information from the BCA 103 of the focused recording layer (step S207). *
コントローラ83Aは、フォーカスを合わせた記録層のBCA103から読み込まれた層情報が、記録先の記録層を選択するために用いられた仮の層情報と一致するかどうかを判定する(ステップS208)。  The controller 83A determines whether or not the layer information read from the BCA 103 of the focused recording layer matches the temporary layer information used for selecting the recording layer as the recording destination (step S208). *
不一致が判定された場合、コントローラ83Aは所定のエラー処理を行う(ステップS209)。例えば、ホスト装置50に、層情報の不一致により多層光ディスク11Aに対する記録が不可であることなどを通知する。あるいは、読み込んだ層情報と、記録先の記録層を選択するために用いられた仮の層情報との関係をもとに位置情報を補正して、フォーカスサーボの引き込みをやり直すようにしてもよい。  If a mismatch is determined, the controller 83A performs a predetermined error process (step S209). For example, the host device 50 is notified that recording on the multilayer optical disc 11A is impossible due to the mismatch of the layer information. Alternatively, the position information may be corrected based on the relationship between the read layer information and the provisional layer information used for selecting the recording layer to be recorded, and the focus servo may be pulled again. . *
一致が判定された場合、コントローラ83Aは、フォーカスを合わせた記録層を記録先として選択された記録層L1として確定し(ステップS210)、例えば、当該多層光ディスク11Aに対して実行されるべき次の処理、例えば、OPC処理、欠陥交替処理などが実行され、その後、ユーザデータの記録などが行われる。  When the coincidence is determined, the controller 83A determines the focused recording layer as the recording layer L1 selected as the recording destination (step S210), and, for example, the next to be executed for the multilayer optical disc 11A. Processing, for example, OPC processing, defect replacement processing, and the like are performed, and then user data is recorded. *
(第2の実施形態の効果) 以上、本実施形態では、次のような効果が得られる。 多層光ディスク11Aの各記録層のBCA103にそれぞれ層情報が記録されていることで、フォーカスを合わせた記録層がユーザデータの記録先として選択された記録層であるかどうかを論理的に確認した上でユーザデータの記録を行うことができる。これにより、多層光ディスク11Aの各記録層に対して記録を安定して行うことができ、信頼性が向上する。  (Effect of 2nd Embodiment) As mentioned above, in this embodiment, the following effects are acquired. After layer information is recorded on each BCA 103 of each recording layer of the multilayer optical disc 11A, it is logically confirmed whether or not the focused recording layer is the recording layer selected as the user data recording destination. Can record user data. Thereby, recording can be stably performed on each recording layer of the multilayer optical disc 11A, and the reliability is improved. *
<変形例1> 図13に示したように、記録層毎のBCA(L0)、BCA(L1)、BCA(L2)、BCA(L3)は、読み込み時に互いの干渉が生じないように、それぞれ異なるディスク半径位置に設けられる。そこで、記録層毎のBCA(L0)、BCA(L1)、BCA(L2)、BCA(L3)の位置情報(ディスク半径位置)に対して層情報を予め割り当てておくことで、ディスクドライブはフォーカスが引き込まれている記録層の層情報を、BCA103に記録された層情報に拠らずに判別することができ、BCA103から読み出された層情報と合わせて二重の確認を行うことができる。 以下に、その具体的な方法を説明する。  <Modification 1> As shown in FIG. 13, BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer are not interfering with each other during reading. Provided at different disk radius positions. Therefore, by assigning layer information in advance to position information (disk radius position) of BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer, the disk drive is focused. Can be determined without depending on the layer information recorded in the BCA 103, and double confirmation can be performed together with the layer information read from the BCA 103. . The specific method will be described below. *
図16は、本変形例のディスクドライブ31Bの構成を示すブロック図である。 このディスクドライブ31Bは、第2の実施形態のディスクドライブ31Aの構成に、アドレス再生部88が付加されたものである。アドレス再生部88は、第2の受光部69の出力をもとに、ガイド層112のガイドトラックに例えばウォブリングあるいはピット列などに変調されて記録された物理アドレス情報を再生してコントローラ83Bに供給する。  FIG. 16 is a block diagram showing the configuration of the disk drive 31B of this modification. This disk drive 31B is obtained by adding an address reproducing unit 88 to the configuration of the disk drive 31A of the second embodiment. Based on the output of the second light receiving unit 69, the address reproducing unit 88 reproduces physical address information recorded in the guide track of the guide layer 112 after being modulated, for example, into wobbling or a pit row, and supplies it to the controller 83B. To do. *
コントローラ83Bのメモリには、記録層毎のBCA(L0)、BCA(L1)、BCA(L2)、BCA(L3)の位置情報(ディスク半径位置)と層情報とを対応付けた相関データが保存される。この相関データは、例えば、多層光ディスク11Bのガイド層のリードイン領域などから読み込まれてメモリに保存される。コントローラ83Bは、アドレス再生部88より供給された物理アドレス情報をもとに所定の換算式等を用いてディスク半径位置を算出し、メモリ52に保存された相関データを参照して、当該ディスク半径位置に対応付けられた層情報を取得する。そしてコントローラ83Bは、この層情報と、BCA103から読み出された層情報とが一致するかどうかを判定し、一致すれば、この層情報をフォーカスを合わせた記録層の層情報として確定する。これにより、フォーカスを合わせた記録層がユーザデータの記録先として選択された記録層であるかどうかを論理的に、かつ二重判定によってより確実に確認することができる。  In the memory of the controller 83B, correlation data in which the position information (disk radius position) of BCA (L0), BCA (L1), BCA (L2), and BCA (L3) for each recording layer is associated with the layer information is stored. Is done. This correlation data is read from, for example, the lead-in area of the guide layer of the multilayer optical disc 11B and stored in the memory. The controller 83B calculates a disk radius position using a predetermined conversion formula or the like based on the physical address information supplied from the address reproducing unit 88, and refers to the correlation data stored in the memory 52 to determine the disk radius. The layer information associated with the position is acquired. Then, the controller 83B determines whether or not the layer information matches the layer information read from the BCA 103. If they match, the controller 83B determines the layer information as the layer information of the focused recording layer. Thereby, it can be logically and more surely confirmed by double determination whether or not the focused recording layer is the recording layer selected as the user data recording destination. *
<変形例2> コントローラ83Bは、アドレス再生部88より供給された物理アドレス情報をもとに所定の換算式等を用いてディスク半径位置を算出し、メモリに保存された相関デー
タを参照して、当該ディスク半径位置に対応付けられた層情報を、フォーカスを合わせた記録層の層情報として確定するようにしてもよい。この方式によれば、BCAに層情報が記録されていなくても、コントローラ83Bは、フォーカスを合わせた記録層がユーザデータの記録先として選択された記録層であるかどうかを論理的に確認することができる。 
<Modification 2> The controller 83B calculates the disk radius position using a predetermined conversion formula based on the physical address information supplied from the address reproducing unit 88, and refers to the correlation data stored in the memory. The layer information associated with the disc radius position may be determined as the layer information of the focused recording layer. According to this method, even if no layer information is recorded in the BCA, the controller 83B logically checks whether the focused recording layer is the recording layer selected as the user data recording destination. be able to.
なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
1…光記録システム 11、11A、11B…多層光ディスク 31、31A、31B…ディスクドライブ 32…光ピックアップ 33…第1の光源 50…ホスト装置 51…CPU 52…メモリ 60…対物レンズ 62…第1の受光部 77…フォーカス制御部 78…二値化部 79…フォーカスアクチュエータ 83…コントローラ 86…フォーカスエラー生成部 87…BCA処理部 88…アドレス再生部 103…BCA 112…ガイド層 113…記録層 115…保護層 121…ガイドトラック DESCRIPTION OF SYMBOLS 1 ... Optical recording system 11, 11A, 11B ... Multi-layer optical disk 31, 31A, 31B ... Disk drive 32 ... Optical pick-up 33 ... First light source 50 ... Host device 51 ... CPU 52 ... Memory 60 ... Objective lens 62 ... First Light receiving unit 77 ... Focus control unit 78 ... Binarization unit 79 ... Focus actuator 83 ... Controller 86 ... Focus error generation unit 87 ... BCA processing unit 88 ... Address reproduction unit 103 ... BCA 112 ... Guide layer 113 ... Recording layer 115 ... Protection Layer 121 ... Guide track

Claims (6)

  1. 情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報が記録された層情報記録領域を有する多層光ディスクに記録を行う光記録装置であって、 光ビームを出射する光源と、 前記光ビームを前記多層光ディスクに集束させる対物レンズと、 前記多層光ディスクで反射された光ビームを受けて電気信号を出力する受光部と、 前記受光部の出力からフォーカスエラー信号を生成するフォーカスエラー生成部と、 前記光ビームのフォーカスの位置を少なくとも前記複数の記録層を通過させる範囲で移動させ、この移動に伴って前記フォーカスエラー生成部により生成されたフォーカスエラー信号の波形をもとに前記複数の記録層の位置を推定し、前記推定された複数の記録層の位置に仮の層情報をそれぞれ割り当て、当該仮の層情報を用いてユーザデータの記録先として選択された記録層の前記推定された位置にフォーカスを合わせた状態からフォーカスサーボをオンにし、フォーカスサーボの引き込み先の記録層の前記層情報記録領域から前記層情報を読み込み、この読み込まれた層情報と、前記ユーザデータの記録先としての記録層の選択に用いられた前記仮の層情報とを比較し、一致する場合、前記フォーカスサーボが引き込まれた記録層を前記ユーザデータの記録先として選択された記録層として確定する制御部と を具備する光記録装置。 It has a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers records layer information for identifying its own recording layer. An optical recording apparatus for recording on a multilayer optical disc having a layer information recording area, a light source that emits a light beam, an objective lens that focuses the light beam on the multilayer optical disc, and light reflected by the multilayer optical disc A light receiving unit that receives the beam and outputs an electric signal; a focus error generating unit that generates a focus error signal from the output of the light receiving unit; and a range in which the focus position of the light beam passes through at least the plurality of recording layers Based on the waveform of the focus error signal generated by the focus error generator along with the movement, The estimated recording layer position, assigning temporary layer information to each of the estimated recording layer positions, and using the temporary layer information, the estimated recording layer selected as a user data recording destination. The focus servo is turned on from the state in which the focus is adjusted to read the layer information from the layer information recording area of the recording layer into which the focus servo is drawn, and the read layer information and the user data are recorded. Compared with the provisional layer information used to select the recording layer as the destination, and if they match, the recording layer into which the focus servo is drawn is determined as the recording layer selected as the recording destination of the user data. An optical recording apparatus comprising a control unit.
  2. 情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報を含む管理情報が記録された層情報記録領域を有する多層光ディスクに記録を行う光記録方法であって、 光ビームのフォーカスの位置を少なくとも前記複数の記録層を通過させる範囲で移動させ、 この移動に伴って生成されたフォーカシングエラー信号の波形をもとに前記複数の記録層の位置を推定し、 前記推定された複数の記録層の位置に仮の層情報をそれぞれ割り当て、 当該仮の層情報を用いてユーザデータの記録先として選択された記録層の前記推定された位置にフォーカスを合わせた状態からフォーカスサーボをオンにし、 フォーカスサーボの引き込み先の記録層の前記層情報記録領域から前記層情報を読み込み、 この読み込まれた層情報と、前記ユーザデータの記録先としての記録層の選択に用いられた前記仮の層情報とを比較し、一致する場合、前記フォーカスサーボが引き込まれた記録層を前記ユーザデータの記録先として選択された記録層として確定する 光記録方法。 Management including a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, each of the plurality of recording layers including layer information for identifying its own recording layer An optical recording method for recording on a multi-layer optical disc having a layer information recording area in which information is recorded, wherein the focus position of the light beam is moved within at least a range passing through the plurality of recording layers, and accompanying this movement Based on the generated focusing error signal waveforms, the positions of the plurality of recording layers are estimated, temporary layer information is allocated to the estimated positions of the plurality of recording layers, and the temporary layer information is used. When the focus servo is turned on from the state where the estimated position of the recording layer selected as the user data recording destination is focused, the focus servo is turned on. The layer information is read from the layer information recording area of the recording layer to be included, and the read layer information is compared with the temporary layer information used for selecting the recording layer as the recording destination of the user data. If they coincide with each other, an optical recording method in which the recording layer into which the focus servo is drawn is determined as the recording layer selected as the recording destination of the user data.
  3. 情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層はそれぞれ、自身の記録層を識別するための層情報を含む管理情報が記録されるリードイン領域を有し、前記リードイン領域は隣り合う前記記録層の間で互いに位置をずらして配置された 多層光ディスク。 A plurality of recording layers capable of recording information, and a guide layer provided with a guide track for tracking, wherein each of the plurality of recording layers includes layer information for identifying its own recording layer A multi-layered optical disc having a lead-in area in which information is recorded, and the lead-in area is disposed so as to be shifted from each other between adjacent recording layers.
  4. 前記リードイン領域に前記層情報を含む管理情報が予め記録された 請求項3に記載の多層光ディスク。 The multilayer optical disc according to claim 3, wherein management information including the layer information is recorded in advance in the lead-in area.
  5. 情報を記録可能な複数の記録層と、トラッキングのためのガイドトラックが設けられたガイド層とを有し、前記複数の記録層がそれぞれ、自身の記録層を識別するための層情報が予め記録されたBCA(Burst_Cutting_Area)を有し、前記複数の記録層のBCAが互いに異なるディスク半径位置に配置された 多層光ディスク。 It has a plurality of recording layers capable of recording information and a guide layer provided with a guide track for tracking, and each of the plurality of recording layers records layer information for identifying its own recording layer in advance. A multi-layered optical disk having a BCA (Burst_Cutting_Area), wherein the BCAs of the plurality of recording layers are arranged at different disk radial positions.
  6. 前記BCAに、さらに、前記多層光ディスクを識別するためのディスク識別子が予め記録された 請求項5に記載の多層光ディスク。 6. The multilayer optical disk according to claim 5, wherein a disk identifier for identifying the multilayer optical disk is further recorded in advance on the BCA.
PCT/JP2013/072657 2012-09-28 2013-08-26 Optical recording device, optical recording method, and multilayer optical disk WO2014050398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216834A JP2014071928A (en) 2012-09-28 2012-09-28 Optical recording device, optical recording method, and multilayer optical disk
JP2012-216834 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050398A1 true WO2014050398A1 (en) 2014-04-03

Family

ID=50387807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072657 WO2014050398A1 (en) 2012-09-28 2013-08-26 Optical recording device, optical recording method, and multilayer optical disk

Country Status (3)

Country Link
JP (1) JP2014071928A (en)
TW (1) TW201428740A (en)
WO (1) WO2014050398A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491145B (en) * 2018-03-26 2020-09-08 广州视源电子科技股份有限公司 Handwriting canceling method and device for writing application, storage medium and terminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243299A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Disk like medium and disk apparatus
JP2010040093A (en) * 2008-08-04 2010-02-18 Pioneer Electronic Corp Optical recording medium driving device and additionally recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243299A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Disk like medium and disk apparatus
JP2010040093A (en) * 2008-08-04 2010-02-18 Pioneer Electronic Corp Optical recording medium driving device and additionally recording method

Also Published As

Publication number Publication date
JP2014071928A (en) 2014-04-21
TW201428740A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JPWO2002086873A1 (en) Optical disc, information recording / reproducing method and information recording / reproducing apparatus using the same
JPWO2008099708A1 (en) Recording medium, optical pickup device, and recording / reproducing device
US7911907B2 (en) Optical disc judgment method and optical disc device
US8325578B2 (en) Optical disc, optical disc recording/playback apparatus, and information recording/playback method
US8665689B2 (en) Multi-layer optical disc and optical disc apparatus
US20050190674A1 (en) Method and system for recording/reproducing data to/from information storage medium
US8335140B2 (en) Optical disc drive for recording or reproducing data on a multilayer optical disc with a layer identification region
WO2014050398A1 (en) Optical recording device, optical recording method, and multilayer optical disk
WO2013146491A1 (en) Multi-layer optical recording medium and optical recording device
WO2014021296A1 (en) Optical recording system and disc cartridge
US8611198B2 (en) Method for identifying group of multilayer disc, and optical disc device
US20100097913A1 (en) Information recording method and information recording apparatus
US20150109894A1 (en) Optical recording device and optical recording method
JP2009181614A (en) Optical disk and optical disk device
US20080298205A1 (en) Optical disc apparatus and optical disc distinguishing method
JP2015001998A (en) Optical recording device and focus control method therefor
RU2511612C2 (en) Data write carrier, data read device and method
WO2014045801A1 (en) Optical recording device and optical recording method
WO2014027597A1 (en) Disk cartridge, optical recording method, and optical recording system
WO2014030545A1 (en) Optical recording device and optical recording method
WO2014171401A1 (en) Optical recording device and maximum recording speed determination method
JP2014089789A (en) Optical recording device and tilt amount measuring method
WO2014021295A1 (en) Guide-layer-separated optical recording medium and optical recording device
WO2013146490A1 (en) Multi-layer recording medium and optical recording device
JP2013239216A (en) Optical recording device, optical recording method, and multilayer disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841818

Country of ref document: EP

Kind code of ref document: A1