WO2014049139A1 - Method for preparing a hybrid zno/organic material, said material and the uses thereof - Google Patents

Method for preparing a hybrid zno/organic material, said material and the uses thereof Download PDF

Info

Publication number
WO2014049139A1
WO2014049139A1 PCT/EP2013/070242 EP2013070242W WO2014049139A1 WO 2014049139 A1 WO2014049139 A1 WO 2014049139A1 EP 2013070242 W EP2013070242 W EP 2013070242W WO 2014049139 A1 WO2014049139 A1 WO 2014049139A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
phthalocyanine derivative
titanium
silicon
Prior art date
Application number
PCT/EP2013/070242
Other languages
French (fr)
Inventor
Jonathan SKRZYPSKI
Aurélien AUGER
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Publication of WO2014049139A1 publication Critical patent/WO2014049139A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages

Definitions

  • the present invention belongs to the technical field of zinc oxide (ZnO) particles and in particular ZnO nanoparticles comprising phthalocyanine dyes.
  • the present invention relates to a process for preparing ZnO particles and, more particularly, ZnO nanoparticles functionalized, surface and covalently, with phthalocyanine dyes.
  • the present invention also relates to the ZnO particles and, more particularly, the functionalized ZnO nanoparticles obtained by this method and their various uses.
  • the interface of the heterogeneous structures composed of these two materials in thin films plays a major role in the efficiency of the system in order to ensure the transport of electrons through the structure of the layer system, also called the photo-induced electron transfer mechanism.
  • CuPc Zinc
  • ITO for "Iron Tin Oxide”
  • the process used to deposit the CuPc layer on the ZnO layer is called the thermal evaporation process. Such a process requires special conditions such as a low pressure (10 -6 torr) .
  • the morphology of the CuPc layer shows that the latter is in the form of nanoparticles, aggregates and / or nanobaglets, depending on the annealing temperature to which it has been subjected.
  • ZnO aggregates The synthesis of CuPc: ZnO aggregates is described by Sharma et al., 2006 [3]. ZnO and CuPc are mixed, in a ratio 1/10 expressed by mass, using methanol as solvent and this, for 12 h at 75 ° C. In the aggregates thus obtained, CuPc is adsorbed on the surface of ZnO by weak affinity electrostatic bonds.
  • Hiromitsu et al. describes a process for obtaining hybrid materials in which the organic molecules are covalently bound to ZnO [4].
  • the method described by Hiromitsu et al. involves a step of functionalization of ZnO nanoparticles by L-cysteine. Thanks to that functionalization, porphyrinic aromatic macrocycles can be anchored on ZnO nanoparticles via L-cysteine bridges. Thus, obtaining a covalent type bond is obtained only by making the preparation process longer and more complex.
  • the present invention overcomes the disadvantages and technical problems listed above. Indeed, the latter proposes a process for preparing particulate materials based on zinc oxide and comprising phthalocyanine derivatives, said process not requiring heavy processes or steps and using easily accessible products, not dangerous and not very toxic.
  • the method according to the invention is not only a low-cost process, but has also an adjustable process on a large scale or pilot scale and therefore industrially applicable.
  • the method according to the present invention also has the advantage of being able to be implemented at ambient temperature and pressure.
  • phthalocyanine derivatives of silicon or tita makes it possible to obtain ZnO particles and in particular ZnO nanoparticles functionalised on the surface and covalently by surface condensation of the organic macrocycle.
  • the implementation of covalent bonds ensures the transport of electrons and a good interface between the organic and inorganic system.
  • the electronic bond resulting from the condensation of the organic molecule on the surface of the ZnO validates the electron transfer.
  • the present invention describes the synthesis of surface-functionalized ZnO particles (electronic covalent bonds) with a phthalocyanine derivative of silica or titanium by condensation of the latter in organic solution.
  • phthalocyanine has a central cavity allowing the incorporation of a large number of atoms, including silicon or titanium.
  • the silicon (or titanium) atom being tetravalent, and requiring two bonds for its incorporation into the cavity and the plane of the phthalocyanine aromatic macrocycle, two bonds remain available. These two bonds are axial to the plane defined by the silicon atom and phthalocyanine, and are generally terminated by functions such as hydroxyl functions, carboxyl, chlorides or fluorides. These functions being reactive, they participate as reagents in the sol-gel synthesis of surface-doped ZnO particles.
  • the present invention relates to a method for preparing a zinc oxide particle comprising at least one phthalocyanine derivative, said process comprising a step of condensing a phthalocyanine derivative of silicon or titanium of formula (I):
  • M represents a silicon atom or a titanium atom
  • R 1, R 2 , R 3 and R 4 which may be identical or different, represent an optionally substituted arylene group and
  • R 5 and R 6 which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially from 1 to 6 carbon atoms, optionally substituted or a group -Si (R ") 3 where each R" independently represents a linear or branched alkyl of 1 to 12 carbon atoms and especially 1 to 6 carbon atoms, optionally substituted,
  • substituted alkyl is meant, in the context of the compounds of formula (I), an alkyl substituted by a halogen, an amino group, a diamine group, an amide group, an acyl group, a vinyl group or a hydroxyl group. , an epoxy group, a phosphonate group, a sulfonic acid group, an isocyanate group, a carboxyl group, a thiol (or mercapto) group, a glycidoxy group or an acryloxy group and in particular a methacryloxy group.
  • R ' represents a methyl or an ethyl.
  • arylene group means an aromatic or heteroaromatic carbon structure, optionally mono- or polysubstituted, consisting of one or more aromatic or heteroaromatic rings each comprising from 3 to 8 atoms, the (or ) heteroatom (s) which can be N, O, P or S.
  • Substituted arylene means an arylene group which may be mono- or polysubstituted by a group selected from the group consisting of a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
  • the groups R 1, R 2 , R 3 and R 4 are identical or different, each representing a phenylene, a naphthylene or an anthracene. More particularly, the groups R 1, R 2 , R 3 and R 4 are identical and represent a phenylene, a naphthylene or an anthracene.
  • the phthalocyanine derivative of silicon or titanium used in the context of the present invention is a compound of formula (II):
  • the groups R 7 to R 22 which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
  • the phthalocyanine derivative of silicon or titanium used in the context of the present invention is a compound of formula (III) of the naphthalocyanine type:
  • the groups R 2 3 to R 46 which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol,
  • a compound of formula (I II) that is preferred in the context of the present invention is the compound in which the groups R 23 to R 46 represent a hydrogen and the groups R 5 and R 6 are as previously defined.
  • the groups R 5 and R 6 in the compounds of formula (I), (II) or (III) are identical and are selected from the group consisting of - C1, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted or a group - Si (R " ) 3 wherein each R "independently represents an alkyl, linear or branched, of 1 to 12 carbon atoms and especially from 1 to 6 carbon atoms, optionally substituted.
  • the groups R " are chosen from methyl, ethyl, propyl, cyclopropyl, butyl, cyclobutyl, heptyl, cycloheptyl, hexyl and cyclohexyl.
  • the groups R 5 and R 6 are especially selected from the group consisting of -Cl, -F, -OH, -OCH 3 , -OC 2 H 5 , -O-Si (CH 3 ) 3 , -O-Si (C 2 H 5 ) 3 , -O-Si (C 3 H 7 ) 3 , -O-Si (C 4 H 9 ) 3 , -O-Si (C 5 Hn) 3 and -O-Si (C 6 H 3 ) 3 .
  • identical or different are selected from methyl, ethyl, propyl, cyclopropyl, butyl, cyclobutyl, heptyl, cycloheptyl, hexyl and cyclohexyl.
  • the groups R 5 and R 6 are identical.
  • the groups R 5 and R 6 in the compounds of formula (I), (II) or (III) are identical and are chosen from the group consisting of: C1, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms and especially 1 to 6 carbon atoms, optionally substituted and in particular chosen from the group consisting of by -Cl, -F, -OH, -OCH 3 and -OC 2 H 5 . More particularly, the groups R 5 and R 6 in the compounds of formula (I), (II) or (I II) are identical and represent -Cl.
  • the compounds of formula (II) or (III) that can be used particularly in the context of the present invention are:
  • the compound of formula (V) which is the peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which M represents a titanium atom, the groups R 5 and R 6 are -Cl, the groups R 7, Rio, Rn, Ri4, Ris, Ris, R19 and R 22 are all hydrogen and the groups R 8, Rg, R 2, R13, Ri6, R17, R 2 o and R 2i are identical and chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl
  • the compound of formula (VI) which is non-peripherally substituted titanium phthalocyanine corresponding to a compound of formula (II) in which M represents a titanium atom, the groups R 5 and R 6 are -Cl, the groups R 8, Rg, R12, R13, Ri6, R17, R20 and R 2i are all hydrogen and the R 7 groups, Rio, Ru, Ri 4, R15, Ris, R19 and R 22 are identical and selected from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl
  • condensation reaction is meant, in the context of the present invention, the chemical reaction for combining the ZnO particle with a phthalocyanine derivative of silicon or titanium as previously defined so as to obtain, on the one hand, a ZnO particle comprising at least one phthalocyanine derivative and, secondly, a single molecule.
  • This condensation reaction can be schematized as follows:
  • Pc-R 6 corresponds to the phthalocyanine derivative of silicon or titanium as defined above with R 6 representing the substituent group for the silicon or titanium atom as previously defined.
  • NP-ZnOH corresponds to the particle and in particular to the zinc oxide nanoparticle which carries on its surface at least one ZnOH group.
  • NP-Zn-O-Pc represents the particulate material based on zinc oxide comprising at least one phthalocyanine derivative obtained by carrying out the process of the invention. More particularly, NP-Zn-O-Pc represents a particle and in particular a zinc oxide nanoparticle with a phthalocyanine derivative grafted covalently at the surface of said (nano) particle, as represented in FIG. method according to the invention comprises, more particularly, the following successive steps:
  • step (b) contacting the zinc oxide particle optionally prepared in step (a) with a phthalocyanine derivative of silicon or titanium as defined above in the presence of an organic solvent, whereby said phthalocyanine derivative of silicon or titanium condenses with said zinc oxide particle and a zinc oxide particle comprising at least one phthalocyanine derivative is obtained, and
  • step (b) recovering the zinc oxide particle comprising at least one phthalocyanine derivative obtained in step (b).
  • Step (a) of the process is optional.
  • the method according to the present invention can be implemented from previously prepared or commercial ZnO particles.
  • the ZnO particles used in the context of the present invention may have various forms, such as spheroidal, ellipsoid, hexagonal, rod or star shapes.
  • the average particle size distribution of the ZnO particles used is between 10 nm and 1 ⁇ and in particular between 20 and 900 ⁇ . We can therefore speak of nanoparticles of zinc oxide.
  • step (a) is not optional, any technique known to those skilled in the art to prepare ZnO particles may be used.
  • the experimental section below and the publication [4] present examples of such techniques.
  • the ZnO particles are in the form of a dispersion or suspension in an organic solvent.
  • Any organic solvent is usable for this dispersion or suspension.
  • the organic solvent used is an aprotic or polar aprotic organic solvent.
  • the organic solvent in which the ZnO particles are dispersed is selected from the group consisting of dichloromethane, chloroform, pentane, cyclopentane, hexane, cyclohexane, benzene, 1,2-dichlorobenzene, toluene, dimethylformamide (DMF), acetone, ethyl acetate, propylene carbonate, tetrahydrofuran (THF), 1,4-dioxane, diethyl ether, acetonitrile, dimethyl sulfoxide (DMSO) or a mixture thereof. More particularly, the organic solvent in which the ZnO particles are dispersed is 1,2-dichlorobenzene.
  • the ZnO particles are present in the suspension in an amount of between 0.5 and 10 mg / ml of organic solvent and in particular between 1 and 5 mg / ml of organic solvent.
  • the contacting between the ZnO particles and the phthalocyanine derivatives of silicon or titanium during step (b) of the process consists in adding, to the dispersion or suspension of ZnO particles as defined above, at least one phthalocyanine derivative of silicon or titanium as previously defined and then mixing the solution (S) thus obtained.
  • the phthalocyanine derivative (s) of silicon or titanium can be added in solid form, in liquid form or in solution. When several different silicon or titanium phthalocyanine derivatives are used, they may be mixed at once or added one after the other or in groups.
  • the phthalocyanine derivative (s) of silicon or titanium is (are) in the form of one (or more) solution (s) containing one or more silicon phthalocyanine derivative (s). or titanium.
  • the solvent is an organic solvent.
  • the organic solvent used for the solution containing a phthalocyanine derivative of silicon or titanium is an aprotic polar or aprotic polar solvent.
  • the organic solvent containing a phthalocyanine derivative of silicon or titanium is chosen from the group consisting of dichloromethane, chloroform, pentane, cyclopentane, hexane, cyclohexane, benzene, 1,2-dichlorobenzene, toluene, dimethylformamide (DMF), acetone, ethyl acetate propylene carbonate, tetrahydrofuran (THF), 1,4-dioxane, diethyl ether, acetonitrile and dimethyl sulfoxide (DMSO) or a mixture thereof. More particularly, the organic solvent containing a phthalocyanine derivative of silicon or titanium is tetrahydrofuran (THF).
  • the phthalocyanine derivative of silicon or titanium is present in the solution in an amount of between 0.5 and 10 mM and especially between 1 and 5 mM.
  • the organic solvent of the suspension of ZnO particles and that of the solution containing a phthalocyanine derivative of silicon or titanium may be the same or different.
  • the organic solvent referred to in step (b) of the process according to the invention corresponds to this organic solvent.
  • the organic solvent referred to in step (b) of the process according to the invention corresponds to the mixture of these two solvents.
  • a particular example of such a mixture is a mixture of THF and 1,2-dichlorobenzene.
  • the volume ratio between the organic solvent of the suspension of ZnO particles and that of the solution containing a phthalocyanine derivative of silicon or titanium is between 1/10 and 10/1, in particular between 1/5 and 5/1 and in particular between 1/3 and 3/1.
  • step (b) of the process the addition of the solution containing a phthalocyanine derivative of silicon or titanium to the suspension of ZnO particles is advantageously carried out by means of a dropper.
  • the mixture during step (b) of the process is carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and may be used at a temperature of between 10 ° C. and 40 ° C. C, advantageously between 15 ° C. and 30 ° C. and, more particularly, at room temperature ambient (ie 23 ° C ⁇ 5 ° C) for a period of between 6 and 48 h, in particular between 12 and 36 h and, in particular, for 24 h.
  • the solution (S) implemented during step (b) of the process may contain not only particles of ZnO and one (or more) derivative (s) of silicon phthalocyanine or titanium but also one (or more) compound (s) based on silane. This (or these) last (s) typically allows to encapsulate the surface of ZnO.
  • the (or a) silane-based compound is moreover functionalized or functionalizable, such functionalization may make it possible to confer particular properties on the particles, for example, hydrophilic or hydrophobic properties which may be of importance. for the implementation of the particles later.
  • silane compound or several silane compounds are present, they are incorporated into the mixture obtained during step b. ), in the suspension containing the ZnO nanoparticles and / or in the solution containing one or more different derivatives of silicon phthalocyanine or titanium.
  • the silane-based compound (s) can be introduced in solid form, in liquid form or in solution in an organic solvent. When several different silane compounds are used, they may be mixed at one time or added one after the other or in groups.
  • the silane-based compound (s) when the silane-based compound (s) is (are) used in solution in an organic solvent, the latter may be identical to or different from the organic solvent of the solution or suspension in which the solution of silane compound (s) is added.
  • the compound (s) based on silane is (are) introduced into the solution obtained in step (b) in liquid form.
  • the silane-based compound (s) is (are) present in a proportion of between 0.1 and 40%, in particular between 1 and 30% and, in particular, between and 25% by volume relative to the total volume of said solution.
  • the (or) silane-based compound (s) present (s) a molarity of between 100 ⁇ and 400 mM, in particular between 500 ⁇ and 300 mM and, in particular, between 1 mM and 200 mM.
  • said silane-based compound (s) is (are) of general formula SiR a R b R c R d in which R a , R b , R c and R d are, independently of one another selected from the group consisting of hydrogen; a halogen; an amino group; a diamine group; an amide group; an acyl group; a vinyl group; a hydroxyl group; an epoxy group; a phosphonate group; a sulfonic acid group; an isocyanate group; a carboxyl group; a thiol group (or mercapto); a glycidoxy group; an acryloxy group such as a methacryloxy group; an alkyl group, linear or branched, optionally substituted, of 1 to 12 carbon atoms, especially 1 to 6 carbon atoms; an aryl group, linear or branched, optionally substituted, of 4 to 15 carbon atoms, in particular of 4 to 10 carbon atoms; an alkoxy
  • said silane-based compound (s) is (are) alkyl (or) alkylsilane (s) and / or (or) alkoxysilane (s).
  • the silane compound is more particularly selected from the group consisting of dimethylsilane (DMSi), phenyltriethoxysilane (PTES), tetraethoxysilane (TEOS), tetramethoxysilane (TEMOS), n-octyltriethoxysilane, octadecyltriethoxysilane, dimethyldimethoxysilane
  • DMDMOS (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, (mercapto) -triethoxysilane, (3-aminopropyl) triethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- [bis (2-hydroxyethyl) amino] propyltriethoxysilane, hexadecyltrimethoxysilane, phenyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] -1,2-ethanediamine and acetoxyethyltriethoxysilane, 2-hydroxy-4- (3-triethoxysilylpropoxy) diphenyl ketone, methyltriethoxysilane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (benzoy
  • one (or more) compound (s) promoting the condensation reaction may optionally be added to the solution ( S) containing ZnO particles, one (or more) different derivative (s) of silicon phthalocyanine or titanium as previously defined and optionally one (or more) compound (s) based on silane as previously defined.
  • the solution containing ZnO particles, one (or more) derivative (s) of phthalocyanine silicon or titanium and optionally one (or more) compound (s) containing silane with a solution (S ') obtained by dissolving at least one compound promoting the condensation reaction in an organic solvent as defined above.
  • the solution (S ') can be prepared before or simultaneously with step (b) of the process according to the present invention.
  • the organic solvent used in the solution (S ') may be identical to the organic solvent of the solution (S) or to one of the organic solvents of the solution (S) or be different from this (or these) solvent (s).
  • compound favoring the condensation reaction means a compound, of base type, allowing not only the condensation, with the ZnO particles, of a silane-based compound such as previously defined but also the condensation of a phthalocyanine derivative of silicon or titanium as previously defined.
  • the compound that promotes the condensation reaction is advantageously chosen from the group consisting of urea, thiourea, ammonia, an amine such as trimethylamine or triethylamine and mixtures thereof.
  • the compound promoting the condensation reaction used in the context of the present invention is, more particularly, urea or ammonia.
  • the compound promoting the condensation reaction has a molarity of between 100 ⁇ and 400 mM, in particular between 500 ⁇ and 300 mM and, in particular, between 1 mM and 200 mM in the solution (S ').
  • any technique making it possible to recover the surface-functionally and covalently functionalized zinc oxide particles by phthalocyanine derivatives and optionally by silane derivatives obtained during step (b) may be implemented during the step (c) of the process according to the invention.
  • this step (c) implements one or more steps, identical or different, chosen from the centrifugation, sedimentation and washing steps.
  • the washing step (s) is (are) carried out in a polar solvent.
  • polar solvent is meant in the context of the present invention a solvent selected from the group consisting of water, deionized water, distilled water, acidified or basic, hydroxylated solvents such as methanol and ethanol, low molecular weight liquid glycols such as ethylene glycol, dimethyl sulfoxide (DMSO), acetonitrile, acetone, tetrahydrofuran (THF) and mixtures thereof.
  • the same polar solvent is used for several or even all washes or several different polar solvents are used at each wash.
  • centrifugation stage (s) can be implemented by centrifuging the functionalized ZnO particles in particular in a wash solvent at room temperature, at a speed of between 4000 and 8000 rpm and, in particular, of the order of 6000 rpm (ie 6000 ⁇ 500 rpm) and this, for a period of between 5 min and 2 h, in particular between 10 min and 1 h and, in particular, for 15 minutes.
  • the method according to the present invention may comprise, following step (c), an additional step of purifying the functionalized ZnO particles obtained hereinafter referred to as "step (d)".
  • this step (d) consists in putting the functionalized ZnO particles recovered after step (c) of the process according to the invention in contact with a very large volume of water.
  • very large volume is meant a volume greater by a factor of 50, in particular by a factor of 500 and, in particular, by a factor of 1000 to the volume of particles of titanium oxide, recovered after the step ( c) the process according to the invention.
  • Step (d) may be a dialysis step, the functionalized ZnO particles being separated from the volume by a cellulose membrane, of the Spectra / Por ® - MWCO3500 (Proud) type.
  • an ultrafiltration step can be provided in place of the dialysis step, via a polyethersulfone membrane.
  • Step (d) may, in addition, be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, at a temperature between 0 ° C. and 30 ° C., advantageously between 2 ° C. ° C and 20 ° C and, more particularly, cold (ie 6 ° C ⁇ 2 ° C) and this, for a period of between 30 hours and 15 days, especially between 3 and 10 days and, in particular, during 1 week.
  • a stirrer a magnetic bar, an ultrasonic bath or a homogenizer
  • the present invention further relates to a zinc oxide particle comprising at least one phthalocyanine derivative capable of being prepared by the process of the present invention.
  • the particle according to the present invention is distinguished from the prior art ZnO particles by the presence of the phthalocyanine derivative at the single surface of the ZnO particle and the nature of the covalent bond linking the phthalocyanine derivative. to the ZnO particle without the need for an organic cysteine bridge.
  • the phthalocyanine derivatives and optionally the silane derivatives form, on the surface of the ZnO particles, a SAM-type monolayer (for "self-assembled monolayers") or a very thin layer whose thickness is less than 10 nm and especially less than 5 nm.
  • the functionalized ZnO particles, surface and covalently, by phthalocyanine derivatives according to the invention are in the form of nanoparticles since advantageously obtained from nanoparticles of ZnO.
  • ZnO particles functionalised, surface and covalently, with phthalocyanine derivatives can have various forms, such as spheroidal, ellipsoid, hexagonal, rod or star shapes.
  • the mean particle size distribution of the ZnO particles functionalized, surface and covalently, by phthalocyanine derivatives is between 10 nm and 1.2 ⁇ and in particular between 20 nm and 1 ⁇ .
  • the functionalized ZnO particles, surface and covalently, by phthalocyanine derivatives have remarkable properties. Indeed, in these particles, the ZnO is colored in blue or green, remains crystalline and therefore very stable.
  • ZnO particles functionalised, surface and covalently, by phthalocyanine derivatives are a material with a very good stability at high temperature because of the melting temperature of phthalocyanine derivatives greater than 300 ° C.
  • this material can be in the form of a stable colloidal system in water.
  • the particles thus obtained may have properties comparable to those of liquid crystals.
  • ZnO particles functionalised, surface and covalently, by phthalocyanine derivatives in particular as listed above but also presented in point IV of the experimental part below make it good candidates as photocatalysts and dyes.
  • the present invention relates to the use of a znO particle surface-covalently functionalized with phthalocyanine derivatives according to the present invention or prepared according to the process of the present invention in the paper industry.
  • the textile industry the pharmaceutical industry, the plastics industry and the photovoltaic industry and, more particularly, in the fields chosen in the group consisting of coloring agents (inks, paints, paper and textiles); photocatalysis and photodegradation; UV protection agents; solar light-keeping agents; anti-light and anti-UV protection agents; electronic, optical, sensor, energy conversion and storage devices and organic semiconductors.
  • Figure 1 is a schematic representation of a nanoparticle of zinc oxide functionalized, surface and covalently, with a phthalocyanine derivative and prepared by the method according to the invention.
  • Figure 2 shows a view obtained from transmission electron microscopy (M ET) of zinc oxide nanoparticles.
  • FIG. 3 presents the energy dispersive analysis (EDS) of zinc oxide nanoparticles.
  • FIG. 4 shows a view obtained by M ET of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a silicone phthalocyanine derivative.
  • FIG. 5 shows the energy dispersive analysis (EDS) of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the method according to the invention, from a silicone phthalocyanine derivative.
  • EDS energy dispersive analysis
  • FIG. 6 shows a view obtained by M ET of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a titanium phthalocyanine derivative.
  • FIG. 7 shows the energy dispersive analysis (EDS) of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a titanium phthalocyanine derivative.
  • FIG. 8 shows the electron absorption spectra, in water and at different concentrations, of nanoparticles of ZnO / N Pc according to the invention.
  • the synthesis of the pure ZnO nanoparticles was carried out by co-precipitation with, as initial reactants, hydrated zinc nitrate and sodium carbonate.
  • a 0.2 mol / L solution of Zn (NO 3 ) 2.6H 2 O is prepared, i.e. 36.5 g of ns 615 mL. distilled water.
  • a 0.5 mol / l solution of sodium carbonate was made by dissolving 13.78 g in 246 ml of distilled water.
  • the zinc nitrate solution is added dropwise to the sodium carbonate solution with vigorous mechanical stirring. The solution is then stirred for 2 hours at room temperature. The precipitate is filtered on a Buchner funnel.
  • the powder thus recovered is dried overnight in an oven at
  • the nanoparticles obtained are 20 to 30 nm in diameter and are crystallized (FIG. 2). Elemental analysis reveals the presence of zinc in the sample ( Figure 3). II. Synthesis and analysis of ZnO-NPc nanoparticles.
  • a suspension of ZnO nanoparticles previously prepared at 2 mg / ml in 20 ml of dichlorobenzene is stirred at room temperature.
  • a tetrahydrofuran solution (10 mL) containing the naphthalocyanine (silicon naphthalocyanine dihydroxide, CAS No: 92396-90-2) at a concentration of 2 x 10 "3 M is added dropwise with vigorous stirring The reaction mixture is stirred. at room temperature for 24 h.
  • the reaction mixture is then centrifuged and the nanoparticles obtained are washed three times with ethanol and once with water, each washing being followed by sedimentation in the centrifuge (15 min at 6000 rpm). After the washing step, the purification of the obtained nanoparticles is completed by dialysis (nominal MCWO 3500 Daltons) in water (1 L) with magnetic stirring for one week.
  • the nano-objects dispersed in water (40 mL) are then characterized by transmission electron microscopy (TEM) analysis.
  • TEM transmission electron microscopy
  • the functionalized ZnO nanoparticles NPc have the shape of beads with a diameter of between 25 and 30 nm (FIG. 4). These nanoparticles are green and elemental analysis reveals the presence of zinc (Figure 5).
  • the reaction mixture is stirred at room temperature for 24 hours.
  • the reaction mixture is then centrifuged and the nanoparticles obtained are washed three times with ethanol and once with water, each washing being followed by sedimentation in the centrifuge (15 min at 6000 rpm).
  • the purification of the nanoparticles obtained is completed by dialysis (nominal MCWO 3500 Daltons) in water (1 L) with magnetic stirring for one week.
  • the nano-objects dispersed in water (40 mL) are then characterized by TEM analysis.
  • the functionalized ZnO nanoparticles NPc have the shape of beads with a diameter of between 25 and 30 nm (FIG. 6). These nanoparticles are blue and the elemental analysis reveals the presence of zinc (Figure 7).
  • the absorption spectra of the naphthalocyanine derivatives generally show two typical absorptions called “-band” (740-760 nm) and “B".
  • the traditional peak resulting from the absorption of ZnO is observed at 375 nm and coalesce with that of the NPc Soret band at 440 nm.
  • the peak of the Q-band is observed at 760 nm for various concentrations obtained by successive dilutions ( Figure 8). The observation of all the electronic transitions makes it possible to affirm the good transfer of electrons in the system and makes this material a potential candidate for photovoltaic applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention concerns a method for preparing a zinc oxide particle comprising at least one phthalocyanine derivative, said method comprising a step consisting of condensing a silicon or titanium phthalocyanine derivative with a zinc oxide particle, in the presence of an organic solvent. The present invention also concerns the zinc oxide particle functionalised at the surface and covalently by a phthalocyanine derivative prepared in this way, and the uses of same.

Description

PROCÉDÉ DE PRÉPARATION D'UN MATÉRIAU HYBRIDE ZnO/ORGANIQUE, LEDIT  PROCESS FOR PREPARING ZNO / ORGANIC HYBRID MATERIAL, LEDIT
MATÉRIAU ET SES UTILISATIONS  MATERIAL AND USES
DESCRIPTION DOMAINE TECHNIQUE DESCRIPTION TECHNICAL FIELD
La présente invention appartient au domaine technique des pa rticules d'oxyde de zinc (ZnO) et notamment des nanoparticules de ZnO comprenant des colorants de type phtalocyanine. The present invention belongs to the technical field of zinc oxide (ZnO) particles and in particular ZnO nanoparticles comprising phthalocyanine dyes.
En effet, la présente invention concerne un procédé permettant de préparer des particules de ZnO et, plus particulièrement, des nanoparticules de ZnO fonctionnalisées, en surface et de façon covalente, avec des colorants de type phtalocyanine.  Indeed, the present invention relates to a process for preparing ZnO particles and, more particularly, ZnO nanoparticles functionalized, surface and covalently, with phthalocyanine dyes.
La présente invention concerne également les particules de ZnO et, plus particulièrement, les nanoparticules de ZnO fonctionnalisées obtenues par ce procédé et leurs différentes utilisations.  The present invention also relates to the ZnO particles and, more particularly, the functionalized ZnO nanoparticles obtained by this method and their various uses.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Récemment un intérêt croissant a été porté aux films moléculaires de type hydride ZnO+organique afin de les incorporer dans des technologies électroniques et photoniques bas-coût comme les cellules solaires, les diodes électroluminescentes (DEL ou LED pour « Light-Emitting Diode ») ou encore les capteurs. Recently, there has been increasing interest in organic ZnO + hydride molecular films to incorporate them into low-cost electronic and photonic technologies such as solar cells, light-emitting diodes (LEDs), or LEDs. still the sensors.
Ces matériaux combinent l'important système conjugué (ou électronique) de la petite molécule organique avec la structure et la stabilité chimique du composé inorganique (ZnO). De plus, la combinaison de ces deux matériaux en couches nanométriques successives a prouvé l'amélioration drastique du phénomène de transport de charge et des propriétés électroniques.  These materials combine the important conjugated (or electronic) system of the small organic molecule with the structure and chemical stability of the inorganic compound (ZnO). Moreover, the combination of these two materials in successive nanometric layers has proved the drastic improvement of the charge transport phenomenon and the electronic properties.
L'interface des structures hétérogènes composées de ces deux matériaux en films fins joue un rôle majeur dans l'efficacité du système afin d'assurer le tra nsport d'électrons à travers la structure du système de couches, aussi appelé le mécanisme de transfert d'électrons photo-induits. The interface of the heterogeneous structures composed of these two materials in thin films plays a major role in the efficiency of the system in order to ensure the transport of electrons through the structure of the layer system, also called the photo-induced electron transfer mechanism.
Il est important de noter que la réponse photovoltaïque de ces systèmes tels que des cellules solaires est due à la formation d'un réseau interconnecté entre le donneur (p-type molécule organique) et l'accepteur (n-type ZnO).  It is important to note that the photovoltaic response of these systems such as solar cells is due to the formation of an interconnected network between the donor (p-type organic molecule) and the acceptor (n-type ZnO).
Plusieurs techniques sont couramment utilisées pour réaliser ces couches et dépôts successifs, parmi lesquelles on peut citer l'adsorption électrostatique et l'électrodéposition. Ces techniques peuvent être mises en œuvre avec des colorants tels que des dérivés de phtalocyanine ou de porphyrine, comme molécules organiques.  Several techniques are commonly used to achieve these layers and successive deposits, among which include electrostatic adsorption and electrodeposition. These techniques can be implemented with dyes such as phthalocyanine or porphyrin derivatives, as organic molecules.
Karan et Mallik décrivent la préparation de films de phtalocyanine de cuivre Karan and Mallik describe the preparation of copper phthalocyanine films
(CuPc) sur des films de nanoparticules de ZnO déposées sur du verre revêtu d'ITO (pour « Iron Tin Oxide ») [1]. Le procédé utilisé pour déposer la couche de CuPc sur la couche de ZnO est appelé procédé d'évaporation thermique. Un tel procédé nécessite des conditions particulières telles qu'une pression basse (10"6 torr). La morphologie de la couche de CuPc montre que cette dernière se présente sous forme de nanoparticules, d'agrégats et/ou de nanobâtonnets, en fonction de la température de recuit à laquelle elle a été soumise. (CuPc) on ZnO nanoparticle films deposited on glass coated with ITO (for "Iron Tin Oxide") [1]. The process used to deposit the CuPc layer on the ZnO layer is called the thermal evaporation process. Such a process requires special conditions such as a low pressure (10 -6 torr) .The morphology of the CuPc layer shows that the latter is in the form of nanoparticles, aggregates and / or nanobaglets, depending on the annealing temperature to which it has been subjected.
En variante, Cruickshank et al. décrivent l'électrodéposition de nanoparticules de ZnO sur des films moléculaires de CuPc [2]. L'électrodépôt mettant en œuvre une solution aqueuse, saturée en oxygène et comprenant 5 mM de Zn(N03)2 et 0,1 M KCI est effectué à 80°C. Alternatively, Cruickshank et al. describe the electroplating of ZnO nanoparticles on CuPc molecular films [2]. The electrodeposition using an aqueous solution, saturated with oxygen and comprising 5 mM Zn (NO 3 ) 2 and 0.1 M KCl is carried out at 80 ° C.
La synthèse d'agrégats de CuPc :ZnO est décrite par Sharma et al., 2006 [3]. Le ZnO et la CuPc sont mélangés, dans un rapport 1/10 exprimé en masse, en utilisant du méthanol comme solvant et ce, pendant 12 h à 75°C. Dans les agrégats ainsi obtenus, la CuPc est adsorbée en surface du ZnO par des liaisons faibles électrostatiques par affinité The synthesis of CuPc: ZnO aggregates is described by Sharma et al., 2006 [3]. ZnO and CuPc are mixed, in a ratio 1/10 expressed by mass, using methanol as solvent and this, for 12 h at 75 ° C. In the aggregates thus obtained, CuPc is adsorbed on the surface of ZnO by weak affinity electrostatic bonds.
(PcCu => OZn). (PcCu => OZn).
Au contraire, Hiromitsu et al. décrit un procédé permettant d'obtenir des matériaux hybrides dans lesquels les molécules organiques sont liées de façon covalente au ZnO [4]. Toutefois, le procédé décrit par Hiromitsu et al. implique une étape de fonctionnalisation des nanoparticules de ZnO par de la L-cystéine. Grâce à cette fonctionnalisation, les macrocycles aromatiques de type porphyriniques peuvent être ancrés sur des nanoparticules de ZnO via des ponts de L-cystéines. Ainsi, l'obtention d'une liaison de type covalente n'est obtenue qu'en rendant le procédé de préparation plus long et plus complexe. On the contrary, Hiromitsu et al. describes a process for obtaining hybrid materials in which the organic molecules are covalently bound to ZnO [4]. However, the method described by Hiromitsu et al. involves a step of functionalization of ZnO nanoparticles by L-cysteine. Thanks to that functionalization, porphyrinic aromatic macrocycles can be anchored on ZnO nanoparticles via L-cysteine bridges. Thus, obtaining a covalent type bond is obtained only by making the preparation process longer and more complex.
Au vu de l'intérêt croissant des matériaux hydrides ZnO / molécules organiques, les inventeurs se sont fixés pour but de proposer un procédé simple, pratique et applicable au niveau industriel pour préparer de tels matériaux qui ne présentent pas les inconvénients des procédés listés ci-dessus.  In view of the growing interest of ZnO / organic molecules, the inventors have set themselves the goal of proposing a simple, practical and industrially applicable method for preparing such materials which do not have the disadvantages of the processes listed below. above.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
La présente invention permet de remédier aux inconvénients et problèmes techniques listés ci-dessus. En effet, cette dernière propose un procédé de préparation de matériaux particulaires à base d'oxyde de zinc et comprenant des dérivés de phtalocyanine, ledit procédé ne nécessitant pas de procédés ou d'étapes lourd(e)s et utilisant des produits facilement accessibles, non dangereux et peu toxiques. De fait, le procédé selon l'invention est non seulement un procédé bas-coût, mais a ussi un procédé ajustable à grande échelle ou échelle pilote et donc applicable industriellement. Le procédé selon la présente invention présente en outre l'avantage de pouvoir être mis en œuvre à température et pression ambiantes. The present invention overcomes the disadvantages and technical problems listed above. Indeed, the latter proposes a process for preparing particulate materials based on zinc oxide and comprising phthalocyanine derivatives, said process not requiring heavy processes or steps and using easily accessible products, not dangerous and not very toxic. In fact, the method according to the invention is not only a low-cost process, but has also an adjustable process on a large scale or pilot scale and therefore industrially applicable. The method according to the present invention also has the advantage of being able to be implemented at ambient temperature and pressure.
Les travaux des inventeurs ont mis en évidence que l'utilisation de dérivés de phtalocyanine de silicium ou de tita ne permet de s'affranchir des systèmes de multicouche en fonctionnalisant directement des particules de ZnO avec une molécule organique de type dérivé de phtalocyanine.  The work of the inventors has demonstrated that the use of silicon phthalocyanine derivatives or tita does not overcome the multilayer systems by directly functionalizing ZnO particles with a phthalocyanine-derived organic molecule.
En effet, l'utilisation de dérivés de phtalocyanine de silicium ou de tita ne permet d'obtenir des particules de ZnO et notamment des nanoparticules de ZnO fonctionnalisées en surface et de façon covalente par condensation surfacique du macrocycle organique. La mise en œuvre de liaisons covalentes assure le tra nsport d'électrons et un bon interface entre le système organique et inorganique. Dans la présente invention, de par sa nature i.e. électronique, la liaison électronique résultant de la condensation de la molécule organique en surface du ZnO valide le transfert d'électrons. Indeed, the use of phthalocyanine derivatives of silicon or tita makes it possible to obtain ZnO particles and in particular ZnO nanoparticles functionalised on the surface and covalently by surface condensation of the organic macrocycle. The implementation of covalent bonds ensures the transport of electrons and a good interface between the organic and inorganic system. In the present invention, by its nature ie electronic, the electronic bond resulting from the condensation of the organic molecule on the surface of the ZnO validates the electron transfer.
La présente invention décrit la synthèse de particules de ZnO fonctionnalisées en surface (liaisons covalentes électroniques) avec un dérivé de phthalocyanine de silice ou de titane par condensation de ce dernier en solution organique.  The present invention describes the synthesis of surface-functionalized ZnO particles (electronic covalent bonds) with a phthalocyanine derivative of silica or titanium by condensation of the latter in organic solution.
En effet, la phthalocyanine possède une cavité centrale permettant l'incorporation d'un grand nombre d'atomes, entre autres le silicium ou le titane. L'atome de silicium (ou de titane) étant tétravalent, et nécessitant deux liaisons pour son incorporation dans la cavité et le plan du macrocycle aromatique de phthalocyanine, deux liaisons restent disponibles. Ces deux liaisons sont axiales au plan défini par l'atome de silicium et la phthalocyanine, et sont généralement terminées par des fonctions telles que des fonctions hydroxyles, carboxyles, chlorures ou fluorures. Ces fonctions étant réactives, elles participent comme réactifs à la synthèse sol-gel de particules de ZnO surfaciquement dopées.  Indeed, phthalocyanine has a central cavity allowing the incorporation of a large number of atoms, including silicon or titanium. The silicon (or titanium) atom being tetravalent, and requiring two bonds for its incorporation into the cavity and the plane of the phthalocyanine aromatic macrocycle, two bonds remain available. These two bonds are axial to the plane defined by the silicon atom and phthalocyanine, and are generally terminated by functions such as hydroxyl functions, carboxyl, chlorides or fluorides. These functions being reactive, they participate as reagents in the sol-gel synthesis of surface-doped ZnO particles.
Ainsi, la présente invention concerne un procédé de préparation d'une particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine, ledit procédé comprenant une étape consistant à condenser un dérivé de phtalocyanine de silicium ou de titane de formule (I) : Thus, the present invention relates to a method for preparing a zinc oxide particle comprising at least one phthalocyanine derivative, said process comprising a step of condensing a phthalocyanine derivative of silicon or titanium of formula (I):
Figure imgf000005_0001
Figure imgf000005_0001
(I) dans laquelle : (I) in which :
M représente un atome de silicium ou un atome de titane,  M represents a silicon atom or a titanium atom,
Ri, R2, R3 et R4, identiques ou différents, représentent un groupement arylène éventuellement substitué et R 1, R 2 , R 3 and R 4 , which may be identical or different, represent an optionally substituted arylene group and
- R5 et R6, identiques ou différents, sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué ou un groupement -Si(R")3 où chaque R" indépendamment représente un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué, R 5 and R 6 , which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially from 1 to 6 carbon atoms, optionally substituted or a group -Si (R ") 3 where each R" independently represents a linear or branched alkyl of 1 to 12 carbon atoms and especially 1 to 6 carbon atoms, optionally substituted,
avec une particule d'oxyde de zinc, en présence d'un solvant organique.  with a zinc oxide particle, in the presence of an organic solvent.
Par « alkyle substitué », on entend, dans le cadre des composés de formule (I), un alkyle substitué par un halogène, un groupe aminé, un groupe diamine, un groupe amide, un groupe acyle, un groupe vinyle, un groupe hydroxyle, un groupe époxy, un groupe phosphonate, un groupe acide sulfonique, un groupe isocyanate, un groupe carboxyle, un groupe thiol (ou mercapto), un groupe glycidoxy ou un groupe acryloxy et notamment un groupe méthacryloxy. Avantageusement, R' représente un méthyle ou un éthyle. By "substituted alkyl" is meant, in the context of the compounds of formula (I), an alkyl substituted by a halogen, an amino group, a diamine group, an amide group, an acyl group, a vinyl group or a hydroxyl group. , an epoxy group, a phosphonate group, a sulfonic acid group, an isocyanate group, a carboxyl group, a thiol (or mercapto) group, a glycidoxy group or an acryloxy group and in particular a methacryloxy group. Advantageously, R 'represents a methyl or an ethyl.
Par « groupement arylène », on entend dans le cadre de la présente invention une structure carbonée aromatique ou hétéroaromatique, éventuellement mono- ou polysubstituée, constituée d'un ou plusieurs cycles aromatiques ou hétéroaromatiques comportant chacun de 3 à 8 atomes, le (ou les) hétéroatome(s) pouvant être N, 0, P ou S.  For the purposes of the present invention, the term "arylene group" means an aromatic or heteroaromatic carbon structure, optionally mono- or polysubstituted, consisting of one or more aromatic or heteroaromatic rings each comprising from 3 to 8 atoms, the (or ) heteroatom (s) which can be N, O, P or S.
Par « arylène substitué », on entend un groupement arylène qui peut être mono- ou polysubstitué par un groupement choisi dans le groupe constitué par un carboxylate ; un aldéhyde ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. Avantageusement, les groupements Ri, R2, R3 et R4 sont identiques ou différents, chacun représentant un phénylène, un naphthylène ou un anthracène. Plus particulièrement, les groupements Ri, R2, R3 et R4 sont identiques et représentent un phénylène, un naphthylène ou un anthracène. "Substituted arylene" means an arylene group which may be mono- or polysubstituted by a group selected from the group consisting of a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol. Advantageously, the groups R 1, R 2 , R 3 and R 4 are identical or different, each representing a phenylene, a naphthylene or an anthracene. More particularly, the groups R 1, R 2 , R 3 and R 4 are identical and represent a phenylene, a naphthylene or an anthracene.
En particulier, le dérivé de phtalocyanine de silicium ou de titane mis en œuvre dans le cadre de la présente invention est un composé de formule (II) : In particular, the phthalocyanine derivative of silicon or titanium used in the context of the present invention is a compound of formula (II):
Figure imgf000007_0001
Figure imgf000007_0001
(Π)  (Π)
dans laquelle :  in which :
les groupements R7 à R22, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 7 to R 22 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
M et les groupements R5 et R6 sont tels que précédemment définis. En variante, le dérivé de phtalocyanine de silicium ou de titane mis en œuvre dans le cadre de la présente invention est un composé de formule (III) du type naphtalocyanine : M and the groups R 5 and R 6 are as previously defined. As a variant, the phthalocyanine derivative of silicon or titanium used in the context of the present invention is a compound of formula (III) of the naphthalocyanine type:
Figure imgf000008_0001
Figure imgf000008_0001
(III)  (III)
dans laquelle :  in which :
les groupements R23 à R46, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol, the groups R 2 3 to R 46 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol,
M et les groupements R5 et R6 sont tels que précédemment définis. Un composé de formule (I II) préféré dans le cadre de la présente invention est le composé dans lequel les groupements R23 à R46 représentent un hydrogène et les groupements R5 et R6 sont tels que précédemment définis. M and the groups R 5 and R 6 are as previously defined. A compound of formula (I II) that is preferred in the context of the present invention is the compound in which the groups R 23 to R 46 represent a hydrogen and the groups R 5 and R 6 are as previously defined.
Dans les formules (I), (I I) et (I I I), les liaisons en pointillé représentent des liaisons de coordination ou des liaisons datives.  In the formulas (I), (I I) and (I I I), the dotted bonds represent coordination bonds or dative bonds.
Dans un 1er mode de réalisation, lorsque M représente un atome de silicium, les groupements R5 et R6 dans les composés de formule (I), (I I) ou (I I I) sont identiques et sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de ca rbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué ou un groupement — Si(R")3 où chaque R" indépendamment représente un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué. Avantageusement, les groupements R", identiques ou différents, sont choisis parmi un méthyle, un éthyle, un propyle, un cyclopropyle, un butyle, un cyclobutyle, un heptyle, un cycloheptyle, un hexyle et un cyclohexyle. Les groupements R5 et R6 sont notamment choisis dans le groupe constitué par -Cl, -F, -OH, -OCH3, -OC2H5, -0-Si(CH3)3, -0-Si(C2H5)3, -0-Si(C3H7)3, -0-Si(C4H9)3, -0-Si(C5Hn)3 et -0-Si(C6Hi3)3. Les groupements R", identiques ou différents, sont choisis parmi un méthyle, un éthyle, un propyle, un cyclopropyle, un butyle, un cyclobutyle, un heptyle, un cycloheptyle, un hexyle et un cyclohexyle. De préférence, les groupements R5 et R6 sont identiques. In a 1 st embodiment, when M represents a silicon atom, the groups R 5 and R 6 in the compounds of formula (I), (II) or (III) are identical and are selected from the group consisting of - C1, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted or a group - Si (R " ) 3 wherein each R "independently represents an alkyl, linear or branched, of 1 to 12 carbon atoms and especially from 1 to 6 carbon atoms, optionally substituted. Advantageously, the groups R ", identical or different, are chosen from methyl, ethyl, propyl, cyclopropyl, butyl, cyclobutyl, heptyl, cycloheptyl, hexyl and cyclohexyl. The groups R 5 and R 6 are especially selected from the group consisting of -Cl, -F, -OH, -OCH 3 , -OC 2 H 5 , -O-Si (CH 3 ) 3 , -O-Si (C 2 H 5 ) 3 , -O-Si (C 3 H 7 ) 3 , -O-Si (C 4 H 9 ) 3 , -O-Si (C 5 Hn) 3 and -O-Si (C 6 H 3 ) 3 . ", identical or different, are selected from methyl, ethyl, propyl, cyclopropyl, butyl, cyclobutyl, heptyl, cycloheptyl, hexyl and cyclohexyl. Preferably, the groups R 5 and R 6 are identical.
Dans un 2nd mode de réalisation, lorsque M représente un atome de titane, les groupements R5 et R6 dans les composés de formule (I), (I I) ou (I I I) sont identiques et sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de ca rbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué et notamment choisi da ns le groupe constitué par -Cl, -F, -OH, -OCH3 et -OC2H5. Plus particulièrement, les groupements R5 et R6 dans les composés de formule (I), (I I) ou (I II) sont identiques et représentent -Cl. Les composés de formule (II) ou (III) tout particulièrement utilisables dans le cadre de la présente invention sont : In a 2 nd embodiment, when M represents a titanium atom, the groups R 5 and R 6 in the compounds of formula (I), (II) or (III) are identical and are chosen from the group consisting of: C1, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms and especially 1 to 6 carbon atoms, optionally substituted and in particular chosen from the group consisting of by -Cl, -F, -OH, -OCH 3 and -OC 2 H 5 . More particularly, the groups R 5 and R 6 in the compounds of formula (I), (II) or (I II) are identical and represent -Cl. The compounds of formula (II) or (III) that can be used particularly in the context of the present invention are:
le composé de formule (IV) qu'est le chlorure de phtalocyanine de titane non substitué correspondant à un composé de formule (II) dans laquelle, M représente un atome de titane, les groupements R7 à R22 représentent tous un hydrogène et les groupements R5 et R6 sont -Cl : the compound of formula (IV) which is unsubstituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which, M represents a titanium atom, the groups R 7 to R 22 all represent a hydrogen and the groups R 5 and R 6 are -Cl:
Figure imgf000010_0001
le composé de formule (V) qu'est le chlorure de phtalocyanine de titane substitué périphériquement correspondant à un composé de formule (II) dans laquelle M représente un atome de titane, les groupements R5 et R6 sont -Cl, les groupements R7, Rio, Rn, Ri4, Ris, Ris, R19 et R22 représentent tous un hydrogène et les groupements R8, Rg, Ri2, R13, Ri6, R17, R2o et R2i sont identiques et choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol :
Figure imgf000010_0001
the compound of formula (V) which is the peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which M represents a titanium atom, the groups R 5 and R 6 are -Cl, the groups R 7, Rio, Rn, Ri4, Ris, Ris, R19 and R 22 are all hydrogen and the groups R 8, Rg, R 2, R13, Ri6, R17, R 2 o and R 2i are identical and chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol:
Figure imgf000011_0001
le composé de formule (VI) qu'est le chlorure de phtalocyanine de titane substitué non-périphériquement correspondant à un composé de formule (I I) da ns laquelle M représente un atome de titane, les groupements R5 et R6 sont -Cl, les groupements R8, Rg, R12, R13, Ri6, R17, R20 et R2i représentent tous un hydrogène et les groupements R7, Rio, Ru, Ri4, R15, Ris, R19 et R22 sont identiques et choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol :
Figure imgf000011_0001
the compound of formula (VI) which is non-peripherally substituted titanium phthalocyanine corresponding to a compound of formula (II) in which M represents a titanium atom, the groups R 5 and R 6 are -Cl, the groups R 8, Rg, R12, R13, Ri6, R17, R20 and R 2i are all hydrogen and the R 7 groups, Rio, Ru, Ri 4, R15, Ris, R19 and R 22 are identical and selected from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol:
Figure imgf000011_0002
le composé de formule (VII) correspondant à un composé de formule (II) dans laquelle M représente un atome de silicium, les groupements R23 à R46 représentent tous un hydrogène et les groupements R5 et R6 sont identiques et représentent un groupement
Figure imgf000011_0002
the compound of formula (VII) corresponding to a compound of formula (II) in which M represents a silicon atom, the groups R 23 to R 46 all represent a hydrogen and the groups R 5 and R 6 are identical and represent a grouping
-0-Si[CH2(CH2)4CH3]3 ; -O-Si [CH 2 (CH 2 ) 4 CH 3 ] 3 ;
un complexe phtalocyaninatodichlorosilane correspondant à un composé de formule (II) dans laquelle M représente un atome de silicium, les groupements R7 à R22 représentent tous un hydrogène et les groupements R5 et R6 sont - Cl, un complexe phtalocyaninadihydroxysilane correspondant à un composé de formule (II) dans laquelle M représente un atome de silicium, les groupements R7 à R22 représentent tous un hydrogène et les groupements R5 et R6 sont -OH, un complexe phtalocyaninadifluoroxysilane correspondant à un composé de formule (II) dans laquelle M représente un atome de silicium, les groupements R7 à R22 représentent tous un hydrogène et les groupements R5 et R6 sont -F, un complexe naphtalocyaninatodichlorosilane correspondant à un composé de formule (III) dans laquelle M représente un atome de silicium, les groupements R23 à R46 représentent tous un hydrogène et les groupements R5 et R6 sont -Cl, un complexe naphtalocyaninatodihydroxysilane correspondant à un composé de formule (III) dans laquelle M représente un atome de silicium, les groupements R23 à R46 représentent tous un hydrogène et les groupements R5 et R6 sont -OH et un complexe naphtalocyaninatodifluoroxysilane correspondant à un composé de formule (III) dans laquelle M représente un atome de silicium, les groupements R23 à R46 représentent tous un hydrogène et les groupements R5 et R6 sont -F. Ces complexes peuvent être représentés avec R représentant -OH, -Cl ou -F de la façon suivante :
Figure imgf000013_0001
a phthalocyaninatodichlorosilane complex corresponding to a compound of formula (II) in which M represents a silicon atom, the groups R 7 to R 22 all represent a hydrogen and the groups R 5 and R 6 are -Cl, a phthalocyanine-hydroxysilane complex corresponding to a compound of formula (II) in which M represents a silicon atom, the groups R 7 to R 22 all represent a hydrogen and the groups R 5 and R 6 are -OH, a phthalocyaninadifluoroxysilane complex corresponding to a compound of formula (II) in which M represents a silicon atom, the groups R 7 to R 22 all represent a hydrogen and the groups R 5 and R 6 are -F, a naphthalocyaninatodichlorosilane complex corresponding to a compound of formula (III) in which M represents an atom of silicon, the groups R 23 to R 46 are all hydrogen and the groups R 5 and R 6 are -Cl, a naphthalocyaninatodihydroxysilane complex corresponding to a compound of formula (III) in which M represents a silicon atom, the groups R 23 to R 46 are all hydrogen and the groups R 5 and R 6 are -OH and a naphthalocyaninatodifluoroxysilane complex corresponding to a compound of formula (III) wherein M represents a silicon atom, the R 23 to R 46 groups all represent a hydrogen and the groups R 5 and R 6 are -F. These complexes can be represented with R representing -OH, -Cl or -F as follows:
Figure imgf000013_0001
Par « condensation », on entend, dans le cadre de la présente invention, la réaction chimique permettant de combiner la particule de ZnO avec un dérivé de phtalocyanine de silicium ou de titane tel que précédemment défini de façon à obtenir, d'une part, une particule de ZnO comprenant au moins un dérivé de phtalocyanine et, d'autre part, une molécule simple. Cette réaction de condensation peut être schématisée de la façon suivante : By "condensation" is meant, in the context of the present invention, the chemical reaction for combining the ZnO particle with a phthalocyanine derivative of silicon or titanium as previously defined so as to obtain, on the one hand, a ZnO particle comprising at least one phthalocyanine derivative and, secondly, a single molecule. This condensation reaction can be schematized as follows:
Pc-R6 + NP-ZnOH -> NP-Zn-O-Pc + R6H Pc-R 6 + NP-ZnOH -> NP-Zn-O-Pc + R 6 H
Dans cette schématisation, Pc-R6 correspond au dérivé de phtalocyanine de silicium ou de titane tel que précédemment défini avec R6 représentant le groupement substituant l'atome de silicium ou de titane tel que précédemment défini. De plus, NP- ZnOH correspond à la particule et notamment à la nanoparticule d'oxyde de zinc qui porte à sa surface au moins un groupement ZnOH. Ainsi, NP-Zn-O-Pc représente le matériau particulaire à base d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine obtenu par mise en œuvre du procédé de l'invention. Plus particulièrement, NP-Zn-O-Pc représente une particule et notamment une nanoparticule d'oxyde de zinc avec un dérivé de phtalocyanine greffé de façon covalente au niveau de la surface de ladite (nano)particule, comme représenté à la Figure 1. Le procédé selon l'invention comprend, plus particulièrement, les étapes successives suivantes : In this schematization, Pc-R 6 corresponds to the phthalocyanine derivative of silicon or titanium as defined above with R 6 representing the substituent group for the silicon or titanium atom as previously defined. In addition, NP-ZnOH corresponds to the particle and in particular to the zinc oxide nanoparticle which carries on its surface at least one ZnOH group. Thus, NP-Zn-O-Pc represents the particulate material based on zinc oxide comprising at least one phthalocyanine derivative obtained by carrying out the process of the invention. More particularly, NP-Zn-O-Pc represents a particle and in particular a zinc oxide nanoparticle with a phthalocyanine derivative grafted covalently at the surface of said (nano) particle, as represented in FIG. method according to the invention comprises, more particularly, the following successive steps:
a) éventuellement préparer une particule d'oxyde de zinc,  a) optionally preparing a zinc oxide particle,
b) mettre en contact la particule d'oxyde de zinc éventuellement préparée à l'étape (a) avec un dérivé de phtalocyanine de silicium ou de titane tel que précédemment défini en présence d'un solvant organique, moyennant quoi ledit dérivé de phtalocyanine de silicium ou de titane condense avec ladite particule d'oxyde de zinc et une particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine est obtenue, et  b) contacting the zinc oxide particle optionally prepared in step (a) with a phthalocyanine derivative of silicon or titanium as defined above in the presence of an organic solvent, whereby said phthalocyanine derivative of silicon or titanium condenses with said zinc oxide particle and a zinc oxide particle comprising at least one phthalocyanine derivative is obtained, and
c) récupérer la particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine, obtenue lors de l'étape (b).  c) recovering the zinc oxide particle comprising at least one phthalocyanine derivative obtained in step (b).
L'étape (a) du procédé est optionnelle. En effet, le procédé selon la présente invention peut être mis en œuvre à partir de particules de ZnO préalablement préparées, voire commerciales. Les particules de ZnO mises en œuvre dans le cadre de la présente invention peuvent présenter des formes variées, telles que formes sphéroïdes, ellipsoïdes, hexagonales, de bâtonnets ou en étoile. La distribution granulométrique moyenne des particules de ZnO mises en œuvre est comprise entre 10 nm et 1 μιη et notamment entre 20 et 900 μιη. On peut donc parler de nanoparticules d'oxyde de zinc. Step (a) of the process is optional. Indeed, the method according to the present invention can be implemented from previously prepared or commercial ZnO particles. The ZnO particles used in the context of the present invention may have various forms, such as spheroidal, ellipsoid, hexagonal, rod or star shapes. The average particle size distribution of the ZnO particles used is between 10 nm and 1 μιη and in particular between 20 and 900 μιη. We can therefore speak of nanoparticles of zinc oxide.
Lorsque, dans le procédé selon l'invention, l'étape (a) n'est pas optionnelle, toute technique connue de l'homme du métier pour préparer des particules de ZnO peut être utilisée. La partie expérimentale ci-après et la publication [4] présentent des exemples de telles techniques.  When, in the process according to the invention, step (a) is not optional, any technique known to those skilled in the art to prepare ZnO particles may be used. The experimental section below and the publication [4] present examples of such techniques.
De façon avantageuse, préalablement à la mise en œuvre de l'étape (b) du procédé selon l'invention, les particules de ZnO se présentent sous forme d'une dispersion ou suspension dans un solvant organique. Tout solvant organique est utilisable pour cette dispersion ou suspension. Avantageusement, le solvant organique utilisé est un solvant organique apolaire ou polaire aprotique. En particulier, le solvant organique dans lequel les particules de ZnO sont dispersées est choisi dans le groupe constitué par le dichlorométhane, le chloroforme, le pentane, le cyclopentane, l'hexane, le cyclohexane, le benzène, le 1,2-dichlorobenzène, le toluène, la diméthylformamide (DMF), l'acétone, l'acétate d'éthyle, le carbonate de propylène, le tétrahydrofurane (THF), le 1,4-dioxane, l'éther diéthylique, l'acétonitrile, le diméthyl sulfoxyde (DMSO) ou un de leurs mélanges. Plus particulièrement, le solvant organique dans lequel les particules de ZnO sont dispersées est le 1,2-dichlorobenzène. Advantageously, prior to the implementation of step (b) of the process according to the invention, the ZnO particles are in the form of a dispersion or suspension in an organic solvent. Any organic solvent is usable for this dispersion or suspension. Advantageously, the organic solvent used is an aprotic or polar aprotic organic solvent. In particular, the organic solvent in which the ZnO particles are dispersed is selected from the group consisting of dichloromethane, chloroform, pentane, cyclopentane, hexane, cyclohexane, benzene, 1,2-dichlorobenzene, toluene, dimethylformamide (DMF), acetone, ethyl acetate, propylene carbonate, tetrahydrofuran (THF), 1,4-dioxane, diethyl ether, acetonitrile, dimethyl sulfoxide (DMSO) or a mixture thereof. More particularly, the organic solvent in which the ZnO particles are dispersed is 1,2-dichlorobenzene.
Les particules de ZnO sont présentes dans la suspension en une quantité comprise entre 0,5 et 10 mg/ml de solvant organique et notamment entre 1 et 5 mg/ml de solvant organique.  The ZnO particles are present in the suspension in an amount of between 0.5 and 10 mg / ml of organic solvent and in particular between 1 and 5 mg / ml of organic solvent.
La mise en contact entre les particules de ZnO et les dérivés de phtalocyanine de silicium ou de titane lors de l'étape (b) du procédé consiste à ajouter, à la dispersion ou suspension de particules de ZnO telle que précédemment définie, au moins un dérivé de phtalocyanine de silicium ou de titane tel que précédemment défini puis à mélanger la solution (S) ainsi obtenue. The contacting between the ZnO particles and the phthalocyanine derivatives of silicon or titanium during step (b) of the process consists in adding, to the dispersion or suspension of ZnO particles as defined above, at least one phthalocyanine derivative of silicon or titanium as previously defined and then mixing the solution (S) thus obtained.
Le (ou les) dérivé(s) de phtalocyanine de silicium ou de titane peu(ven)t être ajouté(s) sous forme solide, sous forme liquide ou en solution. Lorsque plusieurs dérivés de phtalocyanine de silicium ou de titane différents sont utilisés, ils peuvent être mélangés en une fois ou être ajoutés les uns après les autres ou par groupe. Avantageusement, le (ou les) dérivé(s) de phtalocyanine de silicium ou de titane se présente(nt) sous forme d'une (ou plusieurs) solution(s) contenant un (ou plusieurs) dérivé(s) de phtalocyanine de silicium ou de titane.  The phthalocyanine derivative (s) of silicon or titanium can be added in solid form, in liquid form or in solution. When several different silicon or titanium phthalocyanine derivatives are used, they may be mixed at once or added one after the other or in groups. Advantageously, the phthalocyanine derivative (s) of silicon or titanium is (are) in the form of one (or more) solution (s) containing one or more silicon phthalocyanine derivative (s). or titanium.
Dans la solution contenant un dérivé de phtalocyanine de silicium ou de titane, le solvant est un solvant organique. Avantageusement, le solvant organique utilisé pour la solution contenant un dérivé de phtalocyanine de silicium ou de titane est un solvant organique apolaire ou polaire aprotique. En particulier, le solvant organique contenant un dérivé de phtalocyanine de silicium ou de titane est choisi dans le groupe constitué par le dichlorométhane, le chloroforme, le pentane, le cyclopentane, l'hexane, le cyclohexane, le benzène, le 1,2-dichlorobenzène, le toluène, la diméthylformamide (DMF), l'acétone, l'acétate d'éthyle, le carbonate de propylène, le tétrahydrofurane (THF), le 1,4-dioxane, l'éther diéthylique, l'acétonitrile et le diméthyl sulfoxyde (DMSO) ou un de leurs mélanges. Plus particulièrement encore, le solvant organique contenant un dérivé de phtalocyanine de silicium ou de titane est le tétrahydrofurane (THF). In the solution containing a phthalocyanine derivative of silicon or titanium, the solvent is an organic solvent. Advantageously, the organic solvent used for the solution containing a phthalocyanine derivative of silicon or titanium is an aprotic polar or aprotic polar solvent. In particular, the organic solvent containing a phthalocyanine derivative of silicon or titanium is chosen from the group consisting of dichloromethane, chloroform, pentane, cyclopentane, hexane, cyclohexane, benzene, 1,2-dichlorobenzene, toluene, dimethylformamide (DMF), acetone, ethyl acetate propylene carbonate, tetrahydrofuran (THF), 1,4-dioxane, diethyl ether, acetonitrile and dimethyl sulfoxide (DMSO) or a mixture thereof. More particularly, the organic solvent containing a phthalocyanine derivative of silicon or titanium is tetrahydrofuran (THF).
Le dérivé de phtalocyanine de silicium ou de titane est présent dans la solution en une quantité comprise entre 0,5 et 10 mM et notamment entre 1 et 5 mM.  The phthalocyanine derivative of silicon or titanium is present in the solution in an amount of between 0.5 and 10 mM and especially between 1 and 5 mM.
Le solvant organique de la suspension de particules de ZnO et celui de la solution contenant un dérivé de phtalocyanine de silicium ou de titane peuvent être identiques ou différents. Lorsque ces deux solvants organiques sont identiques, le solvant organique auquel il est fait référence dans l'étape (b) du procédé selon l'invention correspond à ce solvant organique.  The organic solvent of the suspension of ZnO particles and that of the solution containing a phthalocyanine derivative of silicon or titanium may be the same or different. When these two organic solvents are identical, the organic solvent referred to in step (b) of the process according to the invention corresponds to this organic solvent.
Au contraire, lorsque le solvant organique de la suspension de particules de ZnO est différent de celui de la solution contenant un dérivé de phtalocyanine de silicium ou de titane, le solvant organique auquel il est fait référence dans l'étape (b) du procédé selon l'invention correspond au mélange de ces deux solvants. Un exemple particulier d'un tel mélange consiste en un mélange de THF et de 1,2-dichlorobenzène. Dans ce mélange, le rapport volumique entre le solvant organique de la suspension de particules de ZnO et celui de la solution contenant un dérivé de phtalocyanine de silicium ou de titane est compris entre 1/10 et 10/1, notamment entre 1/5 et 5/1 et, en particulier, entre 1/3 et 3/1.  In contrast, when the organic solvent of the suspension of ZnO particles is different from that of the solution containing a phthalocyanine derivative of silicon or titanium, the organic solvent referred to in step (b) of the process according to the invention corresponds to the mixture of these two solvents. A particular example of such a mixture is a mixture of THF and 1,2-dichlorobenzene. In this mixture, the volume ratio between the organic solvent of the suspension of ZnO particles and that of the solution containing a phthalocyanine derivative of silicon or titanium is between 1/10 and 10/1, in particular between 1/5 and 5/1 and in particular between 1/3 and 3/1.
Lors de l'étape (b) du procédé, l'ajout de la solution contenant un dérivé de phtalocyanine de silicium ou de titane à la suspension de particules de ZnO est avantageusement réalisé au moyen d'un goutte à goutte.  During step (b) of the process, the addition of the solution containing a phthalocyanine derivative of silicon or titanium to the suspension of ZnO particles is advantageously carried out by means of a dropper.
Le mélange lors de l'étape (b) du procédé est effectué sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur, et peut être mis en œuvre à une température comprise entre 10°C et 40°C, avantageusement entre 15°C et 30°C et, plus particulièrement, à température ambiante (i.e. 23°C ± 5°C) pendant une durée comprise entre 6 et 48 h, notamment entre 12 et 36 h et, en particulier, pendant 24 h. The mixture during step (b) of the process is carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and may be used at a temperature of between 10 ° C. and 40 ° C. C, advantageously between 15 ° C. and 30 ° C. and, more particularly, at room temperature ambient (ie 23 ° C ± 5 ° C) for a period of between 6 and 48 h, in particular between 12 and 36 h and, in particular, for 24 h.
Dans un mode de réalisation particulier, la solution (S) mise en œuvre lors de l'étape (b) du procédé peut contenir non seulement des particules de ZnO et un (ou plusieurs) dérivé(s différents) de phtalocyanine de silicium ou de titane mais aussi un (ou plusieurs) composé(s) à base de silane. Ce (ou ces) dernier(s) permet(tent) typiquement d'assurer une encapsulation en surface du ZnO. De plus, si le (ou un) composé à base de silane est par ailleurs fonctionnalisé ou fonctionnalisable, une telle fonctionnalisation peut permettre de conférer, aux particules, des propriétés particulières, par exemple, des propriétés hydrophiles ou hydrophobes qui peuvent être d'importance pour la mise en œuvre des particules ultérieurement. In a particular embodiment, the solution (S) implemented during step (b) of the process may contain not only particles of ZnO and one (or more) derivative (s) of silicon phthalocyanine or titanium but also one (or more) compound (s) based on silane. This (or these) last (s) typically allows to encapsulate the surface of ZnO. In addition, if the (or a) silane-based compound is moreover functionalized or functionalizable, such functionalization may make it possible to confer particular properties on the particles, for example, hydrophilic or hydrophobic properties which may be of importance. for the implementation of the particles later.
Lorsqu'un composé à base de silane ou plusieurs composés à base de silane, identiques ou différents est(sont) présent(s), il(s) est(sont) incorporé(s) dans le mélange obtenu durant l'étape (b), dans la suspension contenant les nanoparticules de ZnO et/ou dans la solution contenant un (ou plusieurs) dérivé(s différents) de phtalocyanine de silicium ou de titane. Le (ou les) composé(s) à base de silane peu(ven)t être introduit(s) sous forme solide, sous forme liquide ou en solution dans un solvant organique. Lorsque plusieurs composés à base de silane différents sont utilisés, ils peuvent être mélangés en une fois ou être ajoutés les uns après les autres ou par groupe.  When a silane compound or several silane compounds, identical or different, are present, they are incorporated into the mixture obtained during step b. ), in the suspension containing the ZnO nanoparticles and / or in the solution containing one or more different derivatives of silicon phthalocyanine or titanium. The silane-based compound (s) can be introduced in solid form, in liquid form or in solution in an organic solvent. When several different silane compounds are used, they may be mixed at one time or added one after the other or in groups.
Lorsque le (ou les) composé(s) à base de silane est(sont) utilisé(s) en solution dans un solvant organique, ce dernier peut être identique ou différent du solvant organique de la solution ou de la suspension dans laquelle la solution de composé(s) à base de silane est ajoutée.  When the silane-based compound (s) is (are) used in solution in an organic solvent, the latter may be identical to or different from the organic solvent of the solution or suspension in which the solution of silane compound (s) is added.
Avantageusement, le (ou les) composé(s) à base de silane est(sont) introduit(s) dans la solution obtenue lors de l'étape (b) sous forme liquide. Dans cette solution, le (ou les) composé(s) à base de silane est(sont) présent(s) dans une proportion comprise entre 0,1 et 40 %, notamment entre 1 et 30 % et, en particulier, entre 5 et 25 % en volume par rapport au volume total de ladite solution. Dans cette solution, le (ou les) composé(s) à base de silane présente(nt) une molarité comprise entre 100 μΜ et 400 mM, notamment entre 500 μΜ et 300 mM et, en particulier, entre 1 mM et 200 mM. Advantageously, the compound (s) based on silane is (are) introduced into the solution obtained in step (b) in liquid form. In this solution, the silane-based compound (s) is (are) present in a proportion of between 0.1 and 40%, in particular between 1 and 30% and, in particular, between and 25% by volume relative to the total volume of said solution. In this solution, the (or) silane-based compound (s) present (s) a molarity of between 100 μΜ and 400 mM, in particular between 500 μΜ and 300 mM and, in particular, between 1 mM and 200 mM.
Avantageusement, ledit (ou lesdits) composé(s) à base de silane est(sont) de formule générale SiRaRbRcRd dans laquelle Ra, Rb, Rc et Rd sont, indépendamment les uns des autres, choisis dans le groupe constitué par un hydrogène ; un halogène ; un groupe aminé ; un groupe diamine ; un groupe amide ; un groupe acyle ; un groupe vinyle ; un groupe hydroxyle ; un groupe époxy ; un groupe phosphonate ; un groupe acide sulfonique ; un groupe isocyanate ; un groupe carboxyle ; un groupe thiol (ou mercapto) ; un groupe glycidoxy ; un groupe acryloxy tel qu'un groupe méthacryloxy ; un groupe alkyle, linéaire ou ramifié, éventuellement substitué, de 1 à 12 atomes de carbone, notamment de 1 à 6 atomes de carbone ; un groupe aryle, linéaire ou ramifié, éventuellement substitué, de 4 à 15 atomes de carbone, notamment de 4 à 10 atomes de carbone ; un groupe alcoxyle de formule -ORe avec Re représentant un groupe alkyle tel que précédemment défini et leurs sels. Advantageously, said silane-based compound (s) is (are) of general formula SiR a R b R c R d in which R a , R b , R c and R d are, independently of one another selected from the group consisting of hydrogen; a halogen; an amino group; a diamine group; an amide group; an acyl group; a vinyl group; a hydroxyl group; an epoxy group; a phosphonate group; a sulfonic acid group; an isocyanate group; a carboxyl group; a thiol group (or mercapto); a glycidoxy group; an acryloxy group such as a methacryloxy group; an alkyl group, linear or branched, optionally substituted, of 1 to 12 carbon atoms, especially 1 to 6 carbon atoms; an aryl group, linear or branched, optionally substituted, of 4 to 15 carbon atoms, in particular of 4 to 10 carbon atoms; an alkoxyl group of formula -OR e with R e representing an alkyl group as defined above and their salts.
Par « éventuellement substitué », on entend, dans le cadre des groupes alkyle et aryle des composés à base de silane, substitué par un halogène, un groupe aminé, un groupe diamine, un groupe amide, un groupe acyle, un groupe vinyle, un groupe hydroxyle, un groupe époxy, un groupe phosphonate, un groupe acide sulfonique, un groupe isocyanate, un groupe carboxyle, un groupe thiol (ou mercapto), un groupe glycidoxy ou un groupe acryloxy et notamment un groupe méthacryloxy.  By "optionally substituted" is meant, in the context of alkyl and aryl groups, silane compounds substituted with halogen, amino group, diamine group, amide group, acyl group, vinyl group, hydroxyl group, an epoxy group, a phosphonate group, a sulfonic acid group, an isocyanate group, a carboxyl group, a thiol (or mercapto) group, a glycidoxy group or an acryloxy group and in particular a methacryloxy group.
En particulier, ledit (ou lesdits) composé(s) à base de silane est(sont) un (ou des) alkylsilane(s) et/ou un (ou des) alcoxysilane(s). Aussi, le composé à base de silane est, plus particulièrement, choisi dans le groupe constitué par le diméthylsilane (DMSi), le phényltriéthoxysilane (PTES), le tétraéthoxysilane (TEOS), le tétraméthoxysilane (TEMOS), le n-octyltriéthoxysilane, le n-octadécyltriéthoxysilane, le diméthyldiméthoxysilane In particular, said silane-based compound (s) is (are) alkyl (or) alkylsilane (s) and / or (or) alkoxysilane (s). Also, the silane compound is more particularly selected from the group consisting of dimethylsilane (DMSi), phenyltriethoxysilane (PTES), tetraethoxysilane (TEOS), tetramethoxysilane (TEMOS), n-octyltriethoxysilane, octadecyltriethoxysilane, dimethyldimethoxysilane
(DMDMOS), le (3-mercaptopropyl)triméthoxysilane, le (3-mercaptopropyl)triéthoxysilane, le (mercapto)-triéthoxysilane, le (3-aminopropyl)triéthoxysilane, le 3-(2- aminoéthylamino)propyltriméthoxysilane, le 3-[bis(2- hydroxyéthyl)amino]propyltriéthoxysilane, l'hexadécyltriméthoxysilane, le phényltriméthoxysilane, le N-[3-(triméthoxysilyl)propyl]-l,2-éthanediamine et l'acétoxyéthyltriéthoxysilane, le 2-hydroxy-4-(3-triéthoxysilylpropoxy)diphénylkétone, le méthyl-triéthoxysilane, le vinyltriméthoxysilane, le (3-glycidoxypropyl)triméthoxysilane, le (benzoyloxypropyl) triméthoxysilane, le 3-trihydroxysilylpropylméthyl phosphonate de sodium, l'acide (3-trihydroxysilyl)-l-propanesulphonique, le (diéthylphosphonatoéthyl) triéthoxysilane, et leurs mélanges. De façon plus particulière, le composé à base de silane est le tétraéthoxysilane (TEOS, Si(OC2H5)4). (DMDMOS), (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, (mercapto) -triethoxysilane, (3-aminopropyl) triethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- [bis (2-hydroxyethyl) amino] propyltriethoxysilane, hexadecyltrimethoxysilane, phenyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] -1,2-ethanediamine and acetoxyethyltriethoxysilane, 2-hydroxy-4- (3-triethoxysilylpropoxy) diphenyl ketone, methyltriethoxysilane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (benzoyloxypropyl) trimethoxysilane, sodium 3-trihydroxysilylpropylmethylphosphonate, (3-Trihydroxysilyl) -1-propanesulphonic acid, (diethylphosphonatoethyl) triethoxysilane, and mixtures thereof. More particularly, the silane compound is tetraethoxysilane (TEOS, Si (OC 2 H 5 ) 4 ).
Dans un autre mode de réalisation particulier de l'étape (b) du procédé selon l'invention, un (ou plusieurs) composé(s) favorisant la réaction de condensation peu(ven)t éventuellement être ajouté(s) à la solution (S) contenant des particules de ZnO, un (ou plusieurs) dérivé(s différents) de phtalocyanine de silicium ou de titane tels que précédemment définis et éventuellement un (ou plusieurs) composé(s) à base de silane tels que précédemment définis. In another particular embodiment of step (b) of the process according to the invention, one (or more) compound (s) promoting the condensation reaction may optionally be added to the solution ( S) containing ZnO particles, one (or more) different derivative (s) of silicon phthalocyanine or titanium as previously defined and optionally one (or more) compound (s) based on silane as previously defined.
Dans ce mode de réalisation, on mélange la solution contenant des particules de ZnO, un (ou plusieurs) dérivé(s différents) de phtalocyanine de silicium ou de titane et éventuellement un (ou plusieurs) composé(s) à base de silane avec une solution (S') obtenue en dissolvant au moins un composé favorisant la réaction de condensation dans un solvant organique tel que précédemment défini.  In this embodiment, the solution containing ZnO particles, one (or more) derivative (s) of phthalocyanine silicon or titanium and optionally one (or more) compound (s) containing silane with a solution (S ') obtained by dissolving at least one compound promoting the condensation reaction in an organic solvent as defined above.
La solution (S') peut être préparée avant ou simultanément à l'étape (b) du procédé selon la présente invention.  The solution (S ') can be prepared before or simultaneously with step (b) of the process according to the present invention.
Le solvant organique utilisé dans la solution (S') peut être identique au solvant organique de la solution (S) ou à un des solvants organiques de la solution (S) ou être différent de ce (ou ces) solvant(s).  The organic solvent used in the solution (S ') may be identical to the organic solvent of the solution (S) or to one of the organic solvents of the solution (S) or be different from this (or these) solvent (s).
Il convient de remarquer que par « composé favorisant la réaction de condensation », on entend un composé, de type base, permettant non seulement la condensation, avec les particules de ZnO, d'un composé à base de silane notamment tel que précédemment défini mais aussi la condensation d'un dérivé de phtalocyanine de silicium ou de titane tel que précédemment défini.  It should be noted that "compound favoring the condensation reaction" means a compound, of base type, allowing not only the condensation, with the ZnO particles, of a silane-based compound such as previously defined but also the condensation of a phthalocyanine derivative of silicon or titanium as previously defined.
Le composé favorisant la réaction de condensation est avantageusement choisi dans le groupe constitué par l'urée, la thiourée, l'ammoniaque, une aminé telle que la triméthylamine ou la triéthylamine et leurs mélanges. Le composé favorisant la réaction de condensation mis en œuvre dans le cadre de la présente invention est, plus particulièrement, de l'urée ou de l'ammoniaque. The compound that promotes the condensation reaction is advantageously chosen from the group consisting of urea, thiourea, ammonia, an amine such as trimethylamine or triethylamine and mixtures thereof. The compound promoting the condensation reaction used in the context of the present invention is, more particularly, urea or ammonia.
Le composé favorisant la réaction de condensation présente une molarité comprise entre 100 μΜ et 400 mM, notamment entre 500 μΜ et 300 mM et, en particulier, entre 1 mM et 200 mM dans la solution (S').  The compound promoting the condensation reaction has a molarity of between 100 μΜ and 400 mM, in particular between 500 μΜ and 300 mM and, in particular, between 1 mM and 200 mM in the solution (S ').
Toute technique permettant de récupérer les particules d'oxyde de zinc fonctionnalisées en surface et de façon covalente par des dérivés de phtalocyanine et éventuellement par des dérivés de silane, obtenues lors de l'étape (b) peut être mise en œuvre lors de l'étape (c) du procédé selon l'invention. Any technique making it possible to recover the surface-functionally and covalently functionalized zinc oxide particles by phthalocyanine derivatives and optionally by silane derivatives obtained during step (b) may be implemented during the step (c) of the process according to the invention.
Avantageusement, cette étape (c) met en œuvre une ou plusieurs étapes, identiques ou différentes, choisies parmi les étapes de centrifugation, de sédimentation et de lavage. La (ou les) étape(s) de lavage est(sont) effectuée(s) dans un solvant polaire. Par « solvant polaire », on entend dans le cadre de la présente invention un solvant choisi dans le groupe constitué par l'eau, l'eau dé-ionisée, l'eau distillée, acidifiées ou basiques, les solvants hydroxylés comme le méthanol et l'éthanol, les glycols liquides de faible poids moléculaire tels que l'éthylèneglycol, le diméthylsulfoxyde (DMSO), l'acétonitrile, l'acétone, le tétrahydrofurane (THF) et leurs mélanges.  Advantageously, this step (c) implements one or more steps, identical or different, chosen from the centrifugation, sedimentation and washing steps. The washing step (s) is (are) carried out in a polar solvent. By "polar solvent" is meant in the context of the present invention a solvent selected from the group consisting of water, deionized water, distilled water, acidified or basic, hydroxylated solvents such as methanol and ethanol, low molecular weight liquid glycols such as ethylene glycol, dimethyl sulfoxide (DMSO), acetonitrile, acetone, tetrahydrofuran (THF) and mixtures thereof.
Lorsque l'étape de récupération met en œuvre plusieurs lavages, un même solvant polaire est utilisé pour plusieurs voire pour tous les lavages ou plusieurs solvants polaires différents sont utilisés à chaque lavage. Concernant une (ou plusieurs) étape(s) de centrifugation, elle(s) peu(ven)t être mise(s) en œuvre en centrifugeant les particules de ZnO fonctionnalisées notamment dans un solvant de lavage à température ambiante, à une vitesse comprise entre 4000 et 8000 rpm et, en particulier, de l'ordre de 6000 rpm (i.e. 6000 ± 500 rpm) et ce, pendant une durée comprise entre 5 min et 2 h, notamment entre 10 min et 1 h et, en particulier, pendant 15 min. Le procédé selon la présente invention peut comprendre, suite à l'étape (c), une étape supplémentaire consistant à purifier les particules de ZnO fonctionnalisées obtenues ci-après désignée « étape (d) ». When the recovery step uses several washes, the same polar solvent is used for several or even all washes or several different polar solvents are used at each wash. Regarding one (or more) centrifugation stage (s), it (s) can be implemented by centrifuging the functionalized ZnO particles in particular in a wash solvent at room temperature, at a speed of between 4000 and 8000 rpm and, in particular, of the order of 6000 rpm (ie 6000 ± 500 rpm) and this, for a period of between 5 min and 2 h, in particular between 10 min and 1 h and, in particular, for 15 minutes. The method according to the present invention may comprise, following step (c), an additional step of purifying the functionalized ZnO particles obtained hereinafter referred to as "step (d)".
Avantageusement, cette étape (d) consiste à mettre les particules de ZnO fonctionnalisées récupérées après l'étape (c) du procédé selon l'invention au contact d'un très large volume d'eau. Par « très large volume », on entend un volume supérieur d'un facteur 50, notamment d'un facteur 500 et, en particulier, d'un facteur 1000 au volume de particules d'oxyde de titane, récupérées après l'étape (c) du procédé selon l'invention. L'étape (d) peut être une étape de dialyse, les particules de ZnO fonctionnalisées étant séparées du volume par une membrane de cellulose, du type Spectra/Por® - MWCO3500 (Fiers). Alternativement, on peut prévoir une étape d'ultrafiltration à la place de l'étape de dialyse, via une membrane en polyéthersulfone. Advantageously, this step (d) consists in putting the functionalized ZnO particles recovered after step (c) of the process according to the invention in contact with a very large volume of water. By "very large volume" is meant a volume greater by a factor of 50, in particular by a factor of 500 and, in particular, by a factor of 1000 to the volume of particles of titanium oxide, recovered after the step ( c) the process according to the invention. Step (d) may be a dialysis step, the functionalized ZnO particles being separated from the volume by a cellulose membrane, of the Spectra / Por ® - MWCO3500 (Proud) type. Alternatively, an ultrafiltration step can be provided in place of the dialysis step, via a polyethersulfone membrane.
L'étape (d) peut, de plus, être mise en œuvre sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur, à une température comprise entre 0°C et 30°C, avantageusement entre 2°C et 20°C et, plus particulièrement, à froid (i.e. 6°C ± 2°C) et ce, pendant une durée comprise entre 30 h et 15 j, notamment entre 3 j et 10 j et, en particulier, pendant 1 semaine.  Step (d) may, in addition, be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, at a temperature between 0 ° C. and 30 ° C., advantageously between 2 ° C. ° C and 20 ° C and, more particularly, cold (ie 6 ° C ± 2 ° C) and this, for a period of between 30 hours and 15 days, especially between 3 and 10 days and, in particular, during 1 week.
La présente invention concerne, de plus, une particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine susceptible d'être préparée par le procédé de la présente invention. The present invention further relates to a zinc oxide particle comprising at least one phthalocyanine derivative capable of being prepared by the process of the present invention.
La particule selon la présente invention se distingue des particules de ZnO de l'état de la technique de par la présence du dérivé de phtalocyanine au niveau de la seule surface de la particule de ZnO et la nature de la liaison covalente liant le dérivé de phtalocyanine à la particule de ZnO sans qu'un pont organique du type cystéine ne soit nécessaire.  The particle according to the present invention is distinguished from the prior art ZnO particles by the presence of the phthalocyanine derivative at the single surface of the ZnO particle and the nature of the covalent bond linking the phthalocyanine derivative. to the ZnO particle without the need for an organic cysteine bridge.
Plus particulièrement, les dérivés de phtalocyanine et éventuellement les dérivés de silane forment à la surface des particules de ZnO une monocouche du type SAM (pour « Self-Assembled Monolayers ») ou une très fine couche dont l'épaisseur est inférieure à 10 nm et notamment inférieure à 5 nm. Les particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine selon l'invention se présentent sous forme de nanoparticules puisqu'obtenues avantageusement à partir de nanoparticules de ZnO. Ainsi, les particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine peuvent présenter des formes variées, telles que formes sphéroïdes, ellipsoïdes, hexagonales, de bâtonnets ou en étoile. La distribution granulométrique moyenne des particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine est comprise entre 10 nm et 1,2 μιη et notamment entre 20 nm et 1 μιη. More particularly, the phthalocyanine derivatives and optionally the silane derivatives form, on the surface of the ZnO particles, a SAM-type monolayer (for "self-assembled monolayers") or a very thin layer whose thickness is less than 10 nm and especially less than 5 nm. The functionalized ZnO particles, surface and covalently, by phthalocyanine derivatives according to the invention are in the form of nanoparticles since advantageously obtained from nanoparticles of ZnO. Thus, ZnO particles functionalised, surface and covalently, with phthalocyanine derivatives can have various forms, such as spheroidal, ellipsoid, hexagonal, rod or star shapes. The mean particle size distribution of the ZnO particles functionalized, surface and covalently, by phthalocyanine derivatives is between 10 nm and 1.2 μιη and in particular between 20 nm and 1 μιη.
II convient de noter que les particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine présentent des propriétés remarquables. En effet, dans ces particules, le ZnO est coloré en bleu ou en vert, reste cristallin et donc très stable.  It should be noted that the functionalized ZnO particles, surface and covalently, by phthalocyanine derivatives have remarkable properties. Indeed, in these particles, the ZnO is colored in blue or green, remains crystalline and therefore very stable.
De même, les particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine constituent un matériau à très bonne stabilité à température élevée du fait de la température de fusion des dérivés de phtalocyanine supérieure à 300°C. De plus, ce matériau peut se présenter sous forme de système colloïdal stable dans l'eau. Enfin, en fonction des substituants des dérivés de phtalocyanine greffés de façon covalente à la surface des particules de ZnO, les particules ainsi obtenues peuvent présenter des propriétés comparables à celles de cristaux liquides.  Also, ZnO particles functionalised, surface and covalently, by phthalocyanine derivatives are a material with a very good stability at high temperature because of the melting temperature of phthalocyanine derivatives greater than 300 ° C. In addition, this material can be in the form of a stable colloidal system in water. Finally, depending on the substituents of the phthalocyanine derivatives grafted covalently on the surface of the ZnO particles, the particles thus obtained may have properties comparable to those of liquid crystals.
Les propriétés des particules de ZnO fonctionnalisées, en surface et de façon covalente, par des dérivés de phtalocyanine notamment telles que listées ci-dessus mais également présentées au point IV de la partie expérimentale ci-après en font de bons candidats en tant que photocatalyseurs et colorants.  The properties of ZnO particles functionalised, surface and covalently, by phthalocyanine derivatives in particular as listed above but also presented in point IV of the experimental part below make it good candidates as photocatalysts and dyes.
Par conséquent, la présente invention concerne l'utilisation d'une particule de ZnO fonctionnalisée, en surface et de façon covalente, par des dérivés de phtalocyanine selon la présente invention ou préparée selon le procédé de la présente invention dans l'industrie papetière, l'industrie textile, l'industrie pharmaceutique, l'industrie plastique et l'industrie photovoltaïque et, plus particulièrement, dans les domaines choisis dans le groupe constitué par des agents de coloration (encres, peintures, papier et textiles) ; la photocatalyse et la photodégradation ; les agents de protection anti-UV ; les agents de tenue lumière solaire ; les agents de protection anti-lumière et anti-UV ; les dispositifs électroniques, optiques, de capteurs, de conversion et de stockage d'énergie et des semi- conducteurs organiques. Therefore, the present invention relates to the use of a znO particle surface-covalently functionalized with phthalocyanine derivatives according to the present invention or prepared according to the process of the present invention in the paper industry. the textile industry, the pharmaceutical industry, the plastics industry and the photovoltaic industry and, more particularly, in the fields chosen in the group consisting of coloring agents (inks, paints, paper and textiles); photocatalysis and photodegradation; UV protection agents; solar light-keeping agents; anti-light and anti-UV protection agents; electronic, optical, sensor, energy conversion and storage devices and organic semiconductors.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à l'homme du métier à la lecture des exem ples ci-dessous donnés à titre illustratif et non limitatif, et faisant référence aux figures annexées.  Other features and advantages of the present invention will become apparent to those skilled in the art on reading the examples given below by way of illustration and not limitation, and with reference to the appended figures.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
La Figure 1 est une représentation schématisée d'une nanoparticule d'oxyde de zinc fonctionnalisée, en surface et de façon covalente, avec un dérivé de phthalocyanine et préparée par le procédé selon l'invention. Figure 1 is a schematic representation of a nanoparticle of zinc oxide functionalized, surface and covalently, with a phthalocyanine derivative and prepared by the method according to the invention.
La Figure 2 présente une vue obtenue pa r microscopie électronique en transmission (M ET) de nanoparticules d'oxyde de zinc.  Figure 2 shows a view obtained from transmission electron microscopy (M ET) of zinc oxide nanoparticles.
La Figure 3 présente l'analyse dispersive en énergie (EDS) de nanoparticules d'oxyde de zinc.  Figure 3 presents the energy dispersive analysis (EDS) of zinc oxide nanoparticles.
La Figure 4 présente une vue obtenue par M ET de nanoparticules d'oxyde de zinc fonctionnalisées en surface par un dérivé de phtalocyanine et préparées, par le procédé selon l'invention, à partir d'un dérivé siliconé de phtalocyanine.  FIG. 4 shows a view obtained by M ET of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a silicone phthalocyanine derivative.
La Figure 5 présente l'analyse dispersive en énergie (EDS) de nanoparticules d'oxyde de zinc fonctionnalisées en surface par un dérivé de phtalocyanine et préparées, par le procédé selon l'invention, à partir d'un dérivé siliconé de phtalocyanine.  FIG. 5 shows the energy dispersive analysis (EDS) of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the method according to the invention, from a silicone phthalocyanine derivative.
La Figure 6 présente une vue obtenue par M ET de nanoparticules d'oxyde de zinc fonctionnalisées en surface par un dérivé de phtalocyanine et préparées, par le procédé selon l'invention, à partir d'un dérivé de phtalocyanine de titane.  FIG. 6 shows a view obtained by M ET of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a titanium phthalocyanine derivative.
La Figure 7 présente l'analyse dispersive en énergie (EDS) de nanoparticules d'oxyde de zinc fonctionnalisées en surface par un dérivé de phtalocyanine et préparées, par le procédé selon l'invention, à partir d'un dérivé de phtalocyanine de titane. La Figure 8 présente les spectres d'absorption électronique, dans l'eau et à différentes concentrations, de nanoparticules de ZnO/N Pc selon l'invention. FIG. 7 shows the energy dispersive analysis (EDS) of surface-functionalised zinc oxide nanoparticles with a phthalocyanine derivative and prepared, by the process according to the invention, from a titanium phthalocyanine derivative. FIG. 8 shows the electron absorption spectra, in water and at different concentrations, of nanoparticles of ZnO / N Pc according to the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS I. Synthèse et analyse des nanoparticules de ZnO. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS I. Synthesis and Analysis of ZnO Nanoparticles.
La synthèse des nanoparticules de ZnO pur a été réalisée par co-précipitation avec, comme réactifs initiaux, du nitrate de zinc hydraté et du carbonate de sodium.  The synthesis of the pure ZnO nanoparticles was carried out by co-precipitation with, as initial reactants, hydrated zinc nitrate and sodium carbonate.
Pour préparer 10 g d'un échantillon de ZnO pur, une solution à 0,2 mol/L de Zn(N03)2.6H20 est préparée, c'est-à-dire, 36,5 g da ns 615 mL d'ea u distillée. Une solution à 0,5 mol/L de carbonate de sodium a été réalisée en dissolvant 13,78 g dans 246 m L d'eau distillée. To prepare 10 g of a sample of pure ZnO, a 0.2 mol / L solution of Zn (NO 3 ) 2.6H 2 O is prepared, i.e. 36.5 g of ns 615 mL. distilled water. A 0.5 mol / l solution of sodium carbonate was made by dissolving 13.78 g in 246 ml of distilled water.
La solution de nitrate de zinc est ajoutée goutte-à-goutte dans la solution de carbonate de sodium sous une vive agitation mécanique. La solution est ensuite agitée pendant 2 h à température ambiante. Le précipité est filtré sur entonnoir Buchner.  The zinc nitrate solution is added dropwise to the sodium carbonate solution with vigorous mechanical stirring. The solution is then stirred for 2 hours at room temperature. The precipitate is filtered on a Buchner funnel.
La poudre ainsi récupérée est séchée pendant une nuit dans une étuve à The powder thus recovered is dried overnight in an oven at
100°C. Le solide est ensuite calciné sous air (100 L/h) à 400°C pendant 4 h. 100 ° C. The solid is then calcined under air (100 L / h) at 400 ° C for 4 h.
Les nanoparticules obtenues font 20 à 30 nm de diamètre et sont cristallisées (Figure 2). L'analyse élémentaire révèle la présence de zinc dans l'échantillon (Figure 3). II. Synthèse et analyse des nanoparticules de ZnO-NPc.  The nanoparticles obtained are 20 to 30 nm in diameter and are crystallized (FIG. 2). Elemental analysis reveals the presence of zinc in the sample (Figure 3). II. Synthesis and analysis of ZnO-NPc nanoparticles.
Une suspension de nanoparticules de ZnO préalablement préparées à 2 mg/mL dans 20 mL de dichlorobenzène est agitée à température ambiante.  A suspension of ZnO nanoparticles previously prepared at 2 mg / ml in 20 ml of dichlorobenzene is stirred at room temperature.
Une solution de tétrahydrofurane (10 mL) contenant la naphthalocyanine (dihydroxyde de silicone naphthalocyanine, CAS No : 92396-90-2) à une concentration de 2 x 10"3 M est ajoutée goutte à goutte sous vive agitation. Le mélange réactionnel est agité à température ambiante pendant 24 h. A tetrahydrofuran solution (10 mL) containing the naphthalocyanine (silicon naphthalocyanine dihydroxide, CAS No: 92396-90-2) at a concentration of 2 x 10 "3 M is added dropwise with vigorous stirring The reaction mixture is stirred. at room temperature for 24 h.
Le mélange réactionnel est ensuite centrifugé et les nanoparticules obtenues sont lavées trois fois à l'éthanol et une fois à l'eau, chaque lavage étant suivi par une sédimentation à la centrifugeuse (15 min à 6000 rpm). Après l'étape de lavage, la purification des nanoparticules obtenues est achevée par dialyse (nominal MCWO 3500 Daltons) dans l'eau (1 L) sous agitation magnétique pendant une semaine. The reaction mixture is then centrifuged and the nanoparticles obtained are washed three times with ethanol and once with water, each washing being followed by sedimentation in the centrifuge (15 min at 6000 rpm). After the washing step, the purification of the obtained nanoparticles is completed by dialysis (nominal MCWO 3500 Daltons) in water (1 L) with magnetic stirring for one week.
Les nano-objets dispersés dans l'eau (40 mL) sont alors caractérisés par analyse en microscopie électronique en transmission (MET). D'après les images de MET, les nanoparticules de ZnO fonctionnalisées NPc ont la forme de billes de diamètre compris entre 25 et 30 nm (Figure 4). Ces nanoparticules sont vertes et l'analyse élémentaire révèle la présence de zinc (Figure 5).  The nano-objects dispersed in water (40 mL) are then characterized by transmission electron microscopy (TEM) analysis. According to the TEM images, the functionalized ZnO nanoparticles NPc have the shape of beads with a diameter of between 25 and 30 nm (FIG. 4). These nanoparticles are green and elemental analysis reveals the presence of zinc (Figure 5).
III. Synthèse et analyse des nanoparticules de ZnO-TiPc. III. Synthesis and analysis of ZnO-TiPc nanoparticles.
Une suspension de nanoparticules de ZnO préalablement préparées à A suspension of ZnO nanoparticles previously prepared for
2 mg/mL dans 20 mL de dichlorobenzène est agitée à température ambiante. 2 mg / mL in 20 mL of dichlorobenzene is stirred at room temperature.
Une solution de tétrahydrofurane (10 mL) contenant 25,2 mg de dichlorure de phtalocyanine de titane IV ou en anglais « titanium IV phthalocyanine dichloride » (No. CAS : 16903-42-7) à une concentration de 1,3 x 10"3 M est ajoutée goutte à goutte sous vive agitation. A tetrahydrofuran solution (10 mL) containing 25.2 mg of titanyl phthalocyanine dichloride IV or English "titanium IV phthalocyanine dichloride" (CAS: 16903-42-7) at a concentration of 1.3 x 10 " 3 M is added dropwise with vigorous stirring.
Le mélange réactionnel est agité à température ambiante pendant 24 h. Le mélange réactionnel est ensuite centrifugé et les nanoparticules obtenues sont lavées trois fois à l'éthanol et une fois à l'eau, chaque lavage étant suivi par une sédimentation à la centrifugeuse (15 min à 6000 rpm). Après l'étape de lavage, la purification des nanoparticules obtenues est achevée par dialyse (nominal MCWO 3500 Daltons) dans l'eau (1 L) sous agitation magnétique pendant une semaine.  The reaction mixture is stirred at room temperature for 24 hours. The reaction mixture is then centrifuged and the nanoparticles obtained are washed three times with ethanol and once with water, each washing being followed by sedimentation in the centrifuge (15 min at 6000 rpm). After the washing step, the purification of the nanoparticles obtained is completed by dialysis (nominal MCWO 3500 Daltons) in water (1 L) with magnetic stirring for one week.
Les nano-objets dispersés dans l'eau (40 mL) sont alors caractérisés par analyse en MET. D'après les images de MET, les nanoparticules de ZnO fonctionnalisées NPc ont la forme de billes de diamètre compris entre 25 et 30 nm (Figure 6). Ces nanoparticules sont bleues et l'analyse élémentaire révèle la présence de zinc (Figure 7).  The nano-objects dispersed in water (40 mL) are then characterized by TEM analysis. According to the TEM images, the functionalized ZnO nanoparticles NPc have the shape of beads with a diameter of between 25 and 30 nm (FIG. 6). These nanoparticles are blue and the elemental analysis reveals the presence of zinc (Figure 7).
IV. Spectres d'adsorption des nanoparticules ZnO :NPc selon l'invention.IV. Adsorption spectra of the ZnO: NPc nanoparticles according to the invention.
Les spectres d'absorption des dérivés naphthalocyanines montrent généralement deux absorptions typiques appelées « -band » (740-760 nm) et « B- band » ou « Soret band » (420-460 nm) qui montrent généralement des maxim um d'absorption plus bathochromiques que leurs analogues phthalocyanines. The absorption spectra of the naphthalocyanine derivatives generally show two typical absorptions called "-band" (740-760 nm) and "B". band "or" Soret band "(420-460 nm), which generally show greater absorption and bathochromic absorption than their phthalocyanine analogues.
Ces absorptions sont sensibles aux substitutions moléculaires du cycle de la phthalocyanine aussi bien sur les sites périphériques et non-périphériques, ainsi qu'à l'environnement électronique dans lequel réside ladite phthalocyanine.  These absorptions are sensitive to the molecular substitutions of the phthalocyanine ring both at peripheral and non-peripheral sites, as well as to the electronic environment in which said phthalocyanine resides.
Dans le cas de l'invention, le pic traditionnel résultant de l'absorption du ZnO est observé à 375 nm et coalesce avec celui de la Soret band de la NPc à 440 nm . Le pic de la Q-band est observé à 760 nm et ce, pour diverses concentrations obtenues par des dilutions successives (Figure 8). L'observation de toutes les transitions électroniques permet d'affirmer le bon transfert d'électrons da ns le système et fait de ce matériau un candidat potentiel pour les applications photovoltaïques. In the case of the invention, the traditional peak resulting from the absorption of ZnO is observed at 375 nm and coalesce with that of the NPc Soret band at 440 nm. The peak of the Q-band is observed at 760 nm for various concentrations obtained by successive dilutions (Figure 8). The observation of all the electronic transitions makes it possible to affirm the good transfer of electrons in the system and makes this material a potential candidate for photovoltaic applications.
RÉFÉRENCES REFERENCES
Karan et Mallik, 2008, « Nanostructured organic-inorganic photodiodes with high rectification ratio », Nanotechnology, vol. 19 : 495202 (10 pp) Karan and Mallik, 2008, "Nanostructured organic-inorganic photodiodes with high rectification ratio," Nanotechnology, vol. 19: 495202 (10 pp)
Cruickshank et al., 2011, « Electrodeposition of ZnO nanostructures on molecular thin films », chem. mater., vol. 23, pages 3863-3870. Cruickshank et al., 2011, "Electrodeposition of ZnO Nanostructures on Molecular Thin Films", Chem. mater., vol. 23, pp. 3863-3870.
Sharma et al., 2006, « Charge génération and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc) », Solar Energy Materials & Solar cells, vol. 90, pages 933-943. Sharma et al., 2006, "Charge Generation and Photovoltaic Properties of Hybrid Solar Cells Based on ZnO and Copper Phthalocyanines (CuPc)", Solar Energy Materials & Solar Cells, Vol. 90, pages 933-943.
[4] Hiromitsu et al., 2009, « Photoinduced energy transfer in ZnO-tetraphenylporphyrin Systems », Chemical Physics Letters, vol. 474, pages 315-319. [4] Hiromitsu et al., 2009, "Photoinduced energy transfer in ZnO-tetraphenylporphyrin Systems," Chemical Physics Letters, vol. 474, pages 315-319.

Claims

REVENDICATIONS
1) Procédé de préparation d'une particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine, ledit procédé comprenant une étape consistant à condenser un dérivé de phtalocyanine de silicium ou de titane de formule (I) : 1) Process for preparing a zinc oxide particle comprising at least one phthalocyanine derivative, said process comprising a step of condensing a phthalocyanine derivative of silicon or titanium of formula (I):
Figure imgf000028_0001
Figure imgf000028_0001
(I) (I)
dans laquelle  in which
M représente un atome de silicium ou un atome de titane,  M represents a silicon atom or a titanium atom,
Ri, R2, R3 et R4, identiques ou différents, représentent un groupement arylène éventuellement substitué et R 1, R 2 , R 3 and R 4 , which are identical or different, represent an optionally substituted arylene group and
R5 et R6, identiques ou différents, sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué ou un groupement -Si(R")3 où chaque R" indépendamment représente un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué, R 5 and R 6 , which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially of 1 to 6 carbon atoms, optionally substituted or a group -Si (R ") 3 where each R" independently represents a linear or branched alkyl of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted
avec une particule d'oxyde de zinc, en présence d'un solvant organique. 2) Procédé selon la revendication 1, caractérisé en ce que ledit dérivé de phtalocyanine de silicium ou de titane est un composé de formule (II) : with a zinc oxide particle, in the presence of an organic solvent. 2) Process according to claim 1, characterized in that said phthalocyanine derivative of silicon or titanium is a compound of formula (II):
Figure imgf000029_0001
Figure imgf000029_0001
(Π)  (Π)
dans laquelle :  in which :
les groupements R7 à R22, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 7 to R 22 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
M et les groupements R5 et R6 sont tels que définis à la revendication 1. M and the groups R 5 and R 6 are as defined in claim 1.
3) Procédé selon la revendication 1, caractérisé en ce que ledit dérivé de phtalocyanine de silicium ou de titane est un composé de formule (III) du type naphtalocyanine : 3) Process according to claim 1, characterized in that said phthalocyanine derivative of silicon or titanium is a compound of formula (III) of the naphthalocyanine type:
Figure imgf000030_0001
Figure imgf000030_0001
(III)  (III)
dans laquelle :  in which :
les groupements R23 à R46, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol, the groups R 2 3 to R 46 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol,
M et les groupements R5 et R6 sont tels que précédemment définis à la revendication 1. M and the groups R 5 and R 6 are as previously defined in claim 1.
4) Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit procédé comprend les étapes successives suivantes : 4) Method according to any one of claims 1 to 3, characterized in that said method comprises the following successive steps:
a) éventuellement préparer une particule d'oxyde de zinc,  a) optionally preparing a zinc oxide particle,
b) mettre en contact la particule d'oxyde de zinc éventuellement préparée à l'étape (a) avec un dérivé de phtalocyanine de silicium ou de titane en présence d'un solvant organique, moyennant quoi ledit dérivé de phtalocyanine de silicium ou de titane condense avec ladite particule d'oxyde de zinc et une particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine est obtenue, et b) contacting the zinc oxide particle optionally prepared in step (a) with a phthalocyanine derivative of silicon or titanium in the presence of a organic solvent, whereby said silicon or titanium phthalocyanine derivative condenses with said zinc oxide particle and a zinc oxide particle comprising at least one phthalocyanine derivative is obtained, and
c) récupérer la particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine, obtenue lors de l'étape (b).  c) recovering the zinc oxide particle comprising at least one phthalocyanine derivative obtained in step (b).
5) Procédé selon la revendication 4, caractérisé en ce que, préalablement à la mise en œuvre de ladite étape (b), la particule de ZnO se présente sous forme d'une dispersion ou suspension dans un solvant organique. 5) Process according to claim 4, characterized in that, prior to the implementation of said step (b), the ZnO particle is in the form of a dispersion or suspension in an organic solvent.
6) Procédé selon la revendication 4 ou 5, caractérisé en ce que ladite mise en contact lors de ladite étape (b) consiste à ajouter, à la dispersion ou suspension telle que définie à la revendication 5, au moins un dérivé de phtalocyanine de silicium ou de titane puis à mélanger la solution (S) ainsi obtenue. 6) Process according to claim 4 or 5, characterized in that said placing in contact during said step (b) comprises adding to the dispersion or suspension as defined in claim 5, at least one silicon phthalocyanine derivative or titanium and then mix the solution (S) thus obtained.
7) Procédé selon la revendication 5, caractérisé en ce que ledit solvant organique est choisi dans le groupe constitué par le dichlorométhane, le chloroforme, le pentane, le cyclopentane, l'hexane, le cyclohexane, le benzène, le 1,2-dichlorobenzène, le toluène, la diméthylformamide (DMF), l'acétone, l'acétate d'éthyle, le carbonate de propylène, le tétrahydrofurane (THF), le 1,4-dioxane, l'éther diéthylique, l'acétonitrile et le diméthyl sulfoxyde (DMSO) ou un de leurs mélanges. 7) Process according to claim 5, characterized in that said organic solvent is selected from the group consisting of dichloromethane, chloroform, pentane, cyclopentane, hexane, cyclohexane, benzene, 1,2-dichlorobenzene toluene, dimethylformamide (DMF), acetone, ethyl acetate, propylene carbonate, tetrahydrofuran (THF), 1,4-dioxane, diethyl ether, acetonitrile and dimethyl sulfoxide (DMSO) or a mixture thereof.
8) Procédé selon la revendication 6, caractérisé en ce que ladite solution (S) contient un (ou plusieurs) composé(s) à base de silane. 8) Process according to claim 6, characterized in that said solution (S) contains one (or more) compound (s) based on silane.
9) Procédé selon la revendication 8, caractérisé en ce que ledit (ou lesdits) composé(s) à base de silane est(sont) de formule générale : 9) Process according to claim 8, characterized in that said (or said) compound (s) based on silane is (are) of general formula:
SiRaRbRcRd SiR a RbRcRd
dans laquelle Ra, Rb, Rc et Rd sont, indépendamment les uns des autres, choisis dans le groupe constitué par un hydrogène ; un halogène ; un groupe aminé ; un groupe diamine ; un groupe amide ; un groupe acyle ; un groupe vinyle ; un groupe hydroxyle ; un groupe époxy ; un groupe phosphonate ; un groupe acide sulfonique ; un groupe isocyanate ; un groupe carboxyle ; un groupe thiol (ou mercapto) ; un groupe glycidoxy ; un groupe acryloxy tel qu'un groupe méthacryloxy ; un groupe alkyle, linéaire ou ramifié, éventuellement substitué, de 1 à 12 atomes de carbone, notamment de 1 à 6 atomes de carbone ; un groupe aryle, linéaire ou ramifié, éventuellement substitué, de 4 à 15 atomes de carbone, notamment de 4 à 10 atomes de carbone ; un groupe alcoxyle de formule -ORe avec Re représentant un groupe alkyle et leurs sels. 10) Procédé selon la revendication 8 ou 9, caractérisé en ce que ledit (ou lesdits) composé(s) à base de silane est(sont) choisi(s) dans le groupe constitué par le diméthylsilane (DMSi), le phényltriéthoxysilane (PTES), le tétraéthoxysilane (TEOS), le tétraméthoxysilane (TEMOS), le n-octyltriéthoxysilane, le n-octadécyltriéthoxysilane, le diméthyldiméthoxysilane (DMDMOS), le (3-mercaptopropyl)triméthoxysilane, le (3- mercaptopropyl)triéthoxysilane, le (mercapto)-triéthoxysilane, le (3- aminopropyl)triéthoxysilane, le 3-(2-aminoéthylamino)propyltriméthoxysilane, le 3-[bis(2- hydroxyéthyl)amino]propyltriéthoxysilane, l'hexadécyltriméthoxysilane, le phényltriméthoxysilane, le N-[3-(triméthoxysilyl)propyl]-l,2-éthanediamine et l'acétoxyéthyltriéthoxysilane, le 2-hydroxy-4-(3-triéthoxysilylpropoxy)diphénylkétone, le méthyl-triéthoxysilane, le vinyltriméthoxysilane, le (3-glycidoxypropyl)triméthoxysilane, le (benzoyloxypropyl) triméthoxysilane, le 3-trihydroxysilylpropylméthyl phosphonate de sodium, l'acide (3-trihydroxysilyl)-l-propanesulphonique, le (diéthylphosphonatoéthyl) triéthoxysilane, et leurs mélanges. 11) Procédé selon l'une quelconque des revendications 6 à 10, caractérisé en ce que ladite solution (S) contient un (ou plusieurs) composé(s) favorisant la réaction de condensation. wherein R a , Rb, R c and R d are, independently of one another, selected from the group consisting of hydrogen; a halogen; an amino group; a group diamine; an amide group; an acyl group; a vinyl group; a hydroxyl group; an epoxy group; a phosphonate group; a sulfonic acid group; an isocyanate group; a carboxyl group; a thiol group (or mercapto); a glycidoxy group; an acryloxy group such as a methacryloxy group; an alkyl group, linear or branched, optionally substituted, of 1 to 12 carbon atoms, especially 1 to 6 carbon atoms; an aryl group, linear or branched, optionally substituted, of 4 to 15 carbon atoms, in particular of 4 to 10 carbon atoms; an alkoxyl group of the formula -OR e with R e representing an alkyl group and their salts. 10) Process according to claim 8 or 9, characterized in that said (or said) compound (s) based on silane is (are) chosen from the group consisting of dimethylsilane (DMSi), phenyltriethoxysilane (PTES ), tetraethoxysilane (TEOS), tetramethoxysilane (TEMOS), n-octyltriethoxysilane, n-octadecyltriethoxysilane, dimethyldimethoxysilane (DMDMOS), (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, (mercapto) triethyloxysilane, (3-aminopropyl) triethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- [bis (2-hydroxyethyl) amino] propyltriethoxysilane, hexadecyltrimethoxysilane, phenyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] -1,2-ethanediamine and acetoxyethyltriethoxysilane, 2-hydroxy-4- (3-triethoxysilylpropoxy) diphenyl ketone, methyltriethoxysilane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (benzoyloxypropyl) trimethoxysilane, the Sodium 3-trihydroxysilylpropylmethyl phosphonate, (3-trihydroxysilyl) -1-propanesulphonic acid, (diethylphosphonatoethyl) triethoxysilane, and mixtures thereof. 11) Process according to any one of claims 6 to 10, characterized in that said solution (S) contains one (or more) compound (s) promoting the condensation reaction.
12) Procédé selon la revendication 11, caractérisé en ce que ledit (ou lesdits) composé(s) favorisant la réaction de condensation est(sont) choisi(s) dans le groupe constitué par l'urée, la thiourée, l'ammoniaque, une aminé telle que la triméthylamine ou la triéthylamine et leurs mélanges. 12) Process according to claim 11, characterized in that said (or said) compound (s) promoting the condensation reaction is (are) chosen (s) in the group consisting of urea, thiourea, ammonia, an amine such as trimethylamine or triethylamine and mixtures thereof.
13) Procédé selon l'une quelconque des revendications 4 à 12, ca ractérisé en ce que ladite étape (c) met en œuvre une ou plusieurs étapes, identiques ou différentes, choisies parmi les étapes de centrifugation, de sédimentation et de lavage. 13) Method according to any one of claims 4 to 12, caacticized in that said step (c) implements one or more steps, identical or different, selected from the centrifugation, sedimentation and washing steps.
14) Particule d'oxyde de zinc comprenant au moins un dérivé de phtalocyanine susceptible d'être préparée par un procédé tel que défini à l'une quelconque des revendications 1 à 13, caractérisée en ce qu'elle se présente sous forme d'une nanoparticule de ZnO fonctionnalisée, en surface et de façon covalente, par des dérivés de phtalocyanine. 14) Zinc oxide particle comprising at least one phthalocyanine derivative capable of being prepared by a process as defined in any one of Claims 1 to 13, characterized in that it is in the form of a ZnO nanoparticle functionalized, surface and covalently, by phthalocyanine derivatives.
PCT/EP2013/070242 2012-09-28 2013-09-27 Method for preparing a hybrid zno/organic material, said material and the uses thereof WO2014049139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259160 2012-09-28
FR1259160A FR2996226A1 (en) 2012-09-28 2012-09-28 PROCESS FOR PREPARING ZNO / ORGANIC HYBRID MATERIAL, SAID MATERIAL AND USES THEREOF

Publications (1)

Publication Number Publication Date
WO2014049139A1 true WO2014049139A1 (en) 2014-04-03

Family

ID=47257964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/070242 WO2014049139A1 (en) 2012-09-28 2013-09-27 Method for preparing a hybrid zno/organic material, said material and the uses thereof

Country Status (2)

Country Link
FR (1) FR2996226A1 (en)
WO (1) WO2014049139A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170065504A1 (en) * 2015-09-03 2017-03-09 International Business Machines Corporation Implementing organic materials in sunscreen applications
US9883993B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US9937112B2 (en) 2015-09-03 2018-04-10 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US9993402B2 (en) 2015-09-03 2018-06-12 International Business Machines Corporation Sunscreen additives for enhancing vitamin D production
US10045918B2 (en) 2015-10-22 2018-08-14 International Business Machines Corporation Embedding oxide particles within separate particles for sunscreen applications
US10076475B2 (en) 2015-10-23 2018-09-18 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10092487B2 (en) 2015-10-22 2018-10-09 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US10369092B2 (en) 2015-09-03 2019-08-06 International Business Machines Corporation Nitride-based nanoparticles for use in sunscreen applications
US10682295B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10751268B2 (en) 2015-09-03 2020-08-25 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10952942B2 (en) 2015-09-03 2021-03-23 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
CN112675862A (en) * 2021-01-12 2021-04-20 南开大学 Preparation method of metal phthalocyanine modified zinc oxide catalyst
CN112876861A (en) * 2021-01-20 2021-06-01 深圳市华创汇能技术有限公司 Preparation method of ZnO graft modified anti-aging polycarbonate engineering plastic

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
COPPEDE, N. ET AL: "Directionally Selective Sensitization of ZnO Nanorods by TiOPc : A Novel Approach to Functionalized Nanosystems", JOURNAL OF PHYSICAL CHEMISTRY C , 116(14), 8223-8229 CODEN: JPCCCK; ISSN: 1932-7447, 2012, XP002698495 *
CRUICKSHANK ET AL.: "Electrodeposition of ZnO nanostructures on molecular thin films", CHEM. MATER., vol. 23, 2011, pages 3863 - 3870
CRUICKSHANK, AMY C. ET AL: "Electrodeposition of ZnO Nanostructures on Molecular Thin Films", CHEMISTRY OF MATERIALS , 23(17), 3863-3870 CODEN: CMATEX; ISSN: 0897-4756, 2011, XP002698513 *
HIROMITSU ET AL.: "Photoinduced energy transfer in ZnO-tetraphenylporphyrin systems", CHEMICAL PHYSICS LETTERS, vol. 474, 2009, pages 315 - 319
KARAN; MALLIK: "Nanostructured organic-inorganic photodiodes with high rectification ratio", NANOTECHNOLOGY, vol. 19, no. 495202, 2008, pages 10
MARI, BERNABE ET AL: "Characterization of electrodeposited zinc oxide/tetrasulphonatedcopper phthalocyanines (ZnO/Ts-CuPc) hybrid films and their photoelectrochemical properties", JOURNAL OF ELECTROANALYTICAL CHEMISTRY , 653(1-2), 86-92 CODEN: JECHES; ISSN: 1572-6657, 2011, XP002698497 *
PALMGREN, P. ET AL: "Band bending and structure dependent HOMO energy at the ZnO(0001)-titanyl phthalocyanine interface", SURFACE SCIENCE , 601(18), 4222-4226 CODEN: SUSCAS; ISSN: 0039-6028, 2007, XP002698496 *
SHARMA ET AL.: "Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 90, 2006, pages 933 - 943

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10300001B2 (en) 2015-09-03 2019-05-28 International Business Machines Corporation Implementing organic materials in sunscreen applications
US10940101B2 (en) 2015-09-03 2021-03-09 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10925819B2 (en) 2015-09-03 2021-02-23 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US9889074B2 (en) 2015-09-03 2018-02-13 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US9937112B2 (en) 2015-09-03 2018-04-10 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US9993402B2 (en) 2015-09-03 2018-06-12 International Business Machines Corporation Sunscreen additives for enhancing vitamin D production
US10369092B2 (en) 2015-09-03 2019-08-06 International Business Machines Corporation Nitride-based nanoparticles for use in sunscreen applications
US20170065504A1 (en) * 2015-09-03 2017-03-09 International Business Machines Corporation Implementing organic materials in sunscreen applications
US10772808B2 (en) 2015-09-03 2020-09-15 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10383799B2 (en) 2015-09-03 2019-08-20 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US9883993B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US10835463B2 (en) 2015-09-03 2020-11-17 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10758464B2 (en) 2015-09-03 2020-09-01 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10959923B2 (en) 2015-09-03 2021-03-30 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
US10959924B2 (en) 2015-09-03 2021-03-30 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10952942B2 (en) 2015-09-03 2021-03-23 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
US9883994B2 (en) * 2015-09-03 2018-02-06 International Business Machines Corporation Implementing organic materials in sunscreen applications
US10682295B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10682294B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10751268B2 (en) 2015-09-03 2020-08-25 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10166176B2 (en) 2015-10-22 2019-01-01 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US10092487B2 (en) 2015-10-22 2018-10-09 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US10045918B2 (en) 2015-10-22 2018-08-14 International Business Machines Corporation Embedding oxide particles within separate particles for sunscreen applications
US10076475B2 (en) 2015-10-23 2018-09-18 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10660833B2 (en) 2015-10-23 2020-05-26 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10660834B2 (en) 2015-10-23 2020-05-26 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10653593B2 (en) 2015-10-23 2020-05-19 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10632329B2 (en) 2015-10-23 2020-04-28 International Business Machines Corporation Shell-structured particles for sunscreen applications
CN112675862A (en) * 2021-01-12 2021-04-20 南开大学 Preparation method of metal phthalocyanine modified zinc oxide catalyst
CN112876861A (en) * 2021-01-20 2021-06-01 深圳市华创汇能技术有限公司 Preparation method of ZnO graft modified anti-aging polycarbonate engineering plastic
CN112876861B (en) * 2021-01-20 2022-05-20 苏州耐特福材料科技有限公司 Preparation method of ZnO graft modified anti-aging polycarbonate engineering plastic

Also Published As

Publication number Publication date
FR2996226A1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
WO2014049139A1 (en) Method for preparing a hybrid zno/organic material, said material and the uses thereof
Laurenti et al. Surface engineering of nanostructured ZnO surfaces
CA2915089C (en) Method for exfoliating carbonaceous materials containing graphite, assisted by a diels-alder reaction
US10155782B2 (en) Method for functionalizing transition metal dichalcogenides
US11271124B2 (en) Method for fabrication of copper-indium gallium oxide and chalcogenide thin films
WO2010052221A1 (en) Fluorescent nanoparticles, method for preparing same, and application thereof in biological marking
EP2470548A2 (en) Method for preparing silica particles containing a phthalocyanine derivative, said particles, and uses thereof
EP3180810B1 (en) Method for the synthesis of nanocomposites based on tio2 and carbonated nanostructures
WO2011098504A1 (en) Stöber method for preparing silica particles containing a phthalocyanine derivative, said particles and the uses thereof
KR20190137109A (en) Ultra-thin plasmon solar cell, manufacturing method and use thereof
FR3027532A1 (en) PROCESS FOR PRODUCING FUNCTIONALIZED OXIDE NANOPARTICLES
JP5604835B2 (en) Semiconductor nanoparticles and manufacturing method thereof
Liu et al. Synthesis and characterization of chiral Ag 2 S and Ag 2 S–Zn nanocrystals
WO2007017586A1 (en) Mineral/organic composite material
Hamer et al. Nanoparticles as template for porphyrin nanostructure growth
CA2774814C (en) Crosslinking initiator
WO2013102657A1 (en) Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof
CN109935703B (en) Composite membrane and preparation method and application thereof
WO2014091398A1 (en) Suspension of monodisperse aggregates of metal sulfide, method for the production thereof, and uses of same
WO2014114717A1 (en) Method for preparing a mgo/organic hybrid material, said material and the uses thereof
WO2021161940A1 (en) Semiconductor film, photodetection element, image sensor, and method for producing semiconductor film
FR2971508A1 (en) MICROWAVE IRRADIATION PREPARATION PROCESS OF SILICA PARTICLES CONTAINING PHTALOCYANINE DERIVATIVE, THE SAID PARTICLES AND USES THEREOF
Nguyen Manipulation of the electronic properties of two dimensional molybdenum disulphide via functionalisation
FR3001731A1 (en) NANOMATERIAL CONFERRING PROPERTIES OF LIGHTNESS
Arellano et al. Edge-on and face-on functionalized phthalocyanine on enriched semiconducting single-walled carbon nanotube hybrids: Formation, ground and excited state interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13766567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13766567

Country of ref document: EP

Kind code of ref document: A1