WO2014048425A2 - Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor - Google Patents

Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor Download PDF

Info

Publication number
WO2014048425A2
WO2014048425A2 PCT/DE2013/200119 DE2013200119W WO2014048425A2 WO 2014048425 A2 WO2014048425 A2 WO 2014048425A2 DE 2013200119 W DE2013200119 W DE 2013200119W WO 2014048425 A2 WO2014048425 A2 WO 2014048425A2
Authority
WO
WIPO (PCT)
Prior art keywords
housing
electric motor
heat sink
electronic module
stator
Prior art date
Application number
PCT/DE2013/200119
Other languages
English (en)
French (fr)
Other versions
WO2014048425A3 (de
Inventor
Matthias Gramann
Julian Botiov
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to EP13765625.2A priority Critical patent/EP2901543A2/de
Priority to DE112013004738.1T priority patent/DE112013004738A5/de
Priority to CN201380049460.7A priority patent/CN104704725B/zh
Publication of WO2014048425A2 publication Critical patent/WO2014048425A2/de
Publication of WO2014048425A3 publication Critical patent/WO2014048425A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • An electronic module comprising an electric motor, preferably an electrically commutated motor
  • the invention relates to an electronic motor comprising an electric motor, preferably an electrically commutated motor comprising a housing in which an electronic module consisting of an electronics unit and a heat sink, is arranged, wherein the housing is closed by a heat sink and the tapped on a stator e - Lektrischen motor phases are connected to a plug unit.
  • Electrically commutated motors are used for example in clutch and transmission controls of motor vehicles.
  • control units and inverter circuits are required.
  • Such control units and converter circuits are combined in an electronic module, where they are arranged, for example as a separate electronic unit separated from the housing of the electric motor.
  • the electronic unit is arranged in the housing of the electric motor, wherein the electronic unit is connected to a heat sink to an electronic module, which forms the end of the housing.
  • these arrangements are very compact and take up much space, whereby additional costs for the sealing and the formation of the housing parts are necessary.
  • the invention is therefore based on the object of specifying an electric motor together with its control, despite small integrated electronic module in the housing has small radial and axial dimensions, which are associated with low production costs.
  • the object is achieved in that the mechanical connections of the electronics unit with the heat sink and / or the housing and / or the electrical connection of the electric motor phases of the stator and the electronics unit with the connector unit are designed schraubharmsok.
  • the screw-free versions of the electrical or mechanical connections space is saved, so that the electronic module can be positioned well in a housing of the electric motor both in the radial and in the axial direction.
  • the electronics unit is positioned directly on the heat sink.
  • the heat sink has a circumferential channel for receiving a sealing element, which is arranged in the radial direction relative to the housing.
  • a sealing element which is preferably designed as an O-ring, a very small space in the axial and radial direction is required and still ensures sufficient tightness.
  • Combustion chamber sealed and electronically contacted.
  • the tightness is ensured even at a high thermal cyclicity, wherein the electronic unit is sealed against vibration and moisture, such as salt spray.
  • the housing has at least one, preferably integrally formed from the housing bending tab, which is bent radially from the outside in the direction of the heat sink.
  • the electronic module is fixed in the radial and / or axial direction. This has the advantage that vibrations of the motor vehicle have no effect on the electronic module and its operation.
  • supporting elements preferably as a local embossing of the housing, for supporting the electronic module are formed radially on the inside of the housing. These support elements ensure a support of the electronic module in the axial direction and are easy to produce. In one alternative, the support elements, preferably one-piece, are part of the
  • Heat sink which protrude in the axial direction through a respective recess of a printed circuit board of E lektronikmoduls as a spacer to the stator through into the housing.
  • spacers are formed circumferentially as a geometric part of the heat sink and terminate at the stator.
  • Recesses in the circuit board of the electronic module ensure the lateral space for the spacers in the assembly.
  • the heat sink on its circumference on partial radial contact surfaces to the housing as a radial guide of the electronic module.
  • the plug unit is anchored in the heat sink and preferably encapsulated on this with plastic.
  • this design can be dispensed with an additional carrier of the plug unit within the electronic module, whereby the space of the electric motor is further reduced.
  • the plug unit has an overmolded stamped grid, on each of which an insulation displacement connection for one of the motor phases formed in the stator is arranged, wherein the insulation displacement connections are preferably an integral part of the stamped grid.
  • the insulation displacement connections represent a cost-effective solution and require, in contrast to screw a much smaller space within the electric motor, which can therefore be made much more compact.
  • the assembly of the electric motor through the use of insulation displacement connections simplifies, since the electrical contact between plug unit and stator can be done in one step.
  • the insulation displacement terminals are connected to the motor phases of the stator, preferably crimped, wherein the cutting terminals are guided in recesses of the stator and engage in the lead frame of the plug unit.
  • the electronics unit is constructed at least in two parts, wherein the two parts are arranged at different levels in the axial direction in the housing. This also leads to a very compact design of the electric motor, if for certain applications, the existing surface of the electronics unit is not sufficient and a radial alignment of the electronic module should be avoided to ensure the compactness of the electric motor.
  • FIG. 1 Schematic representation of the electric motor with an electronic module
  • Figure 2 a section through the electric motor with the electronic module
  • Figure 6 radial guidance of the electronic module in the motor housing.
  • FIG 8 Housing of the electric motor with wiring harness
  • FIG. 9 Arrangement of the plug unit on the electric motor
  • Figure 10 different geometric configurations of the electronic module in the electric motor
  • FIG. 1 shows an electrically commutated motor together with control electronics 1, as used, for example, to control a clutch actuator in a motor vehicle. It is a brushless DC motor, also known as a BLDC motor (brushless DC motor), in which the usual mechanical commutator with breasts is replaced for current application by an electronic circuit.
  • this electric motor 1 consists of a deep-drawn housing 2, which is sealed by a heat sink 3 made of an aluminum die-cast part.
  • a plug unit 4 made of plastic is part of the heat sink 3 and injected, for example, or glued in this.
  • the cylinder-like housing 2 of the electric motor 1 has at its radial periphery, facing the heat sink 3, a plurality of bending tabs 5, which are integrally formed from the housing 2 and folded in the direction of the heat sink 3, so as an axial fixation of, from the electronics unit and the heat sink 3 existing electronic module 7 to achieve.
  • the electronic unit 6, 9 comprises a printed circuit board 6, which is equipped with electrical components 9. This circuit board 6 is glued directly to the heat sink 3 and then electrically connected to the connector pins 10 of the plug unit 4, which can be done for example by soldering or press-fit pins.
  • the printed circuit board 6 has a recess 8, through which the plug unit 4 projects for the purpose of establishing an electrical connection with the three motor phases of the electric motor 1.
  • FIG. 2 shows a cross section through the electric motor together with control electronics 1.
  • a stator 1 1 of the electric motor 1 is positioned in the interior of the housing 2, which consists of three stator phases or motor phases not shown.
  • the motor phase is connected via an insulation displacement connection 12 with the plug unit 4, which engages through the recess 8 of the circuit board 6.
  • the insulation displacement connection 12 of the plug unit 4 consists of a stamped grid 16, which has cutting elements 15, wherein the cutting elements 15 are integral components of the stamped grid 16.
  • the punched grid 16 with the insulation displacement connections 12 is molded in the plug unit 4.
  • FIG. 3 a shows the sealing of the electric motor 1 with respect to the ambient conditions.
  • a radially encircling sealing element 13 extends in a channel of the heat sink 3, wherein the circumferential sealing element 13 is formed for example as an O-ring.
  • the heat sink 3 has at predetermined intervals on its circumference constriction 14 which extend in the radial direction of the heat sink 3, said constriction 14 is included by a respective bending tab 5 of the housing 2 to the heat sink 3 and thus the entire Electronic module 7 reliably and vibration-resistant to the housing 2 to attach (Figure 3b).
  • the sealing element 13 is pressed after the folding of the bending tabs 5 through the heat sink 3 against the housing 2, whereby a reliable seal against moisture such as salt spray and the like is ensured.
  • the sealing element 13 can also rest on the outside of the heat sink 3 and are spanned there by the bending tab 5, wherein the bending tab 5 has at its free end an angled which in a recesses of the heat sink 3 intervenes.
  • the seal is also conceivable as a clamping connection, wherein on the outside of the heat sink 3 positioned sealing element 13, a cover is formed, against which the bending tab 5 abuts with its angled portion and is biased against this, so that a dense Connection is made.
  • These spacers 17 surround the heat sink 3 radially and engage through partial recesses 18, which are arranged on the outer circumference of the printed circuit board 6, through the printed circuit board 6 therethrough. The spacers 17 thus extend axially in the electric motor 1 ( Figure 4).
  • FIG. 5 Another variant for the axial support of the electronic module 7 is shown in Figure 5, where the housing 2 has at its periphery a plurality of local indentations 19 which are directed inwards and on which the electronic module 7, consisting of printed circuit board 6 and heat sink 3, is supported ,
  • the dimensioning of the local impression is designed so that the electronic module 7 is firmly clamped between the fixed by the bending tab 5 heat sink 3 and the local characteristics 19 of the housing 2.
  • FIG. 6 A further embodiment for supporting the electronic module 7 is embodied in FIG. 6, in which radial protrusions 20 extend at the heat sink 3, by means of which the Heat sink 3 and thus the electronic module 7 is pressed into the housing 2.
  • the projections 20 thereby form partial contact surfaces to the circumference of the housing 2.
  • the insulation displacement technology for the electrical connection of the stator 1 1 with the electronic module 7 and its plug unit 4th selected.
  • This connection technique can be applied in two different variants.
  • the insulation displacement technique is applied to the stator side, where the insulation displacement terminals 15 are connected to the wire phase outputs of the stator coils by a crimping technique, as shown in FIG.
  • the insulation displacement terminals 15 are guided in the stator 1 1 in recesses 22, these recesses 22 may be either parts of a plastic-coated cover flap of the stator 1 1 or part of a plastic extrusion of the stator 1 1 itself.
  • the plug unit 4 On the side of the plug unit 4 advantageously three recesses are formed with insertion bevels, where the lead frame 16 is encapsulated, in which engage the insulation displacement terminals 15 during assembly.
  • the electrical connection of the motor phases takes place at the same time, since the insulation displacement terminals 15, which are attached to the stator 1 1, are pressed with the stamped grid 16 of the plug unit 4.
  • the insulation displacement technique is carried out to the effect that the insulation displacement terminals 15 are made as part of the overmoulded punched grid 16 in the plug unit 4.
  • the punched grids 16 lead from one side back into the printed circuit board 6 in order to establish the electrical connection with the electrical components 9 of the printed circuit board 6. From the other side, the punched grid 16 with the wires of the motor phases of the stator 1 1 form a insulation displacement connection.
  • FIG. 8 shows a section through the electric motor 1 in the region of the heat sink 3, in which the plug unit 4 is replaced by a cable harness 21.
  • the cable harness 21 is soldered to the printed circuit board 6 and sealed in the region of the heat sink 3.
  • the plug unit 4 can be designed with its outlet in different directions. leads, as shown in Figure 9, where dotted the possible positions of the plug unit 4 are shown. The selected position of the plug unit 4 is selected due to the space requirements in the clutch actuator.
  • FIG. 10 shows different geometric configurations of the electronic module 7, wherein in particular a plan view of the heat sink 3 is shown.
  • the different configurations, whether round, oval or combinations thereof, are related to the installation space requirements of the clutch actuator and the functionality of the electronic module 7. Should the existing surface of the circuit board 6 for certain applications are not sufficient, there is the possibility of enlarging the electronic module 7 not only in the radial direction, but it is also possible to ensure the larger area requirement for the assembly of electrical components 9 by two printed circuit boards 6, which are arranged on a different level in the axial direction one above the other in the housing 2.
  • the described structural design of the electric motor 1 thus allows a compact integration of serving as a control unit electronic module 7. Together with the compact design, the integration solution offers a high cost advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Die Erfindung betrifft einen ein Elektronikmodul umfassenden Elektromotor, vorzugsweise einen elektrisch kommutierten Motor, umfassend ein Gehäuse, in welchem das Elektronikmodul bestehend aus einer Elektronikeinheit und einer Wärmesenke angeordnet ist, wobei das Gehäuse von der von der Wärmesenke abgeschlossen ist und die an einem Stator abgegriffenen elektrischen Motorphasen mit einer Steckereinheit verbunden sind. Bei einem besonders kompakt ausgebildeten Elektromotor, welcher kostengünstig herstellbar ist und welcher nur einen kleinen Bauraum benötigt, sind die mechanischen Verbindungen der Elektronikeinheit mit der Wärmesenke und/oder dem Gehäuse und/oder die elektrische Verbindung der elektrischen Phasen des Stators und der Elektronikeinheit mit der Steckereinheit schraubverbindungsfrei ausgeführt.

Description

Ein Elektronikmodul umfassender Elektromotor, vorzugsweise ein elektrisch kommu- tierter Motor
Die Erfindung betrifft einen ein Elektronikmodul umfassenden Elektromotor, vorzugsweise einen elektrisch kommutierten Motor, umfassend ein Gehäuse, in welchem ein Elektronikmodul, bestehend aus einer Elektronikeinheit und einer Wärmesenke, angeordnet ist, wobei das Gehäuse von einer Wärmesenke abgeschlossen ist und die an einem Stator abgegriffenen e- lektrischen Motorphasen mit einer Steckereinheit verbunden sind.
Elektrisch kommutierte Motoren werden beispielsweise in Kupplungs- und Getriebeansteuerungen von Kraftfahrzeugen eingesetzt. Zur Ansteuerung solcher elektrisch kommutierten Motoren, wie beispielsweise BLDC-Motoren, werden Steuereinheiten und Umrichterschaltungen benötigt. Solche Steuereinheiten und Umrichterschaltungen werden in einem Elektronikmodul zusammengefasst, wo sie beispielsweise als separate Elektronikeinheit abgetrennt vom Gehäuse des Elektromotors angeordnet sind.
Alternativ ist es auch bekannt, dass die Elektronikeinheit im Gehäuse des Elektromotors angeordnet ist, wobei die Elektronikeinheit mit einer Wärmesenke zu einem Elektronikmodul verbunden ist, welche den Abschluss des Gehäuses bildet. Allerdings sind diese Anordnungen sehr kompakt und nehmen viel Bauraum ein, wodurch zusätzliche Kosten für die Abdichtung und die Ausbildung der Gehäuseteile notwendig werden.
Der Erfindung liegt somit die Aufgabe zugrunde, einen Elektromotor zusammen mit seiner Ansteuerung anzugeben, weicher trotz integriertem Elektronikmodul in dem Gehäuse kleine radiale und axiale Abmessungen aufweist, die gleichzeitig mit geringen Herstellungskosten verbunden sind.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die mechanischen Verbindungen der Elektronikeinheit mit der Wärmesenke und/oder dem Gehäuse und/oder die elektrische Verbindung der elektrischen Motorphasen des Stators und der Elektronikeinheit mit der Steckereinheit schraubverbindungsfrei ausgeführt sind. Durch die schraubverbindungsfreien Ausführungen der elektrischen bzw. mechanischen Verbindungen wird Bauraum eingespart, so dass sich das Elektronikmodul sowohl in radialer als auch in axialer Richtung gut in einem Gehäuse des Elektromotors positionieren lässt.
In einer Weiterbildung ist die Elektronikeinheit direkt auf der Wärmesenke positioniert. Durch Verzicht auf einen Zwischenträger für die Elektronikeinheit wird der Bauraum des Elektromotors samt Ansteuerung minimiert.
Vorteilhafterweise weist die Wärmesenke einen umlaufenden Kanal zur Aufnahme eines Dichtelementes auf, welches in radialer Richtung gegenüber dem Gehäuse angeordnet ist. Für die Ausbildung des Dichtelementes, welches vorzugsweise als O-Ring gestaltet ist, wird ein sehr geringer Bauraum in axialer und radialer Richtung benötigt und trotzdem eine ausreichende Dichtigkeit gewährleistet. Durch dieses Dichtelement ist das Elektronikmodul mit hoher Zuverlässigkeit unter den üblichen Kraftfahrzeugumgebungsbedingungen für den
Verbrennungsraum abgedichtet und elektronisch kontaktiert. Die Dichtigkeit wird auch bei einer hohen thermischen Zyklizität gewährleistet, wobei die Elektronikeinheit gegen Vibration und Feuchtigkeit, wie bspw. Salzsprühnebel, abgedichtet ist.
In einer Ausgestaltung weist das Gehäuse mindestens eine, vorzugsweise einteilig aus dem Gehäuse ausgebildete Biegelasche auf, welche radial von außen in Richtung der Wärmesenke gebogen ist. Durch eine solche Biegelasche, welche nach Einbringen des Elektronikmoduls, bestehend aus der Elektronikeinheit und der Wärmesenke, in das Gehäuse umgebogen wird, wird sowohl eine mechanische Stabilität des Elektronikmoduls in dem Gehäuse gewährleistet, als auch die Dichtigkeit gegenüber dem Gehäuse unterstützt, da durch die Biegelaschen die Wärmesenke gegen das Dichtelement und somit auch gegen das Gehäuse des E- lektromotors gepresst wird.
In einer Variante ist das Elektronikmodul in radialer und/oder axialer Richtung fixiert. Das hat den Vorteil, dass Vibrationen des Kraftfahrzeuges keine Auswirkungen auf das Elektronikmodul und dessen Betrieb haben.
In einer Weiterbildung sind an der Innenseite des Gehäuses Stützelemente, vorzugsweise als lokale Einprägung des Gehäuses, zur Abstützung der Elektronikmoduls radial ausgebildet. Diese Stützelemente gewährleisten eine Abstützung des Elektronikmoduls in axialer Richtung und sind einfach herstellbar. ln einer Alternative sind die Stützelemente, vorzugsweise einteiliger, Bestandteil der
Wärmesenke, welche in axialer Richtung durch je eine Aussparung einer Leiterplatte des E- lektronikmoduls als Distanzhalter zum Stator hindurch in das Gehäuse hineinragen. Solche Distanzhalter sind umlaufend als geometrischer Teil der Wärmesenke ausgebildet und enden am Stator. Aussparungen in der Leiterplatte des Elektronikmoduls gewährleisten den lateralen Bauraum für die Distanzhalter im Zusammenbau.
Alternativ weist die Wärmesenke an ihrem Umfang partielle radiale Kontaktflächen zum Gehäuse als radiale Führung des Elektronikmoduls auf.
Vorteilhafterweise ist die Steckereinheit in der Wärmesenke verankert und vorzugsweise an dieser mit Kunststoff umspritzt. Durch diese Ausbildung kann auf einen zusätzlichen Träger der Steckereinheit innerhalb des Elektronikmoduls verzichtet werden, wodurch der Bauraum des Elektromotors weiter verkleinert wird.
Alternativ kann anstelle des Steckers auch ein abgedichteter Kabelbaum durch die
Wärmesenke geführt sein.
In einer Variante weist die Steckereinheit ein umspritztes Stanzgitter auf, an welchem je eine Schneid-Klemm-Verbindung für eine der im Stator ausgebildeten Motorphasen angeordnet ist, wobei die Schneid-Klemm-Verbindungen vorzugsweise integraler Bestandteil des Stanzgitters sind. Die Schneid-Klemm-Verbindungen stellen eine kostengünstige Lösung dar und benötigen im Gegensatz zu Schraubverbindungen einen wesentlich kleineren Bauraum innerhalb des Elektromotors, welcher demzufolge wesentlich kompakter ausgebildet werden kann. Darüber hinaus vereinfacht sich die Montage des Elektromotors durch den Einsatz der Schneid- Klemm-Verbindungen, da die elektrische Kontaktierung zwischen Steckereinheit und Stator in einem Verfahrensschritt erfolgen kann.
Alternativ sind die Schneidklemmen mit den Motorphasen des Stators verbunden, vorzugsweise gecrimt, wobei die Schneidklemmen in Ausnehmungen des Stators geführt sind und in das Stanzgitter der Steckereinheit eingreifen. Auch diese Ausgestaltung führt zur Einsparung von Bauraum und zu einer sehr kompakten Ausgestaltung des Elektromotors bei minimierten Montagekosten.
In einer Weiterbildung ist die Elektronikeinheit mindestens zweiteilig aufgebaut, wobei die zwei Teile auf unterschiedlichem Niveau in axialer Richtung im Gehäuse angeordnet sind. Dies führt ebenfalls zu einer sehr kompakten Gestaltung des Elektromotors, wenn für bestimmte Anwendungsfälle die vorhandene Fläche der Elektronikeinheit nicht ausreicht und eine radiale Ausrichtung des Elektronikmoduls vermieden werden soll, um die Kompaktheit des Elektromotors zu gewährleisten.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt
Figur 1 : Prinzipdarstellung des Elektromotors mit einem Elektronikmodul
Figur 2: einen Schnitt durch den Elektromotor mit dem Elektronikmodul
Figur 3: Ausschnitt aus dem Elektromotor mit dem Dichtelement
Figur 4: Distanzhalter als Teil der Wärmesenke
Figur 5: Einprägungen am Gehäuse des Elektromotors
Figur 6: radiale Führung des Elektronikmoduls im Motorgehäuse.
Figur 7: Schneid-Klemm-Verbindung am Stator
Figur 8: Gehäuse des Elektromotors mit Kabelbaum
Figur 9: Anordnung der Steckereinheit am Elektromotor
Figur 10: verschiedene geometrische Konfigurationen des Elektronikmoduls im Elektromotor
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet. ln Figur 1 ist ein elektrisch kommutierter Motor samt Steuerungselektronik 1 dargestellt, wie er beispielsweise zur Ansteuerung eines Kupplungsaktors in einem Kraftfahrzeug verwendet wird. Es handelt sich dabei um einen bürstenlosen Gleichstrommotor, der auch als BLDC- Motor (Brushless DC Motor) bezeichnet wird, bei welchem der sonst übliche mechanische Kommutator mit Brüsten zur Stromwendung durch eine elektronische Schaltung ersetzt ist. Dieser Elektromotor 1 besteht gemäß Figur 1 a aus einem tiefgezogenen Gehäuse 2, welches durch eine aus einem Aluminium-Druckguss-Teil hergestellte Wärmesenke 3 abgedichtet ist. Eine Steckereinheit 4 aus Kunststoff ist Bestandteil der Wärmesenke 3 und in diese beispielsweise eingespritzt oder geklebt. Das zylinderähnliche Gehäuse 2 des Elektromotors 1 weist an seinem radialen Umfang, der Wärmesenke 3 zugewandt, mehrere Biegelaschen 5 auf, welche einteilig aus dem Gehäuse 2 ausgebildet und in Richtung der Wärmesenke 3 umgeklappt sind, um so eine axiale Fixierung eines, aus der Elektronikeinheit und der Wärmesenke 3 bestehenden Elektronikmoduls 7 zu erreichen. Wie in Figur 1 b dargestellt, umfasst die Elektronikeinheit 6, 9 eine Leiterplatte 6, welche mit elektrischen Bauteilen 9 bestückt ist. Diese Leiterplatte 6 ist auf der Wärmesenke 3 direkt aufgeklebt und anschließend mit den Steckerpins 10 der Steckereinheit 4 elektrisch verbunden, was beispielsweise durch Verlötung oder Press-Fit- Pins erfolgen kann. Die Leiterplatte 6 weist eine Aussparung 8 auf, durch welche die Steckereinheit 4 zur Herstellung einer elektrischen Verbindung mit den drei Motorphasen des Elektromotors 1 hindurch ragt.
In Figur 2 ist ein Querschnitt durch den Elektromotor samt Steuerungselektronik 1 dargestellt. Hinter der Leiterplatte 6 ist im Inneren des Gehäuses 2 ein Stator 1 1 des Elektromotors 1 positioniert, welcher aus drei nicht weiter dargestellten Statorphasen bzw. Motorphasen besteht. Die Motorphase wird dabei über eine Schneid-Klemm-Verbindung 12 mit der Steckereinheit 4 verbunden, die durch die Ausnehmung 8 der Leiterplatte 6 hindurchgreift. Die Schneid- Klemm-Verbindung 12 der Steckereinheit 4 besteht dabei aus einem Stanzgitter16, welches Schneidelemente 15 aufweist, wobei die Schneidelemente 15 integrale Bestandteile des Stanzgitters 16 sind. Das Stanzgitter 16 mit den Schneid-Klemm-Verbindungen 12 ist in der Steckereinheit 4 umspritzt.
Figur 3a zeigt die Abdichtung des Elektromotors 1 gegenüber den Umgebungsbedingungen. Ein radial umlaufendes Dichtelement 13 verläuft dabei in einem Kanal der Wärmesenke 3, wobei das umlaufende Dichtelement 13 beispielsweise als O-Ring ausgebildet ist. Die Wärmesenke 3 weist in vorgegebenen Abständen an ihrem Umfang Einschnürung 14 auf, die sich in radialer Richtung der Wärmesenke 3 erstrecken, wobei diese Einschnürung 14 von je einer Biegelasche 5 des Gehäuses 2 umfasst wird, um die Wärmesenke 3 und somit das gesamte Elektronikmodul 7 zuverlässig und vibrationsfest an dem Gehäuse 2 zu befestigen (Figur 3b). Nach dem Zusammenbau des Elektromotors 1 wird das Dichtelement 13 nach dem Umlegen der Biegelaschen 5 durch die Wärmesenke 3 gegen das Gehäuse 2 gedrückt, wodurch eine zuverlässige Abdichtung gegen Feuchtigkeit wie beispielsweise gegen Salzsprühnebel und ähnliches gewährleistet wird.
Im Gegensatz zu der in Figur 3 dargestellten Abdichtung des Elektromotors 1 kann das Dichtelement 13 auch außen auf der Wärmesenke 3 aufliegen und dort von der Biegelasche 5 umspannt werden, wobei die Biegelasche 5 an ihrem freien Ende eine Abwinklung aufweist, die in eine Ausnehmungen der Wärmesenke 3 eingreift. Alternativ kann das Dichtelement 13 auch in einem radial verlaufenden Kanal, der in die Randseite der Wärmesenke 3 eingearbeitet ist, liegen, wobei die Wärmesenke 3 in diesem Bereich einen Vorsprung aufweist, den die Biegelasche 5 hintergreift. In einer weiteren Alternative ist auch denkbar, die Abdichtung als Klemmverbindung ausgebildet, wobei auf dem auf der Außenseite der Wärmesenke 3 positionierten Dichtelement 13 eine Abdeckung ausgebildet ist, an welche die Biegelasche 5 mit ihrer Abwinklung anliegt und gegen diese vorgespannt ist, so dass eine dichte Verbindung hergestellt wird.
Um weiterhin die Leiterplatte 6, die auf der Wärmesenke 3 aufgeklebt ist, vibrationsfest zu lagern, weist die Wärmesenke 3 Distanzhalter 17 auf, welche zur axialen Abstützung des E- lektronikmoduls 7 gegenüber dem Stator 1 1 dienen. Diese Distanzhalter 17 umgeben die Wärmesenke 3 radial und greifen durch partielle Aussparungen 18, die an dem Außenumfang der Leiterplatte 6 angeordnet sind, durch die Leiterplatte 6 hindurch. Die Distanzhalter 17 erstrecken sich somit axial im Elektromotor 1 (Figur 4).
Eine andere Variante zur axialen Abstützung des Elektronikmoduls 7 ist in Figur 5 dargestellt, wo das Gehäuse 2 an seinem Umfang mehrere lokale Einprägungen 19 aufweist, die nach innen gerichtet sind und auf welcher sich das Elektronikmodul 7, bestehend aus Leiterplatte 6 und Wärmesenke 3, abstützt. Die Dimensionierung der lokalen Einprägung ist dabei so ausgebildet, dass das Elektronikmodul 7 fest zwischen der durch die Biegelasche 5 fixierten Wärmesenke 3 und den lokalen Ausprägungen 19 des Gehäuses 2 eingeklemmt ist.
Eine weitere Ausgestaltung zur Abstützung des Elektronikmoduls 7 ist in Figur 6 ausgeführt, bei welcher sich an der Wärmesenke 3 radiale Vorsprünge 20 erstrecken, mittels welchen die Wärmesenke 3 und somit das Elektronikmodul 7 in das Gehäuse 2 gepresst ist. Die Vorsprünge 20 bilden dabei partielle Kontaktflächen zum Umfang des Gehäuses 2.
Es gibt verschiedene Varianten für die elektrische Kontaktierung der drei Motorphasen des Stators 1 1 des Elektromotors 1 mit dem Elektronikmodul 7. Um eine kostengünstige Lösung zu erreichen, wird die Schneidklemmtechnik für die elektrische Verbindung des Stators 1 1 mit dem Elektronikmodul 7 bzw. dessen Steckereinheit 4 ausgewählt. Diese Verbindungstechnik kann in zwei verschiedenen Varianten angewendet werden. Erstens wird die Schneidklemmtechnik auf der Statorseite angewandt, wo die Schneidklemmen 15 mit den die Motorphasen bildenden Drahtausgängen der Statorspulen durch eine Crimp- bzw. Crimp-Schweißtechnik verbunden werden, wie es in Figur 7 dargestellt ist. Die Schneidklemmen 15 sind dabei im Stator 1 1 in Ausnehmungen 22 geführt, wobei diese Ausnehmungen 22 entweder Teile einer kunststoffumspritzten Abdeckklappe des Stators 1 1 oder ein Teil einer Kunststoffumspritzung des Stators 1 1 selbst sein können. Auf der Seite der Steckereinheit 4 sind vorteilhafterweise drei Vertiefungen mit Einführschrägen ausgebildet, wo das Stanzgitter 16 umspritzt ist, in welche bei der Montage die Schneidklemmen 15 eingreifen. Bei der Montage des Elektronikmoduls 7 in das Gehäuse 2 erfolgt gleichzeitig auch die elektrische Verbindung der Motorphasen, da die Schneidklemmen 15, die an dem Stator 1 1 befestigt sind, mit dem Stanzgitter 16 der Steckereinheit 4 verpresst werden.
Alternativ ist auf der Seite der Steckereinheit 4 die Schneidklemmtechnik dahingehend ausgeführt, dass die Schneidklemmen 15 als Teil des umspritzten Stanzgitters 16 in der Steckereinheit 4 gefertigt sind. Die Stanzgitter 16 führen von einer Seite zurück in die Leiterplatte 6, um die elektrische Verbindung mit den elektrischen Bauelementen 9 der Leiterplatte 6 herzustellen. Von der anderen Seite bilden die Stanzgitter 16 mit den Drähten der Motorphasen des Stators 1 1 eine Schneid-Klemm-Verbindung. Bei der Montage des Elektronikmoduls 7 im Gehäuse 2 erfolgt ebenfalls gleichzeitig die elektrische Kontaktierung der Motorphasen.
In Figur 8 ist ein Schnitt durch den Elektromotor 1 im Bereich der Wärmesenke 3 dargestellt, bei welchem die Steckereinheit 4 durch einen Kabelbaum 21 ersetzt ist. Der Kabelbaum 21 ist dabei mit der Leiterplatte 6 verlötet und im Bereich der Wärmesenke 3 abgedichtet.
Für die Montage der Steckereinheit 4 können unterschiedliche Technologien genutzt werden. Neben Umspritzen mit Kunststoff ist auch ein Kleben oder Verschrauben mit der Wärmesenke denkbar. Die Steckereinheit 4 kann mit ihrem Abgang in unterschiedliche Richtungen ausge- führt werden, wie es in Figur 9 dargestellt ist, wo punktiert die möglichen Positionen der Steckereinheit 4 dargestellt sind. Die auszuwählende Position der Steckereinheit 4 wird dabei aufgrund der Bauraumvorgaben in dem Kupplungsaktor ausgewählt.
In Figur 10 sind unterschiedliche geometrische Konfigurationen des Elektronikmoduls 7 dargestellt, wobei insbesondere eine Draufsicht auf die Wärmesenke 3 gezeigt ist. Die unterschiedlichen Konfigurationen, ob rund, oval oder Kombinationen davon, stehen im Zusammenhang mit den Bauraumanforderungen des Kupplungsaktors und der Funktionalität des E- lektronikmoduls 7. Sollte die vorhandene Fläche der Leiterplatte 6 für bestimmte Applikationen nicht ausreichen, ergibt sich die Möglichkeit der Vergrößerung des Elektronikmoduls 7 nicht nur in radialer Richtung, sondern es ist auch möglich, den größeren Flächenbedarf für die Bestückung mit elektrischen Bauelementen 9 durch zwei Leiterplatten 6 zu gewährleisten, welche auf einem unterschiedlichen Niveau in axialer Richtung übereinander im Gehäuse 2 angeordnet sind.
Die beschriebene konstruktive Gestaltung des Elektromotors 1 erlaubt somit eine kompakte Integration des als Steuergerät dienenden Elektronikmoduls 7. Zusammen mit der kompakten Bauart bietet die Integrationslösung einen hohen Kostenvorteil.
Bezuqszeichenliste
Elektromotor
Gehäuse
Wärmesenke
Steckereinheit
Biegelasche
Leiterplatte
Elektronikmodul
Aussparung
Elektrisches Bauelement
Steckerpin
Stator
Schneid-Klemm-Verbindung
Dichtelement
Einschnürung
Scheidelement
Stanzgitter
Distanzhalter
Aussparung
Einprägung
Vorsprung
Kabelbaum
Ausnehmung

Claims

Patentansprüche
1 . Ein Elektronikmodul umfassender Elektromotor, vorzugsweise ein elektrisch kommu- tierter Motor, umfassend ein Gehäuse (2), in welchem ein Elektronikmodul (7), bestehend aus einer Elektronikeinheit (6, 9) und einer Wärmesenke (3), angeordnet ist, wobei das Gehäuse (2) von der Wärmesenke (3) abgeschlossen ist und die an einem Stator (1 1 ) abgegriffenen elektrischen Motorphasen mit einer Steckereinheit (4) verbunden sind, dadurch gekennzeichnet, dass die mechanischen Verbindungen der E- lektronikeinheit (6, 9) mit der Wärmesenke (3) und/oder dem Gehäuse (2) und/oder die elektrischen Verbindungen der elektrischen Motorphasen des Stators (1 1 ) und der E- lektronikeinheit (6, 9) mit der Steckereinheit (4) schraubverbindungsfrei ausgeführt sind.
2. Elektromotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Elektronikeinheit (6, 9) direkt auf der Wärmesenke (3) positioniert ist.
3. Elektromotor nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Wärmesenke (3) einen umlaufenden Kanal zur Aufnahme eines Dichtelementes (13) aufweist, welches in radialer Richtung gegenüber dem Gehäuse (2) angeordnet ist.
4. Elektromotor nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass das Gehäuse (2) mindestens eine, vorzugsweise einteilig aus dem Gehäuse (2) ausgebildete, Biegelasche (5) aufweist, welche radial von außen in Richtung der Wärmesenke (3) gebogen ist.
5. Elektromotor nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Elektronikmodul (7) in radialer und/oder axialer Richtung am Gehäuse (2) fixiert ist.
6. Elektromotor nach Anspruch 5, dadurch gekennzeichnet, dass an der Innenseite des Gehäuses (2) Stützelemente, vorzugsweise als lokale Einprägungen (19) des Gehäuses (2), zur Abstützung des Elektronikmoduls (7) am Gehäuse (2) ausgebildet sind.
7. Elektromotor nach Anspruch 5, dadurch gekennzeichnet, dass die Stützelemente (17), vorzugsweise einteilige, Bestandteile der Wärmesenke (3) sind, welche in axialer Richtung durch je eine Aussparung (18) einer Leiterplatte (6) des Elektronikmoduls (7) hindurch als Distanzhalter zum Stator (1 1 ) in das Gehäuse (2) hineinragen.
8. Elektromotor nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steckereinheit (4) in der Wärmesenke (3) verankert und vorzugsweise an dieser mit Kunststoff umspritzt ist.
9. Elektromotor nach Anspruch 8, dadurch gekennzeichnet, dass die Steckereinheit (4) ein umspritztes Stanzgitter (16) aufweist, an welchem je eine Schneid-Klemm- Verbindung (12) für eine am Stator (1 1 ) ausgebildete Motorphase angeordnet ist, wobei die Schneidklemmen (15) vorzugsweise integraler Bestandteil des Stanzgitters (16) sind.
10. Elektromotor nach Anspruch 8, dadurch gekennzeichnet, dass die Schneidklemmen (15) mit den Motorphasen des Stators (1 1 ) verbunden, vorzugsweise gecrimpt, sind, wobei die Schneidklemmen (15) in Ausnehmungen (22) des Stators (1 1 ) geführt sind und in das Stanzgitter (16) der Steckereinheit (4) eingreifen.
PCT/DE2013/200119 2012-09-26 2013-08-13 Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor WO2014048425A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13765625.2A EP2901543A2 (de) 2012-09-26 2013-08-13 Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor
DE112013004738.1T DE112013004738A5 (de) 2012-09-26 2013-08-13 Ein Elektronikmodul umfassender Elektromotor, vorzugsweise ein elektrisch kommutierter Motor
CN201380049460.7A CN104704725B (zh) 2012-09-26 2013-08-13 包括电子模块的电动马达、优选电换向马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217346 2012-09-26
DE102012217346.3 2012-09-26

Publications (2)

Publication Number Publication Date
WO2014048425A2 true WO2014048425A2 (de) 2014-04-03
WO2014048425A3 WO2014048425A3 (de) 2015-01-29

Family

ID=49225987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/200119 WO2014048425A2 (de) 2012-09-26 2013-08-13 Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor

Country Status (4)

Country Link
EP (1) EP2901543A2 (de)
CN (1) CN104704725B (de)
DE (2) DE102013215949A1 (de)
WO (1) WO2014048425A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205578A1 (de) 2015-03-27 2016-09-29 Schaeffler Technologies AG & Co. KG Steuermodul mit einem Elektrolytkondensator sowie einer integrierten Elastomerhülle
DE102015206800B4 (de) * 2015-04-15 2023-09-28 Schaeffler Technologies AG & Co. KG Elektrischer Zentralausrücker mit in Träger gehaltertem Stecker und Hybridmodul mit solchem Aktor
DE102015213865A1 (de) 2015-07-22 2017-01-26 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektronikgehäuse
WO2017178207A1 (de) * 2016-04-12 2017-10-19 Magna powertrain gmbh & co kg Antriebsanordnung
DE102016213110A1 (de) * 2016-07-18 2018-01-18 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische Maschine
DE102017116249A1 (de) * 2017-07-19 2019-01-24 Schaeffler Technologies AG & Co. KG Elektromotor
DE102018109803A1 (de) * 2018-04-24 2019-10-24 Schaeffler Technologies AG & Co. KG Leistungselektronikeinheit mit integriertem Stromsensor zur Ausbildung eines Moduls; sowie Antriebsstrang
DE102019120912A1 (de) * 2019-08-02 2021-02-04 Schaeffler Technologies AG & Co. KG Elektromotor
DE102019120913A1 (de) * 2019-08-02 2021-02-04 Schaeffler Technologies AG & Co. KG Elektromotor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862053B2 (ja) * 1993-04-02 1999-02-24 三菱電機株式会社 駆動制御装置付モータ
WO1997015111A2 (en) * 1995-10-17 1997-04-24 Fasco Industries, Inc. A brushless dc motor assembly
JP3430027B2 (ja) * 1998-09-04 2003-07-28 三菱電機株式会社 車両用交流発電機
DE10119404A1 (de) * 2001-04-20 2002-10-24 Bosch Gmbh Robert Elektronisch kommutierter Gleichstrommotor
JP5186899B2 (ja) * 2007-11-28 2013-04-24 パナソニック株式会社 ブラシレスモータ
EP3468012B1 (de) * 2009-07-30 2021-03-03 Mitsuba Corporation Motor mit entschleunigungsmechanismus
JP5875218B2 (ja) * 2010-05-31 2016-03-02 日本電産コパル株式会社 表面実装用モータ
JP2012100381A (ja) * 2010-10-29 2012-05-24 Toyota Motor Corp 回転電機用端子台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
CN104704725A (zh) 2015-06-10
DE112013004738A5 (de) 2015-07-23
WO2014048425A3 (de) 2015-01-29
DE102013215949A1 (de) 2014-03-27
EP2901543A2 (de) 2015-08-05
CN104704725B (zh) 2018-02-02
DE102013215949A8 (de) 2014-06-05

Similar Documents

Publication Publication Date Title
EP2901543A2 (de) Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor
EP2320092B1 (de) Pumpenaggregat
EP2047583B1 (de) Stator mit schaltscheibe
DE102015214457A1 (de) Ansteuereinheit mit anschlüssen in federndem kontakt miteinander
DE102013020094B4 (de) Elektromotor, insbesondere Kühlerlüftermotor
WO2017162568A1 (de) Verschaltungsplatte für einen stator einer elektrischen maschine und verfahren zum herstellen einer elektrischen maschine
EP2909923A1 (de) Anschlusselement für eine antriebsanordnung sowie eine antriebsanordnung mit einem anschlussteil
DE102016223844B4 (de) Elektromotor und Kühlerlüftermodul mit einem solchen Elektromotor
DE102016204954A1 (de) Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine
DE102012203946A1 (de) Elektrische Maschine zum motorischen Verstellen beweglicher Teile im Kraftfahrzeug, sowie Verfahren zum Herstellen der elektrischen Maschine
WO2019015720A1 (de) Elektromotor
DE102018204297A1 (de) Elektrische Antriebseinheit mit mindestens zwei Leiterplatinen
WO2003001647A1 (de) Gehäusedeckel für einen elektromotor, insbesondere für einen elektronisch kommutierten gleichstrommotor
DE102012205710A1 (de) Elektrische Maschine, Statorsegment, Verfahren zur Herstellung
EP2665162B1 (de) Gleichstrommotor zum Antrieb von Aggregaten eines Kraftfahrzeugs
EP1586491B1 (de) Steckverbindung eines Motor-Pumpen-Aggregats eines ABS
DE102013211968A1 (de) Elektrische Maschine, insbesondere Elektromotor
DE102020202680A1 (de) Elektrische Maschine, ein Bremsaggregat beinhaltend eine elektrische Maschine und Verfahren zum Herstellen eines solchen Bremsaggregats
EP1416614B1 (de) Anschlussadapter für einen Elektromotor
WO2015032993A1 (de) Leiterplattenanordnung, verfahren zum herstellen einer leiterplattenanordnung und kühlerlüftermodul
WO2020089011A1 (de) Gehäusedeckel für eine elektrische maschine und verfahren zum herstellen eines gehäusedeckels
DE102019209733A1 (de) Elektrische Antriebseinheit mit einem Polgehäuse und einem Elektronikgehäuse
DE102008001047A1 (de) Elektromotor und Bauteil für einen Elektromotor
WO2021013644A1 (de) Elektrische antriebseinheit mit einem polgehäuse und einem elektronikgehäuse
DE102016222563A1 (de) Elektrische Maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765625

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013765625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120130047381

Country of ref document: DE

Ref document number: 112013004738

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013004738

Country of ref document: DE