WO2014021295A1 - Guide-layer-separated optical recording medium and optical recording device - Google Patents

Guide-layer-separated optical recording medium and optical recording device Download PDF

Info

Publication number
WO2014021295A1
WO2014021295A1 PCT/JP2013/070544 JP2013070544W WO2014021295A1 WO 2014021295 A1 WO2014021295 A1 WO 2014021295A1 JP 2013070544 W JP2013070544 W JP 2013070544W WO 2014021295 A1 WO2014021295 A1 WO 2014021295A1
Authority
WO
WIPO (PCT)
Prior art keywords
flag
signal
optical recording
recording
guide
Prior art date
Application number
PCT/JP2013/070544
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 下舞
今村 裕
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2014021295A1 publication Critical patent/WO2014021295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present invention relates to a guide layer separation type optical recording medium having a land / groove structure guide layer and an optical recording apparatus for recording on the guide layer separation type optical recording medium.
  • the recording layer is multi-layered.
  • track king control at the time of recording or reproducing data on a recording layer is performed using a guide track provided in a layer different from the recording layer.
  • tracking control is performed on a guide track layer provided with a guide track having a groove structure using light having a wavelength of 390 nm to 420 nm (blue), and one recording layer among a plurality of recording layers is 650 nm to 680 nm.
  • an optical drive device that performs recording using light of the wavelength (red) (for example, Patent Document 1).
  • a track of an optical recording medium such as a DVD or a Blu-ray is provided in a spiral shape. Therefore, in the tracking control method, the tracking target for causing the laser spot from the optical pickup to follow the track is periodically switched between the land portion and the groove portion. At this time, the tracking servo polarity is reversed between the land portion and the groove portion.
  • FIG. 14 shows a case where a PP (push-pull) method or a DPP (differential push-pull) method is employed as a tracking control method, when the laser spot is on the groove portion (during groove on track) and on the land portion.
  • FIG. 6 is a diagram illustrating a relationship between an off-track amount and a tracking error signal when the track is at a land (on land-on-track). *
  • the tracking servo is control for moving the laser spot in a direction orthogonal to the direction along the track so that the tracking error signal becomes zero.
  • the polarity of the tracking error signal becomes positive when the laser spot is shifted to the left side from the center of the groove. Therefore, by moving the laser spot to the right and positioning it at the center of the groove, the value of the tracking error signal gradually approaches 0 from a positive value.
  • the polarity of the tracking error signal becomes positive when the laser spot is shifted to the right side from the center of the land. Accordingly, by moving the laser spot to the left and positioning it at the center of the land, the value of the tracking error signal gradually approaches 0 from a positive value.
  • Patent Document 2 in an optical disk medium in which land areas and groove areas are alternately provided for each track, a unique signal pattern indicating the presence of a header area is recorded at the head of each of the land area and the groove area.
  • a technique for detecting the unique signal pattern and switching the polarity of the tracking servo is disclosed.
  • Patent Document 2 assumes a physical format in which the land group structure is interrupted in the header area. Therefore, it is sufficient that the switching of the tracking servo polarity is completed within the header area.
  • the polarity of the tracking servo can be switched at the switching point between the land and groove. Unless it is performed with high accuracy, stable tracking cannot be expected. Therefore, with the method of simply detecting the unique signal pattern and switching the polarity of the tracking servo, it is not always possible to switch the polarity of the tracking servo at a timing that is expected with high accuracy, and stable switching with the switching of the polarity of the tracking servo in between Tracking is not guaranteed.
  • the guide layer separation type multilayer optical disc is provided as physical address information recorded on the guide track of the guide layer by wobble or the like.
  • the optical recording apparatus for recording on the guide layer separation type multilayer optical disc demodulates the physical address information from the wobble signal, and specifies the physical address information and the information for specifying the recording layer. From this, it is assumed that the logical address given to the data unit recorded in the recording layer is calculated.
  • an object of the present invention is to enable stable tracking control with switching the polarity of the tracking servo, and to continuously give a logical address to data recorded on the recording layer. Another object is to provide a guide layer separation type optical recording medium and an optical recording apparatus.
  • a guide layer separation type optical recording medium includes one or more recording layers, a guide layer provided as a guide track in which land portions and groove portions are spirally continuous, and And a flag area in which a flag signal for causing the optical recording device to generate the timing of the switching point immediately before the switching point between the land portion and the groove portion in the recording direction is recorded in the guide track.
  • the flag signal may be recorded by wobbling the guide track. Alternatively, the flag signal may be recorded by a pit row. *
  • An optical recording apparatus includes one or more recording layers capable of recording information, and a guide layer provided as a guide track in which land portions and groove portions are spirally continuous,
  • the guide track is provided with a flag area in which a flag signal for generating the timing of the switching point in the optical recording apparatus is recorded immediately before the switching point between the land portion and the groove portion in the recording direction.
  • An optical recording apparatus that performs recording on a layer-separated optical recording medium, wherein a laser beam is applied to the guide track of the guide layer of the driven optical recording medium and a driving unit that drives the guide layer-separated optical recording medium
  • an optical pickup having a guide optical system that receives reflected light of the guide light and converts it into a received light signal, and a trap based on the received light signal.
  • a tracking control unit that generates a tracking error signal and performs tracking control, detects the flag signal based on the received light signal, generates the timing of the switching point, and sets the polarity of the tracking control at the generated timing.
  • a flag processing unit that sequentially inverts.
  • the polarity of the tracking servo can be accurately switched at the switching point between the land portion and the groove portion, and stable tracking control can be performed with the switching of the polarity of the tracking servo.
  • the optical recording apparatus further includes a clock generation unit that generates a reference clock based on the light reception signal, and the flag processing unit detects the flag signal after detecting the flag signal based on the light reception signal. And the time when the count value reaches a predetermined value may be generated as the timing of the switching point.
  • the flag signal may be recorded as a predetermined wobble of the guide track, and the flag processing unit may detect the flag signal recorded as the predetermined wobble based on the light reception signal.
  • the flag signal may be recorded as a predetermined pit row on the guide track, and the flag processing unit may detect the flag signal recorded as the predetermined pit row based on the light reception signal.
  • the optical recording apparatus includes a control unit that controls to stop recording on the recording layer from when the flag signal is detected by the flag processing unit until the timing of the switching point is generated It may further comprise. This ensures the acquisition of physical address information necessary for generating the logical address to be given to the data recorded on the recording layer, and can continuously give the logical address to the data recorded on the recording layer.
  • the optical recording apparatus is a control unit that performs control to record dummy data on the recording layer from when the flag signal is detected by the flag processing unit to when the timing of the switching point is generated It may further comprise.
  • FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention. It is a figure which shows the relationship between the storage unit, the optical disk, and drive unit in the optical recording system of FIG. It is sectional drawing which shows the structure of the optical disk which is a guide layer separated type optical recording medium.
  • FIG. 4 is a plan view showing a guide track of a guide layer of the optical disc in FIG. 3.
  • FIG. 5 is a diagram illustrating a structure around a switching point between a land portion and a groove portion in the guide track of FIG. 4. It is a figure which shows the structure of a polarity inversion flag area
  • FIG. 8 is a block diagram illustrating a specific configuration of a wobble playback unit and a flag processing unit in the disk drive of FIG. 7.
  • FIG. 5 is a diagram showing a modification of the structure around a switching point between a land portion and a groove portion in the guide track of FIG. 4. It is a figure which shows the structure of the disk drive which is a modification.
  • FIG. 11 is a block diagram illustrating a specific configuration of a wobble reproduction unit and a pit string flag processing unit in the disk drive of the modified example of FIG. It is a figure which shows the relationship between the physical address of the data area of a guide layer, and the logical address allocated to the data area of each recording layer. It is a figure which shows the specific allocation of a logical address. It is a figure which shows the relationship between the amount of off-tracks at the time of groove on track and land on track, and a tracking error signal in PP method or DPP method.
  • FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention. *
  • FIG. 1 is a diagram showing the overall configuration of an optical recording system.
  • the optical recording system 1 includes a storage unit 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
  • the storage unit 10 is a unit in which a plurality of optical disks 11 (guide layer separation type optical recording media) are individually detachably accommodated. *
  • the storage unit 10 As a storage form of the plurality of optical disks 11 in the storage unit 10, flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between the adjacent optical disks 11 so that the optical disk 11 can be smoothly inserted into and removed from the storage unit 10.
  • the shape of the storage unit 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the optical disk 11. In the example of FIG. 1, a rectangular parallelepiped storage unit 10 in which a plurality of optical disks 11 are accommodated in a flat stack is used. *
  • FIG. 2 is a diagram illustrating the configuration of the storage unit 10, the optical disk 11, and the drive unit 30. At least one side surface of the storage unit 10 is provided with an opening 101 for inserting and removing the optical disk 11 and a door (not shown) for opening and closing the opening 101. The door is opened / closed in conjunction with the operation of loading / unloading the optical disk 11 from / to the storage unit 10 by the disk transport mechanism 20, and is closed at other times. *
  • the configuration of the storage unit 10 is not limited to that shown in FIG.
  • Various modifications such as the shape of the storage unit 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of optical disks 11 are possible.
  • optical disc 11 accommodated in the storage unit 10 is a so-called “guide layer separation type optical recording medium” in which a guide layer and a recording layer are separated into separate layers.
  • FIG. 3 is a cross-sectional view showing the structure of the optical disc 11.
  • the optical disc 11 has a guide layer 112 and one or more recording layers 113.
  • the number of recording layers 113 is “4”.
  • An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113.
  • These layers are the protective layer 115, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident.
  • the layer 114, the recording layer 113, the intermediate layer 114, and the guide layer 112 are stacked in this order. *
  • a guide track 121 having a land / groove structure is spirally provided on the surface of the guide layer 112 facing the recording layer 113.
  • On the side wall surface of the guide track 121 physical address information indicating position information over the entire circumference of the disk is recorded by wobble.
  • the guide track 121 is formed with a track pitch (0.64 ⁇ m) corresponding to, for example, red laser light used for recording / reproduction of a DVD (Digital Versatile Disk).
  • the average pitch between the land and the groove is 0.32 ⁇ m.
  • the laser beam of the red laser beam is referred to as “guide light”. *
  • the land portion and the groove portion are used as a guide track 121 having a spiral shape. Therefore, the pitch of the guide track 121 is 0.32 ⁇ m.
  • a laser beam having a red wavelength (second wavelength) used for recording / reproduction of a DVD (Digital Versatile Disk) is used.
  • the laser light having the second wavelength may be referred to as “guide light”.
  • tracking control by, for example, a differential push-pull method (DPP: Differential Push-Pull) is performed in each of the land portion and the groove portion of the guide track 121.
  • DPP Differential Push-Pull
  • information recording on the recording layer 113 can be performed at a track pitch of 0.32 ⁇ m.
  • the tracking target for causing the guide light spot from the optical pickup to follow the guide track 121 is switched alternately between the land portion and the groove portion. Since the tracking servo polarity is reversed between the land and groove, stable tracking control is possible unless the switching point between the land and groove is detected as accurately as possible and the tracking servo polarity is reversed. Can not expect. *
  • FIG. 4 is a plan view showing the guide track 121 of the guide layer 112 of the optical disc 11
  • FIG. 5 is an enlarged view of the structure around the switching point between the land portion and the groove portion in the guide track 121 of FIG. FIG. *
  • the land portion and the groove portion are switched at a cycle of one rotation of the optical disc 11.
  • the switching point between the land portion and the groove portion is arranged on one radiation from the center point of the optical disc 11.
  • a polarity inversion flag region 122 is provided immediately before the switching point between the land portion and the groove portion.
  • FIG. 6 is a diagram showing the structure of the polarity inversion flag region 122.
  • a flag signal for causing the disk drive 31 to generate the timing of the switching point between the land portion and the groove portion is recorded as, for example, a wobble of the guide track 121. Yes.
  • the wobble recorded as the flag signal is referred to as “flag wobble”.
  • the areas other than the polarity inversion flag area 122 of the guide track 121 are areas used for tracking control, acquisition of physical address information, recording clock generation, and the like when recording on the recording layer 113. This area is referred to as a “data area 123”. I will call it. In the data area 123, physical address information is recorded as wobble. Hereinafter, the wobble in the data area 123 is referred to as “data wobble”. *
  • the data wobble and the flag wobble are formed with different frequencies or amplitudes so that the disk drive 31 can discriminate between the data wobble and the flag wobble.
  • FIG. 6 shows a case where a difference is made in the frequency of the data wobble and the flag wobble.
  • the flag wobble cycle W1 is set to a value sufficiently smaller than the data wobble cycle W0 so that the disk drive 31 can reliably and quickly discriminate between the data wobble and the flag wobble.
  • the flag wobble cycle W1 is depicted as being several times lower than the data wobble cycle W0, but may be several tens of times lower or even lower.
  • the flag wobble cycle W1 is not set to a value sufficiently lower than the data wobble cycle W0, it is difficult to reliably distinguish the flag wobble from the data wobble, and the timing of the switching point is generated with high accuracy. It's also difficult. Further, it takes time until the disk drive 31 determines the detection of the flag wobble, and the length of the polarity reversal flag area 122 is required accordingly, so that the overall recording capacity is reduced. Therefore, it is desirable that the flag wobble cycle W1 is set to a value sufficiently lower than the data wobble cycle W0.
  • the physical condition of the flag wobble is not limited to the above.
  • the flag wobble period W1 is larger than the data wobble period W0, the meaning of satisfying the role of the flag signal for causing the disk drive 31 to generate the switching point timing between the land part and the groove part is satisfied. Then it is effective.
  • a structure in which the polarity reversal flag region 122 is not intentionally wobbled is also conceivable. The above is the description of the guide layer 112. *
  • the recording layer 113 is a layer on which information is recorded with a track pitch of 0.32 ⁇ m using a laser beam having a blue wavelength (first wavelength) used for recording and reproduction of a Blu-ray Disc (registered trademark), for example.
  • the laser light having the first wavelength may be referred to as “recording / reproducing light” or “recording light”.
  • the recording layer 113 is composed of, for example, a light absorption layer and a reflection layer.
  • the light absorption layer organic dyes such as cyanine dyes and azo dyes, and inorganic materials such as Si, Cu, Sb, Te, and Ge are used.
  • the recording layer 113 Since tracking control and physical address information at the time of recording and reproducing information on the recording layer 113 and acquisition of a recording clock such as a recording clock are performed using the wobble signal of the guide track 121 of the guide layer 112,
  • the recording layer 113 does not require the guide track 121 having a land / groove structure. Therefore, the surface of the recording layer 113 may be flat.
  • the disk transport mechanism 20 takes out the target optical disk (guide layer separation type optical recording medium) 11 from the storage unit 10 and loads it into the disk drive 31 in the drive unit 30, or conversely from the disk drive 31. This is a mechanism for returning the ejected optical disk 11 to the storage unit 10.
  • the disk transport mechanism 20 can take out a plurality of optical disks 11 from the storage unit 10 at the same time and separately load them into a plurality of disk drives 31 in the drive unit 30. It is desirable to have a mechanism. *
  • a plurality of disk drives 31 are mounted in the drive unit 30. In the example of FIG. 5, five disk drives 31 are mounted. The number of optical disks 11 accommodated in the storage unit 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same. *
  • FIG. 7 is a diagram showing the configuration of the disk drive 31.
  • the disk drive 31 includes an optical pickup 32.
  • the optical pickup 32 includes a first optical system corresponding to the recording / reproducing light and a second optical system corresponding to the guide light. *
  • the first optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength.
  • the plate 39, the objective lens 60, the first light receiving lens 61, the first light receiving unit 62, and the like are included.
  • the synthesis prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the first optical system and a second optical system described later. *
  • the first light source 33 includes a laser diode that emits laser light having a first wavelength as recording / reproducing light R1.
  • the recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37.
  • the light enters the combining prism 38.
  • the synthesizing prism 38 matches the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to the second optical system described later. Are combined and made incident on the objective lens 60 via the quarter-wave plate 39.
  • the incident recording / reproducing light is condensed by the objective lens 60 so as to be focused on the target recording layer 113 of the optical disk 11. *
  • the recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction.
  • the first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident.
  • the first light receiving unit 62 is composed of a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each of the divided light receiving surfaces. Is output to the equalizer 75 as a reproduction signal of the recording data, and a voltage signal for each divided light receiving surface is output to a focus error generation unit (not shown). *
  • the second optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength.
  • the second light source 63 emits guide light R2 having a second wavelength.
  • the guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67.
  • the light enters the prism 38.
  • the guide light R2 incident on the combining prism 38 and the optical axis of the recording / reproducing light R1 having the first wavelength incident on the combining prism 38 from the second collimator lens 37 of the first optical system. Are made to coincide with each other and enter the objective lens 60 via the quarter-wave plate 39.
  • the incident guide light R2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the optical disk 11. *
  • the guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees.
  • the second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident. *
  • the second light receiving unit 69 is, for example, a light receiving element whose light receiving surface is divided into two in the disk radial direction orthogonal to the track, a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, or light receiving A main light-receiving element whose surface is divided into at least two parts and a combination of two sub-light-receiving elements divided into two parts are arranged on both sides of the main light-receiving element in the tangential direction.
  • the second light receiving unit 69 selectively outputs a voltage signal having a level corresponding to the received light intensity of each divided light receiving surface to the tracking control unit 71 and the wobble reproduction unit 78. *
  • the optical pickup 32 is provided with a tracking actuator 70 and a focusing actuator (not shown).
  • the tracking actuator 70 moves the objective lens 60 in the disk radial direction based on the tracking drive signal from the tracking control unit 71.
  • the focusing actuator moves the objective lens 60 in the optical axis direction by a focus drive signal from a focus control unit (not shown).
  • the optical pickup 32 includes a first relay lens actuator that moves the first relay lens 36 in the optical axis direction so as to switch the recording layer 113 irradiated with the recording / reproducing light, and a first relay lens actuator.
  • a second relay lens actuator for moving the second relay lens 66 in the optical axis direction is provided. The above is the description of the optical pickup 32. *
  • the disk drive 31 includes a data modulating unit 72, a first light source driving unit 73, a second light source driving unit 74, an equalizer 75, a data reproducing unit 76, a tracking control unit 71, a wobble.
  • the reproduction unit 78, the disk motor driving unit 79, the feed mechanism 80, the disk motor control unit 81, the controller 82, the flag processing unit 83, and a focus error generation unit, a focus control unit, a relay lens control unit, and the like (not shown) are included. *
  • the data modulator 72 modulates the recording data supplied from the controller 82 into a bit string signal suitable for forming a recording mark, and supplies the modulated signal to the first light source driver 73.
  • the first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72.
  • the equalizer 75 performs binarization at a predetermined slice level after performing an equalization process such as PRML (Partial Response Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62.
  • PRML Partial Response Maximum Likelihood
  • the data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 82.
  • the tracking control unit 71 generates a tracking error signal by, for example, the PP (push-pull) method or the DPP (differential push-pull) method based on the voltage signal of each divided light receiving surface of the second light receiving unit 69. Then, a tracking drive signal to be supplied to the tracking actuator 70 is generated based on the tracking error signal. Further, the tracking control unit 71 receives the tracking servo polarity switching signal from the flag processing unit 83, and the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved is the + direction of the disk radial direction (the direction toward the disk outer periphery). And-direction (direction toward the inner circumference of the disc). *
  • the wobble reproduction unit 78 reproduces a wobble signal based on the output of the second light receiving unit 69, discriminates the reproduced wobble signal into a data wobble signal and a flag wobble signal based on the frequency, etc. Address information is demodulated and supplied to the controller 82.
  • the wobble reproduction unit 78 generates a reference recording clock from the data wobble signal. Further, the wobble reproduction unit 78 supplies the discriminated flag wobble signal to the flag processing unit 83.
  • the flag processing unit 83 detects the polarity inversion flag region 122 based on the flag wobble signal supplied from the wobble reproduction unit 78, generates the switching point timing between the land portion and the groove portion, and at the generated timing.
  • a tracking servo polarity switching signal is supplied to the tracking control unit 71 and the controller 82. The specific configuration and operation of the flag processing unit 83 will be described later. *
  • the disk motor drive unit 79 supplies a drive signal to a disk motor 85 that rotates the optical disk 11 under the control of the disk motor control unit 81.
  • the feed mechanism 80 is a mechanism for transporting the optical pickup 32 in the radial direction of the optical disc 11. *
  • a focus control unit (not shown) supplies a focus drive signal to the focusing actuator based on a focus error signal from a focus error generation unit (not shown) to move the objective lens 60 in the optical axis direction.
  • the controller 82 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the controller 82 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM. *
  • a plurality of the disk drives 31 described above are mounted on the drive unit 30 and can be controlled independently, and information can be recorded and reproduced on the loaded optical disk 11 simultaneously.
  • RAID Controller 40 A RAID (Redundant Arrays of Inexpensive Disks) controller 40 records data in multiple on one or more disk drives 31 in the drive unit 30 in response to a recording command from the host device 50, or performs striping. RAID control to record in a distributed manner is performed. *
  • the controller 82 of each disk drive 31 to which the recording or reproducing instruction is given from the RAID controller 40 performs control for recording or reproducing data on the optical disk 11.
  • the host device 50 is the highest-level device that controls the optical recording system 1.
  • the host device 50 may be a personal computer.
  • the host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response.
  • a data recording command is given from the host device 50 to the controller 82 of one or more disk drives 31 in the drive unit 30 through the RAID controller 40. Since the operation of each disk drive 31 when receiving a recording command is the same, the operation of one disk drive 31 will be described. *
  • the controller 82 of the disk drive 31 controls the feed mechanism 80 so that the optical pickup 32 is moved to a position corresponding to the innermost circumference of the area in which no data is recorded in the recording area of the recording layer 113 of the optical disk 11, and
  • the disk motor drive unit 79 is controlled to rotate the disk 11 at an appropriate speed in the CLV method or the CAV method.
  • the controller 82 sets the position of the first relay lens 36 of the optical pickup 32 in the optical axis direction so that the recording light from the objective lens 60 of the optical pickup 32 is focused on the target recording layer 113 of the optical disc 11.
  • the position of the second relay lens 66 of the optical pickup 32 in the optical axis direction is controlled so that the guide light from the objective lens 60 of the optical pickup 32 is focused on the guide layer 112 of the optical disc 11.
  • the controller 82 of the disk drive 31 supplies the recording data transferred from the host device 50 through the RAID controller 40 to the data modulator 72.
  • the data modulation unit 72 generates a recording signal by performing modulation of recording data, adding an error correction code, and the like, and supplies the recording signal to the first light source driving unit 73.
  • the first light source driving unit 73 generates a driving pulse for the first light source 33 based on the recording signal and supplies it to the first light source 33.
  • the controller 82 outputs a control signal to the second light source driving unit 74 so as to drive the second light source 63.
  • recording of data on the recording layer 113 by the recording light from the optical pickup 32 is started. That is, data recording by the CLV method or the CAV method is started from the inner periphery to the outer periphery with respect to the target recording layer 113 of the optical disc 11. *
  • the tracking control is performed using guide tracks 121 provided on the guide layer 112 of the optical disc 11 with a track pitch of 0.32 ⁇ m.
  • the tracking control unit 71 generates a tracking error signal based on the output of the second light receiving unit 69 by, for example, a PP (push-pull) method or a DPP (differential push-pull) method, and based on this tracking error signal.
  • a tracking drive signal is supplied to the tracking actuator 70, and the objective lens 60 is moved in a direction perpendicular to the optical axis (disk radial direction) to perform tracking control.
  • the wobble reproduction unit 78 reproduces the wobble signal based on the output of the second light receiving unit 69. Since the wobble reproduction unit 78 has a function of discriminating the reproduced wobble signal into a data wobble signal and a flag wobble signal based on a frequency or the like, when the beam spot of the guide light is in the data area 123 of the guide track 121, The wobble signal is discriminated as a data wobble signal, physical address information is demodulated from the data wobble signal, and a recording clock is generated from the data wobble signal.
  • the wobble reproduction unit 78 discriminates the wobble signal as a flag wobble signal and supplies the flag wobble signal to the flag processing unit 83.
  • the flag processing unit 83 detects the polarity inversion flag region 122 based on the flag wobble signal supplied from the wobble reproduction unit 78, and generates the timing of the switching point between the land portion and the groove portion. At this timing, the tracking servo polarity Is supplied to the tracking control unit 71.
  • FIG. 8 is a block diagram showing a more specific configuration of the wobble reproduction unit 78 and the flag processing unit 83. *
  • the wobble reproduction unit 78 includes a wobble signal generation unit 90, a wobble discriminator 91, a wobble PLL 92, and a recording clock PLL 93.
  • the flag processing unit 83 includes a flag wobble counter 94 and a clock counter 95.
  • the wobble signal generation unit 90 generates a wobble signal using the signal from the second light receiving unit 69.
  • the generated wobble signal is discriminated by the wobble discriminator 91 into a data wobble signal and a flag wobble signal based on, for example, the frequency and amplitude of the wobble signal.
  • the data wobble signal is supplied to a wobble PLL (Phase-Locked Loop) 92, where a wobble clock which is a clock corresponding to the data wobble period is generated.
  • the wobble clock is multiplied by the recording clock PLL 93 to generate a recording clock.
  • the generated recording clock is supplied to the data modulation unit 72 and also to the clock counter 95 of the flag processing unit 83 and the like.
  • the flag wobble signal discriminated by the wobble discriminator 91 is supplied to the flag wobble counter 94 in the flag processing unit 83.
  • the flag wobble counter 94 counts the flag wobble signal supplied from the wobble discriminator 91. For example, when the flag wobble counter 94 determines that n flag wobble signals have been continuously input, the flag wobble counter 94 determines that the beam spot of the guide light is currently in the polarity inversion flag region 122 and counts it to the clock counter 95. A start signal is output.
  • n or more flag wobbles are continuously provided from the start point of the polarity inversion flag region 122 in the recording direction.
  • the distance from the position where n flag wobbles are completed to the switching point between the land portion and the groove portion can be expressed by the number x of recording clocks. Therefore, the clock counter 95 supplies a tracking servo polarity switching signal to the tracking controller 71 when the number of recording clocks supplied from the recording clock PLL 93 reaches x after starting the counting.
  • the tracking control unit 71 determines the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved, in the + direction (direction toward the outer periphery of the disk) and the ⁇ direction (in the disk). (Direction toward the lap).
  • significant user data recording to the recording layer 113 corresponds to the data area 123 of the guide layer 112. This is performed only in the area, and recording of user data is stopped in the area corresponding to the polarity inversion flag area 122. That is, the user data is recorded on the recording layer 113 so that the logical addresses are continuous before and after the area corresponding to the polarity inversion flag area 122.
  • an extra DC component is generated in the reproduction signal, which may adversely affect data demodulation processing.
  • a pit string of dummy data obtained by repeating a 9-T mark and a space may be recorded in an area corresponding to the polarity inversion flag area 122 of the recording layer 113.
  • a method for generating a logical address will be described later.
  • the beam spot of the current guide light is changed to the polarity inversion flag region 122.
  • a count start signal is output to the clock counter 95, and at the same time, a start point detection signal of the polarity inversion flag region 122 is supplied to the controller 82, and a tracking servo polarity switching signal is supplied to the tracking controller 71.
  • the end point detection signal of the polarity reversal flag region 122 is supplied to the controller 82 at the timing of *
  • the controller 82 gives dummy data by repeating, for example, a 9-T mark and a space to the data modulation unit 72 after receiving the start point detection signal of the polarity inversion flag region 122 until receiving the end point detection signal. Control to output. As described above, the recording is continuously performed during the period from the reception of the start point detection signal of the polarity inversion flag region 122 to the reception of the end point detection signal, so that tracking during reproduction can be stabilized. it can. *
  • the tracking servo polarity can be switched at the switching point between the land portion and the groove portion with high accuracy in the order of the recording clock cycle.
  • the tracking control is executed without interruption, and stable tracking control is possible even when the switching point between the land portion and the groove portion is sandwiched. It becomes.
  • a flag signal for generating the timing of the switching point between the land part and the groove part in the disk drive 31 is recorded in the polarity reversal flag area 122 of the guide track 121 by wobble.
  • the present invention is not limited to this.
  • a flag signal for causing the disc drive 31 to generate the timing of the switching point between the land portion and the groove portion is configured by a pit row in the polarity reversal flag region 122 of the guide track 121. Also good. *
  • the mark and space pattern constituting the pit row used in the polarity reversal flag region 122 may be any when the other data is not pre-written on the guide track 121 by the pit row by the 8-16 modulation method or the like. Such may be used.
  • dummy data using a mark length that is not used in the 8-16 modulation method can be used. Good. *
  • the mark and space pattern constituting the pit row may be any pattern that allows the disk drive to detect the polarity reversal flag region 122 reliably and quickly.
  • m being an arbitrary value
  • a pit row pattern in which mT-length spaces and mT-length marks are alternately continued at least n times is prewritten from the tip of the polarity inversion flag region 122. ing. *
  • FIG. 10 shows a disc that employs a method of generating a timing for reversing the tracking servo polarity at the switching point between the land portion and the groove portion from the polarity reversal flag region 122 in which the flag signal is recorded in the pit row pattern as described above. It is a block diagram which shows the structure of drive 31A. *
  • the pit row flag processing unit 83A generates a signal obtained by fully adding the voltage signals obtained from the divided light receiving surfaces from the second light receiving unit 69, and equalization processing of the generated signal After the binarization, the polarity inversion flag region 122 is detected, the timing of the switching point between the land portion and the groove portion is generated, and the tracking servo polarity switching signal is generated at the generated timing by the tracking control unit 71 and the controller 82. To supply. *
  • FIG. 11 is a block diagram showing a more specific configuration of the wobble playback unit 78A and the pit string flag processing unit 83A. *
  • the wobble reproduction unit 78A includes a wobble signal generation unit 90A, a wobble PLL 92A, and a recording clock PLL 93A.
  • the pit string flag processing unit 83A includes an equalizer 96A, a pit string flag detecting unit 97A, a clock counter 95A, and the like. *
  • the wobble signal generation unit 90A In the wobble reproduction unit 78A, the wobble signal generation unit 90A generates a wobble signal using the signal from the second light receiving unit 69.
  • the generated wobble signal is supplied to the wobble PLL 92A, where a wobble clock which is a clock corresponding to the wobble cycle is generated.
  • the wobble clock is multiplied by the recording clock PLL 93A to generate a recording clock.
  • the generated recording clock is supplied to the data modulation unit 72 and is also supplied to the clock counter 95A in the pit string flag processing unit 83A. *
  • a signal from the second light receiving unit 69 (a signal obtained by fully adding the voltage signals obtained by the divided light receiving surfaces) is supplied to the equalizer 96A in the pit string flag processing unit 83A, where Are removed and then supplied to the pit row flag detector 97A.
  • the pit row flag detection unit 97A Based on the binary signal output from the equalizer 96A, the pit row flag detection unit 97A generates a predetermined pit row pattern in which mT length spaces and mT length marks are alternately repeated n times. It is determined as a flag signal.
  • the pit row flag detection unit 97A detects the pit row pattern of the flag signal, it determines that the beam spot of the guide light is currently in the polarity inversion flag region 122 and outputs a count start signal to the clock counter 95A. Note that m is a predetermined integer. *
  • the clock counter 95A supplies a tracking servo polarity switching signal to the tracking control unit 71 when the number of recording clocks supplied from the recording clock PLL 93A reaches x after starting the counting.
  • the tracking control unit 71 determines the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved, in the + direction (direction toward the outer periphery of the disk) and the ⁇ direction (in the disk). (Direction toward the lap).
  • the tracking servo polarity can be switched at the switching point between the land portion and the groove portion with high accuracy in the order of the recording clock cycle.
  • the present invention is not limited to this.
  • the pit row can generate a similar recording clock.
  • the switching timing of the tracking servo polarity may be generated using a recording clock generated by using the recording clock.
  • FIG. 12 is a diagram showing the relationship between the physical address of the data area of the guide layer and the logical address assigned to the data area of each recording layer. 12, the solid line indicates the physical address of the data area of the guide layer, and the dotted line indicates the logical address assigned to the data areas of the four recording layers.
  • the four recording layers are denoted as a recording layer L0, a recording layer L1, a recording layer L2, and a recording layer L3 in order from the one closest to the guide layer. Note that user data is recorded on the four recording layers in the order of L0, L1, L2, and L3, and user data is recorded on each recording layer from the inner periphery toward the outer periphery. *
  • the physical address space of the data area of the guide layer has only the capacity of the data area of one recording layer, it can be assigned only to the logical address space of the data area of one recording layer as it is. Therefore, in this embodiment, the logical addresses of the data areas of all the recording layers indicated by the dotted lines are obtained by calculation from the physical address of the guide layer and the recording layer information.
  • the maximum physical address (final physical address) in the guide layer is PSN_max
  • FIG. 13 is a diagram showing specific allocation of logical addresses. For example, it is assumed that physical addresses from “1” to “100” are assigned to the guide layer from the inner peripheral side, the top physical address of the data area of the guide layer is “10”, and the last of the data area of the guide layer is The physical address is “90”. Note that the values of these physical addresses are only values determined for convenience of explanation. *
  • the logical address (LSN) specified by the host device 50 is divided by the maximum physical address (PSN_MAX) of the guide layer.
  • the quotient value obtained by this calculation is the recording layer information (x), and the remainder is the physical address (PSN).
  • the controller 82 creates an ID by merging the created sector information (Sector Information) and the logical address. Subsequently, the controller 82 adds the error detection code, user data, and error detection code of the ID to the ID to create a data frame. Further, the controller 82 scrambles the data frame, creates an ECC block, and interleaves, and supplies the result to the data modulator 72 as data for recording.
  • the data modulation unit 72 modulates the recording data with a recording code such as an 8/16 conversion code and supplies the modulation signal to the first light source driving unit 73.
  • the first light source drive unit 73 supplies drive pulses to the first light source 33 based on the modulation signal from the data modulation unit 72.
  • the recording / reproducing light R 1 is emitted from the first light source 33, and user data is recorded in the data area of the recording layer of the optical disk 11.

Abstract

[Problem] To enable stable tracking control falling between the switching of the polarity of a tracking servo. [Solution] This optical recording device records at an optical recording medium that has at least one recording layer and a guide layer provided as a guide track at which a land section and a groove section are helically continuous and is provided with a flag region at which a flag signal is recorded for generating the timing of switching points immediately prior to the switching points of the groove section and the land section in the recording direction in the guide track. An optical pickup radiates guide light at the guide track of the guide layer, and receives returning light. A tracking control unit performs tracking control by generating a tracking error signal on the basis of the received light signal. A flag processing unit generates the timing of the switching points by detecting a flag signal on the basis of the received light signal, and reverses the polarity of tracking control at said timing.

Description

ガイド層分離型光記録媒体および光記録装置Guide layer separation type optical recording medium and optical recording apparatus
本発明は、ランド・グルーブ構造のガイド層を有するガイド層分離型光記録媒体および、このガイド層分離型光記録媒体に記録を行う光記録装置に関する。 The present invention relates to a guide layer separation type optical recording medium having a land / groove structure guide layer and an optical recording apparatus for recording on the guide layer separation type optical recording medium.
DVD(Digital Versatile Disk)、ブルーレイディスク(登録商標)などの光ディスクの大容量化を目的として、記録層を多層化することが行われる。記録層の多層化に伴い、記録層へのデータの記録または再生時のトラックキング制御を、記録層とは別の層に設けられたガイドトラックを用いて行う方式も知られている。  For the purpose of increasing the capacity of an optical disk such as a DVD (Digital Versatile Disk) or a Blu-ray Disc (registered trademark), the recording layer is multi-layered. Along with the increase in the number of recording layers, there is also known a system in which track king control at the time of recording or reproducing data on a recording layer is performed using a guide track provided in a layer different from the recording layer. *
例えば、溝構造によるガイドトラックが設けられたガイドトラック層に390nm~420nmの波長(青色)の光を使用してトラッキング制御を行うとともに、複数の記録層の中の一つの記録層に650nm~680nmの波長(赤色)の光を使用して記録を行う光ドライブ装置などがある(例えば、特許文献1等)。  For example, tracking control is performed on a guide track layer provided with a guide track having a groove structure using light having a wavelength of 390 nm to 420 nm (blue), and one recording layer among a plurality of recording layers is 650 nm to 680 nm. There is an optical drive device that performs recording using light of the wavelength (red) (for example, Patent Document 1). *
また、記録層一枚当たりの記録容量を増やす方式として、ランドとグルーブの両方にマークを記録するランド・グルーブ記録方式がある。このランド・グルーブ記録方式では、グルーブ部のみに記録を行う方式で採用されるトラッキング制御方式をそのまま用いて狭ピッチ化を実現できる。  Further, as a system for increasing the recording capacity per recording layer, there is a land / groove recording system in which marks are recorded on both lands and grooves. In this land / groove recording method, the pitch can be narrowed by using the tracking control method employed in the method of recording only in the groove portion. *
一般的にDVD、ブルーレイなどの光記録媒体のトラックは螺旋状に設けられる。したがって、トラッキング制御方式では、光ピックアップからのレーザスポットをトラックに追従させるトラッキングの対象がランド部とグルーブ部との間で周期的に切り替わる。この際、ランド部とグルーブ部とではトラッキングサーボ極性が逆になる。  Generally, a track of an optical recording medium such as a DVD or a Blu-ray is provided in a spiral shape. Therefore, in the tracking control method, the tracking target for causing the laser spot from the optical pickup to follow the track is periodically switched between the land portion and the groove portion. At this time, the tracking servo polarity is reversed between the land portion and the groove portion. *
図14は、トラッキング制御方式としてPP(プッシュプル)法またはDPP(差動プッシュプル)法を採用した場合において、レーザスポットがグルーブ部の上にあるとき(グルーブオントラック時)およびランド部の上にあるとき(ランドオントラック時)のオフトラック量とトラッキングエラー信号との関係を示す図である。  FIG. 14 shows a case where a PP (push-pull) method or a DPP (differential push-pull) method is employed as a tracking control method, when the laser spot is on the groove portion (during groove on track) and on the land portion. FIG. 6 is a diagram illustrating a relationship between an off-track amount and a tracking error signal when the track is at a land (on land-on-track). *
ここで、トラッキングサーボとは、トラッキングエラー信号が零となるようにレーザスポットをトラックに沿った方向に対して直交方向へ移動させる制御である。グルーブオントラック時は、レーザスポットがグルーブの中心よりも左側にずれているときトラッキングエラー信号の極性は正となる。したがって、レーザスポットを右側に移動させてグルーブの中心に位置付けて行くことで、トラッキングエラー信号の値は正の値から次第に0に近づいて行く。  Here, the tracking servo is control for moving the laser spot in a direction orthogonal to the direction along the track so that the tracking error signal becomes zero. At the time of groove on track, the polarity of the tracking error signal becomes positive when the laser spot is shifted to the left side from the center of the groove. Therefore, by moving the laser spot to the right and positioning it at the center of the groove, the value of the tracking error signal gradually approaches 0 from a positive value. *
一方、ランドオントラック時は、レーザスポットがランドの中心よりも右側にずれているときトラッキングエラー信号の極性は正となる。したがって、レーザスポットを左側に移動させてランドの中心に位置付けて行くことで、トラッキングエラー信号の値は正の値から次第に0に近づいて行く。  On the other hand, at the time of land-on-track, the polarity of the tracking error signal becomes positive when the laser spot is shifted to the right side from the center of the land. Accordingly, by moving the laser spot to the left and positioning it at the center of the land, the value of the tracking error signal gradually approaches 0 from a positive value. *
上記の事情によりランド・グルーブ記録方式では、レーザスポットがグルーブ部の上にあるときとランド部の上にあるときとでトラッキングサーボの極性を切り替える必要がある。特にトラックが螺旋状に連続するなかでランドとグルーブが切り替わる構造の場合には、トラッキングサーボの極性を切り替えるタイミングにずれがあるとトラッキングが不安定になる。  Due to the above circumstances, in the land / groove recording method, it is necessary to switch the polarity of the tracking servo between when the laser spot is on the groove portion and on the land portion. In particular, in the case of a structure in which lands and grooves are switched while tracks are spirally continuous, tracking becomes unstable if there is a deviation in the timing of switching the polarity of the tracking servo. *
特許文献2には、トラック毎にランド領域とグルーブ領域とが交互に設けられた光ディスク媒体において、ランド領域およびグルーブ領域それぞれのヘッダ領域の先頭にヘッダ領域の存在を示す固有信号パターンを記録し、この固有信号パターンを検出してトラッキングサーボの極性の切り替えを行う技術が開示されている。 In Patent Document 2, in an optical disk medium in which land areas and groove areas are alternately provided for each track, a unique signal pattern indicating the presence of a header area is recorded at the head of each of the land area and the groove area. A technique for detecting the unique signal pattern and switching the polarity of the tracking servo is disclosed.
特開2007-200427号公報JP 2007-200197 A 特開平10-154355号公報JP-A-10-154355
しかしながら、特許文献2に記載のものにおいては、ヘッダ領域においてランド・グループ構造が途切れた物理フォーマットが想定されている。したがって、トラッキングサーボの極性の切り替えはヘッダ領域内で完了していればよい。  However, the one disclosed in Patent Document 2 assumes a physical format in which the land group structure is interrupted in the header area. Therefore, it is sufficient that the switching of the tracking servo polarity is completed within the header area. *
これに対し、ランド・グループ構造が螺旋状に途切れることなく連続した物理フォーマットが採用された光記録媒体の場合、トラッキングサーボの極性の切り替えは、ランド部とグルーブ部との切り替わり点で可及的に高精度に行われない限り安定したトラッキングは期待できない。したがって、単に固有信号パターンを検出してトラッキングサーボの極性の切り替えを行う方式では、必ずしも高精度に期待するタイミングでトラッキングサーボの極性を切り替えることができず、トラッキングサーボの極性の切り替えを挟んだ安定したトラッキングが保証されない。  On the other hand, in the case of an optical recording medium that employs a continuous physical format with the land / group structure spirally uninterrupted, the polarity of the tracking servo can be switched at the switching point between the land and groove. Unless it is performed with high accuracy, stable tracking cannot be expected. Therefore, with the method of simply detecting the unique signal pattern and switching the polarity of the tracking servo, it is not always possible to switch the polarity of the tracking servo at a timing that is expected with high accuracy, and stable switching with the switching of the polarity of the tracking servo in between Tracking is not guaranteed. *
また、ガイド層分離型の多層光ディスクは、ガイド層のガイドトラックにウォブルなどにより物理アドレス情報が記録されたものとして提供されることが想定される。このガイド層分離型の多層光ディスクに記録を行う光記録装置は、記録層へのユーザデータの記録に先立ち、ウォブル信号から物理アドレス情報を復調し、この物理アドレス情報と記録層を特定する情報とから、当該記録層に記録されるデータ単位に付与される論理アドレスを計算することが想定されている。  Further, it is assumed that the guide layer separation type multilayer optical disc is provided as physical address information recorded on the guide track of the guide layer by wobble or the like. Prior to recording user data on the recording layer, the optical recording apparatus for recording on the guide layer separation type multilayer optical disc demodulates the physical address information from the wobble signal, and specifies the physical address information and the information for specifying the recording layer. From this, it is assumed that the logical address given to the data unit recorded in the recording layer is calculated. *
このような想定において、ガイド層のガイドトラックにトラッキングサーボの極性を切り替えるタイミングを与えるためのフラグ信号をウォブルなどによって記録するようにした場合、ガイドトラックの物理アドレス情報が、そのフラグ信号が挿入される期間欠落する。このため、その欠落期間は記録層に記録されるデータ単位に与える論理アドレスを生成することができず、記録層のデータに連続した論理アドレスを正しく与えられないという不具合が生じる。  In such an assumption, when a flag signal for giving a timing for switching the polarity of the tracking servo to the guide track of the guide layer is recorded by wobble or the like, the flag signal is inserted into the physical address information of the guide track. Missing period. For this reason, a logical address given to the data unit recorded in the recording layer cannot be generated during the missing period, and there is a problem that a continuous logical address cannot be correctly given to the data in the recording layer. *
以上のような事情に鑑み、本発明の目的は、トラッキングサーボの極性の切り替えを挟んだ安定したトラッキング制御を可能とするとともに、記録層に記録されるデータに論理アドレスを連続して与えることのできるガイド層分離型光記録媒体および光記録装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to enable stable tracking control with switching the polarity of the tracking servo, and to continuously give a logical address to data recorded on the recording layer. Another object is to provide a guide layer separation type optical recording medium and an optical recording apparatus.
上記目的を達成するため、本発明の一形態に係るガイド層分離型光記録媒体は、1以上の記録層と、ランド部およびグルーブ部が螺旋状に連続するガイドトラックとして設けられたガイド層とを有し、前記ガイドトラックには、記録方向において前記ランド部と前記グルーブ部との切り替わり点の直前に当該切り替わり点のタイミングを光記録装置にて生成させるためのフラグ信号が記録されたフラグ領域が設けられていることを特徴とするものである。  In order to achieve the above object, a guide layer separation type optical recording medium according to an embodiment of the present invention includes one or more recording layers, a guide layer provided as a guide track in which land portions and groove portions are spirally continuous, and And a flag area in which a flag signal for causing the optical recording device to generate the timing of the switching point immediately before the switching point between the land portion and the groove portion in the recording direction is recorded in the guide track. Is provided. *
前記フラグ信号は、前記ガイドトラックのウォブリングによって記録されたものであってよい。 あるいは、前記フラグ信号は、ピット列により記録されたものであってよい。  The flag signal may be recorded by wobbling the guide track. Alternatively, the flag signal may be recorded by a pit row. *
本発明の別の形態に係る光記録装置は、情報を記録可能な1以上の記録層と、ランド部およびグルーブ部が螺旋状に連続するガイドトラックとして設けられたガイド層とを有し、前記ガイドトラックには、記録方向において前記ランド部と前記グルーブ部との切り替わり点の直前に当該切り替わり点のタイミングを光記録装置にて生成させるためのフラグ信号が記録されたフラグ領域が設けられたガイド層分離型光記録媒体に記録を行う光記録装置であって、前記ガイド層分離型光記録媒体を駆動する駆動部と、前記駆動された光記録媒体の前記ガイド層の前記ガイドトラックにレーザ光をガイド光として照射し、当該ガイド光の反射光を受光して受光信号に変換するガイド用光学系を有する光ピックアップと、前記受光信号をもとにトラッキングエラー信号を生成し、トラッキング制御を行うトラッキング制御部と、前記受光信号をもとに前記フラグ信号を検出して前記切り替わり点のタイミングを生成し、前記生成されたタイミングで前記トラッキング制御の極性を順次反転させるフラグ処理部とを具備する。  An optical recording apparatus according to another aspect of the present invention includes one or more recording layers capable of recording information, and a guide layer provided as a guide track in which land portions and groove portions are spirally continuous, The guide track is provided with a flag area in which a flag signal for generating the timing of the switching point in the optical recording apparatus is recorded immediately before the switching point between the land portion and the groove portion in the recording direction. An optical recording apparatus that performs recording on a layer-separated optical recording medium, wherein a laser beam is applied to the guide track of the guide layer of the driven optical recording medium and a driving unit that drives the guide layer-separated optical recording medium And an optical pickup having a guide optical system that receives reflected light of the guide light and converts it into a received light signal, and a trap based on the received light signal. A tracking control unit that generates a tracking error signal and performs tracking control, detects the flag signal based on the received light signal, generates the timing of the switching point, and sets the polarity of the tracking control at the generated timing. And a flag processing unit that sequentially inverts. *
この光記録装置によれば、ランド部とグルーブ部との切り替え点でトラッキングサーボの極性を精度良く切り替えることができ、トラッキングサーボの極性の切り替えを挟んだ安定したトラッキング制御が可能になる。  According to this optical recording apparatus, the polarity of the tracking servo can be accurately switched at the switching point between the land portion and the groove portion, and stable tracking control can be performed with the switching of the polarity of the tracking servo. *
この光記録装置は、前記受光信号をもとに基準のクロックを生成するクロック生成部をさらに具備し、前記フラグ処理部は、前記受光信号をもとに前記フラグ信号を検出してから前記クロックの数を計数し、この計数値が所定の値に達したときを前記切り替わり点のタイミングとして生成するものであってよい。  The optical recording apparatus further includes a clock generation unit that generates a reference clock based on the light reception signal, and the flag processing unit detects the flag signal after detecting the flag signal based on the light reception signal. And the time when the count value reaches a predetermined value may be generated as the timing of the switching point. *
前記フラグ信号は前記ガイドトラックの所定のウォブルとして記録され、前記フラグ処理部は、前記受光信号をもとに前記所定のウォブルとして記録された前記フラグ信号を検出するものであってよい。  The flag signal may be recorded as a predetermined wobble of the guide track, and the flag processing unit may detect the flag signal recorded as the predetermined wobble based on the light reception signal. *
前記フラグ信号は前記ガイドトラックに所定のピット列として記録され、前記フラグ処理部は、前記受光信号をもとに前記所定のピット列として記録された前記フラグ信号を検出するものであってよい。  The flag signal may be recorded as a predetermined pit row on the guide track, and the flag processing unit may detect the flag signal recorded as the predetermined pit row based on the light reception signal. *
さらにこの光記録装置は、前記フラグ処理部にて前記フラグ信号が検出されてから前記切り替わり点のタイミングが生成されるまでの間、前記記録層への記録を停止するように制御を行う制御部をさらに具備するものであってよい。 これにより、記録層に記録されるデータに与える論理アドレスの生成に必要な物理アドレス情報の取得が保証され、記録層に記録されるデータに論理アドレスを連続して与えることができる。  Further, the optical recording apparatus includes a control unit that controls to stop recording on the recording layer from when the flag signal is detected by the flag processing unit until the timing of the switching point is generated It may further comprise. This ensures the acquisition of physical address information necessary for generating the logical address to be given to the data recorded on the recording layer, and can continuously give the logical address to the data recorded on the recording layer. *
あるいは、光記録装置は、前記フラグ処理部にて前記フラグ信号が検出されてから前記切り替わり点のタイミングが生成されるまでの間、前記記録層にダミーデータを記録するように制御を行う制御部をさらに具備するものであってよい。 Alternatively, the optical recording apparatus is a control unit that performs control to record dummy data on the recording layer from when the flag signal is detected by the flag processing unit to when the timing of the switching point is generated It may further comprise.
以上のように、本発明によれば、トラッキングサーボの極性の切り替えを挟んだ安定したトラッキング制御が可能になるとともに、記録層に記録されるデータに論理アドレスを連続して与えることができる。 As described above, according to the present invention, stable tracking control with switching of the polarity of the tracking servo becomes possible, and logical addresses can be continuously given to data recorded on the recording layer.
本発明の一実施形態に係る光記録システムを示す図である。1 is a diagram showing an optical recording system according to an embodiment of the present invention. 図1の光記録システムにおけるストレージユニット、光ディスク、およびドライブユニットの関係を示す図である。It is a figure which shows the relationship between the storage unit, the optical disk, and drive unit in the optical recording system of FIG. ガイド層分離型光記録媒体である光ディスクの構成を示す断面図である。It is sectional drawing which shows the structure of the optical disk which is a guide layer separated type optical recording medium. 図3の光ディスクのガイド層のガイドトラックを示す平面図である。FIG. 4 is a plan view showing a guide track of a guide layer of the optical disc in FIG. 3. 図4のガイドトラックにおけるランド部とグルーブ部との切り替え点周辺の構造を示す図である。FIG. 5 is a diagram illustrating a structure around a switching point between a land portion and a groove portion in the guide track of FIG. 4. 極性反転フラグ領域の構造を示す図である。It is a figure which shows the structure of a polarity inversion flag area | region. 図1の光記録システムにおけるディスクドライブの構成を示す図である。It is a figure which shows the structure of the disk drive in the optical recording system of FIG. 図7のディスクドライブにおけるウォブル再生部とフラグ処理部の具体的な構成を示すブロック図である。FIG. 8 is a block diagram illustrating a specific configuration of a wobble playback unit and a flag processing unit in the disk drive of FIG. 7. 図4のガイドトラックにおけるランド部とグルーブ部との切り替え点周辺の構造の変形例を示す図である。FIG. 5 is a diagram showing a modification of the structure around a switching point between a land portion and a groove portion in the guide track of FIG. 4. 変形例であるディスクドライブの構成を示す図である。It is a figure which shows the structure of the disk drive which is a modification. 図10の変形例のディスクドライブにおけるウォブル再生部とピット列フラグ処理部の具体的な構成を示すブロック図である。FIG. 11 is a block diagram illustrating a specific configuration of a wobble reproduction unit and a pit string flag processing unit in the disk drive of the modified example of FIG. ガイド層のデータ領域の物理アドレスと各記録層のデータ領域に割り当てられる論理アドレスとの関係を示す図である。It is a figure which shows the relationship between the physical address of the data area of a guide layer, and the logical address allocated to the data area of each recording layer. 論理アドレスの割り当ての具体的を示す図である。It is a figure which shows the specific allocation of a logical address. PP法またはDPP法において、グルーブオントラック時およびランドオントラック時のオフトラック量とトラッキングエラー信号との関係を示す図である。It is a figure which shows the relationship between the amount of off-tracks at the time of groove on track and land on track, and a tracking error signal in PP method or DPP method.
以下、図面を参照しながら、本発明の実施形態を説明する。 図1は、本発明の一実施形態に係る光記録システムを示す図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention. *
図1は光記録システムの全体の構成を示す図である。 この光記録システム1は、ストレージユニット10と、ディスク搬送機構20と、ドライブユニット30と、RAIDコントローラ40と、ホスト装置50とを備
える。以下、それぞれの詳細について説明する。 
FIG. 1 is a diagram showing the overall configuration of an optical recording system. The optical recording system 1 includes a storage unit 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
[ストレージユニット10] ストレージユニット10は、複数の光ディスク11(ガイド層分離型光記録媒体)が個別に着脱自在に収容されるユニットである。  [Storage Unit 10] The storage unit 10 is a unit in which a plurality of optical disks 11 (guide layer separation type optical recording media) are individually detachably accommodated. *
ストレージユニット10内での複数の光ディスク11の収容形態としては平積み、縦並びなどが想定される。いずれの場合も、ストレージユニット10に対して光ディスク11の出し入れが円滑に行われるように、隣り合う光ディスク11間には一定の隙間が設けられることが好ましい。ストレージユニット10の形状は、ユーザによるハンドリング性、光ディスク11の収納効率などの点から、例えば直方体形状、円筒形状などが想定される。図1の例では、複数の光ディスク11を平積みで収容した直方体形状のストレージユニット10が用いられる。  As a storage form of the plurality of optical disks 11 in the storage unit 10, flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between the adjacent optical disks 11 so that the optical disk 11 can be smoothly inserted into and removed from the storage unit 10. The shape of the storage unit 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the optical disk 11. In the example of FIG. 1, a rectangular parallelepiped storage unit 10 in which a plurality of optical disks 11 are accommodated in a flat stack is used. *
図2は、ストレージユニット10、光ディスク11およびドライブユニット30の構成を示す図である。ストレージユニット10の少なくとも一つの側面には光ディスク11の出し入れのための開口部101と、この開口部101を開閉する扉(図示せず)とが設けられている。扉はディスク搬送機構20によるストレージユニット10からの光ディスク11の出し入れの動作と連動して開閉され、その他のときは閉状態とされる。  FIG. 2 is a diagram illustrating the configuration of the storage unit 10, the optical disk 11, and the drive unit 30. At least one side surface of the storage unit 10 is provided with an opening 101 for inserting and removing the optical disk 11 and a door (not shown) for opening and closing the opening 101. The door is opened / closed in conjunction with the operation of loading / unloading the optical disk 11 from / to the storage unit 10 by the disk transport mechanism 20, and is closed at other times. *
なお、本発明において、ストレージユニット10の構成は図2のものに限定されない。ストレージユニット10の形状、開口部の数や位置、扉の有無、複数の光ディスク11の収容形態など、様々な変形が可能である。  In the present invention, the configuration of the storage unit 10 is not limited to that shown in FIG. Various modifications such as the shape of the storage unit 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of optical disks 11 are possible. *
[光ディスク11] ストレージユニット10に収容される光ディスク11は、ガイド層と記録層とが別々の層に分離して形成された、いわゆる「ガイド層分離型光記録媒体」である。  [Optical Disc 11] The optical disc 11 accommodated in the storage unit 10 is a so-called “guide layer separation type optical recording medium” in which a guide layer and a recording layer are separated into separate layers. *
(光ディスク11の断面構造) 図3は光ディスク11の構造を示す断面図である。 光ディスク11は、ガイド層112と1以上の記録層113とを有する。同図の光ディスク11の例では記録層113の層数は"4"である。ガイド層112とこれに最も近い記録層113との間、隣り合う記録層113の間との間には光透過性を有する中間層114がそれぞれ介層されている。これらの層は、光ピックアップ32からの記録再生光R1およびガイド光R2が入射される側から、保護層115、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、記録層113、中間層114、ガイド層112の順に積層配置される。  (Cross-Sectional Structure of Optical Disc 11) FIG. 3 is a cross-sectional view showing the structure of the optical disc 11. The optical disc 11 has a guide layer 112 and one or more recording layers 113. In the example of the optical disk 11 in the figure, the number of recording layers 113 is “4”. An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113. These layers are the protective layer 115, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer 114, the recording layer 113, the intermediate layer from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident. The layer 114, the recording layer 113, the intermediate layer 114, and the guide layer 112 are stacked in this order. *
ガイド層112において記録層113に対向する側の面には、ランド・グルーブ構造によるガイドトラック121が螺旋状に設けられている。ガイドトラック121の側壁面にはウォブルによって、ディスク全周にわたる位置情報を示す物理アドレス情報が記録されている。ガイドトラック121は、例えばDVD(Digital Versatile Disk)の記録再生に用いられる赤色レーザ光に対応するトラックピッチ(0.64μm)で形成される。ランドとグルーブ間のピッチの平均は0.32μmである。以後、赤色レーザ光のレーザ光を「ガイド光」と呼ぶ。  A guide track 121 having a land / groove structure is spirally provided on the surface of the guide layer 112 facing the recording layer 113. On the side wall surface of the guide track 121, physical address information indicating position information over the entire circumference of the disk is recorded by wobble. The guide track 121 is formed with a track pitch (0.64 μm) corresponding to, for example, red laser light used for recording / reproduction of a DVD (Digital Versatile Disk). The average pitch between the land and the groove is 0.32 μm. Hereinafter, the laser beam of the red laser beam is referred to as “guide light”. *
本実施形態では、ランド・グルーブ記録を想定しているため、ランド部とグルーブ部が螺旋状に連続するガイドトラック121として用いられる。したがって、ガイドトラック121のピッチは0.32μmとなる。  In this embodiment, since land / groove recording is assumed, the land portion and the groove portion are used as a guide track 121 having a spiral shape. Therefore, the pitch of the guide track 121 is 0.32 μm. *
ガイド層112のガイドトラック121のトラッキングには、DVD(Digital Versatile Disk)の記録再生に用いられる赤色波長(第2の波長)のレーザ光が用いられる。以降において第2の波長のレーザ光を「ガイド光」と呼ぶ場合がある。  For tracking of the guide track 121 of the guide layer 112, a laser beam having a red wavelength (second wavelength) used for recording / reproduction of a DVD (Digital Versatile Disk) is used. Hereinafter, the laser light having the second wavelength may be referred to as “guide light”. *
本実施形態の光記録システム1では、ガイドトラック121のランド部とグルーブ部のそれぞれにおいて、例えば、差動プッシュプル法(DPP:Differential Push-Pull)などによるトラッキング制御が行われる。ガイドトラック121のランド部とグルーブ部のそれぞれにおいてトラッキング制御が行われることで、記録層113に対する情報の記録は0.32μmのトラックピッチで行うことが可能である。  In the optical recording system 1 of the present embodiment, tracking control by, for example, a differential push-pull method (DPP: Differential Push-Pull) is performed in each of the land portion and the groove portion of the guide track 121. By performing tracking control in each of the land portion and the groove portion of the guide track 121, information recording on the recording layer 113 can be performed at a track pitch of 0.32 μm. *
ガイドトラック121は螺旋状に設けているため、光ピックアップからのガイド光のスポットをガイドトラック121に追従させるトラッキングの対象がランド部とグルーブ部との間で周期的に交互に切り替わる。ランド部とグルーブ部とではトラッキングサーボの極性が逆になるので、ランド部とグルーブ部との切り替え点を可及的に精度良く検出してトラッキングサーボの極性を反転させなければ、安定したトラッキング制御を期待できない。  Since the guide track 121 is provided in a spiral shape, the tracking target for causing the guide light spot from the optical pickup to follow the guide track 121 is switched alternately between the land portion and the groove portion. Since the tracking servo polarity is reversed between the land and groove, stable tracking control is possible unless the switching point between the land and groove is detected as accurately as possible and the tracking servo polarity is reversed. Can not expect. *
本実施形態では、このような課題を解決するために、ガイドトラック121に次のような物理フォーマットを採用している。  In the present embodiment, in order to solve such a problem, the following physical format is adopted for the guide track 121. *
(ガイドトラック121の構造) 図4は光ディスク11のガイド層112のガイドトラック121を示す平面図、図5は図4のガイドトラック121におけるランド部とグルーブ部との切り替え点周辺の構造を拡大した図である。  (Structure of the guide track 121) FIG. 4 is a plan view showing the guide track 121 of the guide layer 112 of the optical disc 11, and FIG. 5 is an enlarged view of the structure around the switching point between the land portion and the groove portion in the guide track 121 of FIG. FIG. *
例えば、光ディスク11の1回転の周期でランド部とグルーブ部とが切り替わる場合を想定する。この場合、ランド部とグルーブ部との切り替え点は光ディスク11の中心点からの一本の放射線上に並ぶ。図5に示すように、記録方向について、ランド部とグルーブ部との切り替え点の直前には極性反転フラグ領域122が設けられている。  For example, it is assumed that the land portion and the groove portion are switched at a cycle of one rotation of the optical disc 11. In this case, the switching point between the land portion and the groove portion is arranged on one radiation from the center point of the optical disc 11. As shown in FIG. 5, with respect to the recording direction, a polarity inversion flag region 122 is provided immediately before the switching point between the land portion and the groove portion. *
図6は極性反転フラグ領域122の構造を示す図である。 同図に示すように、極性反転フラグ領域122には、ランド部とグルーブ部との切り替わり点のタイミングをディスクドライブ31にて生成させるためのフラグ信号が、例えばガイドトラック121のウォブルとして記録されている。以下、フラグ信号として記録されたウォブルを「フラグウォブル」と呼ぶ。  FIG. 6 is a diagram showing the structure of the polarity inversion flag region 122. As shown in the figure, in the polarity reversal flag area 122, a flag signal for causing the disk drive 31 to generate the timing of the switching point between the land portion and the groove portion is recorded as, for example, a wobble of the guide track 121. Yes. Hereinafter, the wobble recorded as the flag signal is referred to as “flag wobble”. *
ガイドトラック121の極性反転フラグ領域122以外の領域は記録層113への記録時にトラッキング制御、物理アドレス情報の取得、記録クロック生成などのために用いられる領域であり、この領域を「データ領域123」と呼ぶこととする。データ領域123には物理アドレス情報がウォブルとして記録されている。以下、データ領域123のウォブルを「データウォブル」と呼ぶ。  The areas other than the polarity inversion flag area 122 of the guide track 121 are areas used for tracking control, acquisition of physical address information, recording clock generation, and the like when recording on the recording layer 113. This area is referred to as a “data area 123”. I will call it. In the data area 123, physical address information is recorded as wobble. Hereinafter, the wobble in the data area 123 is referred to as “data wobble”. *
データウォブルとフラグウォブルをディスクドライブ31が判別することができるように、データウォブルとフラグウォブルは互いに異なる周波数もしくは振幅で形成される。図6はデータウォブルとフラグウォブルの周波数に違いをもたせた場合を示している。この場合、データウォブルとフラグウォブルをディスクドライブ31が確実かつ迅速に判別することができるように、フラグウォブルの周期W1はデータウォブルの周期W0に対して十分小さい値に設定される。図6では、フラグウォブルの周期W1がデータウォブルの周期W0に対して数倍程度低く設定されているように描かれているが、数十倍程度低くてもよく、それ以上低くてもよい。フラグウォブルの周期W1がデータウォブルの周期W0に対して十分低い値に設定されていないと、フラグウォブルをデータウォブルに対して確実に弁別することが困難となり、切り替え点のタイミングを精度良く生成することも難しい。また、ディスクドライブ31によるフラグウォブルの検出の確定までに時間がかかり、それだけ極性反転フラグ領域122の長さが必要となるため、全体的な記録容量の低下を招く。したがって、フラグウォブルの周期W1はデータウォブルの周期W0に対して十分低い値に設定されていることが望ましい。  The data wobble and the flag wobble are formed with different frequencies or amplitudes so that the disk drive 31 can discriminate between the data wobble and the flag wobble. FIG. 6 shows a case where a difference is made in the frequency of the data wobble and the flag wobble. In this case, the flag wobble cycle W1 is set to a value sufficiently smaller than the data wobble cycle W0 so that the disk drive 31 can reliably and quickly discriminate between the data wobble and the flag wobble. In FIG. 6, the flag wobble cycle W1 is depicted as being several times lower than the data wobble cycle W0, but may be several tens of times lower or even lower. If the flag wobble cycle W1 is not set to a value sufficiently lower than the data wobble cycle W0, it is difficult to reliably distinguish the flag wobble from the data wobble, and the timing of the switching point is generated with high accuracy. It's also difficult. Further, it takes time until the disk drive 31 determines the detection of the flag wobble, and the length of the polarity reversal flag area 122 is required accordingly, so that the overall recording capacity is reduced. Therefore, it is desirable that the flag wobble cycle W1 is set to a value sufficiently lower than the data wobble cycle W0. *
但し、本発明において、フラグウォブルの物理的条件は上記に限定されるものではない。 例えば、フラグウォブルの周期W1がデータウォブルの周期W0よりも大きくしても、ランド部とグルーブ部との切り替わり点のタイミングをディスクドライブ31にて生成させるためのフラグ信号の役割を満足するという意味では有効である。あるいは、極性反転フラグ領域122を敢えてウォブリングさせない、という構造も考えられる。 以上がガイド層112の説明である。  However, in the present invention, the physical condition of the flag wobble is not limited to the above. For example, even if the flag wobble period W1 is larger than the data wobble period W0, the meaning of satisfying the role of the flag signal for causing the disk drive 31 to generate the switching point timing between the land part and the groove part is satisfied. Then it is effective. Alternatively, a structure in which the polarity reversal flag region 122 is not intentionally wobbled is also conceivable. The above is the description of the guide layer 112. *
記録層113は、例えばブルーレイディスク(登録商標)の記録再生に用いられる青色波長(第1の波長)のレーザ光を用いて0.32μmのトラックピッチで情報の記録が行われる層である。以後、第1の波長のレーザ光を「記録再生光」または「記録光」と呼ぶ場合がある。  The recording layer 113 is a layer on which information is recorded with a track pitch of 0.32 μm using a laser beam having a blue wavelength (first wavelength) used for recording and reproduction of a Blu-ray Disc (registered trademark), for example. Hereinafter, the laser light having the first wavelength may be referred to as “recording / reproducing light” or “recording light”. *
記録層113は、例えば光吸収層と反射層等とにより構成される。光吸収層としてはシアニン系色素やアゾ系色素等の有機色素や、Si、Cu、Sb、Te、Ge等の無機材料が用いられる。記録光が光ディスク11における目的の記録層113に照射されると、その記録光が照射された領域の反射率が変化し、反射率が変化した領域がピットとして形成されることで、記録層113に情報が記録される。  The recording layer 113 is composed of, for example, a light absorption layer and a reflection layer. As the light absorption layer, organic dyes such as cyanine dyes and azo dyes, and inorganic materials such as Si, Cu, Sb, Te, and Ge are used. When the target recording layer 113 in the optical disc 11 is irradiated with the recording light, the reflectance of the region irradiated with the recording light changes, and the region with the changed reflectance is formed as a pit, so that the recording layer 113 is formed. Information is recorded in *
なお、記録層113への情報の記録時および再生時のトラッキング制御および物理アドレス情報、ならびに記録クロックなどの記録クロックの取得は、ガイド層112のガイドトラック121のウォブル信号を用いて行われるため、記録層113にはランド・グルーブ構造によるガイドトラック121は不要である。したがって、記録層113の表面は平坦でよい。  Since tracking control and physical address information at the time of recording and reproducing information on the recording layer 113 and acquisition of a recording clock such as a recording clock are performed using the wobble signal of the guide track 121 of the guide layer 112, The recording layer 113 does not require the guide track 121 having a land / groove structure. Therefore, the surface of the recording layer 113 may be flat. *
[ディスク搬送機構20] ディスク搬送機構20は、ストレージユニット10から目的の光ディスク(ガイド層分離型光記録媒体)11を取り出してドライブユニット30内のディスクドライブ31に装填したり、逆にディスクドライブ31から排出された光ディスク11をストレージユニット10に戻したりするための機構である。  [Disk transport mechanism 20] The disk transport mechanism 20 takes out the target optical disk (guide layer separation type optical recording medium) 11 from the storage unit 10 and loads it into the disk drive 31 in the drive unit 30, or conversely from the disk drive 31. This is a mechanism for returning the ejected optical disk 11 to the storage unit 10. *
ディスク搬送機構20は、例えば、ストレージユニット10から同時に複数の光ディスク11を取り出して、ドライブユニット30内の複数のディスクドライブ31に別々に装填することができるように、独立して動作可能な複数の搬送機構を備えたものであることが望ましい。  For example, the disk transport mechanism 20 can take out a plurality of optical disks 11 from the storage unit 10 at the same time and separately load them into a plurality of disk drives 31 in the drive unit 30. It is desirable to have a mechanism. *
[ドライブユニット30] ドライブユニット30には複数のディスクドライブ31が搭載される。同図の例では、5機のディスクドライブ31が搭載される。ストレージユニット10に収容される光ディスク11の数とドライブユニット30内に搭載されるディスクドライブ31の数は必ずしも同じとする必要はない。  [Drive unit 30] A plurality of disk drives 31 are mounted in the drive unit 30. In the example of FIG. 5, five disk drives 31 are mounted. The number of optical disks 11 accommodated in the storage unit 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same. *
(ディスクドライブ31の構成) 図7はディスクドライブ31の構成を示す図である。ディスクドライブ31は、光ピックアップ32を備える。この光ピックアップ32は、記録再生光に対応する第1の光学系と、ガイド光に対応する第2の光学系とを備える。  (Configuration of Disk Drive 31) FIG. 7 is a diagram showing the configuration of the disk drive 31. The disk drive 31 includes an optical pickup 32. The optical pickup 32 includes a first optical system corresponding to the recording / reproducing light and a second optical system corresponding to the guide light. *
第1の光学系は、第1の光源33、第1のコリメータレンズ34、第1の偏光ビームスプリッタ35、第1のリレーレンズ36、第2のコリメータレンズ37、合成プリズム38、1/4波長板39、対物レンズ60、第1の受光レンズ61および第1の受光部62などで構成される。ここで、合成プリズム38、1/4波長板39、対物レンズ60は、当該第1の光学系と後述する第2の光学系の両方に属する。  The first optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength. The plate 39, the objective lens 60, the first light receiving lens 61, the first light receiving unit 62, and the like are included. Here, the synthesis prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the first optical system and a second optical system described later. *
第1の光源33は第1の波長のレーザ光を記録再生光R1として出射するレーザダイオードを備える。第1の光源33から出射された記録再生光R1は第1のコリメータレンズ34によって平行光とされ、第1の偏光ビームスプリッタ35、第1のリレーレンズ36及び第2のコリメータレンズ37を介して合成プリズム38に入射する。合成プリズム38は、第2のコリメータレンズ37から入射される記録再生光R1と、後述する第2の光学系に属する第3のコリメータレンズから入射されるガイド光R2とを互いの光軸が一致するように合成し、1/4波長板39を介して対物レンズ60に入射させる。対物レンズ60にて、入射された記録再生光は、光ディスク11の目的の記録層113に合焦させるように集光される。  The first light source 33 includes a laser diode that emits laser light having a first wavelength as recording / reproducing light R1. The recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37. The light enters the combining prism 38. The synthesizing prism 38 matches the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to the second optical system described later. Are combined and made incident on the objective lens 60 via the quarter-wave plate 39. The incident recording / reproducing light is condensed by the objective lens 60 so as to be focused on the target recording layer 113 of the optical disk 11. *
記録層113によって反射された記録再生光(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38を入射方向のまま透過して、第2のコリメータレンズ37及び第1のリレー
レンズ36を介して第1の偏光ビームスプリッタ35に戻る。第1の偏光ビームスプリッタ35は、第1のリレーレンズ36からの第1の波長の戻り光を約90度の角度で反射して第1の受光レンズ61を介して第1の受光部62に入射させる。 
The recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction. Return to the first polarization beam splitter 35 via the collimator lens 37 and the first relay lens 36. The first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident.
第1の受光部62は、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子で構成され、分割された受光面毎に受光強度に応じたレベルの電圧信号を出力し、これらを加算した信号を記録データの再生信号として等化器75に出力し、分割された受光面毎の電圧信号を図示しないフォーカスエラー生成部などに出力する。  The first light receiving unit 62 is composed of a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each of the divided light receiving surfaces. Is output to the equalizer 75 as a reproduction signal of the recording data, and a voltage signal for each divided light receiving surface is output to a focus error generation unit (not shown). *
第2の光学系は、第2の光源63、第3のコリメータレンズ64、第2の偏光ビームスプリッタ65、第2のリレーレンズ66、第4のコリメータレンズ67、合成プリズム38、1/4波長板39、対物レンズ60、第2の受光レンズ68および第2の受光部69などで構成される。  The second optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength. The plate 39, the objective lens 60, the second light receiving lens 68, the second light receiving portion 69, and the like. *
第2の光源63は、第2の波長のガイド光R2を出射する。第2の光源63から出射されたガイド光R2は第3のコリメータレンズ64によって平行光とされ、第2の偏光ビームスプリッタ65、第2のリレーレンズ66及び第4のコリメータレンズ67を介して合成プリズム38に入射する。合成プリズム38に入射されたガイド光R2は、前述したように、合成プリズム38にて第1の光学系の第2のコリメータレンズ37から入射される第1の波長の記録再生光R1と光軸が一致するように合成され、1/4波長板39を介して対物レンズ60に入射される。対物レンズ60にて、入射されたガイド光R2は光ディスク11のガイド層112に合焦させるように集光される。  The second light source 63 emits guide light R2 having a second wavelength. The guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67. The light enters the prism 38. As described above, the guide light R2 incident on the combining prism 38 and the optical axis of the recording / reproducing light R1 having the first wavelength incident on the combining prism 38 from the second collimator lens 37 of the first optical system. Are made to coincide with each other and enter the objective lens 60 via the quarter-wave plate 39. The incident guide light R2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the optical disk 11. *
ガイド層112によって反射されたガイド光R2(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38にて約90度の角度で反射され、第4のコリメータレンズ67及び第2のリレーレンズ66を介して第2の偏光ビームスプリッタ65に戻る。第2の偏光ビームスプリッタ65は、第2のリレーレンズ66からのガイド光R2の戻り光を、約90度の角度で反射して第2の受光レンズ68を介して第2の受光部69に入射させる。  The guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees. Returning to the second polarizing beam splitter 65 via the fourth collimator lens 67 and the second relay lens 66. The second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident. *
第2の受光部69は、例えば、受光面がトラックと直交するディスク半径方向に2分割された受光素子、あるいは、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子、あるいは受光面が少なくとも2分割されたメインの受光素子とこのメインの受光素子のタンジェンシャル方向の両側にそれぞれ配置され、2分割された2つのサブの受光素子との組み合わせ、などで構成される。第2の受光部69は、分割された各受光面の受光強度に応じたレベルの電圧信号を選択的にトラッキング制御部71およびウォブル再生部78などに出力する。  The second light receiving unit 69 is, for example, a light receiving element whose light receiving surface is divided into two in the disk radial direction orthogonal to the track, a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, or light receiving A main light-receiving element whose surface is divided into at least two parts and a combination of two sub-light-receiving elements divided into two parts are arranged on both sides of the main light-receiving element in the tangential direction. The second light receiving unit 69 selectively outputs a voltage signal having a level corresponding to the received light intensity of each divided light receiving surface to the tracking control unit 71 and the wobble reproduction unit 78. *
また、光ピックアップ32には、トラッキングアクチュエータ70とフォーカシングアクチュエータ(図示せず)が設けられている。トラッキングアクチュエータ70はトラッキング制御部71からのトラッキング駆動信号をもとに対物レンズ60をディスク半径方向に移動させる。フォーカシングアクチュエータは、図示しないフォーカス制御部からのフォーカス駆動信号により対物レンズ60を光軸方向に移動させる。  The optical pickup 32 is provided with a tracking actuator 70 and a focusing actuator (not shown). The tracking actuator 70 moves the objective lens 60 in the disk radial direction based on the tracking drive signal from the tracking control unit 71. The focusing actuator moves the objective lens 60 in the optical axis direction by a focus drive signal from a focus control unit (not shown). *
さらに、図示は省略したが、光ピックアップ32には、記録再生光が照射される記録層113を切り替えるように第1のリレーレンズ36を光軸方向に移動させる第1のリレーレンズアクチュエータと、第2のリレーレンズ66を光軸方向に移動させる第2のリレーレンズアクチュエータが設けられている。 以上が、光ピックアップ32の説明である。  Further, although not shown, the optical pickup 32 includes a first relay lens actuator that moves the first relay lens 36 in the optical axis direction so as to switch the recording layer 113 irradiated with the recording / reproducing light, and a first relay lens actuator. A second relay lens actuator for moving the second relay lens 66 in the optical axis direction is provided. The above is the description of the optical pickup 32. *
ディスクドライブ31は、上記の光ピックアップ32のほか、データ変調部72、第1の光源駆動部73、第2の光源駆動部74、等化器75、データ再生部76、トラッキング制御部71、ウォブル再生部78、ディスクモータ駆動部79、フィード機構80、ディスクモータ制御部81、コントローラ82、フラグ処理部83、さらには図示しないフォーカスエラー生成部、フォーカス制御部、リレーレンズ制御部などを有する。  In addition to the optical pickup 32 described above, the disk drive 31 includes a data modulating unit 72, a first light source driving unit 73, a second light source driving unit 74, an equalizer 75, a data reproducing unit 76, a tracking control unit 71, a wobble. The reproduction unit 78, the disk motor driving unit 79, the feed mechanism 80, the disk motor control unit 81, the controller 82, the flag processing unit 83, and a focus error generation unit, a focus control unit, a relay lens control unit, and the like (not shown) are included. *
データ変調部72は、コントローラ82より供給された記録用のデータを記録マークの形成に適したビット列信号に変調し、変調信号を第1の光源駆動部73に供給する。  The data modulator 72 modulates the recording data supplied from the controller 82 into a bit string signal suitable for forming a recording mark, and supplies the modulated signal to the first light source driver 73. *
第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33を駆動するための駆動パルスを生成する。  The first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72. *
等化器75は、第1の受光部62からの再生RF信号に対して、例えばPRML(Partial Response Maximum Likelihood)などの等化処理を行ってから所定のスライスレベルで二値化する。  The equalizer 75 performs binarization at a predetermined slice level after performing an equalization process such as PRML (Partial Response Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62. *
データ再生部76は、等化器75より出力された二値信号からデータを復調し、復調されたデータから誤り訂正などの復号処理を行って再生データを生成し、コントローラ82に供給する。  The data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 82. *
トラッキング制御部71は、第2の受光部69の分割された各受光面の電圧信号をもとに、例えばPP(プッシュプル)法あるいはDPP(差動プッシュプル)法などによってトラッキングエラー信号を生成し、このトラッキングエラー信号をもとにトラッキングアクチュエータ70に供給するトラッキング駆動信号を生成する。また、トラッキング制御部71は、フラグ処理部83からのトラッキングサーボ極性の切り替え信号を受け、トラッキング駆動信号の極性つまり対物レンズ60を移動させる方向をディスク半径方向の+方向(ディスク外周に向かう方向)と-方向(ディスク内周に向かう方向)とで切り替える。  The tracking control unit 71 generates a tracking error signal by, for example, the PP (push-pull) method or the DPP (differential push-pull) method based on the voltage signal of each divided light receiving surface of the second light receiving unit 69. Then, a tracking drive signal to be supplied to the tracking actuator 70 is generated based on the tracking error signal. Further, the tracking control unit 71 receives the tracking servo polarity switching signal from the flag processing unit 83, and the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved is the + direction of the disk radial direction (the direction toward the disk outer periphery). And-direction (direction toward the inner circumference of the disc). *
ウォブル再生部78は、第2の受光部69の出力をもとにウォブル信号を再生し、再生されたウォブル信号を周波数などによりデータウォブル信号とフラグウォブル信号とに弁別し、データウォブル信号から物理アドレス情報を復調してコントローラ82に供給する。また、ウォブル再生部78はデータウォブル信号から基準の記録クロックを生成する。さらに、ウォブル再生部78は、弁別したフラグウォブル信号をフラグ処理部83に供給する。  The wobble reproduction unit 78 reproduces a wobble signal based on the output of the second light receiving unit 69, discriminates the reproduced wobble signal into a data wobble signal and a flag wobble signal based on the frequency, etc. Address information is demodulated and supplied to the controller 82. The wobble reproduction unit 78 generates a reference recording clock from the data wobble signal. Further, the wobble reproduction unit 78 supplies the discriminated flag wobble signal to the flag processing unit 83. *
フラグ処理部83は、ウォブル再生部78より供給されたフラグウォブル信号をもとに極性反転フラグ領域122の検出、ランド部とグルーブ部との切り替わり点のタイミングの生成を行い、生成されたタイミングでトラッキングサーボ極性の切り替え信号をトラッキング制御部71およびコントローラ82に供給する。なお、このフラグ処理部83については、その具体的な構成および動作を後で説明する。  The flag processing unit 83 detects the polarity inversion flag region 122 based on the flag wobble signal supplied from the wobble reproduction unit 78, generates the switching point timing between the land portion and the groove portion, and at the generated timing. A tracking servo polarity switching signal is supplied to the tracking control unit 71 and the controller 82. The specific configuration and operation of the flag processing unit 83 will be described later. *
ディスクモータ駆動部79は、ディスクモータ制御部81による制御のもと光ディスク11を回転駆動させるディスクモータ85に駆動信号を供給する。  The disk motor drive unit 79 supplies a drive signal to a disk motor 85 that rotates the optical disk 11 under the control of the disk motor control unit 81. *
フィード機構80は、光ピックアップ32を光ディスク11の半径方向に搬送する機構である。  The feed mechanism 80 is a mechanism for transporting the optical pickup 32 in the radial direction of the optical disc 11. *
図示しないフォーカス制御部は、図示しないフォーカスエラー生成部からのフォーカスエラー信号をもとにフォーカシングアクチュエータにフォーカス駆動信号を供給して対物レンズ60を光軸方向に移動させる。  A focus control unit (not shown) supplies a focus drive signal to the focusing actuator based on a focus error signal from a focus error generation unit (not shown) to move the objective lens 60 in the optical axis direction. *
コントローラ82は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。コントローラ82は、RAMに割り当てられたメインメモリの領域にロードされたプログラムに基づいて、ディスクドライブ31の全体の制御を行う。  The controller 82 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The controller 82 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM. *
ドライブユニット30には、上記のディスクドライブ31が複数搭載され、それぞれ独立して制御可能とされ、装填された光ディスク11に対する情報の記録および再生をそれぞれ同時に行うことができる。  A plurality of the disk drives 31 described above are mounted on the drive unit 30 and can be controlled independently, and information can be recorded and reproduced on the loaded optical disk 11 simultaneously. *
[RAIDコントローラ40] RAID(Redundant Arrays of Inexpensive Disks)コントローラ40は、ホスト装置50からの記録命令などに対して、ドライブユニット30内の1以上のディスクドライブ31にデータを多重に記録したり、ストライピングにより分散して記録したりするRAID制御を行う。  [RAID Controller 40] A RAID (Redundant Arrays of Inexpensive Disks) controller 40 records data in multiple on one or more disk drives 31 in the drive unit 30 in response to a recording command from the host device 50, or performs striping. RAID control to record in a distributed manner is performed. *
RAIDコントローラ40より記録または再生の指示が与えられたそれぞれのディスクドライブ31のコントローラ82は、光ディスク11に対してデータを記録したり再生したりするための制御を行う。  The controller 82 of each disk drive 31 to which the recording or reproducing instruction is given from the RAID controller 40 performs control for recording or reproducing data on the optical disk 11. *
[ホスト装置50] ホスト装置50は、本光記録システム1を制御する最上位の装置である。ホスト装置50はパーソナルコンピュータでもよい。ホスト装置50は、記録用のデータを作成または準備し、RAIDコントローラ40に対して当該記録用のデータの記録命令を供給する。また、ホスト装置50は、ユーザなどより指定されたファイル名を含む読出命令をRAIDコントローラ40に供給し、RAIDコントローラ40よりその応答として該当するファイル名のデータを取得する。  [Host device 50] The host device 50 is the highest-level device that controls the optical recording system 1. The host device 50 may be a personal computer. The host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response. *
[光記録システム1の動作] 次に、この光記録システム1のドライブユニット30内の1以上のディスクドライブ31において光ディスク11に対して記録を行う場合の制御について説明する。  [Operation of Optical Recording System 1] Next, control when recording is performed on the optical disk 11 in one or more disk drives 31 in the drive unit 30 of the optical recording system 1 will be described. *
ホスト装置50からRAIDコントローラ40を通じて、ドライブユニット30内の1以上のディスクドライブ31のコントローラ82にデータの記録命令がそれぞれ与えられる。記録命令を受けたときの各ディスクドライブ31の動作は同様であるため、一つのディスクドライブ31の動作について説明する。  A data recording command is given from the host device 50 to the controller 82 of one or more disk drives 31 in the drive unit 30 through the RAID controller 40. Since the operation of each disk drive 31 when receiving a recording command is the same, the operation of one disk drive 31 will be described. *
ディスクドライブ31のコントローラ82は、光ピックアップ32を光ディスク11の記録層113の記録領域においてデータが未記録の領域の最内周に対応する位置にそれぞれ移動させるようにフィード機構80を制御するとともに、ディスクモータ駆動部79を制御してディスク11をCLV方式またはCAV方式において適切な速度で回転駆動させる。  The controller 82 of the disk drive 31 controls the feed mechanism 80 so that the optical pickup 32 is moved to a position corresponding to the innermost circumference of the area in which no data is recorded in the recording area of the recording layer 113 of the optical disk 11, and The disk motor drive unit 79 is controlled to rotate the disk 11 at an appropriate speed in the CLV method or the CAV method. *
さらに、コントローラ82は、光ディスク11の目的の記録層113に光ピックアップ32の対物レンズ60からの記録光が焦点をむすぶように、光ピックアップ32の第1のリレーレンズ36の光軸方向の位置を制御するとともに、光ディスク11のガイド層112に光ピックアップ32の対物レンズ60からのガイド光が焦点をむすぶように光ピックアップ32の第2のリレーレンズ66の光軸方向の位置を制御する。  Further, the controller 82 sets the position of the first relay lens 36 of the optical pickup 32 in the optical axis direction so that the recording light from the objective lens 60 of the optical pickup 32 is focused on the target recording layer 113 of the optical disc 11. At the same time, the position of the second relay lens 66 of the optical pickup 32 in the optical axis direction is controlled so that the guide light from the objective lens 60 of the optical pickup 32 is focused on the guide layer 112 of the optical disc 11. *
ディスクドライブ31のコントローラ82は、ホスト装置50からRAIDコントローラ40を通じて転送されてきた記録用のデータをデータ変調部72に供給する。データ変調部72では、記録用のデータの変調およびエラー訂正符号の付加などが行われることによって記録信号が生成され、第1の光源駆動部73に供給される。第1の光源駆動部73は、記録信号をもとに第1の光源33の駆動用パルスを生成して第1の光源33に供給する。同時にコントローラ82は、第2の光源63を駆動するように第2の光源駆動部74に制御信号を出力する。これにより光ピックアップ32からの記録光による記録層113へのデータの記録が開始される。すなわち、光ディスク11の目的の記録層113に対して内周から外周へ向けてCLV方式またはCAV方式でのデータ記録が開始される。  The controller 82 of the disk drive 31 supplies the recording data transferred from the host device 50 through the RAID controller 40 to the data modulator 72. The data modulation unit 72 generates a recording signal by performing modulation of recording data, adding an error correction code, and the like, and supplies the recording signal to the first light source driving unit 73. The first light source driving unit 73 generates a driving pulse for the first light source 33 based on the recording signal and supplies it to the first light source 33. At the same time, the controller 82 outputs a control signal to the second light source driving unit 74 so as to drive the second light source 63. Thereby, recording of data on the recording layer 113 by the recording light from the optical pickup 32 is started. That is, data recording by the CLV method or the CAV method is started from the inner periphery to the outer periphery with respect to the target recording layer 113 of the optical disc 11. *
(トラッキング制御) 次に、データ記録時のトラッキング制御について説明する。トラッキング制御は光ディスク11のガイド層112に0.32μmのトラックピッチで設けられたガイドトラック121を用いて行われる。トラッキング制御部71は、第2の受光部69の出力をもとに例えばPP(プッシュプル)法あるいはDPP(差動プッシュプル)法などによってトラッキングエラー信号を生成し、このトラッキングエラー信号をもとにトラッキングアクチュエータ70にトラッキング駆動信号を供給して対物レンズ60を光軸に対して垂直な方向(ディスク半径方向)に移動させてトラッキング制御を行う。  (Tracking control) Next, tracking control during data recording will be described. The tracking control is performed using guide tracks 121 provided on the guide layer 112 of the optical disc 11 with a track pitch of 0.32 μm. The tracking control unit 71 generates a tracking error signal based on the output of the second light receiving unit 69 by, for example, a PP (push-pull) method or a DPP (differential push-pull) method, and based on this tracking error signal Then, a tracking drive signal is supplied to the tracking actuator 70, and the objective lens 60 is moved in a direction perpendicular to the optical axis (disk radial direction) to perform tracking control. *
次に、このトラッキング制御において、トラッキングサーボ極性をランド部とグルーブ部との切り替え点で反転させるタイミングを生成するウォブル再生部78とフラグ処理部83の動作について説明す
る。 
Next, the operations of the wobble reproduction unit 78 and the flag processing unit 83 that generate the timing for reversing the tracking servo polarity at the switching point between the land part and the groove part in this tracking control will be described.
ウォブル再生部78は、第2の受光部69の出力をもとにウォブル信号を再生する。ウォブル再生部78は、再生されたウォブル信号を周波数などによりデータウォブル信号とフラグウォブル信号とに弁別する機能を有することから、ガイド光のビームスポットがガイドトラック121のデータ領域123にあるときは、そのウォブル信号をデータウォブル信号として弁別し、このデータウォブル信号から物理アドレス情報を復調するとともに、そのデータウォブル信号から記録クロックを生成する。  The wobble reproduction unit 78 reproduces the wobble signal based on the output of the second light receiving unit 69. Since the wobble reproduction unit 78 has a function of discriminating the reproduced wobble signal into a data wobble signal and a flag wobble signal based on a frequency or the like, when the beam spot of the guide light is in the data area 123 of the guide track 121, The wobble signal is discriminated as a data wobble signal, physical address information is demodulated from the data wobble signal, and a recording clock is generated from the data wobble signal. *
また、ガイド光のビームスポットがガイドトラック121の極性反転フラグ領域122にあるときは、ウォブル再生部78はウォブル信号をフラグウォブル信号として弁別し、このフラグウォブル信号をフラグ処理部83に供給する。フラグ処理部83は、ウォブル再生部78より供給されたフラグウォブル信号をもとに極性反転フラグ領域122の検出、ランド部とグルーブ部との切り替わり点のタイミングを生成し、このタイミングでトラッキングサーボ極性の切り替え信号をトラッキング制御部71に供給する。次に、上記のウォブル再生部78およびフラグ処理部83のより具体的な構成及び動作を説明する。  When the beam spot of the guide light is in the polarity inversion flag region 122 of the guide track 121, the wobble reproduction unit 78 discriminates the wobble signal as a flag wobble signal and supplies the flag wobble signal to the flag processing unit 83. The flag processing unit 83 detects the polarity inversion flag region 122 based on the flag wobble signal supplied from the wobble reproduction unit 78, and generates the timing of the switching point between the land portion and the groove portion. At this timing, the tracking servo polarity Is supplied to the tracking control unit 71. Next, more specific configurations and operations of the wobble playback unit 78 and the flag processing unit 83 will be described. *
[ウォブル再生部78およびフラグ処理部83の具体例1] 図8はウォブル再生部78とフラグ処理部83のより具体的な構成を示すブロック図である。  [Specific Example 1 of Wobble Reproduction Unit 78 and Flag Processing Unit 83] FIG. 8 is a block diagram showing a more specific configuration of the wobble reproduction unit 78 and the flag processing unit 83. *
ウォブル再生部78は、ウォブル信号生成部90、ウォブル弁別器91、ウォブルPLL92、および記録クロックPLL93を有する。フラグ処理部83はフラグウォブルカウンタ94およびクロックカウンタ95などで構成される。  The wobble reproduction unit 78 includes a wobble signal generation unit 90, a wobble discriminator 91, a wobble PLL 92, and a recording clock PLL 93. The flag processing unit 83 includes a flag wobble counter 94 and a clock counter 95. *
ウォブル再生部78において、ウォブル信号生成部90は第2の受光部69からの信号を用いてウォブル信号を生成する。生成されたウォブル信号は、ウォブル弁別器91にて、例えばそのウォブル信号の周波数、振幅などを基準にデータウォブル信号とフラグウォブル信号とに弁別される。データウォブル信号はウォブルPLL(Phase-Locked Loop)92に供給され、ここでデータウォブルの周期に対応するクロックであるウォブルクロックが生成される。ウォブルクロックは記録クロックPLL93にて逓倍され、記録クロックが生成される。生成された記録クロックはデータ変調部72に供給されるほか、フラグ処理部83のクロックカウンタ95などに供給される。  In the wobble reproduction unit 78, the wobble signal generation unit 90 generates a wobble signal using the signal from the second light receiving unit 69. The generated wobble signal is discriminated by the wobble discriminator 91 into a data wobble signal and a flag wobble signal based on, for example, the frequency and amplitude of the wobble signal. The data wobble signal is supplied to a wobble PLL (Phase-Locked Loop) 92, where a wobble clock which is a clock corresponding to the data wobble period is generated. The wobble clock is multiplied by the recording clock PLL 93 to generate a recording clock. The generated recording clock is supplied to the data modulation unit 72 and also to the clock counter 95 of the flag processing unit 83 and the like. *
一方、ウォブル弁別器91にて弁別されたフラグウォブル信号はフラグ処理部83内のフラグウォブルカウンタ94に供給される。フラグウォブルカウンタ94は、ウォブル弁別器91より供給されるフラグウォブル信号をカウントする。フラグウォブルカウンタ94は、例えば、連続してn個のフラグウォブル信号が入力されたことを判定すると、現在ガイド光のビームスポットが極性反転フラグ領域122にあることを確定してクロックカウンタ95にカウントスタート信号を出力する。  On the other hand, the flag wobble signal discriminated by the wobble discriminator 91 is supplied to the flag wobble counter 94 in the flag processing unit 83. The flag wobble counter 94 counts the flag wobble signal supplied from the wobble discriminator 91. For example, when the flag wobble counter 94 determines that n flag wobble signals have been continuously input, the flag wobble counter 94 determines that the beam spot of the guide light is currently in the polarity inversion flag region 122 and counts it to the clock counter 95. A start signal is output. *
ここで、図6に示したように、記録方向において、極性反転フラグ領域122の開始点からn個以上のフラグウォブルが連続して設けられる。n個のフラグウォブルが終了した位置から、ランド部とグルーブ部との切り替わり点までの距離は記録クロック数xで表すことができる。そこで、クロックカウンタ95は、カウントをスタートさせてから記録クロックPLL93から供給される記録クロックの数がxに達したところで、トラッキングサーボ極性の切り替え信号をトラッキング制御部71に供給する。  Here, as shown in FIG. 6, n or more flag wobbles are continuously provided from the start point of the polarity inversion flag region 122 in the recording direction. The distance from the position where n flag wobbles are completed to the switching point between the land portion and the groove portion can be expressed by the number x of recording clocks. Therefore, the clock counter 95 supplies a tracking servo polarity switching signal to the tracking controller 71 when the number of recording clocks supplied from the recording clock PLL 93 reaches x after starting the counting. *
トラッキング制御部71は、このトラッキングサーボ極性の切り替え信号に基づいて、トラッキング駆動信号の極性つまり対物レンズ60を移動させる方向をディスク半径方向の+方向(ディスク外周に向かう方向)と-方向(ディスク内周に向かう方向)とで切り替える。  Based on the tracking servo polarity switching signal, the tracking control unit 71 determines the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved, in the + direction (direction toward the outer periphery of the disk) and the − direction (in the disk). (Direction toward the lap). *
(記録層の極性反転フラグ領域122に対応する領域へのデータ記録) 本実施形態のディスクドライブ31では、記録層113への有意なユーザデータの記録は、ガイド層112のデータ領域123に対応する領域においてのみ行われ、極性反転フラグ領域122に対応する領域ではユーザデータの記録が停止される。すなわち、ユーザデータは記録層113に、極性反転フラグ領域122に対応する領域の前後で論理アドレスが連続するように記録される。但し、極性反転フラグ領域122に対応する領域にピット列が存在しないと、再生信号に余計な直流成分が発生してデータの復調処理などに悪影響が生じる可能性がある。このような場合には、例えば9Tの長さのマークとスペースの繰り返しによるダミーデータのピット列を、記録層113の極性反転フラグ領域122に対応する領域に記録すればよい。 なお、論理アドレスの生成の方法については後で説明する。  (Data recording to the area corresponding to the polarity reversal flag area 122 of the recording layer) In the disk drive 31 of the present embodiment, significant user data recording to the recording layer 113 corresponds to the data area 123 of the guide layer 112. This is performed only in the area, and recording of user data is stopped in the area corresponding to the polarity inversion flag area 122. That is, the user data is recorded on the recording layer 113 so that the logical addresses are continuous before and after the area corresponding to the polarity inversion flag area 122. However, if there is no pit string in the area corresponding to the polarity inversion flag area 122, an extra DC component is generated in the reproduction signal, which may adversely affect data demodulation processing. In such a case, for example, a pit string of dummy data obtained by repeating a 9-T mark and a space may be recorded in an area corresponding to the polarity inversion flag area 122 of the recording layer 113. A method for generating a logical address will be described later. *
より具体的には、フラグ処理部83内のフラグウォブルカウンタ94は、例えば、連続してn個のフラグウォブル信号が入力されたことを判定すると、現在ガイド光のビームスポットが極性反転フラグ領域122にあることを確定してクロックカウンタ95にカウントスタート信号を出力すると同時にコントローラ82に極性反転フラグ領域122の開始点検出信号を供給し、さらに、トラッキングサーボ極性の切り替え信号をトラッキング制御部71に供給するタイミングで極性反転フラグ領域122の終了点検出信号をコントローラ82に供給する。  More specifically, for example, when the flag wobble counter 94 in the flag processing unit 83 determines that n flag wobble signals have been continuously input, the beam spot of the current guide light is changed to the polarity inversion flag region 122. At the same time, a count start signal is output to the clock counter 95, and at the same time, a start point detection signal of the polarity inversion flag region 122 is supplied to the controller 82, and a tracking servo polarity switching signal is supplied to the tracking controller 71. The end point detection signal of the polarity reversal flag region 122 is supplied to the controller 82 at the timing of *
コントローラ82は、極性反転フラグ領域122の開始点検出信号を受けてから終了点検出信号を受けるまでの間、データ変調部72に対し、例えば9Tの長さのマークとスペースの繰り返しによるダミーデータを出力させるように制御を行う。このように極性反転フラグ領域122の開始点検出信号を受けてから終了点検出信号を受けるまでの間にも継続して記録が行われるようにしたことによって、再生時のトラッキングを安定させることができる。  The controller 82 gives dummy data by repeating, for example, a 9-T mark and a space to the data modulation unit 72 after receiving the start point detection signal of the polarity inversion flag region 122 until receiving the end point detection signal. Control to output. As described above, the recording is continuously performed during the period from the reception of the start point detection signal of the polarity inversion flag region 122 to the reception of the end point detection signal, so that tracking during reproduction can be stabilized. it can. *
以上により、記録クロック周期のオーダで高精度に、ランド部とグルーブ部との切り替え点でのトラッキングサーボ極性の切り替えを行うことができる。また、本実施形態では、ガイドトラック121が全周回に連続して設けられているので、トラッキング制御が途切れることなく実行され、ランド部とグルーブ部との切り替え点を挟んでも安定したトラッキング制御が可能となる。  As described above, the tracking servo polarity can be switched at the switching point between the land portion and the groove portion with high accuracy in the order of the recording clock cycle. In the present embodiment, since the guide track 121 is continuously provided in the entire circumference, the tracking control is executed without interruption, and stable tracking control is possible even when the switching point between the land portion and the groove portion is sandwiched. It becomes. *
<変形例> なお、上記の実施形態は、ランド部とグルーブ部との切り替わり点のタイミングをディスクドライブ31にて生成させるためのフラグ信号をガイドトラック121の極性反転フラグ領域122にウォブルによって記録した場合を想定したものであるが、本発明はこれに限定されない。  <Modification> In the above embodiment, a flag signal for generating the timing of the switching point between the land part and the groove part in the disk drive 31 is recorded in the polarity reversal flag area 122 of the guide track 121 by wobble. However, the present invention is not limited to this. *
例えば、図9に示すように、ランド部とグルーブ部との切り替わり点のタイミングをディスクドライブ31にて生成させるためのフラグ信号を、ガイドトラック121の極性反転フラグ領域122にピット列で構成してもよい。  For example, as shown in FIG. 9, a flag signal for causing the disc drive 31 to generate the timing of the switching point between the land portion and the groove portion is configured by a pit row in the polarity reversal flag region 122 of the guide track 121. Also good. *
この場合、極性反転フラグ領域122に用いられるピット列を構成するマークとスペースのパターンは、ガイドトラック121に他のデータが例えば8-16変調方式などによるピット列でプリライトされない仕様の場合にはどのようなものが使用されてもよい。あるいは、ガイドトラック121に他のデータが例えば8-16変調方式などによるピット列でプリライトされている仕様の場合には、8-16変調方式に使用されないマーク長を用いたダミーデータを使用すればよい。  In this case, the mark and space pattern constituting the pit row used in the polarity reversal flag region 122 may be any when the other data is not pre-written on the guide track 121 by the pit row by the 8-16 modulation method or the like. Such may be used. Alternatively, in the case where other data is pre-written on the guide track 121 with a pit row by, for example, the 8-16 modulation method, dummy data using a mark length that is not used in the 8-16 modulation method can be used. Good. *
例として、この変形例では、極性反転フラグ領域122のみにピット列が記録されていることとする。この場合、当該ピット列を構成するマークとスペースのパターンは、ディスクドライブが確実かつ迅速に極性反転フラグ領域122を検出することができるようなパターンであればよい。図9の例では、例えば、mを任意の値として、mTの長さのスペースとmTの長さのマークが交互に少なくともn回連続するピット列パターンが極性反転フラグ領域122の先端からプリライトされている。  As an example, in this modification, it is assumed that a pit string is recorded only in the polarity inversion flag area 122. In this case, the mark and space pattern constituting the pit row may be any pattern that allows the disk drive to detect the polarity reversal flag region 122 reliably and quickly. In the example of FIG. 9, for example, with m being an arbitrary value, a pit row pattern in which mT-length spaces and mT-length marks are alternately continued at least n times is prewritten from the tip of the polarity inversion flag region 122. ing. *
図10は、このようにピット列のパターンでフラグ信号が記録された極性反転フラグ領域122から、トラッキングサーボ極性をランド部とグルーブ部との切り替え点で反転させるタイミングを生成する方式を採用したディスクドライブ31Aの構成を示すブロック図である。  FIG. 10 shows a disc that employs a method of generating a timing for reversing the tracking servo polarity at the switching point between the land portion and the groove portion from the polarity reversal flag region 122 in which the flag signal is recorded in the pit row pattern as described above. It is a block diagram which shows the structure of drive 31A. *
このディスクドライブ31Aにおいて、ピット列フラグ処理部83Aは、第2の受光部69からの分割された各受光面で得た電圧信号を全加算した信号を生成し、生成された信号の等化処理、二値化を経て、極性反転フラグ領域122の検出、ランド部とグルーブ部との切り替わり点のタイミングの生成を行い、生成されたタイミングでトラッキングサーボ極性の切り替え信号をトラッキング制御部71およびコントローラ82に供給する。  In this disk drive 31A, the pit row flag processing unit 83A generates a signal obtained by fully adding the voltage signals obtained from the divided light receiving surfaces from the second light receiving unit 69, and equalization processing of the generated signal After the binarization, the polarity inversion flag region 122 is detected, the timing of the switching point between the land portion and the groove portion is generated, and the tracking servo polarity switching signal is generated at the generated timing by the tracking control unit 71 and the controller 82. To supply. *
次に、このピット列フラグ処理部83Aの具体的な構成を説明する。 図11はウォブル再生部78Aとピット列フラグ処理部83Aのより具体的な構成を示すブロック図である。  Next, a specific configuration of the pit row flag processing unit 83A will be described. FIG. 11 is a block diagram showing a more specific configuration of the wobble playback unit 78A and the pit string flag processing unit 83A. *
ウォブル再生部78Aは、ウォブル信号生成部90A、ウォブルPLL92A、および記録クロックPLL93Aを有する。 ピット列フラグ処理部83Aは、等化器96A、ピット列フラグ検出部97Aおよびクロックカウンタ95Aなどで構成される。  The wobble reproduction unit 78A includes a wobble signal generation unit 90A, a wobble PLL 92A, and a recording clock PLL 93A. The pit string flag processing unit 83A includes an equalizer 96A, a pit string flag detecting unit 97A, a clock counter 95A, and the like. *
ウォブル再生部78Aにおいて、ウォブル信号生成部90Aは第2の受光部69からの信号を用いてウォブル信号を生成する。生成されたウォブル信号はウォブルPLL92Aに供給され、ここでウォブルの周期に対応するクロックであるウォブルクロックが生成される。ウォブルクロックは記録クロックPLL93Aにて逓倍され、記録クロックが生成される。生成された記録クロックはデータ変調部72に供給されるとともに、ピット列フラグ処理部83A内のクロックカウンタ95Aなどに供給される。  In the wobble reproduction unit 78A, the wobble signal generation unit 90A generates a wobble signal using the signal from the second light receiving unit 69. The generated wobble signal is supplied to the wobble PLL 92A, where a wobble clock which is a clock corresponding to the wobble cycle is generated. The wobble clock is multiplied by the recording clock PLL 93A to generate a recording clock. The generated recording clock is supplied to the data modulation unit 72 and is also supplied to the clock counter 95A in the pit string flag processing unit 83A. *
一方、第2の受光部69からの信号(分割された各受光面で得た電圧信号を全加算した信号)はピット列フラグ処理部83A内の等化器96Aに供給され、ここで符号間の干渉成分が除去された後、ピット列フラグ検出部97Aに供給される。ピット列フラグ検出部97Aでは、等化器96Aより出力された二値信号をもとに、mTの長さのスペースとmTの長さのマークが交互にn回連続する所定のピット列パターンをフラグ信号として判定する。ピット列フラグ検出部97Aにより当該フラグ信号のピット列パターンが検出されると、現在ガイド光のビームスポットが極性反転フラグ領域122にあることを確定してクロックカウンタ95Aにカウントスタート信号を出力する。なお、mは予め決められた整数である。  On the other hand, a signal from the second light receiving unit 69 (a signal obtained by fully adding the voltage signals obtained by the divided light receiving surfaces) is supplied to the equalizer 96A in the pit string flag processing unit 83A, where Are removed and then supplied to the pit row flag detector 97A. Based on the binary signal output from the equalizer 96A, the pit row flag detection unit 97A generates a predetermined pit row pattern in which mT length spaces and mT length marks are alternately repeated n times. It is determined as a flag signal. When the pit row flag detection unit 97A detects the pit row pattern of the flag signal, it determines that the beam spot of the guide light is currently in the polarity inversion flag region 122 and outputs a count start signal to the clock counter 95A. Note that m is a predetermined integer. *
ここで、図9に示すように、フラグ信号であるピット列パターンが終了した位置から、ランド部とグルーブ部との切り替わり点までの距離は記録クロック数xで表すことができる。そこで、クロックカウンタ95Aは、カウントをスタートさせてから記録クロックPLL93Aから供給される記録クロックの数がxに達したところで、トラッキングサーボ極性の切り替え信号をトラッキング制御部71に供給する。  Here, as shown in FIG. 9, the distance from the position where the pit string pattern, which is the flag signal, is completed to the switching point between the land portion and the groove portion can be expressed by the number x of recording clocks. Therefore, the clock counter 95A supplies a tracking servo polarity switching signal to the tracking control unit 71 when the number of recording clocks supplied from the recording clock PLL 93A reaches x after starting the counting. *
トラッキング制御部71は、このトラッキングサーボ極性の切り替え信号に基づいて、トラッキング駆動信号の極性つまり対物レンズ60を移動させる方向をディスク半径方向の+方向(ディスク外周に向かう方向)と-方向(ディスク内周に向かう方向)とで切り替える。  Based on the tracking servo polarity switching signal, the tracking control unit 71 determines the polarity of the tracking drive signal, that is, the direction in which the objective lens 60 is moved, in the + direction (direction toward the outer periphery of the disk) and the − direction (in the disk). (Direction toward the lap). *
以上により、この変形例によっても、記録クロック周期のオーダで高精度に、ランド部とグルーブ部との切り替え点でのトラッキングサーボ極性の切り替えを行うことができる。  As described above, according to this modification, the tracking servo polarity can be switched at the switching point between the land portion and the groove portion with high accuracy in the order of the recording clock cycle. *
<その他の変形例> 以上説明した実施形態および変形例では、ウォブリングされたランド・グルーブ構造のガイドトラックを場合について説明した。これらの例では、トラッキングサーボ極性の切り替えタイミングを生成するための記録クロックをデータウォブル信号から生成する点で一致している。  <Other Modifications> In the embodiment and the modification described above, the case where a guide track having a wobbling land / groove structure has been described. These examples are identical in that the recording clock for generating the tracking servo polarity switching timing is generated from the data wobble signal. *
しかしながら、本発明はこれに限定されない。 例えば、ランド・グルーブ構造のガイドトラックに物理アドレス情報がピ
ット列で記録されたものにおいては、そのピット列が同様の記録クロックを生成することが可能であるから、このピット列から得られるPLLを用いて生成される記録クロックを用いてトラッキングサーボ極性の切り替えタイミングを生成するものとしてもよい。 
However, the present invention is not limited to this. For example, in the case where physical address information is recorded in a pit row on a land / groove guide track, the pit row can generate a similar recording clock. The switching timing of the tracking servo polarity may be generated using a recording clock generated by using the recording clock.
(記録層のユーザデータに与えられる論理アドレスについて) 図12はガイド層のデータ領域の物理アドレスと各記録層のデータ領域に割り当てられる論理アドレスとの関係を示す図である。 図12において、実線はガイド層のデータ領域の物理アドレス、点線は4つの記録層のデータ領域に割り当てられる論理アドレスを示している。4つの記録層はガイド層に近いものから順に記録層L0、記録層L1、記録層L2、記録層L3と表記される。なお、4つの記録層へのユーザデータの記録はL0、L1、L2、L3の順で行われ、個々の記録層においてユーザデータの記録は内周から外周へ向けて行われることとする。  (Regarding Logical Address Assigned to User Data of Recording Layer) FIG. 12 is a diagram showing the relationship between the physical address of the data area of the guide layer and the logical address assigned to the data area of each recording layer. 12, the solid line indicates the physical address of the data area of the guide layer, and the dotted line indicates the logical address assigned to the data areas of the four recording layers. The four recording layers are denoted as a recording layer L0, a recording layer L1, a recording layer L2, and a recording layer L3 in order from the one closest to the guide layer. Note that user data is recorded on the four recording layers in the order of L0, L1, L2, and L3, and user data is recorded on each recording layer from the inner periphery toward the outer periphery. *
ガイド層のデータ領域の物理アドレス空間は一つの記録層のデータ領域の容量分しかないため、そのままでは一つの記録層のデータ領域の論理アドレス空間だけにしか割り当てられない。そこで、本実施形態では、ガイド層の物理アドレスと記録層情報とから、点線で示される全ての記録層のデータ領域の論理アドレスを計算によって得るようにした。  Since the physical address space of the data area of the guide layer has only the capacity of the data area of one recording layer, it can be assigned only to the logical address space of the data area of one recording layer as it is. Therefore, in this embodiment, the logical addresses of the data areas of all the recording layers indicated by the dotted lines are obtained by calculation from the physical address of the guide layer and the recording layer information. *
この計算は具体的には、ガイド層における物理アドレスの最大値(最終物理アドレス)をPSN_max、 記録層Lxの記録層情報をx(x=0,1,2,・・・)、記録層Lxのデータ領域における記録先の位置に対応する物理アドレスをPSN、記録層Lxのデータ領域における記録先の位置に記録されるデータ単位に与えられる論理アドレスをLSNとして、  LSN=(PSN_max×x)+PSN・・・(1)の式により行われる。  Specifically, in this calculation, the maximum physical address (final physical address) in the guide layer is PSN_max, the recording layer information of the recording layer Lx is x (x = 0, 1, 2,...), And the recording layer Lx. LSN = (PSN_max × x) + PSN, where PSN is the physical address corresponding to the recording destination position in the data area, and LSN is the logical address given to the data unit recorded at the recording destination position in the data area of the recording layer Lx ... Performed by equation (1). *
図13は論理アドレスの割り当ての具体的を示す図である。 例えば、ガイド層には内周側より"1"から"100"までの物理アドレスが割り当てられているものとし、ガイド層のデータ領域の先頭物理アドレスを"10"、ガイド層のデータ領域の最終物理アドレスを"90"とする。なお、これら物理アドレスの値は説明の便宜上決められた値にすぎない。  FIG. 13 is a diagram showing specific allocation of logical addresses. For example, it is assumed that physical addresses from “1” to “100” are assigned to the guide layer from the inner peripheral side, the top physical address of the data area of the guide layer is “10”, and the last of the data area of the guide layer is The physical address is “90”. Note that the values of these physical addresses are only values determined for convenience of explanation. *
(1)式に従って論理アドレスLSNを計算すると、 記録層L0(x=0)のデータ領域の場合には、(100×0)+PSNの計算結果が論理アドレスとなるため、ガイド層のデータ領域の物理アドレスである"10"から"90"がそのまま記録層L0のデータ領域の論理アドレスとして割り当てられる。 記録層L1(x=1)のデータ領域には、(100×1)+PSNの計算結果が論理アドレスとなるため、"110"から"190"が記録層L1のデータ領域の論理アドレスとして割り当てられる。 記録層L2(x=2)のデータ領域には、(100×2)+PSNの計算結果が論理アドレスとなるため、"210"から"290"が記録層L2のデータ領域の論理アドレスとして割り当てられる。 記録層L3(x=3)のデータ領域には、(100×3)+PSNの計算結果が論理アドレスとなるため、"310"から"390"が記録層L3のデータ領域の論理アドレスとして割り当てられる。  When the logical address LSN is calculated according to the equation (1), in the case of the data area of the recording layer L0 (x = 0), the calculation result of (100 × 0) + PSN becomes the logical address. Physical addresses “10” to “90” are assigned as logical addresses of the data area of the recording layer L0 as they are. Since the calculation result of (100 × 1) + PSN is a logical address in the data area of the recording layer L1 (x = 1), “110” to “190” are assigned as the logical address of the data area of the recording layer L1. . Since the calculation result of (100 × 2) + PSN is a logical address in the data area of the recording layer L2 (x = 2), “210” to “290” are assigned as the logical address of the data area of the recording layer L2. . Since the calculation result of (100 × 3) + PSN is a logical address in the data area of the recording layer L3 (x = 3), “310” to “390” are assigned as logical addresses of the data area of the recording layer L3. . *
なお、記録層からユーザデータを読み出す場合には、ホスト装置50より指定された論理アドレス(LSN)をガイド層の物理アドレスの最大値(PSN_MAX)で割る。この計算による得られる商の値が記録層情報(x)、余りが物理アドレス(PSN)となる。  When reading user data from the recording layer, the logical address (LSN) specified by the host device 50 is divided by the maximum physical address (PSN_MAX) of the guide layer. The quotient value obtained by this calculation is the recording layer information (x), and the remainder is the physical address (PSN). *
以上のようにして論理アドレスが作成された後、コントローラ82は、作成されたセクタ情報(Sector Information)と論理アドレスとをマージしてIDを作成する。続いてコントローラ82は、IDに当該IDのエラー検出コード、ユーザデータ、エラー検出コードを付加してデータフレームを作成する。さらに、コントローラ82は、データフレームに対するスクランブル処理、ECCブロックの作成、インターリーブを行い、その結果をデータ変調部72に記録用のデータとして供給する。  After the logical address is created as described above, the controller 82 creates an ID by merging the created sector information (Sector Information) and the logical address. Subsequently, the controller 82 adds the error detection code, user data, and error detection code of the ID to the ID to create a data frame. Further, the controller 82 scrambles the data frame, creates an ECC block, and interleaves, and supplies the result to the data modulator 72 as data for recording. *
データ変調部72は、記録用のデータを8/16変換符号などの記録符号で変調して、変調信号を第1の光源駆動部73に供給する。第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33に駆動パルスを供給する。これにより第1の光源33から記録再生光R1が出射され、光ディスク11の記録層のデータ領域にユーザデータが記録される。 The data modulation unit 72 modulates the recording data with a recording code such as an 8/16 conversion code and supplies the modulation signal to the first light source driving unit 73. The first light source drive unit 73 supplies drive pulses to the first light source 33 based on the modulation signal from the data modulation unit 72. As a result, the recording / reproducing light R 1 is emitted from the first light source 33, and user data is recorded in the data area of the recording layer of the optical disk 11.
1…光記録システム 10…ストレージユニット 11…光ディスク 31…ディスクドライブ 32…光ピックアップ 71…トラッキング制御部 78…ウォブル再生部 79…ディスクモータ駆動部 82…コントローラ 83…フラグ処理部 90…ウォブル信号生成部 91…ウォブル弁別器 92…ウォブルPLL 93…記録クロックPLL 94…フラグウォブルカウンタ 95…クロックカウンタ 112…ガイド層 113…記録層 121…ガイドトラック 122…極性反転フラグ領域 123…データ領域 DESCRIPTION OF SYMBOLS 1 ... Optical recording system 10 ... Storage unit 11 ... Optical disk 31 ... Disk drive 32 ... Optical pick-up 71 ... Tracking control part 78 ... Wobble reproduction part 79 ... Disc motor drive part 82 ... Controller 83 ... Flag processing part 90 ... Wobble signal generation part 91 ... Wobble discriminator 92 ... Wobble PLL 93 ... Recording clock PLL 94 ... Flag wobble counter 95 ... Clock counter 112 ... Guide layer 113 ... Recording layer 121 ... Guide track 122 ... Polarity reversal flag area 123 ... Data area

Claims (9)

  1. 1以上の記録層と、ランド部およびグルーブ部が螺旋状に連続するガイドトラックとして設けられたガイド層とを有し、前記ガイドトラックには、記録方向において前記ランド部と前記グルーブ部との切り替わり点の直前に当該切り替わり点のタイミングを光記録装置にて生成させるためのフラグ信号が記録されたフラグ領域が設けられていることを特徴とする ガイド層分離型光記録媒体。 One or more recording layers, and a guide layer provided as a guide track in which the land portion and the groove portion are spirally continuous, and the guide track is switched between the land portion and the groove portion in the recording direction. A guide layer separation type optical recording medium, characterized in that a flag area in which a flag signal for causing the optical recording device to generate the timing of the switching point is provided immediately before the point.
  2. 請求項1に記載のガイド層分離型光記録媒体であって、前記フラグ信号は、前記ガイドトラックのウォブリングによって記録されている ガイド層分離型光記録媒体。 The guide layer separation type optical recording medium according to claim 1, wherein the flag signal is recorded by wobbling the guide track.
  3. 請求項1に記載のガイド層分離型光記録媒体であって、前記フラグ信号は、ピット列により記録されている ガイド層分離型光記録媒体。 The guide layer separation type optical recording medium according to claim 1, wherein the flag signal is recorded by a pit row.
  4. 1以上の記録層と、ランド部およびグルーブ部が螺旋状に連続するガイドトラックとして設けられたガイド層とを有し、前記ガイドトラックには、記録方向において前記ランド部と前記グルーブ部との切り替わり点の直前に当該切り替わり点のタイミングを光記録装置にて生成させるためのフラグ信号が記録されたフラグ領域が設けられたガイド層分離型光記録媒体に記録を行う光記録装置であって、 前記ガイド層分離型光記録媒体を駆動する駆動部と、前記駆動された光記録媒体の前記ガイド層の前記ガイドトラックにレーザ光をガイド光として照射し、当該ガイド光の戻り光を受光信号に変換するガイド用光学系を有する光ピックアップと、前記受光信号をもとにトラッキングエラー信号を生成し、トラッキング制御を行うトラッキング制御部と、前記受光信号をもとに前記フラグ信号を検出して前記切り替わり点のタイミングを生成し、前記生成されたタイミングで前記トラッキング制御の極性を順次反転させるフラグ処理部と を具備する光記録装置。 One or more recording layers, and a guide layer provided as a guide track in which the land portion and the groove portion are spirally continuous, and the guide track is switched between the land portion and the groove portion in the recording direction. An optical recording apparatus for recording on a guide layer separation type optical recording medium provided with a flag area in which a flag signal for generating the timing of the switching point in the optical recording apparatus is generated immediately before the point, A drive unit for driving a guide layer separation type optical recording medium and a guide track of the guide layer of the driven optical recording medium are irradiated with laser light as guide light, and the return light of the guide light is converted into a received light signal. And an optical pickup having a guiding optical system that performs tracking control that generates a tracking error signal based on the received light signal and performs tracking control A light comprising: a control unit; and a flag processing unit that detects the flag signal based on the received light signal, generates the timing of the switching point, and sequentially reverses the polarity of the tracking control at the generated timing. Recording device.
  5. 請求項4に記載の光記録装置であって、前記受光信号をもとに基準のクロックを生成するクロック生成部をさらに具備し、前記フラグ処理部は、前記受光信号をもとに前記フラグ信号を検出してから前記クロックの数を計数し、この計数値が所定の値に達したときを前記切り替わり点のタイミングとして生成する 光記録装置。 The optical recording apparatus according to claim 4, further comprising a clock generation unit that generates a reference clock based on the light reception signal, wherein the flag processing unit is configured to generate the flag signal based on the light reception signal. An optical recording apparatus that counts the number of clocks after detecting the signal and generates the timing when the count value reaches a predetermined value as the timing of the switching point.
  6. 請求項5に記載の光記録装置であって、前記フラグ信号は前記ガイドトラックの所定のウォブルとして記録され、前記フラグ処理部は、前記受光信号をもとに前記所定のウォブルとして記録された前記フラグ信号を検出する 光記録装置。 6. The optical recording apparatus according to claim 5, wherein the flag signal is recorded as a predetermined wobble of the guide track, and the flag processing unit is recorded as the predetermined wobble based on the light reception signal. An optical recording device that detects flag signals.
  7. 請求項5に記載の光記録装置であって、前記フラグ信号は前記ガイドトラックに所定のピット列として記録され、前記フラグ処理部は、前記受光信号をもとに前記所定のピット列として記録された前記フラグ信号を検出する 光記録装置。 6. The optical recording apparatus according to claim 5, wherein the flag signal is recorded as a predetermined pit row on the guide track, and the flag processing unit is recorded as the predetermined pit row based on the light reception signal. An optical recording device that detects the flag signal.
  8. 請求項4ないし7のいずれか1項に記載の光記録装置であって、前記フラグ処理部にて前記フラグ信号が検出されてから前記切り替わり点のタイミングが生成されるまでの間、前記記録層への記録を停止するように制御を行う制御部 をさらに具備する光記録装置。 8. The optical recording apparatus according to claim 4, wherein the recording layer is a period from when the flag signal is detected by the flag processing unit to when the timing of the switching point is generated. An optical recording apparatus further comprising a control unit that performs control so as to stop recording.
  9. 請求項4ないし7のいずれか1項に記載の光記録装置であって、前記フラグ処理部にて前記フラグ信号が検出されてから前記切り替わり点のタイミングが生成されるまでの間、前記記録層にダミーデータを記録するように制御を行う制御部をさらに具備する光記録装置。 8. The optical recording apparatus according to claim 4, wherein the recording layer is a period from when the flag signal is detected by the flag processing unit to when the timing of the switching point is generated. An optical recording apparatus further comprising a control unit that performs control so as to record dummy data.
PCT/JP2013/070544 2012-07-31 2013-07-30 Guide-layer-separated optical recording medium and optical recording device WO2014021295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012170198A JP2014029748A (en) 2012-07-31 2012-07-31 Guide layer separation optical recording medium and optical recording device
JP2012-170198 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014021295A1 true WO2014021295A1 (en) 2014-02-06

Family

ID=50027969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070544 WO2014021295A1 (en) 2012-07-31 2013-07-30 Guide-layer-separated optical recording medium and optical recording device

Country Status (3)

Country Link
JP (1) JP2014029748A (en)
TW (1) TW201411613A (en)
WO (1) WO2014021295A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757302A (en) * 1993-08-13 1995-03-03 Nec Corp Optical disk medium
JP2002279646A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Optical disk, signal recording method and optical disk device
JP2006313591A (en) * 2005-05-09 2006-11-16 Ricoh Co Ltd Recording method, optical disk device, program, and recording medium
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus
WO2012063326A1 (en) * 2010-11-09 2012-05-18 株式会社 東芝 Information recording medium, information reproducing device, and information recording device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757302A (en) * 1993-08-13 1995-03-03 Nec Corp Optical disk medium
JP2002279646A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Optical disk, signal recording method and optical disk device
JP2006313591A (en) * 2005-05-09 2006-11-16 Ricoh Co Ltd Recording method, optical disk device, program, and recording medium
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus
WO2012063326A1 (en) * 2010-11-09 2012-05-18 株式会社 東芝 Information recording medium, information reproducing device, and information recording device

Also Published As

Publication number Publication date
JP2014029748A (en) 2014-02-13
TW201411613A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP4580033B2 (en) Multilayer optical recording medium manufacturing method and multilayer optical recording medium recording apparatus
EP2639795A1 (en) Information recording medium, information reproducing device, and information recording device
US7929390B2 (en) Optical recording method on multilayer optical recording medium and optical recording apparatus
WO2013146491A1 (en) Multi-layer optical recording medium and optical recording device
WO2013172285A1 (en) Optical recording device and optical recording method
WO2014021295A1 (en) Guide-layer-separated optical recording medium and optical recording device
JP5406224B2 (en) Multi-layer disc group discrimination method and optical disc apparatus
WO2014021296A1 (en) Optical recording system and disc cartridge
JP4321469B2 (en) Disc recording apparatus and method, and recording control program
WO2013146490A1 (en) Multi-layer recording medium and optical recording device
WO2014050398A1 (en) Optical recording device, optical recording method, and multilayer optical disk
US7704580B2 (en) Information recording medium
JP2009037705A (en) Information recording medium, information recording and reproducing device, and information recording and reproducing method
WO2014030545A1 (en) Optical recording device and optical recording method
WO2011128985A1 (en) Information recording medium, information recording device and method, and information reading device and method
WO2014045801A1 (en) Optical recording device and optical recording method
JP2015001998A (en) Optical recording device and focus control method therefor
WO2014171401A1 (en) Optical recording device and maximum recording speed determination method
JP2013200914A (en) Optical recording device and optical recording method
WO2014027597A1 (en) Disk cartridge, optical recording method, and optical recording system
JP2014089789A (en) Optical recording device and tilt amount measuring method
JP2009140574A (en) Recorder/reproducer and disk discriminating method
JP2014137838A (en) Optical recording method, optical recording device and optical recording medium set
JP2011018449A (en) Optical recording medium, optical recording/reproducing device, and reproducing device
JP2008135111A (en) Optical disk device and optical disk playback method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826044

Country of ref document: EP

Kind code of ref document: A1