WO2013102657A1 - Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof - Google Patents

Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof Download PDF

Info

Publication number
WO2013102657A1
WO2013102657A1 PCT/EP2013/050098 EP2013050098W WO2013102657A1 WO 2013102657 A1 WO2013102657 A1 WO 2013102657A1 EP 2013050098 W EP2013050098 W EP 2013050098W WO 2013102657 A1 WO2013102657 A1 WO 2013102657A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
phthalocyanine derivative
microemulsion
titanium oxide
derivative
Prior art date
Application number
PCT/EP2013/050098
Other languages
French (fr)
Inventor
Aurélien AUGER
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013102657A1 publication Critical patent/WO2013102657A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0034Mixtures of two or more pigments or dyes of the same type
    • C09B67/0035Mixtures of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B68/00Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology
    • C09B68/20Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology characterised by the process features
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B68/00Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology
    • C09B68/40Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology characterised by the chemical nature of the attached groups
    • C09B68/46Aromatic cyclic groups
    • C09B68/467Heteroaromatic groups
    • C09B68/46735-Membered rings
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/385Oxides, hydroxides or carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the present invention relates to the field of materials having a good light and UV resistance and in particular nanoparticles or titanium oxide microparticles containing phthalocyanine dyes.
  • the present invention relates to a process for preparing titanium oxide particles incorporating phthalocyanine and naphthalocyanine derivatives. It also relates to titanium oxide particles incorporating phthalocyanine and naphthalocyanine derivatives, capable of being prepared by this process and their various uses and applications.
  • the materials having a good light and UV light when associated with a product, can make it possible to extend the service life and to protect it vis-à-vis the solar irradiation.
  • Such materials find applications in various fields such as the paper industry, the textile industry, the pharmaceutical industry, the plastics industry and the photovoltaic industry.
  • Pthalocyanines have been extensively studied for their excellent optical and electronic properties in the photoconductor and photovoltaic cell sectors. They have two important absorption regions: B-band (300-400 nm) and Q-band (600-800 nm).
  • B-band 300-400 nm
  • Q-band 600-800 nm
  • the development of an organic / inorganic hybrid material of the titanium oxide type (Ti0 2 ) would be promising for the field of photovoltaics.
  • a unidirectional electrical network is a significant property for the efficiency of photogenerated electron transport.
  • DSSCs dye sensitized solar cells
  • This method comprises two steps which are (1) the electrosynthesis of TiO 2 hollow nanotubes and (2) the electrodeposition of phthalocyanine amino compounds, designated TAZnPc, thereon. Given the preparation process, there is no covalent bond between TAZnPc and TiO 2 .
  • Giribabu et al. (2009) also proposes a new photosensitizer phosphor for DSSC based on asymmetric zinc phthalocyanine and implementing a Ti0 2 film [2].
  • This film is made from nanoparticles of Ti0 2 and Ti0 2 paste. The phosphors are then adsorbed on the surface of these already synthesized films.
  • Li and Xin (2010) also describe a photocatalyst for photodegradation of organic pollutants in water, based on TiO 2 and phthalocynanine and, more particularly, based on TiO 2 nanoparticles sensitized by Zn (II) phthalocyanine.
  • This photocatalyst is obtained by preparing nanoparticles of TiO 2 in the anatase phase which are subsequently impregnated with phthalocyanine Zn (II). This impregnation comparable to adsorption does not imply any covalent bond.
  • Jang et al. (2009) prepared nanoparticles of Ti0 2 by sol-gel [5]. The latter are then encapsulated in a polymer shell (PMMA) and the material obtained is impregnated with phthalocyanine derivatives of the copper (II) phthalocyanine tetrasulfonate type.
  • PMMA polymer shell
  • the present invention overcomes the disadvantages and technical problems listed above. Indeed, the latter proposes a process for preparing particulate materials based on titanium oxide and incorporating phthalocyanine derivatives, said process being applicable at the industrial level, not requiring heavy processes or steps and using easily accessible, non-hazardous and low-toxicity products.
  • titanium phthalocyanine derivatives as precursors makes it possible to manufacture titanium oxide particles such as microparticles or nanoparticles of titanium oxide incorporating phthalocyanine derivatives.
  • the availability of combined axial ligands with the presence of the Ti atom introduced into the cavity of the phthalocyanine macrocycle makes it possible to use it as a precursor necessary for a correct synthesis of titanium oxide particles in the reverse micellar pathway.
  • the present invention provides a novel method for preparing titanium phthalocyanine particles that allows the synthesis of nanoparticles and microparticles into platelets. These particles therefore possess the properties of the hydrophobic compound of titanium phthalocyanine while remaining dispersible in an aqueous medium. Therefore, these particles have an amphiphilic character allowing their dispersion in polymer matrices and other coatings.
  • phthalocyanine derivatives covalently and at heart ie in the network of titanium oxide particles, can make it possible to extend the life of a product and to protect it against the solar irradiation. Indeed, in the context of the present invention, the inventors have shown that such particles have excellent light and UV holding properties. Similarly, these particles have, as shown in Figure 1, a unidirectional electrical network, giving them de facto a significant property for the photogenerated electron transport efficiency.
  • the present invention relates to a process for preparing a titanium oxide particle incorporating at least one phthalocyanine derivative, said particle being prepared from at least one titanium phthalocyanine derivative via an inverse microemulsion.
  • the titanium oxide particles prepared by the process according to the present invention have a titanium oxide network and incorporate at least one phthalocyanine derivative.
  • each Ti atom is bonded to two oxygen atoms by means of single covalent bonds. Therefore, the titanium oxide particles according to the invention are clearly distinguishable from an oxotitane phthalocyanine crystal as described in the patent application CN 1,594,330 [8] and the patent application JP 08 134373 [ 9] and wherein the Ti atoms are bonded to oxygen atoms by means of a double bond.
  • reverse microemulsion also called “water-in-oil” microemulsion
  • water-in-oil microemulsion a limpid, thermodynamically stable suspension of fines. droplets of a first polar liquid in a second non-polar liquid and therefore immiscible with the first liquid.
  • reverse micellar pathway is equivalent to the expression “via an inverse microemulsion”.
  • titanium phthalocyanine derivative is meant a compound of formula
  • R 1, R 2 , R 3 and R 4 which may be identical or different, represent an optionally substituted arylene group and
  • R 5 and R 5 which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially from 1 to 6 carbon atoms, optionally substituted.
  • substituted alkyl is meant, in the context of the compounds of formula (I), an alkyl substituted by a halogen, an amino group, a diamine group, an amide group, an acyl group, a vinyl group or a hydroxyl group. an epoxy group, a phosphonate group, a sulfonic acid group, an isocyanate group, a carboxyl group, a thiol (or mercapto) group, a glycidoxy group or an acryloxy group and in particular a methacryloxy group.
  • R ' represents a methyl or an ethyl.
  • arylene group means an aromatic or heteroaromatic carbon structure, optionally mono- or polysubstituted, consisting of one or more aromatic or heteroaromatic rings each comprising from 3 to 8 atoms, the (or ) heteroatom (s) which can be N, O, P or S.
  • Substituted arylene means an arylene group which may be mono- or polysubstituted by a group selected from the group consisting of a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
  • the groups R 1, R 2 , R 3 and R 4 are identical or different, each representing a phenylene, a naphthylene or an anthracene. More particularly, the groups R 1, R 2 , R 3 and R 4 are identical and represent a phenylene, a naphthylene or an anthracene.
  • titanium phthalocyanine derivative used in the context of the present invention is a compound of formula (II):
  • the groups R 7 to R 22, which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; an alkyl, linear or branched, of 1 to 12 carbon atoms and in particular from 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
  • titanium phthalocyanine derivative used in the context of the present invention is a compound of formula (III) of the naphthalocyanine type:
  • the groups R 2 3 to R 46 which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
  • a compound of formula (II I) which is preferred in the context of the present invention is the compound in which the groups R 2 3 to R 46 represent a hydrogen and the groups R 5 and R 6 are as previously defined.
  • the dotted bonds represent coordination bonds or dative bonds.
  • the groups R 5 and R 6 in the compounds of formula (I), (II) or (II I) are identical and are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R 'representing a linear or branched alkyl of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted and especially selected from the group consisting of -Cl, -F, -OH, -OCH 3 and -OC 2 H 5 . More particularly, the groups R 5 and R 6 in the compounds of formula (I), (II) or (II I) are identical and represent -Cl.
  • the compound of formula (V) which is the peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which the groups R 5 and R 6 are -Cl, the groups R 7 , Rio, Ru, R 14 , R 15, R 18, R 19 and R 22 all represent hydrogen and the groups R 8 , R 9 , R 12, R 13, R 16, R 17, R 20 and R 21 are identical and selected from the group consisting of hydrogen; a carboxylate; a aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfo
  • the compound of formula (VI) which is non-peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which the groups R 5 and R 5 are -Cl, the groups R 8 , R 6 , R12, R13, Ri6, R17, R20 and R21 are all hydrogen and the R 7 groups, Rio, Ru, R14, R15, Ris, R19 and R22 are identical and are selected from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl;
  • the process according to the invention comprises, more particularly, the following successive steps:
  • M a a microemulsion of the water-in-oil type containing at least one titanium phthalocyanine derivative
  • step (b) adding, to the microemulsion (M a ) obtained in step (a), at least one compound allowing the hydrolysis of the titanium phthalocyanine derivative,
  • step (b) adding to the microemulsion (M b ) obtained in step (b) a solvent for destabilizing said microemulsion,
  • step (c) recovering titanium oxide particles incorporating at least one phthalocyanine derivative precipitated in step (c).
  • Step (a) of the process according to the invention therefore consists in preparing a microemulsion (M a ) of the water-in-oil type containing at least one titanium phthalocyanine derivative.
  • a microemulsion M a
  • Any technique making it possible to prepare such a microemulsion can be used in the context of the present invention.
  • microemulsion (M a ) directly by mixing together the various components and therefore a (or) derivative (s) phthalocyanine titanium.
  • step (a) of the process according to the invention consists in preparing a first solution (Mi) in which is (are) subsequently incorporated (s) a (or) titanium phthalocyanine derivative (s).
  • This solution (M i) is obtained by mixing together:
  • the surfactant, the optional co-surfactant and the non-polar or weakly polar solvent are added one after the other and, in the following order, surfactant then optionally co-surfactant then non-polar or weakly polar solvent.
  • Mixing is carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and may be carried out at a temperature between 10 and 40 ° C, preferably between 15 and 30 ° C and more particularly at ambient temperature (ie 23 ° C. ⁇ 5 ° C.) for a period of between 1 and 45 minutes, in particular between 5 and 30 minutes and, in particular, for 15 minutes.
  • the surfactant (s) that may be used in the context of the present invention aims to introduce hydrophilic species in a hydrophobic environment and may be chosen from ionic surfactants, nonionic surfactants and mixtures thereof
  • mixtures is meant, in the context of the present invention, a mixture of at least two different ionic surfactants, a mixture of at least two different nonionic surfactants or a mixture of at least one nonionic surfactant.
  • ionic agent and at least one ionic surfactant is meant, in the context of the present invention, a mixture of at least two different ionic surfactants, a mixture of at least two different nonionic surfactants or a mixture of at least one nonionic surfactant.
  • An ionic surfactant may in particular be in the form of a hydrocarbon chain, charged whose charge is counterbalanced by a counter-ion.
  • ionic surfactants mention may be made of sodium bis (2-ethylhexyl sulfosuccinate) (AOT), cetyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB) and mixtures thereof.
  • a nonionic surfactant that may be used in the context of the present invention may be chosen from the group consisting of polyethoxylated alcohols, polyethoxylated phenols, oleates, laurates and their mixtures.
  • Triton X such as Triton X. 100; Brij such as Brij-30; Igepal COs such as Igepal CO-720; Tween such as Tween 20; Spans such as the Span 85.
  • the surfactant used in the context of the present invention is Triton X-100.
  • a co-surfactant may optionally be added to the solution (Mi).
  • co-surfactant in the context of the present invention an agent capable of facilitating the formation of microemulsions and stabilize them.
  • said co-surfactant is an amphiphilic compound chosen from the group consisting of a sodium alkyl sulphate of 8 to 20 carbon atoms, such as SDS (for "sodium dodecyl sulphate”); an alcohol such as an isomer of propanol, butanol, pentanol and hexanol; a glycol and their mixtures.
  • the co-surfactant used in the context of the present invention is n-hexanol.
  • non-polar or weakly polar solvent is usable in the context of the present invention.
  • said non-polar or weakly polar solvent is a non-polar or weakly polar organic solvent and, in particular, chosen from the group consisting of n-butanol, hexanol, cyclopentane, pentane, cyclohexane, n-butanol and n-butanol.
  • hexane cycloheptane, n-heptane, n-octane, isooctane, hexadecane, petroleum ether, benzene, isobutylbenzene, toluene, xylene, cumene, diethyl ether, n-butyl acetate, isopropyl myristate and mixtures thereof.
  • non-polar or weakly polar solvent used in the context of the present invention is cyclohexane.
  • the surfactant is present in a proportion of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20% by volume relative to the total volume of said solution.
  • the co-surfactant is optionally present in the solution (Mi) in a proportion of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20% by volume relative to the total volume of said solution.
  • the non-polar or weakly polar solvent is present in the solution (Mi) in a proportion of between 40 and 98%, in particular between 50 and 90% and, in particular, between 60 and 80% by volume relative to to the total volume of said solution.
  • the titanium phthalocyanine derivative (s) may be added in solid form, in liquid form or in solution in a polar solvent. When several different titanium phthalocyanine derivatives are used, they may be mixed at once or added one after the other or in groups.
  • a polar solvent is added to the microemulsion (M a ) after incorporation of said titanium phthalocyanine derivative (s) into the solution (M i).
  • the titanium phthalocyanine derivative (s) is (are) added to the solution (Mi) in solution in a polar solvent and then the polar solvent, which is identical to or different from the first, is further added.
  • the two polar solvents used are identical.
  • the two polar solvents used are different but at least partially miscible: for example THF and water.
  • the addition of the titanium phthalocyanine derivative and optionally the polar solvent may be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer and may be used at a temperature of between 10 and 40 ° C. C, advantageously between 15 and 30 ° C and, more particularly, at room temperature (ie 23 ° C ⁇ 5 ° C) for a period of between 5 min and 1 h, in particular between 15 and 45 min and, in particular, for 30 minutes.
  • polar solvent in the context of the present invention a solvent selected from the group consisting of water, deionized water, distilled water, acidified or basic, hydroxylated solvents such as methanol and sodium hydroxide. ethanol, low molecular weight liquid glycols such as ethylene glycol, dimethyl sulfoxide (DMSO), acetonitrile, acetone, tetrahydrofuran (THF) and mixtures thereof.
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • the polar solvent or the mixture of polar solvents (polar solvent in which the titanium phthalocyanine derivative (s) is (are) in solution and / or other polar solvent subsequently added) is present in the microemulsion ( M a ), in a proportion of between 0.1 and 20%, especially between 0.5 and 15% and, in particular, between 1 and 10% by volume relative to the total volume of said microemulsion.
  • the OR the titanium phthalocyanine derivative (s) is (are) present in this polar solvent or this mixture of polar solvents in a concentration of between 10 mM and 0.5 M, in particular between 20 mM and 0.4 M and, in particular, between 40 mM and 0.3 M.
  • Step (b) of the process according to the invention aims to provide for the hydrolysis of the titanium phthalocyanine derivative (s) by adding to the microemulsion (M a ) a compound allowing this hydrolysis, the microemulsion (M b ) thus obtained being a water-in-oil microemulsion.
  • the compound allowing the hydrolysis of the titanium phthalocyanine derivative (s) is advantageously chosen from the group consisting of ammonia, potassium hydroxide (KOH), lithium hydroxide (LiOH) and sodium hydroxide (NaOH) and, advantageously, a solution of such a compound in a polar solvent, which is identical or different, to the polar solvent (s) used during step (a) .
  • the compound allowing the hydrolysis of the titanium phthalocyanine derivative (s) is, more particularly, ammonia or a solution of ammonia in a polar solvent as defined above. Indeed, ammonia acts as a reagent (H 2 0) and as a catalyst (NH 4 OH) hydrolysis of (or) derivative (s) phthalocyanine titanium.
  • the compound allowing the hydrolysis of the titanium phthalocyanine derivative (s), when it is in solution in the polar solvent, is present in a proportion of between 5 and 50%, in particular between 10 and 40%, and in particular between 20 and 30% by volume relative to the total volume of said solution.
  • said solution is present in a proportion of between 0.01 and 10%, in particular between 0.05 and 5% and, in particular, between 0.75 and 2% by volume relative to the total volume of the microemulsion ( M).
  • Step (b) can be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and at a temperature of between 10 and 40.degree. C., advantageously between 15 and 30.degree. more particularly at room temperature (ie 23 ° C. ⁇ 5 ° C.) for a period of between 6 and 48 hours, in particular between 12 and 36 hours and, in particular, for 24 hours.
  • Step (c) of the process according to the invention aims at precipitating the titanium oxide particles by adding a solvent which does not denature the structure of the particles but which destabilizes or denatures the microemulsion (Mb) obtained at the step (b).
  • the solvent used is a polar solvent as defined above.
  • a particular polar solvent to be used in step (c) is selected from the group consisting of ethanol, acetone and methanol.
  • the solvent used in step (c) of the process according to the invention is ethanol.
  • a volume of solvent greater than the volume of said microemulsion, in particular greater by a factor of 1.5, is added to the microemulsion (Mb); in particular, greater by a factor of 2; and even a factor of 3.
  • step (d) implements one or more steps, identical or different, chosen from the centrifugation, sedimentation and washing steps.
  • the washing step (s) is (are) carried out in a polar solvent as defined above.
  • the recovery step uses several washes, the same polar solvent is used for several or even all washes or several different polar solvents are used at each wash.
  • centrifugation stage it (they) can be implemented by centrifuging the titanium oxide particles, in particular in a wash solvent at room temperature, at a temperature of a speed of between 4000 and 8000 rpm and, in particular, of the order of 6000 rpm (ie 6000 ⁇ 500 rpm) and this, for a period of between 5 min and 2 h, in particular between 10 min and 1 h, and particular, for 15 min.
  • the method according to the present invention may comprise, following step (d), an additional step of purifying the titanium oxide particles obtained hereinafter referred to as "step (e)".
  • this step (e) consists in putting the titanium oxide particles recovered after step (d) of the process according to the invention in contact with a very wide volume of water.
  • very large volume is meant a volume greater by a factor of 50, in particular by a factor of 500 and, in particular, by a factor of 1000 to the volume of particles of titanium oxide, recovered after the step ( d) the process according to the invention.
  • Step (e) may be a dialysis step, the titanium oxide particles being separated from the volume by a cellulose membrane, of the Spectra / Por ® - MWCO3500 (Proud) type.
  • an ultrafiltration step can be provided in place of the dialysis step, via a polyethersulfone membrane.
  • Step (e) may, in addition, be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, at a temperature between 0 and 30 ° C., advantageously between 2 and 20 ° C. ° C and, more particularly, cold (ie 6 ° C ⁇ 2 ° C) and this, for a period of between 30 h and 15 d, especially between 3 and 10 days and, in particular, for 1 week.
  • a stirrer a magnetic bar, an ultrasonic bath or a homogenizer
  • the present invention also relates to the microemulsion (M b) which can be implemented under the method according to the invention.
  • This microemulsion of water-in-oil type comprises:
  • At least one surfactant especially as defined above,
  • At least one titanium phthalocyanine derivative especially as defined above, and
  • At least one compound capable of hydrolyzing a titanium phthalocyanine derivative in particular as defined above.
  • the water-in-oil microemulsion that is the subject of the present invention (M b ) comprises:
  • At least one surfactant in an amount of between 1 and 30%, in particular between 5 and 25% and, in particular, between 10 and 20%; - optionally at least one co-surfactant in an amount of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20%;
  • At least one non-polar or slightly polar solvent in an amount of between 40 and 95%, especially between 50 and 90% and, in particular, between 60 and 80%;
  • At least one polar solvent in an amount of between 0.25 and 15%, especially between 0.5 and 10% and, in particular, between 1 and 5%;
  • At least one titanium phthalocyanine derivative in a concentration of between 50 ⁇ M and 50 mM, in particular between 100 ⁇ M and 10 ⁇ m, and in particular between 500 ⁇ M and 5 ⁇ m;
  • At least one compound capable of hydrolyzing said titanium phthalocyanine derivative in an amount of between 0.01 and 5%, especially between 0.05 and 1% and, in particular, between 0.1 and 0.5%,
  • the present invention further relates to a titanium oxide particle capable of being prepared by the process of the present invention.
  • This particle is a titanium oxide particle comprising at least one phthalocyanine derivative, as previously defined. It differs from the titanium oxide particles of the state of the art by the two covalent bonds which bind the Ti atom to the phthalocyanine derivative, the phthalocyanine derivative not being a group which functionalizes the particle of titanium oxide or adsorbed on it. Indeed, the covalent bonds which bind the Ti atom with the phthalocyanine derivative are retained in the titanium oxide particle formed at the end of the process according to the invention. Thus, there is a strong interaction between the structure of the titanium oxide particle and the phthalocyanine derivative (s) by the presence of the covalent bonds.
  • the phthalocyanine derivative is covalently bonded to the titanium oxide lattice of the particle according to the invention.
  • the titanium oxide particles obtained according to the process of the invention are in the form of platelets and in particular in the form of nanoplates or chips.
  • nanoplate in the context of the present invention, a rectangular parallelepiped having at least two of its characteristic dimensions less than or equal to 100 nm.
  • a nanoplate in the context of the present invention, comprises:
  • FIG. 1 is the representation of a nanoplate that can be obtained by the method of the invention.
  • microchip means a rectangular parallelepiped having at least one of its characteristic dimensions greater than or equal to 1 ⁇ .
  • a chip in the context of the present invention, comprises:
  • titanium particle in the context of the present invention, the terms “titanium particle”, “titanium nanoparticle”, “titanium nanopellet”, “titanium oxide particle”, “titanium oxide nanoparticle” and “nanopellet of titanium” titanium oxide "can be used in an equivalent manner to define the product prepared by carrying out the process according to the invention.
  • titanium oxide chip can be used in an equivalent way to define the product prepared by implementing the method according to the invention.
  • titanium oxide particles according to the present invention or prepared according to the process of the present invention comprise compounds of TiO 2 type and phthalocyanine type compounds, they can be used in each of the known applications of these compounds. . Examples include applications as photocatalysts and dyes.
  • microparticles and nanoparticles of titanium oxide phthalocyanine derivatives have remarkable properties of light and UV light, allowing to consider new applications.
  • the present invention relates to the use of a titanium oxide particle according to the present invention or prepared according to the process of the present invention in the paper industry, the textile industry, the pharmaceutical industry, the plastic industry and the photovoltaic industry and, more particularly, in the fields selected from the group consisting of coloring agents (inks, paints, paper and textiles); photocatalysis and photodegradation; UV protection agents; solar light-keeping agents; anti-light and anti-UV protection agents; and electronic, optical, sensor, conversion and energy storage devices.
  • the present invention relates to the use of a titanium oxide particle according to the present invention or prepared according to the method of the present invention for UV protection.
  • FIG. 1 is a schematic representation of a titanium oxide nanoparticle nanoparticle prepared by the method according to the invention.
  • FIG. 2 shows a view obtained by transmission electron microscopy (M ET) of titanium oxide nanoparticles prepared by the process according to the invention.
  • M ET transmission electron microscopy
  • FIG. 3 shows the energy dispersive analysis (EDS) of titanium oxide nanoparticles prepared by the process according to the invention.
  • FIGS. 4A and 4B show two independent examples of the UV resistance of a PVA film in which nanoparticles of titanium oxide, not prepared by the process according to the invention, were trapped before and after UV irradiation at 365 nm.
  • the values plotted on the abscissa correspond to the absorbance without unit and the values plotted on the ordinate at the wavelength expressed in nm.
  • FIG. 5 shows the light resistance of a PVA film in which nanoparticles of titanium oxide prepared by the process according to the invention were trapped before and after artificial aging.
  • the values plotted on the abscissa correspond to the absorbance without unit and the values carried in ordinates at the wavelength expressed in nm.
  • titanium oxide nanoparticles in the form of nanobits or nanoplates were prepared using the reverse microemulsion (water-in-oil) method.
  • the microemulsion solution three-phase melamine was prepared by mixing the appropriate amounts of surfactant, organic solvent, aqueous solution (THF-containing), aqueous ammonia solution.
  • Ammonia acts as a reagent (H 2 0) and as a catalyst (NH 3 ) for the hydrolysis of the titanium phthalocyanine derivative.
  • a solution (solution M i according to the invention) was generated by adding, in this order, the following chemicals, the surfactant Triton X100 (8.4 mL, 9 g), the co-surfactant n-hexanol (8, 2 mL), cyclohexane organic solvent (38 mL). The solution was then stirred at room temperature for 15 minutes. Next, the titanium phthalocyanine derivative titanium IV phthalocyanine dichloride or titanium IV phthalocyanine dichloride (CAS No. 16903-42-7) in a THF solution was added (400 ⁇ to 0).
  • the hydrolysis of the titanium-based compound was initiated by the addition of 25% aqueous ammonia (500 ⁇ ) and the reaction mixture was stirred for 24 h at room temperature.
  • the emulsion was destabilized by the addition of ethanol (500 mL) and the nano-objects were washed three times with ethanol and once with water, each wash being followed by centrifuge sedimentation (15 min. at 6000 rpm).
  • the purification of the nanoparticles obtained was completed by dialysis (nominal MWCO3500 Daltons) in water (1 L) with magnetic stirring for one week.
  • nanoparticles of titanium oxide dispersed in water (40 mL) prepared according to the method of Part I were then characterized by transmission electron microscopy (TEM) analysis which allows to appreciate the nanostructure of these nanoparticles.
  • TEM transmission electron microscopy
  • the titanium oxide nanoparticles have the shape of nanobaggets or nanoplates, with a width of between 20-50 nm and a length of between 100-500 nm (FIG. 2).
  • nanoparticles according to the invention 0.1 g was prepared. After stirring in the bath ultrasound for 15 min, this solution was deposited as a film on a glass slide.
  • the UV aging of this film was verified by subjecting the glass slide to irradiation under a UV lamp irradiating at 365 nm for 5 days.
  • a glass slide prepared as described in III.1. was subjected to an aging test in a Suntest chamber of ATLAS after drying at room temperature.
  • the aging conditions are as follows: irradiance at 765 W / m 2 ; Xenon arc lamp equipped with a "glass window” filter cutting UV below 310 nm, exposure spectrum from 300 to 800 nm, exposure time of 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a process for preparing a titanium oxide particle having a titanium oxide network and incorporating at least one phthalocyanine derivative, from at least one titanium phthalocyanine derivative via an inverse microemulsion; to said particles and to uses thereof.

Description

PROCÉDÉ DE PRÉPARATION DE PARTICULES D'OXYDE DE TITANE CONTENANT UN DÉRIVÉ DE PHTALOCYANINE, LESDITES PARTICULES ET LEURS UTILISATIONS  PROCESS FOR THE PREPARATION OF TITANIUM OXIDE PARTICLES CONTAINING PHTALOCYANINE DERIVATIVE, THE SAID PARTICLES AND USES THEREOF
DESCRIPTION DOMAINE TECHNIQUE DESCRIPTION TECHNICAL FIELD
La présente invention se rapporte au domaine des matériaux possédant une bonne tenue lumière et aux UV et notamment des nanoparticules ou des microparticules d'oxyde de titane contenant des colorants de type phtalocyanine. The present invention relates to the field of materials having a good light and UV resistance and in particular nanoparticles or titanium oxide microparticles containing phthalocyanine dyes.
En effet, la présente invention a pour objet un procédé de préparation de particules d'oxyde de titane incorporant des dérivés de phtalocyanine et de naphthalocyanine. Elle concerne également les particules d'oxyde de titane incorporant des dérivés de phtalocyanine et de naphthalocyanine, susceptibles d'être préparées par ce procédé et leurs différentes utilisations et applications.  Indeed, the present invention relates to a process for preparing titanium oxide particles incorporating phthalocyanine and naphthalocyanine derivatives. It also relates to titanium oxide particles incorporating phthalocyanine and naphthalocyanine derivatives, capable of being prepared by this process and their various uses and applications.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Les matériaux présentant une bonne tenue lumière et aux UV, lorsqu'ils sont associés à un produit, peuvent permettre d'en allonger la durée de vie et de le protéger vis-à-vis de l'irradiation solaire. Ainsi, de tels matériaux trouvent des applications dans des domaines divers tels que l'industrie papetière, l'industrie textile, l'industrie pharmaceutique, l'industrie plastique et l'industrie photovoltaïque. The materials having a good light and UV light, when associated with a product, can make it possible to extend the service life and to protect it vis-à-vis the solar irradiation. Thus, such materials find applications in various fields such as the paper industry, the textile industry, the pharmaceutical industry, the plastics industry and the photovoltaic industry.
Ainsi, un intérêt considérable s'est développé ces dernières années concernant la tenue lumière des matériaux. Cet intérêt provient du fait que certains composés organiques tels que les pthalocyanines ont la faculté d'absorber de grandes doses de lumière sans se décomposer.  Thus, considerable interest has developed in recent years regarding the light-fastness of materials. This interest comes from the fact that certain organic compounds such as pthalocyanines have the ability to absorb large doses of light without decomposing.
Les pthalocyanines ont été beaucoup étudiées pour leurs excellentes propriétés optiques et électroniques dans les secteurs des appareils photoconducteurs et des cellules photovoltaïques. Elles possèdent deux importantes régions d'absorption que sont la B-band (300-400 nm) et la Q-band (600-800 nm). Actuellement, le développement d'un matériau hydride organique/inorganique de type oxyde de tita ne (Ti02) serait prometteur pour le domaine du photovoltaïque. De plus, un réseau électrique unidirectionnel est une propriété non négligeable pour l'efficacité de transport d'électrons photogénérés. Pthalocyanines have been extensively studied for their excellent optical and electronic properties in the photoconductor and photovoltaic cell sectors. They have two important absorption regions: B-band (300-400 nm) and Q-band (600-800 nm). At present, the development of an organic / inorganic hybrid material of the titanium oxide type (Ti0 2 ) would be promising for the field of photovoltaics. In addition, a unidirectional electrical network is a significant property for the efficiency of photogenerated electron transport.
Des procédés permettant de préparer un matériau hybride organique/inorganique phtalocyanine/Ti02 ont déjà été décrits dans l'état de la technique. Methods for preparing an organic / inorganic phthalocyanine / TiO 2 hybrid material have already been described in the state of the art.
Cheng et al. (2010) ont publié une méthode pour préparer des cellules solaires sensibilisées à colorants (DSSC) basées sur une matrice ordonnée de nanotubes de Ti02 et des phtalocyanines comme colorants sensibilisateurs [1]. Cette méthode comprend deux étapes qui sont (1) l'électrosynthèse de nanotubes creux de Ti02 et (2) l'électrodéposition de composés aminés de phtalocyanines, désignés TAZnPc, sur ces derniers. Compte-tenu du procédé de préparation, il n'existe aucune liaison covalente entre les TAZnPc et le Ti02. Cheng et al. (2010) have published a method for preparing dye sensitized solar cells (DSSCs) based on an ordered matrix of TiO 2 nanotubes and phthalocyanines as sensitizing dyes [1]. This method comprises two steps which are (1) the electrosynthesis of TiO 2 hollow nanotubes and (2) the electrodeposition of phthalocyanine amino compounds, designated TAZnPc, thereon. Given the preparation process, there is no covalent bond between TAZnPc and TiO 2 .
Giribabu et al. (2009) propose également un nouveau luminophore photosensibilisateur pour DSSC à base de phtalocyanine de zinc asymétrique et mettant en œuvre un film de Ti02 [2]. Ce film est préparé à partir de nanoparticules de Ti02 et de pâte de Ti02. Les luminophores sont ensuite adsorbés en surface de ces films déjà synthétisés. Giribabu et al. (2009) also proposes a new photosensitizer phosphor for DSSC based on asymmetric zinc phthalocyanine and implementing a Ti0 2 film [2]. This film is made from nanoparticles of Ti0 2 and Ti0 2 paste. The phosphors are then adsorbed on the surface of these already synthesized films.
Machado et al. (2008) propose des nanocomposites à base de Ti02 et de phtalocyanine de zinc comme photocatalyseur dans le traitement des eaux usées en utilisant les radiations solaires [3]. Ces composites sont préparés en revêtant des particules de Ti02 par des phtalocyanines de zinc. Comme pour [2], ce procédé de préparation implique une adsorption des phtalocyanines à la surface de particules. Machado et al. (2008) proposes nanocomposites based on Ti0 2 and zinc phthalocyanine as photocatalyst in the treatment of wastewater using solar radiation [3]. These composites are prepared by coating TiO 2 particles with zinc phthalocyanines. As for [2], this preparation process involves adsorption of phthalocyanines to the surface of particles.
Li et Xin (2010) décrivent également un photocatalyseur pour la photodégradation de polluants organiques dans l'eau, à base de Ti02 et de phtalocynanine et, plus particulièrement, à base de nanoparticules de Ti02 sensibilisées par la phtalocyanine de Zn(ll) [4]. Ce photocatalyseur est obtenu en préparant des nanoparticules de Ti02 en phase anatase qui sont, par la suite, imprégnées par de la phtalocyanine de Zn(ll). Cette imprégnation comparable à de l'adsorption n'implique aucune liaison covalente. De même, Jang et al. (2009) ont préparé des nanoparticules de Ti02 par voie sol-gel [5]. Ces dernières sont ensuite encapsulées dans une coquille de polymère (PMMA) et le matériau obtenu est imprégné avec des dérivés de phtalocyanines du type tétrasulfonate de phtalocyanine de cuivre (II). Li and Xin (2010) also describe a photocatalyst for photodegradation of organic pollutants in water, based on TiO 2 and phthalocynanine and, more particularly, based on TiO 2 nanoparticles sensitized by Zn (II) phthalocyanine. [4]. This photocatalyst is obtained by preparing nanoparticles of TiO 2 in the anatase phase which are subsequently impregnated with phthalocyanine Zn (II). This impregnation comparable to adsorption does not imply any covalent bond. Similarly, Jang et al. (2009) prepared nanoparticles of Ti0 2 by sol-gel [5]. The latter are then encapsulated in a polymer shell (PMMA) and the material obtained is impregnated with phthalocyanine derivatives of the copper (II) phthalocyanine tetrasulfonate type.
Enfin, Lopez et al. (2010) étudient la stabilisation de phtalocyanine de Zn(ll) pour des applications dans la thérapie photodynamique [6]. Cette stabilisation est obtenue via des nanoparticules de Ti02 préparées par deux variantes de synthèse sol-gel, ces nanoparticules incorporant lors de la synthèse in-situ le dérivé de phtalocyanine. Toutefois, le composé aromatique organique n'est pas lié de façon covalente_au réseau des nanoparticules, et peut dont être sujet à relarguage faussant toute mesure. Finally, Lopez et al. (2010) study Zn (ll) phthalocyanine stabilization for photodynamic therapy applications [6]. This stabilization is obtained via TiO 2 nanoparticles prepared by two sol-gel synthesis variants, these nanoparticles incorporating, during the in situ synthesis, the phthalocyanine derivative. However, the organic aromatic compound is not covalently bonded to the network of nanoparticles, and may be subject to release to falsify any measurement.
Un procédé de préparation comparable à celui décrit dans [6] a été décrit par Di et al. (2006) [7]. Dans ce document, sont préparées des particules de Ti02 mésoporeuses, dopées par des phtalocyanines de cuivre incorporées lors de la synthèse des particules. A method of preparation comparable to that described in [6] has been described by Di et al. (2006) [7]. In this document, mesoporous TiO 2 particles doped with copper phthalocyanines incorporated during the synthesis of the particles are prepared.
Il existe un réel besoin d'un procédé simple, pratique et applicable au niveau industriel pour préparer des matériaux à base de phtalocyanines et de particules d'oxyde de titane qui ne présentent pas les inconvénients listés ci-dessus. There is a real need for a simple, practical and industrially applicable process for preparing materials based on phthalocyanines and titanium oxide particles which do not have the disadvantages listed above.
EXPOSÉ DE L'INVENTION La présente invention permet de remédier aux inconvénients et problèmes techniques listés ci-dessus. En effet, cette dernière propose un procédé de préparation de matériaux particulaires à base d'oxyde de titane et incorporant des dérivés de phtalocyanine, ledit procédé étant applicable au niveau industriel, ne nécessitant pas de procédés ou d'étapes lourd(e)s et utilisant des produits facilement accessibles, non dangereux et peu toxiques. DISCLOSURE OF THE INVENTION The present invention overcomes the disadvantages and technical problems listed above. Indeed, the latter proposes a process for preparing particulate materials based on titanium oxide and incorporating phthalocyanine derivatives, said process being applicable at the industrial level, not requiring heavy processes or steps and using easily accessible, non-hazardous and low-toxicity products.
Les travaux des inventeurs ont mis en évidence que l'utilisation de dérivés de phtalocyanines de titane comme précurseurs permet de fabriquer des particules d'oxyde de titane telles que des microparticules ou des nanoparticules d'oxyde de tita ne incorporant des dérivés de phtalocyanine. La disponibilité des ligands axiaux combinée avec la présence de l'atome de Ti introduit dans la cavité du macrocycle de phtalocyanine permet de l'utiliser comme précurseur nécessaire à une synthèse correcte de particules d'oxyde de titane en voie micellaire inverse. The work of the inventors has demonstrated that the use of titanium phthalocyanine derivatives as precursors makes it possible to manufacture titanium oxide particles such as microparticles or nanoparticles of titanium oxide incorporating phthalocyanine derivatives. The availability of combined axial ligands with the presence of the Ti atom introduced into the cavity of the phthalocyanine macrocycle makes it possible to use it as a precursor necessary for a correct synthesis of titanium oxide particles in the reverse micellar pathway.
La présente invention fournit une nouvelle méthode de préparation de particules de phtalocyanines de titane qui permet la synthèse de nanoparticules et microparticules en plaquettes. Ces particules possèdent donc les propriétés du composé hydrophobe de la phtalocyanine de titane tout en restant dispersables en milieu aqueux. Par conséquent, ces particules présentent un caractère amphiphile permettant leur dispersion dans des matrices de polymères et autres revêtements.  The present invention provides a novel method for preparing titanium phthalocyanine particles that allows the synthesis of nanoparticles and microparticles into platelets. These particles therefore possess the properties of the hydrophobic compound of titanium phthalocyanine while remaining dispersible in an aqueous medium. Therefore, these particles have an amphiphilic character allowing their dispersion in polymer matrices and other coatings.
La fonctionnalisation par les dérivés de phtalocyanine, de façon covalente et à cœur i.e dans le réseau de particules d'oxyde de titane, peut permettre d'allonger la durée de vie d'un produit et de le protéger vis-à-vis de l'irradiation solaire. En effet, dans le cadre de la présente invention, les inventeurs ont montré que de telles particules ont d'excellentes propriétés de tenue lumière et aux UV. De même, ces particules présentent, comme montré Figure 1, un réseau électrique unidirectionnel, leur conférant de fait une propriété non négligeable pour l'efficacité de transport d'électrons photogénérés.  Functionalization by phthalocyanine derivatives, covalently and at heart ie in the network of titanium oxide particles, can make it possible to extend the life of a product and to protect it against the solar irradiation. Indeed, in the context of the present invention, the inventors have shown that such particles have excellent light and UV holding properties. Similarly, these particles have, as shown in Figure 1, a unidirectional electrical network, giving them de facto a significant property for the photogenerated electron transport efficiency.
Ainsi, la présente invention concerne un procédé de préparation d'une particule d'oxyde de titane incorporant au moins un dérivé de phtalocyanine, ladite particule étant préparée à partir d'au moins un dérivé de phtalocyanine de titane via une microémulsion inverse. Thus, the present invention relates to a process for preparing a titanium oxide particle incorporating at least one phthalocyanine derivative, said particle being prepared from at least one titanium phthalocyanine derivative via an inverse microemulsion.
Les particules d'oxyde de titane préparées par le procédé selon la présente invention présentent un réseau d'oxyde de titane et incorporent au moins un dérivé de phtalocyanine. Dans le réseau d'oxyde de titane des particules de l'invention, chaque atome de Ti est lié à deux atomes d'oxygène au moyen de liaisons covalentes simples. Par conséquent, les particules d'oxyde de titane selon l'invention se distinguent clairement d'un cristal de phtalocyanine d'oxotitane tel que décrit dans la demande de brevet CN 1 594 330 [8] et la demande de brevet JP 08 134373 [9] et dans lequel les atomes de Ti sont liés à des atomes d'oxygène au moyen d'une double liaison.  The titanium oxide particles prepared by the process according to the present invention have a titanium oxide network and incorporate at least one phthalocyanine derivative. In the titanium oxide lattice of the particles of the invention, each Ti atom is bonded to two oxygen atoms by means of single covalent bonds. Therefore, the titanium oxide particles according to the invention are clearly distinguishable from an oxotitane phthalocyanine crystal as described in the patent application CN 1,594,330 [8] and the patent application JP 08 134373 [ 9] and wherein the Ti atoms are bonded to oxygen atoms by means of a double bond.
Par « microémulsion inverse », également appelée microémulsion « eau dans huile », on entend une suspension limpide, thermodynamiquement stable, de fines gouttelettes d'un premier liquide polaire dans un second liquide non-polaire et donc non miscible avec le premier liquide. L'expression « par voie micellaire inverse » est équivalente à l'expression « via une microémulsion inverse ». By "reverse microemulsion", also called "water-in-oil" microemulsion, is meant a limpid, thermodynamically stable suspension of fines. droplets of a first polar liquid in a second non-polar liquid and therefore immiscible with the first liquid. The expression "reverse micellar pathway" is equivalent to the expression "via an inverse microemulsion".
Par « dérivé de phtalocyanine de titane », on entend un composé de formuleBy "titanium phthalocyanine derivative" is meant a compound of formula
(I) : (I):
Figure imgf000006_0001
Figure imgf000006_0001
(I) (I)
dans laquelle  in which
- Ri, R2, R3 et R4, identiques ou différents, représentent un groupement arylène éventuellement substitué et R 1, R 2 , R 3 and R 4 , which may be identical or different, represent an optionally substituted arylene group and
- R5 et R5, identiques ou différents, sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué. R 5 and R 5 , which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially from 1 to 6 carbon atoms, optionally substituted.
Par « alkyle substitué », on entend, dans le cadre des composés de formule (I), un alkyle substitué par un halogène, un groupe aminé, un groupe diamine, un groupe amide, un groupe acyle, un groupe vinyle, un groupe hydroxyle, un groupe epoxy, un groupe phosphonate, un groupe acide sulfonique, un groupe isocyanate, un groupe carboxyle, un groupe thiol (ou mercapto), un groupe glycidoxy ou un groupe acryloxy et notamment un groupe méthacryloxy. Avantageusement, R' représente un méthyle ou un éthyle.  By "substituted alkyl" is meant, in the context of the compounds of formula (I), an alkyl substituted by a halogen, an amino group, a diamine group, an amide group, an acyl group, a vinyl group or a hydroxyl group. an epoxy group, a phosphonate group, a sulfonic acid group, an isocyanate group, a carboxyl group, a thiol (or mercapto) group, a glycidoxy group or an acryloxy group and in particular a methacryloxy group. Advantageously, R 'represents a methyl or an ethyl.
Par « groupement arylène », on entend dans le cadre de la présente invention une structure carbonée aromatique ou hétéroaromatique, éventuellement mono- ou polysubstituée, constituée d'un ou plusieurs cycles aromatiques ou hétéroaromatiques comportant chacun de 3 à 8 atomes, le (ou les) hétéroatome(s) pouvant être N, 0, P ou S. Par « arylène substitué », on entend un groupement arylène qui peut être mono- ou polysubstitue par un groupement choisi dans le groupe constitué par un carboxylate ; un aldéhyde ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. For the purposes of the present invention, the term "arylene group" means an aromatic or heteroaromatic carbon structure, optionally mono- or polysubstituted, consisting of one or more aromatic or heteroaromatic rings each comprising from 3 to 8 atoms, the (or ) heteroatom (s) which can be N, O, P or S. "Substituted arylene" means an arylene group which may be mono- or polysubstituted by a group selected from the group consisting of a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
Avantageusement, les groupements Ri, R2, 3 et R4 sont, identiques ou différents, chacun représentant un phénylène, un naphthylène ou un anthracène. Plus particulièrement, les groupements Ri, R2, R3 et R4 sont identiques et représentent un phénylène, un naphthylène ou un anthracène. Advantageously, the groups R 1, R 2 , R 3 and R 4 are identical or different, each representing a phenylene, a naphthylene or an anthracene. More particularly, the groups R 1, R 2 , R 3 and R 4 are identical and represent a phenylene, a naphthylene or an anthracene.
En particulier, le dérivé de phtalocyanine de titane mis en œuvre dans le cadre de la présente invention est un composé de formule (II) : In particular, the titanium phthalocyanine derivative used in the context of the present invention is a compound of formula (II):
Figure imgf000007_0001
Figure imgf000007_0001
dans laquelle  in which
- les groupements R7 à R22, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 7 to R 22, which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; an alkyl, linear or branched, of 1 to 12 carbon atoms and in particular from 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
- les groupements R5 et R6sont tels que précédemment définis. the groups R 5 and R 6 are as previously defined.
En variante, le dérivé de phtalocyanine de titane mis en œuvre dans le cadre de la présente invention est un composé de formule (III) du type naphtalocyanine : Alternatively, the titanium phthalocyanine derivative used in the context of the present invention is a compound of formula (III) of the naphthalocyanine type:
Figure imgf000008_0001
Figure imgf000008_0001
dans laquelle  in which
- les groupements R23 à R46, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 2 3 to R 46 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
- les groupements R5 et R6sont tels que précédemment définis. Un composé de formule (II I) préféré dans le cadre de la présente invention est le composé dans lequel les groupements R23 à R46 représentent un hydrogène et les groupements R5 et R6 sont tels que précédemment définis. the groups R 5 and R 6 are as previously defined. A compound of formula (II I) which is preferred in the context of the present invention is the compound in which the groups R 2 3 to R 46 represent a hydrogen and the groups R 5 and R 6 are as previously defined.
Dans les formules (I), (II) et (II I), les liaisons en pointillé représentent des liaisons de coordination ou des liaisons datives.  In the formulas (I), (II) and (II I), the dotted bonds represent coordination bonds or dative bonds.
Avantageusement, les groupements R5 et R6 dans les composés de formule (I), (II) ou (II I) sont identiques et sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué et nota mment choisis dans le groupe constitué par -Cl, -F, -OH, -OCH3 et -OC2H5. Plus particulièrement, les groupements R5 et R6 dans les composés de formule (I), (II) ou (II I) sont identiques et représentent -Cl. Advantageously, the groups R 5 and R 6 in the compounds of formula (I), (II) or (II I) are identical and are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R 'representing a linear or branched alkyl of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted and especially selected from the group consisting of -Cl, -F, -OH, -OCH 3 and -OC 2 H 5 . More particularly, the groups R 5 and R 6 in the compounds of formula (I), (II) or (II I) are identical and represent -Cl.
Les composés de formule (I I) tout particulièrement utilisables dans le cadre de la présente invention sont : The compounds of formula (I I) that can be particularly used in the context of the present invention are:
- le composé de formule (IV) qu'est le chlorure de phtalocyanine de titane non substitué correspondant à un composé de formule (I I) dans laquelle les groupements R7 à R22 représentent tous un hydrogène et les groupements R5 et R5 sont -Cl : the compound of formula (IV) which is unsubstituted titanophthalocyanine chloride corresponding to a compound of formula (II) in which the groups R 7 to R 22 are all hydrogen and the groups R 5 and R 5 are - Cl:
Figure imgf000009_0001
Figure imgf000009_0001
- le composé de formule (V) qu'est le chlorure de phtalocyanine de titane substitué périphériquement correspondant à un composé de formule (I I) dans laquelle les groupements R5 et R6 sont -Cl, les groupements R7, Rio, Ru, R14, R15, Ris, R19 et R22 représentent tous un hydrogène et les groupements R8, R9, R12, R13, Ri6, R17, R20 et R2i sont identiques et choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfo the compound of formula (V) which is the peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which the groups R 5 and R 6 are -Cl, the groups R 7 , Rio, Ru, R 14 , R 15, R 18, R 19 and R 22 all represent hydrogen and the groups R 8 , R 9 , R 12, R 13, R 16, R 17, R 20 and R 21 are identical and selected from the group consisting of hydrogen; a carboxylate; a aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfo
Figure imgf000010_0001
Figure imgf000010_0001
- le composé de formule (VI) qu'est le chlorure de phtalocyanine de titane substitué non-périphériquement correspondant à un composé de formule (II) dans laquelle les groupements R5 et R5 sont -Cl, les groupements R8, Rg, R12, R13, Ri6, R17, R20 et R21 représentent tous un hydrogène et les groupements R7, Rio, Ru, R14, R15, Ris, R19 et R22 sont identiques et choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; une cétone ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol :
Figure imgf000011_0001
the compound of formula (VI) which is non-peripherally substituted titanium phthalocyanine chloride corresponding to a compound of formula (II) in which the groups R 5 and R 5 are -Cl, the groups R 8 , R 6 , R12, R13, Ri6, R17, R20 and R21 are all hydrogen and the R 7 groups, Rio, Ru, R14, R15, Ris, R19 and R22 are identical and are selected from the group consisting of hydrogen; a carboxylate; an aldehyde; a ketone; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol:
Figure imgf000011_0001
Le procédé selon l'invention comprend, plus particulièrement, les étapes successives suivantes :  The process according to the invention comprises, more particularly, the following successive steps:
a) préparer une microémulsion (Ma) du type eau dans huile contenant au moins un dérivé de phtalocyanine de titane, a) preparing a microemulsion (M a ) of the water-in-oil type containing at least one titanium phthalocyanine derivative,
b) ajouter, à la microémulsion (Ma) obtenue à l'étape (a), au moins un composé permettant l'hydrolyse du dérivé de phtalocyanine de titane, b) adding, to the microemulsion (M a ) obtained in step (a), at least one compound allowing the hydrolysis of the titanium phthalocyanine derivative,
c) ajouter à la microémulsion (Mb) obtenue à l'étape (b) un solvant permettant de déstabiliser ladite microémulsion, c) adding to the microemulsion (M b ) obtained in step (b) a solvent for destabilizing said microemulsion,
d) récupérer les particules d'oxyde de titane incorporant au moins un dérivé de phtalocyanine, précipitées lors de l'étape (c).  d) recovering titanium oxide particles incorporating at least one phthalocyanine derivative precipitated in step (c).
L'étape (a) du procédé selon l'invention consiste donc à préparer une microémulsion (Ma) du type eau dans huile contenant au moins un dérivé de phtalocyanine de titane. Toute technique permettant de préparer une telle microémulsion est utilisable dans le cadre de la présente invention. Ainsi, il est possible de : Step (a) of the process according to the invention therefore consists in preparing a microemulsion (M a ) of the water-in-oil type containing at least one titanium phthalocyanine derivative. Any technique making it possible to prepare such a microemulsion can be used in the context of the present invention. Thus, it is possible to:
- soit préparer une première solution (Mi) et d'y incorporer ultérieurement un (ou des) dérivé(s) de phtalocyanine de titane pour obtenir la microémulsion (Ma) ; - either prepare a first solution (Mi) and subsequently incorporate a (or) derivative (s) of titanium phthalocyanine to obtain the microemulsion (M a );
- soit préparer la microémulsion (Ma) directement en mélangeant ensemble les différents composants et donc un (ou des) dérivé(s) de phtalocyanine de titane. - Or prepare the microemulsion (M a ) directly by mixing together the various components and therefore a (or) derivative (s) phthalocyanine titanium.
Avantageusement, l'étape (a) du procédé selon l'invention consiste à préparer une première solution (Mi) dans laquelle est(sont) ultérieurement incorporé(s) un (ou des) dérivé(s) de phtalocyanine de titane. Cette solution (M i) est obtenue en mélangeant ensemble : Advantageously, step (a) of the process according to the invention consists in preparing a first solution (Mi) in which is (are) subsequently incorporated (s) a (or) titanium phthalocyanine derivative (s). This solution (M i) is obtained by mixing together:
- au moins un tensioactif,  at least one surfactant,
- éventuellement au moins un co-tensioactif et  - optionally at least one co-surfactant and
- au moins un solvant non-polaire ou faiblement polaire.  at least one non-polar or slightly polar solvent.
Avantageusement, le tensioactif, l'éventuel co-tensioactif et le solvant non- polaire ou faiblement polaire sont ajoutés les uns après les autres et, dans l'ordre suivant, tensioactif puis éventuellement co-tensioactif puis solvant non-polaire ou faiblement polaire.  Advantageously, the surfactant, the optional co-surfactant and the non-polar or weakly polar solvent are added one after the other and, in the following order, surfactant then optionally co-surfactant then non-polar or weakly polar solvent.
Le mélange est effectué sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur, et peut être mis en œuvre à une température comprise entre 10 et 40°C, avantageusement entre 15 et 30°C et, plus particulièrement, à température ambiante (i.e. 23°C ± 5°C) pendant une durée comprise entre 1 et 45 min, notamment entre 5 et 30 min et, en particulier, pendant 15 min.  Mixing is carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and may be carried out at a temperature between 10 and 40 ° C, preferably between 15 and 30 ° C and more particularly at ambient temperature (ie 23 ° C. ± 5 ° C.) for a period of between 1 and 45 minutes, in particular between 5 and 30 minutes and, in particular, for 15 minutes.
Le (ou les) tensioactif(s) utilisable(s) dans le cadre de la présente invention vise(nt) à introduire des espèces hydrophiles dans un environnement hydrophobe et peu(ven)t être choisi(s) parmi les tensioactifs ioniques, les tensioactifs non-ioniques et leurs mélanges. Par « mélanges », on entend, dans le cadre de la présente invention, un mélange d'au moins deux tensioactifs ioniques différents, un mélange d'au moins deux tensioactifs non-ioniques différents ou un mélange d'au moins un tensioactif non-ionique et d'au moins un tensioactif ionique.  The surfactant (s) that may be used in the context of the present invention aims to introduce hydrophilic species in a hydrophobic environment and may be chosen from ionic surfactants, nonionic surfactants and mixtures thereof By "mixtures" is meant, in the context of the present invention, a mixture of at least two different ionic surfactants, a mixture of at least two different nonionic surfactants or a mixture of at least one nonionic surfactant. ionic agent and at least one ionic surfactant.
Un tensioactif ionique peut notamment se présenter sous forme d'une chaîne hydrocarbonée, chargée dont la charge est contre-balancée par un contre-ion. A titre d'exemples non limitatifs de tensioactifs ioniques, on peut citer le bis(2-éthylhexyl sulfosuccinate) de sodium (AOT), le bromure de cétyltriméthylammonium (CTAB), le bromure de cétylpyridinium (CPB) et leurs mélanges.  An ionic surfactant may in particular be in the form of a hydrocarbon chain, charged whose charge is counterbalanced by a counter-ion. As non-limiting examples of ionic surfactants, mention may be made of sodium bis (2-ethylhexyl sulfosuccinate) (AOT), cetyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB) and mixtures thereof.
Un tensioactif non-ionique utilisable dans le cadre de la présente invention peut être choisi dans le groupe constitué par les alcools polyéthoxylés, les phénols polyéthoxylés, les oléates, les laurates et leurs mélanges. A titre d'exemples non limitatifs de tensioactifs non-ioniques commerciaux, on peut citer les Triton X tels que le Triton X- 100 ; les Brij tels que Brij-30 ; les Igepal CO tels que le Igepal CO-720 ; les Tween tels que le Tween 20 ; les Span tels que le Span 85. A nonionic surfactant that may be used in the context of the present invention may be chosen from the group consisting of polyethoxylated alcohols, polyethoxylated phenols, oleates, laurates and their mixtures. By way of nonlimiting examples of commercial nonionic surfactants, mention may be made of Triton X such as Triton X. 100; Brij such as Brij-30; Igepal COs such as Igepal CO-720; Tween such as Tween 20; Spans such as the Span 85.
Avantageusement, le tensioactif utilisé dans le cadre de la présente invention est du Triton X-100.  Advantageously, the surfactant used in the context of the present invention is Triton X-100.
Un co-tensioactif peut éventuellement être ajouté dans la solution (Mi).  A co-surfactant may optionally be added to the solution (Mi).
Par « co-tensioactif », on entend dans le cadre de la présente invention un agent capable de faciliter la formation des microémulsions et de les stabiliser. Avantageusement, ledit co-tensioactif est un composé amphiphile choisi dans le groupe constitué par un sulfate d'alkyle sodique à 8 à 20 atomes de carbone tel que le SDS (pour « Sodium Dodecyl Sulfate ») ; un alcool tel qu'un isomère de propanol, de butanol, de pentanol et d'hexanol ; un glycol et leurs mélanges.  By "co-surfactant" is meant in the context of the present invention an agent capable of facilitating the formation of microemulsions and stabilize them. Advantageously, said co-surfactant is an amphiphilic compound chosen from the group consisting of a sodium alkyl sulphate of 8 to 20 carbon atoms, such as SDS (for "sodium dodecyl sulphate"); an alcohol such as an isomer of propanol, butanol, pentanol and hexanol; a glycol and their mixtures.
Avantageusement, le co-tensioactif utilisé dans le cadre de la présente invention est du n-hexanol.  Advantageously, the co-surfactant used in the context of the present invention is n-hexanol.
Tout solvant non-polaire ou faiblement polaire est utilisable dans le cadre de la présente invention. Avantageusement, ledit solvant non-polaire ou faiblement polaire est un solvant organique non-polaire ou faiblement polaire et, notamment, choisi dans le groupe constitué par le n-butanol, l'hexanol, le cyclopentane, le pentane, le cyclohexane, le n-hexane, le cycloheptane, le n-heptane, le n-octane, l'iso-octane, l'hexadécane, l'éther de pétrole, le benzène, l'isobutyl-benzène, le toluène, le xylène, les cumènes, le diéthyl éther, le n-butyl acétate, l'isopropyl myristate et leurs mélanges.  Any non-polar or weakly polar solvent is usable in the context of the present invention. Advantageously, said non-polar or weakly polar solvent is a non-polar or weakly polar organic solvent and, in particular, chosen from the group consisting of n-butanol, hexanol, cyclopentane, pentane, cyclohexane, n-butanol and n-butanol. hexane, cycloheptane, n-heptane, n-octane, isooctane, hexadecane, petroleum ether, benzene, isobutylbenzene, toluene, xylene, cumene, diethyl ether, n-butyl acetate, isopropyl myristate and mixtures thereof.
Avantageusement, le solvant non-polaire ou faiblement polaire utilisé dans le cadre de la présente invention est du cyclohexane.  Advantageously, the non-polar or weakly polar solvent used in the context of the present invention is cyclohexane.
Dans la solution (Mi), le tensioactif est présent dans une proportion comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % en volume par rapport au volume total de ladite solution. Le co-tensioactif est éventuellement présent, dans la solution (Mi), dans une proportion comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % en volume par rapport au volume total de ladite solution. Ainsi, le solvant non-polaire ou faiblement polaire est présent, dans la solution (Mi), dans une proportion comprise entre 40 et 98 %, notamment entre 50 et 90 % et, en particulier, entre 60 et 80 % en volume par rapport au volume total de ladite solution. Une fois la solution (M i) préparée, le (ou les) dérivé(s) de phtalocyanine de titane tel(s) que précédemment défini(s) est(sont) incorporé(s) pour former la microémulsion (Ma) du type eau dans huile. In the solution (Mi), the surfactant is present in a proportion of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20% by volume relative to the total volume of said solution. The co-surfactant is optionally present in the solution (Mi) in a proportion of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20% by volume relative to the total volume of said solution. Thus, the non-polar or weakly polar solvent is present in the solution (Mi) in a proportion of between 40 and 98%, in particular between 50 and 90% and, in particular, between 60 and 80% by volume relative to to the total volume of said solution. Once the solution (M i) has been prepared, the titanium phthalocyanine derivative (s) as previously defined is (are) incorporated to form the microemulsion (M a ) of the type water in oil.
Le (ou les) dérivé(s) de phtalocyanine de titane peu(ven)t être ajouté(s) sous forme solide, sous forme liquide ou en solution dans un solvant polaire. Lorsque plusieurs dérivés de phtalocyanine de titane différents sont utilisés, ils peuvent être mélangés en une fois ou être ajoutés les uns après les autres ou par groupe.  The titanium phthalocyanine derivative (s) may be added in solid form, in liquid form or in solution in a polar solvent. When several different titanium phthalocyanine derivatives are used, they may be mixed at once or added one after the other or in groups.
Quelle que soit la variante mise en œuvre, un solvant polaire est rajouté à la microémulsion (Ma) après l'incorporation dudit (ou desdits) dérivé(s) de phtalocyanine de titane dans la solution (M i). Avantageusement, le (ou les) dérivé(s) de phtalocyanine de titane est(sont) ajouté(s) à la solution (Mi) en solution dans un solvant polaire puis du solvant polaire, identique ou différent du premier, est encore ajouté. Plus particulièrement, les deux solvants polaires utilisés sont identiques. En variante, les deux solvants polaires utilisés sont différents mais au moins partiellement miscibles : par exemple du THF et de l'eau. L'ajout du dérivé de phtalocyanine de titane et éventuellement du solvant polaire peut être effectué sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur et peut être mis en œuvre à une température comprise entre 10 et 40°C, avantageusement entre 15 et 30°C et, plus particulièrement, à température ambiante (i.e. 23°C ± 5°C) pendant une durée comprise entre 5 min et 1 h, notamment entre 15 et 45 min et, en pa rticulier, pendant 30 min. Whatever the variant used, a polar solvent is added to the microemulsion (M a ) after incorporation of said titanium phthalocyanine derivative (s) into the solution (M i). Advantageously, the titanium phthalocyanine derivative (s) is (are) added to the solution (Mi) in solution in a polar solvent and then the polar solvent, which is identical to or different from the first, is further added. More particularly, the two polar solvents used are identical. Alternatively, the two polar solvents used are different but at least partially miscible: for example THF and water. The addition of the titanium phthalocyanine derivative and optionally the polar solvent may be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer and may be used at a temperature of between 10 and 40 ° C. C, advantageously between 15 and 30 ° C and, more particularly, at room temperature (ie 23 ° C ± 5 ° C) for a period of between 5 min and 1 h, in particular between 15 and 45 min and, in particular, for 30 minutes.
Par « solvant polaire », on entend dans le cadre de la présente invention un solvant choisi dans le groupe constitué par l'eau, l'eau désionisée, l'eau distillée, acidifiées ou basiques, les solvants hydroxylés comme le méthanol et l'éthanol, les glycols liquides de faible poids moléculaire tels que l'éthylèneglycol, le diméthylsulfoxyde (DMSO), l'acétonitrile, l'acétone, le tétrahydrofurane (THF) et leurs mélanges.  By "polar solvent" is meant in the context of the present invention a solvent selected from the group consisting of water, deionized water, distilled water, acidified or basic, hydroxylated solvents such as methanol and sodium hydroxide. ethanol, low molecular weight liquid glycols such as ethylene glycol, dimethyl sulfoxide (DMSO), acetonitrile, acetone, tetrahydrofuran (THF) and mixtures thereof.
Le solvant polaire ou le mélange de solvants polaires (solvant polaire dans lequel le (ou les) dérivé(s) de phtalocyanine de titane est(sont) en solution et/ou autre solvant polaire ultérieurement ajouté) est présent, dans la microém ulsion (Ma), da ns une proportion comprise entre 0,1 et 20 %, notamment entre 0,5 et 15 % et, en particulier, entre 1 et 10 % en volume par rapport au volume total de ladite microémulsion. Le (ou les) dérivé(s) de phtalocyanine de titane est(sont) présent(s) dans ce solvant polaire ou ce mélange de solvants polaires en une concentration comprise entre 10 mM et 0,5 M, notamment entre 20 mM et 0,4 M et, en particulier, entre 40 mM et 0,3 M. L'étape (b) du procédé selon l'invention vise à prévoir l'hydrolyse du (ou des) dérivé(s) de phtalocyanine de titane en ajoutant à la microémulsion (Ma) un composé permettant cette hydrolyse, la microémulsion (Mb) ainsi obtenue étant une microémulsion eau dans huile. The polar solvent or the mixture of polar solvents (polar solvent in which the titanium phthalocyanine derivative (s) is (are) in solution and / or other polar solvent subsequently added) is present in the microemulsion ( M a ), in a proportion of between 0.1 and 20%, especially between 0.5 and 15% and, in particular, between 1 and 10% by volume relative to the total volume of said microemulsion. The OR the titanium phthalocyanine derivative (s) is (are) present in this polar solvent or this mixture of polar solvents in a concentration of between 10 mM and 0.5 M, in particular between 20 mM and 0.4 M and, in particular, between 40 mM and 0.3 M. Step (b) of the process according to the invention aims to provide for the hydrolysis of the titanium phthalocyanine derivative (s) by adding to the microemulsion (M a ) a compound allowing this hydrolysis, the microemulsion (M b ) thus obtained being a water-in-oil microemulsion.
Le composé permettant l'hydrolyse du (ou des) dérivé(s) de phtalocyanine de titane est avantageusement choisi dans le groupe constitué par l'ammoniaque, l'hydroxyde de potassium (KOH), l'hydroxyde de lithium (LiOH) et l'hydroxyde de sodium (NaOH) et, avantageusement, une solution d'un tel composé dans un solvant polaire, identique ou différent, au(x) solvant(s) polaire(s) mis en oeuvre lors de l'étape (a). Le composé permettant l'hydrolyse du (ou des) dérivé(s) de phtalocyanine de titane est, plus particulièrement, de l'ammoniaque ou une solution d'ammoniaque dans un solvant polaire tel que précédemment défini. En effet, l'ammoniaque agit comme réactif (H20) et comme catalyseur (NH4OH) de l'hydrolyse du (ou des) dérivé(s) de phtalocyanine de titane. The compound allowing the hydrolysis of the titanium phthalocyanine derivative (s) is advantageously chosen from the group consisting of ammonia, potassium hydroxide (KOH), lithium hydroxide (LiOH) and sodium hydroxide (NaOH) and, advantageously, a solution of such a compound in a polar solvent, which is identical or different, to the polar solvent (s) used during step (a) . The compound allowing the hydrolysis of the titanium phthalocyanine derivative (s) is, more particularly, ammonia or a solution of ammonia in a polar solvent as defined above. Indeed, ammonia acts as a reagent (H 2 0) and as a catalyst (NH 4 OH) hydrolysis of (or) derivative (s) phthalocyanine titanium.
Le composé permettant l'hydrolyse du (ou des) dérivé(s) de phtalocyanine de titane, lorsqu'il est en solution dans le solvant polaire, est présent dans une proportion comprise entre 5 et 50 %, notamment entre 10 et 40 % et, en particulier, entre 20 et 30 % en volume par rapport au volume total de ladite solution. De plus, ladite solution est présente dans une proportion comprise entre 0,01 et 10 %, notamment entre 0,05 et 5 % et, en particulier, entre 0,75 et 2 % en volume par rapport au volume total de la microémulsion (M ).  The compound allowing the hydrolysis of the titanium phthalocyanine derivative (s), when it is in solution in the polar solvent, is present in a proportion of between 5 and 50%, in particular between 10 and 40%, and in particular between 20 and 30% by volume relative to the total volume of said solution. In addition, said solution is present in a proportion of between 0.01 and 10%, in particular between 0.05 and 5% and, in particular, between 0.75 and 2% by volume relative to the total volume of the microemulsion ( M).
L'étape (b) peut être mise en œuvre sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur, et à une température comprise entre 10 et 40°C, avantageusement entre 15 et 30°C et, plus particulièrement, à température ambiante (i.e. 23°C ± 5°C) pendant une durée comprise entre 6 et 48 h, notamment entre 12 et 36 h et, en particulier, pendant 24 h. L'étape (c) du procédé selon l'invention vise à précipiter les particules d'oxyde de titane par addition d'un solvant qui ne dénature pas la structure des particules mais qui déstabilise ou dénature la microémulsion (Mb) obtenue à l'étape (b). Step (b) can be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, and at a temperature of between 10 and 40.degree. C., advantageously between 15 and 30.degree. more particularly at room temperature (ie 23 ° C. ± 5 ° C.) for a period of between 6 and 48 hours, in particular between 12 and 36 hours and, in particular, for 24 hours. Step (c) of the process according to the invention aims at precipitating the titanium oxide particles by adding a solvent which does not denature the structure of the particles but which destabilizes or denatures the microemulsion (Mb) obtained at the step (b).
Avantageusement, le solvant mis en œuvre est un solvant polaire tel que précédemment défini. Un solvant polaire particulier à mettre en œuvre lors de l'étape (c) est choisi dans le groupe constitué par l'éthanol, l'acétone et le méthanol. De façon plus avantageuse encore, le solvant utilisé lors de l'étape (c) du procédé selon l'invention est de l'éthanol. Ainsi, est ajouté, à la microémulsion (Mb), un volume de solvant supérieur au volume de ladite microémulsion, notamment supérieur d'un facteur 1,5 ; en particulier, supérieur d'un facteur 2 ; et voire supérieur d'un facteur 3.  Advantageously, the solvent used is a polar solvent as defined above. A particular polar solvent to be used in step (c) is selected from the group consisting of ethanol, acetone and methanol. Even more advantageously, the solvent used in step (c) of the process according to the invention is ethanol. Thus, a volume of solvent greater than the volume of said microemulsion, in particular greater by a factor of 1.5, is added to the microemulsion (Mb); in particular, greater by a factor of 2; and even a factor of 3.
Toute technique permettant de récupérer les particules d'oxyde de titane incorporant au moins un dérivé de phtalocyanine, précipitées lors de l'étape (c) peut être mise en œuvre lors de l'étape (d) du procédé selon l'invention. Avantageusement, cette étape (d) met en œuvre une ou plusieurs étapes, identiques ou différentes, choisies parmi les étapes de centrifugation, de sédimentation et de lavages. La (ou les) étape(s) de lavage est(sont) effectuée(s) dans un solvant polaire tel que précédemment défini. Lorsque l'étape de récupération met en œuvre plusieurs lavages, un même solvant polaire est utilisé pour plusieurs voire pour tous les lavages ou plusieurs solvants polaires différents sont utilisés à chaque lavage. Concernant une (ou plusieurs) étape(s) de centrifugation, elle(s) peu(ven)t être mise(s) en œuvre en centrifugeant les particules d'oxyde de titane notamment dans un solvant de lavage à température ambiante, à une vitesse comprise entre 4000 et 8000 rpm et, en particulier, de l'ordre de 6000 rpm (i.e. 6000 ± 500 rpm) et ce, pendant une durée comprise entre 5 min et 2 h, notamment entre 10 min et 1 h et, en particulier, pendant 15 min. Any technique making it possible to recover titanium oxide particles incorporating at least one phthalocyanine derivative precipitated during step (c) may be implemented during step (d) of the process according to the invention. Advantageously, this step (d) implements one or more steps, identical or different, chosen from the centrifugation, sedimentation and washing steps. The washing step (s) is (are) carried out in a polar solvent as defined above. When the recovery step uses several washes, the same polar solvent is used for several or even all washes or several different polar solvents are used at each wash. Regarding one (or more) centrifugation stage (s), it (they) can be implemented by centrifuging the titanium oxide particles, in particular in a wash solvent at room temperature, at a temperature of a speed of between 4000 and 8000 rpm and, in particular, of the order of 6000 rpm (ie 6000 ± 500 rpm) and this, for a period of between 5 min and 2 h, in particular between 10 min and 1 h, and particular, for 15 min.
Le procédé selon la présente invention peut comprendre, suite à l'étape (d), une étape supplémentaire consistant à purifier les particules d'oxyde de titane obtenues ci-après désignée « étape (e) ». The method according to the present invention may comprise, following step (d), an additional step of purifying the titanium oxide particles obtained hereinafter referred to as "step (e)".
Avantageusement, cette étape (e) consiste à mettre les particules d'oxyde de titane récupérées après l'étape (d) du procédé selon l'invention au contact d'un très large volume d'eau. Par « très large volume », on entend un volume supérieur d'un facteur 50, notamment d'un facteur 500 et, en particulier, d'un facteur 1000 au volume de particules d'oxyde de titane, récupérées après l'étape (d) du procédé selon l'invention. L'étape (e) peut être une étape de dialyse, les particules d'oxyde de titane étant séparées du volume par une membrane de cellulose, du type Spectra/Por® - MWCO3500 (Fiers). Alternativement, on peut prévoir une étape d'ultrafiltration à la place de l'étape de dialyse, via une membrane en polyéthersulfone. L'étape (e) peut, de plus, être mise en œuvre sous agitation en utilisant un agitateur, un barreau magnétique, un bain à ultrasons ou un homogénéisateur, à une température comprise entre 0 et 30°C, avantageusement entre 2 et 20°C et, plus particulièrement, à froid (i.e. 6°C ± 2°C) et ce, pendant une durée comprise entre 30 h et 15 j, notamment entre 3 j et 10 j et, en particulier, pendant 1 semaine. Advantageously, this step (e) consists in putting the titanium oxide particles recovered after step (d) of the process according to the invention in contact with a very wide volume of water. By "very large volume" is meant a volume greater by a factor of 50, in particular by a factor of 500 and, in particular, by a factor of 1000 to the volume of particles of titanium oxide, recovered after the step ( d) the process according to the invention. Step (e) may be a dialysis step, the titanium oxide particles being separated from the volume by a cellulose membrane, of the Spectra / Por ® - MWCO3500 (Proud) type. Alternatively, an ultrafiltration step can be provided in place of the dialysis step, via a polyethersulfone membrane. Step (e) may, in addition, be carried out with stirring using a stirrer, a magnetic bar, an ultrasonic bath or a homogenizer, at a temperature between 0 and 30 ° C., advantageously between 2 and 20 ° C. ° C and, more particularly, cold (ie 6 ° C ± 2 ° C) and this, for a period of between 30 h and 15 d, especially between 3 and 10 days and, in particular, for 1 week.
La présente invention concerne également la microémulsion (Mb) susceptible d'être mise en œuvre dans le cadre du procédé selon l'invention. Cette microémulsion de type eau dans huile comprend : The present invention also relates to the microemulsion (M b) which can be implemented under the method according to the invention. This microemulsion of water-in-oil type comprises:
- au moins un tensioactif, notamment tel que précédemment défini, at least one surfactant, especially as defined above,
- éventuellement au moins un co-tensioactif, notamment tel que précédemment défini, optionally at least one co-surfactant, especially as defined above,
- au moins un solvant non-polaire ou faiblement polaire, notamment tel que précédemment défini,  at least one non-polar or weakly polar solvent, especially as defined above,
- au moins un solvant polaire, notamment tel que précédemment défini, at least one polar solvent, in particular as previously defined,
- au moins un dérivé de phtalocyanine de titane notamment tel que précédemment défini, et at least one titanium phthalocyanine derivative, especially as defined above, and
- au moins un composé capable d'hydrolyser un dérivé de phtalocyanine de titane, notamment tel que précédemment défini.  at least one compound capable of hydrolyzing a titanium phthalocyanine derivative, in particular as defined above.
Avantageusement, la microémulsion de type eau dans huile objet de la présente invention (Mb) comprend : Advantageously, the water-in-oil microemulsion that is the subject of the present invention (M b ) comprises:
- au moins un tensioactif en une quantité comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % ; - éventuellement au moins un co-tensioactif en une quantité comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % ; at least one surfactant in an amount of between 1 and 30%, in particular between 5 and 25% and, in particular, between 10 and 20%; - optionally at least one co-surfactant in an amount of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20%;
- au moins un solvant non-polaire ou faiblement polaire en une quantité comprise entre 40 et 95 %, notamment entre 50 et 90 % et, en particulier, entre 60 et 80 % ;  at least one non-polar or slightly polar solvent in an amount of between 40 and 95%, especially between 50 and 90% and, in particular, between 60 and 80%;
- au moins un solvant polaire en une quantité comprise entre 0,25 et 15 %, notamment entre 0,5 et 10 % et, en particulier, entre 1 et 5 % ;  at least one polar solvent in an amount of between 0.25 and 15%, especially between 0.5 and 10% and, in particular, between 1 and 5%;
- au moins un dérivé de phtalocyanine de titane en une concentration comprise entre 50 μΜ et 50 mM, notamment entre 100 μΜ et 10 tnM et, en particulier, entre 500 μΜ et 5 m M ; et  at least one titanium phthalocyanine derivative in a concentration of between 50 μM and 50 mM, in particular between 100 μM and 10 μm, and in particular between 500 μM and 5 μm; and
- au moins un composé capable d'hydrolyser ledit dérivé de phtalocyanine de titane en une quantité comprise entre 0,01 et 5 %, notamment entre 0,05 et 1 % et, en particulier, entre 0,1 et 0,5 %,  at least one compound capable of hydrolyzing said titanium phthalocyanine derivative in an amount of between 0.01 and 5%, especially between 0.05 and 1% and, in particular, between 0.1 and 0.5%,
les pourcentages étant exprimés en volume par rapport au volume de ladite microémulsion.  the percentages being expressed in volume relative to the volume of said microemulsion.
La présente invention concerne, de plus, une particule d'oxyde de titane susceptible d'être préparée par le procédé de la présente invention. Cette particule est une particule d'oxyde de titane comprenant au moins un dérivé de phtalocyanine, telle que précédemment définie. Elle se distingue des particules d'oxyde de titane de l'état de la technique de par les deux liaisons covalentes qui lient l'atome Ti au dérivé de phtalocyanine, le dérivé de phtalocyanine n'étant pas un groupement qui fonctionnalise la particule d'oxyde de titane ou qui est adsorbée sur cette dernière. En effet, les liaisons covalentes qui lient l'atome Ti avec le dérivé de phtalocyanine sont conservées dans la particule d'oxyde de titane formée à l'issue du procédé selon l'invention. Ainsi, il existe une interaction forte entre la structure de la particule d'oxyde de titane et le (ou les) dérivé(s) de phtalocyanine par la présence des liaisons covalentes. Par conséquent, le dérivé de phtalocyanine est lié de façon covalente au réseau d'oxyde de titane de la particule selon l'invention. De plus, les particules d'oxyde de titane obtenues selon le procédé de l'invention se présentent sous forme de plaquettes et notamment sous forme de nanoplaquettes ou de microplaquettes. The present invention further relates to a titanium oxide particle capable of being prepared by the process of the present invention. This particle is a titanium oxide particle comprising at least one phthalocyanine derivative, as previously defined. It differs from the titanium oxide particles of the state of the art by the two covalent bonds which bind the Ti atom to the phthalocyanine derivative, the phthalocyanine derivative not being a group which functionalizes the particle of titanium oxide or adsorbed on it. Indeed, the covalent bonds which bind the Ti atom with the phthalocyanine derivative are retained in the titanium oxide particle formed at the end of the process according to the invention. Thus, there is a strong interaction between the structure of the titanium oxide particle and the phthalocyanine derivative (s) by the presence of the covalent bonds. Therefore, the phthalocyanine derivative is covalently bonded to the titanium oxide lattice of the particle according to the invention. In addition, the titanium oxide particles obtained according to the process of the invention are in the form of platelets and in particular in the form of nanoplates or chips.
Par « nanoplaquette », on entend, dans le cadre de la présente invention, un parallélépipède rectangle présentant au moins deux de ses dimensions caractéristiques inférieures ou égales à 100 nm. Avantageusement, une nanoplaquette, dans le cadre de la présente invention, comprend :  By "nanoplate" is meant, in the context of the present invention, a rectangular parallelepiped having at least two of its characteristic dimensions less than or equal to 100 nm. Advantageously, a nanoplate, in the context of the present invention, comprises:
- une longueur supérieure à 100 nm et notamment comprise entre 100 et a length greater than 100 nm and in particular between 100 and
500 nm ; 500 nm;
- une épaisseur comprise entre 2 et 20 nm et, notamment, entre 5 et 10 nm ; et  a thickness of between 2 and 20 nm and in particular between 5 and 10 nm; and
- une largeur comprise entre 20 et 80 nm et, notamment, entre 40 et 60 nm. La figure 1 est la représentation d'une nanoplaquette susceptible d'être obtenue par le procédé de l'invention.  a width of between 20 and 80 nm and in particular between 40 and 60 nm. FIG. 1 is the representation of a nanoplate that can be obtained by the method of the invention.
Par « microplaquette », on entend, dans le cadre de la présente invention, un parallélépipède rectangle présentant au moins une de ses dimensions caractéristiques supérieures ou égales à 1 μιη. Avantageusement, une microplaquette, dans le cadre de la présente invention, comprend :  For the purposes of the present invention, the term "microchip" means a rectangular parallelepiped having at least one of its characteristic dimensions greater than or equal to 1 μιη. Advantageously, a chip, in the context of the present invention, comprises:
- une longueur supérieure à 1 μηι et notamment comprise entre 1 et 2 μιη ; - une épaisseur comprise entre 2 et 20 nm et, notamment, entre 5 et 10 nm ; et  a length greater than 1 μηι and in particular between 1 and 2 μιη; a thickness of between 2 and 20 nm and in particular between 5 and 10 nm; and
- une largeur comprise entre 80 nm et 1,2 μηι et, notamment, entre 100 nm et 1 μιη.  a width of between 80 nm and 1.2 μm and in particular between 100 nm and 1 μm.
Dans le cadre de la présente invention, les termes « particule de titane », « nanoparticule de titane », « nanoplaquette de titane », « particule d'oxyde de titane », « nanoparticule d'oxyde de titane » et « nanoplaquette d'oxyde de titane » peuvent être utilisés de façon équivalente pour définir le produit préparé par mise en œuvre du procédé selon l'invention.  In the context of the present invention, the terms "titanium particle", "titanium nanoparticle", "titanium nanopellet", "titanium oxide particle", "titanium oxide nanoparticle" and "nanopellet of titanium" titanium oxide "can be used in an equivalent manner to define the product prepared by carrying out the process according to the invention.
De même, dans le cadre de la présente invention, les termes « particule de titane », « microparticule de titane », « microplaquette de titane », « particule d'oxyde de titane », « microparticule d'oxyde de titane » et « microplaquette d'oxyde de titane » peuvent être utilisés de façon équivalente pour définir le produit préparé par mise en œuvre du procédé selon l'invention. Similarly, in the context of the present invention, the terms "titanium particle", "titanium microparticle", "titanium chip", "titanium oxide particle", "titanium oxide microparticle" and " titanium oxide chip " can be used in an equivalent way to define the product prepared by implementing the method according to the invention.
Compte-tenu que les particules d'oxyde de titane selon la présente invention ou préparées selon le procédé de la présente invention comportent des composés de type Ti02 et des composés de type phtalocyanine, elles peuvent être utilisées dans chacune des applications connues de ces composés. A titre d'exemples, on peut citer les applications en tant que photocatalyseurs et colorants. Given that the titanium oxide particles according to the present invention or prepared according to the process of the present invention comprise compounds of TiO 2 type and phthalocyanine type compounds, they can be used in each of the known applications of these compounds. . Examples include applications as photocatalysts and dyes.
De plus et de façon surprenante, ces microparticules et ces nanoparticules d'oxyde de titane à dérivés de phtalocyanine présentent des propriétés remarquables de tenue lumière et aux UV, permettant de fait d'envisager de nouvelles applications.  Moreover and surprisingly, these microparticles and nanoparticles of titanium oxide phthalocyanine derivatives have remarkable properties of light and UV light, allowing to consider new applications.
Par conséquent, la présente invention concerne l'utilisation d'une particule d'oxyde de titane selon la présente invention ou préparée selon le procédé de la présente invention dans l'industrie papetière, l'industrie textile, l'industrie pharmaceutique, l'industrie plastique et l'industrie photovoltaïque et, plus particulièrement, dans les domaines choisis dans le groupe constitué par des agents de coloration (encres, peintures, papier et textiles) ; la photocatalyse et la photodégradation ; les agents de protection anti-UV ; les agents de tenue lumière solaire ; les agents de protection antilumière et anti-UV ; et les dispositifs électroniques, optiques, de capteurs, de conversion et de stockage d'énergie.  Accordingly, the present invention relates to the use of a titanium oxide particle according to the present invention or prepared according to the process of the present invention in the paper industry, the textile industry, the pharmaceutical industry, the plastic industry and the photovoltaic industry and, more particularly, in the fields selected from the group consisting of coloring agents (inks, paints, paper and textiles); photocatalysis and photodegradation; UV protection agents; solar light-keeping agents; anti-light and anti-UV protection agents; and electronic, optical, sensor, conversion and energy storage devices.
Plus particulièrement, la présente invention concerne l'utilisation d'une particule d'oxyde de titane selon la présente invention ou préparée selon le procédé de la présente invention pour la protection contre les UV.  More particularly, the present invention relates to the use of a titanium oxide particle according to the present invention or prepared according to the method of the present invention for UV protection.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à l'homme du métier à la lecture des exemples ci-dessous donnés à titre illustratif et non limitatif, et faisant référence aux figures annexées. Other features and advantages of the present invention will become apparent to those skilled in the art on reading the examples below given for illustrative and non-limiting, and with reference to the appended figures.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
La Figure 1 est une représentation schématisée d'une nanoparticule de type nanoplaquette d'oxyde de titane préparée par le procédé selon l'invention. La Figure 2 présente une vue obtenue pa r microscopie électronique en transmission (M ET) de nanoparticules d'oxyde de titane préparées par le procédé selon l'invention. Figure 1 is a schematic representation of a titanium oxide nanoparticle nanoparticle prepared by the method according to the invention. FIG. 2 shows a view obtained by transmission electron microscopy (M ET) of titanium oxide nanoparticles prepared by the process according to the invention.
La Figure 3 présente l'analyse dispersive en énergie (EDS) de nanoparticules d'oxyde de titane préparées par le procédé selon l'invention.  Figure 3 shows the energy dispersive analysis (EDS) of titanium oxide nanoparticles prepared by the process according to the invention.
Les Figures 4A et 4B présentent deux exemples indépendants de la tenue aux UV d'un film de PVA dans lequel ont été piégées des nanoparticules d'oxyde de tita ne préparées par le procédé selon l'invention avant et après irradiation par les UV à 365 nm. Dans les Figures 4A et 4B, les valeurs portées en abscisse correspondent à l'absorbance sans unité et les valeurs portées en ordonnées à la longueur d'onde exprimée en nm.  FIGS. 4A and 4B show two independent examples of the UV resistance of a PVA film in which nanoparticles of titanium oxide, not prepared by the process according to the invention, were trapped before and after UV irradiation at 365 nm. In FIGS. 4A and 4B, the values plotted on the abscissa correspond to the absorbance without unit and the values plotted on the ordinate at the wavelength expressed in nm.
La Figure 5 présente la tenue à la lumière d'un film de PVA dans lequel ont été piégées des nanoparticules d'oxyde de titane prépa rées par le procédé selon l'invention avant et après un vieillissement artificiel. Dans la Figure 5, les valeurs portées en abscisse correspondent à l'absorbance sans unité et les valeurs portées en ordonnées à la longueur d'onde exprimée en nm.  FIG. 5 shows the light resistance of a PVA film in which nanoparticles of titanium oxide prepared by the process according to the invention were trapped before and after artificial aging. In FIG. 5, the values plotted on the abscissa correspond to the absorbance without unit and the values carried in ordinates at the wavelength expressed in nm.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
I. Procédé de préparation de nanoparticules de titane selon l'invention.I. Process for preparing titanium nanoparticles according to the invention
Dans cet exemple, des nanoparticules d'oxyde de titane se présentant sous forme de nanobâtonnets ou de nanoplaquettes ont été préparées en utilisant la méthode de microémulsion inverse (eau dans huile). La solution de microémulsion (méla nge triphasique) a été préparée en mélangeant les quantités adéquates de tensioactif, de solvant organique, de solution aqueuse (contenant du THF), de solution aqueuse d'ammoniaque. L'ammoniaque agit comme réactif (H20) et comme catalyseur (NH3) de l'hydrolyse du dérivé de phtalocyanine de titane. In this example, titanium oxide nanoparticles in the form of nanobits or nanoplates were prepared using the reverse microemulsion (water-in-oil) method. The microemulsion solution (three-phase melamine) was prepared by mixing the appropriate amounts of surfactant, organic solvent, aqueous solution (THF-containing), aqueous ammonia solution. Ammonia acts as a reagent (H 2 0) and as a catalyst (NH 3 ) for the hydrolysis of the titanium phthalocyanine derivative.
Une solution (solution M i selon l'invention) a été générée en ajoutant, dans cet ordre, les produits chimiques suivants, le tensioactif Triton X100 (8,4 mL, 9 g), le co- tensioactif n-hexanol (8,2 mL), le solvant organique cyclohexane (38 mL). La solution était alors agitée à température ambiante pendant 15 min. Ensuite, le dérivé de phtalocyanine de titane qu'est le dichlorure de phtalocyanine de titane IV ou en anglais « titanium IV phthalocyanine dichloride » (No. CAS : 16903-42-7) dans une solution de THF était ajouté (400 μΐ à 0,1 M dans le THF, soit 25 mg ; M = 631,35 gmol 1, n = 4xl0"5 mol) suivi par de l'eau (0,4 mL). Il convient de noter qu'une concentration de 0,4 M en phthalocyanine a également été testée avec succès. L'émulsion résultante était agitée à température ambiante pendant 30 min. A solution (solution M i according to the invention) was generated by adding, in this order, the following chemicals, the surfactant Triton X100 (8.4 mL, 9 g), the co-surfactant n-hexanol (8, 2 mL), cyclohexane organic solvent (38 mL). The solution was then stirred at room temperature for 15 minutes. Next, the titanium phthalocyanine derivative titanium IV phthalocyanine dichloride or titanium IV phthalocyanine dichloride (CAS No. 16903-42-7) in a THF solution was added (400 μΐ to 0). , 1 M in THF, ie 25 mg, M = 631.35 gmol 1 , n = 4x10 -5 mol) followed by water (0.4 ml) It should be noted that a concentration of 0, 4 M phthalocyanine was also successfully tested and the resulting emulsion was stirred at room temperature for 30 min.
L'hydrolyse du composé à base de titane était initiée par l'addition de l'ammoniaque aqueuse à 25% (500 μΐ) et le mélange réactionnel était agité pendant 24 h à température ambiante.  The hydrolysis of the titanium-based compound was initiated by the addition of 25% aqueous ammonia (500 μΐ) and the reaction mixture was stirred for 24 h at room temperature.
L'émulsion était déstabilisée par l'addition d'éthanol (500 mL) et les nano- objets étaient lavés trois fois à l'éthanol et une fois à l'eau, chaque lavage étant suivi par une sédimentation à la centrifugeuse (15 min à 6000 rpm).  The emulsion was destabilized by the addition of ethanol (500 mL) and the nano-objects were washed three times with ethanol and once with water, each wash being followed by centrifuge sedimentation (15 min. at 6000 rpm).
Après l'étape de lavage, la purification des nanoparticules obtenues était achevée par dialyse (nominal MWCO3500 Daltons) dans l'eau (1 L) sous agitation magnétique pendant une semaine.  After the washing step, the purification of the nanoparticles obtained was completed by dialysis (nominal MWCO3500 Daltons) in water (1 L) with magnetic stirring for one week.
II. Caractérisation des nanoparticules d'oxyde de titane selon l'invention.II. Characterization of titanium oxide nanoparticles according to the invention.
Les nanoparticules d'oxyde de titane dispersées dans l'eau (40 mL) préparées selon le procédé de la partie I étaient alors caractérisées par analyse en microscope électronique en transmission (MET) qui permet d'apprécier la nanostructure de ces nanoparticules. The nanoparticles of titanium oxide dispersed in water (40 mL) prepared according to the method of Part I were then characterized by transmission electron microscopy (TEM) analysis which allows to appreciate the nanostructure of these nanoparticles.
D'après les images de MET, les nanoparticules d'oxyde de titane ont une forme de nanobâtonnets ou de nanoplaquettes, de largeur comprise entre 20-50 nm et de longueur comprise entre 100-500 nm (Figure 2).  According to the TEM images, the titanium oxide nanoparticles have the shape of nanobaggets or nanoplates, with a width of between 20-50 nm and a length of between 100-500 nm (FIG. 2).
D'après le résultat d'analyses par EDS, les éléments chimiques Ti et O sont présents dans ces nanoparticules de couleur bleu (Figure 3).  According to the results of EDS analyzes, the Ti and O chemical elements are present in these blue-colored nanoparticles (FIG. 3).
III. Tests de vieillissement aux UV et de tenue à la lumière. III. UV aging and light fastness tests.
III.1. Tenue aux UV avec irradiation à 365 nm.  III.1. UV resistance with irradiation at 365 nm.
Une solution contenant l g d'acétate de polyvinyle (PVA) à 10% massique et A solution containing 1 g of polyvinyl acetate (PVA) at 10% by weight and
0,1 g de nanoparticules selon l'invention a été préparée. Après agitation au bain à ultrasons pendant 15 min, cette solution a été déposée sous forme d'un film sur une lame de verre. 0.1 g of nanoparticles according to the invention was prepared. After stirring in the bath ultrasound for 15 min, this solution was deposited as a film on a glass slide.
Le vieillissement aux UV de ce film a été vérifié par soumission de la lame de verre à une irradiation sous une lampe UV irradiant à 365 nm pendant 5 jours.  The UV aging of this film was verified by subjecting the glass slide to irradiation under a UV lamp irradiating at 365 nm for 5 days.
A l'issue de ce test de vieillissement, une bonne tenue aux UV a donc été observée et prouvée, comme le montrent les Figures 4A et 4B.  At the end of this aging test, a good resistance to UV has been observed and proven, as shown in Figures 4A and 4B.
III.2. Tenue lumière au suntest. III.2. Light hold in the suntest.
Une lame de verre préparée comme décrit au point III.1. a été soumise à un test de vieillissement dans une enceinte Suntest de la société ATLAS après séchage à température ambiante.  A glass slide prepared as described in III.1. was subjected to an aging test in a Suntest chamber of ATLAS after drying at room temperature.
Les conditions de vieillissement sont les suivantes : irradiance à 765 W/m2 ; lampe à arc xénon équipée d'un filtre dit « verre à vitre » coupant les UV en dessous de 310 nm, spectre d'insolation de 300 à 800 nm, durée d'exposition de 24 h. The aging conditions are as follows: irradiance at 765 W / m 2 ; Xenon arc lamp equipped with a "glass window" filter cutting UV below 310 nm, exposure spectrum from 300 to 800 nm, exposure time of 24 hours.
A l'issue de ce test de vieillissement, il apparaît que l'échantillon n'a pas subi de vieillissement (Figure 5). Cela démontre bien la capacité des nanoparticules d'oxyde de titane selon l'invention à tenir contre le vieillissement imposé par le soleil. At the end of this aging test, it appears that the sample has not aged (Figure 5). This demonstrates the ability of the nanoparticles of titanium oxide according to the invention to stand against aging imposed by the sun.
RÉFÉRENCES REFERENCES
[1] Cheng et al., 2010, « Préparation and properties of a phthalocyanine- sensitized Ti02 nanotube array for dye-sensitized solar cells », Semicond. Sci. Technol., vol. 25, 125014. [1] Cheng et al., 2010, "Preparation and properties of a phthalocyanine-sensitized Ti0 2 nanotube array for dye-sensitized solar cells", Semicond. Sci. Technol., Vol. 25, 125014.
[2] Giribaru et al., 2009, « Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline Ti02 films », J. Chem. Sci., vol. 121, pages 75-82. [2] Giribaru et al., 2009, "Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO 2 films", J. Chem. Sci., Vol. 121, pp. 75-82.
[3] Machado et al., 2008, « Characterization and évaluation of the efficiency of Ti02/Zinc phthalocyanine na nocomposites as photocatalysts for wastewater treatment using solar irradiation », I nternational Journal of Photoenergy, vol. 2008, 12 pages. [4] Li et Xin, 2010, « Photogenerated carrier transfer mechanism and photocatalysis properties of Ti02 sensitized by Zn(ll) phthalocyanine », J. Cent. South Univ. Technol., vol. 17, pages 218-222. [3] Machado et al., 2008, "Characterization and evaluation of the efficacy of Ti0 2 / Zinc phthalocyanine na nocomposites as photocatalysts for wastewater treatment using solar irradiation", International Journal of Photoenergy, vol. 2008, 12 pages. [4] Li and Xin, 2010, "Photogenerated carrier transfer mechanism and photocatalysis properties of Ti0 2 sensitized by Zn (II) phthalocyanine", J. Cent. South Univ. Technol., Vol. 17, pp. 218-222.
[5] Jang et al., 2009, « Synthesis and characterization of Cu-phthalocyanine hybrid Ti02 sol », J. Porphyrins Phthalocyanines, vol. 13, pages 780-786. [5] Jang et al., 2009, "Synthesis and characterization of Cu-phthalocyanine hybrid TiO 2 sol", J. Porphyrins Phthalocyanines, vol. 13, pp. 780-786.
[6] Lopez et al., 2010, « Study of the stabilization of zinc phathalocyanine in sol-gel Ti02 for photodynamic therapy applications », Nanomedecine: Nanotechnology, Biology and Medicine, vol. 6, pages 777-785. [6] Lopez et al., 2010, "Study of the stabilization of zinc phathalocyanine in sol-gel Ti0 2 for photodynamic therapy applications," Nanomedecine: Nanotechnology, Biology and Medicine, vol. 6, pages 777-785.
[7] Di et al., 2006, « Electrorheological behavior of copper phthalocyanine- doped mesoporous Ti02 suspensions », Journal of Colloid and I nterface Science, vol. 294, pages 499-503. [8] Demande de brevet CN 1 594 330 au nom de University of Tia njin, publiée le 16 mars 2005. [9] Demande de brevet JP 08 134373 au nom de Matsushita Electric Ind. Co. Ltd., publiée le 28 mai 1996 [7] Di et al., 2006, "Electrological behavior of copper phthalocyanine-doped mesoporous TiO 2 suspensions", Journal of Colloid and I nterface Science, vol. 294, pp. 499-503. [8] CN Patent Application 1,594,330 in the name of University of Tia njin, published March 16, 2005. [9] Patent Application JP 08 134373 in the name of Matsushita Electric Ind. Co. Ltd., published May 28, 1996

Claims

REVENDICATIONS
1) Procédé de préparation d'une particule d'oxyde de titane présentant un réseau d'oxyde de titane et incorporant au moins un dérivé de phtalocyanine, ladite particule étant préparée à pa rtir d'au moins un dérivé de phtalocyanine de titane via une microémulsion inverse. 1) A process for preparing a titanium oxide particle having a titanium oxide network and incorporating at least one phthalocyanine derivative, said particle being prepared from at least one titanium phthalocyanine derivative via a reverse microemulsion.
2) Procédé selon la revendication 1, caractérisé en ce que ledit dérivé de phtalocyanine de titane est un composé de formule (I) : 2) Process according to claim 1, characterized in that said titanium phthalocyanine derivative is a compound of formula (I):
Figure imgf000026_0001
Figure imgf000026_0001
(I)  (I)
dans laquelle  in which
- Ri, R2, R3 et R4, identiques ou différents, représentent un groupement arylène éventuellement substitué et R 1, R 2 , R 3 and R 4 , which may be identical or different, represent an optionally substituted arylene group and
- R5 et R6, identiques ou différents, sont choisis dans le groupe constitué par -Cl, -F, -OH et -OR' avec R' représentant un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué. R 5 and R 6 , which are identical or different, are chosen from the group consisting of -Cl, -F, -OH and -OR 'with R' representing a linear or branched alkyl of 1 to 12 carbon atoms, and especially from 1 to 6 carbon atoms, optionally substituted.
3) Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit dérivé de phtalocyanine de titane est un composé de formule (II) : 3) Process according to claim 1 or 2, characterized in that said titanium phthalocyanine derivative is a compound of formula (II):
Figure imgf000027_0001
dans laquelle
Figure imgf000027_0001
in which
- les groupements R7 à R22, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 7 to R 22, which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
- les groupements R5 et R6sont tels que définis à la revendication 2. the groups R 5 and R 6 are as defined in claim 2.
4) Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit dérivé de phtaiocyanine de titane est un composé de formule (III) du type naphtalocyanine : 4) Process according to claim 1 or 2, characterized in that said titanium phtaiocyanine derivative is a compound of formula (III) of the naphthalocyanine type:
Figure imgf000028_0001
Figure imgf000028_0001
(III)  (III)
dans laquelle  in which
- les groupements R23 à R46, identiques ou différents, sont choisis dans le groupe constitué par un hydrogène ; un carboxylate ; un aldéhyde ; un ester ; un éther ; un hydroxyle ; un halogène ; un aryle tel qu'un phényle, un benzyle ou un naphthyle ; un alkyle, linéaire ou ramifié, de 1 à 12 atomes de carbone et notamment de 1 à 6 atomes de carbone, éventuellement substitué tel qu'un méthyle, un éthyle, un propyle ou un hydroxypropyle ; une aminé ; un amide ; un sulfonyle ; un sulfoxyde et un thiol. the groups R 2 3 to R 46 , which are identical or different, are chosen from the group consisting of hydrogen; a carboxylate; an aldehyde; an ester; an ether; a hydroxyl; a halogen; aryl such as phenyl, benzyl or naphthyl; alkyl, linear or branched, of 1 to 12 carbon atoms and in particular of 1 to 6 carbon atoms, optionally substituted such as methyl, ethyl, propyl or hydroxypropyl; an amine; a friend of ; a sulfonyl; a sulfoxide and a thiol.
- les groupements R5 et R6sont tels que définis à la revendication 2. the groups R 5 and R 6 are as defined in claim 2.
5) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit procédé comprend les étapes successives suivantes : 5) Method according to any one of claims 1 to 4, characterized in that said method comprises the following successive steps:
a) préparer une microémulsion (Ma) du type eau dans huile contenant au moins un dérivé de phtalocyanine de titane, a) preparing a microemulsion (M a ) of the water-in-oil type containing at least one titanium phthalocyanine derivative,
b) ajouter, à la microémulsion (Ma) obtenue à l'étape (a), au moins un composé permettant l'hydrolyse du dérivé de phtalocyanine de titane, b) adding, to the microemulsion (M a ) obtained in step (a), at least one compound allowing the hydrolysis of the titanium phthalocyanine derivative,
c) ajouter à la microémulsion (Mb) obtenue à l'étape (b) un solvant permettant de déstabiliser ladite microémulsion, d) récupérer les particules d'oxyde de titane incorporant au moins un dérivé de phtalocyanine, précipitées lors de l'étape (c). c) adding to the microemulsion (M b ) obtained in step (b) a solvent for destabilizing said microemulsion, d) recovering titanium oxide particles incorporating at least one phthalocyanine derivative precipitated in step (c).
6) Procédé selon la revendication 5, caractérisé en ce que ladite étape (a) consiste à préparer une première solution (Mi) dans laquelle est ultérieurement incorporé un (ou des) dérivé(s) de phtalocyanine de titane. 6) Process according to claim 5, characterized in that said step (a) consists of preparing a first solution (Mi) in which a titanium phthalocyanine derivative (s) is subsequently incorporated.
7) Procédé selon la revendication 5 ou 6, caractérisé en ce que ladite microémulsion (M^ du type eau dans huile est obtenue en mélangeant ensemble : 7) Process according to claim 5 or 6, characterized in that said microemulsion (M ^ of the water-in-oil type is obtained by mixing together:
- au moins un tensioactif,  at least one surfactant,
- éventuellement au moins un co-tensioactif et  - optionally at least one co-surfactant and
- au moins un solvant non-polaire ou faiblement polaire.  at least one non-polar or slightly polar solvent.
8) Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'un solvant polaire est rajouté à la microémulsion (Ma) après l'incorporation dudit (ou desdits) dérivé(s) de phtalocyanine de titane dans la solution (M i). 8) Process according to any one of claims 5 to 7, characterized in that a polar solvent is added to the microemulsion (M a ) after incorporation of said (or said) derivative (s) of titanium phthalocyanine in the solution (M i).
9) Procédé selon l'une quelconque des revendications 5 à 8, caractérisé en ce que ledit composé permettant l'hydrolyse dudit (ou desdits) dérivé(s) de phtalocyanine de titane est choisi dans le groupe constitué par l'ammoniaque, l'hydroxyde de potassium (KOH), l'hydroxyde de lithium (LiOH) et l'hydroxyde de sodium (NaOH). 9) Process according to any one of claims 5 to 8, characterized in that said compound for hydrolyzing said (or said) derivative (s) titanium phthalocyanine is selected from the group consisting of ammonia, potassium hydroxide (KOH), lithium hydroxide (LiOH) and sodium hydroxide (NaOH).
10) Microémulsion (Mc) de type eau dans huile susceptible d'être mise en œuvre dans le cadre d'un procédé tel que défini à l'une quelconque des revendications précédentes, comprenant : 10) Microemulsion (M c ) of water-in-oil type capable of being implemented in the context of a process as defined in any one of the preceding claims, comprising:
- au moins un tensioactif,  at least one surfactant,
- éventuellement au moins un co-tensioactif,  - optionally at least one co-surfactant,
- au moins un solvant non-polaire ou faiblement polaire,  at least one non-polar or slightly polar solvent,
- au moins un solvant polaire,  at least one polar solvent,
- au moins un dérivé de phtalocyanine de titane, et - au moins un composé capable d'hydrolyser un dérivé de phtalocyanine de titane. at least one titanium phthalocyanine derivative, and at least one compound capable of hydrolyzing a titanium phthalocyanine derivative.
11) Microémulsion selon la revendication 10, caractérisée en ce qu'elle comprend : 11) Microemulsion according to claim 10, characterized in that it comprises:
- au moins un tensioactif en une quantité comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % ;  at least one surfactant in an amount of between 1 and 30%, in particular between 5 and 25% and, in particular, between 10 and 20%;
- éventuellement au moins un co-tensioactif en une quantité comprise entre 1 et 30 %, notamment entre 5 et 25 % et, en particulier, entre 10 et 20 % ;  - optionally at least one co-surfactant in an amount of between 1 and 30%, especially between 5 and 25% and, in particular, between 10 and 20%;
- au moins un solvant non-polaire ou faiblement polaire en une quantité comprise entre 40 et 95 %, notamment entre 50 et 90 % et, en particulier, entre 60 et 80 % ;  at least one non-polar or slightly polar solvent in an amount of between 40 and 95%, especially between 50 and 90% and, in particular, between 60 and 80%;
- au moins un solvant polaire en une quantité comprise entre 0,25 et 15 %, notamment entre 0,5 et 10 % et, en particulier, entre 1 et 5 % ;  at least one polar solvent in an amount of between 0.25 and 15%, especially between 0.5 and 10% and, in particular, between 1 and 5%;
- au moins un dérivé de phtalocyanine de titane en une concentration comprise entre 50 μΜ et 50 mM, notamment entre 100 μΜ et 10 tnM et, en particulier, entre 500 μΜ et 5 mM ; et  at least one titanium phthalocyanine derivative in a concentration of between 50 μM and 50 mM, in particular between 100 μM and 10 mM, and in particular between 500 μM and 5 mM; and
- au moins un composé capable d'hydrolyser ledit dérivé de phtalocyanine de titane en une quantité comprise entre 0,01 et 5 %, notamment entre 0,05 et 1 % et, en particulier, entre 0,1 et 0,5 %,  at least one compound capable of hydrolyzing said titanium phthalocyanine derivative in an amount of between 0.01 and 5%, especially between 0.05 and 1% and, in particular, between 0.1 and 0.5%,
les pourcentages étant exprimés en volume par rapport au volume de ladite microémulsion.  the percentages being expressed in volume relative to the volume of said microemulsion.
12) Particule d'oxyde de titane comprenant au moins un dérivé de phtalocyanine, susceptible d'être préparée par un procédé tel que défini à l'une quelconque des revendications 1 à 9, ledit dérivé de phtalocyanine étant lié de façon cova lente au réseau d'oxyde de titane de ladite particule. 12) Particle of titanium oxide comprising at least one phthalocyanine derivative, capable of being prepared by a process as defined in any one of claims 1 to 9, said phthalocyanine derivative being covalently connected to the network of titanium oxide of said particle.
13) Particule selon la revendication 12, caractérisée en ce qu'elle se présente sous forme d'une nanoplaquette comprenant : - une longueur supérieure à 100 nm et notamment comprise entre 100 et13) Particle according to claim 12, characterized in that it is in the form of a nanoplate comprising: a length greater than 100 nm and in particular between 100 and
500 nm ; 500 nm;
- une épaisseur comprise entre 2 et 20 nm et, notamment, entre 5 et 10 nm ; et  a thickness of between 2 and 20 nm and in particular between 5 and 10 nm; and
- une largeur comprise entre 20 et 80 nm et, notamment, entre 40 et 60 nm.  a width of between 20 and 80 nm and in particular between 40 and 60 nm.
14) Particule selon la revendication 12, caractérisée en ce qu'elle se présente sous forme d'une microplaquette comprenant : 14) Particle according to claim 12, characterized in that it is in the form of a chip comprising:
- une longueur supérieure à 1 μηι et notamment comprise entre 1 et 2 μιη ; a length greater than 1 μηι and in particular between 1 and 2 μιη;
- une épaisseur comprise entre 2 et 20 nm et, notamment, entre 5 et 10 nm ; et a thickness of between 2 and 20 nm and in particular between 5 and 10 nm; and
- une largeur comprise entre 80 nm et 1,2 μηι et, notamment, entre 100 nm et 1 μηι.  a width of between 80 nm and 1.2 μm and in particular between 100 nm and 1 μm.
15) Utilisation d'une particule selon l'une quelconque des revendications 12 à 14, pour la protection contre les UV. 15) Use of a particle according to any one of claims 12 to 14 for UV protection.
PCT/EP2013/050098 2012-01-05 2013-01-04 Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof WO2013102657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250109A FR2985510A1 (en) 2012-01-05 2012-01-05 PROCESS FOR THE PREPARATION OF TITANIUM OXIDE PARTICLES CONTAINING A PHTHALOCYANINE DERIVATIVE, THE SAID PARTICLES AND USES THEREOF
FR1250109 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013102657A1 true WO2013102657A1 (en) 2013-07-11

Family

ID=47561597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/050098 WO2013102657A1 (en) 2012-01-05 2013-01-04 Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof

Country Status (2)

Country Link
FR (1) FR2985510A1 (en)
WO (1) WO2013102657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404994A (en) * 2018-03-16 2018-08-17 常州大学 A kind of preparation method of the phthalocyanine-sensitized indium sulfide tin composite visible light catalyst of nitro cobalt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134373A (en) 1994-11-08 1996-05-28 Matsushita Electric Ind Co Ltd Production of oxotitanium phthalocyanine crystal and electrophotographic receptor
CN1594330A (en) 2004-07-12 2005-03-16 天津大学 Method for preparing micrometer Y crystalline form oxotitanium phthalocyanine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134373A (en) 1994-11-08 1996-05-28 Matsushita Electric Ind Co Ltd Production of oxotitanium phthalocyanine crystal and electrophotographic receptor
CN1594330A (en) 2004-07-12 2005-03-16 天津大学 Method for preparing micrometer Y crystalline form oxotitanium phthalocyanine

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHENG ET AL.: "Preparation and properties of a phthalocyanine- sensitized Ti02 nanotube array for dye-sensitized solar cells", SEMICOND. SCI. TECHNOL., vol. 25, 2010, pages 125014, XP020201186, DOI: doi:10.1088/0268-1242/25/12/125014
DI ET AL.: "Electrorheological behavior of copper phthalocyanine- doped mesoporous TiO2 suspensions", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 294, 2006, pages 499 - 503
GIRIBARU ET AL.: "Unsymmetrical extended ?-conjugated zinc phthalocyanine for sensitization of nanocrystalline Ti02 films", J. CHEM. SCI., vol. 121, 2009, pages 75 - 82
JANG ET AL.: "Synthesis and characterization of Cu-phthalocyanine hybrid Ti02 sol", J. PORPHYRINS PHTHALOCYANINES, vol. 13, 2009, pages 780 - 786
LI; XIN: "Photogenerated carrier transfer mechanism and photocatalysis properties of Ti02 sensitized by Zn(II) phthalocyanine", J. CENT. SOUTH UNIV. TECHNOL., vol. 17, 2010, pages 218 - 222, XP008152638, DOI: doi:DOI: 10.1007/s11771 010 0033 3
LOPEZ ET AL.: "Study of the stabilization of zinc phathalocyanine in sol-gel Ti02 for photodynamic therapy applications", NANOMEDECINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE, vol. 6, 2010, pages 777 - 785
MACHADO ET AL.: "Characterization and evaluation of the efficiency of Ti02/Zinc phthalocyanine nanocomposites as photocatalysts for wastewater treatment using solar irradiation", INTERNATIONAL JOURNAL OF PHOTOENERGY, vol. 2008, 2008, pages 12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404994A (en) * 2018-03-16 2018-08-17 常州大学 A kind of preparation method of the phthalocyanine-sensitized indium sulfide tin composite visible light catalyst of nitro cobalt

Also Published As

Publication number Publication date
FR2985510A1 (en) 2013-07-12

Similar Documents

Publication Publication Date Title
EP2228127B1 (en) Process for preparing porous silica particles, the silica particles obtained and their use
Ramakrishna et al. Optical and photochemical properties of sodium dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles dispersed in nonaqueous solvents
Gnichwitz et al. Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: new building blocks for dye-sensitized solar cells
WO2014049139A1 (en) Method for preparing a hybrid zno/organic material, said material and the uses thereof
EP2814598B1 (en) Method for functionalising carbon nano-objects
Ussia et al. Freestanding photocatalytic materials based on 3D graphene and polyporphyrins
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
EP3180810B1 (en) Method for the synthesis of nanocomposites based on tio2 and carbonated nanostructures
FR2949471A1 (en) PROCESS FOR THE PREPARATION OF SILICA PARTICLES CONTAINING A PHTHALOCYANINE DERIVATIVE, THE SAID PARTICLES AND USES THEREOF
WO2013102657A1 (en) Process for preparing particles of titanium oxide containing a phthalocyanine derivative, said particles and uses thereof
Chai et al. Spectroscopic studies on the photostability and photoactivity of metallo-tetraphenylporphyrin in micelles
EP2534207A1 (en) Stöber method for preparing silica particles containing a phthalocyanine derivative, said particles and the uses thereof
CN110317606B (en) Method for preparing carbon dots by using bromoacetonitrile and imidazole compounds and product
Chaudhary et al. Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2
EP2393752A2 (en) Method and kit for separating metal and semiconductor carbon nanotubes
Jayanthi et al. Graphene quantum dot-titania nanoparticle composite for photocatalytic water splitting
WO2007017586A1 (en) Mineral/organic composite material
Ogbeifun et al. Self-assembled micro and nano rod-shaped porphyrin@ Bi12O17Cl2 composite as an efficient photocatalyst for degradation of organic contaminants
JP2008251581A (en) Donor/acceptor nano hybrid and production method therefor
WO2014114717A1 (en) Method for preparing a mgo/organic hybrid material, said material and the uses thereof
WO2014122569A1 (en) Nanomaterial imparting light-resistance properties
Kobasa et al. Photocatalytic reduction of methylene blue by formaldehyde in the presence of titanium dioxide and cadmium sulfide sensitized by (1-phenyl-5, 6-benzoquinoline-2)-2, 4-dihydroxystyryl iodide
Das et al. Optical and Structural study of ZnSe Nano rods-Tryptophan conjugate
Ogbeifun et al. Discover Nano
Krishnamurthy et al. Fullerene-Tetrabenzofluorene (C60-TBF) in Multivalent Photosensitisation for Enhanced ZnO-based Photo-catalysts: Mono vs. Hexakis Adduct

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13700365

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13700365

Country of ref document: EP

Kind code of ref document: A1