WO2014046494A1 - Novel compound, and light emitting diode and electronic apparatus comprising same - Google Patents

Novel compound, and light emitting diode and electronic apparatus comprising same Download PDF

Info

Publication number
WO2014046494A1
WO2014046494A1 PCT/KR2013/008465 KR2013008465W WO2014046494A1 WO 2014046494 A1 WO2014046494 A1 WO 2014046494A1 KR 2013008465 W KR2013008465 W KR 2013008465W WO 2014046494 A1 WO2014046494 A1 WO 2014046494A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
light emitting
compound
Prior art date
Application number
PCT/KR2013/008465
Other languages
French (fr)
Korean (ko)
Inventor
최정옥
정준호
권오관
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130018534A external-priority patent/KR101390362B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US14/429,994 priority Critical patent/US9842998B2/en
Publication of WO2014046494A1 publication Critical patent/WO2014046494A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a novel compound, a light emitting device and an electronic device including the same, and more particularly to a compound for an organic light emitting device, a light emitting device and an electronic device comprising the same.
  • a light emitting device includes a light emitting layer including two electrodes facing each other and a light emitting compound interposed between the electrodes. When a current flows between the electrodes, the light emitting compound generates light.
  • the display device using the light emitting element does not need a separate light source device, and thus can reduce the weight, size or thickness of the display device.
  • the display device using the light emitting device has an advantage of excellent viewing angle, contrast ratio, color reproducibility, and the like, and lower power consumption than the display device using the backlight and the liquid crystal.
  • the light emitting device may further include a hole transport layer disposed between the anode and the light emitting layer.
  • the hole transport layer may stabilize an interface between the anode and the light emitting layer and minimize an energy barrier therebetween.
  • the light emitting device has a short light emitting lifetime and low power efficiency.
  • various compounds have been developed as materials of the light emitting device, but there are limitations in manufacturing a light emitting device that satisfies all of the light emission life, power efficiency and thermal stability.
  • Patent Document 1 Japanese Laid-Open Patent No. 2008-294161
  • Patent Document 2 Korean Patent Publication No. 2008-0104025
  • an object of the present invention is to provide a novel compound for improving the ability to inject and transport holes in a light emitting device.
  • Another object of the present invention is to provide a light emitting device comprising the compound.
  • Still another object of the present invention is to provide an electronic device including the light emitting device.
  • L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *
  • L 1 , L 2 , L 3, and L 4 each independently represent a single bond, -O-, -S-, an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 2 to 20 carbon atoms, or 3 to 20 carbon atoms.
  • Ar 1 and Ar 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, 2 to 20 carbon atoms
  • Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
  • W is hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, carbon atoms A bicycloalkyl group having 5 to 20,
  • Y represents S or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or A heteroaryl group having 2 to 20 carbon atoms;
  • l represents an integer of 0 to 3
  • m, n and o each independently represent an integer of 0 to 4
  • any one of p and q represents an integer of 0 to 3
  • the other represents an integer of 0 to 4
  • one of r and s represents an integer of 0 to 3
  • the other represents an integer of 0 to 4
  • the alkyl group, aryl group, heteroaryl group, cycloalkyl group, heterocycloalkyl group and bicycloalkyl group are each independently an alkyl group having 1 to 6 carbon atoms and an alkoxy having 1 to 6 carbon atoms Groups, amine groups unsubstituted or substituted with one or more alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, It is unsubstituted or substituted with one or more substituents selected from the group consisting of an arylthio group having 6 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group and a carboxy group.
  • the compound of Formula 1 may be represented by the formula (5).
  • Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • the compound of Formula 1 may be represented by the following Formula 6.
  • Ar 1 , Ar 2 , L a , L b , R 7 and r are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • the compound of Formula 1 may be represented by the following formula (7).
  • Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • a light emitting device includes a hole transport layer including a first electrode, a second electrode, a light emitting layer and the compound represented by the formula (1).
  • the first electrode and the second electrode may face each other, the emission layer may be interposed between the first and second electrodes, and the hole transport layer may be disposed between the first electrode and the emission layer. .
  • the hole transport layer may include a first layer comprising the compound and a P-type dopant, and a second layer comprising the compound.
  • the first layer may be disposed between the first electrode and the light emitting layer
  • the second layer may be disposed between the first layer and the light emitting layer.
  • the second layer may further include a dopant of the same type or different from the P-type dopant of the first layer.
  • an electronic device may include a hole transport layer including the compound represented by Chemical Formula 1.
  • the novel compound of the present invention can improve the ability to inject and / or transport holes in the light emitting device.
  • the light emitting efficiency of the light emitting device may be improved, and the life may be increased.
  • the thermal stability (heat resistance) of the light emitting device can be improved.
  • FIG. 1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • the compound according to the present invention is represented by the following formula (1).
  • L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *
  • L 1 , L 2 , L 3, and L 4 each independently represent a single bond, -O-, -S-, an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 2 to 20 carbon atoms, or 3 to 20 carbon atoms.
  • Ar 1 and Ar 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, 2 to 20 carbon atoms
  • Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
  • W is hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, carbon atoms A bicycloalkyl group having 5 to 20,
  • Y represents S or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or A heteroaryl group having 2 to 20 carbon atoms;
  • l represents an integer of 0 to 3
  • m, n and o each independently represent an integer of 0 to 4
  • any one of p and q represents an integer of 0 to 3
  • the other represents an integer of 0 to 4
  • one of r and s represents an integer of 0 to 3
  • the other represents an integer of 0 to 4
  • the alkyl group, aryl group, heteroaryl group, cycloalkyl group, heterocycloalkyl group and bicycloalkyl group are each independently an alkyl group having 1 to 6 carbon atoms and an alkoxy having 1 to 6 carbon atoms Groups, amine groups unsubstituted or substituted with one or more alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, It is unsubstituted or substituted with one or more substituents selected from the group consisting of an arylthio group having 6 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group and a carboxy group.
  • aryl group is defined as a monovalent substituent derived from an aromatic hydrocarbon.
  • aryl group examples include a phenyl group, a naphthyl group, an anthracenyl group, a naphthacenyl group, a pyrenyl group, a tolyl group, Biphenyl group, terphenyl group, chrycenyl group, spirobifluorenyl group, fluoranthenyl group, fluorenyl group, fluorenyl group Perylenyl group, indenyl group, azulenyl group, azulenyl group, heptalenyl group, phenalenyl group, phenanthrenyl group, and the like. .
  • the aryl group has 6 to 20 carbon atoms, for example, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • Heteroaryl group refers to an "aromatic heterocycle” derived from a monocyclic or condensed ring.
  • the heteroaryl group at least one of nitrogen (N), sulfur (S), oxygen (O), phosphorus (P), selenium (Se) and silicon (Si) as a hetero atom, for example, one, two, It can include three or four.
  • heteroaryl group examples include a pyrrolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazolyl group (triazolyl group, tetrazolyl group, benzotriazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, indole Indolyl group, isoindolyl group, indolizinyl group, indolinzinyl group, purinyl group, inindazolyl group, quinolyl group, quinolyl group, isoquinolyl Isoquinolinyl group, quinolizinyl group, phthalazinyl group, phthalazinyl group, naphthylidinyl group, quinoxalinyl group, quinazolinyl group, quinazolinyl group,
  • heteroaryl group may include a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, a benzothiadiazolyl group, and a phenothiazinyl group.
  • phenothiazinyl group isoxazolyl group, furazanyl group, furazanyl group, phenoxazinyl group, oxazolyl group, benzoxazolyl group, benzoxazolyl group
  • Compounds containing at least two or more heteroatoms such as an oxadiazolyl group, a pyrazoloxazolyl group, an imidazothiazolyl group, a thienofuranyl group, and the like have.
  • the heteroaryl group may have 2 to 20 carbon atoms, for example, 3 to 19 carbon atoms, 4 to 15 carbon atoms, or 5 to 11 carbon atoms.
  • the heteroaryl group may have a ring member of 5 to 21.
  • alkyl group is defined as a functional group derived from linear or branched saturated hydrocarbons.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, 1,1-dimethylpropyl group, 1 , 2-dimethylpropyl group (1,2-dimethylpropyl group), 2,2-dimethylpropyl group (2,2-dimethylpropyl group), 1-ethylpropyl group (1-ethylpropyl group), 2-ethylpropyl group (2 -ethylpropyl group), n-hexyl group, 1-methyl-2-ethylpropyl group, 1-ethyl-2-methylpropyl group (1-ethyl- 2-methylpropyl group), 1,1,2-trimethylpropyl group (1,1,2-trimethylpropyl group), 1-propylpropyl group (1-propylpropyl group), 1-methylmethyl group
  • the alkyl group has 1 to 20 carbon atoms, for example 1 to 12 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.
  • a "cycloalkyl group” is defined as a functional group derived from a monocyclic saturated hydrocarbon.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, or a cyclooctyl group (cyclooctyl group) etc. are mentioned.
  • the cycloalkyl group has 3 to 20 carbon atoms, for example 3 to 12 carbon atoms, or 3 to 6 carbon atoms.
  • heterocycloalkyl group is defined as a non-aromatic monocyclic or polycyclic group containing at least one heteroatom as a cyclic element in addition to a carbon atom. Heteroatoms may include, but are not limited to, oxygen (O), nitrogen (N), sulfur (S), selenium (Se), or phosphorus (P) atoms. Further, even if the heterocycloalkyl group does not include an aromatic ring, the bond connecting the carbon atom-carbon atom or carbon atom-heteroatom constituting the ring of the heterocycloalkyl group may include a double bond.
  • heterocycloalkyl group examples include 2-pyrrolidinyl group, 3-pyrrolidinyl group, 3-pyrrolidinyl group, piperidinyl group, 2-tetrahydrofuranyl group (2 -tetrahydrofuranyl group, 3-tetrahydrofuranyl group, 2-tetrahydrothienyl group and 3-tetrahydrothienyl group, but are not limited thereto. It is not.
  • Heterocycloalkyl groups have 2 to 20 carbon atoms, for example 3 to 19 carbon atoms, or 5 to 11 carbon atoms. That is to say that if a heteroatom is included, the heterocycloalkyl group has a ring member of 3 to 21, for example 4 to 20, or 6 to 12.
  • Bicycloalkyl group means a functional group having a structure in which at least one carbon atom selected from each of two alkyl rings is connected to each other.
  • bicycloalkyl group a bicyclopentyl group, a bicyclohexyl group, a bicycloheptyl group, a bicyclootyl group, a bicyclononyl group Or a bicyclodecyl group.
  • the bicycloalkyl group has 5 to 20 carbon atoms, for example 7 to 18 carbon atoms, or 7 to 12 carbon atoms.
  • arylene group may mean a divalent substituent derived from the aryl group described above.
  • heteroarylene group may mean a divalent substituent derived from the heteroaryl group described above.
  • the position of the carbon atom which may be substituted or substituted is represented as follows based on the hetero atom, and will be described below based on this.
  • Z represents X of Chemical Formula 2-1, Y of Chemical Formula 3 or Z of Chemical Formula 4.
  • Cz refers to carbazole, "DBT” to dibenzothiophene, and “DBF” to dibenzofuran.
  • L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or an arylene group having 6 to 20 carbon atoms
  • Ar 1 and Ar 2 each independently represent an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
  • Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
  • W represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms
  • Y represents S or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • n, l, o, p, q, r and s may each independently represent an integer of 0 to 2.
  • L a and L b each independently represent a single bond or an arylene group having 6 to 20 carbon atoms
  • Ar 1 and Ar 2 are each independently an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Heteroaryl groups having 2 to 20 carbon atoms which are unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Formula 2-1 or Formula 2-2,
  • Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
  • Y represents S or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • n, l, o, p and q may each independently represent 0 or 1.
  • L a and L b each independently represent a single bond or phenylene
  • Ar 1 and Ar 2 are each independently a phenyl group unsubstituted or substituted with a methyl group or a phenyl group; Naphthyl group; Or represented by the formula 2-1,
  • Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
  • Y represents S or O
  • R 5 and R 7 each independently represent a methyl group or a phenyl group
  • R 9 and R 10 each independently represent a methyl group
  • p and r each independently represent 0 or 1
  • l, m, q and s may each independently represent 0.
  • the compound of Formula 1 may be represented by the following Formula 5, Formula 6 or Formula 7.
  • Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined above,
  • Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • Ar 1 , Ar 2 , L a , L b , R 7 and r are as defined above,
  • Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined above,
  • Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  • Specific examples of the compound represented by Formula 5 include compounds represented by the following structures A-1 to A-18.
  • Specific examples of the compound represented by the formula (6) include compounds represented by the following structures B-1 to B-11.
  • Specific examples of the compound represented by Formula 7 include compounds represented by the following structures C-1 to C-10.
  • FIG. 1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting device 100 includes a first electrode 20, a hole transporting layer 30, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10.
  • the light emitting device 100 may be an organic light emitting diode (OLED).
  • the first electrode 20 may be formed on the base substrate 10 with a conductive material.
  • the first electrode 20 may be a transparent electrode.
  • the first electrode 20 may be formed of indium tin oxide (ITO).
  • the first electrode 20 may be an opaque (reflective) electrode.
  • the first electrode 20 may have an ITO / silver (Ag) / ITO structure.
  • the first electrode 20 may be an anode of the light emitting device 100.
  • the hole transport layer 30 is formed on the first electrode 20 and is interposed between the first electrode 20 and the light emitting layer 40.
  • the hole transport layer 30 includes a compound represented by the following Chemical Formula 1 as a hole transport compound.
  • the compound represented by the said Formula (1) is substantially the same as what was demonstrated above as a novel compound which concerns on this invention. Therefore, detailed description of Ar 1 , Ar 2 , L a , L b , Het 1 and Het 2 is omitted.
  • the wavelength of the light emitted by the light emitting layer 40 may vary depending on the type of the compound forming the light emitting layer 40.
  • the second electrode 50 may be formed on the light emitting layer 40 with a conductive material.
  • the second electrode 50 may be an opaque (reflective) electrode.
  • the second electrode 50 may be an aluminum electrode.
  • the first electrode 20 is an opaque electrode
  • the second electrode 50 may be a transparent or semi-transparent electrode, and the second electrode 50 may have a thickness of 100 ⁇ s to 150 ⁇ s.
  • an alloy containing magnesium and silver may be a cathode of the light emitting device 100.
  • An electron transport layer and / or an electron injection layer may be formed between the emission layer 40 and the second electrode 50 as an electron transport layer.
  • the light emitting device 100 When a current flows between the first and second electrodes 20 and 50 of the light emitting device 100, holes and holes injected from the first electrode 20 into the light emitting layer 40 are formed. Electrons injected into the emission layer 40 from the second electrode 50 combine to form excitons. In the process of transferring the excitons to the ground state, light having a wavelength in a specific region is generated. In this case, the excitons may be singlet excitons, and may also be triplet excitons. Accordingly, the light emitting device 100 may provide light to the outside.
  • the light emitting device 100 includes an electron transporting layer (ETL) and an electron injecting layer (EIL) disposed between the light emitting layer 40 and the second electrode 50. It may further include.
  • the electron transport layer and the electron injection layer may be sequentially stacked on the light emitting layer 40.
  • the light emitting device 100 may include a first blocking layer (not shown) disposed between the first electrode 20 and the light emitting layer 40 and / or the light emitting layer 40 and the second electrode 50. It may further include a second blocking layer (not shown) disposed between.
  • the first blocking layer is disposed between the hole transport layer 30 and the light emitting layer 40, and electrons injected from the second electrode 50 pass through the light emitting layer 40. It may be an electron blocking layer (EBL) that prevents the inflow into the transport layer 30.
  • the first blocking layer may be an exciton blocking layer that prevents excitons formed in the light emitting layer 40 to diffuse in the direction of the first electrode 20 to prevent the excitons from extinction.
  • the first blocking layer may be an exciton dissociation blocking layer (EDBL).
  • the exciton separation blocking layer may prevent the exciton formed in the light emitting layer 40 from undergoing non-luminescence extinction through an exciton dissociation process at an interface between the light emitting layer 40 and the hole transporting layer 30. have.
  • the compound forming the first blocking layer may be selected to have a similar level of HOMO value as the compound forming the light emitting layer 40.
  • the first blocking layer may include the compound according to the present invention described above.
  • the second blocking layer is disposed between the light emitting layer 40 and the second electrode 50, specifically, the light emitting layer 40 and the electron transporting layer so that holes are formed from the first electrode 20 to the light emitting layer 40. It may be a hole blocking layer (HBL) to prevent the flow into the electron transport layer via). In addition, the second blocking layer may be an exciton blocking layer which prevents excitons formed in the emission layer 40 from diffusing in the direction of the second electrode 50 to prevent the excitons from extinction.
  • HBL hole blocking layer
  • Adjusting the thickness of each of the first and second blocking layers according to the resonance length of the light emitting device 100 may increase the light emission efficiency and adjust the excitons to be formed at the center of the light emitting layer 40. Can be.
  • the light emitting device 102 includes a first electrode 20, a hole transport layer 32, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. Except for the hole transport layer 32, the description thereof is substantially the same as that described with reference to FIG.
  • the hole transport layer 32 includes a compound represented by Chemical Formula 1 and a P-type dopant. Since the compound included in the hole transport layer 32 is substantially the same as described above, overlapping detailed description thereof will be omitted.
  • the P-type dopant may include a P-type organic dopant and / or a P-type inorganic dopant.
  • P-type organic dopant examples include compounds represented by the following Chemical Formulas 8 to 12, hexadecafluorophthalocyanine (F16CuPc), 11,11,12,12-tetracyanonaphtho-2,6-quinomimethane (11,11,12,12-tetracyanonaphtho-2,6-quinodimethane, TNAP), 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (3, 6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane, F2-HCNQ) or Tetracyanoquinodimethane (TCNQ) and the like. These may be used alone or in combination of two or more, respectively.
  • Chemical Formulas 8 to 12 hexadecafluorophthalocyanine
  • F16CuPc hexadecafluorophthalocyanine
  • F16CuPc hexadecafluor
  • R may represent a cyano group, a sulfone group, a sulfoxide group, a sulfonamide group, a sulfonate group, a nitro group, or a trifluoromethyl group.
  • m and n may each independently represent an integer of 1 to 5
  • Y 1 and Y 2 may each independently represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
  • the hydrogen of the aryl group or heteroaryl group represented by Y 1 and Y 2 may be substituted or unsubstituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group, and substituted with Alternatively, unsubstituted hydrogen of Y 1 and Y 2 may be each independently substituted or unsubstituted with a halogen group.
  • the compound represented by Chemical Formula 12 may include a compound represented by Chemical Formula 12a or Chemical Formula 12b.
  • Examples of the P-type inorganic dopant include metal oxides and metal halides. Specific examples of the P-type inorganic dopant include MoO 3 , V 2 O 5 , WO 3 , SnO 2 , ZnO, MnO 2 , CoO 2 , ReO 3 , TiO 2, FeCl 3 , SbCl 5 , MgF 2 , and the like. . These may be used alone or in combination of two or more, respectively.
  • the P-type dopant may be about 0.5 parts by weight to about 20 parts by weight based on 100 parts by weight of the novel compound according to the present invention, which is a hole transporting compound.
  • the P-type dopant may be about 0.5 parts by weight to about 15 parts by weight, or about 0.5 parts by weight to about 5 parts by weight based on 100 parts by weight of the hole transporting compound.
  • the P-type dopant may be about 1 part by weight to 10 parts by weight, 1 part by weight to 5 parts by weight, 1.5 parts by weight to 6 parts by weight, or 2 parts by weight to 5 parts by weight, based on 100 parts by weight of the hole transporting compound. Can be.
  • the P-type dopant When the content of the P-type dopant is about 0.5 part by weight to about 20 parts by weight with respect to 100 parts by weight of the hole transporting compound, the P-type dopant may generate excessive leakage current without reducing the physical properties of the hole-transporting compound. You can prevent it. In addition, the energy barrier at the interface with each of the upper and lower layers in contact with the hole transport layer 32 may be reduced by the P-type dopant.
  • the light emitting device 102 may further include an electron transport layer, an electron injection layer, a first blocking layer, and / or a second blocking layer.
  • Each of the layers is substantially the same as that described in the light emitting device 100 of FIG. 1, and thus, a detailed description thereof will be omitted.
  • the first blocking layer may include the compound according to the present invention described above.
  • the light emitting device 100 illustrated in FIG. 1 may further include an interlayer (not shown).
  • the intermediate layer may be disposed between the first electrode 20 and the hole transport layer 30 of FIG. 1, and may be formed of a compound used as the P-type dopant described with reference to FIG. 2.
  • the light emitting device 104 includes a first electrode 20, a hole transport layer 34, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. Except for the hole transport layer 34, the description thereof is substantially the same as that described with reference to FIG.
  • the hole transport layer 34 includes a first layer 33a in contact with the first electrode 20 and a second layer 33b disposed between the first layer 33a and the light emitting layer 40. do. That is, the hole transport layer 34 may have a two-layer structure. In addition, the hole transport layer 34 may have a multilayer structure of two or more layers including the first and second layers 33a and 33b.
  • the first and second layers 33a and 33b may include the same kind of hole transport compound.
  • the components of the hole transporting compound included in the first layer 33a and the second layer 33b are reduced, thereby easily injecting holes into the light emitting layer. It can be done.
  • the same host material is used for the first layer 33a and the second layer 33b
  • the first layer 33a and the second layer 33b can be continuously formed in one chamber. There is an advantage that the manufacturing process is simplified and the production time can be shortened. Furthermore, since physical properties such as glass transition temperature between adjacent layers become similar, there is an advantage of increasing durability of the device.
  • the first layer 33a includes a novel compound according to the present invention represented by Chemical Formula 1 and a P-type dopant as a hole transporting compound.
  • the first layer 33a is substantially the same as the hole transport layer 32 described with reference to FIG. 2 except for the thickness. Therefore, redundant description is omitted.
  • the second layer 33b includes the novel compound according to the present invention represented by Chemical Formula 1 as a hole transporting compound, and the hole transporting compound constituting the second layer 33b is formed of the first layer 33a. It may be the same as the hole transporting compound constituting. Since the second layer 33b is also substantially the same as the hole transport layer 30 described with reference to FIG. 1 except for the thickness, detailed descriptions thereof will be omitted.
  • the first and second layers 33a and 33b may include different kinds of hole transport compounds.
  • the hole transporting compound constituting the first and second layers 33a and 33b may be a novel compound according to the present invention represented by Chemical Formula 1, wherein Ar 1 , Ar 2 , L a , L b , Het 1 and Het 2 may be different from each other independently.
  • the compound constituting each of the first and second layers 33a and 33b may be selected to have a HOMO value for efficiently transferring holes to the light emitting layer 40.
  • the second layer 33b may further include a P-type dopant together with the hole transport compound.
  • the types of P-type dopants doped in the first layer 33a and the second layer 33b may be different from each other, and the doping amount may be different even if the same type is used.
  • the content P1 of the P-type dopant doped in the first layer 33a and the content P2 of the P-type dopant doped in the second layer 33b are represented by Equation 1 below. Can be satisfied.
  • Equation 1 “P1” is a content of a doped P-type dopant relative to 100 parts by weight of the hole transporting compound in the first layer 33a, and “P2” is a hole transporting compound 100 in the second layer 33b. The amount of doped P-type dopant to weight part.
  • the content of the P-type dopant doped in the first layer 33a is 0.3 to 20 parts by weight, 1 to 15 parts by weight, 2 to 10 parts by weight, or 4 based on 100 parts by weight of the hole transporting compound. To 6 parts by weight.
  • the content of the P-type dopant doped in the second layer 33b is 0.3 to 20 parts by weight, 0.5 to 10 parts by weight, 1 to 8 parts by weight, or 2 to 4 parts by weight based on 100 parts by weight of the hole transporting compound. It may be a minor range.
  • the light emitting device 104 may further include an electron transport layer, an electron injection layer, a first blocking layer and / or a second blocking layer.
  • an electron transport layer an electron injection layer
  • a first blocking layer a first blocking layer
  • a second blocking layer a second blocking layer
  • each of the light emitting devices 100, 102, 104 described above includes the novel compound according to the present invention represented by Chemical Formula 1, the light emitting devices 100, 102, 104 have excellent thermal stability and At the same time, the luminous efficiency can be improved and the life can be long.
  • the light emitting devices 100, 102, 104 are directly formed on the base substrate 10, but the first and second light emitting devices 100, 102, and 104 are respectively formed on the base substrate 10.
  • a thin film transistor may be disposed between the first electrode 20 and the base substrate 10 as a driving element for driving a pixel.
  • the first electrode 20 may be a pixel electrode connected to the thin film transistor.
  • the first electrode 20 is a pixel electrode, the first electrode 20 is disposed separately from each other in the plurality of pixels, and the base substrate 10 is disposed along an edge of the first electrode 20.
  • the barrier rib pattern may be formed so that layers stacked on the first electrode 20 disposed in adjacent pixels may be separated from each other. That is, although not shown in the drawings, the light emitting devices 100, 102, and 104 may be used in a display device that displays an image without a backlight.
  • the light emitting devices 100, 102, and 104 may be used as lighting devices.
  • the light emitting devices 100, 102, 104 illustrated in the present invention may be used in various electronic devices such as the display device or the lighting device.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 4 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 27.5 g of a light gray solid. Obtained (yield 79%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 0.9 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 7 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 28.2 g of a light gray solid. Obtained (yield 83%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 0.9 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to obtain 26.9 g of a light gray solid. Obtained (yield 80%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 1.0 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 5 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 40 minutes, and filtered to obtain 27.8 g of a light gray solid. Obtained (yield 83%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 10 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 1 hour, and filtered to give compound 8, a light gray solid, 27.1. g was obtained (yield 78%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), added to 1 L of methanol, stirred for 30 minutes, and filtered to give 27.7 g of a light gray solid. Obtained (yield 80%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 9 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 28.0 g of a light gray solid. Obtained (yield 81%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 28.3 g of a light gray solid. Obtained (yield 82%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 40 minutes, and filtered to obtain 27.8 g of a compound 12 as a light gray solid. Obtained (yield 78%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 27.9 g of a compound 13 as a light gray solid. Obtained (yield 81%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 27.6 g of a compound 14 as a light gray solid. Obtained (yield 80%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (2.7 mmol, 3.1 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 170 mL of tetrahydrofuran (THF), poured into 1,700 mL of methanol (methanol), filtered for 20 minutes, filtered, and light gray. 40.1 g of Comparative Compound 1 was obtained as a solid (yield 70%).
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.6 mmol, 1.9 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1000 mL of methanol, stirred for 20 minutes and filtered to obtain a Comparative Compound 2 as a light gray solid. 23.4 g were obtained (yield 70%).
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.6 mmol, 0.7 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 40 mL of tetrahydrofuran (THF), poured into 400 mL of methanol, stirred for 20 minutes, and filtered to obtain a Comparative Compound 3 as a light gray solid. 11.4 g were obtained (yield 85%).
  • EA ethyl acetate
  • THF tetrahydrofuran
  • the compound according to Example 1 On the first electrode formed of indium tin oxide (ITO), the compound according to Example 1 was deposited as a host material at a rate of 1 ⁇ / sec and simultaneously represented by the following P-type dopant (HAT-CN) Was co-evaporated at a ratio of about 5 parts by weight to 100 parts by weight of the host material to form a first layer having a thickness of 100 mm 3. The compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer.
  • ITO indium tin oxide
  • MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa. Deposition formed a blocking layer.
  • the process of manufacturing the light emitting device A-1 is substantially the same. Through the same process to produce a light emitting device A-2 to A-4.
  • T 75 means a time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of the light emitting elements A-1 to A-4 is about 32.1 lm / W, about 31.4 lm / W, about 30.6 lm / W, and about 30.8 lm / W, respectively. That is, it can be seen that the power efficiency of each of the light emitting devices manufactured using the compounds according to Examples 1, 3, 4, and 8 of the present invention is at least about 30.0 lm / W or more.
  • the power efficiency of the comparative devices 1 to 4 is about 8.5 lm / W to about 10.3 lm / W
  • the power efficiency of the light emitting devices manufactured using the compounds according to an embodiment of the present invention is the power of the comparative devices It can be seen that better than the efficiency.
  • the lifespan of each of the light emitting devices manufactured using the compounds according to the embodiment of the present invention is at least about 783 hours, compared to the life of the comparative elements 1 to 4 of about 244 hours or less, It can be seen that the lifespan of the light emitting devices including the compound according to the present invention is better than that of the comparative devices 1 to 4.
  • the life characteristics of the light emitting devices including the compound according to the embodiment of the present invention are superior to those of the comparative devices 1 to 4.
  • the heat resistance of the light emitting device manufactured using the compound according to the present invention is superior to the comparative devices 1 to 4.
  • a P-type dopant (HAT-CN) represented by Formula 13 was deposited to a thickness of about 100 GPa to form a first layer, and the first layer NPB (N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine) was deposited to a thickness of about 300 kPa on the second layer to form a second layer. It was.
  • NPB N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine
  • a first blocking layer having a thickness of about 100 ⁇ s is formed with the compound according to Example 1, and on the first blocking layer, mCBP represented by Formula 14 and Ir (ppy) 3 represented by Formula 15 was co-deposited at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 mW, and mCBP was deposited to a thickness of about 50 mW again on the light emitting layer to form a second blocking layer.
  • BPhen represented by Formula 16 and Alq 3 represented by Formula 17 were co-deposited at a 50:50 weight ratio on the second blocking layer to form an electron transport layer having a thickness of about 400 ⁇ m. Subsequently, an electron injection layer having a thickness of about 10 ⁇ s was formed on the electron transport layer by using Liq represented by Formula 18.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a green light emitting device B-1 including the compound according to Example 1 of the present invention.
  • the light emitting device through substantially the same process as the manufacturing process of the light emitting device B-1 B-2, B-3 and B-4 were prepared.
  • Comparative element 5 was manufactured through the same process as that of manufacturing light emitting device B-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. .
  • Comparative Device 6 is manufactured by substantially the same process as the process of manufacturing Light-Emitting Device B-1. Prepared.
  • the lifespans of the light emitting elements B-1 to B-4 and the comparative elements 5 and 6 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
  • Table 2 shows the results of power efficiency and lifespan of the light emitting elements B-1 to B-4 and Comparative elements 5 and 6, respectively.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of each of the light emitting devices B-1 to B-4 manufactured using the compounds according to the present invention was about 34.9 lm / W, about 34.7 lm / W, about 33.1 lm / W and about 33.5 As lm / W, at least about 33.1 lm / W or more, while the power efficiency of Comparative Element 5 is only about 11.2 lm / W and the power efficiency of Comparative Element 6 is only about 12.5 lm / W.
  • each of the light emitting elements B-1 to B-4 is at least about 656 hours, whereby the lifetime of the comparative element 5 is about 212 hours and the lifetime of the comparative element 6 is about 218 hours, the compound according to the invention It can be seen that the lifespan of the light emitting devices manufactured using the light emitting diodes is relatively longer than those of the comparative devices 5 and 6.
  • the life characteristic evaluation of the light emitting device was performed under an accelerated condition (severe condition) of 85 ° C.
  • the life characteristics of the light emitting device including the compound according to the present invention were longer than those of the comparative devices 5 and 6. It can be seen that the heat resistance of the light emitting device manufactured using the compound according to the invention is excellent.
  • NPB is deposited as a host material at a rate of 1 ⁇ s / sec and simultaneously a P-type dopant (HAT-CN) represented by Chemical Formula 13 is deposited on the host material 100. Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer. NPB was deposited to a thickness of 300 ⁇ on the first layer to form a second layer.
  • ITO indium tin oxide
  • HAT-CN P-type dopant
  • first blocking layer having a thickness of about 100 ⁇ s with a compound according to Example 1 on the second layer, mCBP represented by the formula (14) and Ir (ppy) 3 represented by the formula (15) on the first blocking layer Co-deposited at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 kPa, and mCBP was deposited to a thickness of about 50 kPa on the light emitting layer to form a second blocking layer.
  • BPhen represented by Formula 16 and Alq 3 represented by Formula 17 were co-deposited at a 50:50 weight ratio on the second blocking layer to form an electron transport layer having a thickness of about 400 ⁇ m. Subsequently, an electron injection layer having a thickness of about 10 ⁇ s was formed on the electron transport layer by using Liq represented by Formula 18.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a green light emitting device C-1 including the compound according to Example 1 of the present invention.
  • the light emitting device through the substantially same process as the manufacturing process of the light emitting device C-1 C-2, C-3 and C-4 were prepared.
  • Comparative element 7 was manufactured by the same process as that of manufacturing light emitting device C-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. .
  • Comparative device 8 was manufactured through the same process as that of manufacturing light emitting device C-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c. .
  • the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements A-1 to A-4.
  • the power efficiency was measured based on the value at / m 2 .
  • the lifespans of the light emitting elements C-1 to C-4 and the comparative elements 7 and 8 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
  • Table 3 shows the results of power efficiency and lifespan of the light emitting elements C-1 to C-4 and the comparative elements 7 and 8, respectively.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of each of the light emitting devices C-1 to C-4 is about 36.1 lm / W, about 32.3 lm / W, about 31.2 lm / W and about 30.1 lm / W, It can be seen that the power efficiency is only about 12.6 lm / W and that of Comparative Device 8 is only about 13.1 lm / W. Accordingly, it can be seen that the power efficiency of the light emitting devices including the compound according to the present invention is better than that of the comparative devices 7 and 8.
  • the lifespan of each of the light emitting elements C-1 to C-4 is about 739 hours, about 734 hours, about 656 hours, and about 633 hours, whereas the lifetime of the comparative element 7 is only about 218 hours and the lifetime of the comparative element 8 It can be seen that only about 220 hours. Therefore, it can be seen that the lifespan of the light emitting devices including the compound according to the present invention is longer than that of the comparative devices 7 and 8.
  • the life characteristic evaluation of the light emitting device is performed under an acceleration condition (severe condition) of 85 ° C.
  • the life characteristics of the light emitting device including the compound according to the present invention are superior to those of the comparative devices 7 and 8, It can be seen that the heat resistance of the light emitting device manufactured using the compound according to the present invention is good.
  • the compound according to Example 1 is deposited as a host material at a rate of 1 ⁇ / sec and simultaneously is a P-type dopant represented by Chemical Formula 13 (HAT-CN).
  • HAT-CN P-type dopant represented by Chemical Formula 13
  • NPB was deposited to a thickness of 300 ⁇ on the first layer to form a second layer.
  • MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa, and mCBP was about 50 kV on the light emitting layer. The thickness was deposited to form a barrier layer.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a green light emitting device D-1 including the compound according to Example 1 of the present invention.
  • the light emitting device D through substantially the same process as the manufacturing process of the light emitting device D-1 -2, D-3 and D-4 were prepared.
  • Comparing device 9 is carried out through substantially the same process as manufacturing light emitting device D-1, except that the host material of the first layer is manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. Prepared.
  • Comparative device 10 is manufactured through the substantially same process as that of manufacturing light emitting device D-1, except that the host material of the first layer is manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c. Prepared.
  • the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiments for the light emitting elements A-1 to A-4.
  • the power efficiency was measured based on the value at / m 2 .
  • the lifetimes of the light emitting elements D-1 to D-4 and the comparative elements 9 and 10 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
  • Table 4 shows the results of power efficiency and lifespan of the light emitting elements D-1 to D-4 and the comparative elements 9 and 10, respectively.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 means the time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of each of the light emitting elements D-1 to D-4 is at least about 29.1 lm / W or more, while the power efficiency of the comparative element 9 is only about 9.3 lm / W and the power efficiency of the comparative element 10. It can be seen that is only 8.9 lm / W. Accordingly, it can be seen that the power efficiency of the light emitting devices using the compound according to the present invention is superior to that of the comparative devices 9 and 10.
  • the lifespan of each of the light emitting elements D-1 to D-4 is at least about 707 hours, whereas the lifespan of the comparative element 9 is only about 202 hours, and the lifetime of the comparative element 10 is only about 193 hours. . Accordingly, it can be seen that the lifetimes of the light emitting devices using the compound according to the present invention are longer than those of the comparative devices 9 and 10.
  • the life characteristic evaluation of the light emitting device was performed under an acceleration condition (severe condition) of 85 ° C.
  • the life characteristics of the light emitting device including the compound according to the present invention were superior to those of the comparative devices 9 and 10, It can be seen that the light emitting device manufactured using the compound according to the present invention has good heat resistance.
  • NPB indium tin oxide
  • HAT-CN P-type dopant represented by Chemical Formula 13
  • Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer.
  • the compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer.
  • MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa, and mCBP was about 50 kV on the light emitting layer. The thickness was deposited to form a barrier layer.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a green light emitting device E-1 including the compound according to Example 1 of the present invention.
  • the light emitting device E through the substantially same process as the manufacturing process of the light emitting device E-1 -2, E-3 and E-4 were prepared.
  • Comparative element 11 was manufactured through the same process as that of manufacturing light emitting device E-1, except that the second layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b.
  • Comparative element 12 was manufactured by the same process as that of manufacturing light emitting device E-1, except that the second layer was manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c.
  • the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements A-1 to A-4.
  • the power efficiency was measured based on the value at / m 2 .
  • the lifetimes of the light emitting elements E-1 to E-4 and the comparative elements 11 and 12 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
  • Table 5 shows the results of power efficiency and lifespan of the light emitting elements E-1 to E-4 and the comparative elements 11 and 12, respectively.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of each of the light emitting elements E-1 to E-4 is at least about 28.5 lm / W or more, while the power efficiency of the comparative element 11 is only about 9.8 lm / W and the power efficiency of the comparative element 12 It can be seen that is only about 9.2 lm / W. Therefore, it can be seen that the power efficiency of the light emitting devices using the compound according to the present invention is superior to that of the comparative devices 11 and 12.
  • each of the light emitting elements E-1 to E-4 is at least about 705 hours or more, whereas the lifespan of the comparative element 11 is only about 217 hours and the lifespan of the comparative element 12 is only about 209 hours. Therefore, it can be seen that the lifespan of the light emitting devices using the compound according to the present invention is longer than that of the comparative devices 11 and 12.
  • the life characteristic evaluation of the light emitting device is performed under an acceleration condition (severe condition) of 85 ° C.
  • the life characteristics of the light emitting device including the compound according to the present invention are superior to those of the comparative devices 11 and 12, It can be seen that the light emitting device manufactured using the compound according to the present invention has good heat resistance.
  • the compound according to Example 1 On the first electrode formed of indium tin oxide (ITO), the compound according to Example 1 is deposited as a host material at a rate of 1 ⁇ / sec and simultaneously is a P-type dopant represented by Chemical Formula 13 (HAT-CN). Was co-evaporated at a ratio of about 5 parts by weight to 100 parts by weight of the host material to form a first layer having a thickness of 100 mm 3. The compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer.
  • ITO indium tin oxide
  • a compound represented by the following Chemical Formula 19 and a compound represented by the following Chemical Formula 20 were co-deposited on the second layer at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 ⁇ s.
  • the blue light emitting device F-1 including the compound according to Example 1 of the present invention was prepared by the above method.
  • the host material is substantially the same as the process of manufacturing the light emitting device F-1. Through the light emitting device F-1 to F-14 was produced.
  • the host material through the comparative element 13 to substantially the same process as the manufacturing process of the light emitting device F-1 20 was prepared.
  • the light emitting devices F-1 to F-14 and the comparative devices 13 to 20 were each dispensed with a UV curing sealant at the edge of the cover glass with a moisture absorbent (Getter) in a glove box in a nitrogen atmosphere. Each of the and the comparative elements and the cover glass were bonded and cured by irradiation with UV light.
  • power efficiency was measured based on the value when the luminance was 500 cd / m 2 . The results are shown in Table 6.
  • T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of the comparison element 13 (position 2 or 7) and the comparison element 20 (position 4 or 5) containing a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that it is about 5.61 lm / W and about 4.10 lm / W, respectively, and the lifetimes are 77 hours and 52 hours, respectively.
  • the light emitting devices F-1 to F-14 using the compounds according to the present invention having 3 or 6 substitution positions between Cz and Cz show superior power efficiency and lifetime as compared with the comparative devices 13 and 20.
  • the light emitting device F-6 using the compound according to Example 6 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 13 has an increase in power efficiency by about 27% and a long lifetime by about 56%. It can be seen that.
  • the light emitting device F-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz as compared to Comparative Device 20 has an increase in power efficiency by about 85% and a long lifetime by about 133%. It can be seen that.
  • the power efficiency of the comparative element 14 (position 3 or 6) including the compound where the position of DBF is substituted with the compound according to the present invention is about 5.90 lm / W, and the lifetime is about 81 hours.
  • the light emitting devices F-7, F-9 and F-11 using the compounds according to the present invention, wherein the substitution position of DBF is 1 or 8, have increased power efficiency by at least 16%. At least 41% longer.
  • Comparative elements 15, 16 and 19 comprising compounds different from the compounds according to the invention in that Cz is not centrally located and substituted in the side chain are about 5.45 lm / W, about 5.01 lm / W and It can be seen that it is about 5.27 lm / W and the lifetime is about 75 hours, about 69 hours and about 72 hours.
  • the light emitting devices F-1 to F-14 using the compounds according to the present invention in which Cz is located at the center show superior power efficiency and lifetime as compared to the comparative devices 15, 16 and 19.
  • the light emitting device F-2 using the compound according to Example 2 of the present invention having a DBT-Cz-Cz-DBT structure was used. It can be seen that the efficiency is increased by about 39% and the life is extended by about 61%.
  • the power efficiency of the comparative elements 17 and 18 comprising a compound having a structure different from that of the compound according to the present invention in that Cz is included in three or more structures is about 5.20 lm / W and about 4.90 lm / W, respectively. It can be seen that the lifetime is about 70 hours and about 61 hours. In contrast, it can be seen that the light emitting devices F-1 to F-14 using the compounds according to the present invention having only two Cz exhibit excellent power efficiency and lifetime compared to the comparative devices 17 and 18.
  • the light emitting device F-2 using the compound according to Example 2 of the present invention having the DBT-Cz-Cz-DBT structure as compared to the comparative device 18 including the compound having the DBT-Cz-Cz-Cz-DBT structure It can be seen that the power efficiency is increased by about 55% and the lifespan is increased by about 98% compared to the comparison element 18.
  • a P-type dopant (HAT-CN) represented by Formula 13 was deposited to a thickness of about 100 GPa to form a first layer, and the first layer NPB (N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine) was deposited to a thickness of about 300 kPa on the second layer to form a second layer. It was.
  • NPB N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine
  • a first blocking layer having a thickness of about 100 ⁇ s is formed on the second blocking layer with the compound according to Example 1, and the compound represented by Formula 19 and the compound represented by Formula 20 are 100: 5 by weight on the first blocking layer.
  • the compound represented by Chemical Formula 21 and Liq represented by Chemical Formula 18 were co-deposited at a weight ratio of 50:50 on the emission layer to form an electron transport layer having a thickness of about 360 Pa.
  • an electron injection layer having a thickness of about 10 ⁇ s was formed on the electron transport layer by using Liq represented by Formula 18.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a blue light emitting device G-1 including the compound according to Example 1 of the present invention.
  • the light emitting device G- is substantially the same as the process of manufacturing the light emitting device G-1. 2 to G-14 were prepared.
  • Comparative elements 21 to 28 were manufactured through substantially the same process as that of manufacturing light emitting device G-1, except that the first blocking layer was manufactured using the compound according to Comparative Examples 1 to 8.
  • the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements F-1 to F-14.
  • the power efficiency was measured based on the value at / m 2 .
  • the lifetimes of each of the light emitting elements G-1 to G-14 and the comparative elements 21 to 28 were measured in the same manner as the life evaluation experiments for the light emitting elements F-1 to F-14.
  • Table 7 shows the results of power efficiency and lifespan of each of the light emitting devices G-1 to G-14 and the comparative devices 21 to 28.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 represents a time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of the comparison element 21 (position 2 or 7) and the comparison element 28 (position 4 or 5) containing a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that they are about 4.83 lm / W and about 3.53 lm / W, respectively, and their lifetimes are 66 and 45 hours, respectively.
  • the light emitting devices G-1 to G-14 using the compounds according to the present invention having a substitution position between Cz and Cz 3 or 6 exhibit superior power efficiency and lifespan as compared with the comparative devices 21 and 28.
  • the light emitting device G-6 using the compound according to Example 6 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 21 increases power efficiency by about 32% and has a lifespan of about 60%. It can be seen.
  • the light emitting device G-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 28 increases power efficiency by about 88% and extends lifetime by about 137%. It can be seen that.
  • the power efficiency of the comparative element 22 (position 3 or 6) including the compound where the position of the DBF is substituted with the compound according to the present invention is about 5.07 lm / W, and the lifetime is about 69 hours.
  • the light emitting devices G-7, G-9 and G-11 using the compounds according to the present invention, wherein the substitution positions of DBF are 1 or 8 have an increase in power efficiency by about 20% and a lifetime compared to that of the comparative device 22. This is about 48% longer.
  • the power efficiency of the comparative elements 23, 24 and 27 comprising compounds different from the compounds according to the present invention in that Cz is not centrally located and substituted in the side chain is about 4.69 lm / W, about 4.31 lm / W and about 4.53 lm / W and the lifetimes are about 64 hours, about 59 hours and about 62 hours.
  • the light emitting devices G-1 to G-14 using the compounds according to the present invention in which Cz is located at the center show superior power efficiency and lifespan as compared to the comparative devices 23, 24 and 27.
  • the light emitting device G-2 using the compound according to Example 2 having a DBT-Cz-Cz-DBT structure has a power efficiency. It can be seen that this increases by about 42% and the lifespan is extended by about 67%.
  • the light emitting device G-7 using the compound according to Example 7 having the structure of DBF-Cz-Cz-DBF compared to the comparative device 24 including the compound having the structure Cz-DBF-DBF-Cz has a power It can be seen that the efficiency is increased by about 42% and the life is extended by about 73%.
  • the power efficiency of the comparative elements 25 and 26 comprising different compounds from the compounds according to the invention in that Cz is included in at least three structures is about 4.47 m / W and about 4.21 lm / W, respectively, and the lifetime is about It can be seen that 60 hours and about 52 hours.
  • the light emitting devices G-1 to G-14 using the compounds according to the present invention having only two Cz have superior power efficiency and lifespan compared to the comparative devices 25 and 26.
  • the light emitting device G-2 using the compound according to Example 2 having the DBT-Cz-Cz-DBT structure has a high power efficiency. It can be seen that the increase is about 58% and the lifespan is about 105% longer.
  • NPB is deposited as a host material at a rate of 1 ⁇ s / sec and simultaneously a P-type dopant (HAT-CN) represented by Chemical Formula 13 is deposited on the host material 100.
  • HAT-CN P-type dopant
  • Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer.
  • NPB was deposited to a thickness of 300 ⁇ on the first layer to form a second layer.
  • a first blocking layer having a thickness of about 100 ⁇ s is formed on the second blocking layer with the compound according to Example 1, and the compound represented by Formula 19 and the compound represented by Formula 20 are 100: 5 by weight on the first blocking layer.
  • a second electrode using an aluminum thin film having a thickness of 1,000 ⁇ was formed to manufacture a blue light emitting device H-1 including the compound according to Example 1 of the present invention.
  • the light emitting device H- is substantially the same as the process of manufacturing the light emitting device H-1. 2 to H-14 was prepared.
  • Comparative elements 29 to 36 were manufactured by the same process as that of manufacturing the light emitting device H-1, except that the first blocking layer was manufactured using the compound according to Comparative Examples 1 to 8.
  • the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements F-1 to F-14.
  • the power efficiency was measured based on the value at / m 2 .
  • the lifespan of each of the light emitting elements H-1 to H-14 and the comparative elements 29 to 36 was measured in substantially the same manner as the life evaluation experiments for the light emitting elements F-1 to F-14.
  • Table 8 shows the results of power efficiency and lifespan of the light emitting elements H-1 to H-14 and the comparative elements 29 to 36, respectively.
  • the unit of the result of measuring the power efficiency is lm / W.
  • T 75 means the time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 .
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of the comparison element 29 (position 2 or 7) and the comparison element 36 (position 4 or 5) comprising a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that it is about 4.99 lm / W and about 3.65 lm / W, respectively, and the lifetimes are 68 hours and 47 hours, respectively.
  • the light emitting devices H-1 to H-14 using the compounds according to the present invention having a substitution position of 3 or 6 between Cz and Cz show superior power efficiency and lifespan as compared with the comparative devices 29 and 36.
  • the light emitting device H-6 using the compound according to Example 6 of the present invention in which only the substitution position between Cz and Cz is different compared to that of the comparative device 29, the power efficiency is increased by about 26% and the lifetime is increased by about 44%. It can be seen that.
  • the light emitting device H-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz in comparison with the comparison device 36 increases power efficiency by about 78% and has a long service life of about 115%. It can be seen.
  • the power efficiency of the comparative element 30 (position 3 or 6) including the compound at which the DBF is substituted is different from the compound according to the present invention is about 5.25 lm / W, and the lifetime is about 72 hours.
  • the light emitting devices H-7, H-9 and H-11 using the compounds according to the present invention, wherein the substitution positions of DBF are 1 or 8 have an increased power efficiency by about 14% compared to the comparative device 30, and have a lifetime. This is about 32% longer.
  • Comparative elements 31, 32 and 35 comprising compounds different from the compounds according to the invention in that Cz is not centrally located and substituted in the side chain are about 4.85 lm / W, about 4.46 lm / W and It can be seen that it is about 4.69 lm / W and the lifetime is about 66 hours, about 61 hours and about 64 hours.
  • the light emitting devices H-1 to H-14 using the compounds according to the present invention having Cz at the center show superior power efficiency and lifetime compared to the comparative devices 31, 32 and 35.
  • the light emitting device H-2 using the compound according to Example 2 according to the present invention having a DBT-Cz-Cz-DBT structure in comparison with the comparative device 31 including the compound having a Cz-DBT-DBT-Cz structure has a It can be seen that the efficiency is increased by about 34% and the life is extended by about 53%.
  • the light emitting device H-7 using the compound according to Example 7 having the structure of DBF-Cz-Cz-DBF compared to the comparison device 32 having the structure Cz-DBF-DBF-Cz had a power efficiency of about 37. It can be seen that it increases by% and the lifespan is about 57% longer.
  • the power efficiency of the comparative elements 33 and 34 comprising compounds different from the compound according to the present invention in that Cz is included in three or more structures is about 4.63 m / W and about 4.36 lm / W, respectively, and the lifetime is about It can be seen that it is 63 hours and about 54 hours.
  • the light emitting devices H-1 to H-14 using the compounds according to the present invention having only two Cz exhibit superior power efficiency and lifespan compared to the comparative devices 33 and 34.
  • the light emitting device H-2 using the compound according to Example 2 of the present invention having the DBT-Cz-Cz-DBT structure as compared to the comparative device 34 including the compound having the DBT-Cz-Cz-Cz-DBT structure It can be seen that the power efficiency is increased by about 49% and the life is extended by about 87%.
  • the light emitting device having improved power efficiency, lifetime, and thermal stability may be manufactured using the novel compound according to the present invention.

Abstract

From a novel compound, and a light emitting diode and an electronic apparatus comprising same, the novel compound is disclosed.

Description

신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치Novel compounds, light emitting devices and electronic devices comprising the same
본 발명은 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치에 관한 것으로, 더욱 상세하게는 유기 발광 소자용 화합물, 이를 포함하는 발광 소자 및 전자 장치에 관한 것이다.The present invention relates to a novel compound, a light emitting device and an electronic device including the same, and more particularly to a compound for an organic light emitting device, a light emitting device and an electronic device comprising the same.
일반적으로, 발광 소자는 서로 마주하는 2개의 전극들 및 상기 전극들 사이에 개재된 발광 화합물을 포함하는 발광층을 포함한다. 상기 전극들 사이에 전류를 흘려주면, 상기 발광 화합물이 광을 생성한다. 상기 발광 소자를 이용하는 표시 장치는 별도의 광원 장치가 필요 없어, 표시 장치의 무게, 사이즈나 두께를 감소시킬 수 있다. 또한, 상기 발광 소자를 이용하는 표시 장치는, 백라이트 및 액정을 이용하는 표시 장치에 비해 시야각, 대비비(contrast ratio), 색재현성 등이 우수하고, 소비전력이 낮은 장점이 있다.In general, a light emitting device includes a light emitting layer including two electrodes facing each other and a light emitting compound interposed between the electrodes. When a current flows between the electrodes, the light emitting compound generates light. The display device using the light emitting element does not need a separate light source device, and thus can reduce the weight, size or thickness of the display device. In addition, the display device using the light emitting device has an advantage of excellent viewing angle, contrast ratio, color reproducibility, and the like, and lower power consumption than the display device using the backlight and the liquid crystal.
상기 발광 소자는 양극과 상기 발광층 사이에 배치된 정공 수송층을 더 포함할 수 있다. 상기 정공 수송층은 상기 양극과 상기 발광층 사이의 계면을 안정화시키고 이들 사이의 에너지 장벽을 최소화시킬 수 있다.The light emitting device may further include a hole transport layer disposed between the anode and the light emitting layer. The hole transport layer may stabilize an interface between the anode and the light emitting layer and minimize an energy barrier therebetween.
그러나, 아직까지 발광 소자는 발광 수명이 짧고, 전력 효율이 낮은 문제점이 있다. 이와 같은 문제점들을 해결하기 위해서, 발광 소자의 재료로서 다양한 화합물들이 개발되고 있지만 발광 수명, 전력 효율 및 열적 안정성을 모두 만족시키는 발광 소자를 제조하는데 한계가 있다.However, the light emitting device has a short light emitting lifetime and low power efficiency. In order to solve these problems, various compounds have been developed as materials of the light emitting device, but there are limitations in manufacturing a light emitting device that satisfies all of the light emission life, power efficiency and thermal stability.
(특허문헌 1) 일본공개특허 제2008-294161호(Patent Document 1) Japanese Laid-Open Patent No. 2008-294161
(특허문헌 2) 한국공개특허 제2008-0104025호(Patent Document 2) Korean Patent Publication No. 2008-0104025
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 발광 소자에서 정공의 주입 및 수송 능력을 향상시키기 위한 신규한 화합물을 제공하는 것이다.Accordingly, the technical problem of the present invention was conceived in this respect, and an object of the present invention is to provide a novel compound for improving the ability to inject and transport holes in a light emitting device.
본 발명의 다른 목적은 상기 화합물을 포함하는 발광 소자를 제공하는 것이다.Another object of the present invention is to provide a light emitting device comprising the compound.
본 발명의 또 다른 목적은 상기 발광 소자를 포함하는 전자 장치를 제공하는 것이다.Still another object of the present invention is to provide an electronic device including the light emitting device.
상기 본 발명의 목적을 실현하기 위한 일 실시예에 따른 화합물은 하기 화학식 1로 나타낸다.Compound according to an embodiment for realizing the object of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2013008465-appb-I000001
Figure PCTKR2013008465-appb-I000001
상기 식에서In the above formula
La 및 Lb는 각각 독립적으로 *-L1-L2-L3-L4-*를 나타내고,L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *,
L1, L2, L3 및 L4는 각각 독립적으로 단일결합, -O-, -S-, 탄소수 6 내지 20을 갖는 아릴렌기, 탄소수 2 내지 20을 갖는 헤테로아릴렌기 또는 탄소수 3 내지 20을 갖는 시클로알킬렌기를 나타내며,L 1 , L 2 , L 3, and L 4 each independently represent a single bond, -O-, -S-, an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 2 to 20 carbon atoms, or 3 to 20 carbon atoms. A cycloalkylene group having
Ar1 및 Ar2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기, 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내며,Ar 1 and Ar 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, 2 to 20 carbon atoms A heterocycloalkyl group having a bicycloalkyl group having 5 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
[화학식 2-1][Formula 2-1]
Figure PCTKR2013008465-appb-I000002
Figure PCTKR2013008465-appb-I000002
[화학식 2-2][Formula 2-2]
Figure PCTKR2013008465-appb-I000003
Figure PCTKR2013008465-appb-I000003
Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내고,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
[화학식 3][Formula 3]
Figure PCTKR2013008465-appb-I000004
Figure PCTKR2013008465-appb-I000004
[화학식 4][Formula 4]
Figure PCTKR2013008465-appb-I000005
Figure PCTKR2013008465-appb-I000005
여기서 X는 N-W, O, S 또는 Si(R9)(R10)를 나타내며,Where X represents NW, O, S or Si (R 9 ) (R 10 ),
W는 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기를 나타내고,W is hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, carbon atoms A bicycloalkyl group having 5 to 20,
Y는 S 또는 O를 나타내며, Y represents S or O,
Z는 S를 나타내고,Z represents S,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기, 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타내며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or A heteroaryl group having 2 to 20 carbon atoms;
l은 0 내지 3의 정수, m, n 및 o는 각각 독립적으로 0 내지 4의 정수를 나타내고, p 및 q 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내고, r 및 s 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내며,l represents an integer of 0 to 3, m, n and o each independently represent an integer of 0 to 4, any one of p and q represents an integer of 0 to 3, and the other represents an integer of 0 to 4, one of r and s represents an integer of 0 to 3, the other represents an integer of 0 to 4,
화학식 3으로 표시되는 치환기는 1번 또는 8번 탄소 위치에서 화학식 1의 화합물에 치환되며,Substituents represented by Formula 3 are substituted with a compound of Formula 1 at carbon position 1 or 8,
화학식 4로 표시되는 치환기는 3번 또는 6번 탄소 위치에서 화학식 1의 화합물에 치환되고,The substituent represented by the formula (4) is substituted with the compound of the formula (1) at the carbon position 3 or 6,
화학식 1 내지 4에 대해 상기에서 설명한 치환체의 정의 중에서, 알킬기, 아릴기, 헤테로아릴기, 시클로알킬기, 헤테로시클로알킬기 및 바이시클로알킬기는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 1 내지 6을 갖는 1개 이상의 알킬기로 치환되거나 비치환된 아민기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 6 내지 20을 갖는 아릴옥시기, 탄소수 6 내지 20을 갖는 아릴티오기, 탄소수 1 내지 6의 알콕시카르보닐기, 할로겐기, 시아노기, 나이트로기, 하이드록시기 및 카르복시기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환되거나 비치환된다.Among the definitions of the substituents described above for Formulas 1 to 4, the alkyl group, aryl group, heteroaryl group, cycloalkyl group, heterocycloalkyl group and bicycloalkyl group are each independently an alkyl group having 1 to 6 carbon atoms and an alkoxy having 1 to 6 carbon atoms Groups, amine groups unsubstituted or substituted with one or more alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, It is unsubstituted or substituted with one or more substituents selected from the group consisting of an arylthio group having 6 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group and a carboxy group.
일 실시예에서, 상기 화학식 1의 화합물은 하기 화학식 5로 나타낼 수 있다.In one embodiment, the compound of Formula 1 may be represented by the formula (5).
[화학식 5][Formula 5]
Figure PCTKR2013008465-appb-I000006
Figure PCTKR2013008465-appb-I000006
상기 식에서,Where
Ar1, Ar2, La, Lb, R5 및 p는 제1항에서 정의한 바와 같고, Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
다른 실시예에서, 상기 화학식 1의 화합물은 하기 화학식 6으로 나타낼 수 있다.In another embodiment, the compound of Formula 1 may be represented by the following Formula 6.
[화학식 6][Formula 6]
Figure PCTKR2013008465-appb-I000007
Figure PCTKR2013008465-appb-I000007
상기 식에서,Where
Ar1, Ar2, La, Lb, R7 및 r은 제1항에서 정의한 바와 같고, Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 , Ar 2 , L a , L b , R 7 and r are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
또 다른 실시예에서, 상기 화학식 1의 화합물은 하기 화학식 7로 나타낼 수 있다.In another embodiment, the compound of Formula 1 may be represented by the following formula (7).
[화학식 7][Formula 7]
Figure PCTKR2013008465-appb-I000008
Figure PCTKR2013008465-appb-I000008
상기 식에서,Where
Ar1, Ar2, La, Lb, R5 및 p는 제1항에서 정의한 바와 같고, Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1 , Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
상기 본 발명의 또 다른 목적을 실현하기 위한 일 실시예에 따른 발광 소자는 제1 전극, 제2 전극, 발광층 및 상기 화학식 1로 나타내는 화합물을 포함하는 정공 수송성층을 포함한다. 상기 제1 전극 및 상기 제2 전극은 서로 마주하고, 상기 발광층은 상기 제1 및 제2 전극들 사이에 개재될 수 있으며, 상기 정공 수송성층은 상기 제1 전극과 상기 발광층 사이에 배치될 수 있다.A light emitting device according to an embodiment for realizing another object of the present invention includes a hole transport layer including a first electrode, a second electrode, a light emitting layer and the compound represented by the formula (1). The first electrode and the second electrode may face each other, the emission layer may be interposed between the first and second electrodes, and the hole transport layer may be disposed between the first electrode and the emission layer. .
일 실시예에서, 상기 정공 수송성층은 상기 화합물 및 P형 도펀트를 포함하는 제1 층과, 상기 화합물을 포함하는 제2 층을 포함할 수 있다. 예를 들어, 상기 제1 층은 상기 제1 전극과 상기 발광층 사이에 배치되고, 상기 제2 층은 상기 제1 층과 상기 발광층 사이에 배치될 수 있다. 이때, 상기 제2 층이 상기 제1 층의 P형 도펀트와 실질적으로 동일하거나 다른 종류의 도펀트를 더 포함할 수 있다.In one embodiment, the hole transport layer may include a first layer comprising the compound and a P-type dopant, and a second layer comprising the compound. For example, the first layer may be disposed between the first electrode and the light emitting layer, and the second layer may be disposed between the first layer and the light emitting layer. In this case, the second layer may further include a dopant of the same type or different from the P-type dopant of the first layer.
상기 본 발명의 또 다른 목적을 실현하기 위한 일 실시예에 따른 전자 장치는 상기 화학식 1로 나타내는 화합물을 포함하는 정공 수송성층을 포함할 수 있다.According to another aspect of the present disclosure, an electronic device may include a hole transport layer including the compound represented by Chemical Formula 1.
이와 같은 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치에 따르면, 본 발명의 신규한 화합물이 발광 소자에서 정공(hole)의 주입 및/또는 수송 능력을 향상시킬 수 있다.According to such a novel compound, a light emitting device and an electronic device including the same, the novel compound of the present invention can improve the ability to inject and / or transport holes in the light emitting device.
또한, 상기 화합물을 이용함으로써 상기 발광 소자의 발광 효율을 향상시키고, 수명이 증가될 수 있다. 또한, 상기 발광 소자의 열적 안정성(내열성)을 향상시킬 수 있다.In addition, by using the compound, the light emitting efficiency of the light emitting device may be improved, and the life may be increased. In addition, the thermal stability (heat resistance) of the light emitting device can be improved.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.2 is a cross-sectional view illustrating a light emitting device according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.3 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
이하에서는, 본 발명에 따른 신규한 화합물에 대해서 먼저 설명하고, 상기 화합물을 포함하는 발광 소자에 대해서 첨부한 도면들을 참조하여 보다 상세하게 설명하기로 한다.Hereinafter, a novel compound according to the present invention will be described first, and a light emitting device including the compound will be described in more detail with reference to the accompanying drawings.
본 발명에 따른 화합물은 하기 화학식 1로 나타낸다.The compound according to the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2013008465-appb-I000009
Figure PCTKR2013008465-appb-I000009
상기 식에서In the above formula
La 및 Lb는 각각 독립적으로 *-L1-L2-L3-L4-*를 나타내고,L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *,
L1, L2, L3 및 L4는 각각 독립적으로 단일결합, -O-, -S-, 탄소수 6 내지 20을 갖는 아릴렌기, 탄소수 2 내지 20을 갖는 헤테로아릴렌기 또는 탄소수 3 내지 20을 갖는 시클로알킬렌기를 나타내며,L 1 , L 2 , L 3, and L 4 each independently represent a single bond, -O-, -S-, an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 2 to 20 carbon atoms, or 3 to 20 carbon atoms. A cycloalkylene group having
Ar1 및 Ar2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기, 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내며,Ar 1 and Ar 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, 2 to 20 carbon atoms A heterocycloalkyl group having a bicycloalkyl group having 5 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
[화학식 2-1][Formula 2-1]
Figure PCTKR2013008465-appb-I000010
Figure PCTKR2013008465-appb-I000010
[화학식 2-2][Formula 2-2]
Figure PCTKR2013008465-appb-I000011
Figure PCTKR2013008465-appb-I000011
Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내고,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
[화학식 3][Formula 3]
Figure PCTKR2013008465-appb-I000012
Figure PCTKR2013008465-appb-I000012
[화학식 4][Formula 4]
Figure PCTKR2013008465-appb-I000013
Figure PCTKR2013008465-appb-I000013
여기서 X는 N-W, O, S 또는 Si(R9)(R10)를 나타내며,Where X represents NW, O, S or Si (R 9 ) (R 10 ),
W는 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기를 나타내고,W is hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, carbon atoms A bicycloalkyl group having 5 to 20,
Y는 S 또는 O를 나타내며, Y represents S or O,
Z는 S를 나타내고,Z represents S,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기, 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타내며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or A heteroaryl group having 2 to 20 carbon atoms;
l은 0 내지 3의 정수, m, n 및 o는 각각 독립적으로 0 내지 4의 정수를 나타내고, p 및 q 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내고, r 및 s 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내며,l represents an integer of 0 to 3, m, n and o each independently represent an integer of 0 to 4, any one of p and q represents an integer of 0 to 3, and the other represents an integer of 0 to 4, one of r and s represents an integer of 0 to 3, the other represents an integer of 0 to 4,
화학식 3으로 표시되는 치환기는 1번 또는 8번 탄소 위치에서 화학식 1의 화합물에 치환되며,Substituents represented by Formula 3 are substituted with a compound of Formula 1 at carbon position 1 or 8,
화학식 4로 표시되는 치환기는 3번 또는 6번 탄소 위치에서 화학식 1의 화합물에 치환되고,The substituent represented by the formula (4) is substituted with the compound of the formula (1) at the carbon position 3 or 6,
화학식 1 내지 4에 대해 상기에서 설명한 치환체의 정의 중에서, 알킬기, 아릴기, 헤테로아릴기, 시클로알킬기, 헤테로시클로알킬기 및 바이시클로알킬기는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 1 내지 6을 갖는 1개 이상의 알킬기로 치환되거나 비치환된 아민기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 6 내지 20을 갖는 아릴옥시기, 탄소수 6 내지 20을 갖는 아릴티오기, 탄소수 1 내지 6의 알콕시카르보닐기, 할로겐기, 시아노기, 나이트로기, 하이드록시기 및 카르복시기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환되거나 비치환된다.Among the definitions of the substituents described above for Formulas 1 to 4, the alkyl group, aryl group, heteroaryl group, cycloalkyl group, heterocycloalkyl group and bicycloalkyl group are each independently an alkyl group having 1 to 6 carbon atoms and an alkoxy having 1 to 6 carbon atoms Groups, amine groups unsubstituted or substituted with one or more alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, It is unsubstituted or substituted with one or more substituents selected from the group consisting of an arylthio group having 6 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group and a carboxy group.
본 발명에서, “아릴기”는 방향족 탄화수소로부터 유도된 1가의 치환기로 정의된다.In the present invention, "aryl group" is defined as a monovalent substituent derived from an aromatic hydrocarbon.
상기 아릴기의 구체적인 예로서는, 페닐기(phenyl group), 나프틸기(naphthyl group), 안트라세닐기(anthracenyl group), 나프타세닐기(naphthacenyl group), 피레닐기(pyrenyl group), 톨릴기(tolyl group), 바이페닐기(biphenyl group), 터페닐기(terphenyl group), 크리세닐기(chrycenyl group), 스피로바이플루오레닐기(spirobifluorenyl group), 플루오란테닐기(fluoranthenyl group), 플루오레닐기(fluorenyl group), 페릴레닐기(perylenyl group), 인데닐기(indenyl group), 아줄레닐기(azulenyl group), 헵타레닐기(heptalenyl group), 페날레닐기(phenalenyl group), 페난트레닐기(phenanthrenyl group) 등을 들 수 있다.Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a naphthacenyl group, a pyrenyl group, a tolyl group, Biphenyl group, terphenyl group, chrycenyl group, spirobifluorenyl group, fluoranthenyl group, fluorenyl group, fluorenyl group Perylenyl group, indenyl group, azulenyl group, azulenyl group, heptalenyl group, phenalenyl group, phenanthrenyl group, and the like. .
아릴기는 6 내지 20의 탄소수, 예를 들어 6 내지 18의 탄소수, 또는 6 내지 12의 탄소수를 가진다.The aryl group has 6 to 20 carbon atoms, for example, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
“헤테로아릴기”는 단환 또는 축합환으로부터 유도된 “방향족 복소환”을 나타낸다. 상기 헤테로아릴기는, 헤테로원자로서 질소(N), 황(S), 산소(O), 인(P), 셀레늄(Se) 및 규소(Si) 중에서 적어도 하나, 예를 들어 1개, 2개, 3개 또는 4개를 포함할 수 있다."Heteroaryl group" refers to an "aromatic heterocycle" derived from a monocyclic or condensed ring. The heteroaryl group, at least one of nitrogen (N), sulfur (S), oxygen (O), phosphorus (P), selenium (Se) and silicon (Si) as a hetero atom, for example, one, two, It can include three or four.
상기 헤테로아릴기의 구체적인 예로서는, 피롤릴기(pyrrolyl group), 피리딜기(pyridyl group), 피리다지닐기(pyridazinyl group), 피리미디닐기(pyrimidinyl group), 피라지닐기(pyrazinyl group), 트리아졸릴기(triazolyl group), 테트라졸릴기(tetrazolyl group), 벤조트리아졸릴기(benzotriazolyl group), 피라졸릴기(pyrazolyl group), 이미다졸릴기(imidazolyl group), 벤즈이미다졸릴기(benzimidazolyl group), 인돌릴기(indolyl group), 이소인돌릴기(isoindolyl group), 인돌리지닐기(indolizinyl group), 푸리닐기(purinyl group), 인다졸릴기(indazolyl group), 퀴놀릴기(quinolyl group), 이소퀴놀리닐기(isoquinolinyl group), 퀴놀리지닐기(quinolizinyl group), 프탈라지닐기(phthalazinyl group), 나프틸리디닐기(naphthylidinyl group), 퀴녹살리닐기(quinoxalinyl group), 퀴나졸리닐기(quinazolinyl group), 신놀리닐기(cinnolinyl group), 프테리디닐기(pteridinyl group), 이미다조트리아지닐기(imidazotriazinyl group), 아크리디닐기(acridinyl group), 페난트리디닐기(phenanthridinyl group), 카바졸릴기(carbazolyl group), 페난트롤리닐기(phenanthrolinyl group), 페나지닐기(phenazinyl group), 이미다조피리디닐기(imidazopyridinyl group), 이미다조피리미디닐기(imidazopyrimidinyl group), 피라졸로피리디닐기(pyrazolopyridinyl group) 등을 포함하는 함질소 헤테로아릴기; 티에닐기(thienyl group), 벤조티에닐기(benzothienyl group), 디벤조티에닐기(dibenzothienyl group) 등을 포함하는 황함유 헤테로아릴기; 푸릴기(furyl group), 피라닐기(pyranyl group), 시클로펜타피라닐기(cyclopentapyranyl group), 벤조퓨라닐기(benzofuranyl group), 이소벤조퓨라닐기(isobenzofuranyl group), 디벤조퓨라닐기(dibenzofuranyl group) 등을 포함하는 함산소 헤테로아릴기 등을 들 수 있다. 또한, 상기 헤테로 아릴기의 구체적인 예로서는, 티아졸릴기(thiazolyl group), 이소티아졸릴기(isothiazolyl group), 벤조티아졸릴기(benzothiazolyl group), 벤조티아디아졸릴기(benzothiadiazolyl group), 페노티아지닐기(phenothiazinyl group), 이속사졸릴기(isoxazolyl group), 푸라자닐기(furazanyl group), 페녹사지닐기(phenoxazinyl group), 옥사졸릴기(oxazolyl group), 벤즈옥사졸릴기(benzoxazolyl group), 옥사디아졸릴기(oxadiazolyl group), 피라졸로옥사졸릴기(pyrazoloxazolyl group), 이미다조티아졸릴기(imidazothiazolyl group), 티에노퓨라닐기(thienofuranyl group) 등의 적어도 2개 이상의 헤테로원자를 포함하는 화합물들을 들 수 있다.Specific examples of the heteroaryl group include a pyrrolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazolyl group (triazolyl group, tetrazolyl group, benzotriazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, indole Indolyl group, isoindolyl group, indolizinyl group, indolinzinyl group, purinyl group, inindazolyl group, quinolyl group, quinolyl group, isoquinolyl Isoquinolinyl group, quinolizinyl group, phthalazinyl group, phthalazinyl group, naphthylidinyl group, quinoxalinyl group, quinazolinyl group, quinazolinyl group Cinolinyl group, pterididinyl group, imida Zotriazinyl group (imidazotriazinyl group), acridinyl group (acridinyl group), phenanthridinyl group (phenanthridinyl group), carbazolyl group, phenanthrolinyl group (phenanthrolinyl group), phenazinyl group, Nitrogen-containing heteroaryl groups including an imidazopyridinyl group, an imidazopyrimidinyl group, a pyrazolopyridinyl group, and the like; Sulfur-containing heteroaryl groups including thienyl group, benzothienyl group, dibenzothienyl group and the like; Furyl group, pyranyl group, cyclopentapyranyl group, cyclopentapyranyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group and dibenzofuranyl group An oxygen-containing heteroaryl group etc. which are included are mentioned. In addition, specific examples of the heteroaryl group may include a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, a benzothiadiazolyl group, and a phenothiazinyl group. (phenothiazinyl group), isoxazolyl group, furazanyl group, furazanyl group, phenoxazinyl group, oxazolyl group, benzoxazolyl group, benzoxazolyl group Compounds containing at least two or more heteroatoms, such as an oxadiazolyl group, a pyrazoloxazolyl group, an imidazothiazolyl group, a thienofuranyl group, and the like have.
헤테로아릴기는 2 내지 20의 탄소수, 예를 들어 3 내지 19의 탄소수, 4 내지 15의 탄소수 또는 5 내지 11의 탄소수를 가질 수 있다. 예를 들어, 헤테로원자를 포함하면, 헤테로아릴기는 5 내지 21의 환원(ring member)을 가질 수 있다.The heteroaryl group may have 2 to 20 carbon atoms, for example, 3 to 19 carbon atoms, 4 to 15 carbon atoms, or 5 to 11 carbon atoms. For example, when including a heteroatom, the heteroaryl group may have a ring member of 5 to 21.
“알킬기”는 직쇄(linear) 또는 분지(branched) 상 포화탄화수소로부터 유도된 작용기로 정의된다.An "alkyl group" is defined as a functional group derived from linear or branched saturated hydrocarbons.
상기 알킬기의 구체적인 예로서는, 메틸기(methyl group), 에틸기(ethyl group), n-프로필기(n-propyl group), 이소프로필기(iso-propyl group), n-부틸기(n-butyl group), sec-부틸기(sec-butyl group), t-부틸기(tert-butyl group), n-펜틸기(n-pentyl group), 1,1-디메틸프로필기(1,1-dimethylpropyl group), 1,2-디메틸프로필기(1,2-dimethylpropyl group), 2,2-디메틸프로필기(2,2-dimethylpropyl group), 1-에틸프로필기(1-ethylpropyl group), 2-에틸프로필기(2-ethylpropyl group), n-헥실기(n-hexyl group), 1-메틸-2-에틸프로필기(1-methyl-2-ethylpropyl group), 1-에틸-2-메틸프로필기(1-ethyl-2-methylpropyl group), 1,1,2-트리메틸프로필기(1,1,2-trimethylpropyl group), 1-프로필프로필기(1-propylpropyl group), 1-메틸부틸기(1-methylbutyl group), 2-메틸부틸기(2-methylbutyl group), 1,1-디메틸부틸기(1,1-dimethylbutyl group), 1,2-디메틸부틸기(1,2-dimethylbutyl group), 2,2-디메틸부틸기(2,2-dimethylbutyl group), 1,3-디메틸부틸기(1,3-dimethylbutyl group), 2,3-디메틸부틸기(2,3-dimethylbutyl group), 2-에틸부틸기(2-ethylbutyl group), 2-메틸펜틸기(2-methylpentyl group), 3-메틸펜틸기(3-methylpentyl group) 등을 들 수 있다.Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, 1,1-dimethylpropyl group, 1 , 2-dimethylpropyl group (1,2-dimethylpropyl group), 2,2-dimethylpropyl group (2,2-dimethylpropyl group), 1-ethylpropyl group (1-ethylpropyl group), 2-ethylpropyl group (2 -ethylpropyl group), n-hexyl group, 1-methyl-2-ethylpropyl group, 1-ethyl-2-methylpropyl group (1-ethyl- 2-methylpropyl group), 1,1,2-trimethylpropyl group (1,1,2-trimethylpropyl group), 1-propylpropyl group (1-propylpropyl group), 1-methylbutyl group (1-methylbutyl group), 2-methylbutyl group, 1,1-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl Group (2,2-dimeth ylbutyl group), 1,3-dimethylbutyl group (1,3-dimethylbutyl group), 2,3-dimethylbutyl group (2,3-dimethylbutyl group), 2-ethylbutyl group (2-ethylbutyl group), 2- Methyl pentyl group (2-methylpentyl group), 3-methylpentyl group, etc. are mentioned.
알킬기는 1 내지 20의 탄소수, 예를 들어 1 내지 12의 탄소수, 1 내지 6의 탄소수, 또는 1 내지 4의 탄소수를 가진다.The alkyl group has 1 to 20 carbon atoms, for example 1 to 12 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.
“시클로알킬기”는 단일고리(monocyclic) 의 포화탄화수소로부터 유도된 작용기로 정의된다.A "cycloalkyl group" is defined as a functional group derived from a monocyclic saturated hydrocarbon.
상기 시클로알킬기의 구체적인 예로서는, 시클로프로필기(cyclopropyl group), 시클로부틸기(cyclobutyl group), 시클로펜틸기(cyclopentyl group), 시클로헥실기(cyclohexyl group), 시클로헵틸기(cycloheptyl group) 또는 시클로옥틸기(cyclooctyl group) 등을 들 수 있다.Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, or a cyclooctyl group (cyclooctyl group) etc. are mentioned.
시클로알킬기는 3 내지 20의 탄소수, 예를 들어 3 내지 12의 탄소수, 또는 3 내지 6의 탄소수를 가진다.The cycloalkyl group has 3 to 20 carbon atoms, for example 3 to 12 carbon atoms, or 3 to 6 carbon atoms.
“헤테로시클로알킬기”는 탄소 원자 이외에 1종 이상의 헤테로원자를 고리의 요소로서 함유하는 비방향족의 단일고리 또는 다중고리기로 정의한다. 헤테로원자는 산소(O), 질소(N), 황(S), 셀레늄(Se) 또는 인(P) 원자를 포함할 수 있고, 이에 제한되지 않는다. 또한, 헤테로시클로알킬기가 방향족 고리를 포함하지 않더라도, 헤테로시클로알킬기의 고리를 구성하는 탄소원자-탄소원자 또는 탄소원자-헤테로원자를 연결하는 결합은 이중 결합을 포함할 수 있다. A "heterocycloalkyl group" is defined as a non-aromatic monocyclic or polycyclic group containing at least one heteroatom as a cyclic element in addition to a carbon atom. Heteroatoms may include, but are not limited to, oxygen (O), nitrogen (N), sulfur (S), selenium (Se), or phosphorus (P) atoms. Further, even if the heterocycloalkyl group does not include an aromatic ring, the bond connecting the carbon atom-carbon atom or carbon atom-heteroatom constituting the ring of the heterocycloalkyl group may include a double bond.
상기 헤테로시클로알킬기의 구체적인 예에는 2-피롤리디닐기(2-pyrrolidinyl group), 3-피롤리디닐기(3-pyrrolidinyl group), 피페리디닐기(piperidinyl group), 2-테트라하이드로퓨라닐기(2-tetrahydrofuranyl group), 3-테트라하이드로퓨라닐기(3-tetrahydrofuranyl group), 2-테트라하이드로티에닐기(2-tetrahydrothienyl group) 및 3-테트라하이드로티에닐기(3-tetrahydrothienyl group)이 포함되지만, 이에 한정되는 것은 아니다. Specific examples of the heterocycloalkyl group include 2-pyrrolidinyl group, 3-pyrrolidinyl group, 3-pyrrolidinyl group, piperidinyl group, 2-tetrahydrofuranyl group (2 -tetrahydrofuranyl group, 3-tetrahydrofuranyl group, 2-tetrahydrothienyl group and 3-tetrahydrothienyl group, but are not limited thereto. It is not.
헤테로시클로알킬기는 2 내지 20의 탄소수, 예를 들어 3 내지 19의 탄소수, 또는 5 내지 11의 탄소수를 가진다. 즉, 헤테로원자를 포함하면, 헤테로시클로알킬기는 3 내지 21의 환원(ring member), 예를 들어 4 내지 20의 환원, 또는 6 내지 12의 환원을 가진다.Heterocycloalkyl groups have 2 to 20 carbon atoms, for example 3 to 19 carbon atoms, or 5 to 11 carbon atoms. That is to say that if a heteroatom is included, the heterocycloalkyl group has a ring member of 3 to 21, for example 4 to 20, or 6 to 12.
“바이시클로알킬기”는, 2개의 알킬 고리들 각각에서 선택된 적어도 1개의 탄소 원자가 서로 연결된 구조를 갖는 작용기를 의미한다. "Bicycloalkyl group" means a functional group having a structure in which at least one carbon atom selected from each of two alkyl rings is connected to each other.
바이시클로알킬기의 구체적인 예로서는, 바이시클로펜틸기(bicyclopentyl group), 바이시클로헥실기(bicyclohexyl group), 바이시클로헵틸기(bicycloheptyl group), 바이시클로옥틸기(bicyclootyl group), 바이시클로노닐기(bicyclononyl group) 또는 바이시클로데실기(bicyclodecyl group) 등을 들 수 있다.As a specific example of a bicycloalkyl group, a bicyclopentyl group, a bicyclohexyl group, a bicycloheptyl group, a bicyclootyl group, a bicyclononyl group Or a bicyclodecyl group.
바이시클로알킬기는 5 내지 20의 탄소수, 예를 들어 7 내지 18의 탄소수, 또는 7 내지 12의 탄소수를 가진다.The bicycloalkyl group has 5 to 20 carbon atoms, for example 7 to 18 carbon atoms, or 7 to 12 carbon atoms.
또한, “아릴렌기”는 상기에서 설명한 아릴기로부터 유도된 2가의 치환기를 의미할 수 있다.In addition, "arylene group" may mean a divalent substituent derived from the aryl group described above.
또한, “헤테로아릴렌기”는 상기에서 설명한 헤테로아릴기로부터 유도된 2가의 치환기를 의미할 수 있다.In addition, "heteroarylene group" may mean a divalent substituent derived from the heteroaryl group described above.
본 발명에서 3개의 고리를 가지는 헤테로아릴에 있어서, 치환하거나 치환될 수 있는 탄소원자의 위치는 헤테로원자를 기준으로 하기와 같이 표시하고, 이하에서는 이를 토대로 설명한다.In the heteroaryl having three rings in the present invention, the position of the carbon atom which may be substituted or substituted is represented as follows based on the hetero atom, and will be described below based on this.
Figure PCTKR2013008465-appb-I000014
Figure PCTKR2013008465-appb-I000014
상기 식에서 Z는, 상기 화학식 2-1의 X, 상기 화학식 3의 Y 또는 상기 화학식 4의 Z 를 나타낸다.In the above formula, Z represents X of Chemical Formula 2-1, Y of Chemical Formula 3 or Z of Chemical Formula 4.
이하에서 사용하는 약어 “Cz”는 카바졸(carbazole)을, “DBT”는 디벤조티오펜(dibenzothiophene)을, “DBF”는 디벤조퓨란(dibenzofuran)을 나타낸다.The abbreviation "Cz" used below refers to carbazole, "DBT" to dibenzothiophene, and "DBF" to dibenzofuran.
상기 화학식 1의 일 실시예에서, In one embodiment of Formula 1,
La 및 Lb는 각각 독립적으로 *-L1-L2-L3-L4-*를 나타내고,L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *,
L1, L2, L3 및 L4는 각각 독립적으로 단일결합 또는 탄소수 6 내지 20을 갖는 아릴렌기를 나타내며,L 1 , L 2 , L 3 and L 4 each independently represent a single bond or an arylene group having 6 to 20 carbon atoms,
Ar1 및 Ar2는 각각 독립적으로 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내고,Ar 1 and Ar 2 each independently represent an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
[화학식 2-1][Formula 2-1]
Figure PCTKR2013008465-appb-I000015
Figure PCTKR2013008465-appb-I000015
[화학식 2-2][Formula 2-2]
Figure PCTKR2013008465-appb-I000016
Figure PCTKR2013008465-appb-I000016
Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내며,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
[화학식 3][Formula 3]
Figure PCTKR2013008465-appb-I000017
Figure PCTKR2013008465-appb-I000017
[화학식 4][Formula 4]
Figure PCTKR2013008465-appb-I000018
Figure PCTKR2013008465-appb-I000018
여기서 X는 N-W, O, S 또는 Si(R9)(R10)를 나타내고,Where X represents NW, O, S or Si (R 9 ) (R 10 ),
W는 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타내며,W represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms,
Y는 S 또는 O를 나타내고, Y represents S or O,
Z는 S를 나타내며,Z represents S,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기를 나타내고,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. ,
m, n, l, o, p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타낼 수 있다.m, n, l, o, p, q, r and s may each independently represent an integer of 0 to 2.
상기 화학식 1의 다른 실시예에서, In another embodiment of Formula 1,
La 및 Lb는 각각 독립적으로 단일결합 또는 탄소수 6 내지 20을 갖는 아릴렌기를 나타내며,L a and L b each independently represent a single bond or an arylene group having 6 to 20 carbon atoms,
Ar1 및 Ar2는 각각 독립적으로 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기로 치환되거나 비치환된 탄소수 6 내지 20을 갖는 아릴기; 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기로 치환되거나 비치환된 탄소수 2 내지 20을 갖는 헤테로아릴기; 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내고,Ar 1 and Ar 2 are each independently an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Heteroaryl groups having 2 to 20 carbon atoms which are unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Formula 2-1 or Formula 2-2,
[화학식 2-1][Formula 2-1]
Figure PCTKR2013008465-appb-I000019
Figure PCTKR2013008465-appb-I000019
[화학식 2-2][Formula 2-2]
Figure PCTKR2013008465-appb-I000020
Figure PCTKR2013008465-appb-I000020
Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내고,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
[화학식 3][Formula 3]
Figure PCTKR2013008465-appb-I000021
Figure PCTKR2013008465-appb-I000021
[화학식 4][Formula 4]
Figure PCTKR2013008465-appb-I000022
Figure PCTKR2013008465-appb-I000022
여기서 X는 O, S 또는 Si(R9)(R10)를 나타내고,Where X represents O, S or Si (R 9 ) (R 10 ),
Y는 S 또는 O를 나타내며, Y represents S or O,
Z는 S를 나타내고,Z represents S,
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기를 나타내며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. ,
m, n, l, o, p 및 q는 각각 독립적으로 0 또는 1을 나타낼 수 있다.m, n, l, o, p and q may each independently represent 0 or 1.
상기 화학식 1의 또 다른 실시예에서, In another embodiment of Formula 1,
La 및 Lb는 각각 독립적으로 단일결합 또는 페닐렌을 나타내며,L a and L b each independently represent a single bond or phenylene,
Ar1 및 Ar2는 각각 독립적으로 메틸기 또는 페닐기로 치환되거나 비치환된 페닐기; 나프틸기; 또는 하기 화학식 2-1을 나타내며,Ar 1 and Ar 2 are each independently a phenyl group unsubstituted or substituted with a methyl group or a phenyl group; Naphthyl group; Or represented by the formula 2-1,
[화학식 2-1][Formula 2-1]
Figure PCTKR2013008465-appb-I000023
Figure PCTKR2013008465-appb-I000023
Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내며,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
[화학식 3][Formula 3]
Figure PCTKR2013008465-appb-I000024
Figure PCTKR2013008465-appb-I000024
[화학식 4][Formula 4]
Figure PCTKR2013008465-appb-I000025
Figure PCTKR2013008465-appb-I000025
여기서 X는 O, S 또는 Si(R9)(R10)를 나타내고,Where X represents O, S or Si (R 9 ) (R 10 ),
Y는 S 또는 O를 나타내며, Y represents S or O,
Z는 S를 나타내고,Z represents S,
R5 및 R7은 각각 독립적으로 메틸기 또는 페닐기를 나타내며, R 5 and R 7 each independently represent a methyl group or a phenyl group,
R9 및 R10은 각각 독립적으로 메틸기를 나타내고,R 9 and R 10 each independently represent a methyl group,
p 및 r은 각각 독립적으로 0 또는 1을 나타내며, p and r each independently represent 0 or 1,
l, m, q 및 s는 각각 독립적으로 0을 나타낼 수 있다.l, m, q and s may each independently represent 0.
상기 화학식 1의 화합물은 대표적으로 하기 화학식 5, 화학식 6 또는 화학식 7로 나타낼 수 있다.The compound of Formula 1 may be represented by the following Formula 5, Formula 6 or Formula 7.
[화학식 5][Formula 5]
Figure PCTKR2013008465-appb-I000026
Figure PCTKR2013008465-appb-I000026
상기 식에서,Where
Ar1, Ar2, La, Lb, R5 및 p는 상기에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined above,
Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
[화학식 6][Formula 6]
Figure PCTKR2013008465-appb-I000027
Figure PCTKR2013008465-appb-I000027
상기 식에서,Where
Ar1, Ar2, La, Lb, R7 및 r은 상기에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 7 and r are as defined above,
Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
[화학식 7][Formula 7]
Figure PCTKR2013008465-appb-I000028
Figure PCTKR2013008465-appb-I000028
상기 식에서,Where
Ar1, Ar2, La, Lb, R5 및 p는 상기에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined above,
Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
상기 화학식 5로 나타내는 화합물의 구체적인 예로서는, 하기 구조 A-1 내지 구조 A-18로 나타내는 화합물들을 들 수 있다.Specific examples of the compound represented by Formula 5 include compounds represented by the following structures A-1 to A-18.
[구조 A-1][Structure A-1]
Figure PCTKR2013008465-appb-I000029
Figure PCTKR2013008465-appb-I000029
[구조 A-2][Structure A-2]
Figure PCTKR2013008465-appb-I000030
Figure PCTKR2013008465-appb-I000030
[구조 A-3]Structure A-3
Figure PCTKR2013008465-appb-I000031
Figure PCTKR2013008465-appb-I000031
[구조 A-4]Structure A-4
Figure PCTKR2013008465-appb-I000032
Figure PCTKR2013008465-appb-I000032
[구조 A-5][Structure A-5]
Figure PCTKR2013008465-appb-I000033
Figure PCTKR2013008465-appb-I000033
[구조 A-6][Structure A-6]
Figure PCTKR2013008465-appb-I000034
Figure PCTKR2013008465-appb-I000034
[구조 A-7] [Structure A-7]
Figure PCTKR2013008465-appb-I000035
Figure PCTKR2013008465-appb-I000035
[구조 A-8][Structure A-8]
Figure PCTKR2013008465-appb-I000036
Figure PCTKR2013008465-appb-I000036
[구조 A-9]Structure A-9
Figure PCTKR2013008465-appb-I000037
Figure PCTKR2013008465-appb-I000037
[구조 A-10][Structure A-10]
Figure PCTKR2013008465-appb-I000038
Figure PCTKR2013008465-appb-I000038
[구조 A-11]Structure A-11
Figure PCTKR2013008465-appb-I000039
Figure PCTKR2013008465-appb-I000039
[구조 A-12][Frame A-12]
Figure PCTKR2013008465-appb-I000040
Figure PCTKR2013008465-appb-I000040
[구조 A-13]Structure A-13
Figure PCTKR2013008465-appb-I000041
Figure PCTKR2013008465-appb-I000041
[구조 A-14][Frame A-14]
Figure PCTKR2013008465-appb-I000042
Figure PCTKR2013008465-appb-I000042
[구조 A-15][Frame A-15]
Figure PCTKR2013008465-appb-I000043
Figure PCTKR2013008465-appb-I000043
[구조 A-16][Structure A-16]
Figure PCTKR2013008465-appb-I000044
Figure PCTKR2013008465-appb-I000044
[구조 A-17][Structure A-17]
Figure PCTKR2013008465-appb-I000045
Figure PCTKR2013008465-appb-I000045
[구조 A-18][Frame A-18]
Figure PCTKR2013008465-appb-I000046
Figure PCTKR2013008465-appb-I000046
상기 화학식 6으로 나타내는 화합물의 구체적인 예로서는, 하기 구조 B-1 내지 구조 B-11로 나타내는 화합물들을 들 수 있다.Specific examples of the compound represented by the formula (6) include compounds represented by the following structures B-1 to B-11.
[구조 B-1][Structure B-1]
Figure PCTKR2013008465-appb-I000047
Figure PCTKR2013008465-appb-I000047
[구조 B-2][Structure B-2]
Figure PCTKR2013008465-appb-I000048
Figure PCTKR2013008465-appb-I000048
[구조 B-3][Structure B-3]
Figure PCTKR2013008465-appb-I000049
Figure PCTKR2013008465-appb-I000049
[구조 B-4][Structure B-4]
Figure PCTKR2013008465-appb-I000050
Figure PCTKR2013008465-appb-I000050
[구조 B-5][Structure B-5]
Figure PCTKR2013008465-appb-I000051
Figure PCTKR2013008465-appb-I000051
[구조 B-6][Structure B-6]
Figure PCTKR2013008465-appb-I000052
Figure PCTKR2013008465-appb-I000052
[구조 B-7][Structure B-7]
Figure PCTKR2013008465-appb-I000053
Figure PCTKR2013008465-appb-I000053
[구조 B-8][Structure B-8]
Figure PCTKR2013008465-appb-I000054
Figure PCTKR2013008465-appb-I000054
[구조 B-9][Structure B-9]
Figure PCTKR2013008465-appb-I000055
Figure PCTKR2013008465-appb-I000055
[구조 B-10][Structure B-10]
Figure PCTKR2013008465-appb-I000056
Figure PCTKR2013008465-appb-I000056
[구조 B-11][Structure B-11]
Figure PCTKR2013008465-appb-I000057
Figure PCTKR2013008465-appb-I000057
상기 화학식 7로 나타내는 화합물의 구체적인 예로서는, 하기 구조 C-1 내지 구조 C-10으로 나타내는 화합물들을 들 수 있다.Specific examples of the compound represented by Formula 7 include compounds represented by the following structures C-1 to C-10.
[구조 C-1][Structure C-1]
Figure PCTKR2013008465-appb-I000058
Figure PCTKR2013008465-appb-I000058
[구조 C-2][Structure C-2]
Figure PCTKR2013008465-appb-I000059
Figure PCTKR2013008465-appb-I000059
[구조 C-3]Structure C-3
Figure PCTKR2013008465-appb-I000060
Figure PCTKR2013008465-appb-I000060
[구조 C-4][Structure C-4]
Figure PCTKR2013008465-appb-I000061
Figure PCTKR2013008465-appb-I000061
[구조 C-5][Structure C-5]
Figure PCTKR2013008465-appb-I000062
Figure PCTKR2013008465-appb-I000062
[구조 C-6][Structure C-6]
Figure PCTKR2013008465-appb-I000063
Figure PCTKR2013008465-appb-I000063
[구조 C-7][Structure C-7]
Figure PCTKR2013008465-appb-I000064
Figure PCTKR2013008465-appb-I000064
[구조 C-8][Structure C-8]
Figure PCTKR2013008465-appb-I000065
Figure PCTKR2013008465-appb-I000065
[구조 C-9][Structure C-9]
Figure PCTKR2013008465-appb-I000066
Figure PCTKR2013008465-appb-I000066
[구조 C-10][Structure C-10]
Figure PCTKR2013008465-appb-I000067
Figure PCTKR2013008465-appb-I000067
이하에서는, 첨부된 도면들을 참조하여 본 발명에 따른 신규한 화합물을 포함하는 발광 소자에 대해서 설명한다. 상기 화합물을 포함하는 발광 소자의 구조는 첨부된 도면들 및 하기의 설명에 의해 제한되는 것은 아니다.Hereinafter, a light emitting device including the novel compound according to the present invention will be described with reference to the accompanying drawings. The structure of the light emitting device including the compound is not limited by the accompanying drawings and the following description.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
도 1을 참조하면, 발광 소자(100)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(30), 발광층(40) 및 제2 전극(50)을 포함한다. 상기 발광 소자(100)는 유기 발광 다이오드(organic light emitting diode, OLED)일 수 있다.Referring to FIG. 1, the light emitting device 100 includes a first electrode 20, a hole transporting layer 30, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. The light emitting device 100 may be an organic light emitting diode (OLED).
상기 제1 전극(20)은 도전성 물질로 상기 베이스 기판(10) 상에 형성될 수 있다. 일례로, 상기 제1 전극(20)은 투명 전극일 수 있다. 이때, 상기 제1 전극(20)은 인듐 틴 옥사이드(indium tin oxide, ITO)로 형성할 수 있다. 이와 달리, 상기 제1 전극(20)은 불투명(반사) 전극일 수 있다. 이때, 상기 제1 전극(20)은 ITO/은(Ag)/ITO 구조를 가질 수 있다. 상기 제1 전극(20)은 상기 발광 소자(100)의 양극(anode)이 될 수 있다.The first electrode 20 may be formed on the base substrate 10 with a conductive material. For example, the first electrode 20 may be a transparent electrode. In this case, the first electrode 20 may be formed of indium tin oxide (ITO). Alternatively, the first electrode 20 may be an opaque (reflective) electrode. In this case, the first electrode 20 may have an ITO / silver (Ag) / ITO structure. The first electrode 20 may be an anode of the light emitting device 100.
상기 정공 수송성층(30)은 상기 제1 전극(20) 상에 형성되어 상기 제1 전극(20)과 상기 발광층(40) 사이에 개재된다. 상기 정공 수송성층(30)은 정공 수송성 화합물로서 하기 화학식 1로 나타내는 화합물을 포함한다.The hole transport layer 30 is formed on the first electrode 20 and is interposed between the first electrode 20 and the light emitting layer 40. The hole transport layer 30 includes a compound represented by the following Chemical Formula 1 as a hole transport compound.
[화학식 1][Formula 1]
Figure PCTKR2013008465-appb-I000068
Figure PCTKR2013008465-appb-I000068
상기 화학식 1로 나타내는 화합물은, 본 발명에 따른 신규한 화합물로서 상기에서 설명한 것과 실질적으로 동일하다. 따라서, Ar1, Ar2, La, Lb, Het1 및 Het2에 대한 구체적인 설명은 생략한다.The compound represented by the said Formula (1) is substantially the same as what was demonstrated above as a novel compound which concerns on this invention. Therefore, detailed description of Ar 1 , Ar 2 , L a , L b , Het 1 and Het 2 is omitted.
상기 발광층(40)을 형성하는 화합물의 종류에 따라서 상기 발광층(40)이 방출하는 광의 파장이 달라질 수 있다.The wavelength of the light emitted by the light emitting layer 40 may vary depending on the type of the compound forming the light emitting layer 40.
상기 제2 전극(50)은 도전성 물질로 상기 발광층(40) 상에 형성될 수 있다. 상기 제1 전극(20)이 투명 전극인 경우, 상기 제2 전극(50)은 불투명(반사) 전극일 수 있다. 이때, 상기 제2 전극(50)은 알루미늄 전극일 수 있다. 이와 달리, 상기 제1 전극(20)이 불투명 전극인 경우, 상기 제2 전극(50)은 투명 또는 반투명 전극일 수 있고, 이때의 상기 제2 전극(50)은 100Å 내지 150Å의 두께를 가질 수 있고, 마그네슘 및 은을 포함하는 합금일 수 있다. 상기 제2 전극(50)은 상기 발광 소자(100)의 음극(cathode)이 될 수 있다. The second electrode 50 may be formed on the light emitting layer 40 with a conductive material. When the first electrode 20 is a transparent electrode, the second electrode 50 may be an opaque (reflective) electrode. In this case, the second electrode 50 may be an aluminum electrode. On the contrary, when the first electrode 20 is an opaque electrode, the second electrode 50 may be a transparent or semi-transparent electrode, and the second electrode 50 may have a thickness of 100 μs to 150 μs. And an alloy containing magnesium and silver. The second electrode 50 may be a cathode of the light emitting device 100.
상기 발광층(40)과 상기 제2 전극(50) 사이에는 전자 수송성층으로서, 전자 수송층 및/또는 전자 주입층이 형성될 수 있다.An electron transport layer and / or an electron injection layer may be formed between the emission layer 40 and the second electrode 50 as an electron transport layer.
상기 발광 소자(100)의 상기 제1 및 제2 전극들(20, 50) 사이에 전류를 흘려주는 경우, 상기 제1 전극(20)으로부터 상기 발광층(40)으로 주입된 정공(hole)과 상기 제2 전극(50)으로부터 상기 발광층(40)으로 주입된 전자(electron)가 결합하여 여기자(exciton)을 형성한다. 상기 여기자가 기저 상태로 전이되는 과정에서, 특정 영역대의 파장을 갖는 광이 생성된다. 이때, 상기 여기자는 일중항(singlet) 여기자일 수 있으며, 또한 삼중항(triplet) 여기자일 수 있다. 이에 따라, 상기 발광 소자(100)가 외부로 광을 제공할 수 있다.When a current flows between the first and second electrodes 20 and 50 of the light emitting device 100, holes and holes injected from the first electrode 20 into the light emitting layer 40 are formed. Electrons injected into the emission layer 40 from the second electrode 50 combine to form excitons. In the process of transferring the excitons to the ground state, light having a wavelength in a specific region is generated. In this case, the excitons may be singlet excitons, and may also be triplet excitons. Accordingly, the light emitting device 100 may provide light to the outside.
도면으로 도시하지 않았으나, 상기 발광 소자(100)는 상기 발광층(40)과 상기 제2 전극(50) 사이에 배치된 전자 수송층(electron transporting layer, ETL) 및 전자 주입층(electron injecting layer, EIL)을 더 포함할 수 있다. 상기 발광층(40) 상에 상기 전자 수송층 및 상기 전자 주입층이 순차적으로 적층되어 형성될 수 있다.Although not shown in the drawings, the light emitting device 100 includes an electron transporting layer (ETL) and an electron injecting layer (EIL) disposed between the light emitting layer 40 and the second electrode 50. It may further include. The electron transport layer and the electron injection layer may be sequentially stacked on the light emitting layer 40.
또한, 상기 발광 소자(100)는 상기 제1 전극(20)과 상기 발광층(40) 사이에 배치되는 제1 차단층(미도시) 및/또는 상기 발광층(40)과 상기 제2 전극(50) 사이에 배치되는 제2 차단층(미도시)을 더 포함할 수 있다. In addition, the light emitting device 100 may include a first blocking layer (not shown) disposed between the first electrode 20 and the light emitting layer 40 and / or the light emitting layer 40 and the second electrode 50. It may further include a second blocking layer (not shown) disposed between.
예를 들어, 상기 제1 차단층은 상기 정공 수송성층(30)과 상기 발광층(40) 사이에 배치되어, 상기 제2 전극(50)에서 주입된 전자가 상기 발광층(40)을 경유하여 상기 정공 수송성층(30)으로 유입되는 것을 방지하는 전자 차단층(electron blocking layer, EBL)일 수 있다. 또한, 상기 제1 차단층은 상기 발광층(40)에서 형성된 여기자가 상기 제1 전극(20)의 방향으로 확산되어 상기 여기자가 비발광 소멸하는 것을 방지하는 여기자 차단층일 수 있다. 또한, 상기 제1 차단층은 여기자 분리 차단층(exciton dissociation blocking layer, EDBL)일 수 있다. 상기 여기자 분리 차단층은, 상기 발광층(40)에서 형성된 여기자가 상기 발광층(40)과 상기 정공 수송성층(30) 사이의 계면에서 여기자 분리(exciton dissociation) 과정을 거쳐 비발광 소멸하는 것을 방지할 수 있다. 상기 계면에서의 여기자 분리를 방지하기 위해서, 상기 제1 차단층을 형성하는 화합물은 상기 발광층(40)을 형성하는 화합물과 유사한 레벨의 HOMO 값을 갖도록 선택될 수 있다.For example, the first blocking layer is disposed between the hole transport layer 30 and the light emitting layer 40, and electrons injected from the second electrode 50 pass through the light emitting layer 40. It may be an electron blocking layer (EBL) that prevents the inflow into the transport layer 30. In addition, the first blocking layer may be an exciton blocking layer that prevents excitons formed in the light emitting layer 40 to diffuse in the direction of the first electrode 20 to prevent the excitons from extinction. In addition, the first blocking layer may be an exciton dissociation blocking layer (EDBL). The exciton separation blocking layer may prevent the exciton formed in the light emitting layer 40 from undergoing non-luminescence extinction through an exciton dissociation process at an interface between the light emitting layer 40 and the hole transporting layer 30. have. In order to prevent exciton separation at the interface, the compound forming the first blocking layer may be selected to have a similar level of HOMO value as the compound forming the light emitting layer 40.
이때, 상기 제1 차단층은 상기에서 설명한 본 발명에 따른 화합물을 포함할 수 있다.In this case, the first blocking layer may include the compound according to the present invention described above.
상기 제2 차단층은 상기 발광층(40)과 상기 제2 전극(50), 구체적으로는 상기 발광층(40)과 상기 전자 수송층 사이에 배치되어 정공이 상기 제1 전극(20)에서부터 상기 발광층(40)을 경유하여 상기 전자 수송층으로 유입되는 것을 방지하는 정공 차단층(hole blocking layer, HBL)일 수 있다. 또한, 상기 제2 차단층은 상기 발광층(40)에서 형성된 여기자가 상기 제2 전극(50)의 방향으로 확산되어 상기 여기자가 비발광 소멸하는 것을 방지하는 여기자 차단층일 수 있다.The second blocking layer is disposed between the light emitting layer 40 and the second electrode 50, specifically, the light emitting layer 40 and the electron transporting layer so that holes are formed from the first electrode 20 to the light emitting layer 40. It may be a hole blocking layer (HBL) to prevent the flow into the electron transport layer via). In addition, the second blocking layer may be an exciton blocking layer which prevents excitons formed in the emission layer 40 from diffusing in the direction of the second electrode 50 to prevent the excitons from extinction.
상기 제1 및 제2 차단층들 각각의 두께를, 상기 발광 소자(100)의 공진 길이에 맞게 조절하면 발광 효율을 증가시킬 수 있고, 여기자가 상기 발광층(40)의 중앙부에서 형성될 수 있도록 조절될 수 있다.Adjusting the thickness of each of the first and second blocking layers according to the resonance length of the light emitting device 100 may increase the light emission efficiency and adjust the excitons to be formed at the center of the light emitting layer 40. Can be.
도 2를 참조하면, 발광 소자(102)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(32), 발광층(40) 및 제2 전극(50)을 포함한다. 상기 정공 수송성층(32)을 제외하고는 도 1에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다.Referring to FIG. 2, the light emitting device 102 includes a first electrode 20, a hole transport layer 32, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. Except for the hole transport layer 32, the description thereof is substantially the same as that described with reference to FIG.
상기 정공 수송성층(32)은 상기 화학식 1로 나타내는 화합물 및 P형 도펀트를 포함한다. 상기 정공 수송성층(32)에 포함되는 화합물은 상기에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.The hole transport layer 32 includes a compound represented by Chemical Formula 1 and a P-type dopant. Since the compound included in the hole transport layer 32 is substantially the same as described above, overlapping detailed description thereof will be omitted.
상기 P형 도펀트는 P형 유기물 도펀트 및/또는 P형 무기물 도펀트를 포함할 수 있다.The P-type dopant may include a P-type organic dopant and / or a P-type inorganic dopant.
상기 P형 유기물 도펀트의 구체적인 예로서는, 하기 화학식 8 내지 12로 나타내는 화합물들, 헥사데카플루오로프탈로시아닌 (Hexadecafluorophthalocyanine, F16CuPc), 11,11,12,12-테트라시아노나프토-2,6-퀴노디메탄 (11,11,12,12-tetracyanonaphtho-2,6-quinodimethane, TNAP), 3,6-디플루오로-2,5,7,7,8,8-헥사시아노-퀴노디메탄 (3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane, F2-HCNQ) 또는 테트라시아노퀴노디메탄(Tetracyanoquinodimethane, TCNQ) 등을 포함할 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.Specific examples of the P-type organic dopant include compounds represented by the following Chemical Formulas 8 to 12, hexadecafluorophthalocyanine (F16CuPc), 11,11,12,12-tetracyanonaphtho-2,6-quinomimethane (11,11,12,12-tetracyanonaphtho-2,6-quinodimethane, TNAP), 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (3, 6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane, F2-HCNQ) or Tetracyanoquinodimethane (TCNQ) and the like. These may be used alone or in combination of two or more, respectively.
[화학식 8][Formula 8]
Figure PCTKR2013008465-appb-I000069
Figure PCTKR2013008465-appb-I000069
상기 화학식 8에서, R은 시아노기, 설폰기, 설폭사이드기, 설폰아미드기, 설포네이트기, 니트로기 또는 트리플루오로메틸기를 나타낼 수 있다.In Formula 8, R may represent a cyano group, a sulfone group, a sulfoxide group, a sulfonamide group, a sulfonate group, a nitro group, or a trifluoromethyl group.
[화학식 9][Formula 9]
Figure PCTKR2013008465-appb-I000070
Figure PCTKR2013008465-appb-I000070
[화학식 10][Formula 10]
Figure PCTKR2013008465-appb-I000071
Figure PCTKR2013008465-appb-I000071
[화학식 11][Formula 11]
Figure PCTKR2013008465-appb-I000072
Figure PCTKR2013008465-appb-I000072
[화학식 12][Formula 12]
Figure PCTKR2013008465-appb-I000073
Figure PCTKR2013008465-appb-I000073
상기 화학식 12에서, m 및 n은 각각 독립적으로 1 내지 5의 정수를 나타내고, Y1 및 Y2는 각각 독립적으로 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타낼 수 있다. 이때, 상기 화학식 12에서, Y1 및 Y2가 나타내는 아릴기 또는 헤테로아릴기의 수소는 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 알콕시기 또는 하이드록시기로 치환 또는 비치환될 수 있고, 치환 또는 비치환된 Y1 및 Y2의 수소들은 각각 독립적으로 할로겐기로 치환 또는 비치환될 수 있다.In Formula 12, m and n may each independently represent an integer of 1 to 5, and Y 1 and Y 2 may each independently represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms. . At this time, in Formula 12, the hydrogen of the aryl group or heteroaryl group represented by Y 1 and Y 2 may be substituted or unsubstituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group, and substituted with Alternatively, unsubstituted hydrogen of Y 1 and Y 2 may be each independently substituted or unsubstituted with a halogen group.
예를 들어, 상기 화학식 12로 나타내는 화합물은 하기 화학식 12a 또는 하기 화학식 12b로 나타내는 화합물을 포함할 수 있다.For example, the compound represented by Chemical Formula 12 may include a compound represented by Chemical Formula 12a or Chemical Formula 12b.
[화학식 12a][Formula 12a]
Figure PCTKR2013008465-appb-I000074
Figure PCTKR2013008465-appb-I000074
[화학식 12b][Formula 12b]
Figure PCTKR2013008465-appb-I000075
Figure PCTKR2013008465-appb-I000075
상기 P형 무기물 도펀트의 예로서는, 금속 산화물 또는 금속 할라이드 등을 들 수 있다. 상기 P형 무기물 도펀트의 구체적인 예로서는, MoO3, V2O5, WO3, SnO2, ZnO, MnO2, CoO2, ReO3, TiO2, FeCl3, SbCl5 또는 MgF2 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.Examples of the P-type inorganic dopant include metal oxides and metal halides. Specific examples of the P-type inorganic dopant include MoO 3 , V 2 O 5 , WO 3 , SnO 2 , ZnO, MnO 2 , CoO 2 , ReO 3 , TiO 2, FeCl 3 , SbCl 5 , MgF 2 , and the like. . These may be used alone or in combination of two or more, respectively.
상기 P형 도펀트는, 정공 수송성 화합물인 본 발명에 따른 신규 화합물 100 중량부에 대해서, 약 0.5 중량부 내지 약 20 중량부일 수 있다. 예를 들어, 상기 P형 도펀트는 상기 정공 수송성 화합물 100 중량부에 대하여, 약 0.5 중량부 내지 약 15 중량부이거나, 약 0.5 중량부 내지 약 5 중량부일 수 있다. 이와 달리, 상기 P형 도펀트는 상기 정공 수송성 화합물 100 중량부에 대해서, 약 1 중량부 내지 10 중량부, 1 중량부 내지 5 중량부, 1.5 중량부 내지 6 중량부 또는 2 중량부 내지 5 중량부일 수 있다. The P-type dopant may be about 0.5 parts by weight to about 20 parts by weight based on 100 parts by weight of the novel compound according to the present invention, which is a hole transporting compound. For example, the P-type dopant may be about 0.5 parts by weight to about 15 parts by weight, or about 0.5 parts by weight to about 5 parts by weight based on 100 parts by weight of the hole transporting compound. Alternatively, the P-type dopant may be about 1 part by weight to 10 parts by weight, 1 part by weight to 5 parts by weight, 1.5 parts by weight to 6 parts by weight, or 2 parts by weight to 5 parts by weight, based on 100 parts by weight of the hole transporting compound. Can be.
상기 P형 도펀트의 함량이 상기 정공 수송성 화합물 100 중량부에 대해서, 약 0.5 중량부 내지 약 20 중량부인 경우, 상기 P형 도펀트가 상기 정공 수송성 화합물의 물성을 저하시키지 않으면서도 과도한 누설 전류의 발생을 방지할 수 있다. 또한, 상기 P형 도펀트에 의해서 상기 정공 수송성층(32)과 접촉하는 상, 하부층들 각각과의 계면에서의 에너지 장벽을 감소시킬 수 있다.When the content of the P-type dopant is about 0.5 part by weight to about 20 parts by weight with respect to 100 parts by weight of the hole transporting compound, the P-type dopant may generate excessive leakage current without reducing the physical properties of the hole-transporting compound. You can prevent it. In addition, the energy barrier at the interface with each of the upper and lower layers in contact with the hole transport layer 32 may be reduced by the P-type dopant.
도면으로 도시하지 않았으나, 상기 발광 소자(102)는 전자 수송층, 전자 주입층, 제1 차단층 및/또는 제2 차단층을 더 포함할 수 있다. 상기 층들 각각은 도 1의 발광 소자(100)에서 설명한 것과 실질적으로 동일하므로 구체적인 설명은 생략한다. 상기 발광 소자(102)가 상기 제1 차단층을 포함하는 경우, 상기 제1 차단층은 상기에서 설명한 본 발명에 따른 화합물을 포함할 수 있다.Although not illustrated in the drawings, the light emitting device 102 may further include an electron transport layer, an electron injection layer, a first blocking layer, and / or a second blocking layer. Each of the layers is substantially the same as that described in the light emitting device 100 of FIG. 1, and thus, a detailed description thereof will be omitted. When the light emitting device 102 includes the first blocking layer, the first blocking layer may include the compound according to the present invention described above.
한편, 도 1에 도시된 발광 소자(100)가 중간층(interlayer, 미도시)을 더 포함할 수 있다. 상기 중간층은 도 1의 상기 제1 전극(20)과 상기 정공 수송성층(30) 사이에 배치될 수 있고, 도 2에서 설명한 P형 도펀트로 이용되는 화합물로 형성될 수 있다.Meanwhile, the light emitting device 100 illustrated in FIG. 1 may further include an interlayer (not shown). The intermediate layer may be disposed between the first electrode 20 and the hole transport layer 30 of FIG. 1, and may be formed of a compound used as the P-type dopant described with reference to FIG. 2.
도 3을 참조하면, 발광 소자(104)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(34), 발광층(40) 및 제2 전극(50)을 포함한다. 상기 정공 수송성층(34)을 제외하고는 도 1에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다.Referring to FIG. 3, the light emitting device 104 includes a first electrode 20, a hole transport layer 34, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. Except for the hole transport layer 34, the description thereof is substantially the same as that described with reference to FIG.
상기 정공 수송성층(34)은 상기 제1 전극(20)과 접촉하는 제1 층(33a) 및 상기 제1 층(33a)과 상기 발광층(40) 사이에 배치된 제2 층(33b)을 포함한다. 즉, 상기 정공 수송성층(34)은 2층 구조를 가질 수 있다. 또한, 상기 정공 수송성층(34)은 상기 제1 및 제2 층들(33a, 33b)을 포함하는 2층 이상의 다층 구조를 가질 수 있다.The hole transport layer 34 includes a first layer 33a in contact with the first electrode 20 and a second layer 33b disposed between the first layer 33a and the light emitting layer 40. do. That is, the hole transport layer 34 may have a two-layer structure. In addition, the hole transport layer 34 may have a multilayer structure of two or more layers including the first and second layers 33a and 33b.
상기 제1 및 제2 층들(33a, 33b)은 서로 동일한 종류의 정공 수송성 화합물을 포함할 수 있다. 상기 제1 층(33a)과 상기 제2 층(33b)에 포함되는 정공 수송성 화합물의 성분을 동일하게 함으로써, 이종 물질간의 계면에서 발생될 수 있는 물리화학적 결함을 감소시켜 발광층으로의 정공 주입을 용이하게 할 수 있다. 또 다른 측면에서, 제1층(33a)과 제2층(33b)에 동일한 호스트 물질을 사용하면, 하나의 챔버 내에서 제1층(33a)과 제2층(33b)을 연속적으로 형성할 수 있게 되므로 제작 공정이 단순해지고 제작 시간을 단축시킬 수 있는 이점이 있다. 나아가, 인접하고 있는 층간의 유리전이온도 등의 물성이 유사하게 되므로 소자의 내구성을 높일 수 있는 이점도 있다.The first and second layers 33a and 33b may include the same kind of hole transport compound. By making the components of the hole transporting compound included in the first layer 33a and the second layer 33b the same, physicochemical defects that may occur at the interface between different materials are reduced, thereby easily injecting holes into the light emitting layer. It can be done. In another aspect, when the same host material is used for the first layer 33a and the second layer 33b, the first layer 33a and the second layer 33b can be continuously formed in one chamber. There is an advantage that the manufacturing process is simplified and the production time can be shortened. Furthermore, since physical properties such as glass transition temperature between adjacent layers become similar, there is an advantage of increasing durability of the device.
상기 제1 층(33a)은 정공 수송성 화합물로서 상기 화학식 1로 나타내는 본 발명에 따른 신규한 화합물과 P형 도펀트를 포함한다. 상기 제1 층(33a)은 두께를 제외하고는 도 2에서 설명한 상기 정공 수송성층(32)과 실질적으로 동일하다. 따라서, 중복되는 설명은 생략한다. The first layer 33a includes a novel compound according to the present invention represented by Chemical Formula 1 and a P-type dopant as a hole transporting compound. The first layer 33a is substantially the same as the hole transport layer 32 described with reference to FIG. 2 except for the thickness. Therefore, redundant description is omitted.
상기 제2 층(33b)은 정공 수송성 화합물로서 상기 화학식 1로 나타내는 본 발명에 따른 신규한 화합물을 포함하되, 상기 제2 층(33b)을 구성하는 정공 수송성 화합물은 상기 제1 층(33a)을 구성하는 정공 수송성 화합물과 동일할 수 있다. 상기 제2 층(33b)도 두께를 제외하고는 도 1에서 설명한 상기 정공 수송성층(30)과 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.The second layer 33b includes the novel compound according to the present invention represented by Chemical Formula 1 as a hole transporting compound, and the hole transporting compound constituting the second layer 33b is formed of the first layer 33a. It may be the same as the hole transporting compound constituting. Since the second layer 33b is also substantially the same as the hole transport layer 30 described with reference to FIG. 1 except for the thickness, detailed descriptions thereof will be omitted.
이와 달리, 상기 제1 및 제2 층들(33a, 33b)은 서로 다른 종류의 정공 수송성 화합물을 포함할 수 있다. 상기 제1 및 제2 층들(33a, 33b)을 구성하는 상기 정공 수송성 화합물은 상기 화학식 1로 나타내는 본 발명에 따른 신규한 화합물이되, Ar1, Ar2, La, Lb, Het1 및 Het2는 각각 독립적으로 상이할 수 있다. 이때, 상기 제1 및 제2 층들(33a, 33b) 각각을 구성하는 화합물은, 정공을 상기 발광층(40)으로 효율적으로 전달하기 위한 HOMO값을 갖도록 선택될 수 있다.Alternatively, the first and second layers 33a and 33b may include different kinds of hole transport compounds. The hole transporting compound constituting the first and second layers 33a and 33b may be a novel compound according to the present invention represented by Chemical Formula 1, wherein Ar 1 , Ar 2 , L a , L b , Het 1 and Het 2 may be different from each other independently. In this case, the compound constituting each of the first and second layers 33a and 33b may be selected to have a HOMO value for efficiently transferring holes to the light emitting layer 40.
추가적으로, 상기 제2 층(33b)이 상기 정공 수송성 화합물과 함께 P형 도펀트를 더 포함할 수 있다. 이때, 상기 제1 층(33a)과 상기 제2 층(33b)에 도핑되는 P형 도펀트의 종류는 서로 다를 수 있고, 동일한 종류가 이용되더라도 도핑량이 달라질 수 있다. 예를 들어, 상기 제1 층(33a)에 도핑된 P형 도펀트의 함량(P1)과, 상기 제2 층(33b)에 도핑된 P형 도펀트의 함량(P2)은 하기 수학식 1의 관계를 만족할 수 있다.In addition, the second layer 33b may further include a P-type dopant together with the hole transport compound. In this case, the types of P-type dopants doped in the first layer 33a and the second layer 33b may be different from each other, and the doping amount may be different even if the same type is used. For example, the content P1 of the P-type dopant doped in the first layer 33a and the content P2 of the P-type dopant doped in the second layer 33b are represented by Equation 1 below. Can be satisfied.
[수학식 1][Equation 1]
P1/P2 ≥ 1P1 / P2 ≥ 1
상기 수학식 1에서,In Equation 1,
상기 수학식 1에서, “P1”은 상기 제1 층(33a)에서 정공 수송성 화합물 100 중량부 대비 도핑된 P형 도펀트의 함량이고, “P2”는 상기 제2 층(33b)에서 정공 수송성 화합물 100 중량부 대비 도핑된 P형 도펀트의 함량이다.In Equation 1, “P1” is a content of a doped P-type dopant relative to 100 parts by weight of the hole transporting compound in the first layer 33a, and “P2” is a hole transporting compound 100 in the second layer 33b. The amount of doped P-type dopant to weight part.
예를 들어, 상기 제1 층(33a)에 도핑된 P형 도펀트의 함량은, 정공 수송성 화합물 100 중량부를 기준으로, 0.3 내지 20중량부, 1 내지 15 중량부, 2 내지 10 중량부, 또는 4 내지 6 중량부 범위일 수 있다. 또한, 제2층(33b)에 도핑된 P형 도펀트의 함량은, 정공 수송성 화합물 100 중량부를 기준으로, 0.3 내지 20 중량부, 0.5 내지 10 중량부, 1 내지 8 중량부, 또는 2 내지 4 중량부 범위일 수 있다.For example, the content of the P-type dopant doped in the first layer 33a is 0.3 to 20 parts by weight, 1 to 15 parts by weight, 2 to 10 parts by weight, or 4 based on 100 parts by weight of the hole transporting compound. To 6 parts by weight. In addition, the content of the P-type dopant doped in the second layer 33b is 0.3 to 20 parts by weight, 0.5 to 10 parts by weight, 1 to 8 parts by weight, or 2 to 4 parts by weight based on 100 parts by weight of the hole transporting compound. It may be a minor range.
또한, 도면으로 도시하지 않았으나, 상기 발광 소자(104)는 전자 수송층, 전자 주입층, 제1 차단층 및/또는 제2 차단층을 더 포함할 수 있다. 상기 층들 각각은 도 1의 발광 소자(100)에서 설명한 것과 실질적으로 동일하므로 구체적인 설명은 생략한다.In addition, although not shown in the drawings, the light emitting device 104 may further include an electron transport layer, an electron injection layer, a first blocking layer and / or a second blocking layer. Each of the layers is substantially the same as that described in the light emitting device 100 of FIG. 1, and thus, a detailed description thereof will be omitted.
상기에서 설명한 상기 발광 소자들(100, 102, 104) 각각이, 상기 화학식 1로 나타내는 본 발명에 따른 신규한 화합물을 포함함으로써 상기 발광 소자들(100, 102, 104)은 우수한 열적 안정성을 가짐과 동시에, 발광 효율이 향상되고 수명이 길어질 수 있다.Since each of the light emitting devices 100, 102, 104 described above includes the novel compound according to the present invention represented by Chemical Formula 1, the light emitting devices 100, 102, 104 have excellent thermal stability and At the same time, the luminous efficiency can be improved and the life can be long.
도 1 내지 도 3에서는, 상기 베이스 기판(10) 상에 상기 발광 소자들(100, 102, 104)이 직접적으로 형성된 것으로 도시하고 있으나, 상기 발광 소자들(100, 102, 104) 각각의 상기 제1 전극(20)과 상기 베이스 기판(10) 사이에 화소를 구동하는 구동 소자로서 박막 트랜지스터가 배치될 수 있다. 이때, 상기 제1 전극(20)이 상기 박막 트랜지스터와 연결된 화소 전극이 될 수 있다. 상기 제1 전극(20)이 화소 전극인 경우, 다수의 화소들 각각에 상기 제1 전극(20)이 서로 분리되어 배치되고 상기 베이스 기판(10)에는 상기 제1 전극(20)의 가장자리를 따라 형성되는 격벽 패턴이 형성되어 서로 인접한 화소들에 배치된 상기 제1 전극(20) 상에 적층되는 층들이 서로 격리될 수 있다. 즉, 도면으로 도시하지 않았으나 상기 발광 소자들(100, 102, 104)이 백라이트 없이 영상을 표시하는 디스플레이 장치에 이용될 수 있다.1 to 3, the light emitting devices 100, 102, 104 are directly formed on the base substrate 10, but the first and second light emitting devices 100, 102, and 104 are respectively formed on the base substrate 10. A thin film transistor may be disposed between the first electrode 20 and the base substrate 10 as a driving element for driving a pixel. In this case, the first electrode 20 may be a pixel electrode connected to the thin film transistor. When the first electrode 20 is a pixel electrode, the first electrode 20 is disposed separately from each other in the plurality of pixels, and the base substrate 10 is disposed along an edge of the first electrode 20. The barrier rib pattern may be formed so that layers stacked on the first electrode 20 disposed in adjacent pixels may be separated from each other. That is, although not shown in the drawings, the light emitting devices 100, 102, and 104 may be used in a display device that displays an image without a backlight.
또한, 상기 발광 소자들(100, 102, 104)은 조명 장치로 이용될 수 있다.In addition, the light emitting devices 100, 102, and 104 may be used as lighting devices.
이와 같이, 본 발명에서 예시한 상기 발광 소자들(100, 102, 104)은 상기 디스플레이 장치 또는 상기 조명 장치와 같은 다양한 전자 장치에 이용될 수 있다.As such, the light emitting devices 100, 102, 104 illustrated in the present invention may be used in various electronic devices such as the display device or the lighting device.
이하에서는, 본 발명에 따른 구체적인 실시예들을 통해서 본 발명에 따른 신규한 화합물들을 보다 상세히 설명한다. 하기에 예시되는 실시예들은 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.Hereinafter, the novel compounds according to the present invention will be described in more detail through specific examples according to the present invention. The embodiments exemplified below are only for the detailed description of the present invention, and are not intended to limit the scope of the rights.
실시예 1Example 1
Figure PCTKR2013008465-appb-I000076
Figure PCTKR2013008465-appb-I000076
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Aa (37.6mmol, 20.0g), 화합물 Ab (41.3mmol, 23.9g), 테트라하이드로퓨란(tetrahydrofuran, THF) 200mL 및 에탄올(ethanol, EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (150.2 mmol, 20.8g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(tetrakis(triphenylphosphine)palladium, Pd(PPh3)4) (0.80mmol, 0.87g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 20분간 교반 후 여과하여 연회색 고체인 화합물 1을 27.2g 수득하였다(수율 80%).1 L three-necked round bottom flask was charged with nitrogen, followed by Compound Aa (37.6 mmol, 20.0 g), Compound Ab (41.3 mmol, 23.9 g), 200 mL tetrahydrofuran (THF) and ethanol (EtOH) 100 ㎖ was added and stirred for 30 minutes. In addition, potassium carbonate (K 2 CO 3 ) (150.2 mmol, 20.8 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Subsequently, tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.80 mmol, 0.87 g) was added to the 1 L three neck round bottom flask, followed by It was refluxed for time. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 27.2 g of a light gray solid, Compound 1. Obtained (yield 80%).
MALDI-TOF: m/z = 904.3319 (C64H44N2S2= 904.29)MALDI-TOF: m / z = 904.3319 (C 64 H 44 N 2 S 2 = 904.29)
실시예 2Example 2
Figure PCTKR2013008465-appb-I000077
Figure PCTKR2013008465-appb-I000077
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ba (39.6mmol, 20.0g), 화합물 Bb (43.6mmol, 24.1g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (158.4 mmol, 21.9g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (1.54mmol, 1.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 5시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 30분간 교반 후 여과하여 연회색 고체인 화합물 2를 27.6g 수득하였다(수율 82%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Ba (39.6 mmol, 20.0 g), Compound Bb (43.6 mmol, 24.1 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (158.4 mmol, 21.9 g) was dissolved in 100 mL of water (H 2 O) and then added to the 1 L three neck round bottom flask. Subsequently, tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.54 mmol, 1.8 g) was added to the 1 L three neck round bottom flask, followed by blocking light and reflux for 5 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 27.6 g of a light gray solid. Obtained (yield 82%).
MALDI-TOF: m/z = 848.2319 (C60H36N2S2= 848.23)MALDI-TOF: m / z = 848.2319 (C 60 H 36 N 2 S 2 = 848.23)
실시예 3Example 3
Figure PCTKR2013008465-appb-I000078
Figure PCTKR2013008465-appb-I000078
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ca (30.5mmol, 20.0g), 화합물 Cb (33.5mmol, 23.6g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (121.8 mmol, 16.8g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.6mmol, 0.7g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 8시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 1시간 교반 후 여과하여 연회색 고체인 화합물 3을 28.5g 수득하였다(수율 81%).1 L three-necked round bottom flask was charged with nitrogen, followed by compound Ca (30.5 mmol, 20.0 g), compound Cb (33.5 mmol, 23.6 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (121.8 mmol, 16.8 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Subsequently, tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.6 mmol, 0.7 g) was added to the 1 L three neck round bottom flask, then shielded from light and reflux for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 1 hour, and filtered to give 28.5 g of compound 3 as a light gray solid. Obtained (yield 81%).
MALDI-TOF: m/z = 1152.5292 (C84H52N2S2= 1152.36)MALDI-TOF: m / z = 1152.5292 (C 84 H 52 N 2 S 2 = 1152.36)
실시예 4Example 4
Figure PCTKR2013008465-appb-I000079
Figure PCTKR2013008465-appb-I000079
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Da (36.1mmol, 20.0g), 화합물 Db (39.7mmol, 23.9g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (144.3 mmol, 19.9g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 4시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 20분간 교반 후 여과하여 연회색 고체인 화합물 4를 27.5g 수득하였다(수율 79%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Da (36.1 mmol, 20.0 g), Compound Db (39.7 mmol, 23.9 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (144.3 mmol, 19.9 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 4 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 27.5 g of a light gray solid. Obtained (yield 79%).
MALDI-TOF: m/z = 948.5489 (C68H40N2S2= 948.26)MALDI-TOF: m / z = 948.5489 (C 68 H 40 N 2 S 2 = 948.26)
실시예 5Example 5
Figure PCTKR2013008465-appb-I000080
Figure PCTKR2013008465-appb-I000080
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ea (37.6mmol, 20.0g), 화합물 Eb (41.3mmol, 24.0g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (150.2 mmol, 20.8g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.8mmol, 0.9g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 7시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 30분간 교반 후 여과하여 연회색 고체인 화합물 5를 28.2g 수득하였다(수율 83%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Ea (37.6 mmol, 20.0 g), Compound Eb (41.3 mmol, 24.0 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (150.2 mmol, 20.8 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 0.9 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 7 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 28.2 g of a light gray solid. Obtained (yield 83%).
MALDI-TOF: m/z = 904.6587 (C64H44N2S2= 904.29)MALDI-TOF: m / z = 904.6587 (C 64 H 44 N 2 S 2 = 904.29)
실시예 6Example 6
Figure PCTKR2013008465-appb-I000081
Figure PCTKR2013008465-appb-I000081
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Fa (39.6mmol, 20.0g), 화합물 Fb (43.6mmol, 24.0g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (158.6 mmol, 21.9g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.8mmol, 0.9g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 8시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 20분간 교반 후 여과하여 연회색 고체인 화합물 6을 26.9g 수득하였다(수율 80%).After filling with a 1 L three-necked round bottom flask with nitrogen, Compound Fa (39.6 mmol, 20.0 g), Compound Fb (43.6 mmol, 24.0 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (158.6 mmol, 21.9 g) was dissolved in 100 mL of water (H 2 O) and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 0.9 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to obtain 26.9 g of a light gray solid. Obtained (yield 80%).
MALDI-TOF: m/z = 848.2637 (C60H36N2S2= 848.23)MALDI-TOF: m / z = 848.2637 (C 60 H 36 N 2 S 2 = 848.23)
실시예 7Example 7
Figure PCTKR2013008465-appb-I000082
Figure PCTKR2013008465-appb-I000082
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ga (41.0mmol, 20.0g), 화합물 Gb (45.0mmol, 24.1g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (163.8 mmol, 22.6g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.8mmol, 1.0g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 5시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 40분간 교반 후 여과하여 연회색 고체인 화합물 7을 27.8g 수득하였다(수율 83%).1 L three-necked round bottom flask was charged with nitrogen, followed by compound Ga (41.0 mmol, 20.0 g), compound Gb (45.0 mmol, 24.1 g), 200 mL of tetrahydrofuran (THF) and 100 mL of ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (163.8 mmol, 22.6 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.8 mmol, 1.0 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 5 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 40 minutes, and filtered to obtain 27.8 g of a light gray solid. Obtained (yield 83%).
MALDI-TOF: m/z = 816.6564 (C60H36N2O2= 816.28)MALDI-TOF: m / z = 816.6564 (C 60 H 36 N 2 O 2 = 816.28)
실시예 8Example 8
Figure PCTKR2013008465-appb-I000083
Figure PCTKR2013008465-appb-I000083
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ha (32.8mmol, 20.0g), 화합물 Hb (36.0mmol, 23.7g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (131.0 mmol, 18.1g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 10시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 1시간 동안 교반 후 여과하여 연회색 고체인 화합물 8을 27.1g 수득하였다(수율 78%).Into a 1 L three-necked round bottom flask with nitrogen, Compound H (32.8 mmol, 20.0 g), Compound Hb (36.0 mmol, 23.7 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (131.0 mmol, 18.1 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 10 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 1 hour, and filtered to give compound 8, a light gray solid, 27.1. g was obtained (yield 78%).
MALDI-TOF: m/z = 1060.1911 (C72H40N2S4= 1060.21)MALDI-TOF: m / z = 1060.1911 (C 72 H 40 N 2 S 4 = 1060.21)
실시예 9Example 9
Figure PCTKR2013008465-appb-I000084
Figure PCTKR2013008465-appb-I000084
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ia (33.6mmol, 20.0g), 화합물 Ib (37.0mmol, 23.7g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (134.6 mmol, 18.6g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 8시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 30분간 교반 후 여과하여 연회색 고체인 화합물 9를 27.7g 수득하였다(수율 80%).Into a 1 L three-necked round bottom flask with nitrogen, add compound Ia (33.6 mmol, 20.0 g), compound Ib (37.0 mmol, 23.7 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (134.6 mmol, 18.6 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), added to 1 L of methanol, stirred for 30 minutes, and filtered to give 27.7 g of a light gray solid. Obtained (yield 80%).
MALDI-TOF: m/z = 1029.2425 (C72H40N2O2S2= 1028.25)MALDI-TOF: m / z = 1029.2425 (C 72 H 40 N 2 O 2 S 2 = 1028.25)
실시예 10Example 10
Figure PCTKR2013008465-appb-I000085
Figure PCTKR2013008465-appb-I000085
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ja (33.6mmol, 20.0g), 화합물 Jb (37.0mmol, 23.7g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (134.6 mmol, 18.6g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 9시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 20분간 교반 후 여과하여 연회색 고체인 화합물 10을 28.0g 수득하였다(수율 81%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Ja (33.6 mmol, 20.0 g), Compound Jb (37.0 mmol, 23.7 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (134.6 mmol, 18.6 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 9 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 28.0 g of a light gray solid. Obtained (yield 81%).
MALDI-TOF: m/z = 1029.3885 (C72H40N2O2S2= 1028.25)MALDI-TOF: m / z = 1029.3885 (C 72 H 40 N 2 O 2 S 2 = 1028.25)
실시예 11Example 11
Figure PCTKR2013008465-appb-I000086
Figure PCTKR2013008465-appb-I000086
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ka (34.6mmol, 20.0g), 화합물 Kb (38.0mmol, 23.8g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (138.3 mmol, 19.1g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 8시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 30분간 교반 후 여과하여 연회색 고체인 화합물 11을 28.3g 수득하였다(수율 82%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Ka (34.6 mmol, 20.0 g), Compound Kb (38.0 mmol, 23.8 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (138.3 mmol, 19.1 g) was dissolved in 100 mL of water (H 2 O) and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 28.3 g of a light gray solid. Obtained (yield 82%).
MALDI-TOF: m/z = 996.3124 (C72H40N2O4= 996.30)MALDI-TOF: m / z = 996.3124 (C 72 H 40 N 2 O 4 = 996.30)
실시예 12Example 12
Figure PCTKR2013008465-appb-I000087
Figure PCTKR2013008465-appb-I000087
Figure PCTKR2013008465-appb-I000088
Figure PCTKR2013008465-appb-I000088
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 La (27.5mmol, 20.0g), 화합물 Lb (30.3mmol, 23.4g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (110.1 mmol, 15.2g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 8시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 40분간 교반 후 여과하여 연회색 고체인 화합물 12을 27.8g 수득하였다(수율 78%).Into a 1 L three-necked round bottom flask with nitrogen, Compound La (27.5 mmol, 20.0 g), Compound Lb (30.3 mmol, 23.4 g), 200 mL of tetrahydrofuran (THF) and 100 mL of ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (110.1 mmol, 15.2 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 8 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 40 minutes, and filtered to obtain 27.8 g of a compound 12 as a light gray solid. Obtained (yield 78%).
MALDI-TOF: m/z = 1292.4312 (C90H64N2S2Si2= 1292.40)MALDI-TOF: m / z = 1292.4312 (C 90 H 64 N 2 S 2 Si 2 = 1292.40)
실시예 13Example 13
Figure PCTKR2013008465-appb-I000089
Figure PCTKR2013008465-appb-I000089
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Ma (34.5mmol, 20.0g), 화합물 Mb (37.9mmol, 23.8g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (137.8 mmol, 19.0g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 20분간 교반 후 여과하여 연회색 고체인 화합물 13을 27.9g 수득하였다(수율 81%).Into a 1 L three-necked round bottom flask with nitrogen, Compound Ma (34.5 mmol, 20.0 g), Compound Mb (37.9 mmol, 23.8 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (137.8 mmol, 19.0 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 20 minutes, and filtered to give 27.9 g of a compound 13 as a light gray solid. Obtained (yield 81%).
MALDI-TOF: m/z = 1000.6598 (C72H44N2S2= 1000.29)MALDI-TOF: m / z = 1000.6598 (C 72 H 44 N 2 S 2 = 1000.29)
실시예 14Example 14
Figure PCTKR2013008465-appb-I000090
Figure PCTKR2013008465-appb-I000090
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 Na (34.5mmol, 20.0g), 화합물 Nb (37.9mmol, 23.8g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (137.8 mmol, 19.0g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.7mmol, 0.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올 1L에 넣고 30분간 교반 후 여과하여 연회색 고체인 화합물 14를 27.6g 수득하였다(수율 80%).Into a 1 L three necked round bottom flask, nitrogen was charged, followed by compound Na (34.5 mmol, 20.0 g), compound Nb (37.9 mmol, 23.8 g), 200 mL tetrahydrofuran (THF), and 100 mL ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (137.8 mmol, 19.0 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.7 mmol, 0.8 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1 L of methanol, stirred for 30 minutes, and filtered to give 27.6 g of a compound 14 as a light gray solid. Obtained (yield 80%).
MALDI-TOF: m/z = 1000.5798 (C72H44N2S2= 1000.29)MALDI-TOF: m / z = 1000.5798 (C 72 H 44 N 2 S 2 = 1000.29)
비교예 1Comparative Example 1
Figure PCTKR2013008465-appb-I000091
Figure PCTKR2013008465-appb-I000091
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 A (67.4mmol, 34.0g), 화합물 B (74.1mmol, 40.9 g), 테트라하이드로퓨란(THF) 340mL 및 에탄올(EtOH) 170㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (269.6 mmol, 37.3g)을 물(H2O) 170mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (2.7mmol, 3.1g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(ethyl acetate, EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 170mL에 용해시키고 메탄올 (methanol) 1,700mL에 넣고 20분간 교반 후 여과하여 연회색 고체인 비교예 화합물 1을 40.1g 수득하였다(수율 70%).Charge 1 L three-necked round bottom flask with nitrogen, add Compound A (67.4 mmol, 34.0 g), Compound B (74.1 mmol, 40.9 g), 340 mL of tetrahydrofuran (THF) and 170 mL of ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (269.6 mmol, 37.3 g) was dissolved in 170 mL of water (H 2 O) and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (2.7 mmol, 3.1 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 170 mL of tetrahydrofuran (THF), poured into 1,700 mL of methanol (methanol), filtered for 20 minutes, filtered, and light gray. 40.1 g of Comparative Compound 1 was obtained as a solid (yield 70%).
MALDI-TOF: m/z = 848.2359 (C60H36N2S2= 848.23)MALDI-TOF: m / z = 848.2359 (C 60 H 36 N 2 S 2 = 848.23)
비교예 2Comparative Example 2
Figure PCTKR2013008465-appb-I000092
Figure PCTKR2013008465-appb-I000092
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 C (41.0mmol, 20.0g), 화합물 D (45.0mmol, 24.1g), 테트라하이드로퓨란(THF) 200mL 및 에탄올(EtOH) 100㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (163.8 mmol, 22.6g)을 물(H2O) 100mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (1.6mmol, 1.9g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 100mL에 용해시키고 메탄올1000mL에 넣고 20분간 교반 후 여과하여 연회색 고체인 비교예 화합물 2를 23.4g 수득하였다(수율 70%).Into a 1 L three-necked round bottom flask with nitrogen, add Compound C (41.0 mmol, 20.0 g), Compound D (45.0 mmol, 24.1 g), 200 mL tetrahydrofuran (THF) and 100 mL ethanol (EtOH). Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (163.8 mmol, 22.6 g) was dissolved in 100 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.6 mmol, 1.9 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 100 mL of tetrahydrofuran (THF), poured into 1000 mL of methanol, stirred for 20 minutes and filtered to obtain a Comparative Compound 2 as a light gray solid. 23.4 g were obtained (yield 70%).
MALDI-TOF: m/z = 816.2810 (C60H36N2O2= 816.28)MALDI-TOF: m / z = 816.2810 (C 60 H 36 N 2 O 2 = 816.28)
비교예 3Comparative Example 3
Figure PCTKR2013008465-appb-I000093
Figure PCTKR2013008465-appb-I000093
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 E (15.9mmol, 8.0g), 화합물 F (17.4mmol, 9.6g), 테트라하이드로퓨란(THF) 80mL 및 에탄올(EtOH) 40㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (63.4 mmol, 8.8g)을 물(H2O) 40mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (0.6mmol, 0.7g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 40mL에 용해시키고 메탄올 400mL에 넣고 20분간 교반 후 여과하여 연회색 고체인 비교예 화합물 3을 11.4g 수득하였다(수율 85%).Into a 1 L three-necked round bottom flask with nitrogen, Compound E (15.9 mmol, 8.0 g), Compound F (17.4 mmol, 9.6 g), 80 mL of tetrahydrofuran (THF) and 40 mL of ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (63.4 mmol, 8.8 g) was dissolved in 40 mL of water (H 2 O) and then added to the 1 L three neck round bottom flask. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.6 mmol, 0.7 g) was then added to the 1 L three-necked round bottom flask, after which the light was blocked and refluxed for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 40 mL of tetrahydrofuran (THF), poured into 400 mL of methanol, stirred for 20 minutes, and filtered to obtain a Comparative Compound 3 as a light gray solid. 11.4 g were obtained (yield 85%).
MALDI-TOF: m/z = 848.2353 (C60H36N2S2= 848.23)MALDI-TOF: m / z = 848.2353 (C 60 H 36 N 2 S 2 = 848.23)
비교예 4Comparative Example 4
Figure PCTKR2013008465-appb-I000094
Figure PCTKR2013008465-appb-I000094
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 G (61.4mmol, 30.0g), 화합물 H (67.6mmol, 36.2g), 테트라하이드로퓨란(THF) 300mL 및 에탄올(EtOH) 150㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) (245.7 mmol, 34.0g)을 물(H2O) 150mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) (2.5mmol, 2.8g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 6시간 동안 환류(reflux)시켰다. 상기 반응 혼합물을 식힌 후 에틸아세테이트(EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(THF) 150mL에 용해시키고 메탄올 1,500mL에 넣고 20분간 교반 후 여과하여 연회색 고체인 비교예 화합물 4를 35.1g 수득하였다(수율 70%).After filling with a 1 L three necked round bottom flask with nitrogen, Compound G (61.4 mmol, 30.0 g), Compound H (67.6 mmol, 36.2 g), 300 mL of tetrahydrofuran (THF) and 150 mL of ethanol (EtOH) were added. Stir for minutes. In addition, potassium carbonate (K 2 CO 3 ) (245.7 mmol, 34.0 g) was dissolved in 150 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Subsequently, tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (2.5 mmol, 2.8 g) was added to the 1 L three neck round bottom flask, followed by blocking light and reflux for 6 hours. I was. The reaction mixture was cooled, extracted with ethyl acetate (EA) and distilled water, concentrated, dissolved in 150 mL of tetrahydrofuran (THF), poured into 1,500 mL of methanol, stirred for 20 minutes and filtered to obtain a light gray solid. 35.1 g were obtained (yield 70%).
MALDI-TOF: m/z = 816.2834 (C60H36N2O2= 816.28)MALDI-TOF: m / z = 816.2834 (C 60 H 36 N 2 O 2 = 816.28)
비교예 5Comparative Example 5
일본공개특허 2012-175025에서 개시하고 있는 합성 방법에 따라 하기 화합물을 준비하였다.The following compounds were prepared according to the synthesis method disclosed in Japanese Patent Laid-Open No. 2012-175025.
Figure PCTKR2013008465-appb-I000095
Figure PCTKR2013008465-appb-I000095
비교예 6Comparative Example 6
국제공개특허 WO12/008281에서 개시하고 있는 합성 방법에 따라 하기 화합물을 준비하였다.The following compounds were prepared according to the synthesis method disclosed in WO12 / 008281.
Figure PCTKR2013008465-appb-I000096
Figure PCTKR2013008465-appb-I000096
비교예 7Comparative Example 7
일본공개특허 2012-049518에서 개시하고 있는 합성 방법에 따라 하기 화합물을 준비하였다.The following compound was prepared according to the synthesis method disclosed in JP 2012-049518 A.
Figure PCTKR2013008465-appb-I000097
Figure PCTKR2013008465-appb-I000097
비교예 8Comparative Example 8
일본공개특허 2012-049518에서 개시하고 있는 합성 방법에 따라 하기 화합물을 준비하였다.The following compound was prepared according to the synthesis method disclosed in JP 2012-049518 A.
Figure PCTKR2013008465-appb-I000098
Figure PCTKR2013008465-appb-I000098
비교예 9 내지 12Comparative Examples 9 to 12
하기 화학식 a, b, c 및 d의 구조를 갖는 화합물들을 상업적으로 입수 내지 제조하여, 각각 비교예 9 내지 12로 사용하였다.Compounds having the structures of Formulas a, b, c and d were obtained commercially and prepared, and used in Comparative Examples 9 to 12, respectively.
[화학식 a][Formula a]
Figure PCTKR2013008465-appb-I000099
Figure PCTKR2013008465-appb-I000099
[화학식 b][Formula b]
Figure PCTKR2013008465-appb-I000100
Figure PCTKR2013008465-appb-I000100
[화학식 c][Formula c]
Figure PCTKR2013008465-appb-I000101
Figure PCTKR2013008465-appb-I000101
[화학식 d][Formula d]
Figure PCTKR2013008465-appb-I000102
Figure PCTKR2013008465-appb-I000102
발광 소자 A-1 내지 A-4의 제조Manufacturing of Light Emitting Diodes A-1 to A-4
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 실시예 1에 따른 화합물을 1Å/sec의 속도로 증착하고 동시에 하기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 실시예 1에 따른 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), the compound according to Example 1 was deposited as a host material at a rate of 1 Å / sec and simultaneously represented by the following P-type dopant (HAT-CN) Was co-evaporated at a ratio of about 5 parts by weight to 100 parts by weight of the host material to form a first layer having a thickness of 100 mm 3. The compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer.
상기 제2 층 위에 하기 화학식 14로 나타내는 mCBP와 화학식 15로 나타나는 Ir(ppy)3를 100:9 중량비로 공증착하여 약 300Å 두께의 발광층을 형성하고, 상기 발광층 상에 다시 mCBP를 약 50Å 두께로 증착하여 차단층(blocking layer)을 형성하였다.MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa. Deposition formed a blocking layer.
그런 다음, 상기 차단층 상에 하기 화학식 16으로 나타내는 BPhen과 하기 화학식 17로 나타내는 Alq3를 50:50 중량비로 공증착하여 약 400Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 하기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Then, BPhen represented by the following formula (16) and Alq 3 represented by the following formula (17) were co-deposited on the blocking layer in a 50:50 weight ratio to form an electron transport layer having a thickness of about 400 GPa. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by the following Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed.
[화학식 13][Formula 13]
Figure PCTKR2013008465-appb-I000103
Figure PCTKR2013008465-appb-I000103
[화학식 14][Formula 14]
Figure PCTKR2013008465-appb-I000104
Figure PCTKR2013008465-appb-I000104
[화학식 15][Formula 15]
Figure PCTKR2013008465-appb-I000105
Figure PCTKR2013008465-appb-I000105
[화학식 16][Formula 16]
Figure PCTKR2013008465-appb-I000106
Figure PCTKR2013008465-appb-I000106
[화학식 17][Formula 17]
Figure PCTKR2013008465-appb-I000107
Figure PCTKR2013008465-appb-I000107
[화학식 18][Formula 18]
Figure PCTKR2013008465-appb-I000108
Figure PCTKR2013008465-appb-I000108
위 방법으로 본 발명의 실시예 1에 따른 화합물을 포함하는 녹색 발광 소자 A-1을 제조하였다.In the above method, a green light emitting device A-1 including the compound according to Example 1 of the present invention was prepared.
또한, 호스트 물질을 실시예 3, 실시예 4 및 실시예 8에 따른 화합물들을 각각 이용하여 제1 층 및 제2 층을 형성하는 것을 제외하고는, 상기 발광 소자 A-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 A-2 내지 발광 소자 A-4를 제조하였다.Further, except that the host material is formed using the compounds according to Examples 3, 4, and 8, respectively, to form the first layer and the second layer, the process of manufacturing the light emitting device A-1 is substantially the same. Through the same process to produce a light emitting device A-2 to A-4.
비교 소자 1 내지 4의 제조Preparation of Comparative Elements 1-4
호스트 물질을 상기 화학식 a 내지 d로 나타내는 비교예 9 내지 12에 따른 화합물을 이용하여 제1 층과 제2 층을 형성하는 것을 제외하고는, 상기 발광 소자 A-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 1 내지 4를 제조하였다.Substantially the same as the process of manufacturing the light emitting device A-1, except for forming the first layer and the second layer using a compound according to Comparative Examples 9 to 12 represented by the formula (a) to (d) Comparative elements 1 to 4 were manufactured through the process.
발광 소자의 전력 효율 및 수명 평가 -1Evaluation of power efficiency and lifespan of light emitting device -1
본 발명에 따른 발광 소자 A-1 내지 A-4와, 비교 소자 1 내지 4 각각에 대해서, 질소 분위기의 글로브 박스 안에서 흡습제(Getter)가 부착된 커버 글래스 가장자리에 UV 경화용 실런트를 디스펜싱한 후, 발광 소자들 및 비교 소자들 각각과 커버 글래스를 합착하고 UV 광을 조사하여 경화시켰다. 상기와 같이 준비된 발광 소자 A-1 내지 A-4와, 비교 소자 1 내지 4 각각에 대해서, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다. 그 결과를 표 1에 나타낸다.For each of the light emitting elements A-1 to A-4 and the comparative elements 1 to 4 according to the present invention, after dispensing the sealant for UV curing on the edge of the cover glass with a moisture absorbent (Getter) in a glove box in a nitrogen atmosphere, Each of the light emitting elements and the comparative elements and the cover glass were bonded to each other and cured by irradiating UV light. For each of Light-Emitting Elements A-1 to A-4 and Comparative Elements 1 to 4 prepared as described above, power efficiency was measured based on the value when luminance was 500 cd / m 2 . The results are shown in Table 1.
또한, 약 85℃의 온도로 일정하게 유지되고 있는 측정용 오븐 내에 설치된 수명 측정기를 이용하여 발광 소자 A-1 내지 A-4와, 비교 소자 1 내지 4 각각의 수명을 측정하였다. 그 결과를 표 1에 나타낸다.In addition, the lifetimes of each of the light emitting elements A-1 to A-4 and the comparative elements 1 to 4 were measured using a life meter installed in a measuring oven maintained at a constant temperature of about 85 ° C. The results are shown in Table 1.
표 1에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 1에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.In Table 1, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 1, T 75 means a time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 1
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 A-1 32.1 832
발광 소자 A-2 31.4 812
발광 소자 A-3 30.6 791
발광 소자 A-4 30.8 783
비교 소자 1 9.2 227
비교 소자 2 10.3 234
비교 소자 3 9.5 244
비교 소자 4 8.5 225
Table 1
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element A-1 32.1 832
Light emitting element A-2 31.4 812
Light emitting element A-3 30.6 791
Light emitting element A-4 30.8 783
Comparative element 1 9.2 227
Comparative element 2 10.3 234
Comparative element 3 9.5 244
Comparative element 4 8.5 225
표 1을 참조하면, 발광 소자 A-1 내지 A-4의 전력 효율은 각각, 약 32.1 lm/W, 약 31.4 lm/W, 약 30.6 lm/W 및 약 30.8 lm/W임을 알 수 있다. 즉, 본 발명의 실시예 1, 3, 4 및 8에 따른 화합물들을 이용하여 제조된 발광 소자들 각각의 전력 효율은 적어도 약 30.0 lm/W 이상임을 알 수 있다. 반면, 비교 소자 1 내지 4의 전력 효율은 약 8.5 lm/W 내지 약 10.3 lm/W이므로, 본 발명의 실시예에 따른 화합물들을 이용하여 제조된 발광 소자들의 전력 효율이 비교 소자 1 내지 4의 전력 효율보다 좋은 것을 알 수 있다.Referring to Table 1, it can be seen that the power efficiency of the light emitting elements A-1 to A-4 is about 32.1 lm / W, about 31.4 lm / W, about 30.6 lm / W, and about 30.8 lm / W, respectively. That is, it can be seen that the power efficiency of each of the light emitting devices manufactured using the compounds according to Examples 1, 3, 4, and 8 of the present invention is at least about 30.0 lm / W or more. On the other hand, since the power efficiency of the comparative devices 1 to 4 is about 8.5 lm / W to about 10.3 lm / W, the power efficiency of the light emitting devices manufactured using the compounds according to an embodiment of the present invention is the power of the comparative devices It can be seen that better than the efficiency.
또한, 본 발명의 실시예에 따른 화합물들을 이용하여 제조된 발광 소자들 각각의 수명은 적어도 약 783 시간으로서, 비교 소자 1 내지 4의 수명이 약 244 시간 이하인 것과 비교할 때, 본 발명의 실시예에 따른 화합물을 포함하는 발광 소자들의 수명이 비교 소자 1 내지 4의 수명에 비해서 좋은 것을 알 수 있다.In addition, the lifespan of each of the light emitting devices manufactured using the compounds according to the embodiment of the present invention is at least about 783 hours, compared to the life of the comparative elements 1 to 4 of about 244 hours or less, It can be seen that the lifespan of the light emitting devices including the compound according to the present invention is better than that of the comparative devices 1 to 4.
또한, 발광 소자의 수명 특성 평가가 85℃의 가속 조건(가혹 조건)에서 수행된 것을 고려할 때, 본 발명의 실시예에 따른 화합물을 포함하는 발광 소자들의 수명 특성이 비교 소자 1 내지 4에 비해서 우수함을 통해서 본 발명에 따른 화합물을 이용하여 제조된 발광 소자의 내열성이 비교 소자 1 내지 4에 비해서 우수한 것을 알 수 있다.In addition, considering that the life characteristic evaluation of the light emitting device was performed under an acceleration condition (severe condition) of 85 ° C., the life characteristics of the light emitting devices including the compound according to the embodiment of the present invention are superior to those of the comparative devices 1 to 4. Through it can be seen that the heat resistance of the light emitting device manufactured using the compound according to the present invention is superior to the comparative devices 1 to 4.
발광 소자 B-1 내지 B-4의 제조Manufacturing of Light Emitting Diodes B-1 to B-4
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 약 100Å 의 두께로 증착하여 제1 층을 형성하고, 상기 제1 층 상에 NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine)를 약 300Å의 두께로 증착하여 제2 층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), a P-type dopant (HAT-CN) represented by Formula 13 was deposited to a thickness of about 100 GPa to form a first layer, and the first layer NPB (N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine) was deposited to a thickness of about 300 kPa on the second layer to form a second layer. It was.
상기 제2 층 상에, 실시예 1에 따른 화합물로 약 100Å 두께의 제1 차단층을 형성하고, 상기 제1 차단층 상에 상기 화학식 14로 나타내는 mCBP와 상기 화학식 15로 나타나는 Ir(ppy)3를 100:9 중량비로 공증착하여 약 300Å 두께의 발광층을 형성하고, 상기 발광층 상에 다시 mCBP를 약 50Å 두께로 증착하여 제2 차단층을 형성하였다.On the second layer, a first blocking layer having a thickness of about 100 μs is formed with the compound according to Example 1, and on the first blocking layer, mCBP represented by Formula 14 and Ir (ppy) 3 represented by Formula 15 Was co-deposited at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 mW, and mCBP was deposited to a thickness of about 50 mW again on the light emitting layer to form a second blocking layer.
그런 다음, 상기 제2 차단층 상에 상기 화학식 16으로 나타내는 BPhen과 상기 화학식 17로 나타내는 Alq3를 50:50 중량비로 공증착하여 약 400Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Then, BPhen represented by Formula 16 and Alq 3 represented by Formula 17 were co-deposited at a 50:50 weight ratio on the second blocking layer to form an electron transport layer having a thickness of about 400 μm. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여, 본 발명의 실시예 1에 따른 화합물을 포함하는 녹색 발광 소자 B-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a green light emitting device B-1 including the compound according to Example 1 of the present invention.
상기 제1 차단층을 본 발명의 실시예 3, 4 및 8에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 B-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 B-2, B-3 및 B-4를 제조하였다.Except for manufacturing the first blocking layer using each of the compounds according to Examples 3, 4 and 8 of the present invention, the light emitting device through substantially the same process as the manufacturing process of the light emitting device B-1 B-2, B-3 and B-4 were prepared.
비교 소자 5 및 6의 제조Preparation of Comparative Elements 5 and 6
상기 제1 차단층을 상기 화학식 b로 나타내는 비교예 10에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 B-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 5를 제조하였다.Comparative element 5 was manufactured through the same process as that of manufacturing light emitting device B-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. .
또한, 상기 제1 차단층을 상기 화학식 c로 나타내는 비교예 11에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 B-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 6을 제조하였다.Further, except that the first blocking layer is manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c, Comparative Device 6 is manufactured by substantially the same process as the process of manufacturing Light-Emitting Device B-1. Prepared.
발광 소자의 전력 효율 및 수명 평가 -2Evaluation of power efficiency and lifespan of light emitting device -2
상기와 같이 준비된 본 발명에 따른 발광 소자 B-1 내지 B-4와, 비교 소자 5 및 6 각각에 대해서, 상기 발광 소자 A-1 내지 A-4에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For the light emitting elements B-1 to B-4 and the comparative elements 5 and 6 according to the present invention prepared as described above, in the same manner as the power efficiency measurement experiments for the light emitting elements A-1 to A-4, respectively. , Power efficiency was measured based on the value when the luminance was 500 cd / m 2 .
또한, 상기에서 발광 소자 A-1 내지 A-4에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 B-1 내지 B-4와 비교 소자 5 및 6 각각의 수명을 측정하였다.In addition, the lifespans of the light emitting elements B-1 to B-4 and the comparative elements 5 and 6 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
상기 발광 소자 B-1 내지 B-4와 비교 소자 5 및 6 각각의 전력 효율 및 수명의 결과를 표 2에 나타낸다. 표 2에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 2에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 2 shows the results of power efficiency and lifespan of the light emitting elements B-1 to B-4 and Comparative elements 5 and 6, respectively. In Table 2, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 2, T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 2
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 B-1 34.9 714
발광 소자 B-2 34.7 681
발광 소자 B-3 33.1 664
발광 소자 B-4 33.5 656
비교 소자 5 11.2 212
비교 소자 6 12.5 218
TABLE 2
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element B-1 34.9 714
Light emitting element B-2 34.7 681
Light emitting element B-3 33.1 664
Light emitting element B-4 33.5 656
Comparative element 5 11.2 212
Comparative element 6 12.5 218
표 2를 참조하면, 본 발명에 따른 화합물들을 이용하여 제조된 발광 소자 B-1 내지 B-4 각각의 전력 효율은 약 34.9 lm/W, 약 34.7 lm/W, 약 33.1 lm/W 및 약 33.5 lm/W으로서, 적어도 약 33.1 lm/W 이상인 반면, 비교 소자 5의 전력 효율은 약 11.2 lm/W에 불과하고 비교 소자 6의 전력 효율은 약 12.5 lm/W에 불과함을 알 수 있다.Referring to Table 2, the power efficiency of each of the light emitting devices B-1 to B-4 manufactured using the compounds according to the present invention was about 34.9 lm / W, about 34.7 lm / W, about 33.1 lm / W and about 33.5 As lm / W, at least about 33.1 lm / W or more, while the power efficiency of Comparative Element 5 is only about 11.2 lm / W and the power efficiency of Comparative Element 6 is only about 12.5 lm / W.
또한, 발광 소자 B-1 내지 B-4 각각의 수명은 적어도 약 656시간으로서, 비교 소자 5의 수명은 약 212 시간이고 비교 소자 6의 수명은 약 218 시간인 것과 비교할 때, 본 발명에 따른 화합물들을 이용하여 제조된 발광 소자들의 수명이 비교 소자 5 및 6에 비해서 상대적으로 긴 것을 알 수 있다.In addition, the lifespan of each of the light emitting elements B-1 to B-4 is at least about 656 hours, whereby the lifetime of the comparative element 5 is about 212 hours and the lifetime of the comparative element 6 is about 218 hours, the compound according to the invention It can be seen that the lifespan of the light emitting devices manufactured using the light emitting diodes is relatively longer than those of the comparative devices 5 and 6.
또한, 발광 소자의 수명 특성 평가가 85℃의 가속 조건(가혹 조건)에서 수행된 것을 고려할 때, 본 발명에 따른 화합물을 포함하는 발광 소자의 수명 특성이 비교 소자 5 및 6에 비해서 긴 것을 통해서 본 발명에 따른 화합물을 이용하여 제조된 발광 소자의 내열성이 우수함을 알 수 있다.In addition, considering that the life characteristic evaluation of the light emitting device was performed under an accelerated condition (severe condition) of 85 ° C., the life characteristics of the light emitting device including the compound according to the present invention were longer than those of the comparative devices 5 and 6. It can be seen that the heat resistance of the light emitting device manufactured using the compound according to the invention is excellent.
발광 소자 C-1 내지 C-4의 제조Manufacturing of Light Emitting Diodes C-1 to C-4
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 NPB를 1Å/sec의 속도로 증착하고 동시에 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 NPB를 300Å의 두께로 증착하여 제2 층을 형성하였다. 상기 제2 층 상에 실시예 1에 따른 화합물로 약 100Å 두께의 제1 차단층을 형성하고, 상기 제1 차단층 상에 상기 화학식 14로 나타내는 mCBP와 상기 화학식 15로 나타나는 Ir(ppy)3를 100:9 중량비로 공증착하여 약 300Å 두께의 발광층을 형성하고, 상기 발광층 상에 다시 mCBP를 약 50Å 두께로 증착하여 제2 차단층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), NPB is deposited as a host material at a rate of 1 μs / sec and simultaneously a P-type dopant (HAT-CN) represented by Chemical Formula 13 is deposited on the host material 100. Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer. NPB was deposited to a thickness of 300 Å on the first layer to form a second layer. Forming a first blocking layer having a thickness of about 100 μs with a compound according to Example 1 on the second layer, mCBP represented by the formula (14) and Ir (ppy) 3 represented by the formula (15) on the first blocking layer Co-deposited at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 kPa, and mCBP was deposited to a thickness of about 50 kPa on the light emitting layer to form a second blocking layer.
그런 다음, 상기 제2 차단층 상에 상기 화학식 16으로 나타내는 BPhen과 상기 화학식 17로 나타내는 Alq3를 50:50 중량비로 공증착하여 약 400Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Then, BPhen represented by Formula 16 and Alq 3 represented by Formula 17 were co-deposited at a 50:50 weight ratio on the second blocking layer to form an electron transport layer having a thickness of about 400 μm. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여, 본 발명의 실시예 1에 따른 화합물을 포함하는 녹색 발광 소자 C-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a green light emitting device C-1 including the compound according to Example 1 of the present invention.
상기 제1 차단층을 본 발명의 실시예 5, 6 및 9에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 C-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 C-2, C-3 및 C-4를 제조하였다.Except for manufacturing the first blocking layer using each of the compounds according to Examples 5, 6 and 9 of the present invention, the light emitting device through the substantially same process as the manufacturing process of the light emitting device C-1 C-2, C-3 and C-4 were prepared.
비교 소자 7 및 8의 제조Preparation of Comparative Elements 7 and 8
상기 제1 차단층을 상기 화학식 b로 나타내는 비교예 10에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 C-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 7을 제조하였다.Comparative element 7 was manufactured by the same process as that of manufacturing light emitting device C-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. .
상기 제1 차단층을 상기 화학식 c로 나타내는 비교예 11에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 C-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 8을 제조하였다.Comparative device 8 was manufactured through the same process as that of manufacturing light emitting device C-1, except that the first blocking layer was manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c. .
발광 소자의 전력 효율 및 수명 평가 -3Evaluation of Power Efficiency and Lifespan of Light-Emitting Element -3
상기와 같이 준비된 발광 소자 C-1 내지 C-4와, 비교 소자 7 및 8 각각에 대해서, 상기 발광 소자 A-1 내지 A-4에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For each of the light emitting elements C-1 to C-4 and the comparative elements 7 and 8 prepared as described above, the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements A-1 to A-4. The power efficiency was measured based on the value at / m 2 .
또한, 상기에서 발광 소자 A-1 내지 A-4에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 C-1 내지 C-4 및 비교 소자 7 및 8 각각의 수명을 측정하였다.In addition, the lifespans of the light emitting elements C-1 to C-4 and the comparative elements 7 and 8 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
상기 발광 소자 C-1 내지 C-4 및 비교 소자 7 및 8 각각의 전력 효율 및 수명의 결과를 표 3에 나타낸다. 표 3에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 3에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 3 shows the results of power efficiency and lifespan of the light emitting elements C-1 to C-4 and the comparative elements 7 and 8, respectively. In Table 3, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 3, T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 3
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 C-1 36.1 739
발광 소자 C-2 32.3 734
발광 소자 C-3 31.2 656
발광 소자 C-4 30.1 633
비교 소자 7 12.6 218
비교 소자 8 13.1 220
TABLE 3
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element C-1 36.1 739
Light emitting element C-2 32.3 734
Light emitting element c-3 31.2 656
Light emitting element C-4 30.1 633
Comparative element 7 12.6 218
Comparative element 8 13.1 220
표 3을 참조하면, 발광 소자 C-1 내지 C-4 각각의 전력 효율은 약 36.1 lm/W, 약 32.3 lm/W, 약 31.2 lm/W 및 약 30.1 lm/W인 반면, 비교 소자 7의 전력 효율은 약 12.6 lm/W에 불과하고 비교 소자 8의 전력 효율은 약 13.1 lm/W에 불과함을 알 수 있다. 따라서, 본 발명에 따른 화합물을 포함하는 발광 소자들의 전력 효율이 비교 소자 7 및 8에 비해 좋은 것을 알 수 있다.Referring to Table 3, the power efficiency of each of the light emitting devices C-1 to C-4 is about 36.1 lm / W, about 32.3 lm / W, about 31.2 lm / W and about 30.1 lm / W, It can be seen that the power efficiency is only about 12.6 lm / W and that of Comparative Device 8 is only about 13.1 lm / W. Accordingly, it can be seen that the power efficiency of the light emitting devices including the compound according to the present invention is better than that of the comparative devices 7 and 8.
또한, 발광 소자 C-1 내지 C-4 각각의 수명은 약 739 시간, 약 734 시간, 약 656 시간 및 약 633 시간인데 반해, 비교 소자 7의 수명은 약 218 시간에 불과하고 비교 소자 8의 수명은 약 220 시간에 불과함을 알 수 있다. 따라서, 본 발명에 따른 화합물을 포함하는 발광 소자들의 수명이 비교 소자 7 및 8에 비해 긴 것을 알 수 있다.In addition, the lifespan of each of the light emitting elements C-1 to C-4 is about 739 hours, about 734 hours, about 656 hours, and about 633 hours, whereas the lifetime of the comparative element 7 is only about 218 hours and the lifetime of the comparative element 8 It can be seen that only about 220 hours. Therefore, it can be seen that the lifespan of the light emitting devices including the compound according to the present invention is longer than that of the comparative devices 7 and 8.
또한, 발광 소자의 수명 특성 평가가 85℃의 가속 조건(가혹 조건)에서 수행된 것을 고려할 때, 본 발명에 따른 화합물을 포함하는 발광 소자의 수명 특성이 비교 소자 7 및 8에 비해 우수한 것을 통해서, 본 발명에 따른 화합물을 이용하여 제조된 발광 소자의 내열성이 좋음을 알 수 있다.In addition, considering that the life characteristic evaluation of the light emitting device is performed under an acceleration condition (severe condition) of 85 ° C., the life characteristics of the light emitting device including the compound according to the present invention are superior to those of the comparative devices 7 and 8, It can be seen that the heat resistance of the light emitting device manufactured using the compound according to the present invention is good.
발광 소자 D-1 내지 D-4의 제조Manufacturing of Light Emitting Diodes D-1 to D-4
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 실시예 1에 따른 화합물을 1Å/sec의 속도로 증착하고 동시에 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 NPB를 300Å의 두께로 증착하여 제2 층을 형성하였다. 상기 제2 층 상에 상기 화학식 14로 나타내는 mCBP와 상기 화학식 15로 나타나는 Ir(ppy)3를 100:9 중량비로 공증착하여 약 300Å 두께의 발광층을 형성하고, 상기 발광층 상에 다시 mCBP를 약 50Å 두께로 증착하여 차단층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), the compound according to Example 1 is deposited as a host material at a rate of 1 Å / sec and simultaneously is a P-type dopant represented by Chemical Formula 13 (HAT-CN). Was co-evaporated at a ratio of about 5 parts by weight to 100 parts by weight of the host material to form a first layer having a thickness of 100 mm 3. NPB was deposited to a thickness of 300 Å on the first layer to form a second layer. MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa, and mCBP was about 50 kV on the light emitting layer. The thickness was deposited to form a barrier layer.
그런 다음, 상기 차단층 상에 상기 화학식 16으로 나타내는 BPhen과 상기 화학식 17로 나타내는 Alq3를 50:50 중량비로 공증착하여 약 400Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Then, BPhen represented by Chemical Formula 16 and Alq 3 represented by Chemical Formula 17 were co-deposited on the blocking layer in a 50:50 weight ratio to form an electron transport layer having a thickness of about 400 μm. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여, 본 발명의 실시예 1에 따른 화합물을 포함하는 녹색 발광 소자 D-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a green light emitting device D-1 including the compound according to Example 1 of the present invention.
상기 제1 층을 본 발명의 실시예 3, 4 및 8에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 D-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 D-2, D-3 및 D-4를 제조하였다.Except for manufacturing the first layer using each of the compounds according to Examples 3, 4 and 8 of the present invention, the light emitting device D through substantially the same process as the manufacturing process of the light emitting device D-1 -2, D-3 and D-4 were prepared.
비교 소자 9 및 10의 제조Preparation of Comparative Elements 9 and 10
상기 제1 층의 호스트 재료를 상기 화학식 b로 나타내는 비교예 10에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 D-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 9를 제조하였다.Comparing device 9 is carried out through substantially the same process as manufacturing light emitting device D-1, except that the host material of the first layer is manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b. Prepared.
상기 제1 층의 호스트 재료를 상기 화학식 c로 나타내는 비교예 11에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 D-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 10을 제조하였다. Comparative device 10 is manufactured through the substantially same process as that of manufacturing light emitting device D-1, except that the host material of the first layer is manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c. Prepared.
발광 소자의 전력 효율 및 수명 평가 -4Evaluation of power efficiency and lifespan of light emitting device -4
상기와 같이 준비된 발광 소자 D-1 내지 D-4와, 비교 소자 9 및 10 각각에 대해서, 상기 발광 소자 A-1 내지 A-4에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For each of the light emitting elements D-1 to D-4 and the comparative elements 9 and 10 prepared as described above, the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiments for the light emitting elements A-1 to A-4. The power efficiency was measured based on the value at / m 2 .
또한, 상기에서 발광 소자 A-1 내지 A-4에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 D-1 내지 D-4와 비교 소자 9 및 10 각각의 수명을 측정하였다.In addition, the lifetimes of the light emitting elements D-1 to D-4 and the comparative elements 9 and 10 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
상기 발광 소자 D-1 내지 D-4 및 비교 소자 9 및 10 각각의 전력 효율 및 수명의 결과를 표 4에 나타낸다. 표 4에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 4에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 4 shows the results of power efficiency and lifespan of the light emitting elements D-1 to D-4 and the comparative elements 9 and 10, respectively. In Table 4, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 4, T 75 means the time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 4
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 D-1 30.7 760
발광 소자 D-2 30.5 731
발광 소자 D-3 29.1 715
발광 소자 D-4 29.5 707
비교 소자 9 9.3 202
비교 소자 10 8.9 193
Table 4
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element d-1 30.7 760
Light emitting element d-2 30.5 731
Light emitting element d-3 29.1 715
Light emitting element D-4 29.5 707
Comparative element 9 9.3 202
Comparative element 10 8.9 193
표 4를 참조하면, 발광 소자 D-1 내지 D-4 각각의 전력 효율은 적어도 약 29.1 lm/W 이상인 반면, 비교 소자 9의 전력 효율은 약 9.3 lm/W에 불과하고 비교 소자 10의 전력 효율은 약 8.9 lm/W에 불과함을 알 수 있다. 이에 따라, 본 발명에 따른 화합물을 이용한 발광 소자들의 전력 효율이 비교 소자 9 및 10에 비해서 우수함을 알 수 있다.Referring to Table 4, the power efficiency of each of the light emitting elements D-1 to D-4 is at least about 29.1 lm / W or more, while the power efficiency of the comparative element 9 is only about 9.3 lm / W and the power efficiency of the comparative element 10. It can be seen that is only 8.9 lm / W. Accordingly, it can be seen that the power efficiency of the light emitting devices using the compound according to the present invention is superior to that of the comparative devices 9 and 10.
또한, 발광 소자 D-1 내지 D-4 각각의 수명은 적어도 약 707 시간인데 반해, 비교 소자 9의 수명은 약 202 시간에 불과하고 비교 소자 10의 수명은 약 193 시간에 불과함을 알 수 있다. 이에 따라, 본 발명에 따른 화합물을 이용한 발광 소자들의 수명이 비교 소자 9 및 10에 비해서 긴 것을 알 수 있다.In addition, the lifespan of each of the light emitting elements D-1 to D-4 is at least about 707 hours, whereas the lifespan of the comparative element 9 is only about 202 hours, and the lifetime of the comparative element 10 is only about 193 hours. . Accordingly, it can be seen that the lifetimes of the light emitting devices using the compound according to the present invention are longer than those of the comparative devices 9 and 10.
또한, 발광 소자의 수명 특성 평가가 85℃의 가속 조건(가혹 조건)에서 수행된 것을 고려할 때, 본 발명에 따른 화합물을 포함하는 발광 소자의 수명 특성이 비교 소자 9 및 10에 비해 우수한 것을 통해서, 본 발명에 따른 화합물을 이용하여 제조된 발광 소자는 내열성이 좋음을 알 수 있다.In addition, considering that the life characteristic evaluation of the light emitting device was performed under an acceleration condition (severe condition) of 85 ° C., the life characteristics of the light emitting device including the compound according to the present invention were superior to those of the comparative devices 9 and 10, It can be seen that the light emitting device manufactured using the compound according to the present invention has good heat resistance.
발광 소자 E-1 내지 E-4의 제조Manufacturing of Light Emitting Diodes E-1 to E-4
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 NPB를 1Å/sec의 속도로 증착하고 동시에 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 실시예 1에 따른 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다. 상기 제2 층 상에 상기 화학식 14로 나타내는 mCBP와 상기 화학식 15로 나타나는 Ir(ppy)3를 100:9 중량비로 공증착하여 약 300Å 두께의 발광층을 형성하고, 상기 발광층 상에 다시 mCBP를 약 50Å 두께로 증착하여 차단층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), NPB is deposited as a host material at a rate of 1 μs / sec and simultaneously a P-type dopant (HAT-CN) represented by Chemical Formula 13 is deposited on the host material 100. Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer. The compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer. MCBP represented by Chemical Formula 14 and Ir (ppy) 3 represented by Chemical Formula 15 were co-deposited on the second layer at a weight ratio of 100: 9 to form a light emitting layer having a thickness of about 300 GPa, and mCBP was about 50 kV on the light emitting layer. The thickness was deposited to form a barrier layer.
그런 다음, 상기 차단층 상에 상기 화학식 16으로 나타내는 BPhen과 상기 화학식 17로 나타내는 Alq3를 50:50 중량비로 공증착하여 약 400Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Then, BPhen represented by Chemical Formula 16 and Alq 3 represented by Chemical Formula 17 were co-deposited on the blocking layer in a 50:50 weight ratio to form an electron transport layer having a thickness of about 400 μm. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여, 본 발명의 실시예 1에 따른 화합물을 포함하는 녹색 발광 소자 E-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a green light emitting device E-1 including the compound according to Example 1 of the present invention.
상기 제2 층을 본 발명의 실시예 3, 4 및 8에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 E-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 E-2, E-3 및 E-4를 제조하였다.Except for manufacturing the second layer using each of the compounds according to Examples 3, 4 and 8 of the present invention, the light emitting device E through the substantially same process as the manufacturing process of the light emitting device E-1 -2, E-3 and E-4 were prepared.
비교 소자 11 및 12의 제조Preparation of Comparative Elements 11 and 12
상기 제2 층을 상기 화학식 b로 나타내는 비교예 10에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 E-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 11을 제조하였다.Comparative element 11 was manufactured through the same process as that of manufacturing light emitting device E-1, except that the second layer was manufactured using the compound according to Comparative Example 10 represented by Chemical Formula b.
상기 제2 층을 상기 화학식 c로 나타내는 비교예 11에 따른 화합물을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 E-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 12를 제조하였다.Comparative element 12 was manufactured by the same process as that of manufacturing light emitting device E-1, except that the second layer was manufactured using the compound according to Comparative Example 11 represented by Chemical Formula c.
발광 소자의 전력 효율 및 수명 평가 -5Evaluation of power efficiency and lifespan of light emitting device -5
상기와 같이 준비된 발광 소자 E-1 내지 E-4와, 비교 소자 11 및 12 각각에 대해서, 상기 발광 소자 A-1 내지 A-4에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For each of the light emitting elements E-1 to E-4 and the comparative elements 11 and 12 prepared as described above, the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements A-1 to A-4. The power efficiency was measured based on the value at / m 2 .
또한, 상기에서 발광 소자 A-1 내지 A-4에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 E-1 내지 E-4 및 비교 소자 11 및 12 각각의 수명을 측정하였다.In addition, the lifetimes of the light emitting elements E-1 to E-4 and the comparative elements 11 and 12 were measured in substantially the same manner as the life evaluation experiments for the light emitting elements A-1 to A-4.
상기 발광 소자 E-1 내지 E-4 및 비교 소자 11 및 12 각각의 전력 효율 및 수명의 결과를 표 5에 나타낸다. 표 5에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 5에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 5 shows the results of power efficiency and lifespan of the light emitting elements E-1 to E-4 and the comparative elements 11 and 12, respectively. In Table 5, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 5, T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 5
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 E-1 30.0 762
발광 소자 E-2 29.8 728
발광 소자 E-3 28.5 711
발광 소자 E-4 28.7 705
비교 소자 11 9.8 217
비교 소자 12 9.2 209
Table 5
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element E-1 30.0 762
Light emitting element E-2 29.8 728
Light emitting element E-3 28.5 711
Light emitting element E-4 28.7 705
Comparative element 11 9.8 217
Comparative element 12 9.2 209
표 5를 참조하면, 발광 소자 E-1 내지 E-4 각각의 전력 효율은 적어도 약 28.5 lm/W 이상인 반면, 비교 소자 11의 전력 효율은 약 9.8 lm/W에 불과하며 비교 소자 12의 전력 효율은 약 9.2 lm/W에 불과함을 알 수 있다. 따라서, 본 발명에 따른 화합물을 이용한 발광 소자들의 전력 효율이 비교 소자 11 및 12에 비해 우수한 것을 알 수 있다.Referring to Table 5, the power efficiency of each of the light emitting elements E-1 to E-4 is at least about 28.5 lm / W or more, while the power efficiency of the comparative element 11 is only about 9.8 lm / W and the power efficiency of the comparative element 12 It can be seen that is only about 9.2 lm / W. Therefore, it can be seen that the power efficiency of the light emitting devices using the compound according to the present invention is superior to that of the comparative devices 11 and 12.
또한, 발광 소자 E-1 내지 E-4 각각의 수명은 적어도 약 705 시간 이상인 반면, 비교 소자 11의 수명은 약 217 시간에 불과하고 비교 소자 12의 수명은 약 209 시간에 불과한 것을 알 수 있다. 따라서, 본 발명에 따른 화합물을 이용한 발광 소자들의 수명이 비교 소자 11 및 12에 비해 긴 것을 알 수 있다.In addition, it can be seen that the lifespan of each of the light emitting elements E-1 to E-4 is at least about 705 hours or more, whereas the lifespan of the comparative element 11 is only about 217 hours and the lifespan of the comparative element 12 is only about 209 hours. Therefore, it can be seen that the lifespan of the light emitting devices using the compound according to the present invention is longer than that of the comparative devices 11 and 12.
또한, 발광 소자의 수명 특성 평가가 85℃의 가속 조건(가혹 조건)에서 수행된 것을 고려할 때, 본 발명에 따른 화합물을 포함하는 발광 소자의 수명 특성이 비교 소자 11 및 12에 비해 우수한 것을 통해서, 본 발명에 따른 화합물을 이용하여 제조된 발광 소자는 내열성이 좋음을 알 수 있다.In addition, considering that the life characteristic evaluation of the light emitting device is performed under an acceleration condition (severe condition) of 85 ° C., the life characteristics of the light emitting device including the compound according to the present invention are superior to those of the comparative devices 11 and 12, It can be seen that the light emitting device manufactured using the compound according to the present invention has good heat resistance.
발광 소자 F-1 내지 F-14의 제조Manufacturing of Light Emitting Diodes F-1 to F-14
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 실시예 1에 따른 화합물을 1Å/sec의 속도로 증착하고 동시에 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 실시예 1에 따른 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), the compound according to Example 1 is deposited as a host material at a rate of 1 Å / sec and simultaneously is a P-type dopant represented by Chemical Formula 13 (HAT-CN). Was co-evaporated at a ratio of about 5 parts by weight to 100 parts by weight of the host material to form a first layer having a thickness of 100 mm 3. The compound according to Example 1 was deposited on the first layer to a thickness of 300 mm 3 to form a second layer.
상기 제2 층 위에 하기 화학식 19로 나타내는 화합물과 하기 화학식 20으로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.A compound represented by the following Chemical Formula 19 and a compound represented by the following Chemical Formula 20 were co-deposited on the second layer at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 μs.
그런 다음, 상기 발광층 상에 하기 화학식 21로 나타내는 화합물과 상기 화학식 18로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Thereafter, the compound represented by Chemical Formula 21 and Liq represented by Chemical Formula 18 were co-deposited on a light emitting layer in a 50:50 weight ratio to form an electron transport layer having a thickness of about 360 Pa. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed.
[화학식 19][Formula 19]
Figure PCTKR2013008465-appb-I000109
Figure PCTKR2013008465-appb-I000109
[화학식 20][Formula 20]
Figure PCTKR2013008465-appb-I000110
Figure PCTKR2013008465-appb-I000110
[화학식 21][Formula 21]
Figure PCTKR2013008465-appb-I000111
Figure PCTKR2013008465-appb-I000111
위 방법으로 본 발명의 실시예 1에 따른 화합물을 포함하는 청색 발광 소자 F-1을 제조하였다.The blue light emitting device F-1 including the compound according to Example 1 of the present invention was prepared by the above method.
또한, 호스트 물질을 실시예 2 내지 실시예 14에 따른 화합물들을 각각 이용하여 제1 층 및 제2 층을 형성하는 것을 제외하고는, 상기 발광 소자 F-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 F-1 내지 발광 소자 F-14를 제조하였다.Also, except for forming the first layer and the second layer by using the compounds according to Examples 2 to 14, respectively, the host material is substantially the same as the process of manufacturing the light emitting device F-1. Through the light emitting device F-1 to F-14 was produced.
비교 소자 13 내지 20의 제조Preparation of Comparative Elements 13-20
호스트 물질을 비교예 1 내지 8에 따른 화합물을 이용하여 제1 층과 제2 층을 형성하는 것을 제외하고는, 상기 발광 소자 F-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 13 내지 20을 제조하였다.Except for forming the first layer and the second layer by using the compound according to Comparative Examples 1 to 8, the host material through the comparative element 13 to substantially the same process as the manufacturing process of the light emitting device F-1 20 was prepared.
발광 소자의 전력 효율 및 수명 평가 - 6Evaluation of Power Efficiency and Lifespan of Light-Emitting Element-6
상기 발광 소자 F-1 내지 F-14와, 비교 소자 13 내지 20 각각에 대해서, 질소 분위기의 글로브 박스 안에서 흡습제(Getter)가 부착된 커버 글래스 가장자리에 UV 경화용 실런트를 디스펜싱한 후, 발광 소자들 및 비교 소자들 각각과 커버 글래스를 합착하고 UV 광을 조사하여 경화시켰다. 상기와 같이 준비된 발광 소자 F-1 내지 F-14와, 비교 소자 13 내지 20 각각에 대해서, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다. 그 결과를 표 6에 나타낸다.The light emitting devices F-1 to F-14 and the comparative devices 13 to 20 were each dispensed with a UV curing sealant at the edge of the cover glass with a moisture absorbent (Getter) in a glove box in a nitrogen atmosphere. Each of the and the comparative elements and the cover glass were bonded and cured by irradiation with UV light. For each of the light emitting elements F-1 to F-14 and the comparative elements 13 to 20 prepared as described above, power efficiency was measured based on the value when the luminance was 500 cd / m 2 . The results are shown in Table 6.
또한, 약 85℃의 온도로 일정하게 유지되고 있는 측정용 오븐 내에 설치된 수명 측정기를 이용하여 발광 소자 F-1 내지 F-14와, 비교 소자 13 내지 20 각각의 수명을 측정하였다. 그 결과를 표 6에 나타낸다.In addition, the lifetimes of each of the light emitting elements F-1 to F-14 and the comparative elements 13 to 20 were measured using a life meter installed in a measuring oven maintained at a constant temperature of about 85 ° C. The results are shown in Table 6.
표 6에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 6에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.In Table 6, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 6, T 75 means the time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 6
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 F-1 8.70 145
발광 소자 F-2 7.60 121
발광 소자 F-3 8.50 135
발광 소자 F-4 8.00 130
발광 소자 F-5 7.40 141
발광 소자 F-6 7.10 120
발광 소자 F-7 7.00 115
발광 소자 F-8 8.20 127
발광 소자 F-9 7.10 118
발광 소자 F-10 7.80 122
발광 소자 F-11 6.90 116
발광 소자 F-12 7.30 133
발광 소자 F-13 8.40 147
발광 소자 F-14 7.20 137
비교 소자 13 5.61 77
비교 소자 14 5.90 81
비교 소자 15 5.50 75
비교 소자 16 5.00 69
비교 소자 17 5.20 70
비교 소자 18 4.90 61
비교 소자 19 5.30 72
비교 소자 20 4.10 52
Table 6
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element F-1 8.70 145
Light emitting element F-2 7.60 121
Light emitting element F-3 8.50 135
Light emitting element F-4 8.00 130
Light emitting element F-5 7.40 141
Light emitting element F-6 7.10 120
Light emitting element F-7 7.00 115
Light emitting element F-8 8.20 127
Light emitting element F-9 7.10 118
Light emitting element F-10 7.80 122
Light emitting element F-11 6.90 116
Light emitting element F-12 7.30 133
Light emitting element F-13 8.40 147
Light emitting element F-14 7.20 137
Comparative element 13 5.61 77
Comparative element 14 5.90 81
Comparative element 15 5.50 75
Comparative element 16 5.00 69
Comparative element 17 5.20 70
Comparative element 18 4.90 61
Comparative Element 19 5.30 72
Comparative element 20 4.10 52
표 6을 참조하면, Cz-Cz 간의 치환위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 13(2 또는 7번 위치) 및 비교 소자 20(4번 또는 5번 위치)의 전력 효율은 각각 약 5.61 lm/W 및 약 4.10 lm/W이고, 수명은 각각 77시간 및 52시간임을 알 수 있다. 이에 비하여 Cz-Cz 간의 치환위치가 3번 또는 6번인 본 발명에 따른 화합물들을 사용한 발광 소자 F-1 내지 F-14는 비교 소자 13 및 20에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 비교 소자 13과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 6에 따른 화합물을 사용한 발광 소자 F-6은 전력 효율이 약 27%만큼 상승하고, 수명은 약 56%만큼 길어진 것을 알 수 있다. 또한 비교 소자 20과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 F-2는 전력 효율이 약 85%만큼 상승하고, 수명은 약 133%만큼 길어진 것을 알 수 있다.Referring to Table 6, the power efficiency of the comparison element 13 (position 2 or 7) and the comparison element 20 (position 4 or 5) containing a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that it is about 5.61 lm / W and about 4.10 lm / W, respectively, and the lifetimes are 77 hours and 52 hours, respectively. On the contrary, it can be seen that the light emitting devices F-1 to F-14 using the compounds according to the present invention having 3 or 6 substitution positions between Cz and Cz show superior power efficiency and lifetime as compared with the comparative devices 13 and 20. In particular, the light emitting device F-6 using the compound according to Example 6 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 13 has an increase in power efficiency by about 27% and a long lifetime by about 56%. It can be seen that. In addition, the light emitting device F-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz as compared to Comparative Device 20 has an increase in power efficiency by about 85% and a long lifetime by about 133%. It can be seen that.
또한 DBF의 치환되는 위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 14(3 또는 6번 위치)의 전력 효율은 약 5.90 lm/W이고, 수명은 약 81시간임을 알 수 있다. 이에 반해, DBF의 치환되는 위치가 1번 또는 8번인 본 발명에 따른 화합물들을 사용한 발광 소자 F-7, F-9 및 F-11은 전력 효율이 적어도 16%만큼 증가한 것을 알 수 있고, 수명은 적어도 41%만큼 길어진 것을 알 수 있다.In addition, it can be seen that the power efficiency of the comparative element 14 (position 3 or 6) including the compound where the position of DBF is substituted with the compound according to the present invention is about 5.90 lm / W, and the lifetime is about 81 hours. On the contrary, it can be seen that the light emitting devices F-7, F-9 and F-11 using the compounds according to the present invention, wherein the substitution position of DBF is 1 or 8, have increased power efficiency by at least 16%. At least 41% longer.
한편, Cz이 중심에 위치하지 않고 측쇄에 치환되었다는 점에서 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 15, 16 및 19의 전력 효율은 각각 약 5.45 lm/W, 약 5.01 lm/W 및 약 5.27 lm/W이고, 수명은 약 75시간, 약 69시간 및 약 72시간임을 알 수 있다. 이에 비하여 Cz이 중심에 위치하는 본 발명에 따른 화합물들을 사용한 발광 소자 F-1 내지 F-14는 비교 소자 15, 16 및 19에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 Cz-DBT-DBT-Cz 구조를 가지는 화합물을 포함하는 비교 소자 15와 대비하여, DBT-Cz-Cz-DBT 구조를 가지는 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 F-2는 전력 효율이 약 39%만큼 증가하고, 수명은 약 61%만큼 길어짐을 알 수 있다. 또한 Cz-DBF-DBF-Cz 구조를 가지는 화합물을 포함하는 비교 소자 16과 대비하여 DBF-Cz-Cz-DBF의 구조를 가지는 본 발명의 실시예 7에 따른 화합물을 사용한 발광 소자 F-7은 전력 효율이 약 40%만큼 증가하고, 수명이 약 67%만큼 길어진 것을 알 수 있다.On the other hand, the power efficiencies of Comparative elements 15, 16 and 19 comprising compounds different from the compounds according to the invention in that Cz is not centrally located and substituted in the side chain are about 5.45 lm / W, about 5.01 lm / W and It can be seen that it is about 5.27 lm / W and the lifetime is about 75 hours, about 69 hours and about 72 hours. In contrast, it can be seen that the light emitting devices F-1 to F-14 using the compounds according to the present invention in which Cz is located at the center show superior power efficiency and lifetime as compared to the comparative devices 15, 16 and 19. In particular, in comparison with Comparative Device 15 comprising a compound having a Cz-DBT-DBT-Cz structure, the light emitting device F-2 using the compound according to Example 2 of the present invention having a DBT-Cz-Cz-DBT structure was used. It can be seen that the efficiency is increased by about 39% and the life is extended by about 61%. In addition, the light emitting device F-7 using the compound according to Example 7 having the structure of DBF-Cz-Cz-DBF as compared to the comparison device 16 including the compound having the structure Cz-DBF-DBF-Cz It can be seen that the efficiency is increased by about 40% and the life is extended by about 67%.
나아가 Cz를 3개 이상 구조 내에 포함하고 있다는 점에서 본 발명에 따른 화합물과 상이한 구조를 갖는 화합물을 포함하는 비교 소자 17 및 18의 전력 효율은 각각 약 5.20 lm/W 및 약 4.90 lm/W이고, 수명은 약 70시간 및 약 61시간임을 알 수 있다. 이에 비하여 Cz을 2개만 가지는 본 발명에 따른 화합물들을 사용한 발광 소자 F-1 내지 F-14는 비교 소자 17 및 18에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 DBT-Cz-Cz-Cz-DBT 구조를 가지는 화합물을 포함하는 비교 소자 18과 대비하여 DBT-Cz-Cz-DBT 구조를 가지는 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 F-2의 전력 효율은 비교 소자 18에 비하여 약 55%만큼 증가하고, 수명은 약 98%만큼 길어짐을 알 수 있다.Furthermore, the power efficiency of the comparative elements 17 and 18 comprising a compound having a structure different from that of the compound according to the present invention in that Cz is included in three or more structures is about 5.20 lm / W and about 4.90 lm / W, respectively. It can be seen that the lifetime is about 70 hours and about 61 hours. In contrast, it can be seen that the light emitting devices F-1 to F-14 using the compounds according to the present invention having only two Cz exhibit excellent power efficiency and lifetime compared to the comparative devices 17 and 18. Particularly, the light emitting device F-2 using the compound according to Example 2 of the present invention having the DBT-Cz-Cz-DBT structure as compared to the comparative device 18 including the compound having the DBT-Cz-Cz-Cz-DBT structure It can be seen that the power efficiency is increased by about 55% and the lifespan is increased by about 98% compared to the comparison element 18.
발광 소자 G-1 내지 G-14의 제조Manufacturing of Light Emitting Diodes G-1 to G-14
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 약 100Å의 두께로 증착하여 제1 층을 형성하고, 상기 제1 층 상에 NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine)를 약 300Å의 두께로 증착하여 제2 층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), a P-type dopant (HAT-CN) represented by Formula 13 was deposited to a thickness of about 100 GPa to form a first layer, and the first layer NPB (N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine) was deposited to a thickness of about 300 kPa on the second layer to form a second layer. It was.
상기 제2 층 상에 실시예 1에 따른 화합물로 약 100Å 두께의 제1 차단층을 형성하고, 상기 제1 차단층 상에 상기 화학식 19로 나타내는 화합물과 상기 화학식 20으로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다. 그런 다음, 상기 발광층 상에 상기 화학식 21로 나타내는 화합물과 상기 화학식 18로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. A first blocking layer having a thickness of about 100 μs is formed on the second blocking layer with the compound according to Example 1, and the compound represented by Formula 19 and the compound represented by Formula 20 are 100: 5 by weight on the first blocking layer. Co-deposited to form a light emitting layer of about 200 kHz thickness. Thereafter, the compound represented by Chemical Formula 21 and Liq represented by Chemical Formula 18 were co-deposited at a weight ratio of 50:50 on the emission layer to form an electron transport layer having a thickness of about 360 Pa. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여 본 발명의 실시예 1에 따른 화합물을 포함하는 청색 발광 소자 G-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a blue light emitting device G-1 including the compound according to Example 1 of the present invention.
상기 제1 차단층을 본 발명의 실시예 2 내지 14에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 G-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 G-2 내지 G-14를 제조하였다.Except that the first blocking layer is manufactured using each of the compounds according to Examples 2 to 14 of the present invention, the light emitting device G- is substantially the same as the process of manufacturing the light emitting device G-1. 2 to G-14 were prepared.
비교 소자 21 및 28의 제조Preparation of Comparative Elements 21 and 28
상기 제1 차단층을 비교예 1 내지 8에 따른 화합물을 이용하여 제조한 것을 제외하고는, 상기 발광 소자 G-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 21 내지 28을 제조하였다.Comparative elements 21 to 28 were manufactured through substantially the same process as that of manufacturing light emitting device G-1, except that the first blocking layer was manufactured using the compound according to Comparative Examples 1 to 8.
발광 소자의 전력 효율 및 수명 평가 - 7Evaluation of Power Efficiency and Lifespan of Light-Emitting Element-7
상기와 같이 준비된 발광 소자 G-1 내지 G-14와, 비교 소자 21 내지 28 각각에 대해서, 상기 발광 소자 F-1 내지 F-14에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For each of the light emitting elements G-1 to G-14 and the comparative elements 21 to 28 prepared as described above, the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements F-1 to F-14. The power efficiency was measured based on the value at / m 2 .
또한, 상기에서 발광 소자 F-1 내지 F-14에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 G-1 내지 G-14와 비교 소자 21 내지 28 각각의 수명을 측정하였다.In addition, the lifetimes of each of the light emitting elements G-1 to G-14 and the comparative elements 21 to 28 were measured in the same manner as the life evaluation experiments for the light emitting elements F-1 to F-14.
상기 발광 소자 G-1 내지 G-14와 비교 소자 21 내지 28 각각의 전력 효율 및 수명의 결과를 표 7에 나타낸다. 표 7에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 7에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 7 shows the results of power efficiency and lifespan of each of the light emitting devices G-1 to G-14 and the comparative devices 21 to 28. In Table 7, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 7, T 75 represents a time taken for the luminance of the light emitting element to be 75% of the initial luminance when the initial luminance of the light emitting element is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 7
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 G-1 7.62 127
발광 소자 G-2 6.64 107
발광 소자 G-3 7.39 120
발광 소자 G-4 7.03 114
발광 소자 G-5 6.70 123
발광 소자 G-6 6.39 105
발광 소자 G-7 6.12 102
발광 소자 G-8 7.19 111
발광 소자 G-9 6.21 104
발광 소자 G-10 6.85 109
발광 소자 G-11 6.10 102
발광 소자 G-12 6.32 117
발광 소자 G-13 7.30 131
발광 소자 G-14 6.50 125
비교 소자 21 4.83 66
비교 소자 22 5.07 69
비교 소자 23 4.69 64
비교 소자 24 4.31 59
비교 소자 25 4.47 60
비교 소자 26 4.21 52
비교 소자 27 4.53 62
비교 소자 28 3.53 45
TABLE 7
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element g-1 7.62 127
Light emitting element g-2 6.64 107
Light emitting element g-3 7.39 120
Light emitting element g-4 7.03 114
Light emitting element g-5 6.70 123
Light emitting element G-6 6.39 105
Light emitting element g-7 6.12 102
Light emitting element g-8 7.19 111
Light emitting element g-9 6.21 104
Light emitting element g-10 6.85 109
Light emitting element g-11 6.10 102
Light emitting element g-12 6.32 117
Light emitting element g-13 7.30 131
Light emitting element G-14 6.50 125
Comparative element 21 4.83 66
Comparative element 22 5.07 69
Comparative element 23 4.69 64
Comparative element 24 4.31 59
Comparative element 25 4.47 60
Comparative element 26 4.21 52
Comparative element 27 4.53 62
Comparative Element 28 3.53 45
표 7을 참조하면, Cz-Cz 간의 치환위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 21(2 또는 7번 위치) 및 비교 소자 28(4번 또는 5번 위치)의 전력 효율은 각각 약 4.83 lm/W 및 약 3.53 lm/W이고, 수명은 각각 66시간 및 45시간임을 알 수 있다. 이에 비하여 Cz-Cz 간의 치환위치가 3번 또는 6번인 본 발명에 따른 화합물들을 사용한 발광 소자 G-1 내지 G-14는 비교 소자 21 및 28에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 비교 소자 21과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 6에 따른 화합물을 사용한 발광 소자 G-6은 전력 효율이 약 32%만큼 증가하고, 수명이 약 60%만큼 길어짐을 알 수 있다. 또한 비교 소자 28과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 G-2는 전력 효율이 약 88%만큼 증가하고, 수명이 약 137%만큼 길어질 것을 알 수 있다.Referring to Table 7, the power efficiency of the comparison element 21 (position 2 or 7) and the comparison element 28 (position 4 or 5) containing a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that they are about 4.83 lm / W and about 3.53 lm / W, respectively, and their lifetimes are 66 and 45 hours, respectively. On the contrary, it can be seen that the light emitting devices G-1 to G-14 using the compounds according to the present invention having a substitution position between Cz and Cz 3 or 6 exhibit superior power efficiency and lifespan as compared with the comparative devices 21 and 28. In particular, the light emitting device G-6 using the compound according to Example 6 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 21 increases power efficiency by about 32% and has a lifespan of about 60%. It can be seen. In addition, the light emitting device G-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz as compared with Comparative Element 28 increases power efficiency by about 88% and extends lifetime by about 137%. It can be seen that.
또한 DBF의 치환되는 위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 22(3 또는 6번 위치)의 전력 효율은 약 5.07 lm/W이고, 수명은 약 69시간임을 알 수 있다. 이에 비하여 DBF의 치환되는 위치가 1번 또는 8번인 본 발명에 따른 화합물들을 사용한 발광 소자 G-7, G-9 및 G-11은 비교 소자 22에 비하여 전력 효율이 약 20%만큼 증가하고, 수명이 약 48%만큼 길어진 것을 알 수 있다.In addition, it can be seen that the power efficiency of the comparative element 22 (position 3 or 6) including the compound where the position of the DBF is substituted with the compound according to the present invention is about 5.07 lm / W, and the lifetime is about 69 hours. On the contrary, the light emitting devices G-7, G-9 and G-11 using the compounds according to the present invention, wherein the substitution positions of DBF are 1 or 8, have an increase in power efficiency by about 20% and a lifetime compared to that of the comparative device 22. This is about 48% longer.
한편 Cz이 중심에 위치하지 않고 측쇄에 치환되었다는 점에서 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 23, 24 및 27의 전력 효율은 각각 약 4.69 lm/W, 약 4.31 lm/W 및 약 4.53 lm/W이고, 수명은 약 64시간, 약 59시간 및 약 62시간임을 알 수 있다. 이에 비하여 Cz이 중심에 위치하는 본 발명에 따른 화합물들을 사용한 발광 소자 G-1 내지 G-14는 비교 소자 23, 24 및 27에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 Cz-DBT-DBT-Cz 구조를 가지는 화합물을 포함하는 비교 소자 23과 대비하여 DBT-Cz-Cz-DBT 구조를 가지는 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 G-2는 전력 효율이 약 42%만큼 증가하고, 수명은 약 67%만큼 길어짐을 알 수 있다. 또한 Cz-DBF-DBF-Cz 구조를 가지는 화합물을 포함하는 비교 소자 24와 대비하여 DBF-Cz-Cz-DBF의 구조를 가지는 본 발명의 실시예 7에 따른 화합물을 사용한 발광 소자 G-7은 전력 효율이 약 42%만큼 증가하고, 수명은 약 73%만큼 길어진 것을 알 수 있다.On the other hand, the power efficiency of the comparative elements 23, 24 and 27 comprising compounds different from the compounds according to the present invention in that Cz is not centrally located and substituted in the side chain is about 4.69 lm / W, about 4.31 lm / W and about 4.53 lm / W and the lifetimes are about 64 hours, about 59 hours and about 62 hours. In contrast, it can be seen that the light emitting devices G-1 to G-14 using the compounds according to the present invention in which Cz is located at the center show superior power efficiency and lifespan as compared to the comparative devices 23, 24 and 27. In particular, compared to Comparative Device 23 including a compound having a Cz-DBT-DBT-Cz structure, the light emitting device G-2 using the compound according to Example 2 having a DBT-Cz-Cz-DBT structure has a power efficiency. It can be seen that this increases by about 42% and the lifespan is extended by about 67%. In addition, the light emitting device G-7 using the compound according to Example 7 having the structure of DBF-Cz-Cz-DBF compared to the comparative device 24 including the compound having the structure Cz-DBF-DBF-Cz has a power It can be seen that the efficiency is increased by about 42% and the life is extended by about 73%.
나아가 Cz를 3개 이상 구조 내에 포함하고 있다는 점에서 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 25 및 26의 전력 효율은 각각 약 4.47 m/W 및 약 4.21 lm/W이고, 수명은 약 60시간 및 약 52시간임을 알 수 있다. 이에 비하여 Cz을 2개만 가지는 본 발명에 따른 화합물들을 사용한 발광 소자 G-1 내지 G-14는, 비교 소자 25 및 26에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히, DBT-Cz-Cz-Cz-DBT 구조를 가지는 비교 소자 26과 대비하여 DBT-Cz-Cz-DBT 구조를 가지는 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 G-2는 전력 효율이 약 58%만큼 증가하고 수명은 약 105%만큼 길어진 것을 알 수 있다.Furthermore, the power efficiency of the comparative elements 25 and 26 comprising different compounds from the compounds according to the invention in that Cz is included in at least three structures is about 4.47 m / W and about 4.21 lm / W, respectively, and the lifetime is about It can be seen that 60 hours and about 52 hours. In contrast, it can be seen that the light emitting devices G-1 to G-14 using the compounds according to the present invention having only two Cz have superior power efficiency and lifespan compared to the comparative devices 25 and 26. In particular, compared to Comparative Device 26 having the DBT-Cz-Cz-Cz-DBT structure, the light emitting device G-2 using the compound according to Example 2 having the DBT-Cz-Cz-DBT structure has a high power efficiency. It can be seen that the increase is about 58% and the lifespan is about 105% longer.
발광 소자 H-1 내지 H-14의 제조Manufacturing of Light Emitting Diodes H-1 to H-14
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 호스트 물질로서 NPB를 1Å/sec의 속도로 증착하고 동시에 상기 화학식 13으로 나타내는 P형 도펀트(HAT-CN)를 상기 호스트 물질 100 중량부에 대해 약 5 중량부의 비율로 공증착(Co-evaporation)하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 NPB를 300Å의 두께로 증착하여 제2 층을 형성하였다. 상기 제2 층 상에 실시예 1에 따른 화합물로 약 100Å 두께의 제1 차단층을 형성하고, 상기 제1 차단층 상에 상기 화학식 19로 나타내는 화합물과 상기 화학식 20으로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.On the first electrode formed of indium tin oxide (ITO), NPB is deposited as a host material at a rate of 1 μs / sec and simultaneously a P-type dopant (HAT-CN) represented by Chemical Formula 13 is deposited on the host material 100. Co-evaporation was performed at a ratio of about 5 parts by weight to parts by weight to form a 100 mm thick first layer. NPB was deposited to a thickness of 300 Å on the first layer to form a second layer. A first blocking layer having a thickness of about 100 μs is formed on the second blocking layer with the compound according to Example 1, and the compound represented by Formula 19 and the compound represented by Formula 20 are 100: 5 by weight on the first blocking layer. Co-deposited to form a light emitting layer of about 200 kHz thickness.
그런 다음, 상기 발광층 상에 상기 화학식 21로 나타내는 화합물과 상기 화학식 18로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 18로 나타나는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다. Thereafter, the compound represented by Chemical Formula 21 and Liq represented by Chemical Formula 18 were co-deposited at a weight ratio of 50:50 on the emission layer to form an electron transport layer having a thickness of about 360 Pa. Subsequently, an electron injection layer having a thickness of about 10 μs was formed on the electron transport layer by using Liq represented by Formula 18.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하여 본 발명의 실시예 1에 따른 화합물을 포함하는 청색 발광 소자 H-1을 제조하였다.On the electron injection layer, a second electrode using an aluminum thin film having a thickness of 1,000 Å was formed to manufacture a blue light emitting device H-1 including the compound according to Example 1 of the present invention.
상기 제1 차단층을 본 발명의 실시예 2 내지 14에 따른 화합물들 각각을 이용하여 제조하는 것을 제외하고는, 상기 발광 소자 H-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 H-2 내지 H-14를 제조하였다.Except that the first blocking layer is manufactured using each of the compounds according to Examples 2 to 14 of the present invention, the light emitting device H- is substantially the same as the process of manufacturing the light emitting device H-1. 2 to H-14 was prepared.
비교 소자 29 내지 36의 제조Preparation of Comparative Elements 29-36
상기 제1 차단층을 비교예 1 내지 8에 따른 화합물을 이용하여 제조한 것을 제외하고는, 상기 발광 소자 H-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 29 내지 36을 제조하였다.Comparative elements 29 to 36 were manufactured by the same process as that of manufacturing the light emitting device H-1, except that the first blocking layer was manufactured using the compound according to Comparative Examples 1 to 8.
발광 소자의 전력 효율 및 수명 평가 - 8Evaluation of Power Efficiency and Lifespan of Light-Emitting Element-8
상기와 같이 준비된 발광 소자 H-1 내지 H-14와, 비교 소자 29 내지 36 각각에 대해서, 상기 발광 소자 F-1 내지 F-14에 대한 전력 효율 측정 실험과 실질적으로 동일한 방법으로, 휘도가 500cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다.For each of the light emitting elements H-1 to H-14 and the comparative elements 29 to 36 prepared as described above, the luminance was 500 cd in substantially the same manner as the power efficiency measurement experiment for the light emitting elements F-1 to F-14. The power efficiency was measured based on the value at / m 2 .
또한, 상기에서 발광 소자 F-1 내지 F-14에 대한 수명 평가 실험과 실질적으로 동일한 방법으로, 발광 소자 H-1 내지 H-14 및 비교 소자 29 내지 36 각각의 수명을 측정하였다.In addition, the lifespan of each of the light emitting elements H-1 to H-14 and the comparative elements 29 to 36 was measured in substantially the same manner as the life evaluation experiments for the light emitting elements F-1 to F-14.
상기 발광 소자 H-1 내지 H-14 및 비교 소자 29 내지 36 각각의 전력 효율 및 수명의 결과를 표 8에 나타낸다. 표 8에서, 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 표 8에서, T75는 발광 소자의 초기 휘도가 1,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 75%가 되기까지 걸린 시간을 의미한다. 수명에 대한 값은 당업자에 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.Table 8 shows the results of power efficiency and lifespan of the light emitting elements H-1 to H-14 and the comparative elements 29 to 36, respectively. In Table 8, the unit of the result of measuring the power efficiency is lm / W. In addition, in Table 8, T 75 means the time taken for the luminance of the light emitting device to be 75% of the initial luminance when the initial luminance of the light emitting device is 1,000 cd / m 2 . The value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
표 8
소자 No. 전력효율[lm/W] 수명(T75@85℃[hr])
발광 소자 H-1 7.70 128
발광 소자 H-2 6.50 101
발광 소자 H-3 7.40 114
발광 소자 H-4 7.10 112
발광 소자 H-5 6.80 120
발광 소자 H-6 6.30 98
발광 소자 H-7 6.10 96
발광 소자 H-8 7.10 111
발광 소자 H-9 6.20 99
발광 소자 H-10 6.90 103
발광 소자 H-11 6.00 95
발광 소자 H-12 6.20 113
발광 소자 H-13 7.20 133
발광 소자 H-14 6.40 125
비교 소자 29 4.99 68
비교 소자 30 5.25 72
비교 소자 31 4.85 66
비교 소자 32 4.46 61
비교 소자 33 4.63 63
비교 소자 34 4.36 54
비교 소자 35 4.69 64
비교 소자 36 3.65 47
Table 8
Element No. Power Efficiency [lm / W] Life (T 75 @ 85 ° C [hr])
Light emitting element H-1 7.70 128
Light emitting element H-2 6.50 101
Light emitting element h-3 7.40 114
Light emitting element H-4 7.10 112
Light emitting element H-5 6.80 120
Light emitting element H-6 6.30 98
Light emitting element H-7 6.10 96
Light emitting element H-8 7.10 111
Light emitting element H-9 6.20 99
Light emitting element H-10 6.90 103
Light emitting element H-11 6.00 95
Light emitting element H-12 6.20 113
Light emitting element H-13 7.20 133
Light emitting element H-14 6.40 125
Comparative element 29 4.99 68
Comparative element 30 5.25 72
Comparative element 31 4.85 66
Comparative element 32 4.46 61
Comparative element 33 4.63 63
Comparative element 34 4.36 54
Comparative element 35 4.69 64
Comparative element 36 3.65 47
표 8을 참조하면, Cz-Cz 간의 치환위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 29(2 또는 7번 위치) 및 비교 소자 36(4번 또는 5번 위치)의 전력 효율은 각각 약 4.99 lm/W 및 약 3.65 lm/W이고, 수명은 각각 68시간 및 47시간임을 알 수 있다. 이에 비하여 Cz-Cz 간의 치환위치가 3번 또는 6번인 본 발명에 따른 화합물들을 사용한 발광 소자 H-1 내지 H-14는 비교 소자 29 및 36에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 비교 소자 29과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 6에 따른 화합물을 사용한 발광 소자 H-6은 전력 효율이 약 26%만큼 증가하고, 수명은 약 44%만큼 길어진 것을 알 수 있다. 또한 비교 소자 36과 대비하여 Cz-Cz 간의 치환위치만이 상이한 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 H-2는 전력 효율이 약 78%만큼 증가하고, 수명은 약 115%로 길어짐을 알 수 있다.Referring to Table 8, the power efficiency of the comparison element 29 (position 2 or 7) and the comparison element 36 (position 4 or 5) comprising a compound where the substitution position between Cz-Cz is different from the compound according to the present invention It can be seen that it is about 4.99 lm / W and about 3.65 lm / W, respectively, and the lifetimes are 68 hours and 47 hours, respectively. In contrast, it can be seen that the light emitting devices H-1 to H-14 using the compounds according to the present invention having a substitution position of 3 or 6 between Cz and Cz show superior power efficiency and lifespan as compared with the comparative devices 29 and 36. In particular, the light emitting device H-6 using the compound according to Example 6 of the present invention, in which only the substitution position between Cz and Cz is different compared to that of the comparative device 29, the power efficiency is increased by about 26% and the lifetime is increased by about 44%. It can be seen that. In addition, the light emitting device H-2 using the compound according to Example 2 of the present invention having only a substitution position between Cz and Cz in comparison with the comparison device 36 increases power efficiency by about 78% and has a long service life of about 115%. It can be seen.
또한, DBF의 치환되는 위치가 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 30(3 또는 6번 위치)의 전력 효율은 약 5.25 lm/W이고, 수명은 약 72시간임을 알 수 있다. 이에 비하여 DBF의 치환되는 위치가 1번 또는 8번인 본 발명에 따른 화합물들을 사용한 발광 소자 H-7, H-9 및 H-11은 비교 소자 30에 비하여 전력 효율이 약 14%만큼 증가하고, 수명이 약 32%만큼 길어짐을 알 수 있다.In addition, it can be seen that the power efficiency of the comparative element 30 (position 3 or 6) including the compound at which the DBF is substituted is different from the compound according to the present invention is about 5.25 lm / W, and the lifetime is about 72 hours. On the contrary, the light emitting devices H-7, H-9 and H-11 using the compounds according to the present invention, wherein the substitution positions of DBF are 1 or 8, have an increased power efficiency by about 14% compared to the comparative device 30, and have a lifetime. This is about 32% longer.
한편, Cz이 중심에 위치하지 않고 측쇄에 치환되었다는 점에서 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 31, 32 및 35의 전력 효율은 각각 약 4.85 lm/W, 약 4.46 lm/W 및 약 4.69 lm/W이고, 수명은 약 66시간, 약 61시간 및 약 64시간임을 알 수 있다. 이에 비하여, Cz이 중심에 위치하는 본 발명에 따른 화합물들을 사용한 발광 소자 H-1 내지 H-14는 비교 소자 31, 32 및 35에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히 Cz-DBT-DBT-Cz 구조를 가지는 화합물을 포함하는 비교 소자 31과 대비하여 DBT-Cz-Cz-DBT 구조를 가지는 본 발명에 따른 실시예 2에 따른 화합물을 사용한 발광 소자 H-2는 전력 효율이 약 34%만큼 증가하고, 수명은 약 53%만큼 길어짐을 알 수 있다. 또한 Cz-DBF-DBF-Cz 구조를 가지는 비교 소자 32와 대비하여 DBF-Cz-Cz-DBF의 구조를 가지는 본 발명의 실시예 7에 따른 화합물을 사용한 발광 소자 H-7은 전력 효율이 약 37%만큼 증가하고, 수명은 약 57%만큼 길어짐을 알 수 있다.On the other hand, the power efficiencies of Comparative elements 31, 32 and 35 comprising compounds different from the compounds according to the invention in that Cz is not centrally located and substituted in the side chain are about 4.85 lm / W, about 4.46 lm / W and It can be seen that it is about 4.69 lm / W and the lifetime is about 66 hours, about 61 hours and about 64 hours. On the contrary, it can be seen that the light emitting devices H-1 to H-14 using the compounds according to the present invention having Cz at the center show superior power efficiency and lifetime compared to the comparative devices 31, 32 and 35. In particular, the light emitting device H-2 using the compound according to Example 2 according to the present invention having a DBT-Cz-Cz-DBT structure in comparison with the comparative device 31 including the compound having a Cz-DBT-DBT-Cz structure has a It can be seen that the efficiency is increased by about 34% and the life is extended by about 53%. In addition, the light emitting device H-7 using the compound according to Example 7 having the structure of DBF-Cz-Cz-DBF compared to the comparison device 32 having the structure Cz-DBF-DBF-Cz had a power efficiency of about 37. It can be seen that it increases by% and the lifespan is about 57% longer.
나아가 Cz를 3개 이상 구조 내에 포함하고 있다는 점에서 본 발명에 따른 화합물과 상이한 화합물을 포함하는 비교 소자 33 및 34의 전력 효율은 각각 약 4.63 m/W 및 약 4.36 lm/W이고, 수명은 약 63시간 및 약 54시간임을 알 수 있다. 이에 비하여, Cz을 2개만 가지는 본 발명에 따른 화합물들을 사용한 발광 소자 H-1 내지 H-14는 비교 소자 33 및 34에 비하여 우수한 전력 효율과 수명을 보이는 것을 알 수 있다. 특히, DBT-Cz-Cz-Cz-DBT 구조를 가지는 화합물을 포함하는 비교 소자 34와 대비하여 DBT-Cz-Cz-DBT 구조를 가지는 본 발명의 실시예 2에 따른 화합물을 사용한 발광 소자 H-2는 전력 효율이 약 49%만큼 증가하고, 수명은 약 87%만큼 길어짐을 알 수 있다.Furthermore, the power efficiency of the comparative elements 33 and 34 comprising compounds different from the compound according to the present invention in that Cz is included in three or more structures is about 4.63 m / W and about 4.36 lm / W, respectively, and the lifetime is about It can be seen that it is 63 hours and about 54 hours. In contrast, it can be seen that the light emitting devices H-1 to H-14 using the compounds according to the present invention having only two Cz exhibit superior power efficiency and lifespan compared to the comparative devices 33 and 34. In particular, the light emitting device H-2 using the compound according to Example 2 of the present invention having the DBT-Cz-Cz-DBT structure as compared to the comparative device 34 including the compound having the DBT-Cz-Cz-Cz-DBT structure It can be seen that the power efficiency is increased by about 49% and the life is extended by about 87%.
상기에서 설명한 바에 따르면, 본 발명에 따른 신규한 화합물을 이용하여 전력 효율, 수명 및 열적 안정성이 향상된 발광 소자를 제조할 수 있다.As described above, the light emitting device having improved power efficiency, lifetime, and thermal stability may be manufactured using the novel compound according to the present invention.

Claims (12)

  1. 하기 화학식 1로 나타내는 화합물:Compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2013008465-appb-I000112
    Figure PCTKR2013008465-appb-I000112
    상기 식에서In the above formula
    La 및 Lb는 각각 독립적으로 *-L1-L2-L3-L4-*를 나타내고,L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *,
    L1, L2, L3 및 L4는 각각 독립적으로 단일결합, -O-, -S-, 탄소수 6 내지 20을 갖는 아릴렌기, 탄소수 2 내지 20을 갖는 헤테로아릴렌기 또는 탄소수 3 내지 20을 갖는 시클로알킬렌기를 나타내며,L 1 , L 2 , L 3, and L 4 each independently represent a single bond, -O-, -S-, an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 2 to 20 carbon atoms, or 3 to 20 carbon atoms. A cycloalkylene group having
    Ar1 및 Ar2는 각각 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기, 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내며,Ar 1 and Ar 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, 2 to 20 carbon atoms A heterocycloalkyl group having a bicycloalkyl group having 5 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2013008465-appb-I000113
    Figure PCTKR2013008465-appb-I000113
    [화학식 2-2][Formula 2-2]
    Figure PCTKR2013008465-appb-I000114
    Figure PCTKR2013008465-appb-I000114
    Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내고,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
    [화학식 3][Formula 3]
    [화학식 4][Formula 4]
    Figure PCTKR2013008465-appb-I000116
    Figure PCTKR2013008465-appb-I000116
    여기서 X는 N-W, O, S 또는 Si(R9)(R10)를 나타내며,Where X represents NW, O, S or Si (R 9 ) (R 10 ),
    W는 수소, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 3 내지 20을 갖는 시클로알킬기, 탄소수 2 내지 20을 갖는 헤테로시클로알킬기, 탄소수 5 내지 20을 갖는 바이시클로알킬기를 나타내고,W is hydrogen, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, carbon atoms A bicycloalkyl group having 5 to 20,
    Y는 S 또는 O를 나타내며, Y represents S or O,
    Z는 S를 나타내고,Z represents S,
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기, 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타내며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or A heteroaryl group having 2 to 20 carbon atoms;
    l은 0 내지 3의 정수, m, n 및 o는 각각 독립적으로 0 내지 4의 정수를 나타내고, p 및 q 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내고, r 및 s 중 어느 하나는 0 내지 3의 정수를, 다른 하나는 0 내지 4의 정수를 나타내며,l represents an integer of 0 to 3, m, n and o each independently represent an integer of 0 to 4, any one of p and q represents an integer of 0 to 3, and the other represents an integer of 0 to 4, one of r and s represents an integer of 0 to 3, the other represents an integer of 0 to 4,
    화학식 3으로 표시되는 치환기는 1번 또는 8번 탄소 위치에서 화학식 1의 화합물에 치환되며,Substituents represented by Formula 3 are substituted with a compound of Formula 1 at carbon position 1 or 8,
    화학식 4로 표시되는 치환기는 3번 또는 6번 탄소 위치에서 화학식 1의 화합물에 치환되고,The substituent represented by the formula (4) is substituted with the compound of the formula (1) at the carbon position 3 or 6,
    화학식 1 내지 4에 대해 상기에서 설명한 치환체의 정의 중에서, 알킬기, 아릴기, 헤테로아릴기, 시클로알킬기, 헤테로시클로알킬기 및 바이시클로알킬기는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 1 내지 6을 갖는 1개 이상의 알킬기로 치환되거나 비치환된 아민기, 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 탄소수 6 내지 20을 갖는 아릴옥시기, 탄소수 6 내지 20을 갖는 아릴티오기, 탄소수 1 내지 6의 알콕시카르보닐기, 할로겐기, 시아노기, 나이트로기, 하이드록시기 및 카르복시기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환되거나 비치환된다.Among the definitions of the substituents described above for Formulas 1 to 4, the alkyl group, aryl group, heteroaryl group, cycloalkyl group, heterocycloalkyl group and bicycloalkyl group are each independently an alkyl group having 1 to 6 carbon atoms and an alkoxy having 1 to 6 carbon atoms Groups, amine groups unsubstituted or substituted with one or more alkyl groups having 1 to 6 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, It is unsubstituted or substituted with one or more substituents selected from the group consisting of an arylthio group having 6 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group and a carboxy group.
  2. 제1항에 있어서, The method of claim 1,
    La 및 Lb는 각각 독립적으로 *-L1-L2-L3-L4-*를 나타내고,L a and L b each independently represent * -L 1 -L 2 -L 3 -L 4- *,
    L1, L2, L3 및 L4는 각각 독립적으로 단일결합 또는 탄소수 6 내지 20을 갖는 아릴렌기를 나타내며,L 1 , L 2 , L 3 and L 4 each independently represent a single bond or an arylene group having 6 to 20 carbon atoms,
    Ar1 및 Ar2는 각각 독립적으로 탄소수 6 내지 20을 갖는 아릴기, 탄소수 2 내지 20을 갖는 헤테로아릴기, 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내고,Ar 1 and Ar 2 each independently represent an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, the following Chemical Formula 2-1 or the following Chemical Formula 2-2,
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2013008465-appb-I000117
    Figure PCTKR2013008465-appb-I000117
    [화학식 2-2][Formula 2-2]
    Figure PCTKR2013008465-appb-I000118
    Figure PCTKR2013008465-appb-I000118
    Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내며,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
    [화학식 3][Formula 3]
    Figure PCTKR2013008465-appb-I000119
    Figure PCTKR2013008465-appb-I000119
    [화학식 4][Formula 4]
    Figure PCTKR2013008465-appb-I000120
    Figure PCTKR2013008465-appb-I000120
    여기서 X는 N-W, O, S 또는 Si(R9)(R10)를 나타내고,Where X represents NW, O, S or Si (R 9 ) (R 10 ),
    W는 탄소수 6 내지 20을 갖는 아릴기 또는 탄소수 2 내지 20을 갖는 헤테로아릴기를 나타내며,W represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms,
    Y는 S 또는 O를 나타내고, Y represents S or O,
    Z는 S를 나타내며,Z represents S,
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기를 나타내고,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. ,
    m, n, l, o, p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타내는 화합물.m, n, l, o, p, q, r and s each independently represent an integer of 0 to 2.
  3. 제1항에 있어서, The method of claim 1,
    La 및 Lb는 각각 독립적으로 단일결합 또는 탄소수 6 내지 20을 갖는 아릴렌기를 나타내며,L a and L b each independently represent a single bond or an arylene group having 6 to 20 carbon atoms,
    Ar1 및 Ar2는 각각 독립적으로 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기로 치환되거나 비치환된 탄소수 6 내지 20을 갖는 아릴기; 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기로 치환되거나 비치환된 탄소수 2 내지 20을 갖는 헤테로아릴기; 하기 화학식 2-1 또는 하기 화학식 2-2를 나타내고,Ar 1 and Ar 2 are each independently an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Heteroaryl groups having 2 to 20 carbon atoms which are unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms; Formula 2-1 or Formula 2-2,
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2013008465-appb-I000121
    Figure PCTKR2013008465-appb-I000121
    [화학식 2-2][Formula 2-2]
    Figure PCTKR2013008465-appb-I000122
    Figure PCTKR2013008465-appb-I000122
    Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내고,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
    [화학식 3][Formula 3]
    Figure PCTKR2013008465-appb-I000123
    Figure PCTKR2013008465-appb-I000123
    [화학식 4][Formula 4]
    Figure PCTKR2013008465-appb-I000124
    Figure PCTKR2013008465-appb-I000124
    여기서 X는 O, S 또는 Si(R9)(R10)를 나타내고,Where X represents O, S or Si (R 9 ) (R 10 ),
    Y는 S 또는 O를 나타내며, Y represents S or O,
    Z는 S를 나타내고,Z represents S,
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 탄소수 1 내지 6을 갖는 알킬기 또는 탄소수 6 내지 20을 갖는 아릴기를 나타내며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. ,
    m, n, l, o, p 및 q는 각각 독립적으로 0 또는 1을 나타내는 화합물.m, n, l, o, p and q each independently represent 0 or 1.
  4. 제1항에 있어서, The method of claim 1,
    La 및 Lb는 각각 독립적으로 단일결합 또는 페닐렌을 나타내며,L a and L b each independently represent a single bond or phenylene,
    Ar1 및 Ar2는 각각 독립적으로 메틸기 또는 페닐기로 치환되거나 비치환된 페닐기; 나프틸기; 또는 하기 화학식 2-1을 나타내며,Ar 1 and Ar 2 are each independently a phenyl group unsubstituted or substituted with a methyl group or a phenyl group; Naphthyl group; Or represented by the formula 2-1,
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2013008465-appb-I000125
    Figure PCTKR2013008465-appb-I000125
    Het1 및 Het2는 각각 독립적으로 하기 화학식 3 또는 하기 화학식 4를 나타내며,Het 1 and Het 2 each independently represent the following Chemical Formula 3 or the following Chemical Formula 4,
    [화학식 3][Formula 3]
    Figure PCTKR2013008465-appb-I000126
    Figure PCTKR2013008465-appb-I000126
    [화학식 4][Formula 4]
    Figure PCTKR2013008465-appb-I000127
    Figure PCTKR2013008465-appb-I000127
    여기서 X는 O, S 또는 Si(R9)(R10)를 나타내고,Where X represents O, S or Si (R 9 ) (R 10 ),
    Y는 S 또는 O를 나타내며, Y represents S or O,
    Z는 S를 나타내고,Z represents S,
    R5 및 R7은 각각 독립적으로 메틸기 또는 페닐기를 나타내며, R 5 and R 7 each independently represent a methyl group or a phenyl group,
    R9 및 R10은 각각 독립적으로 메틸기를 나타내고,R 9 and R 10 each independently represent a methyl group,
    p 및 r은 각각 독립적으로 0 또는 1을 나타내며, p and r each independently represent 0 or 1,
    l, m, q 및 s는 각각 독립적으로 0을 나타내는 화합물.l, m, q and s each independently represent 0.
  5. 제1항에 있어서, 상기 화학식 1의 화합물은 하기 화학식 5로 나타내는 것을 특징으로 하는 화합물:The compound of claim 1, wherein the compound of Formula 1 is represented by the following Formula 5.
    [화학식 5][Formula 5]
    Figure PCTKR2013008465-appb-I000128
    Figure PCTKR2013008465-appb-I000128
    상기 식에서,Where
    Ar1, Ar2, La, Lb, R5 및 p는 제1항에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1,
    Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  6. 제1항에 있어서, 상기 화학식 1의 화합물은 하기 화학식 6으로 나타내는 것을 특징으로 하는 화합물;The method of claim 1, wherein the compound of Formula 1 is represented by the following formula (6);
    [화학식 6][Formula 6]
    Figure PCTKR2013008465-appb-I000129
    Figure PCTKR2013008465-appb-I000129
    상기 식에서,Where
    Ar1, Ar2, La, Lb, R7 및 r은 제1항에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 7 and r are as defined in claim 1,
    Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  7. 제1항에 있어서, 상기 화학식 1의 화합물은 하기 화학식 7로 나타내는 것을 특징으로 하는 화합물;The compound of claim 1, wherein the compound of Formula 1 is represented by Formula 7;
    [화학식 7][Formula 7]
    Figure PCTKR2013008465-appb-I000130
    Figure PCTKR2013008465-appb-I000130
    상기 식에서,Where
    Ar1, Ar2, La, Lb, R5 및 p는 제1항에서 정의한 바와 같고,Ar 1 , Ar 2 , L a , L b , R 5 and p are as defined in claim 1,
    Ar1 및 Ar2는 서로 동일하고, La 및 Lb는 서로 동일하다.Ar 1 and Ar 2 are the same as each other, and L a and L b are the same as each other.
  8. 제1 전극;A first electrode;
    제2 전극;Second electrode;
    제1 전극과 제2 전극 사이에 배치된 발광층; 및A light emitting layer disposed between the first electrode and the second electrode; And
    제1 전극과 발광층 사이에 배치되고, 제1항 내지 제7항 중 어느 한 항에 따른 화합물을 포함하는 정공 수송성층을 포함하는 발광 소자.A light emitting device comprising a hole transport layer, disposed between the first electrode and the light emitting layer, comprising the compound according to any one of claims 1 to 7.
  9. 제8항에 있어서, 정공 수송성층은 P형 도펀트를 더 포함하는 것을 특징으로 하는 발광 소자.The light emitting device of claim 8, wherein the hole transport layer further comprises a P-type dopant.
  10. 제8항에 있어서, 정공 수송성층은The method of claim 8, wherein the hole transport layer
    상기 화합물 및 P형 도펀트를 포함하는 제1 층; 및A first layer comprising the compound and a P-type dopant; And
    상기 화합물을 포함하는 제2 층을 포함하는 것을 특징으로 하는 발광 소자.A light emitting device comprising a second layer comprising the compound.
  11. 제8항에 따른 발광 소자를 포함하는 전자 장치.An electronic device comprising the light emitting device according to claim 8.
  12. 제11항에 따른 전자 장치는 디스플레이 장치 또는 조명 장치인 것을 특징으로 하는 전자 장치.The electronic device of claim 11, wherein the electronic device is a display device or a lighting device.
PCT/KR2013/008465 2012-09-21 2013-09-18 Novel compound, and light emitting diode and electronic apparatus comprising same WO2014046494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,994 US9842998B2 (en) 2012-09-21 2013-09-18 Compound, and light emitting diode and electronic apparatus comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120105153 2012-09-21
KR10-2012-0105153 2012-09-21
KR10-2013-0018534 2013-02-21
KR1020130018534A KR101390362B1 (en) 2012-09-21 2013-02-21 Novel compound, light-emitting device including the compound and electronic device

Publications (1)

Publication Number Publication Date
WO2014046494A1 true WO2014046494A1 (en) 2014-03-27

Family

ID=50341708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008465 WO2014046494A1 (en) 2012-09-21 2013-09-18 Novel compound, and light emitting diode and electronic apparatus comprising same

Country Status (1)

Country Link
WO (1) WO2014046494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076485A1 (en) * 2015-11-02 2017-05-11 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096360A1 (en) * 2006-01-05 2009-04-16 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
US20110278552A1 (en) * 2010-03-31 2011-11-17 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096360A1 (en) * 2006-01-05 2009-04-16 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
US20110278552A1 (en) * 2010-03-31 2011-11-17 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATHRYN C. MOSS ET AL.: "Tuning the Intramolecular Charge Transfer Emission from Deep Blue to Green in Ambipolar Systems Based on Dibenzothiophene S,S-Dioxide by Manipulation of Conjugation and Strength of the Electron Donor Units", J. ORG. CHEM., vol. 75, 2010, pages 6771 - 6781 *
LIDAN DENG ET AL.: "Molecular designing and DFT investigation of novel alternating donor- acceptor dibenzo[b, d]thiophen-based systems: from monomer to polymer", STRUCT. CHEM., vol. 23, 2012, pages 97 - 106 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076485A1 (en) * 2015-11-02 2017-05-11 Merck Patent Gmbh Materials for organic electroluminescent devices
US10723722B2 (en) 2015-11-02 2020-07-28 Merck Patent Gmbh Materials for organic electroluminescent devices

Similar Documents

Publication Publication Date Title
WO2016167491A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic apparatus
WO2016122150A2 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2015130069A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2015194791A2 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2015041428A1 (en) Organic electronic element using compound for organic electronic element and electronic device thereof
WO2016200070A2 (en) Compound for organic electric element, organic electric element using same, and electronic device using same
WO2019225938A1 (en) Compound and organic light emitting diode comprising same
WO2020050619A1 (en) Polycyclic compound and organic light-emitting device including same
WO2017119654A1 (en) Compound for organic electronic element, organic electronic element using same and electronic apparatus therefor
WO2017018795A2 (en) Heterocyclic compound and organic light emitting diode using same
WO2016126035A1 (en) Organic electronic element, and electronic device comprising same
WO2020032447A1 (en) Organic electronic element comprising, as host material, mixture of different kinds of compounds, and electronic device thereof
WO2021066623A1 (en) Organic light emitting device
WO2015111888A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2020184834A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2021154041A1 (en) Compound, coating composition comprising same, organic light-emitting device using same, and manufacturing method therefor
WO2023043184A1 (en) Ink composition, organic material layer comprising same, and organic light-emitting device comprising same
WO2023282676A1 (en) Compound and organic light-emitting device comprising same
WO2015178581A1 (en) Novel compound and light emitting element comprising same
WO2013032303A2 (en) Organic electronic device
WO2021020943A1 (en) Organic light-emitting device
WO2014046495A1 (en) Light-emitting diode having novel structure and electronic apparatus comprising same
WO2020153654A1 (en) Compound and organic light-emitting element comprising same
WO2014046494A1 (en) Novel compound, and light emitting diode and electronic apparatus comprising same
WO2020036441A1 (en) Organic light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14429994

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13839523

Country of ref document: EP

Kind code of ref document: A1