WO2014048074A1 - 一种即热式热水器减小出水温度波动的方法及产品 - Google Patents

一种即热式热水器减小出水温度波动的方法及产品 Download PDF

Info

Publication number
WO2014048074A1
WO2014048074A1 PCT/CN2013/001340 CN2013001340W WO2014048074A1 WO 2014048074 A1 WO2014048074 A1 WO 2014048074A1 CN 2013001340 W CN2013001340 W CN 2013001340W WO 2014048074 A1 WO2014048074 A1 WO 2014048074A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
instant
outlet pipe
heater
temperature
Prior art date
Application number
PCT/CN2013/001340
Other languages
English (en)
French (fr)
Inventor
陈建平
Original Assignee
Chen Jianping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Jianping filed Critical Chen Jianping
Publication of WO2014048074A1 publication Critical patent/WO2014048074A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/145Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating
    • F24H15/132Preventing the operation of water heaters with low water levels, e.g. dry-firing

Definitions

  • the invention relates to a method and a product for reducing fluctuation of water temperature in a water heater, in particular to a method and a product for reducing the fluctuation of water temperature in a hot water heater.
  • Instant water heaters generally have two types of instant gas water heaters and instant electric water heaters. That is, electric water heaters are generally classified into electric heating type, electromagnetic induction type, electric heating type, far infrared type, etc. according to the types of electric heating elements.
  • the instant water heater generally comprises a heating element, a heated water container, a controller, an inlet pipe, an outlet pipe, etc., that is, a heated water container in a hot gas water heater is generally a snake-shaped water pipe, and a few are water tanks;
  • the heated water container in the water heater is generally a small number of water tanks, which are snake-shaped water pipes; the inlet pipe and the outlet pipe are respectively connected with the heated water container, the heating element is connected with the controller, and the water container is heated due to the high power of the heating element.
  • the water storage capacity is small, so it has the outstanding advantages of short hot water discharge time and low product cost, and is widely used in occasions where washing or showering is required in daily life.
  • the inlet pipe of the hot water heater is connected to one end of the serpentine water pipe or the bottom of the water tank, and the outlet pipe is connected to the other end of the serpentine water pipe or the top of the water tank.
  • the water flows from one end of the serpentine water pipe to the other end or from the bottom of the water tank to the top of the water tank, and the air is in the serpentine water.
  • the inside of the pipe or the water tank cannot accumulate, so as to ensure that there is no phenomenon that the heating element is burnt in the snake-shaped water pipe or the water in the water tank; the gas water heater uses the valve to control the gas flow or the water flow, and the electric water heater uses the electronic appliance.
  • the component performs power or water flow control to ensure that the temperature of the hot water heater is relatively constant or fluctuating, and meets the requirements of the water temperature of the washing or showering.
  • the instant water heater will be suspended, that is, the water valve is closed, and the heating element stops heating, because the thermal inertia of the heating element, that is, the heat storage capacity of the heating element, and the power of the heating element are
  • the water storage capacity of the heated water container is small, and the water stored in the heated water container during the pause of the instant water heater is continuously heated.
  • the water temperature will continue to rise, and the water after the temperature rises is lowered to the upper portion of the heated water container due to the decrease in density.
  • the hysteresis characteristics of the temperature sensor and the fact that the solenoid valve does not have the flow regulating function will still The water temperature and flow rate fluctuate greatly.
  • the water whose temperature rises due to the thermal inertia of the heating element quickly flows out from the outlet pipe, although the solenoid valve is immediately closed, but the heating element has thermal inertia. The instant electric water heater still cannot quickly reach the normal effluent water temperature.
  • the first technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and to provide a method for reducing the temperature fluctuation of the outlet water when the instant water heater is used again after the suspension is over.
  • the technical solution adopted by the present invention is:
  • the low temperature water is used to replace the high temperature water in the instant water heater to absorb the heat storage capacity of the heating element, and then the water outlet is used when the instant water heater is suspended and used again. Flow out.
  • the low temperature water is mixed with the water in the instant water heater which is continuously heated to a higher temperature, and then the mixed water flows out of the outlet pipe when the instant water heater is suspended and used again.
  • the thermal inertia of the heating element is prevented from continuing to heat up the original water stored in the heated water container, and the water temperature continues to rise, and the instant hot water heater cannot be quickly used again after being suspended.
  • the shortcoming of reaching the normal effluent water temperature is to reduce the fluctuation of the effluent temperature when the instant water heater is used again after the suspension is over; at the same time, the method is simple and reliable.
  • the second technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to apply the above-described instant water heater to reduce the temperature fluctuation of the outlet water, and to provide a heat that has a small fluctuation in the temperature of the outlet water when it is used again after the suspension is over. Electric water heater.
  • the technical solution adopted by the present invention is:
  • the instant water heater comprises a heating element, a heated water container, a controller, an inlet pipe and an outlet pipe; the heating element is inside or outside the heated water container, the heating element is connected with the controller, and the inlet pipe and the outlet pipe are respectively
  • the heated water container is connected; there is a circulating water pump between the inlet pipe and the outlet pipe, and a check valve is arranged at the inlet or the outlet of the circulating water pump, and the circulating water pump is connected with the controller.
  • the instant water heater comprises a heating element, a heated water container, a controller, an inlet pipe and an outlet pipe; the heating element is inside or outside the heated water container, the heating element is connected with the controller, and the inlet pipe and the outlet pipe are respectively
  • the heated water container is connected; the heated water container is a water tank, the inlet pipe is connected to an upper portion of the water tank, and the outlet pipe is connected to a lower portion of the water tank.
  • the instant water heater comprises a heating element, a heated water container, a controller, an inlet pipe and an outlet pipe; the heating element is inside or outside the heated water container, the heating element is connected with the controller, and the inlet pipe and the outlet pipe are respectively Connected to the heated water container; the heated water container is a water tank, the water inlet The tube is connected to the upper portion of the water tank, and the outlet pipe is inserted into the water tank from the upper portion of the water tank until the water inlet is located at a lower portion of the water tank, and the outlet pipe has a vent hole at a portion of the upper portion of the water tank.
  • the outlet pipe has a temperature sensor, and the temperature sensor is connected to the controller.
  • the upper part of the water tank has a venting hole, and the venting hole is connected to the outlet pipe or the exhaust valve.
  • the beneficial effects of the above technical solution are as follows:
  • the instant water heater has a simple structure and reliable performance, and can simultaneously reduce the fluctuation of the outlet water temperature when the instant water heater is used again after the suspension is over.
  • FIG. 1 is a schematic structural view of a conventional instant gas water heater.
  • FIG. 2 is a schematic structural view of a conventional instant electric water heater.
  • Figure 3 is a schematic view showing the structure of the first embodiment of the instant gas water heater.
  • FIG. 4 is a schematic structural view of a second embodiment of an instant gas water heater.
  • Figure 5 is a schematic view showing the structure of a third embodiment of an instant gas water heater.
  • Figure 6 is a schematic view showing the structure of a fourth embodiment of an instant gas water heater.
  • Figure 7 is a schematic view showing the structure of the first embodiment of the instant electric water heater.
  • Figure 8 is a schematic view showing the structure of a second embodiment of an instant electric water heater.
  • Figure 9 is a schematic view showing the structure of a third embodiment of the instant electric water heater.
  • Figure 10 is a schematic view showing the structure of a fourth embodiment of an instant electric water heater.
  • Figure 11 is a schematic view showing the structure of a fifth embodiment of an instant electric water heater.
  • Figure 12 is a schematic view showing the structure of a sixth embodiment of an instant electric water heater.
  • Figure 13 is a schematic view showing the structure of a seventh embodiment of the instant electric water heater.
  • Figure 14 is a schematic view showing the structure of an eighth embodiment of an instant electric water heater.
  • Figure 15 is a schematic view showing the structure of a ninth embodiment of an instant electric water heater.
  • the arrows represent the direction of the water flow, omitting the valves in the waterway and the controller of the instant water heater.
  • FIG. 1 is a schematic structural view of a conventional instant gas water heater, in which a snake-shaped water pipe 1 and an inlet pipe 2 and an outlet pipe 3 are connected, and a cold water from a hot gas water heater inlet pipe 2 enters a serpentine water pipe 1 through a gas burner and After the heating element composed of the heat exchange fins outside the snake-shaped water pipe is heated, it flows out from the water outlet pipe 3 to complete the heating process.
  • FIG. 2 is a schematic structural view of a conventional instant electric water heater
  • the water tank 4 is connected with the inlet pipe 2 and the outlet pipe 3, and the cold water enters the lower part of the water tank 4 from the inlet pipe 2 of the instant electric water heater, and is heated by the electric heating element 5,
  • the upper outlet pipe 3 flows out to complete the heating process.
  • the lower temperature water in the serpentine water pipe 1 or the water tank 4 moves downward, and the washing water or shower process restarts when the serpentine water pipe 1 or the water tank 4 is upper.
  • the water with too high temperature first flows out of the water outlet pipe 3, causing discomfort in washing or showering, and even causing burns in severe cases.
  • the heating element is heated by the thermal inertia. The component cannot heat the water quickly, and the subsequent effluent cannot quickly reach the normal effluent temperature, causing the phenomenon of sudden heat and cold.
  • FIG. 3 is a schematic structural view of a first embodiment of a hot gas water heater.
  • a circulating water pump 6 between the inlet pipe 2 and the outlet pipe 3 of the serpentine water pipe 1
  • a check valve 7 is installed at the inlet of the circulating water pump 6,
  • a circulating water pump 6 Connected to the controller; when the water heater is suspended, the controller starts the circulating water pump 6, and the serpentine water pipe 1
  • the water near the outlet at or near the normal outlet water temperature flows out of the serpentine water pipe 1 into the circulation pipeline and enters the serpentine water pipe 1 by the circulating water pump 6, and the serpentine water pipe 1 enters the serpent type near the lower temperature water at the inlet.
  • the water pipe 1 absorbs the heat storage amount of the heating element near the outlet, and when the water storage amount in the serpentine water pipe 1 and the flow rate and running time of the circulating water pump 6 match the thermal inertia of the heating element of the instant gas water heater, the entire snake water pipe
  • the stored water temperature in 1 will be close to the normal effluent temperature, avoiding the discomfort or even scald caused by the re-use of the water heater after the end of the water heater and the subsequent low water temperature, that is, reducing the fluctuation of the water outlet temperature of the water heater;
  • the check valve 7 of the inlet of the circulating water pump 6 during normal operation prevents short-circuiting of the water flow between the inlet pipe 2 and the outlet pipe 3.
  • FIG. 4 is a schematic structural view of a second embodiment of an instant gas water heater, which is different from the first embodiment of the instant gas water heater: a water storage tank between the water inlet of the serpentine water pipe 1 and the outlet of the circulating water pump 6 8.
  • a water storage tank between the water inlet of the serpentine water pipe 1 and the outlet of the circulating water pump 6 8.
  • the water stored in the storage tank 8 can be added to the amount of water stored in the serpentine water pipe 1 plus the amount of water stored in the storage tank 8 and the flow rate and running time of the circulating water pump 6 and the heating element of the instant gas water heater.
  • the thermal inertia is matched; the water of the serpentine water pipe 1 near or near the normal outlet water temperature flows out of the serpentine water pipe 1 into the circulation pipeline and enters the water storage tank 8 under the action of the circulating water pump 6, and is in the water storage tank 8 The temperature is mixed with the water of the influent water temperature, the water in the water storage tank 8 enters the serpentine water pipe 1, and the water of the serpentine water pipe 1 near the inlet is entered into the serpentine water pipe 1 and the heat storage capacity of the heating element is absorbed near the outlet.
  • the temperature is close to the normal outlet temperature; at the same time, the temperature of the water in the storage tank 8 rises from the temperature of the influent water before the suspension to the temperature after the mixing, and the water first enters the snake when it is used again after the suspension is over.
  • Pipe 1 avoids the thermal inertia of the heating element can not quickly reach the normal effluent water temperature, and then gradually mixed with the water with the water storage tank 8 is reduced to the final water temperature, the water heater into the normal working state. Since the water storage tank 8 is in front of the snake-shaped water pipe 1, the water heater does not affect the water discharge time of the hot water of the water heater when it starts working.
  • a temperature sensor 9 is added to the water outlet of the serpentine water pipe 1, the temperature sensor 9 and the control The devices are connected.
  • the temperature sensor 9 detects the temperature of the water until the detected outlet water temperature is equal to the normal outlet temperature of the water heater, and turns off the circulating water pump 6 to avoid the amount of water stored in the serpentine water pipe 1 plus the amount of water stored in the water storage tank 8 and the flow rate of the circulating water pump 6.
  • the controller can also be started during the suspension of the water heater
  • the heating element and the circulating water pump 6 heat the water stored in the serpentine water pipe 1 and the temperature of the water stored in the water storage tank 8 to the normal water outlet temperature of the water heater.
  • the temperature sensor 9 can be added to avoid the amount of water stored in the serpentine water pipe 1 and the flow rate and running time of the circulating water pump 6 and the heating element of the instant gas water heater. The phenomenon of thermal inertia is not easy to match.
  • the circulating water pump 6 can also be reversely arranged. Accordingly, the check valve 7 is also reversed, and the temperature sensor 9 is disposed at the water inlet of the serpentine water pipe 1.
  • FIG. 6 is a schematic structural view of a fourth embodiment of an instant gas water heater, which is different from the third embodiment of the instant gas water heater: the inlet pipe 2 is connected to the inlet of the circulating water pump 6, and the instant gas water heater is suspended.
  • the circulating water pump 6 is used as a mixture of hot and cold water, and the running time is determined by the temperature of the outlet water detected by the temperature sensor 9.
  • the principle of reducing the fluctuation of the water temperature of the water heater is the same as that of the third embodiment of the instant gas water heater; during the normal operation of the instant gas water heater, the circulating water pump 6 can also be used for supercharging, especially in the case of low tap water pressure.
  • the check valve 7 may have water flowing therethrough, and the electric valve or the solenoid valve must be added to the controller before or after the check valve 7 and the controller The connection is not shown in the figure.
  • the tap water inlet pressure is higher than the outlet water pressure of the water heater after the circulating water pump 6 is pressurized, no electric valve or solenoid valve is required.
  • Figure 7 is a schematic view showing the structure of the first embodiment of the instant electric water heater.
  • a circulating water pump 6 between the inlet pipe 2 and the outlet pipe 3 of the water tank 4, and the inlet of the circulating water pump 6 has a check valve 7, a circulating water pump 6 and control.
  • the principle of reducing the fluctuation of the water temperature of the water heater is the same as that of the first embodiment of the instant gas water heater.
  • Fig. 8 is a schematic view showing the structure of a second embodiment of the instant electric water heater.
  • the principle of reducing the fluctuation of the water temperature of the water heater is the same as that of the third embodiment of the instant gas water heater.
  • the present embodiment can be employed in the twentieth embodiment of the Chinese invention patent "Waste heat utilization method and equipment for running water washing and drainage (ZL201110089073. 9)", wherein the water inlet side of the heat exchanger 3 can be used as The water tank 4 in this embodiment.
  • Fig. 9 is a schematic view showing the structure of a third embodiment of the instant electric water heater.
  • the principle of reducing the fluctuation of the water temperature of the water heater is the same as that of the fourth embodiment of the instant gas water heater.
  • I can use this embodiment in the twenty-second or twenty-third embodiment of the Chinese utility model patent "Shower Drainage Waste Heat Utilization Equipment (ZL 201120318103. 4)", in which the heat exchanger 3-1 is flooded.
  • the side can be used as the water tank 4 in this embodiment, except that the water inlet side of the heat exchangers 3-1 and 2-3 participates in the preheating cycle during its preheating cycle, and the heat exchanger 3 is required to be used with the automatic valve during the pause period.
  • the water inlet side exits because the water stored on the water inlet side of the heat exchanger 3-1 has already absorbed the heat storage amount of the electric heating element 5.
  • Fig. 10 is a schematic view showing the structure of a fourth embodiment of the instant electric water heater, which differs from the third embodiment of the instant electric water heater in that the water storage tank 8 is omitted and the electric heating element 5 is not provided in the lower portion of the water tank 4. That is, the principle of reducing the temperature fluctuation of the hot water outlet water by the lower portion of the water tank 4 without the space of the electric heating element 5 instead of the water storage tank is the same as that of the third embodiment of the instant electric water heater.
  • FIG 11 is a schematic view showing the structure of a fifth embodiment of the instant electric water heater, the inlet pipe 2 is at the upper portion of the water tank 4, the outlet pipe 3 is at the lower portion of the water tank 4, the water enters from the upper portion of the water tank 4, and is discharged from the lower portion of the water tank 4, at this time
  • the upper portion of the water tank 4 collects a part of the air and cannot be discharged from the water outlet pipe 3. Only when the water in the water inlet pipe 2 enters the water tank 4 at a relatively high flow rate, some air collected in the upper portion of the water tank 4 enters the water in the lower portion of the water tank 4 and follows. The water flow is discharged from the lower part of the water tank 4.
  • the upper part is discharged, so the electric heating element 5 is not arranged on the upper part of the water tank 4 when necessary, so as to ensure The electric heating element 5 does not suffer from local dry burning; since water always flows from the upper portion of the water tank 4 to the lower portion of the water tank 4, and is gradually heated by the electric heating element 5 in the process, the water temperature in the upper portion of the water tank 4 is always lower than The water temperature in the lower part of the water tank 4, and the water temperature near the outer casing of the water tank 4 is also lower than the water temperature around the electric heating element 5; when the water heater is suspended, the water stored in the water tank 4 is heated by the thermal inertia of the electric heating element 5 Continue to rise, but the water after the temperature rises moves upward due to the decrease in density, and mixes with the
  • FIG. 12 is a schematic structural view of a sixth embodiment of an instant electric water heater, which is different from the fifth embodiment of the instant electric water heater: an upper portion of the water tank 4 has an exhaust hole 10, a vent hole 10 and an outlet pipe 3 connection.
  • the air in the upper part of the water tank 4 can be discharged from the vent hole 10 into the water outlet pipe 3, ensuring that the upper portion of the water tank 4 cannot collect air, ensuring that the electric heating element 5 does not have a local dry burning phenomenon, and the principle of reducing the water temperature fluctuation of the water heater is
  • the fifth embodiment of the instant electric water heater is the same.
  • Figure 13 is a schematic view showing the structure of the seventh embodiment of the instant electric water heater, which is different from the fifth embodiment of the instant electric water heater: the upper part of the water tank 4 has an exhaust hole 10, the exhaust hole 10 and the exhaust valve 11 connections.
  • the air in the upper part of the water tank 4 can be discharged from the exhaust valve 11, ensuring that the upper part of the water tank 4 cannot collect air, ensuring that the electric heating element 5 does not have a local dry burning phenomenon, and the principle of reducing the water temperature fluctuation of the water heater and the instant electric type
  • the fifth embodiment of the water heater is the same.
  • Figure 14 is a schematic view showing the structure of the eighth embodiment of the instant electric water heater.
  • the water outlet of the inlet pipe 2 is at the upper portion of the water tank 4, and the outlet pipe 3 is inserted into the water tank 4 from the upper portion of the water tank 4 until the water inlet port 12 is located at the lower portion of the water tank 4.
  • the outlet pipe 3 has a venting opening 13 in the upper portion of the water tank 4, and the water enters from the upper portion of the water tank 4 through the inlet pipe 2, is heated by the electric heating element 5, and is discharged from the water inlet 12 of the outlet pipe 3 of the lower portion of the water tank 4, the water tank 4 The air collected in the upper portion is discharged from the exhaust hole 13 in the upper portion of the outlet pipe 3, reducing the water heater
  • the principle of the fluctuation of the outlet water temperature is the same as that of the fifth embodiment of the instant electric water heater.
  • FIG. 15 is a schematic view showing the structure of the ninth embodiment of the instant electric water heater.
  • the eighth embodiment of the instant electric water heater since a small amount of water flows out of the water tank 4 from the exhaust hole 13 in the upper portion of the outlet pipe 3, A small amount of water does not flow through the electric heating element 5, thereby reducing the water flow velocity on the surface of the electric heating element 5, and the heat transfer coefficient of the surface of the electric heating element 5 is slightly lowered, but does not affect the water temperature of the instant electric water heater;
  • a movable baffle 14 is added outside the venting opening 13 in the upper portion of the water pipe 3. The weight of the movable baffle 14 is smaller than its buoyancy in the water.
  • the movable baffle 14 When the movable baffle 14 is surrounded by air, the movable baffle 14 is under the action of its gravity. The sag does not block the vent hole 13, and the air can still be discharged from the vent hole 13 to the water tank 4.
  • the movable baffle 14 When the air around the movable baffle 14 is discharged from the water tank 4, the movable baffle 14 is blocked by the buoyancy force to block the vent hole 13 upward.
  • the water is prevented from flowing out of the water tank 4 from the vent hole 13, that is, after the movable baffle 14 is added, the vent hole 13 is only exhausted and not drained, that is, in the sixth embodiment of the electric electric water heater, the upper part of the water tank 4 is exhausted. Increase the activity under the baffle 10 can serve the same function.
  • the electric heating element of the straight tube type electric heating tube, the electromagnetic induction coil and the induction conductor, the electric heating film and the like can be used.
  • the "U" shaped electric heating tube in the water tank 4 can be replaced by a straight tubular electric heating tube without a heating wire; in the fifth embodiment of the instant electric water heater, a straight tube without an electric heating wire can be used.
  • the electric heating tube replaces the "U" shaped electric heating tube in the water tank 4, and the electromagnetic induction coil and the electric heating element such as the induction conductor and the electric heating film can also be analogized.
  • the heated water container in the above embodiment of the hot gas water heater is a snake-shaped water pipe. If the heated water container is not a snake-shaped water pipe but a water tank, it can be implemented according to an embodiment of the instant electric water heater;
  • the heated water containers in the embodiment of the electric water heater are all water tanks. If the heated water tank is not a water tank but a snake-type water pipe, it can be implemented in accordance with an embodiment of the instant gas water heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

公开了一种即热式热水器减小出水温度波动的方法及产品。在即热式热水器暂停期间,用温度低的水代替即热式热水器中温度高的水来吸收加热元件的蓄热量,然后在即热式热水器再次使用时从出水管(3)流出,相应的产品则在进水管(2)和出水管(3)之间增加循环水泵(6)和止回阀(7)以及增加储水箱(8)。在即热式热水器暂停期间,用温度低的水与即热式热水器中被继续加热温度继续升高的水混合,然后混合后的水在即热式热水器再次使用时从出水管(3)流出,相应的产品则进水口在上部,出水口在下部以及水箱(4)上部增加排气孔(10)并与出水管(3)或排气阀(11)相连接,或进水口在上部,出水管(3)从上部插入直至下部以及出水管(3)的上部有排气孔(13)。本发明具有结构简单、性能可靠,同时可减小即热式热水器暂停前后出水温度的波动。

Description

一种即热式热水器减小出水温度波动的方法及产品 技术领域
本发明涉及一种热水器减小出水温度波动的方法及产品, 特别是一种即热 式热水器减小出水温度波动的方法及产品。
背景技术
即热式热水器一般有即热式燃气热水器、 即热式电热水器两种, 即热式电 热水器根据电加热元件的种类一般分为电热管式、 电磁感应式、 电热膜式、 远 红外式等, 即热式热水器一般包括加热元件、 被加热水容器、 控制器、 进水管、 出水管等, 即热式燃气热水器中被加热水容器一般大多数是蛇型水管少数是水 箱; 即热式电热水器中被加热水容器一般大多数是水箱少数是蛇型水管; 进水 管、 出水管分别与被加热水容器相连接, 加热元件与控制器相连接, 由于加热 元件功率大而被加热水容器的储水量小, 故其具有热水出水时间短、 产品成本 低等突出优点而被广泛应用于日常生活中需要进行洗涤或淋浴的场合。 即热式 热水器的进水管接蛇型水管一端或水箱底部, 出水管接蛇型水管另一端或水箱 顶部, 水从蛇型水管一端流向另一端或从水箱底部流向水箱顶部, 空气在蛇型 水管内或水箱内无法聚积, 从而保证不会出现蛇型水管内或水箱内局部无水导 致加热元件千烧的现象; 燃气热水器利用阀门进行燃气流量或水流量控制、 即 热式电热水器利用电子电器元件进行功率或水流量控制, 可以保证即热式热水 器出水温度相对恒定或波动较小, 满足洗涤或淋浴对出水水温的要求。 但在洗 涤或淋浴过程中, 即热式热水器会出现暂停使用, 即水阀门关闭, 同时加热元 件停止加热, 由于加热元件的热惯性即加热元件具有的蓄热能力, 以及加热元 件功率大而被加热水容器的储水量小, 在即热式热水器暂停期间被加热水容器 中的存水会被继续加热水温会继续升高, 并且温度升高后的水由于密度减小而 向被加热水容器上部移动, 被加热水容器中温度较低的水则向下部移动, 洗涤 或淋浴过程重新开始时被加热水容器上部温度过高的水首先从出水管流出, 引 起洗涤或淋浴的不适, 严重时甚至造成烫伤; 同时被加热水容器上部温度过高 的水流出后, 由于加热元件的热惯性, 随后的出水又会低于正常的出水温度, 造成忽热忽冷的现象; 在洗涤或淋浴过程中使用者为避免这种忽热忽冷的现象 只好一直开着即热式热水器直至洗涤或淋浴过程结束, 这样必然造成水和燃气 或电力的浪费。 虽然即热式热水器这种暂停后再次使用时温度波动的现象随着 被加热水容器的容积增大、 加热元件功率减小会相应减轻, 但即热式热水器热 水出水时间短、 热效率高、 产品成本低的优点随之受到影响。 中国发明专利
CN200810145704. 2和 CN200810218710. 6都公幵了一种即热式电热水器,其采用 在进水管和出水管之间并联支路并加装电磁阀以及在出水管加装温度传感器来 克服这一现象, 即在即热式电热水器暂停结束后再次使用时将即热式电热水器 中温度升高的水与温度低的进水进行混合后再从出水管流出; 由于即热式电热 水器中温度升高的水量较小, 所以这一混合过程很短, 因而这种方式必然带来 结构复杂、 温度控制困难、 可靠性低的缺点, 加之温度传感器的滞后特性以及 电磁阀不具备流量调节功能, 仍然会造成出水温度和流量的较大波动, 另外即 热式电热水器中因加热元件的热惯性造成温度升高的水迅速从出水管流出后, 虽然电磁阀立即关闭, 但因加热元件存在热惯性, 即热式电热水器仍然无法迅 速达到正常的出水水温。
发明内容
本发明第一个要解决的技术问题是克服现有技术的不足, 提供一种即热式 热水器在暂停结束后再次使用时减小出水温度波动的方法。
为了解决以上技术问题, 本发明所采用的技术方案是:
在即热式热水器暂停期间, 用温度低的水替代即热式热水器中温度高的水 来吸收加热元件的蓄热量, 然后在即热式热水器暂停结束再次使用时从出水管 流出。
在即热式热水器暂停期间, 用温度低的水与即热式热水器中被继续加热温 度继续升高的水混合, 然后混合后的水在即热式热水器暂停结束再次使用时从 出水管流出。
采用上述技术方案的有益效果是: 既避免了加热元件的热惯性继续加热被 加热水容器内原有的存水造成水温继续升高现象, 又弥补了即热式热水器在暂 停后再次使用时无法迅速达到正常的出水水温的缺点, 即减小了即热式热水器 在暂停结束后再次使用时出水温度的波动; 同时该方法简单、 可靠。
本发明第二个要解决的技术问题是克服现有技术的不足, 应用上述即热式 热水器减小出水温度波动的方法, 提供一种在暂停结束后再次使用时出水温度 波动较小的即热式电热水器。
为了解决以上技术问题, 本发明所采用的技术方案是:
即热式热水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水 管; 加热元件在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出 水管分别与被加热水容器相连接; 所述的进水管和所述的出水管之间有循环水 泵, 循环水泵的进口或出口有止回阀, 循环水泵与控制器相连接。
即热式热水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水 管; 加热元件在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出 水管分别与被加热水容器相连接; 所述的被加热水容器是一水箱, 所述的进水 管与水箱的上部相连接, 所述的出水管与水箱的下部相连接。
即热式热水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水 管; 加热元件在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出 水管分别与被加热水容器相连接; 所述的被加热水容器是一水箱, 所述的进水 管与水箱的上部相连接, 所述的出水管从水箱的上部插入水箱直至进水口位于 水箱的下部, 所述的出水管在水箱中的部分的上部有排气孔。
所述的循环水泵和所述的被加热水容器之间有储水箱。
所述的出水管有温度传感器, 温度传感器与控制器相连接。
所述的水箱上部有排气孔, 排气孔与所述的出水管或排气阀相连接。
所述的排气孔外侧有活动的挡板, 挡板的重量小于其在水中的浮力。
采用上述技术方案的有益效果是: 即热式热水器结构简单、 性能可靠, 同 时可将即热式热水器在暂停结束后再次使用时出水温度的波动减小到最低。 附图说明
图 1是现有即热式燃气热水器结构示意图。
图 2是现有即热式电热水器结构示意图。
图 3是即热式燃气热水器第一个实施例的结构示意图。
图 4是即热式燃气热水器第二个实施例的结构示意图。
图 5是即热式燃气热水器第三个实施例的结构示意图。
图 6是即热式燃气热水器第四个实施例的结构示意图。
图 7是即热式电热水器第一个实施例的结构示意图。
图 8是即热式电热水器第二个实施例的结构示意图。
图 9是即热式电热水器第三个实施例的结构示意图。
图 10是即热式电热水器第四个实施例的结构示意图。
图 11是即热式电热水器第五个实施例的结构示意图。
图 12是即热式电热水器第六个实施例的结构示意图。
图 13是即热式电热水器第七个实施例的结构示意图。
图 14是即热式电热水器第八个实施例的结构示意图。 图 15是即热式电热水器第九个实施例的结构示意图。
图中,箭头代表水流方向, 省略了水路中的阀门和即热式热水器的控制器。 具体实施方式
下面结合附图对本发明作进一步详细描述。
图 1是现有即热式燃气热水器结构示意图, 蛇型水管 1和进水管 2、 出水管 3连接, 冷水从的即热式燃气热水器进水管 2进入蛇型水管 1, 经过由燃气燃烧 器和蛇型水管外的换热翅片组成的加热元件加热后, 从出水管 3流出, 完成加 热过程。
图 2是现有即热式电热水器结构示意图,水箱 4和进水管 2、出水管 3连接, 冷水从即热式电热水器的进水管 2进入水箱 4下部, 经过电加热元件 5加热后, 从上部出水管 3流出, 完成加热过程。
从以上现有即热式燃气热水器和现有即热式电热水器结构示意图可以看 出: 当热水器出现暂停使用, 即水阀门关闭, 虽然加热元件同时停止加热, 但 此时由于加热元件功率大而蛇型水管 1或水箱 4的储水量小, 故在热水器暂停 期间蛇型水管 1或水箱 4中的存水会被加热元件的热惯性继续加热水温会继续 升高, 并且温度升高后的水由于密度减小而向蛇型水管 1上部或水箱 4上部移 动, 蛇型水管 1或水箱 4中温度较低的水则向下部移动, 洗涤或淋浴过程重新 开始时蛇型水管 1或水箱 4上部温度过高的水首先从出水管 3流出, 引起洗涤 或淋浴的不适, 严重时甚至造成烫伤; 同时蛇型水管 1或水箱 4上部温度过高 的水流出后, 由于加热元件的热惯性即加热元件无法迅速加热水, 随后的出水 又无法迅速达到正常的出水温度, 造成忽热忽冷的现象。
图 3是即热式燃气热水器第一个实施例的结构示意图, 蛇型水管 1的进水 管 2和出水管 3之间有循环水泵 6, 循环水泵 6的进口有止回阀 7, 循环水泵 6 与控制器相连接; 当热水器暂停使用时, 控制器起动循环水泵 6, 蛇型水管 1靠 近出口处达到或接近正常出水温度的水在循环水泵 6的作用下从蛇型水管 1流 出进入循环管路再进入蛇型水管 1,蛇型水管 1靠近进口处温度较低的水进入蛇 型水管 1靠近出口处吸收加热元件的蓄热量, 当蛇型水管 1中的存水量以及循 环水泵 6的流量和运行时间与即热式燃气热水器的加热元件的热惯性相匹配时, 整个蛇型水管 1中的存水温度就会接近正常的出水温度, 避免了热水器暂停结 束后再次使用时引起的不适甚至烫伤以及随后的出水温度偏低的现象, 即减小 了热水器出水温度的波动; 在热水器正常工作期间循环水泵 6进口的止回阀 7 可防止进水管 2和出水管 3之间水流短路。
图 4是即热式燃气热水器第二个实施例的结构示意图, 与即热式燃气热水 器第一个实施例不同的是: 蛇型水管 1的进水口和循环水泵 6的出口之间有储 水箱 8。当蛇型水管 1中的存水量较小或即热式燃气热水器加热元件的热惯性较 大时, 在吸收加热元件的蓄热量后, 整个蛇型水管 1中的存水温度仍高于热水 器的正常出水温度时, 可通过储水箱 8中的存水, 使蛇型水管 1中的存水量加 上储水箱 8中的存水量以及循环水泵 6的流量和运行时间与即热式燃气热水器 加热元件的热惯性相匹配; 蛇型水管 1靠近出口处达到或接近正常出水温度的 水在循环水泵 6的作用下从蛇型水管 1流出进入循环管路再进入储水箱 8中, 与储水箱 8中的温度为进水水温的水混合, 储水箱 8中的水进入蛇型水管 1,而 蛇型水管 1靠近进口处温度较低的水则进入蛇型水管 1靠近出口处吸收加热元 件的蓄热量, 使其温度接近正常的出水温度; 同时储水箱 8中的存水温度由暂 停前的进水水温上升至混合后的温度, 暂停结束后再次使用时这部分水首先进 入蛇型水管 1,避免了由于加热元件的热惯性使出水无法迅速达到正常的出水温 度, 然后随着进水与储水箱 8中的存水逐步混合最终降低到进水水温, 热水器 进入正常工作状态。 由于储水箱 8在蛇型水管 1前面, 故热水器刚开始工作时 并不影响热水器热水的出水时间。 图 5是即热式燃气热水器第三个实施例的结构示意图, 与即热式燃气热水 器第二个实施例不同的是: 在蛇型水管 1的出水口增加温度传感器 9,温度传感 器 9与控制器相连接。 温度传感器 9检测出水温度, 直至检测到的出水温度等 于热水器的正常出水温度时关闭循环水泵 6,以避免蛇型水管 1中的存水量加上 储水箱 8中的存水量以及循环水泵 6的流量和运行时间与即热式燃气热水器加 热元件的热惯性不易匹配的现象; 如果蛇型水管 1中的存水量加上储水箱 8中 的存水量较多, 则在热水器暂停期间还可由控制器起动加热元件和循环水泵 6, 将蛇型水管 1中的存水加上储水箱 8中的存水的温度都加热到热水器的正常出 水温度。 同样在第一个实施例的蛇型水管 1的出水口也可增加温度传感器 9,以 避免蛇型水管 1中的存水量以及循环水泵 6的流量和运行时间与即热式燃气热 水器的加热元件的热惯性不易匹配的现象。
以上实施例中循环水泵 6还可以反向设置, 相应地止回阀 7也要反向、 温 度传感器 9要设置在蛇型水管 1的进水口。
图 6是即热式燃气热水器第四个实施例的结构示意图, 与即热式燃气热水 器第三个实施例不同的是: 进水管 2接在循环水泵 6的进口处, 在即热式燃气 热水器暂停期间循环水泵 6作为冷热水循环混合用, 运行时间由温度传感器 9 检测到的出水温度决定。 其减小热水器出水温度波动的原理与即热式燃气热水 器第三个实施例相同; 在即热式燃气热水器正常工作期间循环水泵 6还可作增 压用,在自来水压力较低的场合尤为适用, 但当自来水进水压力低于循环水泵 6 增压后热水器的出水压力时, 止回阀 7会有水流过, 此时必须在止回阀 7前或 后增加电动阀或电磁阀并与控制器相连接, 图中未画出, 当自来水进水压力高 于循环水泵 6增压后热水器的出水压力时, 则无需电动阀或电磁阀。
图 7是即热式电热水器第一个实施例的结构示意图, 水箱 4的进水管 2和 出水管 3之间有循环水泵 6, 循环水泵 6的进口有止回阀 7, 循环水泵 6与控制 器相连接, 其减小热水器出水温度波动的原理与即热式燃气热水器第一个实施 例相同。
图 8是即热式电热水器第二个实施例的结构示意图, 减小热水器出水温度 波动的原理与即热式燃气热水器第三个实施例相同。 本人在中国发明专利 "一 种流水洗涤排水的废热利用方法及设备 (ZL201110089073. 9)"中的第二十个实 施例中即可采用本实施例,其中热交换器 3的进水侧可作为本实施例中的水箱 4。
图 9是即热式电热水器第三个实施例的结构示意图, 减小热水器出水温度 波动的原理与即热式燃气热水器第四个实施例相同。 本人在中国实用新型专利 "淋浴排水废热利用设备 (ZL 201120318103. 4 ) " 中的第二十二或第二十三个 实施例中即可采用本实施例, 其中热交换器 3-1进水侧可作为本实施例中的水 箱 4, 只是在其预热循环期间热交换器 3-1和 3- 2的进水侧参与预热循环,而暂 停期间则需要用自动阀门将热交换器 3-2进水侧退出, 因为热交换器 3-1进水 侧的存水就足已吸收电加热元件 5的蓄热量。
图 10是即热式电热水器第四个实施例的结构示意图, 与即热式电热水器第 三个实施例不同的是: 省去了储水箱 8, 同时水箱 4的下部没有电加热元件 5。 即利用水箱 4的下部没有电加热元件 5的空间储水从而代替了储水箱 8,减小热 水器出水温度波动的原理与即热式电热水器第三个实施例相同。
图 11是即热式电热水器第五个实施例的结构示意图, 进水管 2在水箱 4的 上部, 出水管 3在水箱 4的下部, 水从水箱 4上部进入, 从水箱 4下部排出, 此时水箱 4的上部会聚集一部分空气无法从出水管 3排出, 只有当进水管 2中 的水以较高的流速进入水箱 4,带动水箱 4的上部聚集的一些空气进入水箱 4下 部的水中并顺着水流从水箱 4下部排出, 水箱 4的截面越小, 水流速度越快, 这种排除空气的能力越强, 水箱 4上部的空气会越来越少, 但可能总有一些空 气无法彻底从水箱 4上部排出, 故必要时水箱 4上部不布置电加热元件 5,保证 电加热元件 5不会出现局部无水干烧的现象; 由于水总是从水箱 4上部流向水 箱 4下部, 并在此过程中被电加热元件 5逐步加热, 故水箱 4上部的水温总是 低于水箱 4下部的水温, 同时靠近水箱 4外壳的水温也低于电加热元件 5四周 的水温; 当热水器出现暂停使用时, 水箱 4中的存水会被电加热元件 5的热惯 性继续加热温度会继续升高, 但温度升高后的水由于密度减小而向上方移动, 与上方以及靠近水箱 4外壳温度较低的水混合, 洗涤或淋浴过程重新开始时水 箱 4下部的水首先从出水管 3流出, 因而不会引起洗涤或淋浴的不适, 同时水 箱 4上部温度升高的水会弥补热水器暂停后再次开始洗涤或淋浴时由于电加热 元件 5的热惯性无法迅速加热水的缺点, 减小了热水器出水温度的波动。
图 12是即热式电热水器第六个实施例的结构示意图, 与即热式电热水器第 五个实施例不同的是:水箱 4上部有一个排气孔 10,排气孔 10与出水管 3连接。 水箱 4上部的空气可以从排气孔 10排出进入出水管 3, 确保水箱 4的上部无法 聚集空气, 保证电加热元件 5不会出现局部无水干烧的现象, 减小热水器出水 温度波动的原理与即热式电热水器第五个实施例相同。
图 13是即热式电热水器第七个实施例的结构示意图, 与即热式电热水器第 五个实施例不同的是: 水箱 4上部有一个排气孔 10, 排气孔 10与排气阀 11连 接。水箱 4上部的空气可以从排气阀 11排出,确保水箱 4的上部无法聚集空气, 保证电加热元件 5不会出现局部无水干烧的现象, 减小热水器出水温度波动的 原理与即热式电热水器第五个实施例相同。
图 14是即热式电热水器第八个实施例的结构示意图, 进水管 2的出水口在 水箱 4的上部, 出水管 3从水箱 4的上部插入水箱 4直至进水口 12位于水箱 4 的下部, 出水管 3在水箱 4中的部分的上部有排气孔 13, 水通过进水管 2从水 箱 4上部进入, 经过电加热元件 5加热后从水箱 4下部出水管 3的进水口 12排 出, 水箱 4的上部聚集的空气则从出水管 3上部的排气孔 13排出, 减小热水器 出水温度波动的原理与即热式电热水器第五个实施例相同。
图 15是即热式电热水器第九个实施例的结构示意图, 在即热式电热水器第 八个实施例中, 由于有少部分水从出水管 3上部的排气孔 13流出水箱 4, 而这 少部分水未流经电加热元件 5, 因而降低了电加热元件 5表面的水流速度, 电加 热元件 5表面的传热系数会稍有降低, 但并不影响即热式电热水器出水温度; 出水管 3上部的排气孔 13外侧增加可活动的挡板 14, 活动挡板 14的重量小于 其在水中的浮力, 当活动挡板 14四周是空气时, 活动挡板 14在其重力的作用 下下垂, 并不遮挡排气孔 13, 空气仍可从排气孔 13排出水箱 4, 当活动挡板 14 四周的空气排出水箱 4后, 活动挡板 14受到浮力的作用向上遮挡排气孔 13,阻 止水从排气孔 13流出水箱 4, 即增加活动挡板 14后, 排气孔 13只排气而不排 水, 同样即热式电热水器第六个实施例中在水箱 4上部排气孔 10的下方增加可 活动的挡板可起到相同的作用。
以上即热式电热水器实施例中电加热元件 5除了采用了 "U"形电热管外, 还可采用直管形电热管、 电磁感应线圈与感应导体、 电热膜等电加热元件, 在 即热式电热水器第四个实施例中可用下部无电热丝的直管形电热管代替水箱 4 中的 "U"形电热管; 在即热式电热水器第五个实施例中可用上部无电热丝的直 管形电热管代替水箱 4中的 "U"形电热管, 而电磁感应线圈与感应导体、 电热 膜等电加热元件也可类推。
以上即热式燃气热水器实施例中的被加热水容器都是蛇型水管, 如果被加 热水容器不是蛇型水管而是水箱, 则可按照即热式电热水器的实施例实施; 以 上即热式电热水器实施例中的被加热水容器都是水箱, 如果被加热水容器不是 水箱而是蛇型水管, 则可按照即热式燃气热水器的实施例实施。

Claims

权 利 要 求 书
1、 一种即热式热水器减小出水温度波动的方法, 其特征在于: 在即热式热 水器暂停期间, 用温度低的水替代即热式热水器中温度高的水来吸收加热元件 的蓄热量, 然后在即热式热水器暂停结束再次使用时从出水管流出。
2、 一种即热式热水器减小出水温度波动的方法, 其特征在于: 在即热式热 水器暂停期间, 用温度低的水与即热式热水器中被继续加热温度继续升高的水 混合, 然后混合后的水在即热式热水器暂停结束再次使用时从出水管流出。
3、 一种应用权利要求 1即热式热水器减小出水温度波动的方法的即热式热 水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水管; 加热元件 在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出水管分别与被 加热水容器相连接; 其特征在于: 所述的进水管和所述的出水管之间有循环水 泵, 循环水泵的进口或出口有止回阀, 循环水泵与控制器相连接。
4、 一种应用权利要求 2即热式热水器减小出水温度波动的方法的即热式热 水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水管; 加热元件 在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出水管分别与被 加热水容器相连接; 其特征在于: 所述的被加热水容器是一水箱, 所述的进水 管与水箱的上部相连接, 所述的出水管与水箱的下部相连接。
5、 一种应用权利要求 2即热式热水器减小出水温度波动的方法的即热式热 水器, 它包括加热元件、 被加热水容器、 控制器、 进水管、 出水管; 加热元件 在被加热水容器内或外, 加热元件与控制器相连接, 进水管、 出水管分别与被 加热水容器相连接; 其特征在于: 所述的被加热水容器是一水箱, 所述的进水 管与水箱的上部相连接, 所述的出水管从水箱的上部插入水箱直至进水口位于 水箱的下部, 所述的出水管在水箱中的部分的上部有排气孔。
6、 根据权利要求 3所述的即热式热水器, 其特征在于: 所述的循环水泵和 所述的被加热水容器之间有储水箱。
7、 根据权利要求 3或 6所述的即热式热水器, 其特征在于: 所述的出水管 有温度传感器, 温度传感器与控制器相连接。
8、 根据权利要求 4所述的即热式热水器, 其特征在于: 所述的水箱上部有 排气孔, 排气孔与所述的出水管或排气阀相连接。
9、 根据权利要求 5所述的即热式热水器, 其特征在于: 所述的排气孔外侧 有活动的挡板, 挡板的重量小于其在水中的浮力。
PCT/CN2013/001340 2012-09-28 2013-11-05 一种即热式热水器减小出水温度波动的方法及产品 WO2014048074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210366984.6 2012-09-28
CN2012103669846A CN102865668A (zh) 2012-09-28 2012-09-28 一种即热式热水器减小出水温度波动的方法及产品

Publications (1)

Publication Number Publication Date
WO2014048074A1 true WO2014048074A1 (zh) 2014-04-03

Family

ID=47444697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001340 WO2014048074A1 (zh) 2012-09-28 2013-11-05 一种即热式热水器减小出水温度波动的方法及产品

Country Status (2)

Country Link
CN (1) CN102865668A (zh)
WO (1) WO2014048074A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110852A (zh) * 2014-04-10 2014-10-22 芜湖美的厨卫电器制造有限公司 热水器的进水管和具有其的热水器
CN110553307A (zh) * 2019-08-14 2019-12-10 日出东方控股股份有限公司 一种储热式热水器和即热式热水器联动系统及其控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865668A (zh) * 2012-09-28 2013-01-09 陈建平 一种即热式热水器减小出水温度波动的方法及产品
CN107687704B (zh) * 2017-09-22 2023-04-25 威海市远大电器制造有限公司 一种全自动温度补偿电辅加热器
CN110440443A (zh) * 2019-08-16 2019-11-12 中山市乐喜电子科技有限公司 一种热水器系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2185403Y (zh) * 1993-09-30 1994-12-14 孙旻 热水器防烫伤保护装置
JPH09303872A (ja) * 1996-05-09 1997-11-28 Gastar Corp 燃焼機器
CN2478028Y (zh) * 2001-02-28 2002-02-20 成都畅想燃气具有限公司 燃气快速热水器停水温升控制装置
KR20040106651A (ko) * 2003-06-11 2004-12-18 주식회사 경동보일러 온수 공급시스템
CN2919138Y (zh) * 2006-06-08 2007-07-04 姚龙 太阳能供暖供水热水器水箱
CN101082431A (zh) * 2007-07-30 2007-12-05 童根荣 即热型对流循环式太阳能热水器的控制方法及装置
CN201218564Y (zh) * 2008-06-12 2009-04-08 克金生 多用途即热式电热水器
CN201819377U (zh) * 2010-10-14 2011-05-04 崔威 即热式电热热水装置
CN102519143A (zh) * 2011-12-13 2012-06-27 莆田市清华园电器发展有限公司 一种电热水器
CN102865668A (zh) * 2012-09-28 2013-01-09 陈建平 一种即热式热水器减小出水温度波动的方法及产品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446446B (zh) * 2008-10-28 2012-07-18 珠海市润星泰电器有限公司 具有防烫伤功能的即热式电热水器构成方法及热水器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2185403Y (zh) * 1993-09-30 1994-12-14 孙旻 热水器防烫伤保护装置
JPH09303872A (ja) * 1996-05-09 1997-11-28 Gastar Corp 燃焼機器
CN2478028Y (zh) * 2001-02-28 2002-02-20 成都畅想燃气具有限公司 燃气快速热水器停水温升控制装置
KR20040106651A (ko) * 2003-06-11 2004-12-18 주식회사 경동보일러 온수 공급시스템
CN2919138Y (zh) * 2006-06-08 2007-07-04 姚龙 太阳能供暖供水热水器水箱
CN101082431A (zh) * 2007-07-30 2007-12-05 童根荣 即热型对流循环式太阳能热水器的控制方法及装置
CN201218564Y (zh) * 2008-06-12 2009-04-08 克金生 多用途即热式电热水器
CN201819377U (zh) * 2010-10-14 2011-05-04 崔威 即热式电热热水装置
CN102519143A (zh) * 2011-12-13 2012-06-27 莆田市清华园电器发展有限公司 一种电热水器
CN102865668A (zh) * 2012-09-28 2013-01-09 陈建平 一种即热式热水器减小出水温度波动的方法及产品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110852A (zh) * 2014-04-10 2014-10-22 芜湖美的厨卫电器制造有限公司 热水器的进水管和具有其的热水器
CN110553307A (zh) * 2019-08-14 2019-12-10 日出东方控股股份有限公司 一种储热式热水器和即热式热水器联动系统及其控制方法

Also Published As

Publication number Publication date
CN102865668A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2014048074A1 (zh) 一种即热式热水器减小出水温度波动的方法及产品
CN201421172Y (zh) 速热式电热水器
CN108716768A (zh) 空气能开水器
CN106224937B (zh) 一种蒸汽发生器热能回收装置和蒸汽发生器系统
CN110701787A (zh) 一种燃气壁挂炉及其快速热水组件
CN106766102A (zh) 一种步进式开水器
CN107664350A (zh) 一种高效节能速热式电热水器
CN202938498U (zh) 一种具有取暖功能的壁挂式电锅炉
CN201407830Y (zh) 分体壁挂敞开式热管真空管太阳能热水器
CN201903169U (zh) 带内循环装置的储水式冷凝燃气热水器
CN205909493U (zh) 蒸汽/电混合加热装置
CN211609275U (zh) 一种智能无压热交换开水饮水设备
CN202792480U (zh) 涡轮速热式热水器
CN207062599U (zh) 具有外置加热装置的洗衣机
CN208519978U (zh) 一种空气能开水器
CN209541005U (zh) 一种采暖与热水两用式电器
CN204555307U (zh) 空气能热水器
CN207894047U (zh) 一种即热蓄热热泵与太阳能耦合热水系统
CN202287845U (zh) 一种简单的降温装置
CN205026928U (zh) 一种即热式空气能热水器
CN212227792U (zh) 槽液蒸汽加热系统
CN210718052U (zh) 一种节能速热的多桶式热水器
CN205878616U (zh) 内置换热水箱壁挂炉
CN205718609U (zh) 一种热交换装置
CN216048313U (zh) 一种节能的即热式热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841454

Country of ref document: EP

Kind code of ref document: A1