WO2014049710A1 - Recording medium, recording reproduction device and method - Google Patents

Recording medium, recording reproduction device and method Download PDF

Info

Publication number
WO2014049710A1
WO2014049710A1 PCT/JP2012/074691 JP2012074691W WO2014049710A1 WO 2014049710 A1 WO2014049710 A1 WO 2014049710A1 JP 2012074691 W JP2012074691 W JP 2012074691W WO 2014049710 A1 WO2014049710 A1 WO 2014049710A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
guide
track
mark
laser beam
Prior art date
Application number
PCT/JP2012/074691
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 昌義
琢也 白戸
Original Assignee
パイオニア株式会社
パイオニアデジタルデザインアンドマニュファクチャリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアデジタルデザインアンドマニュファクチャリング株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/074691 priority Critical patent/WO2014049710A1/en
Publication of WO2014049710A1 publication Critical patent/WO2014049710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24047Substrates
    • G11B7/2405Substrates being also used as track layers of pre-formatted layers

Definitions

  • the present invention relates to a technical field of a recording medium such as an optical disc having a plurality of recording layers, and a recording / reproducing apparatus and method for performing at least one of a recording process and a reproducing process for the recording medium.
  • a recording / reproducing apparatus that performs at least one of recording processing and reproducing processing on such a recording medium is configured to perform guide laser light for reading the guide track of the guide layer and at least one of recording processing and reproducing processing on the recording layer.
  • the recording / reproducing laser beam is irradiated.
  • the recording / reproducing apparatus performs at least one of the recording process and the reproducing process by irradiating the recording layer with the recording / reproducing laser beam while performing tracking control based on the push-pull signal obtained from the return light of the guide laser beam.
  • the diameter of the beam spot formed by the guide laser beam on the guide layer is different from the diameter of the beam spot formed by the recording / reproducing laser beam on the recording layer.
  • the track pitch of the recording layer (that is, the track pitch of the information track composed of the recording marks on the recording layer) is the track pitch of the guide layer (that is, the guide track).
  • a technique for realizing high-density recording in the recording layer by making the size smaller than the track pit) can be considered.
  • the tracking control accuracy in the recording layer is the tracking in the guide layer.
  • a method for realizing high-density recording in the recording layer by making the track pitch of the guide layer and the track pitch of the recording layer substantially equal is considered as an example.
  • the guide laser light irradiates a plurality of guide tracks of the guide layer at a time.
  • the present invention has been made in view of the above-described problems, for example, and a recording medium capable of performing high-precision tracking control while adopting the CLV method, and recording processing and reproducing processing for such a recording medium. It is an object to provide a recording / reproducing apparatus and method for performing at least one of the above.
  • the recording medium of the present invention is a CLV recording medium, in which guide tracks that are partitioned by a plurality of slots arranged in the track direction are formed in advance, and the guide layer A plurality of recording layers stacked on top of each other, and the guide track is formed at the same rotational phase position of a plurality of guide tracks adjacent to each other along a radial direction intersecting the track direction and is a unit of the slot.
  • a plurality of mark groups including the same plurality of recording marks formed together are arranged, and each of the plurality of slots includes a predetermined number of slots arranged continuously along the track direction.
  • a maximum of one central mark located at the center along the radial direction among a plurality of recording marks included in each of the plurality of mark groups is arranged.
  • the plurality of mark groups are discretely arranged along the track direction, and the plurality of mark groups are at least in the radial direction and the track direction so as not to be adjacent to each other along the radial direction. They are shifted along one side.
  • the recording / reproducing apparatus of the present invention is a recording / reproducing apparatus that performs at least one of the recording process and the reproducing process on the recording medium of the present invention described above, and a guide laser beam is applied to the guide layer.
  • a first control unit that controls the light irradiation unit to perform tracking control that applies tracking servo to the guide track in a predetermined band based on the return light of the light, and the tracking servo is applied. Irradiating and condensing the recording / reproducing laser beam on the one recording layer, thereby performing at least one of the recording process and the reproducing process.
  • the recording / reproducing method of the present invention irradiates and condenses the guide layer with the guide laser beam on the above-described recording medium of the present invention (including various aspects thereof). Recording that performs at least one of a recording process and a reproducing process using a light irradiation unit that irradiates and condenses a recording / reproducing laser beam different from the guide laser beam to one of the plurality of recording layers.
  • the light irradiation unit is controlled to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer.
  • the recording process is performed by irradiating and condensing the one recording layer with the recording / reproducing laser beam.
  • FIG. 4 is a partially enlarged perspective view having the same concept as in FIG. 3 when an example of prepits is provided in the embodiment.
  • FIG. 4 is a partially enlarged perspective view having the same concept as in FIG.
  • FIG. 17 is a characteristic diagram showing an operation of sampling a tracking error of a sampler included in the circuit part of FIG.
  • FIG. 6 is a characteristic diagram illustrating a frequency characteristic of a gain in a tracking servo that defines an arrangement interval between two mark groups adjacent to each other along a track in an embodiment.
  • the recording medium of the present embodiment is a CLV recording medium, and includes a guide layer in which guide tracks divided by a plurality of slots arranged in the track direction are formed in advance, and the guide A plurality of recording layers stacked on a layer, and the guide track is formed at the same rotational phase position of a plurality of guide tracks adjacent to each other along a radial direction intersecting the track direction, and the unit of the slot A plurality of mark groups including the same plurality of recording marks formed in accordance with the predetermined number of slots arranged in a row along the track direction among the plurality of slots.
  • a maximum of one central mark located at the center along the radial direction among a plurality of recording marks included in each of the plurality of mark groups is arranged.
  • the plurality of mark groups are discretely arranged along the track direction, and the plurality of mark groups are arranged in the radial direction and the track direction so as not to be adjacent to each other along the radial direction. It is shifted along at least one side.
  • the recording medium of the present embodiment includes a guide layer and a plurality of recording layers.
  • guide tracks for example, groove tracks, land tracks, etc.
  • the recording / reproducing apparatus that performs at least one of the recording process and the reproducing process on the recording medium (more specifically, on a plurality of recording layers included in the recording medium) irradiates the guide layer.
  • the return light of the guide laser light that is, the guide laser light reflected by the guide layer
  • a push-pull signal corresponding to the positional relationship between the guide track and the beam spot of the guide laser light can be acquired.
  • the recording / reproducing apparatus can perform tracking control based on the push-pull signal.
  • the recording / reproducing apparatus identifies address position on the guide track (in other words, position on the recording layer associated with the position on the guide track) based on the return light of the guide laser beam. Etc. can be obtained. Furthermore, the recording / reproducing apparatus can acquire arbitrary control information other than the address information based on the return light of the guide laser beam. As a result, the recording / reproducing apparatus can determine the irradiation position of the guide laser beam or the recording / reproducing laser beam based on the address information. Therefore, the recording / reproducing apparatus performs recording and reproduction processing conforming to the CLV (Constant Linear Velocity) method for a desired position of a desired recording layer among a plurality of recording layers while performing such tracking control. At least one of the following can be performed.
  • CLV Constant Linear Velocity
  • tracking control not only the operation of causing the guide laser beam to follow the guide track, but also the operation of irradiating the guide laser beam and the recording / reproducing laser beam to the desired position determined from the address information.
  • tilt control not only the operation of causing the guide laser beam to follow the guide track, but also the operation of irradiating the guide laser beam and the recording / reproducing laser beam to the desired position determined from the address information.
  • the “guide layer” typically refers to a position in the recording surface of each recording layer (that is, a radial position and track along the recording surface) when recording processing is performed on at least each recording layer. It means a layer irradiated with guide laser light (in other words, guiding or guiding the guide laser light) in order to make the recording / reproducing apparatus recognize the (direction position).
  • the “guide layer” typically has a physical guide track for generating a tracking error signal (or a wobble signal, a pre-pit signal, etc., which is the source of the tracking error signal) and address information in advance. It is a layer built in.
  • the “guide track” means a trajectory that the guide laser beam follows when a recording process is performed on at least each recording layer and is physically formed in advance on the guide layer.
  • the guide track may be, for example, a wobbled track or a non-wobbled track (that is, a straight structure track).
  • the guide track may be a track in which pits are formed, or may be a track in which pits are not formed. Note that the information track formed on the recording layer after the recording process is performed on the recording layer is formed afterwards as an array of newly recorded recording marks on the recording layer in which no track originally existed. The track is clearly distinguished from the “guide track” formed in advance on the guide layer.
  • the guide track is divided by a plurality of slots arranged along the track direction (that is, the direction in which the guide track extends, typically the circumferential direction of a disk-shaped recording medium).
  • a “slot” is a logical or physical section in which a guide track is partitioned in the track direction.
  • the plurality of slots that divide such guide tracks may typically be continuously arranged without gaps or adjacent to each other in the track direction.
  • the plurality of slots may be continuously arranged without gaps or adjacent to each other in the radial direction (that is, the direction intersecting or orthogonal to the track direction).
  • the plurality of slots may be arranged so that a slight gap is secured between two slots adjacent to each other along the track direction.
  • the plurality of slots may be arranged so that a slight gap is secured between two slots adjacent to each other along the radial direction.
  • each of the plurality of recording layers can record data independently of the other recording layers.
  • each of the plurality of recording layers is preferably capable of reproducing data independently of the other recording layers.
  • each of the plurality of recording layers preferably has a relatively simple structure (for example, a straight groove structure, a straight land structure, or a mirror structure) in an unrecorded state in which no data is recorded. This is because it is preferable from the viewpoint of manufacturing the recording medium that the alignment between the plurality of recording layers and the alignment with the guide layer are almost or absolutely unnecessary.
  • the structure of the recording layer is such that, when viewed from the irradiation side of the recording / reproducing laser beam, the transmittance and reflectance of each recording layer so that the recording / reproducing laser beam reaches the recording layer or guide layer on the back side. Can be recorded by various recording methods set to fall within a predetermined range.
  • the recording process when the recording process is performed, for example, guide laser light irradiated on a guide track formed on the guide layer (for example, red that forms a beam spot with a relatively large diameter).
  • a tracking error signal, address information, and the like are detected from the return light of the laser beam.
  • Tracking control is performed based on the tracking error signal detected in this way.
  • a recording / reproducing laser beam for example, a blue laser that forms a beam spot having a relatively small diameter
  • a data recording process for a desired position of a desired recording layer is performed.
  • the recording / reproducing laser beam irradiation position (that is, data) in a desired recording layer in which no track exists (for example, in a mirror state) (Recording position) is positioned.
  • tracking control is performed so as to adjust the irradiation position of the guide laser beam on the guide layer.
  • Tracking control is performed so as to adjust the irradiation position of the recording / reproducing laser beam on the desired recording layer. I can say that. In other words, by using the return light of the guide laser light irradiated to the guide track formed in advance, the tracking control of the recording / reproducing laser light in the recording surface of the desired recording layer where the track is not formed in advance is performed. .
  • tracking control may be performed in the same manner as when the recording process is performed. That is, the tracking control of the recording / reproducing laser beam in the recording surface of the desired recording layer may be performed using the return light of the guide laser beam irradiated to the guide track formed in advance.
  • the reproduction process is performed, an information track is formed on the desired recording layer afterwards. Therefore, the recording surface of the desired recording layer is based on the return light of the recording / reproducing laser beam irradiated on the information track formed afterwards instead of the guide laser beam irradiated on the previously formed guide track. Tracking control of the recording / reproducing laser beam may be performed.
  • a plurality of mark groups are arranged on the guide track.
  • Each of the plurality of mark groups includes the same plurality of recording marks formed at the same rotational phase position of a plurality of tracks adjacent in the radial direction.
  • the guide track includes a first mark group including the same three first recording marks formed at positions where the rotational phase positions of three adjacent first guide tracks are 0 degrees.
  • the second mark group including a plurality of the same second recording marks formed at positions where the rotational phase positions of three adjacent second guide tracks are 10 degrees.
  • the guide track has a plurality of identical first recording marks formed at positions where the rotational phase positions of three adjacent first guide tracks whose radial positions are 23 mm are 0 degrees. And a plurality of identical second recording marks formed at positions where the rotational phase positions of three adjacent second guide tracks having a radial position of 25 mm are 0 degrees.
  • the 2nd mark group containing may be arrange
  • each of the plurality of mark groups includes the same plurality of recording marks formed in a one-to-one relationship in a plurality of slots arranged along the radial direction. As a result, it can be said that each of the plurality of mark groups is also arranged in accordance with the slot unit.
  • Each of the plurality of mark groups formed on the guide layer is a mark group for causing the guide laser beam to follow, and may typically be a mark group for optically generating a tracking error signal. .
  • each of the plurality of mark groups formed on the guide layer is a mark group for identifying a position on the guide layer (in other words, a position on the recording layer corresponding to the position on the guide layer). Specifically, it may be a mark group for optically generating address information and the like.
  • Each of the plurality of recording marks constituting each of the plurality of mark groups may be realized by a physical structure on the guide track.
  • a physical structure for example, a combination of a wobble and a prepit structure (for example, a land prepit or a groove prepit) formed inside or outside a guide track side wall, or a wobble and a partially cutout structure It may be realized by a combination, an arrangement or a series of prepits on a surface (for example, a mirror surface) without a groove and a land.
  • the “physical structure” means a physically existing structure, unlike a logical structure or a conceptual or virtual structure constructed by simple data. The physical structure is already formed on the guide track when the recording medium is completed.
  • the plurality of mark groups are discretely arranged along the track direction along the spiral or concentric guide track (in other words, the tangential direction of the guide track).
  • the “discrete arrangement of the plurality of mark groups in the track direction” in the present embodiment is located at the center in the radial direction among the plurality of recording marks included in each of the plurality of mark groups, as described below. Realized by focusing on the center mark. Focusing on the mark group in which the first recording mark to the Nth recording mark are arranged from the inner circumference side toward the outer circumference side, the “center mark” is (1 + N) / 2nd recording counted from the inner circumference side. Corresponds to the mark.
  • each group composed of a predetermined number of slots continuously arranged along the track direction among the plurality of slots is included in each group.
  • a maximum of one center mark included in each of the plurality of mark groups is arranged. That is, different center marks (that is, two or more center marks) included in different mark groups are not simultaneously arranged in each group.
  • at most one center mark is arranged in each group, not only a group in which one center mark is arranged but also a group in which no center mark is arranged as a group for dividing the guide track. It can happen.
  • the center mark of the plurality of recording marks included in the first mark group is, for example, within the first group (more specifically, of the predetermined number of slots constituting the first group). At least one slot).
  • the center mark of the plurality of recording marks included in the other mark group that is, the second and third mark groups
  • the center mark of the plurality of recording marks included in the second mark group is, for example, in a second group different from the first group (more specifically, the second group is configured. At least one of a predetermined number of slots).
  • the center mark of the plurality of recording marks included in the other mark group (that is, the first and third mark groups) is not arranged in the second group.
  • the center mark of the plurality of recording marks included in the third mark group is, for example, in a third group different from the first and second groups (more specifically, the third group At least one of the predetermined number of slots constituting the.
  • the center mark of the plurality of recording marks included in the other mark group (that is, the first and second mark groups) is not arranged in the third group.
  • the fourth group different from the first group to the third group includes a plurality of recording marks included in the fourth mark group different from the first mark group to the third mark group.
  • the center mark may be arranged.
  • the center mark may not be arranged in the fourth group.
  • a discrete arrangement of the plurality of mark groups in the track direction is realized.
  • the discrete arrangement of the plurality of mark groups in the track direction corresponds to the discrete arrangement of the center marks included in each mark group.
  • the plurality of mark groups are arranged so as not to be adjacent to each other along the radial direction.
  • at least two mark groups of the plurality of recording mark groups are arranged so as to be displaced along the radial direction.
  • at least two mark groups of the plurality of recording mark groups may be arranged so as to have a gap (for example, a gap having a predetermined number of tracks) in the radial direction.
  • the two mark groups shifted along the radial direction may be arranged at the same rotational phase position.
  • the two mark groups displaced along the radial direction may be arranged at different rotational phase positions.
  • at least two of the plurality of recording mark groups may be arranged so as to be shifted along the track direction. That is, at least two mark groups of the plurality of recording mark groups may be arranged so as to be shifted along the track direction so that the rotational phase positions to be arranged are different from each other.
  • “arrangement of a plurality of mark groups that are not adjacent to each other” refers to an arrangement in which some or all of the plurality of mark groups are shifted from each other along the track direction and a part of the plurality of mark groups or All are realized by any one of the arrangements shifted from each other along the radial direction or a combination of these arrangements. That is, the “arrangement that is not adjacent to each other” in the present embodiment can mean an arrangement that is displaced along at least one of the radial direction and the track direction.
  • tracking control in a predetermined band can be executed without forming recording marks used for tracking control continuously in the track direction.
  • the arrangement interval in the track direction of the mark group corresponding to the time interval at which the mark group is detected in other words, the arrangement interval of the center marks included in the mark group, and the length along the track direction of the group described above. If the mark group is not arranged over the entire area along the guide track, a predetermined band can be obtained. It has been found that tracking control can be performed.
  • mark groups are arranged at a plurality of positions aligned in the radial direction (that is, the same rotational phase position). It has been found that tracking control can be performed in a predetermined band even if it is not (that is, such a group of marks is not regularly arranged in a line in the radial direction).
  • the plurality of mark groups are discretely arranged along the track direction.
  • an arrangement interval between center marks included in each mark group (for example, the length of the group in the track direction described above). ) Is preferably set to a preset predetermined distance or less.
  • the “predetermined distance” is typically the longest distance at which tracking control can be performed in a predetermined band (for example, the frequency at which tracking control can be stably performed in a predetermined band). In other words, the distance is shorter than the longest distance at which tracking error signals and address information can be generated continuously or continuously.
  • the “predetermined bandwidth” is a unique bandwidth determined in relation to a bandwidth used when recording processing is performed, and a unique bandwidth for a data format (or data standard) for which tracking control is performed. Means.
  • a limit distance capable of performing tracking control in a predetermined band with respect to the guide layer is obtained in advance, experimentally, empirically, or by simulation, and an appropriate margin is determined. And may be set. If a plurality of mark groups (particularly, a plurality of center marks included in the plurality of mark groups) are discretely arranged at an arrangement interval (ie, arrangement pitch) longer than a predetermined distance, for example, in a predetermined band. There is a possibility that the tracking error signal, the address information, and the like cannot be generated as frequently as stable tracking control can be performed. As a result, tracking control cannot be stably performed in a predetermined band.
  • the plurality of mark groups are arranged discretely along the track direction and not adjacent to each other along the radial direction. For this reason, even when the density of the guide tracks is increased until the beam spot of the guide laser beam straddles a plurality of adjacent guide tracks (for example, straddles five guide tracks), it occurs when reading one mark group. Crosstalk due to other mark groups obtained is reduced. Therefore, each mark group can be suitably read using the guide laser beam (that is, a tracking error signal, address information, etc. indicated by each mark group can be suitably acquired).
  • the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
  • Such an effect is that the diameter of the beam spot on the guide layer of the guide laser beam (for example, red laser beam) is large and the beam spot on the desired recording layer of the recording / reproducing laser beam (for example, blue laser beam) is large.
  • the recording density for a desired recording layer is increased by effectively utilizing a relatively small beam spot of the recording / reproducing laser beam.
  • a guide track having a relatively small track pitch corresponding to a subsequent information track in the recording layer is formed in advance in the guide layer, it is inevitably in proportion to the track pitch of the guide track.
  • a beam spot of a guide laser beam that forms a large beam spot is simultaneously irradiated over a plurality of guide tracks. Therefore, it is particularly advantageous in that tracking control corresponding to information tracks having a relatively small track pitch on the recording layer can be performed using guide laser light that forms a relatively large beam spot.
  • the unique configuration in the present embodiment as described above has a corresponding effect.
  • the recording medium adopts the CLV method
  • the angular velocity on the inner peripheral side of the recording medium is larger than the angular velocity on the outer peripheral side of the recording medium.
  • it is difficult or impossible to align a group of marks having a specific length in a radial direction across a plurality of guide tracks unlike, for example, the CAV (Constant Angular Velocity) method. It is.
  • no countermeasures are taken in the CLV method, when the guide laser beam forms a beam spot extending over a plurality of guide tracks, the track portion entering the beam spot is tracked according to the radial position. It will shift in the direction.
  • the reading of the mark group (that is, acquisition of the tracking error signal and address information) must be extremely unstable depending on the radial position.
  • the plurality of mark groups are arranged not to be adjacent to each other along the radial direction consciously or positively as described above. For this reason, tracking control can be stably performed in a predetermined band in accordance with a high-density track pitch and recording linear density for realizing high-density recording regardless of the radial position.
  • the arrangement positions of a plurality of mark groups (for example, discrete arrangement positions in the track direction, arrangement positions in the radial direction, etc.) in advance according to the radial position are determined. If defined, no technical problem occurs even in the CLV system.
  • the center marks included in the plurality of mark groups are arranged one by one for each group including a predetermined number of slots arranged continuously along the track direction.
  • a physical structure for constituting the center mark and other recording marks that constitute the mark group together with the center mark is formed only in a part of the slots secured in accordance with the group. It's enough. That is, in the present embodiment, the physical structure for configuring the center mark and other recording marks that constitute the mark group together with the center mark may not be continuously formed over the entire area of the guide track.
  • the presence / absence of the slot for example, the difference between the slot and the mirror surface
  • the mark group can be easily read and stably executed. This is very advantageous in practice.
  • recording marks constituting user data may be formed in all the continuous slots in both the track direction and the radial direction. Since any slot in the recording layer can be associated with a slot in which the mark group in the guide layer is arranged (in other words, a slot in which the recording mark constituting the mark group is arranged), it is indirect to the recording layer. In addition, tracking control can be performed in a predetermined band.
  • each mark group includes the same plurality of recording marks formed at the same rotational phase position. Therefore, the recording / reproducing apparatus preferably reads the mark group without being affected by the deviation (so-called defocus) of the focus offset of the guide laser beam (in other words, obtained from a plurality of recording marks included in the mark group). Tracking error signal, address information, etc. can be acquired).
  • the track pitch and recording linear density for example, linear recording density, pit pitch or information transfer speed (that is, recording linear density ⁇ movement speed)
  • the track pitch and recording linear density are It is possible to increase the level to what can be said to be “high density recording”, which is the original purpose of a multilayer information recording medium.
  • both the tracking error signal and the address information (or other arbitrary control information, the same applies hereinafter) is acquired from a plurality of mark groups.
  • either one of the tracking error signal and the address information is acquired from the plurality of mark groups, either the tracking error signal or the address information may not be acquired.
  • the tracking error signal follows components other than the mark group (that is, the guide track). It can be obtained from the return light of the guide laser beam. Therefore, in this case, the tracking error signal does not have to be acquired while the address information is acquired from the plurality of mark groups.
  • a plurality of mark groups are in the track direction to such an extent that address information (or arbitrary control information) acquired from the mark group can be acquired in a predetermined band (in other words, a predetermined period). It is preferable to arrange
  • each of the plurality of mark groups is (i) arranged in front of the plurality of recording marks included in each of the mark groups and along the track direction.
  • a plurality of front buffer regions having different lengths
  • a plurality of front buffer regions arranged behind the plurality of recording marks included in the respective mark groups and having different lengths along the track direction.
  • the plurality of front buffer areas and the plurality of rear buffer areas are arranged such that the plurality of recording marks included in the mark group sandwiched therebetween have the same rotational phase. It has such a length that it is formed at a position.
  • the positions in the track direction of the plurality of recording marks included in each mark group are aligned (that is, A plurality of recording marks included in each mark group can be formed at the same rotational phase position). Therefore, even when the end portions of the slots between the plurality of guide tracks adjacent in the radial direction are shifted in the track direction due to the adoption of the CLV method, A plurality of mark groups each including a mark can be suitably arranged on the guide layer.
  • the influence of the positional displacement of the slots between the plurality of guide tracks adjacent in the radial direction due to the adoption of the CLV method is the length in the track direction of each of the plurality of front buffer areas and the plurality of rear buffer areas. It can be absorbed by adjusting the thickness.
  • the plurality of mark groups include one recording mark and a front of the one recording mark.
  • One front buffer area and one rear buffer area arranged behind the one recording mark are arranged so as to be arranged in one slot.
  • the plurality of recording marks constituting each mark group and the plurality of front buffer areas And a plurality of rear buffer regions can be formed in accordance with the slot unit.
  • the “format unit” is a unit conforming to the data format (for example, an error correction unit represented by an ECC (Error Correction Code) block, an ADIP (Address In Pre-groove) unit, or the like).
  • ECC Error Correction Code
  • ADIP Address In Pre-groove
  • the structural unit of such a format is typically a unit that is handled when a predetermined type of processing is performed during information recording or information reproduction.
  • the relationship between the generation period of the tracking error signal and the address information and the recording period of the data on the recording layer is kept constant regardless of the position in the radial direction or the position in the track direction. be able to.
  • the recording medium adopts the CLV method, even when the angular velocity changes depending on the radial position, the tracking control can be stably performed at an arbitrary radial position.
  • it is sufficient to define the length of the slot of the guide layer in the track direction in accordance with the length of the structural unit of the data format when manufacturing the recording medium.
  • the slot As described above, by employing the slot, a guide operation such as a tracking operation with respect to the recording layer can be performed relatively easily and can be performed extremely stably.
  • the plurality of slots have the same length in the track direction and are arranged in the track direction.
  • the slot arrangement rule in the guide layer and the plurality of recording layers can be simplified.
  • the slot in which the mark group (or the recording mark constituting the mark group) is arranged can be determined relatively easily.
  • the plurality of slots may be arranged without a gap along the track direction. That is, the plurality of slots may be arranged so that there is no gap between two adjacent slots. Alternatively, the plurality of slots may be arranged while ensuring a slight gap (for example, a gap shorter than the slot length) along the track direction. That is, the plurality of slots may be arranged so that a slight gap (for example, a gap shorter than the length of the slot) is secured between two adjacent slots.
  • each of the plurality of recording marks includes a wobble or a prepit structure.
  • each recording mark is composed of a wobble and pre-pit structure associated with the tracking error signal and address information described above.
  • the “wobble and prepit structure” means a structure in which a wobbling guide track is formed and a prepit is formed in the guide track.
  • the “pre-pit” means a convex or concave physical pit or phase pit formed on or in the guide track so as to be narrower than the width of the guide track.
  • the guide track is previously constructed in the guide layer as a guide track in which wobbling and pits are formed. Therefore, construction of the guide track is relatively easy, and finally, tracking control with high reliability and stability can be realized.
  • the guide track is a tracking servo guide track, and each of the plurality of mark groups is a mark group for generating the tracking servo tracking signal.
  • the plurality of mark groups are discretely arranged along a track direction at an arrangement interval equal to or less than a distance at which the tracking servo can operate in a predetermined band, and the plurality of mark groups are the tracking servo Based on the beam diameter of the light beam, the light beam is arranged so as not to be adjacent to each other along the radial direction so that the light beam is not simultaneously irradiated.
  • each mark group can be suitably read using the guide laser beam (that is, a tracking error signal or the like indicated by each mark group can be suitably acquired). That is, even when the guide laser beam is simultaneously irradiated to a plurality of adjacent guide tracks in the guide layer by making the track pitch of the guide track smaller than the beam spot diameter of the guide laser beam, the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
  • the plurality of mark groups are mark groups for carrying address information indicating address positions from the inner circumference to the outer circumference or from the outer circumference to the inner circumference along the track direction. is there.
  • each mark group can be suitably read using the guide laser beam (that is, the address information and the like indicated by each mark group can be suitably acquired). That is, even when the guide laser beam is simultaneously irradiated to a plurality of adjacent guide tracks in the guide layer by making the track pitch of the guide track smaller than the beam spot diameter of the guide laser beam, the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
  • the recording / reproducing apparatus of the present embodiment is a recording / reproducing apparatus that performs at least one of the recording process and the reproducing process for the recording medium of the present embodiment (including various aspects thereof) described above. Irradiating and condensing the guide layer with guide laser light and condensing and condensing one recording layer of the plurality of recording layers with a recording / reproducing laser light different from the guide laser light And first control means for controlling the light irradiation means to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer.
  • the recording and reproducing laser light is irradiated and condensed on the one recording layer, so that the recording process and the previous recording layer are performed.
  • a second control means for controlling said light emitting means to perform at least one of the reproduction process.
  • the guide laser light is irradiated and condensed on the guide layer by the light irradiation means that is an optical pickup including, for example, two types of semiconductor lasers.
  • the guide laser beam may be a laser beam having a relatively large beam spot diameter formed on the guide layer, such as a red laser beam.
  • the guide laser beam may be a laser beam with a thick light beam that forms a beam spot with a large diameter that is irradiated over a plurality of guide tracks.
  • the light receiving means is, for example, a light receiving element that is formed integrally with the light irradiating means and at least partially shares an optical system such as an objective lens (for example, a photodetector such as a two- or four-divided CCD (Charged-Coupled Device)) ).
  • the light receiving means may receive return light of guide laser light guided from the guide layer to the light receiving means via a prism, a dichroic mirror, a dichroic prism, or the like.
  • various information for example, tracking error signal and address information
  • information acquisition means including the above.
  • the first control means such as a tracking servo circuit, for example, an optical pickup or the like so as to perform tracking control for applying tracking servo to the guide track in a predetermined band.
  • the light irradiation means is controlled.
  • the tracking laser actuator of the light irradiation means is controlled by feedback control or feedforward control, so that the guide laser light follows the guide track.
  • the mark group does not have to be arranged in all the slots along the guide track.
  • the slots in which the mark groups are arranged that is, the recording marks constituting the mark groups are formed
  • either one of the tracking error signal and the address information is acquired from the plurality of mark groups, while either one of the tracking error signal and the address information may not be acquired.
  • the tracking error signal follows components other than the mark group (that is, the guide track). It can be obtained from the return light of the guide laser beam. Therefore, in this case, the first control step may control the light irradiation unit to perform tracking control based on the address information acquired from the plurality of mark groups and the tracking error signal acquired from the guide track. Good.
  • the first The control means does not change tracking control based on the return light of the guide laser light.
  • a recording / reproducing laser beam modulated in accordance with data to be recorded is controlled from the light irradiation unit under the control of the second control unit such as a processor.
  • the desired recording layer is irradiated and condensed.
  • the recording / reproducing laser beam may be a laser beam having a relatively small beam spot diameter formed on a desired recording layer such as a blue laser beam for high-density recording. From the viewpoint of realizing high-density recording, it is desirable that the recording / reproducing laser beam is a thinner light beam.
  • data is sequentially recorded in an area to be an information track corresponding to the guide track in the guide layer.
  • already recorded data is reproduced in a desired recording layer.
  • data recording to the recording layer is performed in units corresponding to the slots, for example, an integral multiple of the slots, the recording process or the reproducing process becomes simple and stable.
  • the recording / reproducing apparatus of the present embodiment can suitably record data at a high density on the recording layer of the recording medium of the present embodiment described above. Moreover, the recording / reproducing apparatus of this embodiment can reproduce suitably the data recorded on the recording layer in the recording medium of this embodiment mentioned above.
  • the recording / reproducing apparatus of the present embodiment can also adopt various aspects.
  • (Embodiment of recording / reproducing method) ⁇ 10>
  • the information recording method of the present embodiment irradiates the guide layer with guide laser light on the recording medium of the present embodiment described above (including various aspects thereof) and collects the light. And at least one of the recording process and the reproducing process using a light irradiating means for irradiating and condensing one recording layer of the plurality of recording layers with a recording / reproducing laser beam different from the guide laser beam.
  • the light irradiation unit is controlled so as to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer.
  • the recording process is performed by irradiating and condensing the recording / reproducing laser beam on the one recording layer.
  • a second controlling process of controlling the light emitting means to perform at least one of the reproduction process.
  • the same effects as the various effects that can be enjoyed by the recording / reproducing apparatus of the present embodiment described above can be suitably enjoyed.
  • the recording / reproducing method of the present embodiment can also adopt various aspects.
  • the recording medium of the present embodiment includes a guide layer and a plurality of recording layers, and the center mark included in the mark group is arranged one by one for each group including a predetermined number of slots, and The plurality of mark groups are arranged so as not to be adjacent to each other along the radial direction.
  • the recording / reproducing apparatus of the present embodiment includes light irradiation means, first control means, and second control means.
  • the recording / reproducing method of the present embodiment includes a first control step and a second control step. Therefore, highly accurate tracking control can be performed while employing the CLV method.
  • FIG. 1 is a schematic perspective view in which a plurality of layers constituting one optical disk 11 are disassembled at intervals in the stacking direction (vertical direction in FIG. 1) to make each layer easy to see.
  • FIG. 2 is a cross-sectional view showing a cross section of the optical disc 11 together with the irradiation modes of the guide laser beam LB1 and the recording / reproducing laser beam LB2.
  • the optical disc 11 includes a single guide layer 12 and a plurality of (that is, two or more) recording layers 13. That is, the optical disk 11 is a so-called guide layer separation type optical disk.
  • the tracking control guide laser beam LB1 focused on the guide layer 12 and each of the plurality of recording layers 13 are recorded.
  • the condensed recording / reproducing laser beam LB2 is irradiated from the recording / reproducing apparatus 101 at the same time.
  • the guide laser beam LB1 and the recording / reproducing laser beam LB2 are simultaneously irradiated from the recording / reproducing apparatus 101.
  • the reproducing process is performed on the optical disc 11
  • the recording / reproducing laser beam LB2 may be used for tracking control (that is, the guide laser beam LB1 may not be used).
  • the optical disk 11 preferably adopts the CLV method.
  • Concentric or spiral guide tracks TR (specifically, groove tracks GT and land tracks LT described later) include control information (for example, tracking error signals, clock information, and address information) in accordance with the CLV method. , Recording start timing information, etc., or wobble information or pit information as a basis for these information).
  • control information uses a mark group MG in which the same recording marks MR formed at the same rotational phase position of a plurality of guide tracks TR adjacent along the radial direction of the optical disk 11 are combined. Are recorded.
  • Such a mark group MG is preferably formed in advance on the guide layer 12 (in other words, the guide track TR included in the guide layer 12) when the optical disc 11 is manufactured.
  • the guide track TR formed on the guide layer 12 may be a single spiral.
  • the groove track GT is preferably switched to the land track LT in a predetermined region of the guide layer 12.
  • the land track LT is preferably switched to the groove track GT in a predetermined region of the guide layer 12.
  • the guide track TR may be a double spiral in which the groove track GT and the land track LT are separated.
  • the recording / reproducing laser beam LB2 is focused on one desired recording layer 13 to be recorded or reproduced among the plurality of recording layers 13 stacked on the guide layer 12.
  • the recording / reproducing laser beam LB2 is a blue laser beam having a relatively short wavelength as in, for example, BD (Blu-ray Disc: Blu-ray Disc).
  • the guide laser beam LB1 is a red laser beam having a relatively long wavelength as in the case of DVD, for example.
  • the diameter of the beam spot formed on the guide layer 12 by the guide laser beam LB1 is, for example, about several times the diameter of the beam spot formed on the recording layer 13 by the recording / reproducing laser beam LB2.
  • Each of the plurality of recording layers 13 is a recording layer capable of optically recording and reproducing recording information independently. More specifically, each of the plurality of recording layers 13 is composed of, for example, a translucent thin film containing a two-photon absorption material.
  • a two-photon absorption material a fluorescent type using a fluorescent material in which the fluorescence intensity in a region where two-photon absorption occurs is changed, a refractive index changing type using a photorefractive material in which the refractive index is changed by electron localization, etc.
  • photochromic compounds, bis (aralkylidene) cycloalkanone compounds, etc. is promising as refractive index changing type two-photon absorption materials.
  • an optical disk structure using a two-photon absorption material (i) a bulk type in which the entire optical disk 11 is made of a two-photon absorption material, and (ii) a recording layer of a two-photon absorption material and a spacer layer of another transparent material are alternated.
  • the layer structure type has an advantage that focus control can be performed using light reflected at the interface between the recording layer 13 and the spacer layer.
  • the bulk type has an advantage that the manufacturing cost can be suppressed because there are few multilayer film forming steps.
  • Each of the plurality of recording layers 13 may be, for example, a dye material in addition to the above-described two-photon absorption material and phase change material.
  • the guide track TR is not formed in advance in an unrecorded state, and for example, the entire region is a mirror surface or a flat surface without unevenness.
  • the wobbling may be appropriately performed on the groove track GT and the land track LT.
  • a reflective film made of, for example, a light-reflective material is formed on a transparent film as a substrate on which concave and convex grooves are formed, and is further transparent or opaque as a protective film. It may be formed by being filled with an appropriate film. Wobbling may be performed on the side walls of the groove track GT and the land track LT.
  • the guide laser beam LB1 and the optical laser 11 via the common objective lens 102L are provided.
  • the recording / reproducing laser beam LB2 is irradiated almost or coaxially in practice.
  • the guide layer 12 is guided by the guide laser beam LB1.
  • This is indirectly performed by tracking control for the guide track TR. That is, the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through a common optical system such as the objective lens 102L.
  • the positioning of the guide laser beam LB1 in the plane of the optical disc 11 that is, in the recording surface of the guide layer 12
  • the positioning of the guide laser beam LB1 in the plane of the optical disc 11 that is, in the recording surface of the guide layer 12
  • the recording / reproducing laser beam LB2 that is, the recording surface of each recording layer 13. It can be used for positioning in the inner).
  • a plurality of mark groups MG each having a physical structure carrying control information such as a tracking error signal (or a signal such as a wobble signal as a source thereof) and address information are arranged. .
  • FIG. 3 to FIG. 6 are perspective views of a part of the guide track TR on which the wobbling in the guide layer 12 is performed.
  • FIG. 3 is a perspective view showing a part of the guide track TR simply wobbled.
  • FIG. 4 is a perspective view showing a part of the guide track TR in which the groove track GT, the land track LT and the like are formed without gaps over the entire area of each guide track TR.
  • FIG. 5 is a perspective view showing a part of the guide track TR having the “wobble and partially cutout structure” and wobbling.
  • FIG. 6 is a perspective view showing a part of a guide track TR having “wobble and narrow land pre-pit” and wobbling.
  • the guide layer 12 has a groove track GT corresponding to a specific example of the guide track TR shown in FIG.
  • a reflective film 12a which is a thin film made of a light-reflective material, is formed on a transparent film 12c as a substrate on which concave and convex grooves are formed, and further a transparent or opaque film as a protective film 12b is formed by filling the concave and convex grooves of the reflective film 12a.
  • a transparent film 12c as a base material located on the upper side in FIG. 3
  • the groove track GT is formed in a convex shape on the upper side in FIG.
  • the reflective film 12a is formed on the transparent or opaque film 12b as the base material on which the concave and convex grooves are formed, and the transparent film 12c as the protective film is further provided with the concave and convex portions of the reflective film 12a. It may be formed by filling the groove.
  • the groove track GT has a wobble WB on the side wall.
  • the groove track GT is formed such that the side wall wobbles (meanders) along the track direction.
  • a virtual groove track GT indicated by a one-dot chain line is an information track that the recording layer 13 has after recording data on the recording layer 13 (that is, an array of recording marks constituting recorded data).
  • a track pitch corresponding to the track pitch.
  • the information track is physically a characteristic altered portion (for example, a portion where the fluorescence intensity has changed, a portion where the refractive index has changed, a phase change, etc.
  • the groove track GT in which no groove as a physical groove in FIG. 3 is formed the groove is formed at a frequency at which control information such as a tracking error signal and address information can be generated at a predetermined frequency. ing. That is, at the radial position and the track direction position not shown in FIG. 3, grooves are appropriately formed on the groove track GT, and the groove track GT on which no groove is formed over the circumference is Basically does not exist.
  • the groove and the entire area in the track direction and the radial direction have a track pitch corresponding to the track pitch of the information track that the recording layer 13 has after recording data on the recording layer 13.
  • a land may be formed. That is, also in the present embodiment, the information track of the recording layer 13 and the guide track TR of the guide layer 12 may have a one-to-one correspondence as in the case of traditional DVD and BD. That is, also in this embodiment, the guide track TR may have a land / groove structure.
  • the mark group MG arranged on the groove track GT and the land track LT is not formed over the entire area along the track direction.
  • the mark group MG is formed so as not to be adjacent to each other in the radial direction.
  • the groove is not formed over the entire area along the track direction on the groove track GT.
  • the grooves are not formed on the groove tracks GT adjacent to each other in the radial direction.
  • the groove arrangement (more specifically, the groove arrangement interval in the track direction and the radial direction) is the mark group MG arrangement (more specifically, the mark group MG in the track direction and the radial direction).
  • (Arrangement interval) may be substantially the same. That is, the arrangement mode of the mark group MG described in detail later may be substantially the same as the arrangement mode of the grooves formed only in a part of the region along the track direction.
  • the groove track GT formed in the guide layer 12 may be formed with a groove notch GN1 having a partially cut structure.
  • the notch is a mirror surface that is cut out over the track width of one groove track GT.
  • the groove notch GN1 is an example of the recording mark 22 (see FIG. 9) constituting the mark group MG.
  • land prepits LPP ⁇ b> 1 may be formed on the land track LT formed on the guide layer 12.
  • land pre-pits LPP1 are formed.
  • the groove notch GN1 in FIG. 5 and the LPP1 in FIG. 6 are detected as signals having the opposite polarity when the guide layer 12 is reproduced, but have the same effect that desired information can be retained.
  • the land prepit LPP1 is an example of the recording mark 22 (see FIG. 9) constituting the mark group MG.
  • the beam spot SP1 formed by the guide laser beam LB1 on the guide layer 12 is not relatively large with respect to the track pitch of the guide track TR (that is, tracking for relatively low density recording).
  • the track pitch of the guide track TR is 0.5 ⁇ m while the diameter of the beam spot SP1 is about 0.5 ⁇ m.
  • the control information acquired from the return light from the guide track TR2 that the guide laser beam LB1 follows is irradiated with the guide laser beam LB1 on other guide tracks TR1 and TR3 different from the guide track TR2.
  • the signal is not affected by the noise as a noise, or practically not at all.
  • the beam spot SP1 is relatively larger than the track pitch of the guide track TR (that is, when tracking control for high-density recording is performed).
  • the track pitch of the guide track TR is 0.25 ⁇ m while the diameter of the beam spot SP1 is about 0.5 ⁇ m.
  • the control information acquired from the return light from the guide track TR3 followed by the guide laser beam LB1 is applied to the other guide tracks TR2 and TR4 different from the guide track TR3.
  • the signal is significantly affected as a noise. That is, if all the guide tracks TR1, TR2, TR3,... Have a physical structure (see FIGS. 3 to 6) without gaps in the radial direction and the track direction, crosstalk occurs in the tracking error signal. It occurs remarkably. For this reason, it is difficult or impossible to suitably perform tracking control.
  • the address positional relationship (for example, an address difference) on a plurality of adjacent guide tracks TR changes depending on the radial position. . For this reason, even if tracking control can be performed in one place, tracking control is performed in another place (that is, in a place where the degree of proximity of another signal generation region adjacent in the radial direction becomes strong). There is a significant possibility that it will be difficult or impossible to perform the operation.
  • Such a technical problem such as crosstalk can occur in the same manner when the land pre-pit LPP1 exists in the vicinity of the guide track TR3 followed by the guide laser beam LB1, as shown in FIG. That is, a signal acquired from the land prepit LPP1 formed on the other guide track TR4 is different from a signal acquired from the land prepit LPP1 formed on the guide track TR3 that the guide laser beam LB1 follows. It affects as noise. As a result, it may be difficult to stably detect the land prepit LPP1. In other words, it may be difficult to detect address information or the like by the land pre-pit LPP1.
  • the recording layer 13 is irradiated with the recording / reproducing laser beam LB2 corresponding to the high density recording
  • the guide layer 12 is irradiated with the guide laser beam LB1 corresponding to the low density recording.
  • the guide tracks TR having a narrow pitch are formed in advance on the guide layer 12 so that the information tracks formed on the recording layer 13 after data recording have a narrow pitch, they are inevitably generated. If a guide track TR having a wide pitch corresponding to the guide laser beam LB1 is formed on the guide layer 12, the guide track TR serves to perform tracking control for high density recording in the recording layer 13. Because it doesn't stand at all.
  • control information such as a tracking error signal and address information at any timing in any guide track TR.
  • the control information can be detected without forming a wobble structure or pre-pit structure (see FIGS. 3 to 6) for detecting the control information continuously in the track direction on the guide track TR. That is, if the mark group MG constituting the control information is arranged at an arrangement interval (that is, arrangement pitch) that is equal to or less than the longest distance at which tracking control can be performed in a predetermined frequency band, It is not necessary to form a wobble structure or pre-pit structure (that is, mark group MG) for detecting control information in the entire area along the track direction.
  • the positions are aligned in the radial direction (that is, the same rotational phase position, in other words, the same angle or the same angle on the optical disk 11).
  • the wobble structure or pre-pit structure that is, the mark group MG for detecting the control information does not have to be aligned.
  • the plurality of mark groups MG are both in the track direction and the radial direction as described below. , Provided discretely.
  • a plurality of mark groups MG are arranged on the guide track TR in the guide layer 12.
  • Each of the plurality of mark groups MG includes the same plurality of recording marks 22 arranged at the same rotational phase position.
  • FIG. 9 shows that each of a plurality of mark groups has the same three recording marks 22 arranged at the same rotational phase position (that is, the same three phase marks arranged at the same rotational phase position of three adjacent guide tracks). An example including a recording mark 22) is shown. Note that the plurality of recording marks 22 included in one mark group MG may not be the same as the plurality of recording marks 22 included in another mark group MG.
  • Each of the plurality of recording marks 22 has a physical structure such as a wobble structure or a prepit structure, as shown in FIGS.
  • each of the plurality of recording marks 22 is a partial wobble WBL on a guide track TR (see FIG. 4) in which grooves and lands are formed over the entire area in the track direction and the radial direction. It is an example when it is comprised from.
  • each recording mark 22 is a pair of recording marks 22 (that is, partial wobbles WBL) shifted equidistantly from the center of the groove track GT in the left-right direction.
  • the guide track TR see FIG.
  • each of the plurality of recording marks 22 is a component other than the partial wobble WBL (for example, Land pre-pits LPP1 etc.).
  • Control information such as tracking error signals and address information is acquired from the plurality of mark groups MG (in other words, the plurality of recording marks 22).
  • the plurality of mark groups MG are discretely arranged along the track direction (left-right direction in FIG. 9). Specifically, in this embodiment, the “discrete arrangement of the plurality of mark groups MG in the track direction” is positioned at the center in the radial direction among the plurality of recording marks 22 included in each of the plurality of mark groups MG. This is realized by paying attention to the center mark (the recording mark 22 in FIG. 9 where the arrow indicating the traveling direction of the guide laser beam LB1 is located).
  • each group composed of # 8 eight slots (for example, slot # 1 to slot # 1 in FIG. A maximum of one center mark 22 is arranged for each group composed of # 8). That is, a plurality of different center marks 22 included in different mark groups MG are not simultaneously arranged in each group. However, there may be a group in which one central mark 22 is not arranged.
  • the arrangement interval of the center marks 22 when arranging the center marks 22 for each group is such that tracking error signals, address information, and the like are made at a frequency that enables stable tracking control in a predetermined frequency band.
  • the distance is preferably shorter than the longest distance at which control information can be generated by a slight margin.
  • a center mark is arranged on the guide track T-4 at a position corresponding to the slot # 1, and the center mark is placed in the same group as the slot # 1.
  • No other center mark is arranged at a position corresponding to slot # 2 to slot # 8 to which it belongs.
  • the center mark 22 is arranged, and other center marks 22 included in the other mark group MG are not arranged in other slots.
  • FIG. 9 shows an example in which one group is composed of eight slots. However, one group may be composed of 7 or less slots or 9 or more slots arranged continuously in the track direction.
  • the plurality of mark groups MG are arranged so as not to be adjacent to each other along the radial direction (vertical direction in FIG. 9).
  • At least two mark groups MG among the plurality of recording mark groups MG are displaced along the radial direction. May be arranged. That is, at least two mark groups MG among the plurality of recording mark groups MG may be arranged so as to have a gap (for example, a gap of a predetermined number of tracks) in the radial direction. In addition, it is preferable that this clearance gap is an area
  • the two mark groups MG that are displaced along the radial direction may be arranged at different rotational phase positions.
  • the mark group MG disposed in the slot # 2 from the guide track T-6 to the guide track T is the same as the mark group MG disposed in the slot # 3 from the guide track T + 12 to the guide track T + 16.
  • they are arranged at positions shifted from each other along the radial direction. Therefore, it can be said that these two mark groups MG are not adjacent to each other along the radial direction.
  • At least two marks MG of the plurality of recording mark groups MG are arranged so as to be displaced along the track direction. May be. That is, at least two mark groups MG among the plurality of recording mark groups MG may be arranged so that the rotational phase positions to be arranged are different from each other by shifting along the track direction.
  • the mark group MG arranged in the slot # 2 from the guide track T-6 to the guide track T and the mark group MG arranged in the slot # 2 from the guide track T + 2 to the guide track T + 8 are It arrange
  • the guide laser light LB1 is included in different mark groups MG.
  • a positional relationship is realized such that the central mark 22 is not irradiated simultaneously.
  • the guide laser beam LB1 is distributed in the discrete arrangement positions and radial directions of the plurality of mark groups MG along the track direction so that the different center marks 22 included in the different mark groups MG are not simultaneously irradiated. It is preferable that each of the arrangement positions of the plurality of mark groups MG along which they are not adjacent to each other is appropriately determined.
  • each recording mark 22 includes a front buffer area 21a positioned in front of the recording mark 22 along the track direction, and a rear buffer positioned behind the recording mark 22 along the track direction. It arrange
  • the front buffer area 21a, the recording mark 22 and the rear buffer area 21b correspond to one slot.
  • the mark group MG to which the front buffer area 21a and the rear buffer area 21b are attached in slot units it becomes easy to find the mark group MG along the guide track TR.
  • the tracking error signal and the address information can be detected stably and reliably, so that stable tracking control can be performed.
  • Each of the front buffer region 21a and the rear buffer region 21b is a region having a mirror surface structure, or a region having a straight groove structure or a straight land structure.
  • a buffer period in each of the front buffer area 21a and the rear buffer area 21b provides a preparation period for reading the recording mark 22.
  • the recording mark 22 has a physical structure having a wobble structure
  • the front buffer area 21a located in front of the recording mark 22 is a straight groove structure
  • the guide laser beam is forwarded while performing tracking control.
  • the recording mark 22 is plunged from the buffer area 21a.
  • the optical disk 11 employs the CLV system, as shown in FIG. 9, the slots adjacent to each other along the radial direction are slightly shifted along the track direction. For this reason, if the relative arrangement position of each of the plurality of recording marks 22 included in the same mark group MG is fixed, all of the plurality of recording marks 22 included in the same mark group MG are stored. It becomes difficult to arrange at the same rotational phase position. Therefore, in this embodiment, the plurality of front buffer areas 21a disposed in front of the plurality of recording marks 22 included in the same mark group MG and the plurality of recording marks 22 included in the same mark group MG.
  • each of the plurality of rear buffer areas 21b in the track direction By adjusting the length of each of the plurality of rear buffer areas 21b in the track direction, all of the plurality of recording marks 22 included in the same mark group MG are arranged at the same rotational phase position. That is, in this embodiment, a plurality of front buffer areas arranged in front of the plurality of recording marks 22 so that the start end portions of the plurality of recording marks 22 included in the same mark group MG are aligned along the radial direction. Each length of 21a is set to a different length. Similarly, each of the plurality of rear buffer regions 21b arranged in front of the plurality of recording marks 22 is arranged so that the terminal portions of the plurality of recording marks 22 included in the same mark group MG are aligned in the radial direction. The lengths are set to different lengths.
  • the plurality of mark groups MG are arranged so as to be discrete along the track direction and not adjacent to each other along the radial direction as described above. For this reason, even if the track density is increased until the beam spot SP1 of the guide laser beam LB1 extends over the three adjacent guide tracks TR, the tracking error signal and the address obtained by irradiating the mark group MG with the guide laser beam LB1. Crosstalk such as information can be reliably reduced.
  • the guide track TR has the physical structure described with reference to FIGS. 1 to 8, the track pitch can be narrowed while preventing the execution of tracking control and the acquisition of address information and the like. it can.
  • the mark group MG (specifically, the recording mark 22 included in the mark group MG) is created or not created in slot units, so that it is easy to detect a tracking error signal or the like. And can be executed stably.
  • the length of the slot on the guide track TR in the track direction and the structural unit in the format of data to be recorded on the recording layer 13 (for example, ECC block, RUB (Recording Unit Block), ADIP unit, etc.) Etc.) in the track direction is preferably a predetermined integer ratio.
  • the frequency of occurrence of tracking error signals and the like, the frequency of acquisition of address information, and the period of recording data on the recording layer 13 at the recording surface position corresponding to the guide track TR are not limited to the radial position.
  • stable tracking control can be performed at an arbitrary radial position.
  • each mark group includes the same plurality of recording marks 22 arranged at the same rotational phase position of each of the plurality of guide tracks TR adjacent to each other along the radial direction. For this reason, the dependence of the guide laser beam LB1 on the focus deviation (focus offset) is weakened (specifically, the control information indicated by the mark group MG is preferably read even when the focus deviation increases). Can do.
  • the track pitch and recording linear density that can be recorded or reproduced in the recording layer 13 are the original purposes in the multilayer recording type optical disc 11 while adopting the CLV method. It can be increased to such an extent that it can be said to be “high density recording”.
  • both the tracking error signal and the address information (or other arbitrary control information, the same applies hereinafter) is acquired from the plurality of mark groups MG is described.
  • the other of the tracking error signal and the address information may not be acquired.
  • the tracking error signal follows components other than the mark group MG (that is, the guide track TR). Can be obtained from the return light of the guide laser beam LB1. Therefore, in this case, the address information is acquired from the plurality of mark groups MG, but the tracking error signal may not be acquired.
  • the plurality of mark groups MG have such a degree that address information (or arbitrary control information) acquired from the mark group MG can be acquired in a predetermined band (in other words, a predetermined cycle). It is preferable to arrange discretely along the track direction. For example, when a recording clock is generated from a plurality of mark groups MG, the arrangement interval between the center marks 22 included in each mark group MG (for example, the length in the track direction of the group described above) is determined as the recording clock. It is preferable that the distance is set to a predetermined distance or less than that according to the clock generation band.
  • FIG. 11 is a block diagram showing the configuration of the recording / reproducing apparatus 101 of this embodiment.
  • the recording / reproducing apparatus 101 is configured as a disk drive, and is connected to the host computer 201.
  • the recording / reproducing apparatus 101 includes an optical pickup 102, a signal recording / reproducing unit 103, a spindle motor 104, a bus 106, a CPU (drive control unit) 111, a memory 112, and a data input / output control unit 113.
  • the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through the objective lens 102L (see FIG. 2) of the optical pickup 102.
  • the recording / reproducing laser beam LB2 also serving as a tracking control light beam or both the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through the objective lens 102L.
  • the host computer 201 includes an operation / display control unit 202, operation buttons 202, a display panel 204, a bus 206, a CPU 211, a memory 212, and a data input / output control unit 213.
  • data to be recorded is input from the data input / output control unit 213.
  • the reproduced data is output from the data input / output control unit 213.
  • the optical pickup 102 includes a red semiconductor laser that emits a guide laser beam LB1, a blue semiconductor laser that emits a recording / reproducing laser beam LB2, and a combining / separating optical system including an objective lens 102L, a prism, a mirror, and the like.
  • the optical pickup 102 irradiates the guide laser beam LB1 and the recording / reproducing laser beam LB2 coaxially and with different focus (see FIGS. 1 and 2) through a common objective lens 102L.
  • the optical pickup 102 receives the return light from the optical disk 11 caused by the guide laser beam LB1 through the objective lens 102L, and a light receiving element such as a two-divided or four-divided CCD, and the recording / reproducing laser beam LB2. It includes a light receiving element such as a two-divided or four-divided CCD that receives the return light from the optical disk 11 via the objective lens 102L.
  • the optical pickup 102 modulates the recording / reproducing laser beam LB2 with a relatively high recording intensity during recording. Further, the optical pickup 102 sets the light intensity of the recording / reproducing laser beam LB2 to a relatively low reproducing intensity during reproduction.
  • the optical pickup 102 and the signal recording / reproducing unit 103 perform tracking using, for example, a push-pull method or a phase difference method (DPD) based on a light receiving signal from a light receiving element that receives return light from the guide layer 12 at least during recording. Generate an error signal.
  • the optical pickup 102 and the signal recording / reproducing unit 103 further reproduces the address information based on the light reception signal from the light receiving element that receives the return light from the guide layer 12 at least during recording.
  • the optical pickup 102 and the signal recording / reproducing unit 103 generate a tracking error signal by the push-pull method or the phase difference method, for example, based on the light receiving signal from the light receiving element that receives the return light from the recording layer 13 during reproduction.
  • the optical pickup 102 and the signal recording / reproducing unit 103 may generate a tracking error signal based on the light reception signal from the light receiving element that receives the return light from the guide layer 12 during reproduction.
  • the optical pickup 102 and the signal recording / reproducing unit 103 further generate a data signal, for example, as a signal corresponding to the total amount of light based on the light reception signal from the light receiving element that receives the return light from the recording layer 13 at least during reproduction. .
  • the memory 112 and the memory 212 are (i) a computer for controlling each element such as the CPU 111 in the recording / reproducing apparatus 101 and each element such as the CPU 211 in the host computer 201 so that the recording / reproducing process described below is performed.
  • Program and (ii) various data such as control data, in-process data, processed data, etc. necessary for recording / reproduction processing are appropriately used to temporarily or permanently hold the data via the bus 106, bus 206, etc. It is done.
  • FIG. 12 is a flowchart showing an overall flow of operations performed by the recording / reproducing apparatus 101.
  • FIG. 13 is a flowchart showing a detailed flow of an example of the recording process.
  • FIG. 14 is a flowchart showing a detailed flow of an example of the reproduction process.
  • FIG. 15 is a flowchart showing another example flow of the reproduction process.
  • the above-described optical disc 11 of the present embodiment is mounted on the recording / reproducing apparatus 101 by manual or mechanical operation by the user (step S11).
  • an operation start command corresponding to an operation on the operation button 203 when the user looks at the display panel 204 is generated by the drive-side operation / display control unit 202 and the CPU 111, the host-side CPU 211, and the like.
  • rotation of the optical disk 11 by the spindle motor 104 is started under the control of the signal recording / reproducing unit 103.
  • light irradiation by the optical pickup 102 is started under the control of the signal recording / reproducing unit 103.
  • the reading servo system for the guide layer 12 is operated. That is, the guide laser beam LB1 is irradiated and condensed on the guide layer 12, and tracking control is started (step S12).
  • the various commands including the operation start command and various data including user data and control data are transferred by the host side bus 206 and the data input / output control unit 213, and the drive side bus 106 and the data input / output control unit. 113.
  • irradiation of the guide track TR with the guide laser beam LB1 is continued on the guide layer 12, and a wobble signal and a prepit signal (further, a tracking error signal obtained from at least one of them by the push-pull method or the DPD method). Is detected from the mark group MG. Further, disk management information recorded in advance as at least one of these signals is acquired by the CPU 111 on the drive side or the CPU 211 on the host side.
  • the disc management information may be recorded together in a lead-in area, a TOC (Table Of Content) area, or the like located on the innermost circumference side in the guide layer 12.
  • the contents of the disc management information may be compliant with the disc management information in an existing DVD or BD.
  • the disc management information is separately recorded in advance or separately in a lead-in area or TOC area specially provided in the recording layer, and the disc management information is recorded at this time or at an arbitrary time. It may be read out.
  • step S14 it is determined whether or not the requested operation is data recording by the CPU 111 on the drive side or the CPU 211 on the host side.
  • step S14 a recording process for the new optical disc 11 is executed (step S15). This recording process will be described later in detail (see FIG. 13).
  • step S14 determines whether or not the requested operation is data reproduction (step S16). If it is determined that the requested operation is data reproduction (step S16: Yes), reproduction processing for a new optical disc 11 is executed (step S17). This reproduction process will be described later in detail (see FIGS. 14 and 15).
  • step S16 If it is determined in step S16 that the requested operation is not data reproduction (step S16: No), or if the reproduction process for the new optical disk 11 is completed in step S17, ejection (that is, an optical disk is mounted). It is determined whether or not the ejection of the disc tray is requested via the operation button 203 or the like (step S18). Here, when it is determined that the ejection is not requested (step S18: No), the operations after step S14 are repeated again.
  • step S18 determines whether ejection is required (step S18: Yes) or not. If it is determined in step S18 that ejection is required (step S18: Yes), the ejection operation is executed (step S19), and a series of recording / reproducing processes on the optical disc 11 is completed.
  • step S15 in FIG. 12 an example of a recording process for the new optical disc 11 will be described with reference to FIG.
  • the recording / reproducing laser beam LB2 that shares the optical system such as the objective lens 102L in the optical pickup 102 with the guide laser beam LB1 also corresponds to the desired recording address searched on the recording layer 13.
  • the position is moved (step S21).
  • the optical pickup 102 performs focus control of the recording / reproducing laser beam LB2 for the desired recording layer 13 on which data is to be recorded (step S22).
  • the recording / reproducing laser beam LB2 is irradiated while being modulated according to the data value to be recorded, thereby recording data on a desired recording layer 13. Is started (step S23).
  • step S24 it is monitored by the CPU 111 or the like whether or not a predetermined amount of recording has been completed.
  • the data recording to the recording layer 13 is continued (step S24: No).
  • the disc management information is updated according to the recorded data (step S25).
  • the disc management information may be recorded together in a lead-in area, a TOC area, or the like provided in at least one of the plurality of recording layers 13.
  • the position may be on the inner peripheral side, but may be on the outer peripheral side or in the middle, or may be recorded in a somewhat dispersed form.
  • the disk management information provided in the memory 112, the memory 212, and the like and associated with the optical disk 11 may be updated.
  • step S17 in FIG. 12 an example of a reproduction process (step S17 in FIG. 12) for the new optical disk 11 will be described.
  • the guide laser beam LB is not used for tracking control during the reproduction process. That is, in this example, unlike the recording process, the recording / reproducing laser beam LB2 is used for tracking control.
  • the optical pickup 102 under the control of the CPU 111 and the signal recording / reproducing unit 103, the optical pickup 102 performs focus control of the recording / reproducing laser beam LB2 for the desired recording layer 13 from which data is to be reproduced. Before or after this, tracking control for the information track by the recording / reproducing laser beam LB2 is performed (step S31).
  • recorded address information on the information track is acquired by the CPU 111 or the like.
  • a desired reproduction address designated as an address at which reproduction of desired data is to be started is searched by the CPU 211 or the like. That is, the recording / reproducing laser beam LB2 is moved to a position corresponding to a desired reproduction address (step S32).
  • step S34 it is monitored by the CPU 111 or the like whether or not the predetermined amount of reproduction has been completed.
  • the reproduction of data from the recording layer 13 is continued unless the reproduction ends (step 34: No).
  • step S34 Yes
  • step S17 in FIG. 12 a series of recording processes for the new optical disc 11
  • the guide laser beam LB is used for tracking control or the like not only during the recording process but also during the reproduction process.
  • the optical pickup 102 performs focus control of the guide laser beam LB1 with the guide layer 12 as a target. Before or after this, tracking control of the guide laser beam LB1 is performed for the guide track TR. Further, the address information is acquired from the wobble or pre-pit on the guide track TR by the CPU 111 or the like. By referring to this address information, the CPU 211 or the like searches for a desired reproduction address designated as an address at which data reproduction should be started. That is, the guide laser beam LB1 is moved to a position corresponding to a desired reproduction address.
  • the recording / reproducing laser beam LB2 sharing the optical system such as the objective lens 102L with the guide laser beam LB1 in the optical pickup 102 is also moved to a position corresponding to the searched reproduction address on the recording layer 13. It is moved (step S41).
  • step S43 the focus control of the recording / reproducing laser beam LB2 is performed on the desired recording layer 13 from which data is to be reproduced by the optical pickup 102 under the control of the CPU 111 and the signal recording / reproducing unit 103. Performed (step S43).
  • step S43 data reproduction from the desired recording layer 13 is started (step S43).
  • step S44 it is monitored by the CPU 111 and the like whether or not the predetermined amount of reproduction has been completed.
  • the reproduction of data from the recording layer 13 is continued unless the reproduction ends (step 34: No).
  • step S44 Yes
  • step S17 in FIG. 12 a series of reproduction processes for the new optical disc 11
  • the mark group MG is discretely arranged along the track direction for tracking control in a predetermined frequency band.
  • a method of determining the arrangement interval of the mark group MG (in particular, the center mark included in the mark group MG and corresponding to the above-described group length) will be described together with a tracking servo system that performs tracking control.
  • the tracking servo system includes an error detector 301 including a subtractor, a sampler 302 including a sampling switch, a capacitor, and a buffer, an amplifier and an equalizer 303. And an actuator 304.
  • the error detector 301 receives a disturbance for tracking control (so-called tracking error signal) and a feedback signal from the actuator 304.
  • the error detector 301 outputs a subtraction signal obtained by subtracting (minus addition) the feedback signal from the disturbance for tracking control to the sampler 302.
  • the sampler 302 is a so-called “zero-order hold circuit” that holds sample values. Specifically, a sampling switch that closes at a desired sampling timing, a capacitor that holds a sample value, and a buffer are provided. The subtraction signal is sampled by the sampling switch at a sampling timing corresponding to the frequency band for which tracking control is performed. The sample value (that is, the subtraction signal sampled by the sampling switch) is held by the capacitor and buffered by the buffer.
  • the sampling timing is generated based on, for example, a wobble signal and a prepit signal detected by a light receiving element that receives the guide laser beam LB1.
  • the method of generating the sampling timing is not limited to this, and may be generated according to the medium configuration such as a modified example described later. Further, the configuration of the sampler 302 is not limited to this, and needless to say, a “primary hold circuit” or the like may be used.
  • the output from the sampler 302 (that is, the output from the buffer) is amplified and equalized by the amplifier / equalizer 303 and further input to the actuator 304.
  • the actuator 304 irradiates the guide laser beam LB1 on the guide layer 12 provided in the optical pickup 102 (accordingly, the irradiation of the recording / reproducing laser beam LB2 on the recording layer 13). Position) is moved in the radial direction. A feedback signal corresponding to the fluctuation is fed back from the actuator 304 to the error detector 301.
  • sampling timing in the sampler 302 will be examined with reference to FIGS.
  • FIG. 17 schematically shows the operation output of the sampler 302 when the eccentric component that is the maximum element of the disturbance input to the error detector 301 changes. From FIG. 17, it can be seen that the tracking error signal undulates from the plus side to the minus side with a substantially constant period with respect to time.
  • FIG. 18 shows a Bode plot (Bode Plot of zero-order hold) of the transfer function when “zero-order hold” is performed by the sampler 302.
  • the frequency characteristic of the zero hold is shown, and in particular, the gain characteristic (upper characteristic curve) and phase (lower characteristic curve) are shown superimposed in the Bode diagram.
  • the gain characteristic upper characteristic curve
  • phase lower characteristic curve
  • FIG. 18 shows that when the phase characteristic is sampled at 1 KHz, the signal at 100 Hz rotates about several degrees as shown by the characteristic curve portion 1001 in the phase. On the other hand, if the bandwidth around the phase is negligible, 100 Hz, a sample interval of about 10 times (1 KHz) or more is necessary (that is, sampling at a frequency higher than 1 KHz is necessary).
  • FIG. 19 shows an example of the disturbance characteristic of the optical disc 11 and the open loop characteristic in tracking control.
  • the “disturbance characteristics of the optical disc 11” has an eccentric component of 35 ⁇ m on one side in the region where the frequency is less than 23.1 Hz, and 1.1 m / in the acceleration region where the frequency is 23.1 Hz or more. it is S 2. That is, the disturbance of the optical disk 11 is generally flat at 64 db corresponding to 35 ⁇ m in the region where the frequency is less than 23.1 Hz, and to 0 dB corresponding to 0.022 ⁇ m on the higher frequency side than the region. It is going down at the slope of 1.1m / S 2.
  • the open loop characteristic of the tracking servo is shown as an example of a characteristic capable of suppressing such a disk disturbance. That is, in the characteristic diagram, the open loop characteristic is set to be on the higher gain side at any frequency, and thus disturbance can be suppressed in any frequency band.
  • f0 (cut-off band) 2.4 KHz.
  • the “predetermined distance” is determined as follows.
  • the time interval required to reduce the influence of the sampler 302 realized as the hold circuit described above to a negligible level is about 10 times.
  • two mark groups MG specifically, center marks included in the mark group MG
  • an example of the longest required distance that is, an example of the “predetermined distance” according to the present invention is determined.
  • the method for determining the arrangement interval of the mark group 22 is not limited to this example, and the required servo band as shown in FIGS. 18 and 19, the linear velocity of the optical disk 11 in the CLV method, and the like are taken into consideration. And decide.
  • FIG. 20 shows a physical track configuration formed as the mark group MG (in other words, the recording mark 22 included in the mark group MG) in the above-described embodiment.
  • FIGS. 21 to 23 show modified examples of the physical track configuration formed as the mark group MG (in other words, the recording mark 22 included in the mark group MG).
  • a guide track TR in which a mark group MG is arranged is composed of a wobble WB and a land prepit LPP1.
  • the period of the wobble WB and the period of the land prepit LPP1 are set to an integer multiple relationship, and the land prepit LLP1 is formed at each vertex of the wobble WB. Therefore, the detection of the prepit signal and the wobble signal can be facilitated.
  • a sharp curve in which the wobble amplitude (shake amount) is locally increased at each vertex of the wobble WB1 of the groove track GT.
  • a portion 501 is provided. That is, the guide track TR in which the mark group MG is arranged is formed from the special wobble WB1 without the pre-pit. Also in this case, detection of the wobble signal can be facilitated.
  • the wobble WB2 is formed by wobbling a continuous arrangement itself along the guide track TR of the plurality of grooves 502 dug into pieces.
  • the track TRw having such a structure can be constructed as the guide track TR in which the mark group MG is arranged.
  • a plurality of grooves 502 dug into pieces that have a constant radial width and an appropriately modulated length in the track direction are continuously formed along the guide track TR.
  • a linear arrangement (in other words, a mark pattern) is the guide track TR.
  • the guide track TR is not wobbled.
  • the track TRw having such a structure can be constructed as the guide track TR in which the mark group MG is arranged.
  • FIG. 24 shows a modification of the basic layer configuration (see FIGS. 1 and 2) of the optical disc 11 in the above-described embodiment.
  • FIG. 24 is a schematic perspective view of the optical disk of the present modified example having the same concept as in FIG.
  • two guide layers 12a and 12b are provided.
  • the first track information indicating the address position from the inner periphery to the outer periphery is carried on the guide track TR-a of the guide layer 12a.
  • Second address information indicating an address position from the outer periphery to the inner periphery is carried on the guide track TR-b of the guide layer 12b.
  • the plurality of recording layers 13 are also preferably divided into a first recording layer 13 recorded according to the first address information and a second recording layer 13 recorded according to the second address information.
  • tracking control for the first recording layer 13 is preferably performed using the guide layer 12a
  • tracking control for the second recording layer 13 is preferably performed using the guide layer 12b.
  • the two recording layers 13 The time required for switching the target of the recording process or the reproduction process between them is the time for performing the interlayer jump. For this reason, it is extremely advantageous when performing a recording process or a reproducing process continuously across a plurality of recording layers 13. In other words, the same effect as that obtained in a two-layer type optical disc employing a so-called opposite track path can be obtained.
  • the arrangement interval of the mark groups MG along the guide track TR is set to a predetermined distance or less, and the mark groups MG are spread over the entire surface of the optical disc 11. Are arranged discretely. Therefore, it is possible to acquire control information such as a tracking error signal and address information that are continuous by sampling at any position of the guide layer 12 from the inner periphery to the outer periphery of the optical disc 11.
  • the length of the structural unit of the data format in the recording layer 13 and the length of the slot are in an integral multiple relationship, and the mark group MG is arranged corresponding to the slot. For this reason, the mark group MG in the other guide track TR adjacent to the guide track TR that the guide laser beam LB1 follows is not read simultaneously (that is, no crosstalk occurs in the wobble signal or the prepit signal). ), The adaptive arrangement of the mark group MG is facilitated.
  • the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and an information recording medium, a recording / reproducing apparatus, and a method with such a change are also included. It is also included in the technical idea of the present invention.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

A recording medium (11) in CLV format includes a guide layer (12) in which guide tracks (TR) have been formed preliminarily, and a plurality of recording layer (13). In the guide tracks, a plurality of mark groups (MG) are arranged, each of which includes a plurality of identical recording marks formed at identical rotation phase positions in a plurality of tracks that are adjacent to each other in the radial direction. The plurality of mark groups are arranged discretely along the track direction in such a manner that at most one center mark contained in each of the mark groups is arranged in each of groups each of which is composed of a predetermined number of slots that are arrayed sequentially in the track direction. The mark groups are arranged so as to be deviated from one another in at least one of the radial direction and the track direction so that the mark groups should not be adjacent to one another in the radial direction.

Description

記録媒体、記録再生装置及び方法Recording medium, recording / reproducing apparatus and method
 本発明は、例えば複数の記録層を備える光ディスク等の記録媒体、当該記録媒体に対する記録処理及び再生処理のうちの少なくとも一方を行う記録再生装置及び方法の技術分野に関する。 The present invention relates to a technical field of a recording medium such as an optical disc having a plurality of recording layers, and a recording / reproducing apparatus and method for performing at least one of a recording process and a reproducing process for the recording medium.
 複数の記録層を備える記録媒体として、例えば記録処理及び再生処理の少なくとも一方の実際の対象となる複数の記録層と、トラッキング制御に用いられるガイドトラックが形成されたガイド層とを有する記録媒体(例えば、いわゆるガイド層分離型光ディスク)が知られている(特許文献1から特許文献3参照)。このような記録媒体に対する記録処理及び再生処理の少なくとも一方を行う記録再生装置は、ガイド層のガイドトラックを読み取るためのガイドレーザ光と、記録層に対する記録処理及び再生処理の少なくとも一方を行うための記録再生レーザ光とを照射する。記録再生装置は、ガイドレーザ光の戻り光から得られるプッシュプル信号に基づいてトラッキング制御を行いながら、記録再生用レーザ光を記録層に照射することで記録処理及び再生処理の少なくとも一方を行う。 As a recording medium provided with a plurality of recording layers, for example, a recording medium having a plurality of recording layers that are actual targets of at least one of recording processing and reproducing processing, and a guide layer on which guide tracks used for tracking control are formed ( For example, a so-called guide layer separation type optical disc is known (see Patent Document 1 to Patent Document 3). A recording / reproducing apparatus that performs at least one of recording processing and reproducing processing on such a recording medium is configured to perform guide laser light for reading the guide track of the guide layer and at least one of recording processing and reproducing processing on the recording layer. The recording / reproducing laser beam is irradiated. The recording / reproducing apparatus performs at least one of the recording process and the reproducing process by irradiating the recording layer with the recording / reproducing laser beam while performing tracking control based on the push-pull signal obtained from the return light of the guide laser beam.
特開平4-301226号公報JP-A-4-301226 特開2003-67939号公報JP 2003-67939 A 国際公開WO2009/037773号パンフレットInternational Publication WO2009 / 037773 Pamphlet
 しかしながら、一般的には、ガイドレーザ光がガイド層上で形成するビームスポットの径と、記録再生レーザ光が記録層上で形成するビームスポットの径とが異なる。このようなビームスポットの径の違いに合わせて、記録層のトラックピッチ(つまり、記録層上の記録マークから構成される情報トラックのトラックピッチ)は、ガイド層のトラックピッチ(つまり、ガイドトラックのトラックピット)よりも小さくすることで、記録層での高密度記録を実現する手法が一例として考えられる。しかしながら、記録層におけるトラッキング制御が実質的にはガイド層に照射されたガイドレーザ光の戻り光に基づいて行われることを考慮すれば、記録層でのトラッキング制御の精度は、ガイド層でのトラッキング制御の精度に依存する。その結果、記録層のトラックピッチをガイド層のトラックピッチよりも小さくする場合には、記録層で実際に実現されるトラッキング制御の精度は、記録再生レーザ光のビームスポットの径から算出され得るトラッキング制御の精度より粗くなってしまう。 However, in general, the diameter of the beam spot formed by the guide laser beam on the guide layer is different from the diameter of the beam spot formed by the recording / reproducing laser beam on the recording layer. In accordance with the difference in the diameter of the beam spot, the track pitch of the recording layer (that is, the track pitch of the information track composed of the recording marks on the recording layer) is the track pitch of the guide layer (that is, the guide track). As an example, a technique for realizing high-density recording in the recording layer by making the size smaller than the track pit) can be considered. However, considering that the tracking control in the recording layer is substantially performed based on the return light of the guide laser light irradiated to the guide layer, the tracking control accuracy in the recording layer is the tracking in the guide layer. Depends on control accuracy. As a result, when the track pitch of the recording layer is made smaller than the track pitch of the guide layer, the tracking control accuracy actually realized in the recording layer can be calculated from the beam spot diameter of the recording / reproducing laser beam. It becomes coarser than the accuracy of control.
 一方で、ガイド層のトラックピッチと記録層のトラックピッチとを略等しくすることで、記録層での高密度記録を実現する手法が一例として考えられる。しかしながら、この場合には、ガイドレーザ光はガイド層の複数のガイドトラックを一度に照射することになる。その結果、目標とする一のガイドトラックに対してガイドレーザ光を追従させることが極めて困難になるという技術的課題がある。 On the other hand, a method for realizing high-density recording in the recording layer by making the track pitch of the guide layer and the track pitch of the recording layer substantially equal is considered as an example. However, in this case, the guide laser light irradiates a plurality of guide tracks of the guide layer at a time. As a result, there is a technical problem that it becomes extremely difficult to make the guide laser beam follow the target guide track.
 特に、CLV(Constant Linear Velocity)方式を採用した場合、ディスク盤面上の利用効率を高くし且つ高密度記録を達成することは極めて困難である。また、ガイド層のアドレス構成方法についても開示されていない。 In particular, when the CLV (Constant Linear Velocity) method is employed, it is extremely difficult to increase the utilization efficiency on the disk surface and achieve high-density recording. Also, the address configuration method of the guide layer is not disclosed.
 本発明は、例えば上述した問題点に鑑みなされたものであり、CLV方式を採用しつつ高精度のトラッキング制御を行うことを可能ならしめる記録媒体、並びにこのような記録媒体に対する記録処理及び再生処理の少なくとも一方を行う記録再生装置及び方法を提供することを課題とする。 The present invention has been made in view of the above-described problems, for example, and a recording medium capable of performing high-precision tracking control while adopting the CLV method, and recording processing and reproducing processing for such a recording medium. It is an object to provide a recording / reproducing apparatus and method for performing at least one of the above.
 本発明の記録媒体は上記課題を解決するために、CLV方式の記録媒体であって、トラック方向に沿って並ぶ複数のスロットによって区分されるガイドトラックが予め形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記ガイドトラックには、前記トラック方向に交わる径方向に沿って相隣接する複数のガイドトラックの同一回転位相位置に形成され且つ前記スロットの単位に合わせて形成される同一の複数の記録マークを含むマーク群が複数配置されており、前記複数のスロットのうち前記トラック方向に沿って連続して並ぶ所定数のスロットから構成される各グループ内に、前記複数のマーク群の夫々に含まれる複数の記録マークのうち前記径方向に沿って中心に位置する中心マークが最大で一つ配置されるように、前記複数のマーク群は、前記トラック方向に沿って離散的に配置されており、前記複数のマーク群は、前記径方向に沿って互いに相隣接しないように、径方向及びトラック方向の少なくとも一方に沿ってずらされて配置されている。 In order to solve the above-described problem, the recording medium of the present invention is a CLV recording medium, in which guide tracks that are partitioned by a plurality of slots arranged in the track direction are formed in advance, and the guide layer A plurality of recording layers stacked on top of each other, and the guide track is formed at the same rotational phase position of a plurality of guide tracks adjacent to each other along a radial direction intersecting the track direction and is a unit of the slot. A plurality of mark groups including the same plurality of recording marks formed together are arranged, and each of the plurality of slots includes a predetermined number of slots arranged continuously along the track direction. A maximum of one central mark located at the center along the radial direction among a plurality of recording marks included in each of the plurality of mark groups is arranged. Thus, the plurality of mark groups are discretely arranged along the track direction, and the plurality of mark groups are at least in the radial direction and the track direction so as not to be adjacent to each other along the radial direction. They are shifted along one side.
 本発明の記録再生装置は上記課題を解決するために、上述した本発明の記録媒体に対する記録処理及び再生処理のうちの少なくとも一方を行う記録再生装置であって、前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段と、前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御手段と、前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御手段とを備える。 In order to solve the above-described problems, the recording / reproducing apparatus of the present invention is a recording / reproducing apparatus that performs at least one of the recording process and the reproducing process on the recording medium of the present invention described above, and a guide laser beam is applied to the guide layer. Light irradiation means for irradiating and condensing and irradiating and condensing one recording layer of the plurality of recording layers with a recording / reproducing laser beam different from the guide laser beam, and the guide laser from the guide layer A first control unit that controls the light irradiation unit to perform tracking control that applies tracking servo to the guide track in a predetermined band based on the return light of the light, and the tracking servo is applied. Irradiating and condensing the recording / reproducing laser beam on the one recording layer, thereby performing at least one of the recording process and the reproducing process. And a second control means for controlling the light irradiating means Migihitsuji.
 本発明の記録再生方法は上記課題を解決するために、上述した本発明の記録媒体(但し、その各種態様を含む)に対して、前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段を用いて、記録処理及び再生処理のうちの少なくとも一方を行う記録再生方法であって、前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御工程と、前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御工程とを備える。 In order to solve the above-described problems, the recording / reproducing method of the present invention irradiates and condenses the guide layer with the guide laser beam on the above-described recording medium of the present invention (including various aspects thereof). Recording that performs at least one of a recording process and a reproducing process using a light irradiation unit that irradiates and condenses a recording / reproducing laser beam different from the guide laser beam to one of the plurality of recording layers. In the reproducing method, the light irradiation unit is controlled to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer. With the control process and the tracking servo being applied, the recording process is performed by irradiating and condensing the one recording layer with the recording / reproducing laser beam. Serial and a second controlling process of controlling the light emitting means to perform at least one of the reproduction process.
 本発明のこのような作用及び利得は次に説明する実施の形態から明らかにされる。 The operation and gain of the present invention will be clarified from the embodiments described below.
一枚の光ディスクを構成する複数の層を、その積層方向(図1中、上下方向)について相互に間隔をあけて分解することで、各層を見易くしてなる模式的な斜視図である。It is a typical perspective view which makes each layer easy to see by disassembling a plurality of layers constituting one optical disk at intervals in the stacking direction (vertical direction in FIG. 1). 光ディスクの断面を、ガイドレーザ光及び記録再生レーザ光の照射態様と共に示す断面図である。It is sectional drawing which shows the cross section of an optical disk with the irradiation aspect of a guide laser beam and a recording / reproducing laser beam. 実施例における、ガイド層の一部拡大斜視図である。It is a partially expanded perspective view of the guide layer in an Example. 実施例の比較例における、図3と同趣旨の一部拡大斜視図である。It is a partially expanded perspective view of the same meaning as FIG. 3 in the comparative example of an Example. 実施例における、プリピットの一例を有する場合の、図3と同趣旨の一部拡大斜視図である。FIG. 4 is a partially enlarged perspective view having the same concept as in FIG. 3 when an example of prepits is provided in the embodiment. 実施例における、プリピットの他の例を有する場合の、図3と同趣旨の一部拡大斜視図である。FIG. 4 is a partially enlarged perspective view having the same concept as in FIG. 3 in the case where another example of the pre-pit is provided in the embodiment. 低密度記録用のガイドトラックを示す、模式的な部分拡大平面図である。It is a typical partial enlarged plan view showing a guide track for low density recording. 高密度記録用のガイドトラックを示す、模式的な部分拡大平面図である。It is a typical partial enlarged plan view showing a guide track for high density recording. 実施例における、ガイド層におけるマーク群の配置態様を示す平面図である。It is a top view which shows the arrangement | positioning aspect of the mark group in a guide layer in an Example. 実施例における、マーク群の物理構造を示す模式的な拡大斜視図である。It is a typical expansion perspective view which shows the physical structure of the mark group in an Example. 実施例における、記録再生装置のブロック図である。It is a block diagram of the recording / reproducing apparatus in an Example. 実施例における、記録再生方法のフローチャートである。6 is a flowchart of a recording / reproducing method in the embodiment. 実施例における、新規ディスクに対する記録方法のフローチャートである。6 is a flowchart of a recording method for a new disk in the embodiment. 実施例における、新規ディスクに対する再生方法の一例を示すフローチャートである。5 is a flowchart illustrating an example of a playback method for a new disc in the embodiment. 実施例における、新規ディスクに対する再生方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the reproducing method with respect to a new disc in an Example. 実施例の記録再生装置のうち、トラッキング制御を行う回路部分のブロック図である。It is a block diagram of the circuit part which performs tracking control among the recording / reproducing apparatuses of an Example. 図16の回路部分に含まれるサンプラー(Sampler)のトラッキングエラーをサンプルする動作を示す特性図であるFIG. 17 is a characteristic diagram showing an operation of sampling a tracking error of a sampler included in the circuit part of FIG. 実施例において、トラックに沿って相隣接する二つのマーク群の配置間隔を規定する、位相回りを示す特性図である。In an Example, it is a characteristic view which shows the phase rotation which prescribes | regulates the arrangement | positioning space | interval of the two mark groups which adjoin each other along a track | truck. 実施例において、トラックに沿って相隣接する二つのマーク群の配置間隔を規定する、トラッキングサーボにおけるゲインの周波数特性を示す特性図である。FIG. 6 is a characteristic diagram illustrating a frequency characteristic of a gain in a tracking servo that defines an arrangement interval between two mark groups adjacent to each other along a track in an embodiment. 実施例における、マーク群の物理構造を示す模式的な拡大平面図である。It is a typical enlarged plan view which shows the physical structure of the mark group in an Example. 他の変形例における、マーク群の物理構造を示す模式的な拡大平面図である。It is a typical enlarged plan view which shows the physical structure of the mark group in another modification. 他の変形例における、マーク群の物理構造を示す模式的な拡大平面図である。It is a typical enlarged plan view which shows the physical structure of the mark group in another modification. 他の変形例における、マーク群の物理構造を示す模式的な拡大平面図である。It is a typical enlarged plan view which shows the physical structure of the mark group in another modification. 他の変形例における、光ディスクの図1と同趣旨の模式的な斜視図である。It is a typical perspective view of the same meaning as FIG. 1 of the optical disk in another modification.
 以下、発明を実施するための最良の形態として、記録媒体、並びに記録再生装置及び方法に係る実施形態について順に説明する。
(記録媒体の実施形態)
<1>
 本実施形態の記録媒体は上記課題を解決するために、CLV方式の記録媒体であって、トラック方向に沿って並ぶ複数のスロットによって区分されるガイドトラックが予め形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記ガイドトラックには、前記トラック方向に交わる径方向に沿って相隣接する複数のガイドトラックの同一回転位相位置に形成され且つ前記スロットの単位に合わせて形成される同一の複数の記録マークを含むマーク群が複数配置されており、前記複数のスロットのうち前記トラック方向に沿って連続して並ぶ所定数のスロットから構成される各グループ内に、前記複数のマーク群の夫々に含まれる複数の記録マークのうち前記径方向に沿って中心に位置する中心マークが最大で一つ配置されるように、前記複数のマーク群は、前記トラック方向に沿って離散的に配置されており、前記複数のマーク群は、前記径方向に沿って互いに相隣接しないように、径方向及びトラック方向の少なくとも一方に沿ってずらされて配置されている。
Hereinafter, as a best mode for carrying out the invention, a recording medium, and a recording / reproducing apparatus and method according to embodiments will be described in order.
(Embodiment of recording medium)
<1>
In order to solve the above-described problem, the recording medium of the present embodiment is a CLV recording medium, and includes a guide layer in which guide tracks divided by a plurality of slots arranged in the track direction are formed in advance, and the guide A plurality of recording layers stacked on a layer, and the guide track is formed at the same rotational phase position of a plurality of guide tracks adjacent to each other along a radial direction intersecting the track direction, and the unit of the slot A plurality of mark groups including the same plurality of recording marks formed in accordance with the predetermined number of slots arranged in a row along the track direction among the plurality of slots. In addition, a maximum of one central mark located at the center along the radial direction among a plurality of recording marks included in each of the plurality of mark groups is arranged. As described above, the plurality of mark groups are discretely arranged along the track direction, and the plurality of mark groups are arranged in the radial direction and the track direction so as not to be adjacent to each other along the radial direction. It is shifted along at least one side.
 本実施形態の記録媒体によれば、ガイド層と複数の記録層とを備えている。ガイド層には、トラッキング制御に用いられるガイドトラック(例えば、グルーブトラックや、ランドトラック等)が形成されている。このため、当該記録媒体に対して(より具体的には、当該記録媒体が備える複数の記録層に対して)記録処理及び再生処理の少なくとも一方を行う記録再生装置は、ガイド層に照射されるガイドレーザ光の戻り光(つまり、ガイド層によって反射されたガイドレーザ光)に基づいて、ガイドトラックとガイドレーザ光のビームスポットとの位置関係に応じたプッシュプル信号を取得することができる。その結果、記録再生装置は、当該プッシュプル信号に基づいて、トラッキング制御を行うことができる。更には、記録再生装置は、ガイドレーザ光の戻り光に基づいて、ガイドトラック上の位置(言い換えれば、ガイドトラック上の位置に対応付けられた記録層上の位置)を識別するためのアドレス情報等を取得することができる。更には、記録再生装置は、ガイドレーザ光の戻り光に基づいて、アドレス情報以外の任意の制御情報を取得することができる。その結果、記録再生装置は、当該アドレス情報に基づいて、ガイドレーザ光や記録再生レーザ光の照射位置を判別することができる。従って、記録再生装置は、このようなトラッキング制御を行いながら、複数の記録層のうちの所望の記録層の所望の位置に対して、CLV(Constant Linear Velocity)方式に準拠した記録処理及び再生処理の少なくとも一方を行うことができる。 The recording medium of the present embodiment includes a guide layer and a plurality of recording layers. In the guide layer, guide tracks (for example, groove tracks, land tracks, etc.) used for tracking control are formed. Therefore, the recording / reproducing apparatus that performs at least one of the recording process and the reproducing process on the recording medium (more specifically, on a plurality of recording layers included in the recording medium) irradiates the guide layer. Based on the return light of the guide laser light (that is, the guide laser light reflected by the guide layer), a push-pull signal corresponding to the positional relationship between the guide track and the beam spot of the guide laser light can be acquired. As a result, the recording / reproducing apparatus can perform tracking control based on the push-pull signal. Further, the recording / reproducing apparatus identifies address position on the guide track (in other words, position on the recording layer associated with the position on the guide track) based on the return light of the guide laser beam. Etc. can be obtained. Furthermore, the recording / reproducing apparatus can acquire arbitrary control information other than the address information based on the return light of the guide laser beam. As a result, the recording / reproducing apparatus can determine the irradiation position of the guide laser beam or the recording / reproducing laser beam based on the address information. Therefore, the recording / reproducing apparatus performs recording and reproduction processing conforming to the CLV (Constant Linear Velocity) method for a desired position of a desired recording layer among a plurality of recording layers while performing such tracking control. At least one of the following can be performed.
 尚、以下では、説明の簡略化のために、ガイドレーザ光をガイドトラックに追従させる動作のみならず、アドレス情報から判別される所望位置に対してガイドレーザ光及び記録再生レーザ光を照射する動作をまとめて“トラッキング制御”と称して説明を進める。 In the following, for simplification of description, not only the operation of causing the guide laser beam to follow the guide track, but also the operation of irradiating the guide laser beam and the recording / reproducing laser beam to the desired position determined from the address information. Will be collectively referred to as “tracking control”.
 ここで、「ガイド層」は、典型的には少なくとも各記録層に対する記録処理が行われる際に、各記録層の記録面内の位置(即ち、記録面に沿った、径方向の位置及びトラック方向の位置)を記録再生装置に認識させるために、ガイドレーザ光が照射される(言い換えれば、ガイドレーザ光をガイドする又は案内する)層を意味する。「ガイド層」は、典型的には、トラッキングエラー信号(或いは、当該トラッキングエラー信号の元となるウォブル信号やプリピット信号等、以下同じ)やアドレス情報等を発生させるためのガイドトラックが予め物理的に作り込まれている層である。 Here, the “guide layer” typically refers to a position in the recording surface of each recording layer (that is, a radial position and track along the recording surface) when recording processing is performed on at least each recording layer. It means a layer irradiated with guide laser light (in other words, guiding or guiding the guide laser light) in order to make the recording / reproducing apparatus recognize the (direction position). The “guide layer” typically has a physical guide track for generating a tracking error signal (or a wobble signal, a pre-pit signal, etc., which is the source of the tracking error signal) and address information in advance. It is a layer built in.
 また「ガイドトラック」は、少なくとも各記録層に対する記録処理が行われる際にガイドレーザ光が追従する軌道であって、ガイド層上に予め物理的に形成されている軌道を意味する。ガイドトラックは、例えばウォブリングされたトラックであってもよいし、ウォブリングされていないトラック(つまり、ストレート構造のトラック)であってもよい。更には、ガイドトラックは、ピットが形成されたトラックであってもよいし、ピットが形成されていないトラックであってもよい。なお、記録層に対する記録処理が行われた後に当該記録層に形成される情報トラックは、当初はトラックが存在しなかった記録層上において新たに記録された記録マークの配列として事後的に形成されるトラックである点で、ガイド層に予め形成される「ガイドトラック」とは、明確に区別される。 Further, the “guide track” means a trajectory that the guide laser beam follows when a recording process is performed on at least each recording layer and is physically formed in advance on the guide layer. The guide track may be, for example, a wobbled track or a non-wobbled track (that is, a straight structure track). Furthermore, the guide track may be a track in which pits are formed, or may be a track in which pits are not formed. Note that the information track formed on the recording layer after the recording process is performed on the recording layer is formed afterwards as an array of newly recorded recording marks on the recording layer in which no track originally existed. The track is clearly distinguished from the “guide track” formed in advance on the guide layer.
 また、ガイドトラックは、トラック方向(つまり、ガイドトラックが延伸する方向であって、典型的には、円盤状の記録媒体の円周方向)に沿って並ぶ複数のスロットによって区分される。尚、「スロット」は、ガイドトラックがトラック方向に区分されてなる論理的な又は物理的な区画である。このようなガイドトラックを区分する複数のスロットは、典型的には、トラック方向に隙間無く又は相隣接して連続的に配列されていてもよい。同様に、複数のスロットは、径方向(つまり、トラック方向に交わる又は直交する方向)にも隙間なく又は相隣接して連続的に配列されていてもよい。但し、複数のスロットは、トラック方向に沿って相隣接する2つのスロットの間に若干の隙間が確保されるように配列されていてもよい。同様に、複数のスロットは、径方向に沿って相隣接する2つのスロットの間に若干の隙間が確保されるように配列されていてもよい。 Also, the guide track is divided by a plurality of slots arranged along the track direction (that is, the direction in which the guide track extends, typically the circumferential direction of a disk-shaped recording medium). A “slot” is a logical or physical section in which a guide track is partitioned in the track direction. The plurality of slots that divide such guide tracks may typically be continuously arranged without gaps or adjacent to each other in the track direction. Similarly, the plurality of slots may be continuously arranged without gaps or adjacent to each other in the radial direction (that is, the direction intersecting or orthogonal to the track direction). However, the plurality of slots may be arranged so that a slight gap is secured between two slots adjacent to each other along the track direction. Similarly, the plurality of slots may be arranged so that a slight gap is secured between two slots adjacent to each other along the radial direction.
 複数の記録層の夫々は、他の記録層とは独立してデータを記録可能であることが好ましい。同様に、複数の記録層の夫々は、他の記録層とは独立してデータを再生可能であることが好ましい。ここで、複数の記録層の夫々は、データが記録されていない未記録状態では、相対的に単純な構造(例えば、ストレートグルーブ構造や、ストレートランド構造や、鏡面構造)を有することが好ましい。というのも、複数の記録層の相互間の位置合わせやガイド層との間での位置合わせが殆ど又は実践上全く不要であるのが、記録媒体の製造上好ましいからである。記録層の構造は、記録再生レーザ光の照射側から見て、奥側の記録層或いはガイド層に対しても、記録再生レーザ光が到達するように、各々の記録層における透過率及び反射率が所定範囲に収まるよう設定された各種記録方式で記録可能に構成されている。 It is preferable that each of the plurality of recording layers can record data independently of the other recording layers. Similarly, each of the plurality of recording layers is preferably capable of reproducing data independently of the other recording layers. Here, each of the plurality of recording layers preferably has a relatively simple structure (for example, a straight groove structure, a straight land structure, or a mirror structure) in an unrecorded state in which no data is recorded. This is because it is preferable from the viewpoint of manufacturing the recording medium that the alignment between the plurality of recording layers and the alignment with the guide layer are almost or absolutely unnecessary. The structure of the recording layer is such that, when viewed from the irradiation side of the recording / reproducing laser beam, the transmittance and reflectance of each recording layer so that the recording / reproducing laser beam reaches the recording layer or guide layer on the back side. Can be recorded by various recording methods set to fall within a predetermined range.
 より具体的には、記録処理が行われる際には、例えば、ガイド層に形成されているガイドトラックに対して照射されているガイドレーザ光(例えば、比較的大きな径のビームスポットを形成する赤色レーザ光)の戻り光から、トラッキングエラー信号やアドレス情報等が検出される。このように検出されるトラッキングエラー信号に基づいて、トラッキング制御が行われる。このようなトラッキング制御が行われている状態で、アドレス情報等に基づいて、所望の記録層の所望の位置に対して記録再生レーザ光(例えば、比較的小さな径のビームスポットを形成する青色レーザ光)が集光される。その結果、所望の記録層の所望の位置に対するデータの記録処理が行われる。言い換えれば、ガイド層に予め形成されたガイドトラックの位置を基準として、予めトラックが何ら存在していない(例えば、鏡面状態にある)所望の記録層における記録再生レーザ光の照射位置(つまり、データの記録位置)の位置決めが行われる。 More specifically, when the recording process is performed, for example, guide laser light irradiated on a guide track formed on the guide layer (for example, red that forms a beam spot with a relatively large diameter). A tracking error signal, address information, and the like are detected from the return light of the laser beam. Tracking control is performed based on the tracking error signal detected in this way. Under such tracking control, a recording / reproducing laser beam (for example, a blue laser that forms a beam spot having a relatively small diameter) at a desired position of a desired recording layer based on address information or the like. Light) is collected. As a result, a data recording process for a desired position of a desired recording layer is performed. In other words, with reference to the position of the guide track formed in advance in the guide layer, the recording / reproducing laser beam irradiation position (that is, data) in a desired recording layer in which no track exists (for example, in a mirror state) (Recording position) is positioned.
 ここで、ガイドレーザ光及び記録再生レーザ光を照射する光学系が固定されていれば、ガイドレーザ光のビームスポットと記録再生レーザ光のビームスポットとの間の位置関係もまた固定される。このため、ガイド層上でのガイドレーザ光の照射位置を調整するようにトラッキング制御を行うことは、所望の記録層上での記録再生レーザ光の照射位置を調整するようにトラッキング制御を行っていると言える。言い換えれば、予め形成されているガイドトラックに照射されるガイドレーザ光の戻り光を用いて、予めトラックが形成されていない所望の記録層の記録面内における記録再生レーザ光のトラッキング制御が行われる。 Here, if the optical system for irradiating the guide laser beam and the recording / reproducing laser beam is fixed, the positional relationship between the beam spot of the guide laser beam and the beam spot of the recording / reproducing laser beam is also fixed. For this reason, tracking control is performed so as to adjust the irradiation position of the guide laser beam on the guide layer. Tracking control is performed so as to adjust the irradiation position of the recording / reproducing laser beam on the desired recording layer. I can say that. In other words, by using the return light of the guide laser light irradiated to the guide track formed in advance, the tracking control of the recording / reproducing laser light in the recording surface of the desired recording layer where the track is not formed in advance is performed. .
 他方、再生処理が行われる際には、記録処理が行われる際と同様の態様でトラッキング制御が行われてもよい。つまり、予め形成されているガイドトラックに照射されるガイドレーザ光の戻り光を用いて、所望の記録層の記録面内における記録再生レーザ光のトラッキング制御が行われてもよい。或いは、再生処理が行われる際には、所望の記録層には情報トラックが事後的に形成されている。従って、予め形成されているガイドトラックに照射されるガイドレーザ光に代えて、事後的に形成された情報トラックに照射される記録再生レーザ光の戻り光に基づいて、所望の記録層の記録面内における記録再生レーザ光のトラッキング制御が行われてもよい。 On the other hand, when the reproduction process is performed, tracking control may be performed in the same manner as when the recording process is performed. That is, the tracking control of the recording / reproducing laser beam in the recording surface of the desired recording layer may be performed using the return light of the guide laser beam irradiated to the guide track formed in advance. Alternatively, when the reproduction process is performed, an information track is formed on the desired recording layer afterwards. Therefore, the recording surface of the desired recording layer is based on the return light of the recording / reproducing laser beam irradiated on the information track formed afterwards instead of the guide laser beam irradiated on the previously formed guide track. Tracking control of the recording / reproducing laser beam may be performed.
 ガイドトラックには、複数のマーク群が配置されている。複数のマーク群の夫々は、径方向に沿って相隣接する複数のトラックの同一回転位相位置に形成される同一の複数の記録マークを含んでいる。例えば、一例として、ガイドトラックには、相隣接する3つの第1ガイドトラックの回転位相位置が0度となる位置に形成されている同一の3つの第1記録マークを含む第1のマーク群と、相隣接する3つの第2ガイドトラックの回転位相位置が10度となる位置に形成されている同一の複数の第2記録マークを含む第2のマーク群と配置されている。 A plurality of mark groups are arranged on the guide track. Each of the plurality of mark groups includes the same plurality of recording marks formed at the same rotational phase position of a plurality of tracks adjacent in the radial direction. For example, as an example, the guide track includes a first mark group including the same three first recording marks formed at positions where the rotational phase positions of three adjacent first guide tracks are 0 degrees. , And the second mark group including a plurality of the same second recording marks formed at positions where the rotational phase positions of three adjacent second guide tracks are 10 degrees.
 また、径方向の位置が異なる限りは、同一回転位相位置に異なるマーク群が配置されていてもよい。例えば、一例として、ガイドトラックには、径方向の位置が23mmとなる相隣接する3つの第1ガイドトラックの回転位相位置が0度となる位置に形成されている同一の複数の第1記録マークを含む第1のマーク群と、径方向の位置が25mmとなる相隣接する3つの第2ガイドトラックの回転位相位置が0度となる位置に形成されている同一の複数の第2記録マークを含む第2のマーク群とが配置されていてもよい。 As long as the radial position is different, different mark groups may be arranged at the same rotational phase position. For example, as an example, the guide track has a plurality of identical first recording marks formed at positions where the rotational phase positions of three adjacent first guide tracks whose radial positions are 23 mm are 0 degrees. And a plurality of identical second recording marks formed at positions where the rotational phase positions of three adjacent second guide tracks having a radial position of 25 mm are 0 degrees. The 2nd mark group containing may be arrange | positioned.
 複数のマーク群の夫々が含んでいる複数の記録マークは、スロットの単位に合わせて形成されている。例えば、複数のマーク群の夫々は、径方向に沿って並ぶ複数のスロットに1対1の関係で形成される同一の複数の記録マークを含んでいる。その結果、複数のマーク群の夫々もまた、スロットの単位に合わせて配置されているとも言える。 The plurality of recording marks included in each of the plurality of mark groups are formed according to the slot unit. For example, each of the plurality of mark groups includes the same plurality of recording marks formed in a one-to-one relationship in a plurality of slots arranged along the radial direction. As a result, it can be said that each of the plurality of mark groups is also arranged in accordance with the slot unit.
 ガイド層に形成される複数のマーク群の夫々は、ガイドレーザ光を追従させるためのマーク群であり、典型的には、光学的にトラッキングエラー信号を発生させるためのマーク群であってもよい。或いは、ガイド層に形成される複数のマーク群の夫々は、ガイド層上の位置(言い換えれば、ガイド層上の位置に対応する記録層上の位置)を識別するためのマーク群であり、典型的には、光学的にアドレス情報等を発生させるためのマーク群であってもよい。このような複数のマーク群の夫々を構成する複数の記録マークの夫々は、ガイドトラック上の物理構造によって実現されてもよい。このような物理構造として、例えば、ガイドトラックの側壁又は内部若しくは外部に形成されたウォブル及びプリピット構造(例えば、ランドプリピットや、グルーブプリピット等)の組み合わせや、ウォブル及び一部切欠き構造の組み合わせや、グルーブ及びランドがない面(例えば、鏡面)上におけるプリピットの配列や連なりなどによって実現されてもよい。ここに「物理構造」とは、論理構造、単なるデータにより構築される概念的な或いは仮想的な構造とは異なり、物理的に実在する構造を意味する。物理構造は、記録媒体の完成時に既にガイドトラック上に形成されている。 Each of the plurality of mark groups formed on the guide layer is a mark group for causing the guide laser beam to follow, and may typically be a mark group for optically generating a tracking error signal. . Alternatively, each of the plurality of mark groups formed on the guide layer is a mark group for identifying a position on the guide layer (in other words, a position on the recording layer corresponding to the position on the guide layer). Specifically, it may be a mark group for optically generating address information and the like. Each of the plurality of recording marks constituting each of the plurality of mark groups may be realized by a physical structure on the guide track. As such a physical structure, for example, a combination of a wobble and a prepit structure (for example, a land prepit or a groove prepit) formed inside or outside a guide track side wall, or a wobble and a partially cutout structure It may be realized by a combination, an arrangement or a series of prepits on a surface (for example, a mirror surface) without a groove and a land. Here, the “physical structure” means a physically existing structure, unlike a logical structure or a conceptual or virtual structure constructed by simple data. The physical structure is already formed on the guide track when the recording medium is completed.
 本実施形態では特に、複数のマーク群は、螺旋状の又は同心円状のガイドトラックに沿ったトラック方向(言い換えれば、ガイドトラックの接線方向)に沿って離散的に配置されている。本実施形態での「複数のマーク群のトラック方向の離散的な配置」は、以下に説明するように、複数のマーク群の夫々に含まれる複数の記録マークのうち径方向の中心に位置する中心マークに着目して実現される。尚、内周側から外周側に向かって第1の記録マークから第Nの記録マークが並ぶマーク群に着目すると、「中心マーク」は、内周側から数えて(1+N)/2番目の記録マークに相当する。 Particularly in the present embodiment, the plurality of mark groups are discretely arranged along the track direction along the spiral or concentric guide track (in other words, the tangential direction of the guide track). The “discrete arrangement of the plurality of mark groups in the track direction” in the present embodiment is located at the center in the radial direction among the plurality of recording marks included in each of the plurality of mark groups, as described below. Realized by focusing on the center mark. Focusing on the mark group in which the first recording mark to the Nth recording mark are arranged from the inner circumference side toward the outer circumference side, the “center mark” is (1 + N) / 2nd recording counted from the inner circumference side. Corresponds to the mark.
 具体的には、複数のマーク群のトラック方向の離散的な配置を実現するために、複数のスロットのうちトラック方向に沿って連続して並ぶ所定数のスロットから構成される各グループ内には、複数のマーク群の夫々に含まれる中心マークが最大で一つ配置される。つまり、各グループ内には、異なるマーク群に含まれる異なる中心マーク(つまり、2つ以上の中心マーク)が同時に配置されることはない。尚、各グループ内に最大で1つの中心マークが配置されるがゆえに、ガイドトラックを区分するグループとしては、1つの中心マークが配置されるグループのみならず、中心マークが配置されないグループも存在することがあり得る。例えば、ガイドトラック上に第1のマーク群、第2のマーク群及び第3のマーク群が配置されている場合を例に挙げて説明する。この場合、第1のマーク群に含まれる複数の記録マークのうちの中心マークは、例えば、第1のグループ内(より具体的には、第1のグループを構成する所定数のスロットのうちの少なくとも一つのスロット)に配置される。このとき、当該第1のグループ内には、他のマーク群(つまり、第2及び第3のマーク群)に含まれる複数の記録マークのうちの中心マークが配置されることはない。一方で、第2のマーク群に含まれる複数の記録マークのうちの中心マークは、例えば、第1のグループとは異なる第2のグループ内(より具体的には、第2のグループを構成する所定数のスロットのうちの少なくとも一つのスロット)に配置される。このとき、当該第2のグループには、他のマーク群(つまり、第1及び第3のマーク群)に含まれる複数の記録マークのうちの中心マークが配置されることはない。他方で、第3のマーク群に含まれる複数の記録マークのうちの中心マークは、例えば、第1及び第2のグループとは異なる第3のグループ内(より具体的には、第3のグループを構成する所定数のスロットのうちの少なくとも一つのスロット)に配置される。一方で、当該第3のグループには、他のマーク群(つまり、第1及び第2のマーク群)に含まれる複数の記録マークのうちの中心マークが配置されることはない。この場合、第1のグループから第3のグループとは異なる第4のグループには、第1のマーク群から第3のマーク群とは異なる第4のマーク群に含まれる複数の記録マークのうちの中心マークが配置されていてもよい。或いは、第4のグループには、中心マークが配置されていなくともよい。このような各マーク群に含まれる中心マークに着目することで、複数のマーク群のトラック方向の離散的な配置が実現される。言い換えれば、本実施形態では、複数のマーク群のトラック方向の離散的な配置とは、各マーク群に含まれる中心マークの離散的な配置に相当するとも言える。 Specifically, in order to realize a discrete arrangement of a plurality of mark groups in the track direction, each group composed of a predetermined number of slots continuously arranged along the track direction among the plurality of slots is included in each group. A maximum of one center mark included in each of the plurality of mark groups is arranged. That is, different center marks (that is, two or more center marks) included in different mark groups are not simultaneously arranged in each group. In addition, since at most one center mark is arranged in each group, not only a group in which one center mark is arranged but also a group in which no center mark is arranged as a group for dividing the guide track. It can happen. For example, the case where the first mark group, the second mark group, and the third mark group are arranged on the guide track will be described as an example. In this case, the center mark of the plurality of recording marks included in the first mark group is, for example, within the first group (more specifically, of the predetermined number of slots constituting the first group). At least one slot). At this time, the center mark of the plurality of recording marks included in the other mark group (that is, the second and third mark groups) is not arranged in the first group. On the other hand, the center mark of the plurality of recording marks included in the second mark group is, for example, in a second group different from the first group (more specifically, the second group is configured. At least one of a predetermined number of slots). At this time, the center mark of the plurality of recording marks included in the other mark group (that is, the first and third mark groups) is not arranged in the second group. On the other hand, the center mark of the plurality of recording marks included in the third mark group is, for example, in a third group different from the first and second groups (more specifically, the third group At least one of the predetermined number of slots constituting the. On the other hand, the center mark of the plurality of recording marks included in the other mark group (that is, the first and second mark groups) is not arranged in the third group. In this case, the fourth group different from the first group to the third group includes a plurality of recording marks included in the fourth mark group different from the first mark group to the third mark group. The center mark may be arranged. Alternatively, the center mark may not be arranged in the fourth group. By paying attention to the center mark included in each such mark group, a discrete arrangement of the plurality of mark groups in the track direction is realized. In other words, in the present embodiment, it can be said that the discrete arrangement of the plurality of mark groups in the track direction corresponds to the discrete arrangement of the center marks included in each mark group.
 加えて、本実施形態では特に、複数のマーク群は、径方向に沿って互いに相隣接しないように配置されている。このような径方向に沿った複数のマーク群の相隣接しない配置を実現するために、複数の記録マーク群のうちの少なくとも2つのマーク群は、径方向に沿ってずれるように配置されていてもよい。つまり、複数の記録マーク群のうちの少なくとも2つのマーク群は、径方向に沿って間に隙間(例えば、所定数トラックのサイズの隙間)を有するように配置されてもよい。この場合、径方向に沿ってずれている2つのマーク群は、同一回転位相位置に配置されていてもよい。或いは、径方向に沿ってずれている2つのマーク群は、異なる回転位相位置に配置されていてもよい。或いは、複数の記録マーク群のうちの少なくとも2つのマーク群は、トラック方向に沿ってずれるように配置されていてもよい。つまり、複数の記録マーク群のうちの少なくとも2つのマーク群は、配置される回転位相位置が互いに異なるものとなるように、トラック方向に沿ってずれるように配置されていてもよい。以上まとめると、本実施形態では、「複数のマーク群の相隣接しない配置」は、複数のマーク群の一部又は全部がトラック方向に沿って互いにずれた配置及び複数のマーク群の一部又は全部が径方向に沿って互いにずれた配置のいずれか又はこれらの配置の組み合わせによって実現される。つまり、本実施形態における「相隣接しない配置」は、径方向及びトラック方向の少なくとも一方に沿ってずれている配置を意味するとも言える。 In addition, in the present embodiment, in particular, the plurality of mark groups are arranged so as not to be adjacent to each other along the radial direction. In order to realize such a non-adjacent arrangement of a plurality of mark groups along the radial direction, at least two mark groups of the plurality of recording mark groups are arranged so as to be displaced along the radial direction. Also good. That is, at least two mark groups of the plurality of recording mark groups may be arranged so as to have a gap (for example, a gap having a predetermined number of tracks) in the radial direction. In this case, the two mark groups shifted along the radial direction may be arranged at the same rotational phase position. Alternatively, the two mark groups displaced along the radial direction may be arranged at different rotational phase positions. Alternatively, at least two of the plurality of recording mark groups may be arranged so as to be shifted along the track direction. That is, at least two mark groups of the plurality of recording mark groups may be arranged so as to be shifted along the track direction so that the rotational phase positions to be arranged are different from each other. In summary, in the present embodiment, “arrangement of a plurality of mark groups that are not adjacent to each other” refers to an arrangement in which some or all of the plurality of mark groups are shifted from each other along the track direction and a part of the plurality of mark groups or All are realized by any one of the arrangements shifted from each other along the radial direction or a combination of these arrangements. That is, the “arrangement that is not adjacent to each other” in the present embodiment can mean an arrangement that is displaced along at least one of the radial direction and the track direction.
 ここで例えば所定の帯域でトラッキング制御を行うためには、いずれかのガイドトラックにガイドレーザ光を照射することでマーク群を読み取る必要がある。しかしながら、本願発明者による研究の結果、トラッキング制御に用いられる記録マークをトラック方向に連続して形成しなくても、所定の帯域でのトラッキング制御が実行可能であることが判明している。例えば、マーク群が検出される時間間隔に相当するマーク群のトラック方向の配置間隔(言い換えれば、マーク群に含まれる中心マークの配置間隔であり、上述したグループのトラック方向に沿った長さに相当する)を、トラッキング制御を行うために最低限必要な距離よりも小さく設定しておけば、ガイドトラックに沿った全領域に渡ってマーク群を配置しておかなくても、所定の帯域でトラッキング制御を行うことができることが判明している。加えて、径方向に沿って相隣接する複数のガイドトラックに着目しても、径方向に揃った複数の位置(つまり、同一回転位相位置)の夫々に、このようなマーク群を配置しておかなくても(即ち、径方向に一列に規則正しくこのようなマーク群を配置しておかなくても)、所定の帯域でトラッキング制御を行うことができることが判明している。 Here, for example, in order to perform tracking control in a predetermined band, it is necessary to read a mark group by irradiating one of the guide tracks with guide laser light. However, as a result of research by the inventors of the present application, it has been found that tracking control in a predetermined band can be executed without forming recording marks used for tracking control continuously in the track direction. For example, the arrangement interval in the track direction of the mark group corresponding to the time interval at which the mark group is detected (in other words, the arrangement interval of the center marks included in the mark group, and the length along the track direction of the group described above. If the mark group is not arranged over the entire area along the guide track, a predetermined band can be obtained. It has been found that tracking control can be performed. In addition, even if attention is paid to a plurality of guide tracks adjacent to each other in the radial direction, such mark groups are arranged at a plurality of positions aligned in the radial direction (that is, the same rotational phase position). It has been found that tracking control can be performed in a predetermined band even if it is not (that is, such a group of marks is not regularly arranged in a line in the radial direction).
 そこで本実施形態では、上述したように、複数のマーク群はトラック方向に沿って離散的に配置されている。特に、本実施形態では、複数のマーク群のトラック方向の離散的な配置を実現するために、各マーク群に含まれる中心マークの間の配置間隔(例えば、上述したグループのトラック方向の長さ)が、予め設定された所定距離又はそれ未満の距離に設定されることが好ましい。ここに「所定距離」とは、典型的には、所定の帯域でトラッキング制御を行うことが可能な最長の距離(例えば、所定の帯域でトラッキング制御を安定的に行うことを可能とする頻度にてトラッキングエラー信号及びアドレス情報等を連続的或いは継続的に発生し得る最長の距離)よりも若干のマージンを持って短い距離である。また「所定の帯域」とは、記録処理が行われる際に用いられる帯域との関係で定まる固有の帯域であって且つトラッキング制御が行われるデータフォーマット(或いは、データ規格)に対して固有の帯域を意味する。 Therefore, in the present embodiment, as described above, the plurality of mark groups are discretely arranged along the track direction. In particular, in the present embodiment, in order to realize a discrete arrangement of a plurality of mark groups in the track direction, an arrangement interval between center marks included in each mark group (for example, the length of the group in the track direction described above). ) Is preferably set to a preset predetermined distance or less. Here, the “predetermined distance” is typically the longest distance at which tracking control can be performed in a predetermined band (for example, the frequency at which tracking control can be stably performed in a predetermined band). In other words, the distance is shorter than the longest distance at which tracking error signals and address information can be generated continuously or continuously. Further, the “predetermined bandwidth” is a unique bandwidth determined in relation to a bandwidth used when recording processing is performed, and a unique bandwidth for a data format (or data standard) for which tracking control is performed. Means.
 このような所定距離は、予め実験的、経験的に又はシミュレーション等により、ガイド層に対して所定の帯域でのトラッキング制御を行うことが可能な限界の距離を求め且つ適当なマージンを決定することで、設定されてもよい。仮に、複数のマーク群(特に、複数のマーク群に含まれる複数の中心マーク)が所定距離よりも長い配置間隔(即ち、配置ピッチ)で離散的に配置されていれば、例えば所定の帯域で安定したトラッキング制御を行うことができるだけの頻度にてトラッキングエラー信号及びアドレス情報等を生成できないおそれがある。その結果、所定の帯域で安定的にトラッキング制御を行うことができない。 For such a predetermined distance, a limit distance capable of performing tracking control in a predetermined band with respect to the guide layer is obtained in advance, experimentally, empirically, or by simulation, and an appropriate margin is determined. And may be set. If a plurality of mark groups (particularly, a plurality of center marks included in the plurality of mark groups) are discretely arranged at an arrangement interval (ie, arrangement pitch) longer than a predetermined distance, for example, in a predetermined band. There is a possibility that the tracking error signal, the address information, and the like cannot be generated as frequently as stable tracking control can be performed. As a result, tracking control cannot be stably performed in a predetermined band.
 以上説明した本実施形態の記録媒体によれば、複数のマーク群は、トラック方向に沿って離散的に配置されると共に、径方向に沿って相隣接しないように配置される。このため、ガイドレーザ光のビームスポットが相隣接する複数のガイドトラックに跨るまで(例えば、5つのガイドトラックに跨るまで)ガイドトラックの密度が高められても、一のマーク群を読み取る際に生じ得る他のマーク群に起因したクロストークが低減される。従って、ガイドレーザ光を用いて、各マーク群を好適に読み取る(つまり、各マーク群が示すトラッキングエラー信号やアドレス情報等を好適に取得する)ことができる。つまり、ガイドレーザ光のビームスポットの径よりもガイドトラックのトラックピッチを小さくすることでガイドレーザ光がガイド層における相隣接する複数のガイドトラックに同時に照射される場合であっても、ガイドレーザ光を用いて、各マーク群を好適に読み取ることができる。即ち、所定の帯域での安定したトラッキング制御を行うことができる。 According to the recording medium of the present embodiment described above, the plurality of mark groups are arranged discretely along the track direction and not adjacent to each other along the radial direction. For this reason, even when the density of the guide tracks is increased until the beam spot of the guide laser beam straddles a plurality of adjacent guide tracks (for example, straddles five guide tracks), it occurs when reading one mark group. Crosstalk due to other mark groups obtained is reduced. Therefore, each mark group can be suitably read using the guide laser beam (that is, a tracking error signal, address information, etc. indicated by each mark group can be suitably acquired). That is, even when the guide laser beam is simultaneously irradiated to a plurality of adjacent guide tracks in the guide layer by making the track pitch of the guide track smaller than the beam spot diameter of the guide laser beam, the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
 このような効果は、ガイドレーザ光(例えば、赤色レーザ光)のガイド層上でのビームスポットの径が記録再生レーザ光(例えば青色レーザ光の)の所望の記録層上でのビームスポットが大きい状況下で、記録再生レーザ光の相対的に小さいビームスポットを有効活用して所望の記録層に対する記録密度を高める場合に特に有利である。具体的には、例えば、記録層における事後的な情報トラックに対応する相対的に小さいトラックピッチのガイドトラックをガイド層に予め形成した場合には、必然的に、ガイドトラックのトラックピッチに対して大きなビームスポットを形成するガイドレーザ光のビームスポットは、複数のガイドトラックに渡って同時に照射される。このため、相対的に大きなビームスポットを形成するガイドレーザ光を用いて、記録層上の相対的に小さなトラックピッチの情報トラックに対応したトラッキング制御を行うことができるという点で特に有利である。 Such an effect is that the diameter of the beam spot on the guide layer of the guide laser beam (for example, red laser beam) is large and the beam spot on the desired recording layer of the recording / reproducing laser beam (for example, blue laser beam) is large. Under the circumstances, it is particularly advantageous when the recording density for a desired recording layer is increased by effectively utilizing a relatively small beam spot of the recording / reproducing laser beam. Specifically, for example, when a guide track having a relatively small track pitch corresponding to a subsequent information track in the recording layer is formed in advance in the guide layer, it is inevitably in proportion to the track pitch of the guide track. A beam spot of a guide laser beam that forms a large beam spot is simultaneously irradiated over a plurality of guide tracks. Therefore, it is particularly advantageous in that tracking control corresponding to information tracks having a relatively small track pitch on the recording layer can be performed using guide laser light that forms a relatively large beam spot.
 なお、ガイドレーザ光のガイド層上でのビームスポットが記録再生レーザ光の所望の記録層上でのビームスポットよりも小さい場合又はこれらのビームスポットが殆ど若しくは全く同じ場合においても、ガイドトラックのトラックピッチに対して大きなビームスポットを形成するガイドレーザ光を用いてトラッキング制御が行われる限りにおいては、上述の如き本実施形態における独自の構成は、相応の作用効果を奏する。 Even when the beam spot of the guide laser beam on the guide layer is smaller than the beam spot on the desired recording layer of the recording / reproducing laser beam, or when these beam spots are almost or exactly the same, the track of the guide track As long as the tracking control is performed using the guide laser beam that forms a large beam spot with respect to the pitch, the unique configuration in the present embodiment as described above has a corresponding effect.
 加えて本実施形態では、記録媒体がCLV方式を採用しているので、記録媒体の内周側での角速度は、記録媒体の外周側の角速度よりも大きくなる。このため、特段の対応策をとらなければ、例えばCAV(Constant Angular Velocity)方式とは異なり、特定長のマーク群を複数のガイドトラックに渡って径方向に一列に整列させることは困難又は不可能である。すると、CLV方式にて仮に何らの対応策をとらなければ、ガイドレーザ光が複数のガイドトラックに跨るビームスポットを形成する場合には、当該ビームスポット内部に入るトラック部分が半径位置に応じてトラック方向にずれてしまう。その結果、マーク群の読み取り(つまり、トラッキングエラー信号やアドレス情報等の取得)が、半径位置に応じて極めて不安定とならざるを得ない。しかしながら、本実施形態では、複数のマーク群は、上述の如く意識的に或いは積極的に径方向に沿って互いに相隣接しないように配置されている。このため、径方向の位置によらずに、高密度記録を実現するための高密度のトラックピッチや記録線密度に対応して、所定の帯域でトラッキング制御を安定的に行うことができる。逆に言えば、CLV方式であることを前提として、径方向の位置に応じて予め複数のマーク群の配置位置(例えば、トラック方向の離散的な配置位置や、径方向の配置位置等)を規定しておけば、CLV方式であっても何ら技術的な問題は生じない。 In addition, in the present embodiment, since the recording medium adopts the CLV method, the angular velocity on the inner peripheral side of the recording medium is larger than the angular velocity on the outer peripheral side of the recording medium. For this reason, unless special measures are taken, it is difficult or impossible to align a group of marks having a specific length in a radial direction across a plurality of guide tracks, unlike, for example, the CAV (Constant Angular Velocity) method. It is. Then, if no countermeasures are taken in the CLV method, when the guide laser beam forms a beam spot extending over a plurality of guide tracks, the track portion entering the beam spot is tracked according to the radial position. It will shift in the direction. As a result, the reading of the mark group (that is, acquisition of the tracking error signal and address information) must be extremely unstable depending on the radial position. However, in the present embodiment, the plurality of mark groups are arranged not to be adjacent to each other along the radial direction consciously or positively as described above. For this reason, tracking control can be stably performed in a predetermined band in accordance with a high-density track pitch and recording linear density for realizing high-density recording regardless of the radial position. In other words, on the premise of the CLV method, the arrangement positions of a plurality of mark groups (for example, discrete arrangement positions in the track direction, arrangement positions in the radial direction, etc.) in advance according to the radial position are determined. If defined, no technical problem occurs even in the CLV system.
 しかも本実施形態によれば、複数のマーク群に含まれる中心マークは、トラック方向に沿って連続して並ぶ所定数のスロットから構成されるグループ毎に一つずつ配置される。このため、ガイド層においては、中心マーク及び当該中心マークと共にマーク群を構成する他の記録マークを構成するための物理構造を、当該グループに合わせて確保される一部のスロット内にだけ形成すれば足りる。つまり、本実施形態では、中心マーク及び当該中心マークと共にマーク群を構成する他の記録マークを構成するための物理構造を、ガイドトラックの全領域に渡って連続して形成しなくともよい。しかも、スロットの存否(例えば、スロットと鏡面との相違)が物理的に明確に区別し易く且つ検出しやすいため、マーク群の読み取りが容易にして安定的に実行可能となる。これは、実践上大変有利である。 In addition, according to the present embodiment, the center marks included in the plurality of mark groups are arranged one by one for each group including a predetermined number of slots arranged continuously along the track direction. For this reason, in the guide layer, a physical structure for constituting the center mark and other recording marks that constitute the mark group together with the center mark is formed only in a part of the slots secured in accordance with the group. It's enough. That is, in the present embodiment, the physical structure for configuring the center mark and other recording marks that constitute the mark group together with the center mark may not be continuously formed over the entire area of the guide track. Moreover, since the presence / absence of the slot (for example, the difference between the slot and the mirror surface) is easily clearly distinguished and easily detected, the mark group can be easily read and stably executed. This is very advantageous in practice.
 他方で、記録層における複数のスロットについては、ガイド層の場合と異なり、トラック方向及び径方向の両方についての連続する全てのスロット内に、ユーザデータを構成する記録マークが形成されてもよい。記録層におけるいずれのスロットについても、ガイド層におけるマーク群が配置されたスロット(言い換えれば、マーク群を構成する記録マークが配置されたスロット)と対応がとれるがゆえに、記録層に対して間接的に、所定の帯域でトラッキング制御を行うことができる。 On the other hand, for a plurality of slots in the recording layer, unlike the guide layer, recording marks constituting user data may be formed in all the continuous slots in both the track direction and the radial direction. Since any slot in the recording layer can be associated with a slot in which the mark group in the guide layer is arranged (in other words, a slot in which the recording mark constituting the mark group is arranged), it is indirect to the recording layer. In addition, tracking control can be performed in a predetermined band.
 加えて、本実施形態では、各マーク群が、同一回転位相位置に形成される同一の複数の記録マークを含んでいる。従って、記録再生装置は、ガイドレーザ光のフォーカスオフセットの偏差(いわゆる、デフォーカス)に影響を受けることなく、マーク群を好適に読み取る(言い換えれば、マーク群に含まれる複数の記録マークから得られるトラッキングエラー信号やアドレス情報等を取得する)ことができる。 In addition, in the present embodiment, each mark group includes the same plurality of recording marks formed at the same rotational phase position. Therefore, the recording / reproducing apparatus preferably reads the mark group without being affected by the deviation (so-called defocus) of the focus offset of the guide laser beam (in other words, obtained from a plurality of recording marks included in the mark group). Tracking error signal, address information, etc. can be acquired).
 以上の結果、CLV方式を採用しつつ、記録層において記録若しくは再生できるトラックピッチや記録線密度(例えば、線記録密度、ピットピッチ或いは情報転送速度(即ち、記録線密度×移動速度))を、多層型の情報記録媒体における本来の目的である「高密度記録」と言える程度にまで高めることが可能となる。 As a result, while adopting the CLV method, the track pitch and recording linear density (for example, linear recording density, pit pitch or information transfer speed (that is, recording linear density × movement speed)) that can be recorded or reproduced in the recording layer are It is possible to increase the level to what can be said to be “high density recording”, which is the original purpose of a multilayer information recording medium.
 尚、上述した説明では、複数のマーク群からトラッキングエラー信号及びアドレス情報(或いは、その他の任意の制御情報、以下同じ)の双方が取得される例を用いて説明している。しかしながら、複数のマーク群からは、トラッキングエラー信号及びアドレス情報のいずれか一方が取得される一方で、トラッキングエラー信号及びアドレス情報のいずれか他方が取得されなくともよい。例えば、ガイドトラックがランド・グルーブ構造を有する(つまり、ガイドトラックが、グルーブトラック及びランドトラックから構成される)場合、トラッキングエラー信号は、マーク群以外の構成要素(つまり、ガイドトラック)を追従するガイドレーザ光の戻り光から取得可能である。従って、この場合には、複数のマーク群からは、アドレス情報が取得される一方で、トラッキングエラー信号が取得されなくともよい。但し、この場合であっても、マーク群から取得されるアドレス情報(或いは、任意の制御情報)が所定帯域(言い換えれば、所定周期)で取得可能となる程度に、複数のマーク群がトラック方向に沿って離散的に配置されることが好ましい。例えば、複数のマーク群から記録クロックが生成される場合には、各マーク群に含まれる中心マークの間の配置間隔(例えば、上述したグループのトラック方向の長さ)が、当該記録クロックの生成の帯域に応じた所定距離又はそれ未満の距離に設定されることが好ましい。 In the above description, an example in which both the tracking error signal and the address information (or other arbitrary control information, the same applies hereinafter) is acquired from a plurality of mark groups is described. However, while either one of the tracking error signal and the address information is acquired from the plurality of mark groups, either the tracking error signal or the address information may not be acquired. For example, when the guide track has a land / groove structure (that is, the guide track is composed of a groove track and a land track), the tracking error signal follows components other than the mark group (that is, the guide track). It can be obtained from the return light of the guide laser beam. Therefore, in this case, the tracking error signal does not have to be acquired while the address information is acquired from the plurality of mark groups. However, even in this case, a plurality of mark groups are in the track direction to such an extent that address information (or arbitrary control information) acquired from the mark group can be acquired in a predetermined band (in other words, a predetermined period). It is preferable to arrange | position discretely along. For example, when a recording clock is generated from a plurality of mark groups, the arrangement interval between the center marks included in each mark group (for example, the length in the track direction of the group described above) is the generation of the recording clock. It is preferable that the distance is set to a predetermined distance or a distance less than the predetermined distance.
 <2>
 本実施形態の記録媒体の他の態様では、前記複数のマーク群の夫々は、(i)当該夫々のマーク群に含まれる前記複数の記録マークの前方に夫々配置され且つ前記トラック方向に沿って互いに異なる長さを有する複数の前方緩衝領域と、(ii)当該夫々のマーク群に含まれる前記複数の記録マークの後方に夫々配置され且つ前記トラック方向に沿って互いに異なる長さを有する複数の後方緩衝領域との間に挟み込まれるように配置されており、前記複数の前方緩衝領域及び前記複数の後方緩衝領域の夫々は、間に挟み込むマーク群に含まれる前記複数の記録マークが同一回転位相位置に形成されるような長さを有する。
<2>
In another aspect of the recording medium of the present embodiment, each of the plurality of mark groups is (i) arranged in front of the plurality of recording marks included in each of the mark groups and along the track direction. A plurality of front buffer regions having different lengths, and (ii) a plurality of front buffer regions arranged behind the plurality of recording marks included in the respective mark groups and having different lengths along the track direction. The plurality of front buffer areas and the plurality of rear buffer areas are arranged such that the plurality of recording marks included in the mark group sandwiched therebetween have the same rotational phase. It has such a length that it is formed at a position.
 この態様によれば、複数の前方緩衝領域及び複数の後方緩衝領域の夫々のトラック方向の長さを調整することで、各マーク群に含まれる複数の記録マークのトラック方向の位置を揃える(つまり、各マーク群に含まれる複数の記録マークを同一回転位相位置に形成する)ことができる。従って、CLV方式を採用することに起因して径方向に隣接する複数のガイドトラックの間でのスロットの端部がトラック方向にずれる場合であっても、同一回転位相位置に形成される複数のマークを夫々が含む複数のマーク群をガイド層上に好適に配置することができる。つまり、CLV方式を採用することに起因した径方向に隣接する複数のガイドトラックの間でのスロットの位置ずれの影響を、複数の前方緩衝領域及び複数の後方緩衝領域の夫々のトラック方向の長さの調整によって吸収することができる。 According to this aspect, by adjusting the lengths of the plurality of front buffer areas and the plurality of rear buffer areas in the track direction, the positions in the track direction of the plurality of recording marks included in each mark group are aligned (that is, A plurality of recording marks included in each mark group can be formed at the same rotational phase position). Therefore, even when the end portions of the slots between the plurality of guide tracks adjacent in the radial direction are shifted in the track direction due to the adoption of the CLV method, A plurality of mark groups each including a mark can be suitably arranged on the guide layer. In other words, the influence of the positional displacement of the slots between the plurality of guide tracks adjacent in the radial direction due to the adoption of the CLV method is the length in the track direction of each of the plurality of front buffer areas and the plurality of rear buffer areas. It can be absorbed by adjusting the thickness.
 加えて、トラック方向における各マーク群の前後に緩衝領域が設けられているため、ガイドトラックに沿ってマーク群を探し出しやすくなる。その結果、安定して確実にマーク群を読み取ることができる。 In addition, since buffer areas are provided before and after each mark group in the track direction, it is easy to find the mark group along the guide track. As a result, the mark group can be read stably and reliably.
 <3>
 上述の如く各マーク群が複数の前方緩衝領域と複数の後方緩衝領域との間に挟まれる記録媒体の態様では、前記複数のマーク群は、一の記録マークと、当該一の記録マークの前方に配置される一の前方緩衝領域と、当該一の記録マークの後方に配置される一の後方緩衝領域とが、一のスロット内に配置されるように、配置されている。
<3>
In the aspect of the recording medium in which each mark group is sandwiched between a plurality of front buffer areas and a plurality of rear buffer areas as described above, the plurality of mark groups include one recording mark and a front of the one recording mark. One front buffer area and one rear buffer area arranged behind the one recording mark are arranged so as to be arranged in one slot.
 この態様によれば、各マーク群が複数の前方緩衝領域と複数の後方緩衝領域との間に挟まれる場合であっても、各マーク群を構成する複数の記録マークと、複数の前方緩衝領域と、複数の後方緩衝領域とを、スロットの単位に合わせて形成することができる。
<4>
 本実施形態の記録媒体の他の態様では、前記複数のスロットの夫々の前記トラック方向の長さと、前記複数の記録層に夫々記録されることになるデータのフォーマットの構成単位の前記トラック方向の長さとが所定の整数比となるように、前記トラックが前記複数のスロットに区分される。
According to this aspect, even if each mark group is sandwiched between a plurality of front buffer areas and a plurality of rear buffer areas, the plurality of recording marks constituting each mark group and the plurality of front buffer areas And a plurality of rear buffer regions can be formed in accordance with the slot unit.
<4>
In another aspect of the recording medium of the present embodiment, the length in the track direction of each of the plurality of slots and the unit in the track direction of the format unit of the data to be recorded in the plurality of recording layers, respectively. The track is divided into the plurality of slots so that the length is a predetermined integer ratio.
 このように構成すれば、ガイド層におけるスロットのトラック方向の長さと、各記録層における、記録されることになるユーザデータのフォーマットの構成単位のトラック方向の長さとが、所定の整数比となる。ここに「フォーマットの構成単位」とは、データフォーマットに準拠した構成単位(例えば、例えば、ECC(Error Correction Code)ブロックやADIP(Address In Pre-groove)単位等に代表されるエラー訂正の単位等)を意味する。このようなフォーマットの構成単位は、典型的には、情報記録時又は情報再生時に、所定種類の処理を行う際に扱われる単位となる。 With this configuration, the length in the track direction of the slot in the guide layer and the length in the track direction of the structural unit of the user data format to be recorded in each recording layer have a predetermined integer ratio. . Here, the “format unit” is a unit conforming to the data format (for example, an error correction unit represented by an ECC (Error Correction Code) block, an ADIP (Address In Pre-groove) unit, or the like). ). The structural unit of such a format is typically a unit that is handled when a predetermined type of processing is performed during information recording or information reproduction.
 このため、トラッキングエラー信号やアドレス情報等の発生周期と記録層へのデータの記録周期との間の関係を、径方向の位置によらずに又はトラック方向の位置に寄らずに一定に維持することができる。特に、記録媒体がCLV方式を採用しているがゆえに径方向の位置によって角速度が変化する場合であっても、任意の径方向の位置において安定的にトラッキング制御を行うことができる。しかも、このような効果を実現するために、記録媒体の製造時にガイド層のスロットのトラック方向の長さを、データのフォーマットの構成単位の長さに応じて規定すれば足りる。 For this reason, the relationship between the generation period of the tracking error signal and the address information and the recording period of the data on the recording layer is kept constant regardless of the position in the radial direction or the position in the track direction. be able to. In particular, since the recording medium adopts the CLV method, even when the angular velocity changes depending on the radial position, the tracking control can be stably performed at an arbitrary radial position. Moreover, in order to realize such an effect, it is sufficient to define the length of the slot of the guide layer in the track direction in accordance with the length of the structural unit of the data format when manufacturing the recording medium.
 このように、スロットを採用することで、記録層に対するトラッキング動作などのガイド動作を、比較的容易にして、極めて安定的に実行可能となる。
<5>
 本実施形態の記録媒体の他の態様では、前記複数のスロットは、前記トラック方向の長さが相互に等しく、前記トラック方向に配列されている。
As described above, by employing the slot, a guide operation such as a tracking operation with respect to the recording layer can be performed relatively easily and can be performed extremely stably.
<5>
In another aspect of the recording medium of the present embodiment, the plurality of slots have the same length in the track direction and are arranged in the track direction.
 この態様によれば、ガイド層及び複数の記録層でのスロットの配置規則を簡略化することができる。加えて、ガイド層における複数のスロットのうちマーク群(或いは、当該マーク群を構成する記録マーク)を配置するスロットを比較的容易に決定することができる。 According to this aspect, the slot arrangement rule in the guide layer and the plurality of recording layers can be simplified. In addition, among the plurality of slots in the guide layer, the slot in which the mark group (or the recording mark constituting the mark group) is arranged can be determined relatively easily.
 尚、複数のスロットは、トラック方向に沿って隙間無く配列されていてもよい。つまり、複数のスロットは、隣接する2つのスロットの間に何らの隙間が存在しないように配列されていてもよい。或いは、複数のスロットは、トラック方向に沿って多少の隙間(例えば、スロットの長さよりも短い隙間)を確保しながら配列されていてもよい。つまり、複数のスロットは、隣接する2つのスロットの間に多少の隙間(例えば、スロットの長さよりも短い隙間)が確保されるように配列されていてもよい。
<6>
 本実施形態の記録媒体の他の態様では、前記複数の記録マークの夫々は、ウォブル及びプリピット構造のいずれかを含む構成である。
The plurality of slots may be arranged without a gap along the track direction. That is, the plurality of slots may be arranged so that there is no gap between two adjacent slots. Alternatively, the plurality of slots may be arranged while ensuring a slight gap (for example, a gap shorter than the slot length) along the track direction. That is, the plurality of slots may be arranged so that a slight gap (for example, a gap shorter than the length of the slot) is secured between two adjacent slots.
<6>
In another aspect of the recording medium of the present embodiment, each of the plurality of recording marks includes a wobble or a prepit structure.
 この態様によれば、各記録マークは、上述したトラッキングエラー信号やアドレス情報等に対応付けられたウォブル及びプリピット構造から構成されている。ここに「ウォブル及びプリピット構造」とは、ウォブリングされたガイドトラックが形成されていると共に、当該ガイドトラック内にプリピットが形成されている構造を意味する。更に「プリピット」とは、ガイドトラックの幅よりも狭くなるようにガイドトラック上若しくはガイドトラック内に形成された、凸状又は凹状の物理ピット又は位相ピットを意味する。 According to this aspect, each recording mark is composed of a wobble and pre-pit structure associated with the tracking error signal and address information described above. Here, the “wobble and prepit structure” means a structure in which a wobbling guide track is formed and a prepit is formed in the guide track. Further, the “pre-pit” means a convex or concave physical pit or phase pit formed on or in the guide track so as to be narrower than the width of the guide track.
 このように、ガイドトラックは、ウォブリングされ且つピットが形成されたガイドトラックとして、ガイド層に予め構築される。よって、ガイドトラックの構築は、比較的容易であり、最終的には、信頼性及び安定性の高いトラッキング制御が実現可能である。
<7>
 本実施形態の記録媒体の他の態様では、前記ガイドトラックは、トラッキングサーボ用のガイドトラックであり、前記複数のマーク群の夫々は、前記トラッキングサーボ用のトラッキング信号を発生するためのマーク群であり、前記複数のマーク群は、前記トラッキングサーボが所定の帯域で動作可能な距離以下の配置間隔で、トラック方向に沿って離散的に配置されており、前記複数のマーク群は、前記トラッキングサーボ用の光ビームのビーム径に基づいて、前記光ビームが同時に照射されないように、前記径方向に沿って互いに相隣接しないように配置されている。
As described above, the guide track is previously constructed in the guide layer as a guide track in which wobbling and pits are formed. Therefore, construction of the guide track is relatively easy, and finally, tracking control with high reliability and stability can be realized.
<7>
In another aspect of the recording medium of the present embodiment, the guide track is a tracking servo guide track, and each of the plurality of mark groups is a mark group for generating the tracking servo tracking signal. The plurality of mark groups are discretely arranged along a track direction at an arrangement interval equal to or less than a distance at which the tracking servo can operate in a predetermined band, and the plurality of mark groups are the tracking servo Based on the beam diameter of the light beam, the light beam is arranged so as not to be adjacent to each other along the radial direction so that the light beam is not simultaneously irradiated.
 この態様によれば、ガイドレーザ光のビームスポットが相隣接する複数のガイドトラックに跨るまでガイドトラックの密度が高められても、一のマーク群を読み取る際に生じ得る他のマーク群に起因したクロストークが低減される。従って、ガイドレーザ光を用いて、各マーク群を好適に読み取る(つまり、各マーク群が示すトラッキングエラー信号等を好適に取得する)ことができる。つまり、ガイドレーザ光のビームスポットの径よりもガイドトラックのトラックピッチを小さくすることでガイドレーザ光がガイド層における相隣接する複数のガイドトラックに同時に照射される場合であっても、ガイドレーザ光を用いて、各マーク群を好適に読み取ることができる。即ち、所定の帯域での安定したトラッキング制御を行うことができる。
<8>
 本実施形態の記録媒体の他の態様では、前記複数のマーク群は、前記トラック方向に沿って内周から外周又は外周から内周へ向うアドレス位置を示すアドレス情報を担持するためのマーク群である。
According to this aspect, even if the density of the guide track is increased until the beam spot of the guide laser beam straddles a plurality of adjacent guide tracks, it is caused by other mark groups that may occur when one mark group is read. Crosstalk is reduced. Therefore, each mark group can be suitably read using the guide laser beam (that is, a tracking error signal or the like indicated by each mark group can be suitably acquired). That is, even when the guide laser beam is simultaneously irradiated to a plurality of adjacent guide tracks in the guide layer by making the track pitch of the guide track smaller than the beam spot diameter of the guide laser beam, the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
<8>
In another aspect of the recording medium of the present embodiment, the plurality of mark groups are mark groups for carrying address information indicating address positions from the inner circumference to the outer circumference or from the outer circumference to the inner circumference along the track direction. is there.
 この態様によれば、ガイドレーザ光のビームスポットが相隣接する複数のガイドトラックに跨るまでガイドトラックの密度が高められても、一のマーク群を読み取る際に生じ得る他のマーク群に起因したクロストークが低減される。従って、ガイドレーザ光を用いて、各マーク群を好適に読み取る(つまり、各マーク群が示すアドレス情報等を好適に取得する)ことができる。つまり、ガイドレーザ光のビームスポットの径よりもガイドトラックのトラックピッチを小さくすることでガイドレーザ光がガイド層における相隣接する複数のガイドトラックに同時に照射される場合であっても、ガイドレーザ光を用いて、各マーク群を好適に読み取ることができる。即ち、所定の帯域での安定したトラッキング制御を行うことができる。
(記録再生装置の実施形態)
<9>
 本実施形態の記録再生装置は上記課題を解決するために、上述した本実施形態の記録媒体(但し、その各種態様を含む)に対する記録処理及び再生処理のうちの少なくとも一方を行う記録再生装置であって、前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段と、前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御手段と、前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御手段とを備える。
According to this aspect, even if the density of the guide track is increased until the beam spot of the guide laser beam straddles a plurality of adjacent guide tracks, it is caused by other mark groups that may occur when one mark group is read. Crosstalk is reduced. Therefore, each mark group can be suitably read using the guide laser beam (that is, the address information and the like indicated by each mark group can be suitably acquired). That is, even when the guide laser beam is simultaneously irradiated to a plurality of adjacent guide tracks in the guide layer by making the track pitch of the guide track smaller than the beam spot diameter of the guide laser beam, the guide laser beam Each mark group can be suitably read using. That is, stable tracking control in a predetermined band can be performed.
(Embodiment of recording / reproducing apparatus)
<9>
In order to solve the above problems, the recording / reproducing apparatus of the present embodiment is a recording / reproducing apparatus that performs at least one of the recording process and the reproducing process for the recording medium of the present embodiment (including various aspects thereof) described above. Irradiating and condensing the guide layer with guide laser light and condensing and condensing one recording layer of the plurality of recording layers with a recording / reproducing laser light different from the guide laser light And first control means for controlling the light irradiation means to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer. In the state where the tracking servo is applied, the recording and reproducing laser light is irradiated and condensed on the one recording layer, so that the recording process and the previous recording layer are performed. And a second control means for controlling said light emitting means to perform at least one of the reproduction process.
 本実施形態の情報記録装置によれば、例えば二種類の半導体レーザを含む光ピックアップである光照射手段により、ガイド層に対してガイドレーザ光が照射され且つ集光される。ガイドレーザ光は、前述の如く、例えば赤色レーザ光のように、ガイド層上で形成するビームスポットの径が相対的に大きいレーザ光であってよい。即ち、ガイドレーザ光は、複数のガイドトラックに渡って照射されるような大きな径のビームスポットを形成するような太い光束のレーザ光であってもよい。 According to the information recording apparatus of the present embodiment, the guide laser light is irradiated and condensed on the guide layer by the light irradiation means that is an optical pickup including, for example, two types of semiconductor lasers. As described above, the guide laser beam may be a laser beam having a relatively large beam spot diameter formed on the guide layer, such as a red laser beam. In other words, the guide laser beam may be a laser beam with a thick light beam that forms a beam spot with a large diameter that is irradiated over a plurality of guide tracks.
 すると、ガイドレーザ光のガイド層からの戻り光(例えば、反射光や、散乱光や、屈折光や、透過光等)が、受光手段により受光される。ここに、受光手段は、例えば、光照射手段と一体形成され且つ対物レンズ等の光学系を少なくとも部分的に共有する受光素子(例えば、二分割或いは四分割のCCD(Charged Coupled Device)等のフォトディテクタ)を含んで構成される。受光手段は例えば、プリズムやダイクロイックミラーやダイクロイックプリズム等を経由してガイド層から受光手段に導かれるガイドレーザ光の戻り光を受光してもよい。 Then, return light (for example, reflected light, scattered light, refracted light, transmitted light, etc.) of the guide laser light from the guide layer is received by the light receiving means. Here, the light receiving means is, for example, a light receiving element that is formed integrally with the light irradiating means and at least partially shares an optical system such as an objective lens (for example, a photodetector such as a two- or four-divided CCD (Charged-Coupled Device)) ). For example, the light receiving means may receive return light of guide laser light guided from the guide layer to the light receiving means via a prism, a dichroic mirror, a dichroic prism, or the like.
 続いて、受光手段が受光したガイドレーザ光の戻り光に基づき、ガイド層に形成されたマーク群が示す各種情報(例えば、トラッキングエラー信号やアドレス情報等)が、例えばプロセッサや演算回路や論理回路等を含んでなる情報取得手段により取得される。 Subsequently, various information (for example, tracking error signal and address information) indicated by the mark group formed on the guide layer based on the return light of the guide laser light received by the light receiving means is, for example, a processor, an arithmetic circuit, or a logic circuit. Etc. are acquired by information acquisition means including the above.
 続いて、情報取得手段が取得した各種情報に基づき、ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように、例えばトラッキングサーボ回路等の第1制御手段によって、例えば光ピックアップ等の光照射手段が制御される。例えば、光照射手段が有するトラッキング制御用のアクチュエータが、フィードバック制御又はフィードフォーワード制御により制御されることで、ガイドレーザ光がガイドトラックに追従する。この際、上述したように、所定の帯域でトラッキングサーボをかけるようにトラッキング制御を行うためには、ガイドトラックに沿った全てのスロット内にマーク群が配置されていなくともよい。即ち、マーク群が配置されている(つまり、マーク群を構成する記録マークが形成されている)スロットは、所定の帯域に応じてトラック方向に沿って離散的に配置されれば足りる。 Subsequently, on the basis of various information acquired by the information acquisition means, the first control means such as a tracking servo circuit, for example, an optical pickup or the like so as to perform tracking control for applying tracking servo to the guide track in a predetermined band. The light irradiation means is controlled. For example, the tracking laser actuator of the light irradiation means is controlled by feedback control or feedforward control, so that the guide laser light follows the guide track. At this time, as described above, in order to perform the tracking control so that the tracking servo is applied in a predetermined band, the mark group does not have to be arranged in all the slots along the guide track. In other words, the slots in which the mark groups are arranged (that is, the recording marks constituting the mark groups are formed) need only be arranged discretely along the track direction according to a predetermined band.
 尚、上述したように、複数のマーク群からは、トラッキングエラー信号及びアドレス情報のいずれか一方が取得される一方で、トラッキングエラー信号及びアドレス情報のいずれか他方が取得されなくともよい。例えば、ガイドトラックがランド・グルーブ構造を有する(つまり、ガイドトラックが、グルーブトラック及びランドトラックから構成される)場合、トラッキングエラー信号は、マーク群以外の構成要素(つまり、ガイドトラック)を追従するガイドレーザ光の戻り光から取得可能である。従って、この場合には、第1制御工程は、複数のマーク群から取得されるアドレス情報及びガイドトラックから取得されるトラッキングエラー信号に基づいてトラッキング制御を行うように光照射手段を制御してもよい。但し、複数のマーク群からトラッキングエラー信号及びアドレス情報の双方が取得される場合及び複数のマーク群からトラッキングエラー信号及びアドレス情報のいずれか一方が取得される場合のいずれであっても、第1制御手段は、ガイドレーザ光の戻り光に基づいてトラッキング制御を行うことに変わりはない。 Note that, as described above, either one of the tracking error signal and the address information is acquired from the plurality of mark groups, while either one of the tracking error signal and the address information may not be acquired. For example, when the guide track has a land / groove structure (that is, the guide track is composed of a groove track and a land track), the tracking error signal follows components other than the mark group (that is, the guide track). It can be obtained from the return light of the guide laser beam. Therefore, in this case, the first control step may control the light irradiation unit to perform tracking control based on the address information acquired from the plurality of mark groups and the tracking error signal acquired from the guide track. Good. However, even if both the tracking error signal and the address information are acquired from the plurality of mark groups, and either the tracking error signal and the address information are acquired from the plurality of mark groups, the first The control means does not change tracking control based on the return light of the guide laser light.
 このように所定の帯域でトラッキング制御が行われている状態で、例えばプロセッサ等の第2制御手段による制御下で、記録すべきデータに対応して変調される記録再生レーザ光が光照射手段から所望の記録層に照射され且つ集光される。記録再生レーザ光は、高密度記録ために例えば青色レーザ光のように所望の記録層上で形成するビームスポットの径が相対的に小さいレーザ光であってもよい。高密度記録を実現するという観点からは、記録再生レーザ光は、より細い光束であることが望ましい。 In the state where the tracking control is performed in the predetermined band as described above, a recording / reproducing laser beam modulated in accordance with data to be recorded is controlled from the light irradiation unit under the control of the second control unit such as a processor. The desired recording layer is irradiated and condensed. The recording / reproducing laser beam may be a laser beam having a relatively small beam spot diameter formed on a desired recording layer such as a blue laser beam for high-density recording. From the viewpoint of realizing high-density recording, it is desirable that the recording / reproducing laser beam is a thinner light beam.
 すると、所望の記録層において、ガイド層におけるガイドトラックに対応する情報トラックとなる領域に、データが順次記録されることになる。或いは、所望の記録層において、既に記録されたデータが再生されることになる。この際、記録層へのデータの記録を、例えばスロットの整数倍など、スロットに対応する単位で行うようにすれば、記録処理又は再生処理が簡単且つ安定したものとなる。 Then, in the desired recording layer, data is sequentially recorded in an area to be an information track corresponding to the guide track in the guide layer. Alternatively, already recorded data is reproduced in a desired recording layer. At this time, if data recording to the recording layer is performed in units corresponding to the slots, for example, an integral multiple of the slots, the recording process or the reproducing process becomes simple and stable.
 このように、本実施形態の記録再生装置は、上述した本実施形態の記録媒体における記録層に対し好適に、データを高密度にて記録することができる。また、本実施形態の記録再生装置は、上述した本実施形態の記録媒体における記録層に記録されたデータを、好適に再生することができる。 As described above, the recording / reproducing apparatus of the present embodiment can suitably record data at a high density on the recording layer of the recording medium of the present embodiment described above. Moreover, the recording / reproducing apparatus of this embodiment can reproduce suitably the data recorded on the recording layer in the recording medium of this embodiment mentioned above.
 尚、上述した本実施形態の記録媒体が採用し得る各種態様に対応して、本実施形態の記録再生装置もまた各種態様を採用することができる。
(記録再生方法の実施形態)
<10>
 本実施形態の情報記録方法は上記課題を解決するために、上述した本実施形態の記録媒体(但し、その各種態様を含む)に対して、前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段を用いて、記録処理及び再生処理のうちの少なくとも一方を行う記録再生方法であって、前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御工程と、前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御工程とを備える。
Incidentally, in response to the various aspects that can be adopted by the recording medium of the present embodiment described above, the recording / reproducing apparatus of the present embodiment can also adopt various aspects.
(Embodiment of recording / reproducing method)
<10>
In order to solve the above-described problem, the information recording method of the present embodiment irradiates the guide layer with guide laser light on the recording medium of the present embodiment described above (including various aspects thereof) and collects the light. And at least one of the recording process and the reproducing process using a light irradiating means for irradiating and condensing one recording layer of the plurality of recording layers with a recording / reproducing laser beam different from the guide laser beam. In the recording / reproducing method to be performed, the light irradiation unit is controlled so as to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer. In the first control step and in the state where the tracking servo is applied, the recording process is performed by irradiating and condensing the recording / reproducing laser beam on the one recording layer. And a second controlling process of controlling the light emitting means to perform at least one of the reproduction process.
 本実施形態の記録再生方法によれば、上述した本実施形態の記録再生装置が享受することができる各種効果と同様の効果を好適に享受することができる。 According to the recording / reproducing method of the present embodiment, the same effects as the various effects that can be enjoyed by the recording / reproducing apparatus of the present embodiment described above can be suitably enjoyed.
 尚、上述した本実施形態の記録再生装置が採用し得る各種態様に対応して、本実施形態の記録再生方法もまた各種態様を採用することができる。 Incidentally, in response to various aspects that can be adopted by the recording / reproducing apparatus of the present embodiment described above, the recording / reproducing method of the present embodiment can also adopt various aspects.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。 Such an operation and other advantages of the present embodiment will be clarified from examples described below.
 以上説明したように、本実施形態の記録媒体は、ガイド層と複数の記録層とを備え、マーク群に含まれる中心マークが所定数のスロットから構成されるグループ毎に一つずつ配置され且つ複数のマーク群が径方向に沿って互いに相隣接しないように配置されている。本実施形態の記録再生装置は、光照射手段と、第1制御手段と、第2制御手段とを備える。本実施形態の記録再生方法は、第1制御工程と、第2制御工程とを備える。従って、CLV方式を採用しつつ高精度のトラッキング制御を行うことができる。 As described above, the recording medium of the present embodiment includes a guide layer and a plurality of recording layers, and the center mark included in the mark group is arranged one by one for each group including a predetermined number of slots, and The plurality of mark groups are arranged so as not to be adjacent to each other along the radial direction. The recording / reproducing apparatus of the present embodiment includes light irradiation means, first control means, and second control means. The recording / reproducing method of the present embodiment includes a first control step and a second control step. Therefore, highly accurate tracking control can be performed while employing the CLV method.
 以下、図面を参照しながら、実施例について説明する。 Hereinafter, examples will be described with reference to the drawings.
 (1)光ディスク11について
 はじめに、図1から図9を参照して、本実施例の光ディスク11について説明する。
(1) Optical Disc 11 First, the optical disc 11 of this embodiment will be described with reference to FIGS.
 (1-1)光ディスクの構成
 はじめに、図1及び図2を参照して、光ディスク11の構成について説明する。図1は、一枚の光ディスク11を構成する複数の層を、その積層方向(図1中、上下方向)について相互に間隔をあけて分解することで、各層を見易くしてなる模式的な斜視図である。図2は、光ディスク11の断面を、ガイドレーザ光LB1及び記録再生レーザ光LB2の照射態様と共に示す断面図である。
(1-1) Configuration of Optical Disc First, the configuration of the optical disc 11 will be described with reference to FIG. 1 and FIG. FIG. 1 is a schematic perspective view in which a plurality of layers constituting one optical disk 11 are disassembled at intervals in the stacking direction (vertical direction in FIG. 1) to make each layer easy to see. FIG. FIG. 2 is a cross-sectional view showing a cross section of the optical disc 11 together with the irradiation modes of the guide laser beam LB1 and the recording / reproducing laser beam LB2.
 図1に示すように、光ディスク11は、単一のガイド層12と複数の(つまり、2層以上の)記録層13とを備える。つまり、光ディスク11は、いわゆるガイド層分離型光ディスクである。 As shown in FIG. 1, the optical disc 11 includes a single guide layer 12 and a plurality of (that is, two or more) recording layers 13. That is, the optical disk 11 is a so-called guide layer separation type optical disk.
 光ディスク11に対する記録処理(特に、所望の記録層13に対する記録処理)が行われる場合には、ガイド層12に集光されるトラッキング制御用のガイドレーザ光LB1と、複数の記録層13の夫々に集光される記録再生レーザ光LB2とが、記録再生装置101から同時に照射される。一方で、光ディスク11に対する再生処理(特に、所望の記録層13に対する再生処理)が行われる場合にもまた、ガイドレーザ光LB1と記録再生レーザ光LB2とが、記録再生装置101から同時に照射される。但し、光ディスク11に対する再生処理が行われる場合には、記録再生レーザ光LB2が、トラッキング制御用に用いられてもよい(つまり、ガイドレーザ光LB1が用いられなくともよい)。 When a recording process on the optical disc 11 (particularly, a recording process on a desired recording layer 13) is performed, the tracking control guide laser beam LB1 focused on the guide layer 12 and each of the plurality of recording layers 13 are recorded. The condensed recording / reproducing laser beam LB2 is irradiated from the recording / reproducing apparatus 101 at the same time. On the other hand, also when a reproduction process for the optical disc 11 (particularly, a reproduction process for a desired recording layer 13) is performed, the guide laser beam LB1 and the recording / reproducing laser beam LB2 are simultaneously irradiated from the recording / reproducing apparatus 101. . However, when the reproducing process is performed on the optical disc 11, the recording / reproducing laser beam LB2 may be used for tracking control (that is, the guide laser beam LB1 may not be used).
 光ディスク11はCLV方式を採用することが好ましい。同心円状又は螺旋状のガイドトラックTR(具体的には、後述するグルーブトラックGT及びランドトラックLT)にには、CLV方式に準拠して、制御情報(例えば、トラッキングエラー信号やクロック情報やアドレス情報や記録開始タイミング情報等、或いはこれらの元となるウォブル情報又はピット情報)が予め記録されている。本実施例では、このような制御情報は、光ディスク11の径方向に沿って隣接する複数のガイドトラックTRの同一回転位相位置に形成される同一の記録マークMRが組み合わせられたマーク群MGを用いて記録されている。このようなマーク群MGは、光ディスク11の製造時に予めガイド層12(言い換えれば、ガイド層12が備えるガイドトラックTR)に形成されることが好ましい。 The optical disk 11 preferably adopts the CLV method. Concentric or spiral guide tracks TR (specifically, groove tracks GT and land tracks LT described later) include control information (for example, tracking error signals, clock information, and address information) in accordance with the CLV method. , Recording start timing information, etc., or wobble information or pit information as a basis for these information). In the present embodiment, such control information uses a mark group MG in which the same recording marks MR formed at the same rotational phase position of a plurality of guide tracks TR adjacent along the radial direction of the optical disk 11 are combined. Are recorded. Such a mark group MG is preferably formed in advance on the guide layer 12 (in other words, the guide track TR included in the guide layer 12) when the optical disc 11 is manufactured.
 尚、ガイド層12に形成されているガイドトラックTRは、シングルスパイラルであってもよい。この場合、グルーブトラックGTは、ガイド層12の所定の領域でランドトラックLTに切り替わることが好ましい。同様に、ランドトラックLTは、ガイド層12の所定の領域でグルーブトラックGTに切り替わることが好ましい。但し、ガイドトラックTRは、グルーブトラックGTとランドトラックLTとが分離しているダブルスパイラルであってもよい。 The guide track TR formed on the guide layer 12 may be a single spiral. In this case, the groove track GT is preferably switched to the land track LT in a predetermined region of the guide layer 12. Similarly, the land track LT is preferably switched to the groove track GT in a predetermined region of the guide layer 12. However, the guide track TR may be a double spiral in which the groove track GT and the land track LT are separated.
 図2に示すように、記録再生レーザ光LB2は、ガイド層12上に積層された複数の記録層13のうち記録対象又は再生対象たる一つの所望の記録層13に集光される。記録再生レーザ光LB2は、例えばBD(Blu-ray Disc:ブルーレイディスク)と同じく比較的短波長の青色レーザビームである。一方で、ガイドレーザ光LB1は、例えばDVDと同じく比較的長波長の赤色レーザビームである。ガイドレーザ光LB1によりガイド層12上に形成されるビームスポットの直径は、記録再生レーザ光LB2により記録層13上に形成されるビームスポットの直径と比べて、例えば数倍程度となる。 As shown in FIG. 2, the recording / reproducing laser beam LB2 is focused on one desired recording layer 13 to be recorded or reproduced among the plurality of recording layers 13 stacked on the guide layer 12. The recording / reproducing laser beam LB2 is a blue laser beam having a relatively short wavelength as in, for example, BD (Blu-ray Disc: Blu-ray Disc). On the other hand, the guide laser beam LB1 is a red laser beam having a relatively long wavelength as in the case of DVD, for example. The diameter of the beam spot formed on the guide layer 12 by the guide laser beam LB1 is, for example, about several times the diameter of the beam spot formed on the recording layer 13 by the recording / reproducing laser beam LB2.
 複数の記録層13の夫々は、独立して記録情報を光学的に記録及び再生可能な記録層である。より具体的には、複数の記録層13は夫々、例えば、2光子吸収材料を含む半透明の薄膜から構成される。例えば、2光子吸収材料としては、2光子吸収が起こった領域の蛍光強度が変化する蛍光物質を用いる蛍光タイプ、電子の局在化によって屈折率が変化するフォトリフラクティブ物質を用いる屈折率変化タイプなどが、採用可能である。屈折率変化タイプの2光子吸収材料としては、フォトクロミック化合物やビス(アラルキリデン)シクロアルカノン化合物などの利用が有望視されている。 Each of the plurality of recording layers 13 is a recording layer capable of optically recording and reproducing recording information independently. More specifically, each of the plurality of recording layers 13 is composed of, for example, a translucent thin film containing a two-photon absorption material. For example, as a two-photon absorption material, a fluorescent type using a fluorescent material in which the fluorescence intensity in a region where two-photon absorption occurs is changed, a refractive index changing type using a photorefractive material in which the refractive index is changed by electron localization, etc. However, it can be adopted. The use of photochromic compounds, bis (aralkylidene) cycloalkanone compounds, etc. is promising as refractive index changing type two-photon absorption materials.
 2光子吸収材料を利用した光ディスク構造としては、(i)光ディスク11の全体が2光子吸収材料からなるバルク型と、(ii)2光子吸収材料の記録層及び別の透明材料のスペーサ層を交互に積層した層構造型とが存在する。層構造型は、記録層13とスペーサ層との間の界面で反射される光を利用してフォーカス制御が可能となる利点がある。バルク型は、多層成膜工程が少なく、製造コストを抑えられる利点がある。 As an optical disk structure using a two-photon absorption material, (i) a bulk type in which the entire optical disk 11 is made of a two-photon absorption material, and (ii) a recording layer of a two-photon absorption material and a spacer layer of another transparent material are alternated. There is a layer structure type laminated on the substrate. The layer structure type has an advantage that focus control can be performed using light reflected at the interface between the recording layer 13 and the spacer layer. The bulk type has an advantage that the manufacturing cost can be suppressed because there are few multilayer film forming steps.
 複数の記録層13は夫々、上述の2光子吸収材料、相変化材料以外にも、例えば色素材料等であってもよい。複数の記録層13には夫々、未記録状態では、ガイドトラックTRは予め形成されておらず、例えば全域が鏡面或いは凹凸のない平面である。 Each of the plurality of recording layers 13 may be, for example, a dye material in addition to the above-described two-photon absorption material and phase change material. In each of the plurality of recording layers 13, the guide track TR is not formed in advance in an unrecorded state, and for example, the entire region is a mirror surface or a flat surface without unevenness.
 尚、以下の説明では、説明の便宜上、グルーブトラックGT及びランドトラックLTがストレート構造を有する例を示す。しかしながら、グルーブトラックGT及びランドトラックLTには、ウォブリングが適宜に施されていてよい。例えば、グルーブトラックGT又はランドトラックLTは夫々、例えば光反射性の材料からなる反射膜が、凹凸溝が形成された基材としての透明膜上に成膜され、更に保護膜としての透明又は不透明な膜で埋められることで形成されてよい。このようなグルーブトラックGTやランドトラックLTの側壁に、ウォブリングが施されていてもよい。 In the following description, for convenience of explanation, an example in which the groove track GT and the land track LT have a straight structure is shown. However, the wobbling may be appropriately performed on the groove track GT and the land track LT. For example, in each of the groove track GT and the land track LT, a reflective film made of, for example, a light-reflective material is formed on a transparent film as a substrate on which concave and convex grooves are formed, and is further transparent or opaque as a protective film. It may be formed by being filled with an appropriate film. Wobbling may be performed on the side walls of the groove track GT and the land track LT.
 このような複数の記録層13がガイド層12上に積層された光ディスク11に対し、少なくとも記録処理が行われる際には、光ピックアップが有する共通の対物レンズ102Lを介して、ガイドレーザ光LB1及び記録再生レーザ光LB2が、ほぼ又は実践上完全に同軸的に照射される。 When at least a recording process is performed on the optical disc 11 in which the plurality of recording layers 13 are laminated on the guide layer 12, the guide laser beam LB1 and the optical laser 11 via the common objective lens 102L are provided. The recording / reproducing laser beam LB2 is irradiated almost or coaxially in practice.
 図1及び図2において、記録再生レーザ光LB2のトラッキング制御は、少なくとも記録処理が行われる前には記録層13上に何らの情報トラックが存在しないがゆえに、ガイドレーザ光LB1によるガイド層12のガイドトラックTRに対するトラッキング制御によって間接的に行われる。即ち、ガイドレーザ光LB1と記録再生レーザ光LB2とは、対物レンズ102L等の共通の光学系を介して照射される。このため、ガイドレーザ光LB1の光ディスク11の面内(即ち、ガイド層12の記録面内)における位置決めが、そのまま記録再生レーザ光LB2の光ディスク12の面内(即ち、各記録層13の記録面内)における位置決めとして利用できる。 In FIG. 1 and FIG. 2, since the tracking control of the recording / reproducing laser beam LB2 does not exist on the recording layer 13 at least before the recording process is performed, the guide layer 12 is guided by the guide laser beam LB1. This is indirectly performed by tracking control for the guide track TR. That is, the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through a common optical system such as the objective lens 102L. For this reason, the positioning of the guide laser beam LB1 in the plane of the optical disc 11 (that is, in the recording surface of the guide layer 12) is directly within the plane of the optical disc 12 of the recording / reproducing laser beam LB2 (that is, the recording surface of each recording layer 13). It can be used for positioning in the inner).
 ガイド層12のガイドトラックTRには、トラッキングエラー信号(或いはその元となるウォブル信号等の信号)やアドレス情報等の制御情報を担持する物理構造を夫々有する複数のマーク群MGが配置されている。 In the guide track TR of the guide layer 12, a plurality of mark groups MG each having a physical structure carrying control information such as a tracking error signal (or a signal such as a wobble signal as a source thereof) and address information are arranged. .
 (1-2)ガイド層12の物理構造
 続いて、図3から図6を参照しながら、ガイド層12の物理構造について詳述する。図3から図6は、夫々、ガイド層12におけるウォブリングが施されたガイドトラックTRの一部を抜粋した斜視図である。特に、図3は、単にウォブリングが施されたガイドトラックTRの一部を示す斜視図である。図4は、各ガイドトラックTRの全域に渡って隙間無くグルーブトラックGT及びランドトラックLT等が作り込まれたガイドトラックTRの一部を示す斜視図である。図5は、「ウォブル及び一部切欠き構造」を有すると共にウォブリングが施されたガイドトラックTRの一部を示す斜視図である。図6は、「ウォブル及び狭義のランドプリピット」を有すると共にウォブリングが施されたガイドトラックTRの一部を示す斜視図である。
(1-2) Physical Structure of Guide Layer 12 Next, the physical structure of the guide layer 12 will be described in detail with reference to FIGS. FIG. 3 to FIG. 6 are perspective views of a part of the guide track TR on which the wobbling in the guide layer 12 is performed. In particular, FIG. 3 is a perspective view showing a part of the guide track TR simply wobbled. FIG. 4 is a perspective view showing a part of the guide track TR in which the groove track GT, the land track LT and the like are formed without gaps over the entire area of each guide track TR. FIG. 5 is a perspective view showing a part of the guide track TR having the “wobble and partially cutout structure” and wobbling. FIG. 6 is a perspective view showing a part of a guide track TR having “wobble and narrow land pre-pit” and wobbling.
 図3に示すように、ガイド層12には、図1に示すガイドトラックTRの具体例に相当する、グルーブトラックGTが形成されている。グルーブトラックGTは、例えば光反射性の材料からなる薄膜である反射膜12aが、凹凸溝が形成された基材としての透明膜12c上に成膜され、更に保護膜としての透明又は不透明な膜12bで反射膜12aの凹凸溝が埋められることで形成される。図3中で上側に位置する基材としての透明膜12cに掘られた溝という意味で、グルーブトラックGTは、図3中で、上側に凸状に形成されている。或いは逆に、グルーブトラックGTは、反射膜12aが、凹凸溝が形成された基材としての透明又は不透明な膜12b上に成膜され、更に保護膜としての透明膜12cで反射膜12aの凹凸溝が埋められることで形成されてもよい。 As shown in FIG. 3, the guide layer 12 has a groove track GT corresponding to a specific example of the guide track TR shown in FIG. In the groove track GT, for example, a reflective film 12a, which is a thin film made of a light-reflective material, is formed on a transparent film 12c as a substrate on which concave and convex grooves are formed, and further a transparent or opaque film as a protective film 12b is formed by filling the concave and convex grooves of the reflective film 12a. In the meaning of a groove dug in the transparent film 12c as a base material located on the upper side in FIG. 3, the groove track GT is formed in a convex shape on the upper side in FIG. Or conversely, in the groove track GT, the reflective film 12a is formed on the transparent or opaque film 12b as the base material on which the concave and convex grooves are formed, and the transparent film 12c as the protective film is further provided with the concave and convex portions of the reflective film 12a. It may be formed by filling the groove.
 グルーブトラックGTは、ウォブルWBを側壁に有する。言い換えれば、グルーブトラックGTは、側壁がトラック方向に沿ってウォブリング(蛇行)するように形成されている。 The groove track GT has a wobble WB on the side wall. In other words, the groove track GT is formed such that the side wall wobbles (meanders) along the track direction.
 図3において、物理的な溝としてのグルーブは、グルーブトラックGTの一部に局所的に形成されている。一方で、一点差線で示した仮想的なグルーブトラックGTは、記録層13に対するデータの記録後に記録層13が有することになる情報トラック(つまり、記録済みのデータを構成する記録マークの配列)のトラックピッチに対応するトラックピッチで配置されている。ここで、既にガイド層12のガイドトラックTRに沿って記録済である、ガイドトラックTRに沿ったデータの記録層13上における配列を、以下適宜「情報トラック」と称する。情報トラックは、物理的には、記録再生レーザ光LB2の照射により記録層13の記録面に形成された特性変質部分(例えば、蛍光強度が変化した部分や、屈折率が変化した部分や、相変化部分や、色素変化部分等)の、ガイド層12のガイドトラックTRに沿った一連のつらなりと言える。このため、図3中では物理的な溝としてのグルーブが何ら形成されていないグルーブトラックGTについても、所定頻度でトラッキングエラー信号及びアドレス情報等の制御情報を発生可能な頻度にてグルーブが形成されている。即ち、図3に図示されていない径方向位置及びトラック方向位置においては、グルーブトラックGT上にグルーブが適宜に形成されており、周回に渡って何らのグルーブが形成されていないグルーブトラックGTは、基本的に存在しない。 In FIG. 3, the groove as a physical groove is locally formed in a part of the groove track GT. On the other hand, a virtual groove track GT indicated by a one-dot chain line is an information track that the recording layer 13 has after recording data on the recording layer 13 (that is, an array of recording marks constituting recorded data). Are arranged at a track pitch corresponding to the track pitch. Here, the arrangement on the recording layer 13 of the data along the guide track TR that has already been recorded along the guide track TR of the guide layer 12 will be referred to as an “information track” as appropriate. The information track is physically a characteristic altered portion (for example, a portion where the fluorescence intensity has changed, a portion where the refractive index has changed, a phase change, etc. formed on the recording surface of the recording layer 13 by the irradiation of the recording / reproducing laser beam LB2. It can be said that a series of formations along the guide track TR of the guide layer 12 of the change portion, the dye change portion, and the like. For this reason, even in the groove track GT in which no groove as a physical groove in FIG. 3 is formed, the groove is formed at a frequency at which control information such as a tracking error signal and address information can be generated at a predetermined frequency. ing. That is, at the radial position and the track direction position not shown in FIG. 3, grooves are appropriately formed on the groove track GT, and the groove track GT on which no groove is formed over the circumference is Basically does not exist.
 尚、図4に示すように、記録層13に対するデータの記録後に記録層13が有することになる情報トラックのトラックピッチに対応するトラックピッチで、トラック方向及び径方向の全域に渡って、グルーブ及びランドが形成されていてもよい。つまり、本実施例においても、伝統的なDVD及びBDと同様に、記録層13の情報トラックとガイド層12のガイドトラックTRとが一対一対応していてもよい。つまり、本実施例においても、ガイドトラックTRがランド・グルーブ構造を有していてもよい。 Note that, as shown in FIG. 4, the groove and the entire area in the track direction and the radial direction have a track pitch corresponding to the track pitch of the information track that the recording layer 13 has after recording data on the recording layer 13. A land may be formed. That is, also in the present embodiment, the information track of the recording layer 13 and the guide track TR of the guide layer 12 may have a one-to-one correspondence as in the case of traditional DVD and BD. That is, also in this embodiment, the guide track TR may have a land / groove structure.
 尚、図4に示す例では、後に詳述するように、グルーブトラックGT及びランドトラックLT上に配置されるマーク群MGが、トラック方向に沿っての全域に渡って形成されていない。マーク群MGは、径方向についても、相互に隣接しないように形成される。このようなマーク群MGの配置(より具体的にはトラック方向及び径方向についてのマーク群MGの配置間隔)の定量的な説明及びそれによる作用効果は、図7から図13を参照しながら後に詳述する。 In the example shown in FIG. 4, as will be described in detail later, the mark group MG arranged on the groove track GT and the land track LT is not formed over the entire area along the track direction. The mark group MG is formed so as not to be adjacent to each other in the radial direction. A quantitative description of the arrangement of the mark groups MG (more specifically, the arrangement interval of the mark groups MG in the track direction and the radial direction) and the operation and effect thereof will be described later with reference to FIGS. Detailed description.
 これに対して、図3の例では、グルーブは、グルーブトラックGT上において、トラック方向に沿っての全域に渡って形成されていない。グルーブは、径方向についても、相互に隣接するグルーブトラックGT上に形成されていない。尚、このようなグルーブの配置(より具体的にはトラック方向及び径方向についてのグルーブの配置間隔)は、マーク群MGの配置(より具体的にはトラック方向及び径方向についてのマーク群MGの配置間隔)と実質的に同一であってもよい。つまり、後に詳述するマーク群MGの配置の態様は、実質的には、トラック方向に沿っての一部の領域のみに形成されるグルーブの配置の態様と同一であってもよい なお図5に示すように、ガイド層12に形成されるグルーブトラックGTには、一部切欠き構造からなるグルーブノッチGN1が形成されていてもよい。切欠きとは、一つのグルーブトラックGTのトラック幅に渡って切り欠かれてなる鏡面である。尚、グルーブノッチGN1は、マーク群MGを構成する記録マーク22(図9参照)の一例となる。 On the other hand, in the example of FIG. 3, the groove is not formed over the entire area along the track direction on the groove track GT. The grooves are not formed on the groove tracks GT adjacent to each other in the radial direction. Note that the groove arrangement (more specifically, the groove arrangement interval in the track direction and the radial direction) is the mark group MG arrangement (more specifically, the mark group MG in the track direction and the radial direction). (Arrangement interval) may be substantially the same. That is, the arrangement mode of the mark group MG described in detail later may be substantially the same as the arrangement mode of the grooves formed only in a part of the region along the track direction. As shown in FIG. 2, the groove track GT formed in the guide layer 12 may be formed with a groove notch GN1 having a partially cut structure. The notch is a mirror surface that is cut out over the track width of one groove track GT. The groove notch GN1 is an example of the recording mark 22 (see FIG. 9) constituting the mark group MG.
 或いは図6に示すように、ガイド層12に形成されるランドトラックLTには、ランドプリピットLPP1が形成されてもよい。なお、図4においても、ランドプリピットLPP1が形成されている。図5のグルーブノッチGN1と図6のLPP1は、ガイド層12の再生時において、真逆の極性を有する信号として検出されるが、所望の情報を保持することができるという同様の効果を持つ。尚、ランドプリピットLPP1は、マーク群MGを構成する記録マーク22(図9参照)の一例となる。 Alternatively, as shown in FIG. 6, land prepits LPP <b> 1 may be formed on the land track LT formed on the guide layer 12. Also in FIG. 4, land pre-pits LPP1 are formed. The groove notch GN1 in FIG. 5 and the LPP1 in FIG. 6 are detected as signals having the opposite polarity when the guide layer 12 is reproduced, but have the same effect that desired information can be retained. The land prepit LPP1 is an example of the recording mark 22 (see FIG. 9) constituting the mark group MG.
 ここで図7及び図8を参照して、トラッキングエラー信号やアドレス情報等の制御情報を担持する物理構造をガイド層12のガイドトラックTRに構築する際における、注意点について検討を加える。 Here, with reference to FIG. 7 and FIG. 8, considerations will be added when constructing a physical structure carrying control information such as tracking error signals and address information in the guide track TR of the guide layer 12.
 図7に示すように、ガイドレーザ光LB1がガイド層12で形成するビームスポットSP1が、ガイドトラックTRのトラックピッチに対して相対的に大きくない場合(つまり、相対的に低密度記録用のトラッキング制御を行う場合)を想定する。例えば、ガイドトラックTRのトラックピッチが0.5μmであるのに対し、ビームスポットSP1の直径が0.5μm程度である場合を想定する。この場合、ガイドレーザ光LB1が追従しているガイドトラックTR2からの戻り光から取得される制御情報は、当該ガイドトラックTR2とは異なる他のガイドトラックTR1及びTR3にガイドレーザ光LB1が照射されることで生ずる信号のノイズとしての影響を殆ど又は実践上全く受けない。即ち、全てのトラックTR1、TR2、TR3、…に対し、それらの径方向及びトラック方向に隙間無く、グルーブ構造やウォブル構造(図3参照)、更に、一部切欠き構造(図5参照)、プリピット構造(図6参照)を形成しても、トラッキングエラー信号(或いはその元となるウォブル信号)にクロストークが発生しない。このため、トラッキング制御が好適に行われる。 As shown in FIG. 7, when the beam spot SP1 formed by the guide laser beam LB1 on the guide layer 12 is not relatively large with respect to the track pitch of the guide track TR (that is, tracking for relatively low density recording). Assuming control). For example, it is assumed that the track pitch of the guide track TR is 0.5 μm while the diameter of the beam spot SP1 is about 0.5 μm. In this case, the control information acquired from the return light from the guide track TR2 that the guide laser beam LB1 follows is irradiated with the guide laser beam LB1 on other guide tracks TR1 and TR3 different from the guide track TR2. The signal is not affected by the noise as a noise, or practically not at all. That is, with respect to all the tracks TR1, TR2, TR3,..., There are no gaps in the radial direction and the track direction, a groove structure or a wobble structure (see FIG. 3), a partially cut-out structure (see FIG. 5), Even if the pre-pit structure (see FIG. 6) is formed, crosstalk does not occur in the tracking error signal (or the wobble signal that is the source). For this reason, tracking control is suitably performed.
 一方で、図8に示すように、ビームスポットSP1がガイドトラックTRのトラックピッチに対して相対的に大きい場合(つまり、高密度記録用のトラッキング制御を行う場合)を想定する。例えば、ガイドトラックTRのトラックピッチが0.25μmであるのに対し、ビームスポットSP1の直径が0.5μm程度である場合を想定する。この場合、ガイドレーザ光LB1が追従しているガイドトラックTR3からの戻り光から取得される制御情報は、当該ガイドトラックTR3とは異なる他のガイドトラックTR2及びTR4にガイドレーザ光LB1が照射されることで生ずる信号のノイズとしての影響を顕著に受ける。即ち、全てのガイドトラックTR1、TR2、TR3、…に対し、それらの径方向及びトラック方向に隙間無く物理構造(図3から図6参照)を形成してしまうと、トラッキングエラー信号にクロストークが顕著に発生する。このため、トラッキング制御を好適に行うことが困難又は不可能となる。 On the other hand, as shown in FIG. 8, it is assumed that the beam spot SP1 is relatively larger than the track pitch of the guide track TR (that is, when tracking control for high-density recording is performed). For example, it is assumed that the track pitch of the guide track TR is 0.25 μm while the diameter of the beam spot SP1 is about 0.5 μm. In this case, the control information acquired from the return light from the guide track TR3 followed by the guide laser beam LB1 is applied to the other guide tracks TR2 and TR4 different from the guide track TR3. The signal is significantly affected as a noise. That is, if all the guide tracks TR1, TR2, TR3,... Have a physical structure (see FIGS. 3 to 6) without gaps in the radial direction and the track direction, crosstalk occurs in the tracking error signal. It occurs remarkably. For this reason, it is difficult or impossible to suitably perform tracking control.
 特に、本実施例の如くCLV方式であると、CAV方式の場合と異なり、径方向の位置に応じて、隣接する複数のガイドトラックTR上におけるアドレス位置関係(例えば、アドレスの差)が変化する。このため、仮に一の場所でトラッキング制御を行うことができる場合であっても、他の場所で(即ち、径方向に隣接する他の信号発生領域の接近の度合いが強くなる箇所では)トラッキング制御を行うことが困難又は不可能となる可能性が顕著に出てきてしまう。 In particular, in the case of the CLV method as in this embodiment, unlike the case of the CAV method, the address positional relationship (for example, an address difference) on a plurality of adjacent guide tracks TR changes depending on the radial position. . For this reason, even if tracking control can be performed in one place, tracking control is performed in another place (that is, in a place where the degree of proximity of another signal generation region adjacent in the radial direction becomes strong). There is a significant possibility that it will be difficult or impossible to perform the operation.
 このようなクロストーク等の技術的問題は、図8に示すように、ガイドレーザ光LB1が追従しているガイドトラックTR3の近隣にランドプリピットLPP1が存在する場合にも、同様に生じ得る。即ち、ガイドレーザ光LB1が追従しているガイドトラックTR3に形成されたランドプリピットLPP1から取得される信号に対して、他のガイドトラックTR4に形成されたランドプリピットLPP1から取得される信号がノイズとして影響する。この結果、ランドプリピットLPP1の安定的な検出が困難となり得る。言い換えれば、ランドプリピットLPP1によるアドレス情報等の検出が困難となり得る。 Such a technical problem such as crosstalk can occur in the same manner when the land pre-pit LPP1 exists in the vicinity of the guide track TR3 followed by the guide laser beam LB1, as shown in FIG. That is, a signal acquired from the land prepit LPP1 formed on the other guide track TR4 is different from a signal acquired from the land prepit LPP1 formed on the guide track TR3 that the guide laser beam LB1 follows. It affects as noise. As a result, it may be difficult to stably detect the land prepit LPP1. In other words, it may be difficult to detect address information or the like by the land pre-pit LPP1.
 図8に示す状況は、記録層13に対しては高密度記録に対応する記録再生レーザ光LB2を照射する一方で、ガイド層12に対しては低密度記録に対応するガイドレーザ光LB1を照射すると共に、データの記録後に記録層13に形成される情報トラックが狭ピッチになるように狭ピッチのガイドトラックTRをガイド層12に予め形成する場合には、必然的に発生してしまう。仮に、ガイドレーザ光LB1に対応する広ピッチのガイドトラックTRがガイド層12に形成されるとすれば、当該ガイドトラックTRは、記録層13での高密度記録用のトラッキング制御を行う役には全く立たないからである。 In the situation shown in FIG. 8, the recording layer 13 is irradiated with the recording / reproducing laser beam LB2 corresponding to the high density recording, while the guide layer 12 is irradiated with the guide laser beam LB1 corresponding to the low density recording. In addition, when the guide tracks TR having a narrow pitch are formed in advance on the guide layer 12 so that the information tracks formed on the recording layer 13 after data recording have a narrow pitch, they are inevitably generated. If a guide track TR having a wide pitch corresponding to the guide laser beam LB1 is formed on the guide layer 12, the guide track TR serves to perform tracking control for high density recording in the recording layer 13. Because it doesn't stand at all.
 ここで、所定の周波数帯域でトラッキング制御を行うためには、いずれかのガイドトラックTRにおいていずれかのタイミングでトラッキングエラー信号やアドレス情報等の制御情報を検出する必要がある。しかしながら、制御情報を検出するためのウォブル構造或いはプリピット構造(図3から図6参照)を、ガイドトラックTR上においてトラック方向に連続して形成しなくても、制御情報は検出可能である。即ち、所定の周波数帯域でトラッキング制御を行うことが可能となる最長の距離以下となる配置間隔(即ち、配置ピッチ)で制御情報を構成するマーク群MGが配置されれば、ガイドトラックTR上におけるトラック方向に沿った全域に、制御情報を検出するためのウォブル構造或いはプリピット構造(つまり、マーク群MG)を形成しておかなくともよい。しかも、径方向に沿って相隣接する複数のガイドトラックTRに着目すれば、径方向に揃った位置(即ち、同一回転位相位置、言い換えれば、光ディスク11上における同一角度又は同一角度となる位置)の夫々に、制御情報を検出するためのウォブル構造或いはプリピット構造(つまり、マーク群MG)を整列させておかなくともよい。 Here, in order to perform tracking control in a predetermined frequency band, it is necessary to detect control information such as a tracking error signal and address information at any timing in any guide track TR. However, the control information can be detected without forming a wobble structure or pre-pit structure (see FIGS. 3 to 6) for detecting the control information continuously in the track direction on the guide track TR. That is, if the mark group MG constituting the control information is arranged at an arrangement interval (that is, arrangement pitch) that is equal to or less than the longest distance at which tracking control can be performed in a predetermined frequency band, It is not necessary to form a wobble structure or pre-pit structure (that is, mark group MG) for detecting control information in the entire area along the track direction. Moreover, if attention is paid to a plurality of guide tracks TR adjacent to each other along the radial direction, the positions are aligned in the radial direction (that is, the same rotational phase position, in other words, the same angle or the same angle on the optical disk 11). The wobble structure or pre-pit structure (that is, the mark group MG) for detecting the control information does not have to be aligned.
 そこで本実施例では特に、ガイドトラックTRには、主にトラッキング制御を可能ならしめるという特定目的を達成するために、複数のマーク群MGが以下に説明する如くにトラック方向及び径方向の双方について、離散的に設けられる。 Therefore, in this embodiment, in particular, in order to achieve the specific purpose that the tracking control is mainly possible for the guide track TR, the plurality of mark groups MG are both in the track direction and the radial direction as described below. , Provided discretely.
 (1-3)マーク群MGの配置態様について
 続いて、図9及び図10を参照して、ガイドトラックTRにおけるマーク群MGの配置の態様について詳細に説明する。
(1-3) Arrangement Mode of Mark Group MG Next , the arrangement mode of the mark group MG in the guide track TR will be described in detail with reference to FIG. 9 and FIG.
 図9に示すように、ガイド層12におけるガイドトラックTRには、複数のマーク群MGが配置されている。複数のマーク群MGの夫々は、同一回転位相位置に配置される同一の複数の記録マーク22を含んでいる。図9は、複数のマーク群の夫々が、同一回転位相位置に配置される同一の3つの記録マーク22(つまり、相隣接する3つのガイドトラックの同一回転位相位置に配置される同一の3つの記録マーク22)を含んでいる例を示している。尚、一のマーク群MGに含まれる複数の記録マーク22は、他のマーク群MGに含まれる複数の記録マーク22と同一でなくともよい。複数の記録マーク22の夫々は、図3から図6に示したように、ウォブル構造やプリピット構造等の物理構造を有している。例えば、図10に示す例は、トラック方向及び径方向の全域に渡ってグルーブ及びランドが形成されているガイドトラックTR(図4参照)上において、複数の記録マーク22の夫々が部分的ウォブルWBLから構成されている場合の例である。図10では、各記録マーク22が、グルーブトラックGTの中心から左右方向に等距離シフトした一対の記録マーク22(つまり、部分的ウォブルWBL)となっている。但し、トラック方向及び径方向の全域に渡ってグルーブ及びランドが形成されているガイドトラックTR(図4参照)上において、複数の記録マーク22の夫々が部分的ウォブルWBL以外の構成要素(例えば、ランドプリピットLPP1等)から構成されていてもよい。これら複数のマーク群MG(言い換えれば、複数の記録マーク22)から、トラッキングエラー信号やアドレス情報等の制御情報が取得される。 As shown in FIG. 9, a plurality of mark groups MG are arranged on the guide track TR in the guide layer 12. Each of the plurality of mark groups MG includes the same plurality of recording marks 22 arranged at the same rotational phase position. FIG. 9 shows that each of a plurality of mark groups has the same three recording marks 22 arranged at the same rotational phase position (that is, the same three phase marks arranged at the same rotational phase position of three adjacent guide tracks). An example including a recording mark 22) is shown. Note that the plurality of recording marks 22 included in one mark group MG may not be the same as the plurality of recording marks 22 included in another mark group MG. Each of the plurality of recording marks 22 has a physical structure such as a wobble structure or a prepit structure, as shown in FIGS. For example, in the example shown in FIG. 10, each of the plurality of recording marks 22 is a partial wobble WBL on a guide track TR (see FIG. 4) in which grooves and lands are formed over the entire area in the track direction and the radial direction. It is an example when it is comprised from. In FIG. 10, each recording mark 22 is a pair of recording marks 22 (that is, partial wobbles WBL) shifted equidistantly from the center of the groove track GT in the left-right direction. However, on the guide track TR (see FIG. 4) in which grooves and lands are formed over the entire area in the track direction and the radial direction, each of the plurality of recording marks 22 is a component other than the partial wobble WBL (for example, Land pre-pits LPP1 etc.). Control information such as tracking error signals and address information is acquired from the plurality of mark groups MG (in other words, the plurality of recording marks 22).
 複数のマーク群MGは、トラック方向(図9中の左右方向)に沿って離散的に配置されている。具体的には、本実施例では、「複数のマーク群MGのトラック方向の離散的な配置」は、複数のマーク群MGの夫々に含まれる複数の記録マーク22のうち径方向の中心に位置する中心マーク(図9中、ガイドレーザ光LB1の進行方向を示す矢印が位置する記録マーク22)に着目して実現される。 The plurality of mark groups MG are discretely arranged along the track direction (left-right direction in FIG. 9). Specifically, in this embodiment, the “discrete arrangement of the plurality of mark groups MG in the track direction” is positioned at the center in the radial direction among the plurality of recording marks 22 included in each of the plurality of mark groups MG. This is realized by paying attention to the center mark (the recording mark 22 in FIG. 9 where the arrow indicating the traveling direction of the guide laser beam LB1 is located).
 より具体的には、複数のマーク群MGのトラック方向の離散的な配置を実現するために、トラック方向に沿って連続して並ぶ8個のスロット(例えば、図9中のスロット#1からスロット#8)から構成されるグループ毎に、最大で一つの中心マーク22が配置される。つまり、各グループ内には、異なるマーク群MGに含まれる異なる複数の中心マーク22が同時に配置されることはない。但し、中心マーク22が1つの配置されないグループが存在していてもよい。この1グループ毎に中心マーク22を配置する際における中心マーク22の配置間隔は、所定の周波数帯域でトラッキング制御を安定的に行うことを可能とならしめる頻度にてトラッキングエラー信号及びアドレス情報等の制御情報を発生し得る最長の距離よりも若干のマージンだけ短い距離となることが好ましい。 More specifically, in order to achieve a discrete arrangement of the plurality of mark groups MG in the track direction, eight slots (for example, slot # 1 to slot # 1 in FIG. A maximum of one center mark 22 is arranged for each group composed of # 8). That is, a plurality of different center marks 22 included in different mark groups MG are not simultaneously arranged in each group. However, there may be a group in which one central mark 22 is not arranged. The arrangement interval of the center marks 22 when arranging the center marks 22 for each group is such that tracking error signals, address information, and the like are made at a frequency that enables stable tracking control in a predetermined frequency band. The distance is preferably shorter than the longest distance at which control information can be generated by a slight margin.
 より具体的には、例えば、ガイドトラックT-4に着目すると、当該ガイドトラックT-4上には、スロット#1に対応する位置に中心マークが配置されると共に、スロット#1と同一グループに属するスロット#2からスロット#8に対応する位置には他の中心マークが配置されることはない。他のガイドトラックT-8からガイドトラックT+16に着目しても同様に、1つのグループを構成する8つのスロットのうちのいずれか一つのスロットのみに、ある一つのマーク群MGに含まれる一つの中心マーク22が配置されると共に、その他のスロットには、他のマーク群MGに含まれる他の中心マーク22が配置されることはない。 More specifically, for example, when focusing on the guide track T-4, a center mark is arranged on the guide track T-4 at a position corresponding to the slot # 1, and the center mark is placed in the same group as the slot # 1. No other center mark is arranged at a position corresponding to slot # 2 to slot # 8 to which it belongs. Similarly, when attention is paid to the other guide tracks T-8 to T + 16, only one of the eight slots constituting one group is included in one mark group MG. The center mark 22 is arranged, and other center marks 22 included in the other mark group MG are not arranged in other slots.
 尚、図9は、1グループが8つのスロットから構成される例を示している。しかしながら、1グループは、トラック方向に連続して並ぶ7つ以下の又は9つ以上スロットから構成されてもよい。 FIG. 9 shows an example in which one group is composed of eight slots. However, one group may be composed of 7 or less slots or 9 or more slots arranged continuously in the track direction.
 加えて、複数のマーク群MGは、径方向(図9中上下方向)に沿って互いに相隣接しないように配置されている。 In addition, the plurality of mark groups MG are arranged so as not to be adjacent to each other along the radial direction (vertical direction in FIG. 9).
 このような径方向に沿って複数のマーク群MGが相隣接しないような配置を実現するために、複数の記録マーク群MGのうちの少なくとも2つのマーク群MGは、径方向に沿ってずれるように配置されていてもよい。つまり、複数の記録マーク群MGのうちの少なくとも2つのマーク群MGは、径方向に沿って間に隙間(例えば、所定数トラックのサイズの隙間)を有するように配置されてもよい。尚、この隙間は、例えば鏡面状態又はストレートグルーブ構造若しくはストレートランド構造の領域であることが好ましい。この場合、径方向に沿ってずれている2つのマーク群MGは、同一回転位相位置に配置されていてもよい。或いは、径方向に沿ってずれている2つのマーク群MGは、異なる回転位相位置に配置されていてもよい。例えば、図9では、ガイドトラックT-6からガイドトラックTのスロット#2に配置されるマーク群MGと、ガイドトラックT+12からガイドトラックT+16のスロット#3に配置されるマーク群MGとは、同一回転位相位置に配置されているものの、径方向に沿って互いにずれた位置に配置されている。従って、これら2つのマーク群MGは、径方向に沿って相隣接していないと言える。 In order to realize such an arrangement that the plurality of mark groups MG are not adjacent to each other along the radial direction, at least two mark groups MG among the plurality of recording mark groups MG are displaced along the radial direction. May be arranged. That is, at least two mark groups MG among the plurality of recording mark groups MG may be arranged so as to have a gap (for example, a gap of a predetermined number of tracks) in the radial direction. In addition, it is preferable that this clearance gap is an area | region of a mirror surface state or a straight groove structure or a straight land structure, for example. In this case, the two mark groups MG shifted along the radial direction may be arranged at the same rotational phase position. Alternatively, the two mark groups MG that are displaced along the radial direction may be arranged at different rotational phase positions. For example, in FIG. 9, the mark group MG disposed in the slot # 2 from the guide track T-6 to the guide track T is the same as the mark group MG disposed in the slot # 3 from the guide track T + 12 to the guide track T + 16. Although arranged at the rotational phase position, they are arranged at positions shifted from each other along the radial direction. Therefore, it can be said that these two mark groups MG are not adjacent to each other along the radial direction.
 或いは、径方向に沿って複数のマーク群MGが相隣接しないような配置を実現するために、複数の記録マーク群MGのうちの少なくとも2つのマークMGは、トラック方向に沿ってずれるように配置されていてもよい。つまり、複数の記録マーク群MGのうちの少なくとも2つのマーク群MGは、トラック方向に沿ってずれることで、配置される回転位相位置が互いに異なるものとなるように配置されていてもよい。例えば、図9では、ガイドトラックT-6からガイドトラックTのスロット#2に配置されるマーク群MGと、ガイドトラックT+2からガイドトラックT+8のスロット#2に配置されるマーク群MGとは、トラック方向に沿って互いにずれた位置に配置されている。従って、これら2つのマーク群MGは、径方向に沿って相隣接していないと言える。 Alternatively, in order to realize an arrangement in which the plurality of mark groups MG are not adjacent to each other along the radial direction, at least two marks MG of the plurality of recording mark groups MG are arranged so as to be displaced along the track direction. May be. That is, at least two mark groups MG among the plurality of recording mark groups MG may be arranged so that the rotational phase positions to be arranged are different from each other by shifting along the track direction. For example, in FIG. 9, the mark group MG arranged in the slot # 2 from the guide track T-6 to the guide track T and the mark group MG arranged in the slot # 2 from the guide track T + 2 to the guide track T + 8 are It arrange | positions in the position which mutually shifted | deviated along the direction. Therefore, it can be said that these two mark groups MG are not adjacent to each other along the radial direction.
 このようなトラック方向に沿った複数のマーク群MGの離散的な配置及び径方向に沿った複数のマーク群MGの相隣接しない配置により、ガイドレーザ光LB1が、異なるマーク群MGに含まれる異なる中心マーク22に同時に照射されないような位置関係が実現される。逆に言えば、ガイドレーザ光LB1が、異なるマーク群MGに含まれる異なる中心マーク22に同時に照射されなくなるように、トラック方向に沿った複数のマーク群MGの離散的な配置位置及び径方向に沿った複数のマーク群MGの相隣接しない配置位置の夫々が適宜決定されることが好ましい。 Due to the discrete arrangement of the plurality of mark groups MG along the track direction and the non-adjacent arrangement of the plurality of mark groups MG along the radial direction, the guide laser light LB1 is included in different mark groups MG. A positional relationship is realized such that the central mark 22 is not irradiated simultaneously. In other words, the guide laser beam LB1 is distributed in the discrete arrangement positions and radial directions of the plurality of mark groups MG along the track direction so that the different center marks 22 included in the different mark groups MG are not simultaneously irradiated. It is preferable that each of the arrangement positions of the plurality of mark groups MG along which they are not adjacent to each other is appropriately determined.
 加えて、本実施例では、各記録マーク22は、トラック方向に沿って当該記録マーク22の前方に位置する前方緩衝領域21aと、トラック方向に沿って当該記録マーク22の後方に位置する後方緩衝領域21bとの間に挟み込まれるように配置されている。 In addition, in this embodiment, each recording mark 22 includes a front buffer area 21a positioned in front of the recording mark 22 along the track direction, and a rear buffer positioned behind the recording mark 22 along the track direction. It arrange | positions so that it may be pinched | interposed between the area | regions 21b.
 また、本実施例では、前方緩衝領域21aと記録マーク22と後方緩衝領域21bとが、1つのスロットに対応することが好ましい。スロット単位にて、前方緩衝領域21a及び後方緩衝領域21bが付属したマーク群MGを配置することで、ガイドトラックTRに沿ってマーク群MGを探し出すのが容易となる。その結果、安定して確実にトラッキングエラー信号及びアドレス情報等を検出することができるため、安定したトラッキング制御を行うことができる。 In the present embodiment, it is preferable that the front buffer area 21a, the recording mark 22 and the rear buffer area 21b correspond to one slot. By arranging the mark group MG to which the front buffer area 21a and the rear buffer area 21b are attached in slot units, it becomes easy to find the mark group MG along the guide track TR. As a result, the tracking error signal and the address information can be detected stably and reliably, so that stable tracking control can be performed.
 前方緩衝領域21a及び後方緩衝領域21bの夫々は、鏡面構造を有する領域又はストレートグルーブ構造若しくはストレートランド構造を有する領域である。前方緩衝領域21a及び後方緩衝領域21bの夫々における緩衝作用によって、記録マーク22を読み取るための準備期間が与えられる。特に、記録マーク22が、ウォブル構造を有する物理構造である場合には、記録マーク22の前方に位置する前方緩衝領域21aがストレートグルーブ構造であれば、トラッキング制御を行いながら、ガイドレーザ光を前方緩衝領域21aから記録マーク22に突入させられる。 Each of the front buffer region 21a and the rear buffer region 21b is a region having a mirror surface structure, or a region having a straight groove structure or a straight land structure. A buffer period in each of the front buffer area 21a and the rear buffer area 21b provides a preparation period for reading the recording mark 22. In particular, when the recording mark 22 has a physical structure having a wobble structure, if the front buffer area 21a located in front of the recording mark 22 is a straight groove structure, the guide laser beam is forwarded while performing tracking control. The recording mark 22 is plunged from the buffer area 21a.
 また、本実施例では、光ディスク11がCLV方式を採用しているがゆえに、図9に示すように、径方向に沿って相隣接するスロットが、トラック方向に沿って若干ずれる。このため、同一のマーク群MGに含まれる複数の記録マーク22の夫々の各スロットに対する相対的な配置位置を固定してしまうと、同一のマーク群MGに含まれる複数の記録マーク22の全てを同一回転位相位置に配置することが困難になる。従って、本実施例では、同一のマーク群MGに含まれる複数の記録マーク22の前方に配置される複数の前方緩衝領域21a及び同一のマーク群MGに含まれる複数の記録マーク22の後方に配置される複数の後方緩衝領域21bの夫々のトラック方向の長さを調整することで、同一のマーク群MGに含まれる複数の記録マーク22の全てを同一回転位相位置に配置している。つまり、本実施例では、同一のマーク群MGに含まれる複数の記録マーク22の始端部分が径方向に沿って揃うように、当該複数の記録マーク22の前方に配置される複数の前方緩衝領域21aの夫々の長さを相互に異なる長さに設定している。同様に、同一のマーク群MGに含まれる複数の記録マーク22の終端部分が径方向に沿って揃うように、当該複数の記録マーク22の前方に配置される複数の後方緩衝領域21bの夫々の長さを相互に異なる長さに設定している。 Further, in this embodiment, since the optical disk 11 employs the CLV system, as shown in FIG. 9, the slots adjacent to each other along the radial direction are slightly shifted along the track direction. For this reason, if the relative arrangement position of each of the plurality of recording marks 22 included in the same mark group MG is fixed, all of the plurality of recording marks 22 included in the same mark group MG are stored. It becomes difficult to arrange at the same rotational phase position. Therefore, in this embodiment, the plurality of front buffer areas 21a disposed in front of the plurality of recording marks 22 included in the same mark group MG and the plurality of recording marks 22 included in the same mark group MG. By adjusting the length of each of the plurality of rear buffer areas 21b in the track direction, all of the plurality of recording marks 22 included in the same mark group MG are arranged at the same rotational phase position. That is, in this embodiment, a plurality of front buffer areas arranged in front of the plurality of recording marks 22 so that the start end portions of the plurality of recording marks 22 included in the same mark group MG are aligned along the radial direction. Each length of 21a is set to a different length. Similarly, each of the plurality of rear buffer regions 21b arranged in front of the plurality of recording marks 22 is arranged so that the terminal portions of the plurality of recording marks 22 included in the same mark group MG are aligned in the radial direction. The lengths are set to different lengths.
 以上説明したように、複数のマーク群MGは、上述の如くトラック方向に沿って離散的に且つ径方向に沿って相隣接しないように配置されている。このため、ガイドレーザ光LB1のビームスポットSP1が相隣接する3つのガイドトラックTRに跨るまでトラック密度を高めても、マーク群MGにガイドレーザ光LB1を照射することで得られるトラッキングエラー信号及びアドレス情報等のクロストークを確実に低減できる。 As described above, the plurality of mark groups MG are arranged so as to be discrete along the track direction and not adjacent to each other along the radial direction as described above. For this reason, even if the track density is increased until the beam spot SP1 of the guide laser beam LB1 extends over the three adjacent guide tracks TR, the tracking error signal and the address obtained by irradiating the mark group MG with the guide laser beam LB1. Crosstalk such as information can be reliably reduced.
 このように、ガイドトラックTRについては、図1から図8を参照して説明した物理構造を有するので、トラッキング制御の実行且つアドレス情報等の取得を妨げないようにしつつ、トラックピッチを狭めることができる。 Thus, since the guide track TR has the physical structure described with reference to FIGS. 1 to 8, the track pitch can be narrowed while preventing the execution of tracking control and the acquisition of address information and the like. it can.
 本実施例では特に、スロット単位で、マーク群MG(具体的には、マーク群MGに含まれる記録マーク22)を作り込んだり作り込まなかったりするので、トラッキングエラー信号等の検出が、容易にして安定的に、実行可能となる。 Particularly in this embodiment, the mark group MG (specifically, the recording mark 22 included in the mark group MG) is created or not created in slot units, so that it is easy to detect a tracking error signal or the like. And can be executed stably.
 この際、ガイドトラックTR上におけるスロットのトラック方向の長さと、記録層13に夫々記録されることになるデータのフォーマットにおける構成単位(例えば、ECCブロックや、RUB(Recording Unit Block)や、ADIP単位等)のトラック方向の長さとが、所定の整数比となるように構成するとよい。このように構成すれば、トラッキングエラー信号等の発生頻度及びアドレス情報の取得頻度と、ガイドトラックTRに対応する記録面内位置における記録層13にデータを記録する周期とを、半径位置に寄らずに或いはトラック位置に寄らずに、一定の関係に維持することが容易となる。特にCLV方式であっても、任意の径位置にて、安定したトラッキング制御を行うことができる。 At this time, the length of the slot on the guide track TR in the track direction and the structural unit in the format of data to be recorded on the recording layer 13 (for example, ECC block, RUB (Recording Unit Block), ADIP unit, etc.) Etc.) in the track direction is preferably a predetermined integer ratio. With this configuration, the frequency of occurrence of tracking error signals and the like, the frequency of acquisition of address information, and the period of recording data on the recording layer 13 at the recording surface position corresponding to the guide track TR are not limited to the radial position. In addition, it is easy to maintain a certain relationship without depending on the track position. In particular, even with the CLV method, stable tracking control can be performed at an arbitrary radial position.
 加えて、本実施例では、各マーク群は、径方向に沿って相隣接する複数のガイドトラックTRの夫々の同一回転位相位置に配置される同一の複数の記録マーク22を含む。このため、ガイドレーザ光LB1のフォーカス偏差(フォーカスオフセット)に対する依存性を弱める(具体的には、フォーカス偏差が大きくなった場合であっても、マーク群MGが示す制御情報を好適に読み取る)ことができる。 In addition, in this embodiment, each mark group includes the same plurality of recording marks 22 arranged at the same rotational phase position of each of the plurality of guide tracks TR adjacent to each other along the radial direction. For this reason, the dependence of the guide laser beam LB1 on the focus deviation (focus offset) is weakened (specifically, the control information indicated by the mark group MG is preferably read even when the focus deviation increases). Can do.
 以上詳細に説明したように、本実施例によれば、CLV方式を採用しつつ、記録層13において記録若しくは再生できるトラックピッチや記録線密度を、多層記録型の光ディスク11における本来の目的である「高密度記録」と言える程度にまで高めることが可能となる。 As described above in detail, according to the present embodiment, the track pitch and recording linear density that can be recorded or reproduced in the recording layer 13 are the original purposes in the multilayer recording type optical disc 11 while adopting the CLV method. It can be increased to such an extent that it can be said to be “high density recording”.
 尚、上述した説明では、複数のマーク群MGからトラッキングエラー信号及びアドレス情報(或いは、その他の任意の制御情報、以下同じ)の双方が取得される例を用いて説明している。しかしながら、複数のマーク群MGからは、トラッキングエラー信号及びアドレス情報のいずれか一方が取得される一方で、トラッキングエラー信号及びアドレス情報のいずれか他方が取得されなくともよい。例えば、トラック方向及び径方向の全域に渡ってグルーブ及びランドが形成されているガイドトラックTRが採用される場合、トラッキングエラー信号は、マーク群MG以外の構成要素(つまり、ガイドトラックTR)を追従するガイドレーザ光LB1の戻り光から取得可能である。従って、この場合には、複数のマーク群MGからは、アドレス情報が取得される一方で、トラッキングエラー信号が取得されなくともよい。但し、この場合であっても、マーク群MGから取得されるアドレス情報(或いは、任意の制御情報)が所定帯域(言い換えれば、所定周期)で取得可能となる程度に、複数のマーク群MGがトラック方向に沿って離散的に配置されることが好ましい。例えば、複数のマーク群MGから記録クロックが生成される場合には、各マーク群MGに含まれる中心マーク22の間の配置間隔(例えば、上述したグループのトラック方向の長さ)が、当該記録クロックの生成の帯域に応じた所定距離又はそれ未満の距離に設定されることが好ましい。 In the above description, an example in which both the tracking error signal and the address information (or other arbitrary control information, the same applies hereinafter) is acquired from the plurality of mark groups MG is described. However, while one of the tracking error signal and the address information is acquired from the plurality of mark groups MG, the other of the tracking error signal and the address information may not be acquired. For example, when a guide track TR in which grooves and lands are formed over the entire area in the track direction and the radial direction is used, the tracking error signal follows components other than the mark group MG (that is, the guide track TR). Can be obtained from the return light of the guide laser beam LB1. Therefore, in this case, the address information is acquired from the plurality of mark groups MG, but the tracking error signal may not be acquired. However, even in this case, the plurality of mark groups MG have such a degree that address information (or arbitrary control information) acquired from the mark group MG can be acquired in a predetermined band (in other words, a predetermined cycle). It is preferable to arrange discretely along the track direction. For example, when a recording clock is generated from a plurality of mark groups MG, the arrangement interval between the center marks 22 included in each mark group MG (for example, the length in the track direction of the group described above) is determined as the recording clock. It is preferable that the distance is set to a predetermined distance or less than that according to the clock generation band.
 (2)記録再生装置について
 続いて、図11から図19を参照して、本実施例の記録再生装置101について説明する。
(2) Recording / Reproducing Device Next, the recording / reproducing device 101 of this embodiment will be described with reference to FIGS.
 (2-1)記録再生装置の構成について
 はじめに、図11を参照して、本実施例の記録再生装置101の構成について説明する。図11は、本実施例の記録再生装置101の構成を示すブロック図である。
(2-1) Configuration of Recording / Reproducing Device First, the configuration of the recording / reproducing device 101 of this embodiment will be described with reference to FIG. FIG. 11 is a block diagram showing the configuration of the recording / reproducing apparatus 101 of this embodiment.
 図11に示すように、記録再生装置101は、ディスクドライブとして構成されており、ホストコンピュータ201と接続されている。 As shown in FIG. 11, the recording / reproducing apparatus 101 is configured as a disk drive, and is connected to the host computer 201.
 記録再生装置101は、光ピックアップ102、信号記録再生部103、スピンドルモータ104、バス106、CPU(ドライブ制御部)111、メモリ112、及びデータ入出力制御部113を備える。記録時には、光ピックアップ102が有する対物レンズ102L(図2参照)を介して、ガイドレーザ光LB1及び記録再生レーザ光LB2が照射される。再生時には、同じく対物レンズ102Lを介して、トラッキング制御用の光ビームを兼ねる記録再生レーザ光LB2のみ、又は、ガイドレーザ光LB1及び記録再生レーザ光LB2の両方が照射される。 The recording / reproducing apparatus 101 includes an optical pickup 102, a signal recording / reproducing unit 103, a spindle motor 104, a bus 106, a CPU (drive control unit) 111, a memory 112, and a data input / output control unit 113. During recording, the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through the objective lens 102L (see FIG. 2) of the optical pickup 102. During reproduction, only the recording / reproducing laser beam LB2 also serving as a tracking control light beam or both the guide laser beam LB1 and the recording / reproducing laser beam LB2 are irradiated through the objective lens 102L.
 ホストコンピュータ201は、操作/表示制御部202、操作ボタン202、表示パネル204、バス206、CPU211、メモリ212、及びデータ入出力制御部213を備える。記録時には、記録すべきデータが、データ入出力制御部213から入力される。再生時には、再生されたデータが、データ入出力制御部213から出力される。 The host computer 201 includes an operation / display control unit 202, operation buttons 202, a display panel 204, a bus 206, a CPU 211, a memory 212, and a data input / output control unit 213. At the time of recording, data to be recorded is input from the data input / output control unit 213. During reproduction, the reproduced data is output from the data input / output control unit 213.
 光ピックアップ102は、ガイドレーザ光LB1を発する赤色半導体レーザと、記録再生レーザ光LB2を発する青色半導体レーザと、対物レンズ102Lやプリズムやミラー等から構成される合成分離光学系とを備える。光ピックアップ102は、共通の対物レンズ102Lを介して、ガイドレーザ光LB1及び記録再生レーザ光LB2を同軸的に且つ異なるフォーカスにて(図1及び図2参照)照射する。 The optical pickup 102 includes a red semiconductor laser that emits a guide laser beam LB1, a blue semiconductor laser that emits a recording / reproducing laser beam LB2, and a combining / separating optical system including an objective lens 102L, a prism, a mirror, and the like. The optical pickup 102 irradiates the guide laser beam LB1 and the recording / reproducing laser beam LB2 coaxially and with different focus (see FIGS. 1 and 2) through a common objective lens 102L.
 更に、光ピックアップ102は、ガイドレーザ光LB1に起因する光ディスク11からの戻り光を、対物レンズ102Lを介して受光する、二分割或いは四分割のCCD等の受光素子と、記録再生レーザ光LB2に起因する光ディスク11からの戻り光を、対物レンズ102Lを介して受光する、二分割或いは四分割のCCD等の受光素子とを含んでいる。光ピックアップ102は、記録再生レーザ光LB2を、記録時に相対的に高強度の記録用強度で変調する。また、光ピックアップ102は、記録再生レーザ光LB2の光強度を、再生時に相対的に低強度の再生用強度に設定する。 Further, the optical pickup 102 receives the return light from the optical disk 11 caused by the guide laser beam LB1 through the objective lens 102L, and a light receiving element such as a two-divided or four-divided CCD, and the recording / reproducing laser beam LB2. It includes a light receiving element such as a two-divided or four-divided CCD that receives the return light from the optical disk 11 via the objective lens 102L. The optical pickup 102 modulates the recording / reproducing laser beam LB2 with a relatively high recording intensity during recording. Further, the optical pickup 102 sets the light intensity of the recording / reproducing laser beam LB2 to a relatively low reproducing intensity during reproduction.
 光ピックアップ102及び信号記録再生部103は、少なくとも記録時に、ガイド層12からの戻り光を受光する受光素子からの受光信号に基づいて、例えばプッシュプル法又は位相差法(DPD)を用いてトラッキングエラー信号を生成する。光ピックアップ102及び信号記録再生部103は、更に、少なくとも記録時に、ガイド層12からの戻り光を受光する受光素子からの受光信号に基づいて、アドレス情報を再生する。 The optical pickup 102 and the signal recording / reproducing unit 103 perform tracking using, for example, a push-pull method or a phase difference method (DPD) based on a light receiving signal from a light receiving element that receives return light from the guide layer 12 at least during recording. Generate an error signal. The optical pickup 102 and the signal recording / reproducing unit 103 further reproduces the address information based on the light reception signal from the light receiving element that receives the return light from the guide layer 12 at least during recording.
 光ピックアップ102及び信号記録再生部103は、再生時に、記録層13からの戻り光を受光する受光素子からの受光信号に基づいて、例えばプッシュプル法又は位相差法でトラッキングエラー信号を生成する。或いは、光ピックアップ102及び信号記録再生部103は、再生時に、ガイド層12からの戻り光を受光する受光素子からの受光信号に基づいて、トラッキングエラー信号を生成してもよい。光ピックアップ102及び信号記録再生部103は、更に、少なくとも再生時に、記録層13からの戻り光を受光する受光素子からの受光信号に基づいて、例えば全光量に対応する信号としてデータ信号を生成する。 The optical pickup 102 and the signal recording / reproducing unit 103 generate a tracking error signal by the push-pull method or the phase difference method, for example, based on the light receiving signal from the light receiving element that receives the return light from the recording layer 13 during reproduction. Alternatively, the optical pickup 102 and the signal recording / reproducing unit 103 may generate a tracking error signal based on the light reception signal from the light receiving element that receives the return light from the guide layer 12 during reproduction. The optical pickup 102 and the signal recording / reproducing unit 103 further generate a data signal, for example, as a signal corresponding to the total amount of light based on the light reception signal from the light receiving element that receives the return light from the recording layer 13 at least during reproduction. .
 メモリ112及びメモリ212は、(i)記録再生装置101におけるCPU111等の各要素、及びホストコンピュータ201におけるCPU211等の各要素を、次に説明する記録再生処理が行われるように制御するためのコンピュータプログラム、並びに(ii)記録再生処理に必要な、制御データ、処理中データ、処理済みデータなどの各種データを、バス106、バス206等を介して一時的又は恒久的に保持するのに適宜用いられる。 The memory 112 and the memory 212 are (i) a computer for controlling each element such as the CPU 111 in the recording / reproducing apparatus 101 and each element such as the CPU 211 in the host computer 201 so that the recording / reproducing process described below is performed. Program, and (ii) various data such as control data, in-process data, processed data, etc. necessary for recording / reproduction processing are appropriately used to temporarily or permanently hold the data via the bus 106, bus 206, etc. It is done.
 (2-2)記録再生装置の動作について
 続いて、図12から図15を参照して、本実施例の記録再生装置101の動作について説明する。図12は、記録再生装置101が行う動作の全体の流れを示すフローチャートである。図13は、記録処理の一例の詳細な流れを示すフローチャートである。図14は、再生処理の一例の詳細な流れを示すフローチャートである。図15は、再生処理の他の例流れを示すフローチャートである。
(2-2) Operation of Recording / Reproducing Device Next, the operation of the recording / reproducing device 101 of this embodiment will be described with reference to FIGS. FIG. 12 is a flowchart showing an overall flow of operations performed by the recording / reproducing apparatus 101. FIG. 13 is a flowchart showing a detailed flow of an example of the recording process. FIG. 14 is a flowchart showing a detailed flow of an example of the reproduction process. FIG. 15 is a flowchart showing another example flow of the reproduction process.
 図12において、先ず、記録再生装置101に対し、ユーザによる手動又は機械動作により、上述した本実施例の光ディスク11が装着される(ステップS11)。 In FIG. 12, first, the above-described optical disc 11 of the present embodiment is mounted on the recording / reproducing apparatus 101 by manual or mechanical operation by the user (step S11).
 すると、ユーザによる表示パネル204を見ての操作ボタン203上での操作などに応じた動作開始コマンドが、ドライブ側の操作/表示制御部202及びCPU111、並びにホスト側のCPU211等により発生される。この動作開始コマンドを受けて、信号記録再生部103による制御下で、スピンドルモータ104による光ディスク11の回転が開始される。これと相前後して、信号記録再生部103による制御下で、光ピックアップ102による光照射が開始される。更に、ガイド層12に対する読取用サーボ系が動作される。即ち、ガイドレーザ光LB1が照射され、ガイド層12に集光されて、トラッキング制御が開始される(ステップS12)。 Then, an operation start command corresponding to an operation on the operation button 203 when the user looks at the display panel 204 is generated by the drive-side operation / display control unit 202 and the CPU 111, the host-side CPU 211, and the like. In response to this operation start command, rotation of the optical disk 11 by the spindle motor 104 is started under the control of the signal recording / reproducing unit 103. Before and after this, light irradiation by the optical pickup 102 is started under the control of the signal recording / reproducing unit 103. Further, the reading servo system for the guide layer 12 is operated. That is, the guide laser beam LB1 is irradiated and condensed on the guide layer 12, and tracking control is started (step S12).
 なお、この動作開始コマンドを含めた各種コマンド、ユーザデータや制御データを含む各種データの受け渡しは、ホスト側のバス206及びデータ入出力制御部213、並びにドライブ側のバス106及びデータ入出力制御部113を介して行われる。 The various commands including the operation start command and various data including user data and control data are transferred by the host side bus 206 and the data input / output control unit 213, and the drive side bus 106 and the data input / output control unit. 113.
 続いて、ガイド層12上で、ガイドレーザ光LB1によるガイドトラックTRへの照射が続けられ、ウォブル信号及びプリピット信号(更に、これらの少なくとも一方からプッシュプル法又はDPD法で得られるトラッキングエラー信号)が、マーク群MGから検出される。更に、これらの信号の少なくとも一方として予め記録されたディスク管理情報が、ドライブ側のCPU111又はホスト側のCPU211等により取得される。 Subsequently, irradiation of the guide track TR with the guide laser beam LB1 is continued on the guide layer 12, and a wobble signal and a prepit signal (further, a tracking error signal obtained from at least one of them by the push-pull method or the DPD method). Is detected from the mark group MG. Further, disk management information recorded in advance as at least one of these signals is acquired by the CPU 111 on the drive side or the CPU 211 on the host side.
 なお、ディスク管理情報は、ガイド層12における、最内周側に位置するリードイン領域やTOC(Table Of Content)領域等にまとめて、記録されていてもよい。ディスク管理情報の内容は、既存のDVDやBD等におけるディスク管理情報に準拠したものでよい。但し、ディスク管理情報については別途、記録層に特別に設けられたリードイン領域やTOC領域などに予め若しくは別途先行して記録されていると共に、当該ディスク管理情報が本時点で又は任意の時点で読み出されてもよい。 Note that the disc management information may be recorded together in a lead-in area, a TOC (Table Of Content) area, or the like located on the innermost circumference side in the guide layer 12. The contents of the disc management information may be compliant with the disc management information in an existing DVD or BD. However, the disc management information is separately recorded in advance or separately in a lead-in area or TOC area specially provided in the recording layer, and the disc management information is recorded at this time or at an arbitrary time. It may be read out.
 次に、ドライブ側のCPU111又はホスト側のCPU211等により、要求されている動作が、データ記録であるか否かが判定される(ステップS14)。ここで、要求されている動作がデータ記録であると判定される場合(ステップS14:Yes)、新規なる光ディスク11に対する記録処理が実行される(ステップS15)。この記録処理については、後に詳述する(図13参照)。 Next, it is determined whether or not the requested operation is data recording by the CPU 111 on the drive side or the CPU 211 on the host side (step S14). Here, when it is determined that the requested operation is data recording (step S14: Yes), a recording process for the new optical disc 11 is executed (step S15). This recording process will be described later in detail (see FIG. 13).
 他方、ステップS14の判定にて、要求されている動作がデータ記録でないと判定される場合(ステップS14:No)、又はステップS15にて新規なる光ディスク11に対する記録処理が完了された場合、ドライブ側のCPU111又はホスト側のCPU211等により、要求されている動作が、データ再生であるか否かが判定される(ステップS16)。ここで、要求されている動作がデータ再生であると判定される場合(ステップS16:Yes)、新規なる光ディスク11に対する再生処理が実行される(ステップS17)。この再生処理については、後に詳述する(図14及び図15参照)。 On the other hand, if it is determined in step S14 that the requested operation is not data recording (step S14: No), or if the recording process for the new optical disc 11 is completed in step S15, the drive side The CPU 111 or the host-side CPU 211 determines whether or not the requested operation is data reproduction (step S16). If it is determined that the requested operation is data reproduction (step S16: Yes), reproduction processing for a new optical disc 11 is executed (step S17). This reproduction process will be described later in detail (see FIGS. 14 and 15).
 ステップS16の判定にて、要求されている動作がデータ再生でない場合(ステップS16:No)、又はステップS17にて新規なる光ディスク11に対する再生処理が完了された場合、イジェクト(即ち、光ディスクを搭載しているディスクトレイの排出)が、操作ボタン203等を介して要求されているか否かが判定される(ステップS18)。ここで、イジェクトが要求されていないと判定される場合には(ステップS18:No)、再度ステップS14以降の動作が繰り返される。 If it is determined in step S16 that the requested operation is not data reproduction (step S16: No), or if the reproduction process for the new optical disk 11 is completed in step S17, ejection (that is, an optical disk is mounted). It is determined whether or not the ejection of the disc tray is requested via the operation button 203 or the like (step S18). Here, when it is determined that the ejection is not requested (step S18: No), the operations after step S14 are repeated again.
 他方、ステップS18の判定にてイジェクトが要求されていると判定される場合には(ステップS18:Yes)、イジェクト動作が実行され(ステップS19)、光ディスク11に対する一連の記録再生処理が完了する。 On the other hand, if it is determined in step S18 that ejection is required (step S18: Yes), the ejection operation is executed (step S19), and a series of recording / reproducing processes on the optical disc 11 is completed.
 次に図13を参照して、新規の光ディスク11に対する記録処理(図12のステップS15)の一例について説明する。 Next, an example of a recording process (step S15 in FIG. 12) for the new optical disc 11 will be described with reference to FIG.
 図13において、記録処理が開始されると、先ず、CPU111及び信号記録再生部103による制御下で、ガイド層12上においてガイドレーザ光LB1によるガイドトラックTRへの照射が続けられたまま(即ち、トラッキング制御が行われたまま)、ウォブル信号及びプリピット信号が、マーク群MGから検出される。その結果、CPU111等により、ガイドトラックTR上におけるアドレス情報が取得される。このアドレス情報を参照することで、CPU211等により、データの記録を開始すべきアドレスとして指定された所望の記録アドレスがサーチされる。即ち、ガイドレーザ光LB1がその所望の記録アドレスに対応する位置へと移動される。このサーチ動作により、光ピックアップ102内にて対物レンズ102L等の光学系をガイドレーザ光LB1と共用する記録再生レーザ光LB2もまた、記録層13上でそのサーチされた所望の記録アドレスに対応する位置へと移動される(ステップS21)。 In FIG. 13, when the recording process is started, first, irradiation of the guide track TR with the guide laser beam LB1 is continued on the guide layer 12 under the control of the CPU 111 and the signal recording / reproducing unit 103 (that is, While the tracking control is being performed), the wobble signal and the pre-pit signal are detected from the mark group MG. As a result, the address information on the guide track TR is acquired by the CPU 111 or the like. By referring to this address information, the CPU 211 or the like searches for a desired recording address designated as an address at which data recording should be started. That is, the guide laser beam LB1 is moved to a position corresponding to the desired recording address. By this search operation, the recording / reproducing laser beam LB2 that shares the optical system such as the objective lens 102L in the optical pickup 102 with the guide laser beam LB1 also corresponds to the desired recording address searched on the recording layer 13. The position is moved (step S21).
 続いて、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、データを記録すべき所望の記録層13を対象として、記録再生レーザ光LB2のフォーカス制御が行われる(ステップS22)。 Subsequently, under the control of the CPU 111 and the signal recording / reproducing unit 103, the optical pickup 102 performs focus control of the recording / reproducing laser beam LB2 for the desired recording layer 13 on which data is to be recorded (step S22).
 続いて、光ピックアップ102によって、フォーカス制御が行われた状態で、記録再生レーザ光LB2を、記録すべきデータ値に応じて変調しながら照射することで、所望の記録層13へのデータの記録が開始される(ステップS23)。 Subsequently, in a state in which focus control is performed by the optical pickup 102, the recording / reproducing laser beam LB2 is irradiated while being modulated according to the data value to be recorded, thereby recording data on a desired recording layer 13. Is started (step S23).
 続いて、CPU111等により、所定量の記録が終了したか否かがモニタリングされる(ステップS24)。ここで、記録が終了しない限り、記録層13へのデータの記録が継続される(ステップS24:No)。 Subsequently, it is monitored by the CPU 111 or the like whether or not a predetermined amount of recording has been completed (step S24). Here, as long as the recording is not completed, the data recording to the recording layer 13 is continued (step S24: No).
 ここで、記録が終了すると(ステップS24:Yes)、記録したデータに応じて、ディスク管理情報が更新される(ステップS25)。ディスク管理情報は、複数の記録層13の少なくとも一つに設けられたリードイン領域、TOC領域などにまとめて記録されてよい。その位置は内周側であってもよいが外周側や途中であってもよいし、多少分散された形で記録されてもよい。これに加えて又は代えて、メモリ112、メモリ212等内に設けられており、光ディスク11に紐付けられたディスク管理情報が更新されてもよい。 Here, when the recording is completed (step S24: Yes), the disc management information is updated according to the recorded data (step S25). The disc management information may be recorded together in a lead-in area, a TOC area, or the like provided in at least one of the plurality of recording layers 13. The position may be on the inner peripheral side, but may be on the outer peripheral side or in the middle, or may be recorded in a somewhat dispersed form. In addition to or instead of this, the disk management information provided in the memory 112, the memory 212, and the like and associated with the optical disk 11 may be updated.
 以上により、新規の光ディスク11に対する一連の記録処理(図12のステップS15)が完了する。 Thus, a series of recording processes for the new optical disk 11 (step S15 in FIG. 12) is completed.
 次に図14を参照して、新規の光ディスク11に対する再生処理(図12のステップS17)の一例について説明する。この例は、再生処理時にガイドレーザ光LBがトラッキング制御のために用いられない例である。即ち、この例では、記録処理時と異なり、記録再生レーザ光LB2がトラッキング制御のために用いられる。 Next, with reference to FIG. 14, an example of a reproduction process (step S17 in FIG. 12) for the new optical disk 11 will be described. In this example, the guide laser beam LB is not used for tracking control during the reproduction process. That is, in this example, unlike the recording process, the recording / reproducing laser beam LB2 is used for tracking control.
 図14において、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、データを再生すべき所望の記録層13を対象として、記録再生レーザ光LB2のフォーカス制御が行われる。これと相前後して或いは並行して、記録再生レーザ光LB2による情報トラックに対するトラッキング制御が行われる(ステップS31)。 In FIG. 14, under the control of the CPU 111 and the signal recording / reproducing unit 103, the optical pickup 102 performs focus control of the recording / reproducing laser beam LB2 for the desired recording layer 13 from which data is to be reproduced. Before or after this, tracking control for the information track by the recording / reproducing laser beam LB2 is performed (step S31).
 続いて、CPU111等により、情報トラック上における記録済のアドレス情報が取得される。このアドレス情報を参照することで、CPU211等により、所望のデータの再生を開始すべきアドレスとして指定された所望の再生アドレスがサーチされる。即ち、記録再生レーザ光LB2が、所望の再生アドレスに対応する位置へと移動される(ステップS32)。 Subsequently, recorded address information on the information track is acquired by the CPU 111 or the like. By referring to this address information, a desired reproduction address designated as an address at which reproduction of desired data is to be started is searched by the CPU 211 or the like. That is, the recording / reproducing laser beam LB2 is moved to a position corresponding to a desired reproduction address (step S32).
 続いて、光ピックアップ102によって、トラッキング制御及びフォーカス制御が行われた状態で、記録再生レーザ光LB2に起因する反射光を、対物レンズ102Lを介して受光することで、所望の記録層13からのデータの再生が開始される(ステップS33)。 Subsequently, in a state where tracking control and focus control are performed by the optical pickup 102, reflected light caused by the recording / reproducing laser beam LB2 is received through the objective lens 102L, so that the desired pickup from the recording layer 13 is obtained. Data reproduction is started (step S33).
 続いて、CPU111等により、所定量の再生が終了したか否かがモニタリングされる(ステップS34)。ここで、再生が終了しない限り、記録層13からのデータの再生が継続される(ステップ34:No)。 Subsequently, it is monitored by the CPU 111 or the like whether or not the predetermined amount of reproduction has been completed (step S34). Here, the reproduction of data from the recording layer 13 is continued unless the reproduction ends (step 34: No).
 ここで、再生が終了すると(ステップS34:Yes)、新規の光ディスク11に対する一連の記録処理(図12のステップS17)が完了する。 Here, when the reproduction is finished (step S34: Yes), a series of recording processes for the new optical disc 11 (step S17 in FIG. 12) is completed.
 次に図15を参照して、新規の光ディスク11に対する再生処理(図12のステップS17)の他の例について説明する。この例は、記録処理時のみならず、再生処理時にガイドレーザ光LBがトラッキング制御等のために用いられる例である。 Next, with reference to FIG. 15, another example of the reproduction process for the new optical disk 11 (step S17 in FIG. 12) will be described. In this example, the guide laser beam LB is used for tracking control or the like not only during the recording process but also during the reproduction process.
 図15において、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、ガイド層12を対象として、ガイドレーザ光LB1のフォーカス制御が行われる。これと相前後して或いは並行して、ガイドトラックTRを対象として、ガイドレーザ光LB1のトラッキング制御が行われる。更に、CPU111等により、ガイドトラックTR上におけるウォブルやプリピットから、アドレス情報が取得される。このアドレス情報を参照することで、CPU211等により、データの再生を開始すべきアドレスとして指定された所望の再生アドレスがサーチされる。即ち、ガイドレーザ光LB1が、所望の再生アドレスに対応する位置へと移動される。このサーチ動作により、光ピックアップ102内にて対物レンズ102L等の光学系をガイドレーザ光LB1と共用する記録再生レーザ光LB2も、記録層13上でそのサーチされた再生アドレスに対応する位置へと移動される(ステップS41)。 In FIG. 15, under the control of the CPU 111 and the signal recording / reproducing unit 103, the optical pickup 102 performs focus control of the guide laser beam LB1 with the guide layer 12 as a target. Before or after this, tracking control of the guide laser beam LB1 is performed for the guide track TR. Further, the address information is acquired from the wobble or pre-pit on the guide track TR by the CPU 111 or the like. By referring to this address information, the CPU 211 or the like searches for a desired reproduction address designated as an address at which data reproduction should be started. That is, the guide laser beam LB1 is moved to a position corresponding to a desired reproduction address. By this search operation, the recording / reproducing laser beam LB2 sharing the optical system such as the objective lens 102L with the guide laser beam LB1 in the optical pickup 102 is also moved to a position corresponding to the searched reproduction address on the recording layer 13. It is moved (step S41).
 続いて、トラッキング制御が行われた状態で、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、データを再生すべき所望の記録層13に対する、記録再生レーザ光LB2のフォーカス制御が行われる(ステップS43)。 Subsequently, under the control of the tracking control, the focus control of the recording / reproducing laser beam LB2 is performed on the desired recording layer 13 from which data is to be reproduced by the optical pickup 102 under the control of the CPU 111 and the signal recording / reproducing unit 103. Performed (step S43).
 続いて、光ピックアップ102によって、ガイドレーザ光LB1のトラッキング制御が行われており且つ記録再生レーザ光LB2のフォーカス制御が行われた状態で、記録再生レーザ光LB2に起因する反射光が、対物レンズ102Lを介して受光される。その結果、所望の記録層13からのデータの再生が開始される(ステップS43)。 Subsequently, in a state where the tracking control of the guide laser beam LB1 is performed by the optical pickup 102 and the focus control of the recording / reproducing laser beam LB2 is performed, the reflected light caused by the recording / reproducing laser beam LB2 is reflected on the objective lens. Light is received through 102L. As a result, data reproduction from the desired recording layer 13 is started (step S43).
 続いて、CPU111等により、所定量の再生が終了したか否かがモニタリングされる(ステップS44)。ここで、再生が終了しない限り、記録層13からのデータの再生が継続される(ステップ34:No)。 Subsequently, it is monitored by the CPU 111 and the like whether or not the predetermined amount of reproduction has been completed (step S44). Here, the reproduction of data from the recording layer 13 is continued unless the reproduction ends (step 34: No).
 ここで、再生が終了すると(ステップS44:Yes)、新規の光ディスク11に対する一連の再生処理(図12のステップS17)が完了する。 Here, when the reproduction is finished (step S44: Yes), a series of reproduction processes for the new optical disc 11 (step S17 in FIG. 12) is completed.
 (2-3)マーク群MGのトラック方向の配置間隔について
 次に図16から図19を参照して、所定の周波数帯域でトラッキング制御を行うための、トラック方向に沿って離散的に配置されるマーク群MGの配置間隔(特に、マーク群MGに含まれる中心マークであり、上述したグループの長さに相当)を決定する方法を、トラッキング制御を行うトラッキングサーボ系と共に説明する。
(2-3) Arrangement interval in the track direction of the mark group MG Next, referring to FIGS. 16 to 19, the mark group MG is discretely arranged along the track direction for tracking control in a predetermined frequency band. A method of determining the arrangement interval of the mark group MG (in particular, the center mark included in the mark group MG and corresponding to the above-described group length) will be described together with a tracking servo system that performs tracking control.
 図16に示すように、トラッキングサーボ系は、減算器を含むエラー検出器(Error Detector)301と、サンプリングスイッチ、キャパシタ及びバッファを含むサンプラー(Sampler)302と、増幅器及びイコアライザー(Amplifier & Equalizer)303と、アクチュエータ(Actuator)304とを含む。 As shown in FIG. 16, the tracking servo system includes an error detector 301 including a subtractor, a sampler 302 including a sampling switch, a capacitor, and a buffer, an amplifier and an equalizer 303. And an actuator 304.
 エラー検出器301には、トラッキング制御用の外乱(いわゆる、トラッキングエラー信号)及びアクチュエータ304からのフィードバック信号が入力される。エラー検出器301は、トラッキング制御用の外乱からフィードバック信号を減算(マイナス加算)することで得られる減算信号を、サンプラー302に出力する。 The error detector 301 receives a disturbance for tracking control (so-called tracking error signal) and a feedback signal from the actuator 304. The error detector 301 outputs a subtraction signal obtained by subtracting (minus addition) the feedback signal from the disturbance for tracking control to the sampler 302.
 サンプラー302は、サンプル値をホールドする、いわゆる「零次ホールド回路」である。具体的には、所望のサンプリングタイミングにて閉じるサンプリングスイッチと、サンプル値をホールドするキャパシタと、バッファとを備える。減算信号は、サンプリングスイッチにより、トラッキング制御を行う周波数帯域に応じたサンプリングタイミングでサンプリングされる。サンプル値(つまり、サンプリングスイッチによりサンプリングされた減算信号)は、キャパシタによりホールドされると共に、バッファによりバッファリングされる。サンプリングタイミングは、例えば、ガイドレーザ光LB1を受光する受光素子によって検出されたウォブル信号及びプリピット信号等に基づいて生成される。但し、サンプリングタイミングの生成方法は、これに限られず、後述する変形例等の媒体構成に応じて生成されてよい。また、サンプラー302の構成についても、これに限られることはなく、「1次ホールド回路」等でもよいことは言うまでもない。 The sampler 302 is a so-called “zero-order hold circuit” that holds sample values. Specifically, a sampling switch that closes at a desired sampling timing, a capacitor that holds a sample value, and a buffer are provided. The subtraction signal is sampled by the sampling switch at a sampling timing corresponding to the frequency band for which tracking control is performed. The sample value (that is, the subtraction signal sampled by the sampling switch) is held by the capacitor and buffered by the buffer. The sampling timing is generated based on, for example, a wobble signal and a prepit signal detected by a light receiving element that receives the guide laser beam LB1. However, the method of generating the sampling timing is not limited to this, and may be generated according to the medium configuration such as a modified example described later. Further, the configuration of the sampler 302 is not limited to this, and needless to say, a “primary hold circuit” or the like may be used.
 サンプラー302からの出力(つまり、バッファからの出力)は、増幅器及びイコアライザー303により増幅及びイコアライズされ、更に、アクチュエータ304に入力される。 The output from the sampler 302 (that is, the output from the buffer) is amplified and equalized by the amplifier / equalizer 303 and further input to the actuator 304.
 この入力された増幅信号に応じて、アクチュエータ304により、光ピックアップ102内に設けられた、ガイド層12上におけるガイドレーザ光LB1の照射位置(従って、記録層13上における記録再生レーザ光LB2の照射位置)が、径方向に移動される。アクチュエータ304からは、その変動に応じたフィードバック信号がエラー検出器301へとフィードバックされる。 In response to the input amplification signal, the actuator 304 irradiates the guide laser beam LB1 on the guide layer 12 provided in the optical pickup 102 (accordingly, the irradiation of the recording / reproducing laser beam LB2 on the recording layer 13). Position) is moved in the radial direction. A feedback signal corresponding to the fluctuation is fed back from the actuator 304 to the error detector 301.
 ここで特に、図17から図19を参照して、サンプラー302におけるサンプリングタイミングについて検討を加える。 Here, in particular, the sampling timing in the sampler 302 will be examined with reference to FIGS.
 図17は、エラー検出器301に入力される外乱の最大の要素である偏心成分が変化した場合について、サンプラー302の動作出力を模式的に示している。図17から、時間に対して、トラッキングエラー信号が概ね一定周期でプラス側からマイナス側へと波打っている様子が分かる。 FIG. 17 schematically shows the operation output of the sampler 302 when the eccentric component that is the maximum element of the disturbance input to the error detector 301 changes. From FIG. 17, it can be seen that the tracking error signal undulates from the plus side to the minus side with a substantially constant period with respect to time.
 図18は、サンプラー302により「零次ホールド」を行った場合における、伝達関数のボーデ線図(Bode Plot of zero-order hold)を示している。言い換えれば、ここでは、零時ホールドの周波数特性が示されており、特に、ゲイン特性(上側にある特性曲線)と位相(下側にある特性曲線)とが、ボーデ線図内に重ねて示されている。この例では、1msでサンプルした場合について示しているが、実際はもっと短い時間間隔で行われる。 FIG. 18 shows a Bode plot (Bode Plot of zero-order hold) of the transfer function when “zero-order hold” is performed by the sampler 302. In other words, here, the frequency characteristic of the zero hold is shown, and in particular, the gain characteristic (upper characteristic curve) and phase (lower characteristic curve) are shown superimposed in the Bode diagram. Has been. In this example, a case where sampling is performed at 1 ms is shown, but actually, the sampling is performed at a shorter time interval.
 図18から、位相特性について、1KHzサンプリングした場合、100Hzでの信号は、位相における特性曲線部分1001で示したように、位相が数度程度回ることが分かる。逆に、位相まわりを無視できる帯域として、仮に100Hzとすると、10倍程度(1KHz)以上のサンプル間隔が必要となる(即ち、1KHzよりも高周波数でサンプリングすることが必要となる)とも言える。 FIG. 18 shows that when the phase characteristic is sampled at 1 KHz, the signal at 100 Hz rotates about several degrees as shown by the characteristic curve portion 1001 in the phase. On the other hand, if the bandwidth around the phase is negligible, 100 Hz, a sample interval of about 10 times (1 KHz) or more is necessary (that is, sampling at a frequency higher than 1 KHz is necessary).
 図19は、光ディスク11の外乱の特性及びトラッキング制御におけるオープンループ特性の夫々の一例を示している。この例では、「光ディスク11の外乱の特性」が、周波数が23.1Hz未満となる領域では片側35μmの偏心成分を有しており、周波数が23.1Hz以上となる加速度領域では1.1m/S2 である。即ち、光ディスク11の外乱は、周波数が23.1Hz未満となる領域では、35μmに相当する64dbにて概ねフラットであり、当該領域よりも高周波数側では、0.022μmに相当する0dBへと、1.1m/Sの傾きにて下がっている。トラッキングサーボのオープンループ特性は、このようなディスクの外乱を抑圧可能な特性例として示されている。即ち、特性図中、いずれの周波数でも、オープンループ特性の方が高ゲイン側となるように設定されており、これにより、どの周波数帯域でも外乱を抑圧可能となる。なお、この例では、f0(カットオフ帯域)=2.4KHzとして示している。 FIG. 19 shows an example of the disturbance characteristic of the optical disc 11 and the open loop characteristic in tracking control. In this example, the “disturbance characteristics of the optical disc 11” has an eccentric component of 35 μm on one side in the region where the frequency is less than 23.1 Hz, and 1.1 m / in the acceleration region where the frequency is 23.1 Hz or more. it is S 2. That is, the disturbance of the optical disk 11 is generally flat at 64 db corresponding to 35 μm in the region where the frequency is less than 23.1 Hz, and to 0 dB corresponding to 0.022 μm on the higher frequency side than the region. It is going down at the slope of 1.1m / S 2. The open loop characteristic of the tracking servo is shown as an example of a characteristic capable of suppressing such a disk disturbance. That is, in the characteristic diagram, the open loop characteristic is set to be on the higher gain side at any frequency, and thus disturbance can be suppressed in any frequency band. In this example, f0 (cut-off band) = 2.4 KHz.
 図17から図19を参照して説明した本例の場合、「所定距離」は次のように決定される。 In the case of this example described with reference to FIGS. 17 to 19, the “predetermined distance” is determined as follows.
 即ち、トラッキング制御を行う周波数帯域を、例えば、2.4KHzとすると、先に述べたホールド回路として実現されるサンプラー302による影響を無視できる程度に小さくするために必要な時間間隔は、約10倍である24kHzに相当する時間間隔T=1/(24×10)=46.7[μsec]となる。この時間間隔Tと光ディスク11のスピンドルモータ104による回転線速度との関係から、トラック方向に離散的に相前後して並ぶ二つのマーク群MG(具体的には、マーク群MGに含まれる中心マーク22)の配置間隔として、必要な最長の距離、即ち本発明に係る「所定距離」の一例が決定される。 That is, when the frequency band for performing tracking control is 2.4 KHz, for example, the time interval required to reduce the influence of the sampler 302 realized as the hold circuit described above to a negligible level is about 10 times. The time interval corresponding to 24 kHz is T = 1 / (24 × 10 3 ) = 46.7 [μsec]. From the relationship between this time interval T and the linear velocity of rotation of the optical disc 11 by the spindle motor 104, two mark groups MG (specifically, center marks included in the mark group MG) arranged in a discrete manner in the track direction. As the arrangement interval 22), an example of the longest required distance, that is, an example of the “predetermined distance” according to the present invention is determined.
 例えば、線速vを4.917m/secとすると、所定距離Lは、L=v×T≒230[μm]となる。即ち、ガイドトラックTRに沿って8スロットに一つの割合でサーボ用領域22が入れられる場合、8スロットの長さが、この230[μm]よりも短くなるように、スロット構成が決定されたり、或いは、何スロットに一つずつマーク群22(具体的には、マーク群MGに含まれる中心マーク22)を配置するかが決定される。 For example, if the linear velocity v is 4.917 m / sec, the predetermined distance L is L = v × T≈230 [μm]. That is, when the servo area 22 is inserted at a ratio of 8 slots along the guide track TR, the slot configuration is determined such that the length of the 8 slots is shorter than 230 [μm]. Alternatively, it is determined how many slots one mark group 22 (specifically, the center mark 22 included in the mark group MG) is arranged.
 なお、マーク群22の配置間隔の決定方法は、本例に限られることはなく、図18及び図19に示した如き必要とされるサーボ帯域や、光ディスク11のCLV方式における線速度等を考慮して決定すればよい。 Note that the method for determining the arrangement interval of the mark group 22 is not limited to this example, and the required servo band as shown in FIGS. 18 and 19, the linear velocity of the optical disk 11 in the CLV method, and the like are taken into consideration. And decide.
 (3)変形例
 以下、実施例の各種変形例について図20から図24を参照して説明する。
(3) Modified Examples Hereinafter, various modified examples of the embodiment will be described with reference to FIGS.
 図20は、上述した本実施例におけるマーク群MG(言い換えれば、マーク群MGに含まれる記録マーク22)として形成される物理的なトラック構成を示す。図21から図23は夫々、マーク群MG(言い換えれば、マーク群MGに含まれる記録マーク22)として形成される物理的なトラック構成の変形例を示す。 FIG. 20 shows a physical track configuration formed as the mark group MG (in other words, the recording mark 22 included in the mark group MG) in the above-described embodiment. FIGS. 21 to 23 show modified examples of the physical track configuration formed as the mark group MG (in other words, the recording mark 22 included in the mark group MG).
 図20は、ウォブルWBとランドプリピットLPP1とから、マーク群MGが配置されたガイドトラックTRが構成されている。ここで、ウォブルWBの周期とランドプリピットLPP1の周期とを整数倍の関係に設定し、更に、ウォブルWBの各頂点にランドプリピットLLP1が形成されていることが好ましい。このため、プリピット信号及びウォブル信号の検出を容易にすることができる
 図21の変形例では、グルーブトラックGTのウォブルWB1の各頂点に、ウォブル振幅(振れ量)が局所的に高められた急カーブ部分501が設けられている。即ち、プリピットなしで、特殊なウォブルWB1から、マーク群MGが配置されたガイドトラックTRが構成されている。この場合にも、ウォブル信号の検出を容易にすることができる。
In FIG. 20, a guide track TR in which a mark group MG is arranged is composed of a wobble WB and a land prepit LPP1. Here, it is preferable that the period of the wobble WB and the period of the land prepit LPP1 are set to an integer multiple relationship, and the land prepit LLP1 is formed at each vertex of the wobble WB. Therefore, the detection of the prepit signal and the wobble signal can be facilitated. In the modification of FIG. 21, a sharp curve in which the wobble amplitude (shake amount) is locally increased at each vertex of the wobble WB1 of the groove track GT. A portion 501 is provided. That is, the guide track TR in which the mark group MG is arranged is formed from the special wobble WB1 without the pre-pit. Also in this case, detection of the wobble signal can be facilitated.
 図22の変形例では、短く分断して掘られた複数のグルーブ502の、ガイドトラックTRに沿った連続的な配列自体がウォブリングされることで、ウォブルWB2が形成されている。例えば、プリエンボス加工によりウォブルWB2を形成すれば、このような構造のトラックTRwを、マーク群MGが配置されたガイドトラックTRとして構築可能となる。 22, the wobble WB2 is formed by wobbling a continuous arrangement itself along the guide track TR of the plurality of grooves 502 dug into pieces. For example, if the wobble WB2 is formed by pre-embossing, the track TRw having such a structure can be constructed as the guide track TR in which the mark group MG is arranged.
 図23の変形例では、径方向の幅が一定であり且つトラック方向の長さが適宜に変調されている、短く分断して掘られた複数のグルーブ502の、ガイドトラックTRに沿った連続的且つ直線的な配列(言い換えれば、マークパターン)がガイドトラックTRとなる。この変形例では、ガイドトラックTRがウォブリングされていない。例えば、プリエンボス加工によりマークパターンを形成すれば、このような構造のトラックTRwを、マーク群MGが配置されたガイドトラックTRとして構築可能となる。 In the modified example of FIG. 23, a plurality of grooves 502 dug into pieces that have a constant radial width and an appropriately modulated length in the track direction are continuously formed along the guide track TR. A linear arrangement (in other words, a mark pattern) is the guide track TR. In this modification, the guide track TR is not wobbled. For example, if the mark pattern is formed by pre-embossing, the track TRw having such a structure can be constructed as the guide track TR in which the mark group MG is arranged.
 次に図24は、上述した本実施例における光ディスク11の基本的な層構成(図1及び図2参照)の変形例を示す。ここに、図24は、本変形例の光ディスクの図1と同趣旨の模式的な斜視図である。 Next, FIG. 24 shows a modification of the basic layer configuration (see FIGS. 1 and 2) of the optical disc 11 in the above-described embodiment. FIG. 24 is a schematic perspective view of the optical disk of the present modified example having the same concept as in FIG.
 図24において、光ディスク11の変形例では、二つのガイド層12a及び12bが設けられる。例えば、ガイド層12aのガイドトラックTR-aに、内周から外周へ向うアドレス位置を示す第1アドレス情報を担持させる。ガイド層12bのガイドトラックTR-bに、外周から内周へ向うアドレス位置を示す第2アドレス情報を担持させる。この場合更に、複数の記録層13についても、第1アドレス情報に従って記録される第1記録層13と第2アドレス情報に従って記録される第2記録層13とに区分することが好ましい。この場合、第1記録層13に対するトラッキング制御は、ガイド層12aを用いて行い、第2記録層13に対するトラッキング制御は、ガイド層12bを用いて行うことが好ましい。このように構成すれば、一又は複数の第1記録層13にて、内周から外周へ向ってユーザデータを記録し、一又は複数の第2記録層13にて、外周から内周へ向ってユーザデータを記録する動作が、効率的に行われる。しかも、記録処理の信頼性及び安定性についても、二種類のアドレス情報を使い分けることによって、顕著に高められる。よって、連続して双方向に又は任意若しくは独立にて双方向に記録可能な光ディスク11を実現可能となる。 24, in the modification of the optical disc 11, two guide layers 12a and 12b are provided. For example, the first track information indicating the address position from the inner periphery to the outer periphery is carried on the guide track TR-a of the guide layer 12a. Second address information indicating an address position from the outer periphery to the inner periphery is carried on the guide track TR-b of the guide layer 12b. In this case, the plurality of recording layers 13 are also preferably divided into a first recording layer 13 recorded according to the first address information and a second recording layer 13 recorded according to the second address information. In this case, tracking control for the first recording layer 13 is preferably performed using the guide layer 12a, and tracking control for the second recording layer 13 is preferably performed using the guide layer 12b. With this configuration, user data is recorded from the inner periphery to the outer periphery in one or more first recording layers 13, and from the outer periphery to the inner periphery in one or more second recording layers 13. Thus, the operation of recording user data is performed efficiently. Moreover, the reliability and stability of the recording process can be remarkably improved by using two types of address information properly. Therefore, it is possible to realize the optical disc 11 capable of continuous bi-directional recording or bidirectional recording arbitrarily or independently.
 例えば、1層目の記録層13を内周から外周に向かって記録再生し、2層目の13を外周から内周に向って記録再生をすることにすれば、これら二つの記録層13の間で記録処理又は再生処理の対象を切り替えるために必要な時間は、層間ジャンプを行う時間で済む。このため、複数の記録層13に跨るように連続して記録処理又は再生処理を行う際に、極めて有利となる。言い換えれば、所謂オポジットトラックパスを採用している2層型の光ディスクにおいて得られる効果と同様の効果が得られる。 For example, if the first recording layer 13 is recorded and reproduced from the inner periphery to the outer periphery, and the second layer 13 is recorded and reproduced from the outer periphery to the inner periphery, the two recording layers 13 The time required for switching the target of the recording process or the reproduction process between them is the time for performing the interlayer jump. For this reason, it is extremely advantageous when performing a recording process or a reproducing process continuously across a plurality of recording layers 13. In other words, the same effect as that obtained in a two-layer type optical disc employing a so-called opposite track path can be obtained.
 以上詳細に説明したように、本実施例及び変形例によれば、ガイドトラックTRに沿ったマーク群MGの配置間隔が所定距離以下に設定され、且つ、光ディスク11の全面に渡ってマーク群MGを離散的に配置される。このため、光ディスク11の内周から外周に亘って、ガイド層12のどの位置においても、サンプリングにより連続したトラッキングエラー信号及びアドレス情報等の制御情報を取得することができる。 As described above in detail, according to the present embodiment and the modification, the arrangement interval of the mark groups MG along the guide track TR is set to a predetermined distance or less, and the mark groups MG are spread over the entire surface of the optical disc 11. Are arranged discretely. Therefore, it is possible to acquire control information such as a tracking error signal and address information that are continuous by sampling at any position of the guide layer 12 from the inner periphery to the outer periphery of the optical disc 11.
 また特に、記録層13におけるデータフォーマットの構成単位の長さとスロットの長さとが整数倍の関係となると共にマーク群MGが、スロットに対応しながら配置される。このため、ガイドレーザ光LB1が追従しているガイドトラックTRに隣接する他のガイドトラックTRにおけるマーク群MGが同時に読み取られないように(即ち、ウォブル信号やプリピット信号にクロストークが発生しないように)、マーク群MGの適応配置が容易となる。 In particular, the length of the structural unit of the data format in the recording layer 13 and the length of the slot are in an integral multiple relationship, and the mark group MG is arranged corresponding to the slot. For this reason, the mark group MG in the other guide track TR adjacent to the guide track TR that the guide laser beam LB1 follows is not read simultaneously (that is, no crosstalk occurs in the wobble signal or the prepit signal). ), The adaptive arrangement of the mark group MG is facilitated.
 また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う情報記録媒体、並びに記録再生装置及び方法もまた本発明の技術思想に含まれる。 Further, the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and an information recording medium, a recording / reproducing apparatus, and a method with such a change are also included. It is also included in the technical idea of the present invention.
 11 光ディスク
 12 ガイド層
 13 記録層
 21a 前方緩衝領域
 22 記録マーク
 21b 後方緩衝領域
 TR ガイドトラック
 WB ウォブル
 LLP1 ランドプリピット
 LB1 ガイドレーザ光
 LB2 記録再生レーザ光
 102 光ピックアップ
 102L 対物レンズ
 101 記録再生装置
 201 ホストコンピュータ
DESCRIPTION OF SYMBOLS 11 Optical disk 12 Guide layer 13 Recording layer 21a Front buffer area 22 Recording mark 21b Back buffer area TR Guide track WB Wobble LLP1 Land prepit LB1 Guide laser beam LB2 Recording / reproducing laser beam 102 Optical pickup 102L Objective lens 101 Recording / reproducing apparatus 201 Host computer

Claims (10)

  1.  CLV方式の記録媒体であって、
     トラック方向に沿って並ぶ複数のスロットによって区分されるガイドトラックが予め形成されたガイド層と、
     該ガイド層上に積層された複数の記録層と
     を備え、
     前記ガイドトラックには、前記トラック方向に交わる径方向に沿って相隣接する複数のガイドトラックの同一回転位相位置に形成され且つ前記スロットの単位に合わせて形成される同一の複数の記録マークを含むマーク群が複数配置されており、
     前記複数のスロットのうち前記トラック方向に沿って連続して並ぶ所定数のスロットから構成される各グループ内に、前記複数のマーク群の夫々に含まれる複数の記録マークのうち前記径方向に沿って中心に位置する中心マークが最大で一つ配置されるように、前記複数のマーク群は、前記トラック方向に沿って離散的に配置されており、
     前記複数のマーク群は、前記径方向に沿って互いに相隣接しないように、径方向及びトラック方向の少なくとも一方に沿ってずらされて配置されている
     ことを特徴とする記録媒体。
    A CLV recording medium,
    A guide layer in which a guide track divided by a plurality of slots arranged in the track direction is formed in advance;
    A plurality of recording layers laminated on the guide layer,
    The guide track includes a plurality of identical recording marks formed at the same rotational phase position of a plurality of guide tracks adjacent to each other along a radial direction intersecting the track direction and formed in accordance with the unit of the slot. Multiple mark groups are arranged,
    Among each of the plurality of recording marks included in each of the plurality of mark groups in each group including a predetermined number of slots arranged continuously along the track direction among the plurality of slots, along the radial direction. The plurality of mark groups are discretely arranged along the track direction so that a maximum of one central mark located at the center is arranged,
    The plurality of mark groups are arranged shifted along at least one of a radial direction and a track direction so as not to be adjacent to each other along the radial direction.
  2.  前記複数のマーク群の夫々は、前記トラック方向に沿って、(i)当該夫々のマーク群に含まれる前記複数の記録マークの前方に夫々配置され且つ前記トラック方向に沿って互いに異なる長さを有する複数の前方緩衝領域と、(ii)当該夫々のマーク群に含まれる前記複数の記録マークの後方に夫々配置され且つ前記トラック方向に沿って互いに異なる長さを有する複数の後方緩衝領域との間に挟み込まれるように配置されており、
     前記複数の前方緩衝領域及び前記複数の後方緩衝領域の夫々は、間に挟み込むマーク群に含まれる前記複数の記録マークが同一回転位相位置に形成されるような長さを有することを特徴とする請求項1に記載の記録媒体。
    Each of the plurality of mark groups is (i) arranged in front of the plurality of recording marks included in each of the mark groups and has a different length along the track direction. A plurality of front buffer areas, and (ii) a plurality of rear buffer areas that are respectively arranged behind the plurality of recording marks included in the respective mark groups and have different lengths along the track direction. It is arranged to be sandwiched between
    Each of the plurality of front buffer regions and the plurality of rear buffer regions has a length such that the plurality of recording marks included in a mark group sandwiched therebetween are formed at the same rotational phase position. The recording medium according to claim 1.
  3.  前記複数のマーク群は、一の記録マークと、当該一の記録マークの前方に配置される一の前方緩衝領域と、当該一の記録マークの後方に配置される一の後方緩衝領域とが、一のスロット内に配置されるように、配置されていることを特徴とする請求項2に記載の記録媒体。 The plurality of mark groups include one recording mark, one front buffer area disposed in front of the one recording mark, and one rear buffer area disposed behind the one recording mark. The recording medium according to claim 2, wherein the recording medium is arranged so as to be arranged in one slot.
  4.  前記複数のスロットの夫々の前記トラック方向の長さと、前記複数の記録層に夫々記録されることになるデータのフォーマットの構成単位の前記トラック方向の長さとが所定の整数比となるように、前記トラックが前記複数のスロットに区分されることを特徴とする請求項1に記載の記録媒体。 The length in the track direction of each of the plurality of slots and the length in the track direction of the structural unit of the data format to be recorded in each of the plurality of recording layers have a predetermined integer ratio. The recording medium according to claim 1, wherein the track is divided into the plurality of slots.
  5.  前記複数のスロットは、前記トラック方向の長さが相互に等しく、前記トラック方向に配列されていることを特徴とする請求項1に記載の記録媒体。 2. The recording medium according to claim 1, wherein the plurality of slots have the same length in the track direction and are arranged in the track direction.
  6.  前記複数の記録マークの夫々は、ウォブル及びプリピット構造の何れかを含む構成であることを特徴とする請求項1に記載の記録媒体。 The recording medium according to claim 1, wherein each of the plurality of recording marks includes a wobble or a pre-pit structure.
  7.  前記ガイドトラックは、トラッキングサーボ用のガイドトラックであり、
     前記複数のマーク群の夫々は、前記トラッキングサーボ用のトラッキング信号を発生するためのマーク群であり、
     前記複数のマーク群は、前記トラッキングサーボが所定の帯域で動作可能な距離以下の配置間隔で、トラック方向に沿って離散的に配置されており、
     前記複数のマーク群は、前記トラッキングサーボ用の光ビームのビーム径に基づいて、前記光ビームが同時に照射されないように、前記径方向に沿って互いに相隣接しないように配置されている
     ことを特徴とする請求項1に記載の記録媒体。
    The guide track is a guide track for tracking servo,
    Each of the plurality of mark groups is a mark group for generating a tracking servo tracking signal,
    The plurality of mark groups are discretely arranged along the track direction at an arrangement interval equal to or less than a distance at which the tracking servo can operate in a predetermined band.
    The plurality of mark groups are arranged so as not to be adjacent to each other along the radial direction so that the light beams are not simultaneously irradiated based on a beam diameter of the tracking servo light beam. The recording medium according to claim 1.
  8.  前記複数のマーク群は、前記トラック方向に沿って内周から外周又は外周から内周へ向うアドレス位置を示すアドレス情報を担持するためのマーク群であることを特徴とする請求項1に記載の記録媒体。 The plurality of mark groups are mark groups for carrying address information indicating address positions from the inner periphery to the outer periphery or from the outer periphery to the inner periphery along the track direction. recoding media.
  9.  請求項1に記載された記録媒体に対する記録処理及び再生処理のうちの少なくとも一方を行う記録再生装置であって、
     前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段と、
     前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御手段と、
     前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御手段と
     を備えることを特徴とする記録再生装置。
    A recording / reproducing apparatus that performs at least one of a recording process and a reproducing process for the recording medium according to claim 1,
    A light irradiating means for irradiating and condensing the guide layer with a guide laser beam, and irradiating and condensing a recording / reproducing laser beam different from the guide laser beam to one of the plurality of recording layers;
    First control means for controlling the light irradiation means to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer;
    In the state in which the tracking servo is applied, the recording / reproducing laser light is irradiated on and condensed on the one recording layer, so that at least one of the recording process and the reproducing process is performed. And a second control means for controlling the irradiation means.
  10.  請求項1に記載された記録媒体に対して、前記ガイド層にガイドレーザ光を照射し且つ集光すると共に前記複数の記録層のうち一の記録層に前記ガイドレーザ光とは異なる記録再生レーザ光を照射し且つ集光する光照射手段を用いて、記録処理及び再生処理のうちの少なくとも一方を行う記録再生方法であって、
     前記ガイド層からの前記ガイドレーザ光の戻り光に基づき、前記ガイドトラックに対して所定の帯域でトラッキングサーボをかけるトラッキング制御を行うように前記光照射手段を制御する第1制御工程と、
     前記トラッキングサーボがかけられている状態で、前記一の記録層に前記記録再生レーザ光を照射し且つ集光することで、前記記録処理及び前記再生処理のうちの少なくとも一方を行うように前記光照射手段を制御する第2制御工程と
     を備えることを特徴とする記録再生方法。
    2. A recording / reproducing laser that irradiates and condenses guide laser light to the guide layer according to claim 1 and that is different from the guide laser light on one of the plurality of recording layers. A recording / reproducing method for performing at least one of a recording process and a reproducing process using a light irradiating means that irradiates and collects light,
    A first control step of controlling the light irradiation means so as to perform tracking control for applying tracking servo to the guide track in a predetermined band based on the return light of the guide laser light from the guide layer;
    In the state in which the tracking servo is applied, the recording / reproducing laser light is irradiated on and condensed on the one recording layer, so that at least one of the recording process and the reproducing process is performed. And a second control step for controlling the irradiation means.
PCT/JP2012/074691 2012-09-26 2012-09-26 Recording medium, recording reproduction device and method WO2014049710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074691 WO2014049710A1 (en) 2012-09-26 2012-09-26 Recording medium, recording reproduction device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074691 WO2014049710A1 (en) 2012-09-26 2012-09-26 Recording medium, recording reproduction device and method

Publications (1)

Publication Number Publication Date
WO2014049710A1 true WO2014049710A1 (en) 2014-04-03

Family

ID=50387176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074691 WO2014049710A1 (en) 2012-09-26 2012-09-26 Recording medium, recording reproduction device and method

Country Status (1)

Country Link
WO (1) WO2014049710A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190116A (en) * 2000-12-20 2002-07-05 Ricoh Co Ltd Optical disk
JP2003272173A (en) * 2002-03-15 2003-09-26 Toshiba Corp Information storage medium, and information recording and reproducing device, and method
WO2004059633A1 (en) * 2002-12-24 2004-07-15 Fujitsu Limited Optical disc
JP2005044481A (en) * 2003-07-25 2005-02-17 Fujitsu Ltd Optical disk and optical disk device
WO2007055107A1 (en) * 2005-11-11 2007-05-18 Pioneer Corporation Multi-layer disc and its information recording/reproducing device
WO2011125158A1 (en) * 2010-04-02 2011-10-13 パイオニア株式会社 Information recording medium, device and method for recording information, and device and method for reproducing information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190116A (en) * 2000-12-20 2002-07-05 Ricoh Co Ltd Optical disk
JP2003272173A (en) * 2002-03-15 2003-09-26 Toshiba Corp Information storage medium, and information recording and reproducing device, and method
WO2004059633A1 (en) * 2002-12-24 2004-07-15 Fujitsu Limited Optical disc
JP2005044481A (en) * 2003-07-25 2005-02-17 Fujitsu Ltd Optical disk and optical disk device
WO2007055107A1 (en) * 2005-11-11 2007-05-18 Pioneer Corporation Multi-layer disc and its information recording/reproducing device
WO2011125158A1 (en) * 2010-04-02 2011-10-13 パイオニア株式会社 Information recording medium, device and method for recording information, and device and method for reproducing information

Similar Documents

Publication Publication Date Title
US7721097B2 (en) Information recording medium, and information recording apparatus and method
JP2002352469A (en) Multilayer information recording medium and information recording/reproducing device
JP2007048404A (en) Information recording medium, information processing apparatus and method, and processing controlling computer program for executing recording or reproduction
JP4200335B2 (en) Information recording medium, and information recording apparatus and method
WO2011125157A1 (en) Information recording medium, device and method for recording information, and device and method for reproducing information
JPWO2005116995A1 (en) Information recording medium, information recording apparatus and method, and computer program for recording control
JP5342067B2 (en) Information recording medium, information recording apparatus and method, and information reproducing apparatus and method
JP2007080315A (en) Two-layer optical disk, and optical disk apparatus for recording and reproducing the same
WO2014049710A1 (en) Recording medium, recording reproduction device and method
JP4249663B2 (en) Information recording medium, and information recording apparatus and method
WO2011128985A1 (en) Information recording medium, information recording device and method, and information reading device and method
JP4411312B2 (en) Optical disc recording method, optical disc recording / reproducing apparatus, and recorded optical disc
KR100765981B1 (en) Information recording device
JP2006019019A (en) Optical recording and reproducing device
WO2011158376A1 (en) Information recording medium, information recording device and method, as well as information playback device and method
WO2011125159A1 (en) Information recording medium, device and method for recording information, and device and method for reproducing information
WO2011125160A1 (en) Information recording medium, device and method for recording information, and device and method for reproducing information
WO2011158379A1 (en) Information recording medium and manufacturing method of same, information recording device and method, as well as information playback device and method
JP2006209915A (en) Recording apparatus and recording method, and computer program
WO2013108400A1 (en) Recording/playback device and method
JP2006216206A (en) Device and method for recording, and computer program
WO2013054493A1 (en) Optical recording medium, formatting device therefor, and formatting method therefor
WO2013051088A1 (en) Information recording medium, information recording device and method, and information reproduction device and method
WO2014030545A1 (en) Optical recording device and optical recording method
JPWO2013108400A1 (en) Recording / reproducing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP