WO2014048204A1 - 控制信道的分配方法及装置 - Google Patents

控制信道的分配方法及装置 Download PDF

Info

Publication number
WO2014048204A1
WO2014048204A1 PCT/CN2013/082291 CN2013082291W WO2014048204A1 WO 2014048204 A1 WO2014048204 A1 WO 2014048204A1 CN 2013082291 W CN2013082291 W CN 2013082291W WO 2014048204 A1 WO2014048204 A1 WO 2014048204A1
Authority
WO
WIPO (PCT)
Prior art keywords
immediate assignment
block
ccch
frame number
lmin
Prior art date
Application number
PCT/CN2013/082291
Other languages
English (en)
French (fr)
Inventor
周恩惠
王洪建
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13842668.9A priority Critical patent/EP2903376B1/en
Priority to RU2015115980A priority patent/RU2623097C2/ru
Publication of WO2014048204A1 publication Critical patent/WO2014048204A1/zh
Priority to HK15108228.0A priority patent/HK1207788A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of mobile communications, and more particularly to a method and apparatus for allocating control channels.
  • GSM Global System of Mobile Communication
  • the base station when an MS (terminal) wants to access a network for circuit switching services, the base station generally needs to allocate a SDCCH channel (Stand-alone Dedicated Control). Channel, independent dedicated control channel), informs the terminal by immediately assigning a message, as shown in Figure 1. The terminal then accesses the SDCCH channel to start establishing an L2 link and transmits signaling.
  • SDCCH channel Stand-alone Dedicated Control
  • Channel independent dedicated control channel
  • an AGCH (Allow Access Channel) block carrying an Immediate Assignment message can share all CCCH (Common Control Channel) blocks with a PCH (Paging Channel) block carrying a paging message. Therefore, an immediate assignment message can be sent on any CCCH block.
  • 2 is a downlink multiframe structure of a BCCH (Broadcast Control Channel) + CCCH channel combination most commonly used in a GSM cell.
  • the downlink multiframe consists of 51 TDMA frames and is divided into five groups: the first group is F+ S+B+C, where F is a frequency-corrected TDMA frame, S is a synchronous TDMA frame, B is a BCCH block, C is a CCCH block; and the second, third, and fourth groups are F+S+C+C, the fifth group It is F+S+C+C+N, N is spare and plays a protective role. It can be seen from Fig. 2 that there are 9 CCCH blocks in 51 multiframes, which are sequentially recorded as C0, C1, C2, ..., C8.
  • FIG. 3 is a multiframe structure of the most commonly used SDCCH channel in a GSM cell, and there are 8 subchannels of D0 ⁇ D7.
  • SABM Set Asynchronous Balance Mode
  • the terminal after receiving the immediate assignment message, the terminal sends an SABM (Set Asynchronous Balance Mode) frame for establishing an L2 link on the allocated SDCCH subchannel.
  • SABM Set Asynchronous Balance Mode
  • the terminal after receiving the immediate assignment message, the terminal cannot immediately send the SABM frame, and must wait until the uplink frame time of the corresponding SDCCH subchannel arrives. The length of this waiting period depends on the frame interval between the uplink frame time of the SDCCH subchannel and the CCCH block carrying the immediate assignment message for the SDCCH subchannel.
  • the network sends an immediate assignment message for the SD0 subchannel on the third CCCH block in the 51 multiframe.
  • the terminal can only wait after receiving the immediate assignment message.
  • the SABM is sent only after 46 frames, but if the SD3 subchannel is allocated at this time, the terminal can send the SABM after waiting for the frame after receiving the immediate assignment message.
  • selecting different CCCH blocks to send immediate assignment messages and assigning different SDCCH subchannels to the terminals will result in different call setup delays.
  • the network when the network sends an immediate assignment message and allocates an SDCCH subchannel to the terminal, it only needs to select the available CCCH block and the SDCCH subchannel, so the terminal often receives the immediately assigned message.
  • the present invention provides a method and apparatus for allocating control channels, which can shorten call setup delay.
  • a method for allocating a control channel including: receiving a channel request message sent by a terminal; determining, according to a frame number when receiving the channel request message, an SDCCH subchannel allocated to the terminal And transmitting, to the terminal, an immediate assignment message carrying information of the SDCCH subchannel, so that the terminal sends a SABM frame for establishing an L2 link on the SDCCH subchannel.
  • Determining, according to the frame number when receiving the channel request message, the SDCCH subchannel allocated to the terminal includes: determining, according to a frame number when receiving the channel request message, a CCCH block used for sending the immediate assignment message Block number C(x) ; determines that the available SDCCH subchannel closest to the CCCH block is the SDCCH subchannel allocated to the terminal.
  • Determining, according to the frame number when receiving the channel request message, determining a block number C(x) of the CCCH block used to send the immediate assignment message includes: determining a most recent available according to a frame number when receiving the channel request message The block number of the CCCH block is the C(x).
  • the block number of the block is C(x).
  • the estimating the arrival frame number of the immediate assignment message includes: recording a frame number FN_IMM(i) when the immediate assignment message is received for the i-th time, and using the FN_IMM(i) with the immediate assignment message
  • the frame number FN_RACH(i) when receiving the channel request message is subtracted, and the i-th frame number interval AFN(i) is obtained;
  • the estimation interval AFN_pre(j) MAX ⁇ AFN(jN), AFN(j- N+ 1 ),..., AFN(j-1 ) ⁇ , N is an integer not less than 2 and not more than 10;
  • a device for distributing a control channel including: a receiving module, configured to receive a channel request message sent by the terminal; and a processing module, configured to receive, according to the channel request message, The frame number is determined as an SDCCH subchannel allocated by the terminal; the sending module is configured to send an immediate assignment message carrying the information of the SDCCH subchannel to the terminal, so that the terminal sends the SDCCH subchannel SABM frame used to establish an L2 link.
  • the processing module includes: a first processing unit, configured to determine, according to a frame number when receiving the channel request message, a block number CO) of a CCCH block used to send the immediate assignment message; and a second processing unit, configured to Determining that the available SDCCH subchannel closest to the CCCH block is the SDCCH subchannel allocated to the terminal.
  • the first processing unit is configured to determine a recent available according to a frame number when receiving the channel request message
  • the block number of the CCCH block is the C(x).
  • the first processing unit is configured to record a frame number FN_IMM(i) when the immediate assignment message is received, and the FN_IMM(i) and the receive channel request message included in the immediate assignment message
  • the frame number FN_RACH(i) is subtracted, the i-th frame number interval AFN(i) is obtained;
  • the estimation interval AFN_pre(j) MAX ⁇ AFN(jN), AFNG-N+1),... AFN0-1) ⁇ , N is an integer not less than 2 and not more than 10;
  • the base station subsystem after receiving the channel request message of the terminal, selects the SDCCH subchannel that can send the uplink message as soon as possible, and then the base station subsystem activates the selected SDCCH subchannel and sends an immediate assignment.
  • the message is sent to the terminal, and after receiving the immediate assignment message, the terminal may send the SABM frame for establishing the L2 link on the selected SDCCH subchannel.
  • the present invention selects the most suitable SDCCH subchannel for the terminal by the above method, instead of any idle SDCCH subchannel, and can achieve the purpose of shortening the call setup delay.
  • FIG. 1 is a schematic diagram of an initial signaling flow of a terminal access network
  • FIG. 2 is a structural diagram of a BCCH+CCCH multiframe
  • FIG. 3 is a structural diagram of an SDCCH/8 multiframe
  • FIG. 5 is a block diagram showing a structure of a control channel allocation apparatus according to an embodiment of the present invention
  • FIG. 6 is a flowchart of processing a BTS channel request message according to an embodiment of the present invention
  • FIG. 8 is a priority sequence diagram of allocating SDCCH subchannels according to an embodiment of the present invention
  • FIG. 9 is a flowchart of processing BTS for immediate assignment messages according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for allocating a control channel according to an embodiment of the present invention. As shown in FIG.
  • Step 401 Receive a channel request message sent by a terminal
  • Step 402 Determine an SDCCH subchannel allocated for the terminal according to the frame number when receiving the channel request message.
  • Step 403 Send an immediate assignment message carrying the information of the SDCCH subchannel to the terminal, so that the terminal sends the SDCCH subchannel for the terminal.
  • step 402 may include: determining, according to a frame number when receiving the channel request message, a block number of a CCCH block used for sending the immediate assignment message.
  • determining, according to the frame number when receiving the channel request message, the block number CO) of the CCCH block used for sending the immediate assignment message may include: determining, according to the frame number when receiving the channel request message, the block number of the latest available CCCH block is C(x).
  • C(k) when Lmin ⁇ l, and the number of pre-stored immediate assignment messages of at least two CCCH blocks is Lmin, the available CCCH block closest to the frame number when receiving the channel request message in the CCCH block corresponding to Lmin is taken.
  • the block number of the available CCCH block whose median distance arrives at the frame number is C(x).
  • the estimated arrival frame number of the immediate assignment message may include: recording the frame number FN_IMM(i) when the i-time immediate assignment message is received, and receiving the FN_IMM(i) and the reception included in the immediate assignment message
  • the frame number FN_RACH(i) at the time of the channel request message is subtracted, and the i-th frame number interval AFN(i) is obtained;
  • Take the estimation interval AFN_pre(j) MAX ⁇ AFN(jN), AFN0'-N+ 1 ),..., AFNO'-l) ⁇ , N is an integer not less than 2 and not greater than 10;
  • the arrival frame number of the immediately assigned message FN_IMM_pre(j) FN_RACH(j)+AFN_pre(j).
  • the base station subsystem after receiving the channel request message of the terminal, finds the CCCH block that can immediately deliver the immediate assignment message for the current access, and selects the most capable according to the location of the CCCH block. Sending the SDCCH subchannel of the uplink message quickly. If the subchannel is already occupied, the next subchannel closest to the subchannel is selected in chronological order, and so on, and then the base station subsystem activates the selected SDCCH subchannel, and An immediate assignment message is sent to the terminal on the CCCH block, and after receiving the immediate assignment message, the terminal may send the SABM frame for establishing the L2 link on the selected SDCCH subchannel.
  • the embodiment includes: a receiving module 50 configured to receive a channel request message sent by a terminal; and a processing module 51 configured to receive according to The frame number of the channel request message is determined as the SDCCH subchannel allocated by the terminal; the sending module 52 is configured to send an immediate assignment message carrying the information of the SDCCH subchannel to the terminal, so that the terminal sends the L2 for establishing the L2 on the SDCCH subchannel. SABM frame of the link.
  • the processing module 51 may include: a first processing unit, configured to determine, according to a frame number when receiving the channel request message, a block number C(x) of the CCCH block used for sending the immediate assignment message ; the second processing unit, setting The SDCCH subchannel that is closest to the CCCH block is determined to be the SDCCH subchannel allocated to the terminal.
  • the first processing unit may be configured to determine that the block number of the most recent available CCCH block is C(x) according to the frame number when receiving the channel request message.
  • the number of incoming assignment messages is Lmin
  • the arrival frame number of the immediately assigned message is estimated
  • the block number of the available CCCH block closest to the arrival frame number in the CCCH block corresponding to Lmin is C(x).
  • the first processing unit may be configured to record the frame number FN_IMM(i) when the i-time immediate assignment message is received, and when the FN_IMM(i) is received with the receive channel request message included in the immediate assignment message
  • the allocation device of the control channel of this embodiment may be disposed in the base station subsystem.
  • the receiving module and the sending module may be located in the base transceiver station, and the first processing unit in the processing module may be located in the base transceiver station.
  • the second processing unit in the processing module can be located in the base station controller.
  • the base station subsystem finds the CCCH block that can immediately deliver the immediate assignment message for the current access, and selects the most capable according to the location of the CCCH block. Sending the SDCCH subchannel of the uplink message quickly.
  • the base station subsystem activates the selected SDCCH subchannel, and An immediate assignment message is sent to the terminal on the CCCH block, and after receiving the immediate assignment message, the terminal may send the SABM frame for establishing the L2 link on the selected SDCCH subchannel.
  • the method for allocating the control channel of the present invention will be described in detail below with reference to FIG. 6-9.
  • the SSCCH subchannel is generally allocated by the BSC (Base Station Controller).
  • the BTS Base Transceiver Station
  • the BTS Base Transceiver Station
  • the BTS may establish an immediate assignment message queue for each CCCH block, and separately count the number of immediate assignment messages actually stored in each immediate assignment message queue, C(i)_real, and the number of pre-stored immediate assignment messages.
  • a channel activation process is included in the middle.
  • This embodiment may use a statistical measurement method to estimate the time point: that is, the BTS records the ith time.
  • the frame number FN_IMM(i) at the time of immediately assigning the message is subtracted from the frame number FN_RACH(i) when the receiving terminal requests the channel included in the immediate assignment message, and the i-th frame number interval AFN(i) is obtained.
  • AFN_preO' MA (AFNO'-N), AFN(j-N+l),...,AFN(jl) ⁇
  • B!J BTS estimates the jth immediate assignment message
  • the BTS After receiving the channel request message of the terminal, the BTS compares the number of pre-stored immediate assignment messages of all CCCH blocks. As shown in FIG.
  • Lmin 0, and the number of pre-stored immediate assignment messages with more than one CCCH block is Lmin, then the time FN_RACH+AFN_pre of the immediate assignment message is first estimated, and then C(x) takes the corresponding Lmin. The available CCCH block in the C(i) block that is closest to this time.
  • the BTS determines the CCCH block number C(x) to be used after the CCCH block number C(x) to be used by the immediate assignment message corresponding to the channel request message, carries the CCCH block number C(x), and carries the local C(x) ) jDre performs an operation of 1.
  • the BSC After receiving the channel information message, the BSC searches for the SDCCH subchannel priority order as shown in FIG. 6 according to the CCCH block number C(x) carried in the BSC, and the BSC preferentially selects the priority corresponding to C(x).
  • the highest SDCCH subchannel if the SDCCH subchannel is already occupied, the idle SDCCH subchannel with the second highest priority is sequentially selected.
  • the BSC preferentially selects the SDCCH subchannel SD3 with the highest priority corresponding to CC2), and if the SDCCH subchannel is already occupied, the priority is selected secondly. Idle SDCCH subchannel SD4.
  • the terminal When assigning a priority order to the SDCCH subchannel, it takes a certain time to consider that the terminal decodes the immediate assignment message and then adjusts its own transmission and reception configuration to the designated SDCCH subchannel. Therefore, a large number of experiments are performed to obtain the C i) block.
  • the SDCCH subchannel with the shortest time interval has the highest priority
  • the SDCCH subchannel with the shortest time interval has the second highest priority, and so on, and the SDCCH subchannel with the longest time interval has the lowest priority.
  • the BSS activates the selected SDCCH subchannel, and the BSC sends an immediate assignment message to the BTS, which carries the CCCH block number C( X ) in the request channel message.
  • the immediate assignment message sent by the BSC to the BTS may also not carry C(x). If the C(x) is not carried, the BTS determines the CCCH block number to be used by the immediate assignment message corresponding to the channel request message. After C0, the BTS needs to save the C().
  • the BTS After receiving the immediate assignment message, the BTS calculates the latest frame number interval AFN according to the frame number of the immediate assignment message and the frame number of the terminal requesting channel included therein, and then immediately assigns The message is placed in the queue of the CCCH block CO) specified in the immediate assignment message or locally saved, and the local CO)_real is incremented by one.
  • the BTS sends an immediate assignment message on the CCCH block C(x)
  • the C(x)_pre and C(x)_real are simultaneously decremented by one.
  • the value of N can be flexibly selected according to the stability of the link delay in the BSS system. In this embodiment, the value of N ranges from 2 to 10. When the link delay is stable, the value of N is small.
  • the value of N can be increased appropriately.
  • the frame number FN_IMM(i) of the estimated immediate assignment message is slightly larger than the frame number when the actual immediate assignment message arrives. If the estimated frame number of the immediate assignment message FN_IMMjDr e (i) is smaller than the frame number when the actual immediate assignment message arrives, it may cause the immediate assignment message to arrive at the BTS, and the BTS has missed the immediate assignment message.
  • the transmission time of the specified CCCH block then the BTS can only send an immediate assignment message to the terminal in the designated CCCH block after delaying the duration of one 51 multiframe.
  • the base station subsystem after receiving the channel request message of the terminal, finds the CCCH block that can immediately deliver the immediate assignment message for the current access, and selects the most capable according to the location of the CCCH block. Sending the SDCCH subchannel of the uplink message quickly. If the subchannel is already occupied, the next subchannel closest to the subchannel is selected in chronological order, and so on, and then the base station subsystem activates the selected SDCCH subchannel, and An immediate assignment message is sent to the terminal on the CCCH block, and after receiving the immediate assignment message, the terminal may send the SABM frame for establishing the L2 link on the selected SDCCH subchannel.
  • the present invention selects the most suitable SDCCH subchannel for the terminal by the above method, instead of any idle SDCCH subchannel, and can achieve the purpose of shortening the call setup delay.
  • Many of the functional components described in this specification are referred to as modules to more particularly emphasize the independence of their implementation.
  • the modules may be implemented in software for execution by various types of processors.
  • an identified executable code module can comprise one or more physical or logical blocks of computer instructions, which can be constructed, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different physicalities. When these instructions are logically combined, they form a module and implement the specified purpose of the module.
  • the executable code module can be a single instruction or a number of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the module and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software. Without considering the cost, a person skilled in the art can construct a corresponding hardware circuit to implement the corresponding function.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components. Modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • VLSI Very Large Scale Integration
  • programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • the sequence numbers of the steps are not used to limit the sequence of the steps.
  • the steps of the steps are changed without any creative work. It is also within the scope of the invention.
  • the above is a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention.
  • the base station subsystem after receiving the channel request message of the terminal, the base station subsystem can select the SDCCH subchannel that can send the uplink message as soon as possible, and then the base station subsystem activates the selected SDCCH subchannel, and Sending an immediate assignment message to the terminal, after receiving the immediate assignment message, the terminal may send the SABM frame for establishing the L2 link on the selected SDCCH subchannel, that is, the present invention selects the most suitable by the above method.
  • the SDCCH subchannel is used by the terminal instead of any idle SDCCH subchannel, which can shorten the call setup delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种控制信道的分配方法及装置,属于移动通信领域。其中,该控制信道的分配方法,包括:接收终端发送的信道请求消息(401);根据接收信道请求消息时的帧号确定为终端分配的SDCCH子信道(402);向终端发送携带有上述SDCCH子信道的信息的立即指配消息,以便终端在SDCCH子信道上发送用于建立L2链路的SABM帧(403)。本发明的技术方案能够缩短呼叫建立时延。

Description

控制信道的分配方法及装置
技术领域 本发明涉及移动通信领域, 特别是指一种控制信道的分配方法及装置。 背景技术 在 GSM ( Global System of Mobile communication, 全球移动通讯系统) 系统中, 当 MS (终端)要接入网络进行电路交换业务时, 基站一般要先为其分配一条 SDCCH 信道(Stand-alone Dedicated Control Channel, 独立专用控制信道), 通过立即指配消息 将之告知终端, 如图 1所示。然后终端接入该 SDCCH信道开始建立 L2链路, 并传输 信令。 根据 3GPP TS45002协议, 承载立即指配消息的 AGCH (允许接入信道) 块可 以和承载寻呼消息的 PCH (寻呼信道) 块共用所有的 CCCH (公共控制信道) 块。 因 此, 立即指配消息可以在任意 CCCH块上发送。 图 2是 GSM小区中最常采用的 BCCH (广播控制信道) +CCCH信道组合形式的 下行复帧结构,该下行复帧由 51个 TDMA帧组成,被分成了 5组:第一组是 F+S+B+C, 这里 F是频率校正 TDMA帧, S是同步 TDMA帧, B是 BCCH块, C是 CCCH块; 第二、 三、 四组都是 F+S+C+C, 第五组是 F+S+C+C+N, N是空余的, 起保护作用的。 由图 2可以看出, 51复帧中共有 9个 CCCH块, 依次记为 C0,C1,C2, ...,C8。 图 3是 GSM小区中最常采用的 SDCCH信道的复帧结构, 有 D0~D7共 8个子信道。 如图 1所示, 终端收到立即指配消息后, 要在分配的 SDCCH子信道上发送用于 建立 L2链路的 SABM (设置异步平衡模式) 帧。 但是结合图 2和图 3可以看出, 终 端接收到立即指配消息后并不能马上发送 SABM帧, 必须要等到对应的 SDCCH子信 道的上行帧时刻到来。 而这段等待的时间长度取决于 SDCCH子信道的上行帧时刻与 承载针对该 SDCCH子信道的立即指配消息的 CCCH块之间的帧间隔。 例如, 网络在 51复帧中的第三个 CCCH块上发送了一条分配 SD0子信道的立即指配消息, 由图 2 和图 3可以看出,终端只能在收到立即指配消息后等待 46帧才发送 SABM,但是如果 此时分配的是 SD3子信道,那么终端收到立即指配消息后等待 Ί帧就可以发送 SABM。 由此可以看出选择不同的 CCCH块发送立即指配消息以及为终端分配不同的 SDCCH 子信道会导致不同的呼叫建立时延。 已有技术中, 网络在发送立即指配消息以及给终端分配 SDCCH子信道时, 只要 挑选空闲可用的 CCCH块和 SDCCH子信道即可, 因此终端收到立即指配消息后往往 需要等待较长的时间才能等到在属于自己的 SDCCH子信道上发送上行 SABM帧, 导 致呼叫建立时延比较长。 发明内容 本发明提供了一种控制信道的分配方法及装置, 能够缩短呼叫建立时延。 根据本发明实施例的一个方面, 提供了一种控制信道的分配方法, 包括: 接收终 端发送的信道请求消息; 根据接收所述信道请求消息时的帧号确定为所述终端分配的 SDCCH子信道; 向所述终端发送携带有所述 SDCCH子信道的信息的立即指配消息, 以便所述终端在所述 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 所述根据接收所述信道请求消息时的帧号确定为所述终端分配的 SDCCH子信道 包括: 根据接收所述信道请求消息时的帧号确定发送所述立即指配消息所使用的 CCCH块的块号 C(x); 确定距离所述 CCCH块最近的可用 SDCCH子信道为向所述终 端分配的 SDCCH子信道。 所述根据接收所述信道请求消息时的帧号确定发送所述立即指配消息所使用的 CCCH 块的块号 C(x)包括: 根据接收所述信道请求消息时的帧号确定最近的可用 CCCH块的块号为所述 C(x)。 所述根据接收所述信道请求消息时的帧号确定最近的可用 CCCH块的块号为所述 C(x)包括: 对比下行复帧中所有 CCCH块的预存入立即指配消息的数目, 取最小数目 为 Lmin;当仅有一个 CCCH块 C(k)的预存入立即指配消息 CCk)_pre= Lmin时,取 C(x)= C(k); 当 Lmin≥l, 且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin时, 取 Lmin对应的 CCCH块中距离接收所述信道请求消息时的帧号最近的可用 CCCH块的 块号为 C(X); 当 Lmin=0, 且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin 时, 预估所述立即指配消息的到达帧号, 取 Lmin对应的 CCCH块中距离所述到达帧 号最近的可用 CCCH块的块号为 C(x)。 所述预估所述立即指配消息的到达帧号包括: 记录第 i次收到立即指配消息时的帧号 FN_IMM(i), 将所述 FN_IMM(i)与所述立 即指配消息中所包含的接收信道请求消息时的帧号 FN_RACH(i)相减,得到第 i次帧号 间隔 AFN(i); 取预估间隔 AFN_pre(j)=MAX{AFN(j-N), AFN(j-N+ 1 ),..., AFN(j- 1 )}, N为不小于 2 不大于 10的整数; 预估第 j次立即指配消息的到达帧号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。 根据本发明实施例的另一个方面, 还提供了一种控制信道的分配装置, 包括: 接 收模块, 设置为接收终端发送的信道请求消息; 处理模块, 设置为根据接收所述信道 请求消息时的帧号确定为所述终端分配的 SDCCH子信道; 发送模块, 设置为向所述 终端发送携带有所述 SDCCH 子信道的信息的立即指配消息, 以便所述终端在所述 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 所述处理模块包括: 第一处理单元, 设置为根据接收所述信道请求消息时的帧号 确定发送所述立即指配消息所使用的 CCCH块的块号 CO); 第二处理单元, 设置为确 定距离所述 CCCH块最近的可用 SDCCH子信道为向所述终端分配的 SDCCH子信道。 所述第一处理单元, 设置为根据接收所述信道请求消息时的帧号确定最近的可用
CCCH块的块号为所述 C(x)。 所述第一处理单元, 设置为对比下行复帧中所有 CCCH块的预存入立即指配消息 的数目, 取最小数目为 Lmin; 当仅有一个 CCCH 块 C(k)的预存入立即指配消息 C(k)_pre= Lmin时, 取 C(x)= C(k); 当 Lmin≥l, 且有至少两个 CCCH块的预存入立即 指配消息数目为 Lmin时,取 Lmin对应的 CCCH块中距离接收所述信道请求消息时的 帧号最近的可用 CCCH块的块号为 C(x); 当 Lmin=0, 且有至少两个 CCCH块的预存 入立即指配消息数目为 Lmin时, 预估所述立即指配消息的到达帧号, 取 Lmin对应的 CCCH块中距离所述到达帧号最近的可用 CCCH块的块号为 C(X)。 所述第一处理单元, 设置为记录第 i次收到立即指配消息时的帧号 FN_IMM(i), 将所述 FN_IMM(i)与所述立即指配消息中所包含的接收信道请求消息时的帧号 FN_RACH(i)相减,得到第 i次帧号间隔 AFN(i);取预估间隔 AFN_pre(j)=MAX{AFN(j-N), AFNG-N+1),...,AFN0-1)} , N为不小于 2不大于 10的整数; 预估第 j次立即指配消息 的到达帧号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。 在本发明提供的方案中, 基站子系统收到终端的信道请求消息后, 挑选出能最快 发送上行消息的 SDCCH子信道, 之后基站子系统激活挑选出的 SDCCH子信道, 并 发送立即指配消息给终端, 终端在接收到立即指配消息之后, 就可以在挑选出的 SDCCH子信道上发送用于建立 L2链路的 SABM帧。与现有技术相比,本发明通过上 述的方法挑选出最合适的 SDCCH子信道供终端使用, 而不是任意空闲的 SDCCH子 信道, 可以达到缩短呼叫建立时延的目的。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1为终端接入网络的初始信令流程示意图; 图 2为 BCCH+CCCH复帧的结构图; 图 3为 SDCCH/8 复帧的结构图; 图 4为本发明实施例的控制信道的分配方法的流程示意图; 图 5为本发明实施例的控制信道的分配装置的结构框图; 图 6为本发明实施例的 BTS对信道请求消息的处理流程图; 图 7为本发明实施例的 BSC对请示信道消息的处理流程图; 图 8为本发明实施例的分配 SDCCH子信道的优先级顺序图; 以及 图 9为本发明实施例的 BTS对立即指配消息的处理流程图。 具体实施方式 为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下面将结合 附图及具体实施例进行详细描述。 需要说明的是, 在不冲突的情况下, 本申请中的实 施例及实施例中的特征可以相互组合。 本发明的实施例针对现有技术中网络在发送立即指配消息以及给终端分配 SDCCH子信道时, 只要挑选空闲可用的 CCCH块和 SDCCH子信道即可, 因此终端 收到立即指配消息后往往需要等待较长的时间才能等到在属于自己的 SDCCH子信道 上发送上行 SABM帧, 导致呼叫建立时延比较长的问题, 提供一种控制信道的分配方 法及装置, 能够缩短呼叫建立时延。 图 4为本发明实施例的控制信道的分配方法的流程示意图, 如图 4所示, 本实施 例包括: 步骤 401 : 接收终端发送的信道请求消息; 步骤 402: 根据接收信道请求消息时的帧号确定为终端分配的 SDCCH子信道; 步骤 403: 向终端发送携带有 SDCCH子信道的信息的立即指配消息, 以便终端在 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 优选的, 步骤 402可以包括: 根据接收信道请求消息时的帧号确定发送立即指配消息所使用的 CCCH块的块号
C(x); 确定距离 CCCH块最近的可用 SDCCH子信道为向终端分配的 SDCCH子信道。 优选的, 根据接收信道请求消息时的帧号确定发送立即指配消息所使用的 CCCH 块的块号 CO)可以包括: 根据接收信道请求消息时的帧号确定最近的可用 CCCH块的块号为 C(x)。 优选地,根据接收信道请求消息时的帧号确定最近的可用 CCCH块的块号为 C(x) 可以包括: 对比下行复帧中所有 CCCH 块的预存入立即指配消息的数目, 取最小数目为 Lmin; 当仅有一个 CCCH块 CCk)的预存入立即指配消息 CCk)_pre= Lmin时, 取 C( )=
C(k); 当 Lmin≥l, 且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin时, 取 Lmin对应的 CCCH块中距离接收信道请求消息时的帧号最近的可用 CCCH块的块号 为 C(x); 当 Lmin=0, 且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin时, 预估 立即指配消息的到达帧号,取 Lmin对应的 CCCH块中距离到达帧号最近的可用 CCCH 块的块号为 C(x)。 优选地, 预估立即指配消息的到达帧号可以包括: 记录第 i次收到立即指配消息时的帧号 FN_IMM(i), 将 FN_IMM(i)与立即指配消 息中所包含的接收信道请求消息时的帧号 FN_RACH(i)相减, 得到第 i 次帧号间隔 AFN(i); 取预估间隔 AFN_pre(j)=MAX{AFN(j-N), AFN0'-N+ 1 ),..., AFNO'-l)} , N为不小于 2 不大于 10的整数; 预估第 j次立即指配消息的到达帧号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。 本发明的技术方案中, 基站子系统收到终端的信道请求消息后, 找到能最快下发 针对本次接入的立即指配消息的 CCCH块,并根据该 CCCH块的位置挑选出能最快发 送上行消息的 SDCCH子信道, 如果此子信道已经被占用, 则按照时间顺序挑选距离 此子信道最近的下一个子信道, 依次类推, 之后基站子系统激活挑选出的 SDCCH子 信道,并在该 CCCH块上发送立即指配消息给终端,终端在接收到立即指配消息之后, 就可以在挑选出的 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 图 5为本发明实施例的控制信道的分配装置的结构框图, 如图 5所示, 本实施例 包括: 接收模块 50, 设置为接收终端发送的信道请求消息; 处理模块 51, 设置为根据接收信道请求消息时的帧号确定为终端分配的 SDCCH 子信道; 发送模块 52, 设置为向终端发送携带有 SDCCH子信道的信息的立即指配消息, 以便终端在 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 优选的, 处理模块 51可以包括: 第一处理单元, 设置为根据接收信道请求消息时的帧号确定发送立即指配消息所 使用的 CCCH块的块号 C(x); 第二处理单元, 设置为确定距离 CCCH块最近的可用 SDCCH子信道为向终端分 配的 SDCCH子信道。 优选的, 第一处理单元, 可以设置为根据接收信道请求消息时的帧号确定最近的 可用 CCCH块的块号为 C(x)。 优选的, 第一处理单元, 可以设置为对比下行复帧中所有 CCCH块的预存入立即 指配消息的数目, 取最小数目为 Lmin; 当仅有一个 CCCH块 C(k)的预存入立即指配 消息 C(k)_pre= Lmin时, 取 C(x)= C(k); 当 Lmin≥l, 且有至少两个 CCCH块的预存入 立即指配消息数目为 Lmin时,取 Lmin对应的 CCCH块中距离接收信道请求消息时的 帧号最近的可用 CCCH块的块号为 C(x); 当 Lmin=0, 且有至少两个 CCCH块的预存 入立即指配消息数目为 Lmin时,预估立即指配消息的到达帧号,取 Lmin对应的 CCCH 块中距离到达帧号最近的可用 CCCH块的块号为 C(x)。 优选的, 第一处理单元, 可以设置为记录第 i 次收到立即指配消息时的帧号 FN_IMM(i), 将 FN_IMM(i)与立即指配消息中所包含的接收信道请求消息时的帧号 FN_RACH(i)相减,得到第 i次帧号间隔 AFN(i);取预估间隔 AFN_pre(j)=MAX{AFN(j-N), AFNG-N+1),...,AFN0-1)} , N为不小于 2不大于 10的整数; 预估第 j次立即指配消息 的到达帧号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。 实际应用中,本实施例的控制信道的分配装置可以布置在基站子系统中, 具体地, 接收模块和发送模块可以位于基站收发器中, 处理模块中的第一处理单元可以位于基 站收发器中, 处理模块中的第二处理单元可以位于基站控制器中。 本发明的技术方案中, 基站子系统收到终端的信道请求消息后, 找到能最快下发 针对本次接入的立即指配消息的 CCCH块,并根据该 CCCH块的位置挑选出能最快发 送上行消息的 SDCCH子信道, 如果此子信道已经被占用, 则按照时间顺序挑选距离 此子信道最近的下一个子信道, 依次类推, 之后基站子系统激活挑选出的 SDCCH子 信道,并在该 CCCH块上发送立即指配消息给终端,终端在接收到立即指配消息之后, 就可以在挑选出的 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 下面结合附图 6-9对本发明的控制信道的分配方法进行详细介绍: 在 BSS (Base Station Subsystem, 基站系统子系统)中, 一般由 BSC (Base Station Controller, 基站控制器)负责分配 SDCCH子信道, 由 BTS (Base Transceiver Station, 基站收发器)负责在不同的 CCCH块上发送立即指配消息给终端。 BTS可针对每一个 CCCH块建立一个立即指配消息队列, 并分别统计每个立即指配消息队列中实际存入 的立即指配消息的数目 C(i)_real和预存入立即指配消息的数目 C(i)jDre, 1=0,1,2, ...,8。 从图 1可以看出, 对 BTS而言, 从收到终端的信道请求消息到收到 BSC发来的 立即指配消息之间有一定的时间间隔, 中间包含了一个信道激活的过程。 为了确定发 送立即指配消息所要使用的 CCCH块,需要预先估计出立即指配消息到达 BTS的时间 点, 本实施例可以采用统计测量的方法来预估该时间点: 即 BTS记录第 i次收到立即 指配消息时的帧号 FN_IMM(i), 与该立即指配消息中所包含的接收终端请求信道时的 帧号 FN_RACH(i)相减, 得到第 i 次帧号间隔 AFN(i), 那么取预估间隔 AFN_preO')=MA (AFNO'-N), AFN(j-N+l),...,AFN(j-l)}, 贝 !J BTS预估第 j次立即指配消 息到来时的帧号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j), 根据这一帧号可以得到最 近的可以使用的 CCCH块号。 BTS收到终端的信道请求消息后,对比所有 CCCH块的预存入立即指配消息的数 目, 如图 4所示, 如果所有 CCCH块的预存入立即指配消息的最小数目为 Lmin, 则 根据以下几种情况确定与此信道请求消息对应的立即指配消息将使用的 CCCH 块号 C(x)。 1、仅有一个 CCCH块 C(k)的预存入立即指配消息 C(k)_pre= Lmin,则 C(x)= C(k);
2、 Lmin>l , 且有不止一个 CCCH块的预存入立即指配消息数目为 Lmin, 则 C(x) 取 Lmin对应的 C(i)块中距离当前帧号最近的可使用的 CCCH块;
3、 Lmin=0, 且有不止一个 CCCH块的预存入立即指配消息数目为 Lmin, 则首先 预估出本次立即指配消息到来的时间 FN_RACH+AFN_pre, 然后 C(x)取 Lmin对应的 C(i)块中距离此时间最近的可使用的 CCCH块。
BTS确定与此信道请求消息对应的立即指配消息将使用的 CCCH块号 C(x)之后, 向 BSC发送请示信道消息时,携带该 CCCH块号 C(x),并将本地的 C(x)jDre进行加 1 操作。
BSC收到请示信道消息后, 如图 5所示, 根据里面携带的 CCCH块号 C(x)查找如 图 6所示的 SDCCH子信道优先级顺序, BSC优先挑选与 C(x)对应的优先级最高的 SDCCH 子信道, 如果该 SDCCH 子信道已被占用, 则依次挑选优先级次高的空闲 SDCCH子信道。 具体地, 如图 6所示, 若 C( )= CC2), BSC优先挑选与 CC2)对应的优 先级最高的 SDCCH子信道 SD3, 如果该 SDCCH子信道已被占用, 则依次挑选优先 级次高的空闲 SDCCH子信道 SD4。 其中, 为 SDCCH子信道分配优先级顺序时, 考虑到终端解码立即指配消息, 然 后调整本身的收发配置到指定的 SDCCH子信道上需要一定的时间, 因此进行了大量 实验来获取 C i)块上(i = 0,1,2, ...,8)分配不同的 SDCCH子信道后, 终端发送 SABM 帧与接收立即指配消息之间的时间间隔, 依据时间间隔的长短对 SDCCH子信道进行 了排序, 具体是以时间间隔最短的 SDCCH子信道为优先级最高, 以时间间隔次短的 SDCCH子信道为优先级次高, 依次类推, 以时间间隔最长的 SDCCH子信道为优先级 最低。
BSS激活挑选出的 SDCCH子信道, BSC向 BTS发送立即指配消息, 其中携带有 请示信道消息中的 CCCH块号 C(X)。 其中, BSC向 BTS发送的立即指配消息中也可 以不携带 C(x),如果不携带有 C(x), 则在 BTS确定与信道请求消息对应的立即指配消 息将使用的 CCCH块号 C0 之后, BTS需要保存该 C( )。 BTS收到立即指配消息后, 如图 7所示, 根据该立即指配消息的帧号以及其中所 包含的终端请求信道时的帧号计算出最新的帧号间隔 AFN, 然后将立即指配消息放入 立即指配消息中指定的或者本地保存的 CCCH块 CO)的队列中,并将本地的 CO)_real 进行加 1操作。 BTS在 CCCH块 C(x)上将立即指配消息发出后, 将 C(x)_pre和 C(x)_real同时进 行减 1操作。 其中, 在计算预估间隔时, N的取值可根据 BSS系统中链路时延的稳定情况灵活 选取。在本实施例中, N的取值范围为 2到 10。 当链路时延较为稳定时, N取值较小; 链路时延波动大时, N取值可适当增大。 总之, 尽可能保证预估出来的立即指配消息 的帧号 FN_IMM(i)略大于实际立即指配消息到来时的帧号。 如果预估出来的立即指配 消息的帧号 FN_IMMjDre(i) 小于实际立即指配消息到来时的帧号,则可能造成本次立 即指配消息到达 BTS时, BTS已经错过了立即指配消息中指定的 CCCH块的发送时 间, 那么 BTS就只能在延迟一个 51复帧的时长之后, 在指定的 CCCH块发送立即指 配消息到终端。 本发明的技术方案中, 基站子系统收到终端的信道请求消息后, 找到能最快下发 针对本次接入的立即指配消息的 CCCH块,并根据该 CCCH块的位置挑选出能最快发 送上行消息的 SDCCH子信道, 如果此子信道已经被占用, 则按照时间顺序挑选距离 此子信道最近的下一个子信道, 依次类推, 之后基站子系统激活挑选出的 SDCCH子 信道,并在该 CCCH块上发送立即指配消息给终端,终端在接收到立即指配消息之后, 就可以在挑选出的 SDCCH子信道上发送用于建立 L2链路的 SABM帧。 与现有技术相比, 本发明通过上述的方法挑选出最合适的 SDCCH子信道供终端 使用, 而不是任意空闲的 SDCCH子信道, 可以达到缩短呼叫建立时延的目的。 此说明书中所描述的许多功能部件都被称为模块, 以便更加特别地强调其实现方 式的独立性。 本发明实施例中, 模块可以用软件实现, 以便由各种类型的处理器执行。 举例来 说, 一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块, 举例来说, 其可以被构建为对象、 过程或函数。 尽管如此, 所标识模块的可执行代码 无需物理地位于一起, 而是可以包括存储在不同物理上的不同的指令, 当这些指令逻 辑上结合在一起时, 其构成模块并且实现该模块的规定目的。 实际上, 可执行代码模块可以是单条指令或者是许多条指令, 并且甚至可以分布 在多个不同的代码段上, 分布在不同程序当中, 以及跨越多个存储器设备分布。 同样 地, 操作数据可以在模块内被识别, 并且可以依照任何适当的形式实现并且被组织在 任何适当类型的数据结构内。 所述操作数据可以作为单个数据集被收集, 或者可以分 布在不同位置上(包括在不同存储设备上), 并且至少部分地可以仅作为电子信号存在 于系统或网络上。 在模块可以利用软件实现时, 考虑到现有硬件工艺的水平, 所以可以以软件实现 的模块, 在不考虑成本的情况下, 本领域技术人员都可以搭建对应的硬件电路来实现 对应的功能, 所述硬件电路包括常规的超大规模集成 (VLSI) 电路或者门阵列以及诸 如逻辑芯片、 晶体管之类的现有半导体或者是其它分立的元件。 模块还可以用可编程 硬件设备, 诸如现场可编程门阵列、 可编程阵列逻辑、 可编程逻辑设备等实现。 在本发明各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 对各步骤的先后变化 也在本发明的保护范围之内。 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和润饰, 这些改进和 润饰也应视为本发明的保护范围。 工业实用性 通过本发明提供的技术方案, 基站子系统收到终端的信道请求消息后, 可以挑选 出能最快发送上行消息的 SDCCH子信道, 之后基站子系统激活挑选出的 SDCCH子 信道, 并发送立即指配消息给终端, 终端在接收到立即指配消息之后, 就可以在挑选 出的 SDCCH子信道上发送用于建立 L2链路的 SABM帧, 即本发明通过上述的方法 挑选出最合适的 SDCCH子信道供终端使用, 而不是任意空闲的 SDCCH子信道, 可 以缩短呼叫建立时延。

Claims

权 利 要 求 书
1. 一种控制信道的分配方法, 包括:
接收终端发送的信道请求消息;
根据接收所述信道请求消息时的帧号确定为所述终端分配的独立专用控制 信道 SDCCH子信道;
向所述终端发送携带有所述 SDCCH子信道的信息的立即指配消息, 以便 所述终端在所述 SDCCH子信道上发送用于建立 L2链路的设置异步平衡模式 SABM帧。
2. 根据权利要求 1所述的控制信道的分配方法, 其中, 所述根据接收所述信道请 求消息时的帧号确定为所述终端分配的 SDCCH子信道包括:
根据接收所述信道请求消息时的帧号确定发送所述立即指配消息所使用的 公共控制信道 CCCH块的块号 C(x);
确定距离所述 CCCH块最近的可用 SDCCH子信道为向所述终端分配的 SDCCH子信道。
3. 根据权利要求 2所述的控制信道的分配方法, 其中, 所述根据接收所述信道请 求消息时的帧号确定发送所述立即指配消息所使用的 CCCH块的块号 CO)包 括- 根据接收所述信道请求消息时的帧号确定最近的可用 CCCH块的块号为所 述 C(x)。
4. 根据权利要求 3所述的控制信道的分配方法, 其中, 所述根据接收所述信道请 求消息的帧号确定最近的可用 CCCH块的块号为所述 C(x)包括:
对比下行复帧中所有 CCCH块的预存入立即指配消息的数目,取最小数目 为 Lmin;
当仅有一个 CCCH块 C(k)的预存入立即指配消息 C(k)jDre= Lmin时, 取 C(x)= C(k);
当 Lmin≥l,且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin B寸, 取 Lmin对应的 CCCH块中距离接收所述信道请求消息时的帧号最近的可用 CCCH块的块号为 C(x); 当 Lmin=0,且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin B寸, 预估所述立即指配消息的到达帧号, 取 Lmin对应的 CCCH块中距离所述到达 帧号最近的可用 CCCH块的块号为 C(x)。
5. 根据权利要求 4所述的控制信道的分配方法, 其中, 所述预估所述立即指配消 息的到达帧号包括- 记录第 i次收到立即指配消息时的帧号 FN_IMM(i), 将所述 FN_IMM(i)与 所述立即指配消息中所包含的接收信道请求消息时的帧号 FN_RACH(i)相减, 得到第 i次帧号间隔 AFN(i); 取预估间隔 AFN_pre(j)=MAX{AFN(j-N), AFN(j-N+l),...,AFN(j-l)}, N为不 小于 2不大于 10的整数; 预 估 第 j 次 立 即 指 配 消 息 的 到 达 帧 号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。
6. 一种控制信道的分配装置, 包括:
接收模块, 设置为接收终端发送的信道请求消息;
处理模块, 设置为根据接收所述信道请求消息时的帧号确定为所述终端分 配的独立专用控制信道 SDCCH子信道;
发送模块, 设置为向所述终端发送携带有所述 SDCCH子信道的信息的立 即指配消息,以便所述终端在所述 SDCCH子信道上发送用于建立 L2链路的设 置异步平衡模式 SABM帧。
7. 根据权利要求 6所述的控制信道的分配装置, 其中, 所述处理模块包括:
第一处理单元, 设置为根据接收所述信道请求消息时的帧号确定发送所述 立即指配消息所使用的公共控制信道 CCCH块的块号 C(x);
第二处理单元, 设置为确定距离所述 CCCH块最近的可用 SDCCH子信道 为向所述终端分配的 SDCCH子信道。
8. 根据权利要求 7所述的控制信道的分配装置, 其中,
所述第一处理单元, 设置为根据接收所述信道请求消息时的帧号确定最近 的可用 CCCH块的块号为所述 C(x)。
9. 根据权利要求 8所述的控制信道的分配装置, 其中, 所述第一处理单元, 设置为对比下行复帧中所有 CCCH块的预存入立即指 配消息的数目, 取最小数目为 Lmin; 当仅有一个 CCCH块 C(k)的预存入立即 指配消息 C(k)_pre= Lmin时, 取 C(x)= C(k); 当 Lmin≥l, 且有至少两个 CCCH 块的预存入立即指配消息数目为 Lmin时, 取 Lmin对应的 CCCH块中距离接 收所述信道请求消息时的帧号最近的可用 CCCH块的块号为 CO); 当 Lmin=0, 且有至少两个 CCCH块的预存入立即指配消息数目为 Lmin时, 预估所述立即 指配消息的到达帧号, 取 Lmin对应的 CCCH块中距离所述到达帧号最近的可 用 CCCH块的块号为 C(X)。 根据权利要求 9所述的控制信道的分配装置, 其中,
所述第一处理单元, 设置为记录第 i 次收到立即指配消息时的帧号 FN_IMM(i), 将所述 FN_IMM(i)与所述立即指配消息中所包含的接收信道请求 消息时的帧号 FN_RACH(i)相减, 得到第 i 次帧号间隔 AFN(i); 取预估间隔 △FN_pre(j)=MAX{AFN(j-N), AFN(j-N+l),...,AFN(j-l)}, N为不小于 2不大于 10 的 整 数 ; 预 估 第 j 次 立 即 指 配 消 息 的 到 达 帧 号 FN_IMM_pre(j)=FN_RACH(j)+AFN_pre(j)。
PCT/CN2013/082291 2012-09-28 2013-08-26 控制信道的分配方法及装置 WO2014048204A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13842668.9A EP2903376B1 (en) 2012-09-28 2013-08-26 Control channel allocation method and device
RU2015115980A RU2623097C2 (ru) 2012-09-28 2013-08-26 Способ и устройство для выделения канала управления
HK15108228.0A HK1207788A1 (zh) 2012-09-28 2015-08-25 控制信道的分配方法及裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210370220.4 2012-09-28
CN201210370220.4A CN103716884B (zh) 2012-09-28 2012-09-28 控制信道的分配方法及装置

Publications (1)

Publication Number Publication Date
WO2014048204A1 true WO2014048204A1 (zh) 2014-04-03

Family

ID=50386958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082291 WO2014048204A1 (zh) 2012-09-28 2013-08-26 控制信道的分配方法及装置

Country Status (5)

Country Link
EP (1) EP2903376B1 (zh)
CN (1) CN103716884B (zh)
HK (1) HK1207788A1 (zh)
RU (1) RU2623097C2 (zh)
WO (1) WO2014048204A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727387A2 (en) * 2005-05-23 2006-11-29 Nokia Corporation Method and equipment for indicating an mbms assignment via common control channel
CN101188863A (zh) * 2007-12-19 2008-05-28 中兴通讯股份有限公司 独立专用控制信道的指配方法
CN102301810A (zh) * 2011-05-30 2011-12-28 华为技术有限公司 分配信道的方法、基站设备、控制器和通信系统
CN102378376A (zh) * 2010-08-24 2012-03-14 华为技术有限公司 资源立即指派方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE470152B (sv) * 1992-04-16 1993-11-15 Ericsson Telefon Ab L M Förfarande i ett mobiltelesystem vid tilldelning av en trafikkanal
US5940763A (en) * 1997-04-23 1999-08-17 Ericsson, Inc. Enhanced preemption within a mobile telecommunications network
EP0888024A1 (en) * 1997-06-25 1998-12-30 ICO Services Ltd. Call setup in a mobile communication system
RU2465745C1 (ru) * 2008-08-12 2012-10-27 Квэлкомм Инкорпорейтед Управление предоставлением восходящей линии связи в ответе произвольного доступа

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727387A2 (en) * 2005-05-23 2006-11-29 Nokia Corporation Method and equipment for indicating an mbms assignment via common control channel
CN101188863A (zh) * 2007-12-19 2008-05-28 中兴通讯股份有限公司 独立专用控制信道的指配方法
CN102378376A (zh) * 2010-08-24 2012-03-14 华为技术有限公司 资源立即指派方法、装置和系统
CN102301810A (zh) * 2011-05-30 2011-12-28 华为技术有限公司 分配信道的方法、基站设备、控制器和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2903376A4 *

Also Published As

Publication number Publication date
EP2903376B1 (en) 2016-05-18
EP2903376A1 (en) 2015-08-05
RU2623097C2 (ru) 2017-06-22
CN103716884B (zh) 2017-04-26
HK1207788A1 (zh) 2016-02-05
CN103716884A (zh) 2014-04-09
EP2903376A4 (en) 2015-09-30
RU2015115980A (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
JP7331152B2 (ja) デュアルsim・ueデータ送信方法およびデバイス、記憶媒体、ならびにユーザ機器
KR960006465B1 (ko) 트렁크식 통신 시스템의 데이타 채널 할당 및 트래픽 레벨링과 통신방법
JP4259761B2 (ja) アクセス方法およびパケット・チャネルへのアクセスを提供する方法
WO2018127239A1 (zh) 随机接入方法及终端
US6614797B1 (en) Method for packet switched data transmission
US7852805B2 (en) Variable length radio link ID for resource allocation in mobile communication systems
US20120051285A1 (en) Method and apparatus for receiving paging information
JP2002010341A (ja) 移動体通信システム、移動端末、基地局制御装置及びパケットデータサービスノード
WO2016192414A1 (zh) 一种集群通信系统中的组呼方法及装置
JP2012501612A (ja) 無線アクセスネットワーク内でアップリンクリソース割振りを要求して、処理するための方法および装置
TWI240505B (en) Method and system for managing resources in wireless communication systems
US20220132613A1 (en) Communication method and apparatus
WO2020140224A1 (zh) 信道检测方法及装置
CN113301515A (zh) 短信通道连接的处理方法、装置、系统、设备和存储介质
WO2021092843A1 (zh) 寻呼方法及装置
US7149535B1 (en) Method and system for initiating mobile station re-paging at an interval based on paging slot cycle
WO2018059320A1 (zh) 信号发送方法及装置
KR101498414B1 (ko) 통신시스템에서 트래픽 채널을 할당하기 위한 방법 및 장치
CN107371118B (zh) 一种通信方法及装置
WO2014048204A1 (zh) 控制信道的分配方法及装置
JP2002026798A (ja) 無線チャネル割当方法、無線通信システム及び無線中継装置
WO2007137517A1 (fr) Procédé et dispositif d'attribution d'un canal pour un appelé
JP2003199147A (ja) リソース割当制御装置、リソース割当制御方法、及びリソース割当制御システム
WO2008095419A1 (en) Method for allocating dedicated channel and base station device thereof
WO2012089161A1 (zh) 异常状态下用户的接入方法、装置和一种通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013842668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015115980

Country of ref document: RU

Kind code of ref document: A