WO2014046193A1 - Organocopper complex, organocopper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound - Google Patents

Organocopper complex, organocopper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound Download PDF

Info

Publication number
WO2014046193A1
WO2014046193A1 PCT/JP2013/075325 JP2013075325W WO2014046193A1 WO 2014046193 A1 WO2014046193 A1 WO 2014046193A1 JP 2013075325 W JP2013075325 W JP 2013075325W WO 2014046193 A1 WO2014046193 A1 WO 2014046193A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
copper complex
thin film
copper
Prior art date
Application number
PCT/JP2013/075325
Other languages
French (fr)
Japanese (ja)
Inventor
真宏 高田
由夫 稲垣
亮 浜崎
野村 公篤
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157006812A priority Critical patent/KR101748050B1/en
Publication of WO2014046193A1 publication Critical patent/WO2014046193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Definitions

  • the present invention relates to an organic copper complex, an organic copper complex solution, a copper oxide thin film, a method for producing a copper oxide thin film, and a compound.
  • cuprous oxide (Cu 2 O) thin film which is one of copper oxide thin films, is a direct-transition semiconductor that exhibits p-type conductivity, and is therefore used as a p-type semiconductor.
  • a Cu 2 O thin film is a p-type semiconductor, n-type semiconductor such as ZnO or IGZO thin film such as a solar cell pn junction (e.g., JP 2006-9083 And a light-emitting diode (for example, see JP-A-2001-210864), a field effect transistor (for example, see JP-A-2008-10861), and a thermoelectric conversion bonded to a copper electrode.
  • An element for example, see Japanese Patent Application Laid-Open No. 2000-230867) is known.
  • a Cu 2 O thin film is expected as a photoelectric conversion material for solar cells because it has a band gap of about 2.1 eV and absorbs light in the visible light region to generate carriers. Further, Cu 2 O has low toxicity and has little influence on the environment.
  • a method for forming a copper oxide thin film there are a sputtering method and a vacuum film forming method such as MBE (Molecular Beam Epitaxy) method, and a wet method such as a solution coating method and a sol-gel method. It is done.
  • MBE Molecular Beam Epitaxy
  • a wet method such as a solution coating method and a sol-gel method.
  • Thin Solid Films, 442 (2003) 48 discloses forming a copper oxide thin film using a sol-gel method.
  • a thin film forming method by solution coating for example, a solution in which a copper aminopolycarboxylic acid complex and / or a copper polycarboxylic acid complex is dissolved is applied to a substrate surface by spin coating, dipping, bar coating, or flow coating.
  • Thin film formation by the vacuum film forming method generally requires a large vacuum apparatus, and thus the manufacturing cost of the thin film formation increases. Therefore, it has been required to form a thin film by a wet method as shown in Thin Solid Films, 442 (2003) 48 and Japanese Patent Application Laid-Open No. 2011-119454. If it is a wet method, since it can form into a large area with a simple apparatus, it can form at low cost. However, formation of a copper oxide thin film by a wet method has so far required annealing treatment (heating treatment) at a high temperature. As described above, for example, in the method disclosed in JP2011-119454A, a high temperature of 300 ° C. or higher is necessary. Such annealing treatment at a high temperature is disadvantageous in terms of energy cost, and there are problems such as low selectivity of the base material and peripheral members.
  • the present invention relates to an organic copper complex capable of forming a copper oxide thin film by annealing at a low temperature, a compound serving as a ligand thereof, and an organic capable of forming a copper oxide thin film by annealing at a low temperature. It aims at providing the organic copper complex solution containing a copper complex, and it aims at solving this subject. It is another object of the present invention to provide a copper oxide thin film produced by a method for producing a copper oxide thin film rich in substrate selectivity and a method for producing a copper oxide thin film rich in substrate selectivity. The purpose is to solve the problem.
  • R 11 , R 12 , R 21 , and R 22 may be the same or different from each other, and are each independently an alkyl group having 1 to 20 carbon atoms or a carbon number 2 having an unsaturated bond.
  • R 11 and R 21 may be connected to each other to form a ring
  • R 12 and R 22 may be connected to each other to form a ring.
  • R 31 and R 32 may be the same or different from each other, and each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a carbon number 2 having an unsaturated bond.
  • H in the C—H bond of each of the groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 may be substituted with a monovalent substituent.
  • R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
  • R 11 , R 12 , R 21 , and R 22 in General Formula 1 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms
  • R 11 And R 21 may be connected to each other to form a ring
  • R 12 and R 22 may be connected to each other to form a ring
  • R 31 and R 32 are each independently a hydrogen atom.
  • the organocopper complex according to ⁇ 1> which represents an atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a hydroxy group.
  • ⁇ 5> The organocopper complex according to ⁇ 1>, ⁇ 2>, or ⁇ 4>, in which R 11 and R 12 in General Formula 1 are different from each other, and R 21 and R 22 are different from each other.
  • R 11 , R 12 , R 21 , and R 22 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms. It is an organocopper complex of description.
  • R 31 and R 32 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. It is an organocopper complex as described in one.
  • ⁇ 8> The organocopper complex according to any one of ⁇ 1> to ⁇ 7>, which is used for forming a copper oxide thin film.
  • the organic copper complex solution according to ⁇ 9> including at least two types of the organic copper complex.
  • the heat treatment step is the method for producing a copper oxide thin film according to ⁇ 15>, wherein the organic copper complex film is heated in an atmosphere having an oxygen concentration of 0.5 volume% to 50 volume%.
  • ⁇ 17> A compound which is represented by the following general formula 2 and forms an organocopper complex according to any one of ⁇ 1> to ⁇ 8> by coordination with a copper ion.
  • R 13 and R 23 may be the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms and a non-aromatic carbon atom having 2 to 20 carbon atoms having an unsaturated bond.
  • a hydrogen group, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms is represented.
  • R 13 and R 23 may be connected to each other to form a ring.
  • R 33 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, or an aryl having 6 to 20 carbon atoms. Group, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the above groups represented by R 13 , R 23 , and R 33 may be substituted with a monovalent substituent.
  • R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
  • an organic copper complex capable of forming a copper oxide thin film by annealing at a low temperature a compound serving as a ligand of the organic copper complex, and a copper oxide thin film by annealing at a low temperature
  • An organocopper complex solution containing an organocopper complex capable of forming an is provided.
  • Example 1 is a TG (Thermogravimetry) -DTA (Differential Thermal Analysis) curve of the copper complex 1-1 obtained in Example 1-1.
  • 2 is an MS (Mass Spectrometry) curve of the copper complex 1-1 obtained in Example 1-1.
  • 2 is a powder X-ray diffraction curve of a powder obtained by heating the copper complex 1-1.
  • 2 is a TG (Thermogravimetry) curve of the copper complex 2-1 obtained in Example 1-5 and the copper complex 5-1 obtained in Example 1-7. It is an XRD (X-ray Diffraction) pattern of the Cu 2 O thin film obtained in Example 3-1. It is an XRD (X-ray Diffraction) pattern of the Cu 2 O thin film obtained in Example 3-1.
  • the organocopper complex of the present invention is an organocopper complex having a structure represented by the following general formula 1 (hereinafter also referred to as “specific copper complex”).
  • specific copper complex a structure represented by the following general formula 1
  • a specific copper complex solution is prepared using a specific copper complex and a solvent, and this is coated on a substrate and heated to easily form a copper oxide thin film on the substrate. Can do.
  • R 11 , R 12 , R 21 , and R 22 may be the same or different from each other, and are each independently an alkyl group having 1 to 20 carbon atoms or a carbon number 2 having an unsaturated bond.
  • R 11 and R 21 may be connected to each other to form a ring
  • R 12 and R 22 may be connected to each other to form a ring.
  • R 31 and R 32 may be the same or different from each other, and each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a carbon number 2 having an unsaturated bond.
  • H in the C—H bond of each of the groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 may be substituted with a monovalent substituent.
  • R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Represents a group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
  • R 11, R 12, R 21, and R 22 are each independently an alkyl group having 1 to 20 carbon atoms, or, or an aryl group having 6 to 20 carbon atoms, and R 11 More preferably, R 21 is connected to each other to form a ring, and R 12 and R 22 are connected to each other to form a ring, and R 31 and R 32 are each independently a hydrogen atom. More preferably, it represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a hydroxy group.
  • the specific copper complex when R 11 and R 12 are the same, and R 21 and R 22 are the same, the specific copper complex has a symmetrical structure, a single product is easily obtained, and purification is easy. It becomes easy. Moreover, since the synthesis
  • R 31 and R 32 when R 31 and R 32 are the same, the decomposition temperature of the specific copper complex tends to be uniform, and the specific copper complex is prepared in an organic copper complex solution described later. Even when dried and heated, a copper oxide thin film having a uniform film density is easily obtained.
  • R 11 , R 12 , R 21 , or R 22 represents an alkyl group
  • the alkyl group has 1 to 20 carbon atoms and may further have a substituent.
  • the alkyl group represented by R 11 , R 12 , R 21 , or R 22 may be linear, branched, or cyclic.
  • Examples include a butyl group, a cyclohexyl group, and a benzyl group.
  • R 11 , R 12 , R 21 , or R 22 represents an alkyl group
  • R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
  • the alkyl group represented by R 11 , R 12 , R 21 , or R 22 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Moreover, it is preferable that it is linear or branched, and it is more preferable that it is linear.
  • the ring formed by linking R 11 and R 21 and the ring formed by linking R 12 and R 22 each preferably have 3 to 10 carbon atoms, and preferably 4 to 8 carbon atoms. More preferred is 5-7.
  • R 11 , R 12 , R 21 , or R 22 represents a non-aromatic hydrocarbon group having an unsaturated bond
  • the non-aromatic hydrocarbon group having the unsaturated bond has a carbon number of 2 to 20, and may further have a substituent.
  • the non-aromatic hydrocarbon group having an unsaturated bond represented as R 11 , R 12 , R 21 , or R 22 may be linear, branched, or cyclic.
  • a vinyl group, an allyl group Examples include crotyl group, propargyl group, 5-hexenyl group, 4-methyl-1-pentenyl group, methallyl group, 1-cyclohexenyl group, and 1-cyclopentenyl group.
  • R 11 , R 12 , R 21 , or R 22 represents a non-aromatic hydrocarbon group having an unsaturated bond
  • R 11 , R 12 , R 21 , and R 22 may be the same as each other, May be different.
  • the number of carbon atoms of the non-aromatic hydrocarbon group having an unsaturated bond represented by R 11 , R 12 , R 21 , or R 22 is preferably 2 to 10, and more preferably 2 to 6. 2 to 4 are more preferable. Moreover, it is preferable that it is linear or branched, and it is more preferable that it is linear.
  • R 11 , R 12 , R 21 , or R 22 represents an aryl group
  • the aryl group is a monocyclic or condensed ring aryl group having 6 to 20 carbon atoms, and a substituent. You may have.
  • Examples of aryl groups include phenyl, naphthyl, anthryl, phenanthryl, biphenylyl, m-tolyl, p-tolyl, m-anisyl, p-anisyl, m-chlorophenyl, p-chlorophenyl. Group, xylyl group and the like.
  • the aryl group represented by R 11 , R 12 , R 21 , or R 22 is preferably a phenyl group, an m-tolyl group, a p-tolyl group, an m-anisyl group, or a p-anisyl group.
  • R 11 , R 12 , R 21 , or R 22 represents an aryl group
  • R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
  • the number of carbon atoms of the aryl group represented by R 11 , R 12 , R 21 , or R 22 is preferably 6-10.
  • the aryl group is preferably unsubstituted.
  • R 11 , R 12 , R 21 , or R 22 represents a heteroaryl group
  • the heteroaryl group is a monocyclic or condensed ring heteroaryl group having 3 to 20 carbon atoms
  • heteroaryl groups include thiophene rings, furan rings, pyrrole rings, imidazole rings, oxazole rings, thiazole rings, and benzo condensed rings (for example, benzothiophene) and dibenzodi condensed rings (for example, dibenzothiophene, carbazole).
  • 3-methylthiophene ring and 3,4-diethylthiophene ring.
  • the heteroaryl group represented as R 11 , R 12 , R 21 , or R 22 is preferably a thiophene ring, a furan ring, or an oxazole group.
  • R 11 , R 12 , R 21 , or R 22 represents a heteroaryl group, R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
  • the heteroaryl group represented by R 11 , R 12 , R 21 , or R 22 preferably has 3 to 10 carbon atoms.
  • the heteroaryl group is preferably unsubstituted.
  • the “aryl group” represents a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic compound having at least one selected from a benzene ring system and a non-benzene ring system aromatic ring
  • the “heteroaryl group” represents a group in which at least one carbon atom on the aromatic ring in the aryl group is replaced with a heteroatom.
  • R 11 , R 12 , R 21 , and R 22 in the general formula 1 are preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • R 11 , R 12 , R 21 , and R 22 are an alkyl group having 1 to 4 carbon atoms, the molecular weight of the specific copper complex becomes small and is easily decomposed by heating. Furthermore, even when the specific copper complex is prepared in an organic copper complex solution described later, and the coating film of the organic copper complex solution is dried and heated, the specific copper complex is easily decomposed and the organic component hardly remains in the film. Become.
  • R 31 or R 32 represents an alkyl group
  • the alkyl group has 1 to 20 carbon atoms and may further have a substituent.
  • the alkyl group represented by R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, a propyl group, a t-butyl group, an n-hexyl group, and an n-nonyl group.
  • R 31 or R 32 may be the same as or different from each other.
  • the alkyl group represented by R 31 or R 32 preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and still more preferably 1 to 6 carbon atoms.
  • R 31 or R 32 represents an alkoxy group
  • the alkoxy group has 1 to 20 carbon atoms and may further have a substituent.
  • the alkoxy group represented by R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a 1-methylbutoxy group, And a cyclohexyloxy group.
  • R 31 and R 32 may be the same as or different from each other.
  • the number of carbon atoms of the alkoxy group represented by R 31 or R 32 is preferably 1 to 12, more preferably 1 to 8, and still more preferably 1 to 6. Further, the alkoxy group represented by R 31 or R 32 is preferably a straight-chain or branched.
  • R 31 or R 32 represents a non-aromatic hydrocarbon group having an unsaturated bond
  • the non-aromatic hydrocarbon group having an unsaturated bond has 2 to 20 carbon atoms, , May have a substituent.
  • the non-aromatic hydrocarbon group having an unsaturated bond represented as R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a vinyl group, allyl group, crotyl group, propargyl group, 5 -Hexenyl group, 4-methyl-1-pentenyl group, methallyl group, 1-cyclohexenyl 1-cyclopentenyl group and the like.
  • R 31 and R 32 may be the same as or different from each other.
  • the number of carbon atoms of the non-aromatic hydrocarbon group having an unsaturated bond represented by R 31 or R 32 is preferably 2 to 10, more preferably 2 to 6, and further preferably 2 to 4. . Further, the non-aromatic hydrocarbon group having an unsaturated bond represented as R 31 or R 32 is preferably linear or branched, and more preferably linear.
  • R 31 or R 32 represents an aryl group
  • the aryl group is a monocyclic or condensed ring aryl group having 6 to 20 carbon atoms, and may further have a substituent.
  • aryl groups include phenyl, naphthyl, anthryl, phenanthryl, biphenylyl, m-tolyl, p-tolyl, m-anisyl, p-anisyl, m-chlorophenyl, p-chlorophenyl. Group, xylyl group and the like.
  • the aryl group represented by R 31 or R 32 is preferably a phenyl group, an m-tolyl group, a p-tolyl group, an m-anisyl group, or a p-anisyl group.
  • R 31 or R 32 represents an aryl group
  • R 31 and R 32 may be the same as or different from each other.
  • the number of carbon atoms of the aryl group represented by R 31 or R 32 is preferably 6-10.
  • the aryl group is preferably unsubstituted.
  • R 31 or R 32 represents a heteroaryl group
  • the heteroaryl group is a monocyclic or condensed heteroaryl group having 3 to 20 carbon atoms, and further has a substituent. May be.
  • heteroaryl groups include thiophene rings, furan rings, pyrrole rings, imidazole rings, oxazole rings, thiazole rings, and benzo condensed rings (for example, benzothiophene) and dibenzodi condensed rings (for example, dibenzothiophene, carbazole). , 3-methylthiophene ring and 3,4-diethylthiophene ring.
  • the heteroaryl group represented as R 31 or R 32 is preferably a thiophene ring, a furan ring, or an oxazole group.
  • R 31 or R 32 represents a heteroaryl group
  • R 31 and R 32 may be the same as or different from each other.
  • the heteroaryl group represented by R 31 or R 32 preferably has 3 to 10 carbon atoms.
  • the heteroaryl group is preferably unsubstituted.
  • R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms.
  • R 31 and R 32 in General Formula 1 are each independently preferably an alkyl group, an alkoxy group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, or a heteroaryl group.
  • R 31 and R 32 are any of an alkyl group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, a heteroaryl group, or an alkoxy group, both R 31 and R 32 represent a hydrogen atom.
  • the temperature required for the specific copper complex to be completely decomposed can be lowered.
  • an alkyl group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, a heteroaryl group, or an alkoxy group is sterically larger than a hydrogen atom, so that intermediate products of thermal decomposition are bonded to each other. This is thought to be difficult.
  • a copper complex is heated, intermediate products generated by thermal decomposition of the copper complex may be bonded to each other, and a high molecular weight compound that is difficult to be thermally decomposed may be generated. If such a high molecular weight compound is produced, heating may be required to decompose the high molecular weight compound.
  • the specific copper complex having a sterically large group is considered to have a great effect of preventing the formation of a high molecular weight compound during thermal decomposition.
  • R 31 and R 32 in the general formula 1 are more preferably an alkyl group or an alkoxy group.
  • R 31 and / or R 32 is an alkyl group, it is possible to lower the thermal decomposition temperature of the particular copper complexes.
  • R 31 and / or R 32 is an alkoxy group, because certain copper complexes will contain oxygen in the molecular structure, tends copper oxide is obtained.
  • R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 in General Formula 1 may be substituted with a monovalent substituent.
  • substituents that R 11 , R 12 , R 21 , R 22 , R 31 , or R 32 in General Formula 1 may further have are not particularly limited, and are a hydroxyl group, an alkyl group (methyl group, ethyl group, Hexyl group, t-butyl group, cyclohexyl group, etc.), aryl group (phenyl group, m-tolyl group, p-tolyl group, m-anisyl group, p-anisyl group etc.), acyl group (acetyl group, propanoyl group, Hexanoyl group, octanoyl group, 2-ethylhexanoyl group, benzoyl group, etc.), halogen
  • substituents may be further substituted with another substituent.
  • an alkyl group or an aryl group is preferable, and a methyl group, an ethyl group, or a phenyl group is more preferable.
  • the substituent when the substituent is an alkyl group, the substituent preferably has 1 to 20 carbon atoms.
  • the specific copper complex of the present invention is not particularly limited as long as the chemical structure is represented by the general formula 1, and can take various structures.
  • R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 are all the same group (for example, an alkyl group), each carbon number may be the same or different.
  • R 11 may be a combination of different groups such as an alkyl group having a large number of carbon atoms, R 12 is an aryl group, and R 21 is an alkoxy group.
  • Exemplified Compound 1 to Exemplified Compound 135 are shown in Tables 1 to 8 below, but the specific copper complex of the present invention is not limited to these.
  • Ph represents a phenyl group.
  • R 11 and R 21 are connected to each other to form a ring
  • R 12 and R 22 are connected to each other to form a ring.
  • R 11 -R 21 represents a divalent linking group represented by R 11 -R 21
  • R 12 -R 22 represents a divalent linking group represented by R 12 -R 22. Indicates a group. Therefore, for example, when “R 11 -R 21 ” is (CH 2 ) 4 , the ring formed by connecting R 11 and R 21 to each other is a 5-membered ring.
  • the specific copper complex of the present invention represented by the general formula 1 forms a compound having a higher molecular weight when R 11 , R 12 , R 21 , R 22 , R 31 , or R 32 serves as a linkage. Also good. For example, you may connect with the other specific copper complex adjacent through a water molecule etc. Hydrogen bonds by water molecules or the like are weakly bonded and sufficiently desorbed below the decomposition temperature of the specific copper complex, so that the characteristics of the present invention are not easily impaired.
  • organocopper complex of the present invention is the specific copper complex described above.
  • a monomer derived from the following general formula 1 is used as a repeating unit.
  • / or a polymer partially having a skeleton represented by the general formula 1 may be used.
  • Specific examples include compounds such as Reference Compound 1 and Reference Compound 2 in which R 11 , R 12 and the like in General Formula 1 are linked.
  • Reference compound 1 has a structure such as a trimer of a specific copper complex in which R 11 to R 31 are all methyl groups. That is, in the reference compound 1, R 11 of the specific copper complex is connected to R 12 of another specific copper complex by a linking group, and R 21 of the specific copper complex is connected to R 22 of another specific copper complex. It has a connected structure.
  • Reference compound 2 is represented as an oligomer or polymer having a trimer having a slightly different form from that of reference compound 1 as a repeating unit. In Reference Compound 2, n is the number of repeating units and represents an integer of 1 or more.
  • the linking group is a single bond, but is not limited to a single bond, and is a divalent or higher hydrocarbon group, amide group, ester group, carbonyl group, oxygen atom, nitrogen atom, or the like. There may be.
  • the specific copper complex represented by the general formula 1 of the present invention is formed using a 1,3-dicarbonyl compound represented by the following general formula 2 as a ligand.
  • R 13 and R 23 may be the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms and a non-aromatic carbon atom having 2 to 20 carbon atoms having an unsaturated bond.
  • a hydrogen group, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms is represented.
  • R 13 and R 23 may be connected to each other to form a ring.
  • R 33 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, or an aryl having 6 to 20 carbon atoms.
  • R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
  • R 13 , R 23 , and R 33 in General Formula 2 the definition of R 13 is the same as the definitions of R 11 and R 12 in General Formula 1, and the definition of R 23 is R 21 and R 22 in General Formula 1.
  • R 33 is the same as the definitions of R 31 and R 32 in formula 1.
  • R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or Represents a hydroxy group. That is, when R 13 and R 23 both represent a methyl group, R 33 represents a hydrogen atom, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, and a heteroaryl group having 3 to 20 carbon atoms. Does not represent.
  • the compound used as a ligand in the specific copper complex of the present invention is not particularly limited as long as the chemical structure is represented by the general formula 2, and can take various structures.
  • R 13 , R 23 , or R 33 are all the same group (for example, an alkyl group)
  • the carbon number of each group may be the same or different.
  • R 13 may be a combination of different groups such as an alkyl group having a large number of carbon atoms
  • R 23 is an aryl group
  • R 33 is an alkoxy group.
  • Illustrative compounds L-1 to L-56 are shown in the following Tables 9 to 12 as examples of the compound represented by the general formula 2, but the above compounds in the present invention are not limited thereto.
  • the synthesis of the specific copper complex represented by the general formula 1 of the present invention is performed by mixing the 1,3-dicarbonyl compound represented by the general formula 2 and a cupric salt.
  • cupric salt is not particularly limited.
  • cupric salts include copper and hypochlorous acid, chlorous acid, chloric acid, perchloric acid, hypobromous acid, bromous acid, bromic acid, perbromic acid, hypoiodous acid, hypochlorous acid, Iodic acid, iodic acid, periodic acid, boric acid, carbonic acid, orthocarbonic acid, carboxylic acid, silicic acid, nitric acid, nitric acid, phosphorous acid, phosphoric acid, arsenic acid, sulfurous acid, sulfuric acid, sulfonic acid, sulfinic acid, chromium Acids, or salts with oxo acids such as permanganic acid (ie cupric oxoacids); and cupric halide salts such as cupric chloride, cupric bromide, and cupric iodide Etc.
  • oxo acids such as permanganic acid (ie cupric oxoacids)
  • cupric chloride cupric bromide, cupric iodide, cupric nitrate, cupric sulfate, cupric acetate, and cupric benzoate are readily available, solvents It is preferable in terms of solubility in water and difficulty in forming by-products.
  • the 1,3-dicarbonyl compound represented by the general formula 2 and the cupric salt are preferably dissolved in a solvent to form a solution and then mixed.
  • the solvent is not particularly limited as long as it dissolves the 1,3-dicarbonyl compound and the cupric salt, and any solvent such as water, alcohol, or a water-miscible aprotic organic solvent is used. be able to. From the viewpoint of suppressing the decomposition of the compound represented by the general formula 2, water or a water-miscible aprotic organic solvent is particularly preferable.
  • the solvent is water-immiscible such as toluene or xylene.
  • An organic solvent may coexist.
  • a base is allowed to coexist in the mixed reaction system, or before mixing with the cupric salt. It is preferable to prepare a salt of the compound represented by Formula 2 in advance.
  • Examples of bases that coexist in the mixed reaction system include alkali metal hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.), alkaline earth metal hydroxides (magnesium hydroxide, calcium hydroxide, water) Barium oxide, etc.), basic oxides (magnesium oxide, calcium oxide, etc.), and organic bases with poor nucleophilicity (triethylamine, 1,8-diazabiccyclo [5.4.0] undec-7-ene, etc.) Can be mentioned.
  • the mixed form of the 1,3-dicarbonyl compound represented by the general formula 2 and the cupric salt may be a mixing method in which water is added after the reaction in a water-miscible organic solvent, or the general formula 2
  • a mixing method in which an aqueous solution of a cupric salt is added to a solution in which a ligand represented by formula (1) is dissolved in a water-miscible organic solvent is preferable because a copper complex that is hardly soluble in water can be precipitated.
  • the mixing reaction temperature is not particularly limited, but is preferably 0 ° C. to 50 ° C., more preferably 10 ° C. to 40 ° C.
  • R 11 and R 12 , R 21 and R 22 , and R 31 and R 32 when synthesizing a specific copper complex in which at least one set is a combination of different groups, in this way, synthesis may be performed. That is, R 11 and R 12 , R 21 and R 22 are prepared by mixing two compounds different in at least one of R 11 , R 21 and R 31 in the general formula 2 and reacting with a cupric salt. In addition, a specific copper complex in which at least one of R 31 and R 32 is a combination of different groups is obtained.
  • the specific copper complex of the present invention may be used as it is, or may be used after being dispersed or dissolved in a solvent, or may be used by mixing with other solid substances. Especially, it is preferable to use a specific copper complex for the use which melt
  • the organic copper complex solution of the present invention contains the organic copper complex (specific copper complex) represented by the general formula 1 described above and a solvent.
  • the organocopper complex solution of the present invention is also referred to as a specific solution.
  • the specific solution is a metal compound such as an organic copper complex other than the specific copper complex, a surfactant, and / or an oxidizing agent, as long as the effects of the present invention are not impaired.
  • the additive may be included.
  • the details of the specific copper complex are as described above.
  • the specific solution may contain only one type of the specific copper complex, or may contain two or more types. When the specific solution contains two or more types of specific copper complexes, the crystallinity of the coating film formed using the specific solution can be lowered.
  • the concentration of the specific copper complex in the specific solution is not particularly limited, but the film thickness is increased when the specific solution is applied to a substrate or the like to form a coating film, and the specific copper complex is precipitated in the specific solution. From the viewpoints of suppressing and improving the flatness of the coating film, 0.01 mol / L to 0.3 mol / L is preferable.
  • the specific solution contains at least one solvent.
  • the solvent is not particularly limited as long as it can dissolve the specific copper complex, and may be an inorganic solvent or an organic solvent.
  • inorganic solvents include acids such as acetic acid, hydrochloric acid, and phosphoric acid; aqueous solutions of inorganic salts such as aqueous sodium hydroxide, aqueous potassium hydroxide, and aqueous sodium chloride; and water.
  • organic solvents examples include amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), alcohol solvents (tert-butyl alcohol, isopropanol, ethanol, methanol, 2,2,3,3-tetrafluoro -1-propanol, 2-diethylaminoethanol, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.), ether solvents (eg tetrahydrofuran), nitrile solvents (eg acetonitrile), and Other examples include hetero atom-containing solvents other than those described above.
  • amide solvents N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • alcohol solvents tert-butyl alcohol, isopropanol, ethanol, methanol, 2,2,3,3-tetrafluoro -1-prop
  • the solvent of the specific solution is preferably an organic solvent and more preferably an aprotic polar solvent from the viewpoint of increasing the solubility of the specific copper complex.
  • the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, pyridine, tetrahydrofuran, N-methylpyrrolidone, sulfolane, acetonitrile, and N, N— Examples thereof include dimethyl imidazolidinone.
  • N, N-dimethylformamide, N, N-dimethylacetamide, pyridine, and tetrahydrofuran are preferably used as the solvent for the specific solution from the viewpoint of further increasing the solubility of the specific copper complex.
  • aprotic polar solvents N, N-dimethylformamide, N, N-dimethylacetamide, pyridine, and tetrahydrofuran are preferably used as the solvent for the specific solution from the viewpoint of further increasing the solubility of the specific copper complex. Can do.
  • the boiling point of the solvent is preferably 80 ° C. to 200 ° C. from the viewpoint of reducing the load during the drying process when the specific solution is applied to form the copper oxide thin film.
  • the boiling point of the solvent is 80 ° C. or higher, the drying speed of the coating film obtained from the specific solution does not become too fast, and the smoothness in the film can be improved.
  • the boiling point of the solvent is 200 ° C. or less, the solvent is likely to volatilize from the coating film and is easily removed from the coating film.
  • N, N-dimethylacetamide which is an amide solvent
  • N, N-dimethylacetamide can dissolve a specific copper complex at 0.2 mol / L at room temperature and 0.3 mol / L under heating conditions below the boiling point, and has a boiling point. Since it is 165 degreeC, it can use suitably as a solvent of a specific solution.
  • a solvent may use only 1 type and may mix and use 2 or more types.
  • the specific solution may contain a metal compound other than the specific copper complex (also referred to as “other metal compound”) as long as the effects of the present invention are not impaired.
  • Other metal compounds are not particularly limited, and examples include strontium compounds.
  • a copper oxide thin film containing SrCu 2 O 2 can be formed by, for example, dissolving a strontium compound in a solvent and obtaining a specific solution together with the specific copper complex.
  • the copper oxide thin film of this invention is formed by drying and heat-processing the coating film of the organocopper complex solution (specific solution) of this invention. That is, the copper oxide thin film of the present invention is obtained by subjecting a coating solution of a specific solution formed by, for example, applying a specific solution on a base material and drying the substrate to a heat treatment (annealing treatment). It is a thin film formed on top.
  • the copper oxide thin film of the present invention may be a monovalent copper oxide thin film or a divalent copper oxide thin film.
  • the copper oxide thin film of the present invention may be a thin film made of a composite copper oxide containing a monovalent copper oxide and a divalent copper oxide. From the viewpoint of causing the copper oxide thin film of the present invention to function as a semiconductor, the copper oxide thin film preferably contains at least monovalent copper. From the viewpoint of forming a copper oxide thin film that is a p-type semiconductor layer on a substrate at a low temperature, the copper oxide thin film of the present invention is preferably a thin film made of monovalent copper oxide. Examples of the monovalent copper oxide include Cu 2 O and SrCu 2 O 2 .
  • the copper oxide thin film preferably has a monovalent copper content of 70 atomic% or more in the total copper contained in the copper oxide thin film.
  • the mobility at the time of using a copper oxide thin film as a semiconductor can be improved because content of monovalent copper in all copper is 70 atomic% or more.
  • the content of monovalent copper in the total copper contained in the copper oxide thin film is more preferably 90 atomic% or more, and further preferably 95 atomic% or more.
  • the thickness of the copper oxide thin film is not particularly limited, and a thickness suitable for the intended use of the copper oxide thin film can be selected.
  • a thickness suitable for the intended use of the copper oxide thin film can be selected.
  • the thickness of the copper oxide thin film may be in the range of 0.01 ⁇ m to 20 ⁇ m. You may adjust the thickness of a copper oxide thin film by drying the coating film of a specific solution, and also apply
  • the copper oxide thin film of this invention can be manufactured with the following manufacturing method, for example.
  • the manufacturing method of the copper oxide thin film of this invention apply
  • a heat treatment step of forming a copper oxide thin film When the manufacturing method of a copper oxide thin film is the said structure, a copper oxide thin film can be manufactured at low temperature and the selectability of a base material can be made high.
  • the method for producing a copper oxide thin film of the present invention may further include other steps in addition to the above steps as long as the effects of the present invention are not impaired.
  • Examples of other processes include cooling processes for cooling the copper oxide thin film obtained by the heat treatment process, and energy rays (electron beams, infrared rays, ultraviolet rays, vacuum ultraviolet rays, etc.) on the organic copper complex film obtained after the drying step.
  • the copper oxide thin film of the present invention will be described while explaining in detail each step included in the method for producing a copper oxide thin film of the present invention.
  • Organic copper complex solution coating film forming step In the organic copper complex solution coating film forming step, an organic copper complex solution (specific solution) containing a specific copper complex and a solvent is applied onto a substrate, and the organic copper complex solution coating film is formed. It is formed.
  • the specific solution may be applied to the surface of the substrate, or may be applied to another layer provided on the substrate. Examples of other layers provided on the substrate include an adhesive layer for improving the adhesion between the substrate and the organic copper complex solution coating film, and a transparent conductive layer.
  • Substrate The type of the substrate is not particularly limited, and can be used in a form suitable for the intended use.
  • the substrate include inorganic materials such as glass, silicon, and metal, resins, and composite materials of inorganic materials and resins.
  • resins include polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin , Synthetic resins such as aromatic ethers, maleimide-olefins, cellulose, and episulfide compounds And the like.
  • An example of a composite material of an inorganic material and a resin is a composite plastic material of a resin and an inorganic material. That is, composite plastic material of resin and silicon oxide particles, composite plastic material of resin and metal nanoparticles, composite plastic material of resin and inorganic oxide nanoparticles, composite plastic material of resin and inorganic nitride nanoparticles, Composite plastic material of resin and carbon fiber, composite plastic material of resin and carbon nanotube, composite plastic material of resin and glass flake, composite plastic material of resin and glass fiber, composite plastic material of resin and glass beads, Composite plastic material of resin and clay mineral, composite plastic material of resin and particles having mica-derived crystal structure, laminated plastic material having at least one bonding interface between resin and thin glass, and inorganic layer and organic By laminating layers alternately, at least 1 Composite material or the like having a barrier property having more bonding interface.
  • the base material is preferably a flexible material.
  • the base material is preferably a resin or a composite base material obtained using a resin and a material other than resin.
  • a composite base material the laminated base material which bonded the resin plate to the metal plate is mentioned, for example.
  • the thickness of the substrate is not particularly limited, but is preferably 50 ⁇ m to 1000 ⁇ m, and more preferably 50 ⁇ m to 500 ⁇ m.
  • the thickness of the base material is 50 ⁇ m or more, the flatness of the base material itself is improved, and when the thickness of the base material is 1000 ⁇ m or less, the flexibility of the base material itself is improved and the thin film semiconductor device described later is flexible. It becomes easier to use as a semiconductor device. Further, the thickness is more preferably 500 ⁇ m or less because the flexibility is further improved.
  • the method for applying the specific solution on the substrate is not particularly limited.
  • the spin coating method, the dip method, the ink jet method, the dispenser method, the screen printing method, the relief printing method, the intaglio printing method, the spray coating method, etc. can be used.
  • the inkjet method, the dispenser method, the screen printing method, the relief printing method, and the intaglio printing method can form a coating film at an arbitrary position on the substrate, and a patterning step after the film formation is unnecessary. Therefore, the process cost can be reduced. Further, since the pattern can be formed without removing the coating film, the environmental load can be reduced.
  • the thickness of the organic copper complex solution coating film can be arbitrarily changed depending on the concentration of the specific copper complex in the specific solution and the application conditions of the specific solution.
  • concentration of the specific copper complex in the specific solution may be lowered.
  • a thin organic copper complex solution coating film can be obtained by making the base-material rotation speed at the time of apply
  • a thicker organic copper complex solution coating film for example, the concentration of the specific copper complex in the specific solution may be increased.
  • coating a specific solution with a spin coat method a thick organic copper complex solution coating film can be obtained by making the base-material rotation speed at the time of apply
  • the organic copper complex solution coating film is dried to obtain an organic copper complex film. That is, the drying step is a step of volatilizing the solvent contained in the organic copper complex solution coating film.
  • membrane obtained after a drying process is a precursor from which a copper oxide thin film is obtained by heating, the organic copper complex film
  • the method for volatilizing the solvent contained in the organic copper complex solution coating film and the drying conditions are not particularly limited as long as it is a technique or a condition capable of removing the solvent contained in the specific solution from the coating film.
  • the coating film is heated, the coating film is placed under a reduced pressure environment, or the coating film is heated while placed under a reduced pressure environment.
  • the heating temperature of the coating film is preferably lower than the glass transition temperature of the resin.
  • the residual amount of the solvent in the organic copper complex film after the drying step is not particularly limited, but from the viewpoint of increasing the film density after the heat treatment step, the total mass of the organic copper complex film obtained after the drying step is The total mass of the solvent is preferably 50% by mass or less.
  • Heat treatment step In the heat treatment step, the organic copper complex film is heated at 230 ° C. or higher and lower than 300 ° C. (annealing treatment) to form a copper oxide thin film.
  • the heat treatment (annealing) of the organic copper complex film is performed by heating the organic copper complex film at 230 ° C. or higher and lower than 300 ° C.
  • the thermal decomposition of the specific copper complex proceeds sufficiently, and a dense copper oxide thin film can be obtained.
  • the selectivity of the peripheral member of copper oxide thin films, such as a base material used when obtaining the copper oxide thin film by heating the organic copper complex film is improved by the temperature of the heat treatment being less than 300 ° C.
  • the heat treatment time varies depending on the type of base material used and / or the thickness of the organic copper complex film, but may be, for example, 1 minute to 3 hours.
  • the method for the heat treatment is not particularly limited, and examples thereof include heating with an electric furnace, infrared lamp heating, and heating with a hot plate.
  • the heat treatment can be completed in a short time by using a rapid heat treatment apparatus (RTA apparatus; Rapid Thermal Annealing apparatus) using lamp heating.
  • RTA apparatus Rapid Thermal Annealing apparatus
  • the heat treatment step is preferably performed in an atmosphere containing oxygen.
  • an atmosphere containing oxygen By heat-treating the organic copper complex film in an atmosphere containing oxygen, a copper oxide thin film can be easily obtained.
  • the oxygen concentration in the atmosphere containing oxygen is more preferably 0.5 volume% to 50 volume%.
  • the “oxygen concentration in an atmosphere containing oxygen” is the oxygen concentration in the heating container (furnace) of the heating device when the heat treatment is performed by the heating device.
  • the inside of the heating container including the base material on which the organic copper complex film is formed is filled with a mixed gas of oxygen (O 2 ) and inert gas argon (Ar), “atmosphere containing oxygen” Is calculated as 100 ⁇ O 2 / (Ar + O 2 ) [volume%].
  • oxygen concentration in the atmosphere containing oxygen is high, Cu 2 O is easily obtained.
  • the oxygen concentration is more preferably 0.5% to 10% by volume.
  • a copper oxide containing monovalent copper such as Cu 2 O on the base material by heat-treating the organocopper complex film in a more preferable oxygen concentration range (0.5 volume% to 50 volume%).
  • a thin film can be obtained.
  • the manufacturing method of the copper oxide thin film of the present invention includes, in addition to the organic copper complex solution coating film forming step, the drying step, and the heat treatment step, in addition to the cooling step and / or the energy ray irradiation step. You may have the process of.
  • Cooling step In the cooling step, the copper oxide thin film obtained by the heat treatment step is cooled. By cooling the copper oxide thin film, throughput can be increased and productivity can be improved.
  • the method for cooling the copper oxide thin film is not particularly limited. For example, the method of air-cooling a copper oxide thin film, the method of making the base material with which the copper oxide thin film was formed contact the metal plate of room temperature (for example, 25 degreeC), etc. are mentioned.
  • the organic copper complex film obtained after the drying step is irradiated with energy rays (electron rays, infrared rays, ultraviolet rays, vacuum ultraviolet rays, atomic rays, X rays, ⁇ rays, visible rays, etc.).
  • energy rays electron rays, infrared rays, ultraviolet rays, vacuum ultraviolet rays, atomic rays, X rays, ⁇ rays, visible rays, etc.
  • a dense film having a high film density can be obtained by irradiating the organic copper complex film with energy rays.
  • a copper oxide thin film is manufactured on a base material.
  • a copper oxide thin film containing monovalent copper for example, a Cu 2 O thin film functions as a p-type semiconductor
  • a Cu 2 O thin film formed on a substrate is suitable for various thin film semiconductor devices. Can be used.
  • the content of copper atoms with respect to all atoms constituting the copper oxide thin film is preferably 70 atomic% or more.
  • the mobility when the copper oxide thin film is used as a conductor can be improved.
  • the content of copper atoms with respect to all atoms contained in the copper oxide thin film is more preferably 90 atomic% or more, and further preferably 95 atomic% or more.
  • the thin film semiconductor of this invention can be set as a semiconductor device by having a base material and the p-type semiconductor layer which is located on a base material and consists of a copper oxide thin film. That is, the thin film semiconductor device of the present invention includes a base material and a copper oxide thin film manufactured by the method of manufacturing the copper oxide thin film of the present invention or the copper oxide thin film of the present invention.
  • the thin film semiconductor of the present invention may further include a flexible base material, and the p-type semiconductor layer may be positioned on the base material.
  • a p-type semiconductor layer By having a p-type semiconductor layer on a base material having flexibility, a thin film semiconductor device that is bent and hardly broken even when dropped can be obtained.
  • the thin film semiconductor device can be reduced in weight and can be carried in a form in which the thin film semiconductor device is wound. Therefore, it can be suitably used as a power source for mobile devices, for example.
  • it since it is lightweight, the burden on a building at the time of installing on the roof of a building is reduced.
  • the example of the base material which a thin film semiconductor device can be equipped with is the same as the example of the base material used with the manufacturing method of the copper oxide thin film of this invention, and its preferable aspect is also the same.
  • a p-type semiconductor layer should just be located on a base material, and may have another layer between a p-type semiconductor layer and a base material.
  • the other layers include various functional layers such as an adhesive layer that enhances the adhesion between the p-type semiconductor layer and the substrate.
  • a thin film semiconductor device using a copper oxide thin film can be applied to various applications, for example, a solar cell, a light emitting diode, a field effect transistor, a thermoelectric conversion element, and the like.
  • a thin film semiconductor device using a Cu 2 O thin film has a band gap of about 2.1 eV, absorbs light in the visible light region, and generates carriers. Therefore, the thin film semiconductor device is preferably used as a photoelectric conversion material for a solar cell. Can do.
  • the thin film semiconductor device provided with the copper oxide thin film of this invention or the copper oxide thin film manufactured by the manufacturing method of the copper oxide thin film of this invention can be used suitably as a solar cell.
  • a pn junction solar cell for example, a p-type semiconductor layer and an n-type semiconductor layer are provided adjacent to each other on a transparent conductive film formed on a transparent substrate.
  • a form in which a metal electrode is formed on the n-type semiconductor layer is conceivable.
  • FIG. 1 shows a schematic cross-sectional view of a pn junction solar cell 100 according to an embodiment of the present invention.
  • the pn junction solar cell 100 includes a transparent substrate 10, a transparent conductive film 12 provided on the transparent substrate 10, a p-type semiconductor layer 14 including the copper oxide thin film of the present invention on the transparent conductive film 12, and p An n-type semiconductor layer 16 provided on the n-type semiconductor layer 14 and a metal electrode 18 provided on the n-type semiconductor layer 16 are included.
  • a pn junction solar cell can be obtained.
  • the same material as the material mentioned as an example of the base material used with the manufacturing method of the copper oxide thin film of this invention can be used.
  • the transparent substrate include a glass substrate and a resin substrate.
  • a resin substrate having low heat resistance is used as a transparent substrate.
  • the resin substrate having low heat resistance include polysulfone, polyethersulfone, polyarylate, polyamide, polyimide, polyamideimide, and polyetherimide.
  • Examples of the transparent conductive film 12 include a film made of In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F, ZnO: Al, ZnO: F, CdSnO 4 , or the like.
  • ITO In 2 O 3
  • SnO 2 Sb
  • SnO 2 F
  • ZnO Al
  • ZnO F
  • CdSnO 4 CdSnO 4
  • the copper oxide thin film (for example, Cu 2 O thin film) of the present invention is used as the p-type semiconductor layer 14.
  • the n-type semiconductor layer 16 is preferably a metal oxide.
  • the metal oxide include metal oxides including at least one of Ti, Zn, Sn, and In, and more specifically, TiO 2 , ZnO, SnO 2 , IGZO, and the like. Is mentioned.
  • the n-type semiconductor layer is preferably formed by a wet method (also referred to as a liquid phase method) in the same manner as the p-type semiconductor layer from the viewpoint of manufacturing cost.
  • the metal electrode 18 for example, Pt, Al, Cu, Ti, Ni, or the like can be used.
  • Example 1 Synthesis of Specific Copper Complex Exemplified Compound 1 was synthesized based on Synthetic Examples A to D (The synthesized Exemplified Compound 1 is referred to as Copper Complex 1-1 to Copper Complex 1-4, respectively).
  • Exemplified Compound 2 was synthesized based on Synthetic Example E and Synthetic Example F, respectively (the synthesized Exemplified Compound 2 is referred to as Copper Complex 2-1 and Copper Complex 2-2, respectively).
  • Exemplified Compound 5 was synthesized based on Synthetic Example G and Synthetic Example H, respectively (the synthesized Exemplified Compound 5 is referred to as Copper Complex 5-1 and Copper Complex 5-2, respectively).
  • Exemplified compound 107 was synthesized based on Synthetic Example K and Synthetic Example L, respectively (the synthesized exemplified compound 107 is referred to as copper complex 107-1 and copper complex 107-2, respectively).
  • Exemplary compound 108 was synthesized based on Synthesis Example M and Synthesis Example N, respectively (the synthesized exemplary compound 108 is referred to as copper complex 108-1 and copper complex 108-2, respectively).
  • Exemplified compound 109 was synthesized based on Synthetic Example O and Synthetic Example P, respectively (the synthesized exemplified compound 109 is referred to as a copper complex 109-1 and a copper complex 109-2, respectively).
  • the exemplary compound 110 was synthesized based on Synthesis Example Q and Synthesis Example R, respectively (the synthesized exemplary compound 110 is referred to as a copper complex 110-1 and a copper complex 110-2, respectively).
  • the exemplified compound 111 was synthesized based on Synthesis Example S and Synthesis Example T, respectively (the synthesized exemplified compound 111 is referred to as a copper complex 111-1 and a copper complex 111-2, respectively).
  • the exemplified compound 58 was synthesized based on Synthesis Example U (the synthesized exemplified compound 58 is referred to as a copper complex 58-1).
  • the exemplified compound 126 was synthesized based on Synthesis Example V (the synthesized exemplified compound 126 is referred to as a copper complex 126-1).
  • Exemplary compound 29 was synthesized based on Synthesis Example W (synthesized exemplary compound 29 is referred to as copper complex 29-1).
  • the exemplified compound 131 was synthesized based on Synthesis Example X (the synthesized exemplified compound 131 is referred to as a copper complex 131-1).
  • the exemplary compound 132 was synthesized based on Synthesis Example Y (the synthesized exemplary compound 132 is referred to as a copper complex 132-1).
  • the exemplary compound 133 was synthesized based on Synthesis Example Z (the synthesized exemplary compound 133 is referred to as a copper complex 133-1).
  • Example 1-1 Synthesis example A of exemplary compound 1 (specific copper complex) After adding 9.5 g of 1,8-diazabiccyclo [5.4.0] undec-7-ene to 50 mL of N, N-dimethylacetamide, 9 g of meldrum acid was intermittently added over 5 minutes while cooling with water. To obtain a mixed solution. During this time, the liquid temperature of the mixed liquid was 18 ° C. to 28 ° C. Further, 7 mL of acetic anhydride was added dropwise to the mixture over 5 minutes, and then left overnight at room temperature. Cupric chloride (4.2 g) was dissolved in 25 mL of N, N-dimethylacetamide, added to the mixture, and allowed to stand at room temperature for 1 hour.
  • Example 1-2 Synthesis example B of exemplary compound 1 (specific copper complex)
  • 8 g (48 mmol) of the obtained Meldrum's sodium salt was dispersed in 40 mL of N, N-dimethylacetamide and stirred, while stirring for 10 minutes in a solution of 5.2 mL of acetic anhydride in 10 mL of N, N-dimethylacetamide. The resulting mixture was allowed to stand overnight at room temperature.
  • Example 1-3 Synthesis example C of exemplary compound 1 (specific copper complex) Meldrum's acid (7.2 g, 0.05 M) is dissolved in dichloromethane (60 mL), the internal temperature is set to ⁇ 5 ° C., pyridine (7.9 g, 0.1 M) is gradually added, and the mixture is stirred for about 10 minutes and mixed. A liquid was obtained. Then, a solution of acetyl chloride (4.3 g, 0.055 M) in dichloromethane (20 mL) was added dropwise to the obtained mixture over 20 minutes.
  • pyridine 7.9 g, 0.1 M
  • Example 1-4 Synthesis example D of exemplary compound 1 (specific copper complex)
  • 1.86 g (10 mmol) of Compound A was added, 10 mL of 1 mol / L sodium hydroxide solution was further added, and the mixture was stirred for about 10 minutes to dissolve Compound A to obtain Compound A Solution 2.
  • a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound A solution 2 and stirred at room temperature for 30 minutes.
  • the resulting crystals were collected by filtration, washed with water, and dried to obtain 1.6 g of a light blue powder of copper complex 1-4 (Exemplary Compound 1).
  • Example 1-5 Synthesis Example E of Exemplified Compound 2 (Specific Copper Complex) E First, Y. Oikawa, K .; Sugano, O .; Yonemitsu, J. et al. Org. Chem. , Vol. 43, 2087 (1978), Compound B having the following structure represented by General Formula 2 was obtained according to the synthesis method of Compound 3a.
  • Example 1-6 Synthesis Example F of Illustrative Compound 2 (Specific Copper Complex)
  • 2.00 g (10 mmol) of Compound B was added, and further 10 mL of 1 mol / L sodium hydroxide solution was added and stirred for about 10 minutes to dissolve Compound B to obtain Compound B Solution 2.
  • a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound B solution 2 and stirred at room temperature for 30 minutes.
  • the resulting crystals were collected by filtration, washed with water, and dried to obtain copper complex 2-2 (Exemplary Compound 2) as 2.0 g of a light blue powder.
  • Example 1-7 Synthesis example G of exemplary compound 5 (specific copper complex) First, Y. Oikawa, K .; Sugano, O .; Yonemitsu, J. et al. Org. Chem. , Vol. 43, 2087 (1978), compound C having the following structure represented by general formula 2 was synthesized according to the synthesis method of compound 3i.
  • Example 1-8 Synthesis example H of exemplary compound 5 (specific copper complex)
  • 8.62 g (10 mmol) of Compound C was added, and 10 mL of a 1 mol / L sodium hydroxide solution was further added, and the mixture was stirred for about 10 minutes to dissolve Compound C to obtain Compound C Solution 2.
  • a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound C solution 2 and stirred at room temperature for 30 minutes.
  • the resulting crystals were collected by filtration, washed with water, and dried to obtain copper complex 5-2 (Exemplary Compound 5) as 1.9 g of a light blue powder.
  • Example 1-9 Synthesis example K of exemplary compound 107 (specific copper complex) First, in Example 1-5, a similar reaction was carried out using cyclopropanecarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound E having the following structure.
  • Example 1-5 the same reaction was carried out using 2.1 g (10 mmol) of Compound E instead of Compound B of Synthesis Example E, and copper complex 107-1 (Exemplary Compound 107) was obtained as 2.1 g of light blue powder. Got. The copper complex 107-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and X-ray crystal structure analysis was performed.
  • Example 1-10 Synthesis example L of exemplary compound 107 (specific copper complex)
  • Example 1-6 the same reaction was performed using 1.7 g (10 mmol) of Compound E instead of Compound B of Synthesis Example F, and copper complex 107-2 (Exemplary Compound 107) was prepared as 1.9 g of light blue powder.
  • 1.7 g (10 mmol) of Compound E instead of Compound B of Synthesis Example F
  • copper complex 107-2 Example 1-10
  • Example 1-10 Synthesis example L of exemplary compound 107 (specific copper complex)
  • Example 1-6 the same reaction was performed using 1.7 g (10 mmol) of Compound E instead of Compound B of Synthesis Example F, and copper complex 107-2 (Exemplary Compound 107) was prepared as 1.9 g of light blue powder.
  • Example 1-11 Synthesis example M of exemplary compound 108 (specific copper complex) First, Canadian Journal of Chemistry, 1992, vol. 70, p. Compound F having the following structure was synthesized according to the synthesis method described in 1427 to 1445.
  • Example 1-5 the same reaction was carried out using 2.2 g (10 mmol) of Compound F instead of Compound B of Synthesis Example E, and copper complex 108-1 (Exemplary Compound 108) was obtained as 1.6 g of light blue powder. Got. The copper complex 108-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
  • Example 1-12 Synthesis example N of exemplary compound 108 (specific copper complex)
  • Example 1-6 the same reaction was carried out using 1.7 g (10 mmol) of Compound F instead of Compound B of Synthesis Example F, and copper complex 108-2 (Exemplary Compound 108) was obtained as 1.4 g of a light blue powder.
  • Example 1-13 Synthesis Example O of Exemplified Compound 109 (Specific Copper Complex) O First, in Example 1-5, the same reaction was carried out using bromoacetic chloride instead of propionyl chloride used in the synthesis of Compound B, thereby synthesizing Compound G having the following structure.
  • Example 1-5 the same reaction was performed using 2.7 g (10 mmol) of Compound G instead of Compound B of Synthesis Example E, and copper complex 109-1 (Exemplary Compound 109) was obtained as 2.2 g of light blue powder. Got. The copper complex 109-1 was recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
  • Example 1-14 Synthesis example P of exemplary compound 109 (specific copper complex)
  • Example 1-6 the same reaction was performed using 2.7 g (10 mmol) of Compound G instead of Compound B of Synthesis Example F, and copper complex 109-2 (Exemplary Compound 109) was obtained as 2.4 g of light blue powder.
  • Example 1-14 Synthesis example P of exemplary compound 109 (specific copper complex)
  • the same reaction was performed using 2.7 g (10 mmol) of Compound G instead of Compound B of Synthesis Example F, and copper complex 109-2 (Exemplary Compound 109) was obtained as 2.4 g of light blue powder.
  • Example 1-15 Synthesis Example Q of Exemplified Compound 110 (Specific Copper Complex) First, Canadian Journal of Chemistry, 1992, vol. 70, p.
  • Compound H having the following structure was synthesized according to the synthesis method described in 1427 to 1445.
  • Example 1-5 the same reaction was performed using 3.1 g (10 mmol) of Compound H instead of Compound B of Synthesis Example E, and copper complex 110-1 (Exemplary Compound 110) was prepared as 2.7 g of a light blue powder. Got. The copper complex 110-1 was recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
  • Example 1-16 Synthesis example R of exemplary compound 110 (specific copper complex)
  • Example 1-6 the same reaction was carried out using 3.1 g (10 mmol) of Compound H instead of Compound B of Synthesis Example F, and copper complex 110-2 (Exemplary Compound 110) was prepared as 2.2 g of light blue powder. Got.
  • Example 1-17 Synthesis example S of exemplary compound 111 (specific copper complex) First, in Example 1-5, the same reaction was carried out using methoxyacetic acid chloride instead of propionyl chloride used in the synthesis of Compound B to synthesize Compound I having the following structure.
  • Example 1-5 a similar reaction was performed using 2.2 g (10 mmol) of Compound I instead of Compound B of Synthesis Example E, and copper complex 111-1 (Exemplary Compound 111) was obtained as 2.0 g of a light blue powder. Got. The structure was confirmed from the mass spectrum of the obtained copper complex.
  • Example 1-18 Synthesis example T of exemplary compound 111 (specific copper complex)
  • Example 1-6 the same reaction was carried out using 2.2 g (10 mmol) of Compound I in place of Compound B of Synthesis Example F, and copper complex 111-2 (Exemplary Compound 111) was prepared as 1.7 g of light blue powder. Got.
  • Example 1-19 Synthesis Example U of Exemplary Compound 58 (Specific Copper Complex) First, 14 g (100 mmol) of Meldrum's acid and 13 g (100 mmol) of acetophenone were heated and refluxed in toluene (200 mL) for 30 minutes, followed by silica gel column purification using n-hexane, ethyl acetate and chloroform as developing solvents. 4.2 g of intermediate J ′ was obtained. Thereafter, the same reaction was carried out using 4 g (20 mmol) of the intermediate J ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 4.4 g of Compound L-19 having the following structure: Was synthesized. I H-NMR (400 MHz, DMSO-d 6 ) ⁇ 1.9 (s, 3H), 2.4 (s, 3H), 7.4-7.5 (m, 2H), 7.5-7.6 (M, 3H)
  • Example 1-5 the same reaction was performed using 2.2 g (10 mmol) of Compound L-19 instead of Compound B of Synthesis Example E, and copper complex 58-1 (Exemplary Compound) was obtained as 0.8 g of light blue powder. 58). The structure was confirmed from the mass spectrum of the obtained copper complex.
  • Example 1-20 Synthesis example V of exemplary compound 126 (specific copper complex) The reaction was carried out using 2-acetylthiophene instead of acetophenone of Example 1-19 to obtain 4.2 g of intermediate K ′. Thereafter, a similar reaction was carried out using 4.2 g (20 mmol) of the intermediate K ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 3.6 g of Compound L having the following structure: -29 was synthesized.
  • I H-NMR 400 MHz, DMSO-d 6 ) ⁇ 1.8 (s, 3H), 2.4 (s, 3H), 6.9-7.2 (m, 4H)
  • Example 1-5 the same reaction was carried out using 2.5 g (10 mmol) of compound L-29 instead of compound B of Synthesis Example E, and copper complex 126-1 (exemplary compound) was prepared as 0.6 g of a light blue powder. 126) was obtained. The structure was confirmed from the mass spectrum of the obtained copper complex.
  • Example 1-21 Synthesis example W of Exemplified compound 29 (specific copper complex) The reaction was carried out using cyclohexanone instead of acetophenone of Example 1-19 to obtain 9.2 g of intermediate L ′. Thereafter, the same reaction was carried out using 3.7 g (20 mmol) of the intermediate L ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 4.1 g of Compound L having the following structure: -39 was synthesized.
  • I H-NMR 400 MHz, CDCl 3 ) 1.5-1.8 (m, 6H), 1.9-2.4 (m, 7H)
  • Example 1-5 the same reaction was carried out using 2.3 g (10 mmol) of compound L-39 instead of compound B of Synthesis Example E, and copper complex 29-1 (exemplary compound) was obtained as 2.1 g of a light blue powder. 29) was obtained.
  • the copper complex 29-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
  • Example 1-22 Synthesis Example X of Exemplified Compound 131 (Specific Copper Complex) The reaction was carried out using 7-octen-2-one instead of acetophenone of Example 1-19 to obtain 2.2 g of intermediate L ′. Thereafter, in the synthesis of Compound B in Example 1-5, the same reaction was carried out using 3.7 g (20 mmol) of the intermediate M ′ instead of Meldrum's acid used, and 2.4 g of the compound having the following structure L-48 was synthesized.
  • I H-NMR 400 MHz, CDCl 3 ) 1.2-1.3 (m, 11H), 2.7 (s, 3H), 4.9 to 6.1 (m, 3H)
  • Example 1-5 the same reaction was carried out using 2.4 g (10 mmol) of compound L-48 instead of compound B of synthesis example E, and copper complex 131-1 (exemplary compound) was prepared as 0.6 g of a light blue powder. 131). The structure was confirmed from the mass spectrum of the obtained copper complex.
  • Example 1-23 Synthesis example Y of exemplary compound 132 (specific copper complex) First, in Example 1-5, the same reaction was carried out using 2-furancarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound L-7 having the following structure.
  • I H-NMR 400 MHz, DMSO-d 6 ) ⁇ 1.8 (s, 6H), 6.8-7.3 (m, 4H)
  • Example 1-5 the same reaction was carried out using 2.4 g (10 mmol) of compound L-7 instead of compound B of Synthesis Example E, and copper complex 132-1 (exemplary compound) was prepared as 0.7 g of light blue powder. 132). The structure was confirmed from the mass spectrum of the obtained copper complex.
  • Example 1-24 Synthesis example Z of exemplary compound 133 (specific copper complex) First, in Example 1-5, the same reaction was carried out using 6-heptenecarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound O having the following structure.
  • Example 1-5 the same reaction was carried out using 2.5 g (10 mmol) of Compound O instead of Compound B of Synthesis Example E, and copper complex 133-1 (Exemplary Compound 133) was obtained as 0.8 g of a light blue powder. Got. The structure was confirmed from the mass spectrum of the obtained copper complex.
  • R-3 represents the symbol of the space group
  • the R value represents the “relative residue” of the least square method
  • the Rw value represents the “weighted relative residue” of the least square method
  • GOF represents the correlation coefficient ( Goodness of fitness).
  • the definition of is the same for each.
  • P-1, P21 / c, and C2 / c in the copper complex 5-1, the copper complex 107-1, the copper complexes 108-1, 109-1, the copper complex 110-1, and the copper complex 29-1 are , Represents space group symbol.
  • copper complex 1-1, copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complex 108-1, copper complex 109-1, copper complex 110- obtained by X-ray structural analysis
  • the structural formulas for 1 and copper complex 29-1 are shown in FIGS. 2 to 9, respectively. Based on the above results, copper complex 1-1, copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complex 108-1, copper complex 109-1, copper complex 110-1, and copper complex Regarding 29-1, it was confirmed that all were obtained as a complex represented by the general formula 1 described above.
  • the curve (A) is a TG curve of the copper complex 1-1
  • the curve (B) is a DTA curve of the copper complex 1-1
  • the broken line (C) represents the decrease from the copper complex 1-1 when CO 2 and acetone are desorbed from the copper complex 1-1; -47.1% by mass
  • the broken line (D) is all The amount of decrease from the copper complex 1-1 when the copper complex is changed to Cu 2 O; represents ⁇ 83.7% by mass.
  • Meldrum acid is known to decompose into acetone, CO 2 and ketene during thermal decomposition, and it is considered that the thermal decomposition of meltrum acid occurs in the first stage.
  • m / z means mass to charge ratio.
  • thermogravimetric analysis was similarly performed on the copper complex 2-1 and the copper complex 5-1.
  • the results are shown in FIG.
  • Curve (A) is a TG curve of copper complex 2-1
  • curve (B) is a TG curve of copper complex 5-1. Similar to the copper complex 1-1, mass reduction was observed in two stages, and it was confirmed that the mass reduction converged at less than 300 ° C.
  • Completion of thermal decomposition is judged from the fact that the mass reduction is greater than the calculated value that causes the Cu complex to decompose and Cu 2 O, the mass reduction has converged, and that no sublimation has occurred from DTA data. did.
  • Table 13 summarizes the TG results for other copper complexes.
  • a sample whose thermal decomposition is completed at less than 300 ° C. is indicated by A, and a sample having a temperature of 300 ° C. or higher is indicated by B.
  • the thermal decomposition was completed at less than 300 ° C.
  • the thermal decomposition temperature was 500 ° C. or higher in the method performed in the above-mentioned Japanese Patent Application Laid-Open No. 2011-119454 (specifically, the compounds described in paragraphs 0046 to 0056 of Japanese Patent Application Laid-Open No. 2011-119454).
  • Example 2 Preparation Example of Copper Complex Solution
  • Example 2-1 A copper complex solution 1 as a specific solution was prepared using the copper complex 1-1. 1.95 g of copper complex 1-1 was weighed, added to 30 mL of N, N-dimethylacetamide at room temperature (25 ° C., the same applies hereinafter) with stirring, and stirred for 30 minutes to give a dark blue color of 0.15 mol / L. A transparent solution (copper complex solution 1) was obtained.
  • Example 2-2 0.65 g of the copper complex 1-1 was weighed and added to 30 mL of 2,2,3,3-tetrafluoro-1-propanol heated at 90 ° C. with stirring, and stirred for 30 minutes. A dark blue transparent solution of L (copper complex solution 2) was obtained.
  • Example 2-3 0.33 g of the copper complex 1-1 was weighed, added to 30 mL of normal 2-diethylaminoethanol with stirring, and stirred for 30 minutes to obtain a 0.025 mol / L transparent solution (copper complex solution 3). .
  • Example 2-4 0.65 g of the copper complex 1-1 was weighed, added to 30 mL of normal temperature pyridine while stirring, and stirred for 30 minutes to obtain a 0.05 mol / L transparent solution (copper complex solution 4).
  • Example 2-5 0.65 g of the copper complex 1-1 was weighed, added to 30 mL of normal temperature tetrahydrofuran with stirring, and stirred for 30 minutes to obtain a 0.05 mol / L transparent solution (copper complex solution 5).
  • Example 2-6 A copper complex solution 6 as a specific solution was prepared using the copper complex 1-1 and the copper complex 2-1. 1.3 g of copper complex 1-1 and 1.4 g of copper complex 2-1 were weighed and added to 30 mL of N, N-dimethylacetamide at room temperature with stirring, and stirred for 30 minutes, so that the copper complex concentration was 0. A 2 mol / L dark blue transparent solution (copper complex solution 6) was obtained.
  • Example 3 Preparation of Cu 2 O thin film
  • the substrate surface was a silicon substrate.
  • a Cu 2 O thin film was prepared by the following procedure. .
  • Organic copper complex solution coating film forming step and drying step The copper complex solution 1 is spin-coated on a 25 mm square silicon substrate at a rotational speed of 3000 rpm for 60 seconds and then dried on a hot plate heated to 200 ° C. for 5 minutes. By repeating the process five times, a precursor film 1 (organic copper complex film) having a film thickness of about 40 nm was obtained.
  • the obtained precursor thin film 1 was heated in the following annealing temperature and the following annealing atmosphere.
  • the annealing was performed at each annealing temperature of 200 ° C., 230 ° C., 250 ° C., 280 ° C., 300 ° C., or 350 ° C.
  • the annealing atmosphere is O 2 / (Ar + O 2 ) flow rate ratio (volume basis), 0 (that is, oxygen concentration in the furnace at the time of heat treatment 0 volume%), 0.1 (oxygen concentration 10 volume%)
  • Heat treatment is performed by changing to 0.2 (oxygen concentration 20 vol%), 0.5 (oxygen concentration 50 vol%), 0.8 (oxygen concentration 80 vol%), or 1.0 (oxygen concentration 100 vol%).
  • Heat treatment is performed by changing to 0.2 (oxygen concentration 20 vol%), 0.5 (oxygen concentration 50 vol%), 0.8 (oxygen concentration 80 vol%), or 1.0 (oxygen concentration 100 vol%).
  • the heat treatment was performed using a high-speed heat treatment apparatus (AW-410 manufactured by Allwin21).
  • the temperature was raised to a desired temperature at 50 ° C./sec, held for 3 minutes, and then cooled in the furnace.
  • the total gas flow rate during the heat treatment was 2 L / min.
  • Thin film X-ray diffraction measurement was performed on each of the obtained Cu 2 O thin films.
  • RINT-Ultima III manufactured by Rigaku Corporation was used, and evaluation was performed by 2 ⁇ measurement with an incident angle fixed at 0.35 °.
  • At 200 ° C. indicated by curve F no peak could be confirmed.
  • the peaks of Cu 2 O JDPDS # 05-0667) were mainly confirmed at 230 ° C., 250 ° C., and 280 ° C. indicated by curves E to C.
  • the peak indicated by (c) in FIG. 14 represents the presence of Cu 2 O (111), and the peak indicated by (d) represents the presence of Cu 2 O (200). Further, at 300 ° C. indicated by the curve B and 350 ° C. indicated by the curve A, a peak of CuO (JCPDS # 48-1548) was confirmed in addition to the peak of Cu 2 O.
  • the peak indicated by (a) in FIG. 14 represents the presence of CuO (11-1), and the peak indicated by (b) represents the presence of CuO (111).
  • the peak shown by (a) in FIG. 15 represents the presence of Cu (111), and the peak shown by (b) represents the presence of Cu (200). Further, the peak indicated by (c) in FIG. 15 represents the presence of Cu 2 O (111), the peak indicated by (d) represents the presence of Cu 2 O (200), and is indicated by (e). The peak represents the presence of Cu 2 O (220).
  • Example 3-2 A Cu 2 O thin film was produced using the copper complex solution (copper complex solution 6) produced in Example 2-6.
  • Organic copper complex solution coating film forming step and drying step The copper complex solution 6 is spin-coated on a 25 mm square silicon substrate at a rotational speed of 3000 rpm for 60 seconds, and then dried on a hot plate heated to 200 ° C. for 5 minutes. By repeating the process 5 times, a precursor thin film 6 (organic copper complex film) having a film thickness of about 40 nm was obtained.
  • the precursor thin film 6 is heat-treated under the conditions of an annealing temperature of 250 ° C. and an annealing atmosphere of O 2 / (Ar + O 2 ) flow rate ratio (volume basis) of 0.2 (oxygen concentration 20% by volume). To obtain a Cu 2 O thin film 6.
  • Example 3-3 Base material surface is resin substrate Using the copper complex solution 1-1 prepared in Example 2-1, a Cu 2 O thin film was prepared by the following procedure. First, a laminated base material having a polyimide resin substrate that was detachably attached to a 25 mm square silicon substrate via an acrylic adhesive was prepared as a base material. Next, the process of spin-coating the copper complex solution 1-1 on the polyimide resin substrate surface of the laminated base material at a rotational speed of 3000 rpm for 60 seconds and then drying it on a hot plate heated to 200 ° C. for 5 minutes 5 times By repeating, the precursor film
  • a laminated base material having a polyimide resin substrate that was detachably attached to a 25 mm square silicon substrate via an acrylic adhesive was prepared as a base material.
  • the Cu 2 O thin film obtained as described above functions as a p-type semiconductor, it can be applied to a thin film semiconductor device. Moreover, by manufacturing a thin film semiconductor device with a configuration adjacent to a member to be an n-type semiconductor, a thin film semiconductor device having a pn junction can be obtained, and it is also suitable for application to a pn junction solar cell. Further, as can be seen from Example 3-2, a Cu 2 O thin film, which is a copper oxide thin film, can be produced even when annealing is performed at a heating temperature of 250 ° C. It can also be used as a base material, and it can be seen that a flexible thin film semiconductor device can be manufactured.

Abstract

Provided are: an organocopper complex having a structure represented by general formula (1); a copper oxide thin film comprising the organocopper complex; a method for producing the copper oxide thin film; and a compound constituting the organocopper complex. R11, R12, R21 and R22 each represent an alkyl group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, or a heteroaryl group. R11 and R21 may form rings that are linked to each other, and R12 and R22 may form rings that are linked to each other. R31 and R32 each represent a hydrogen atom, an alkyl group, and alkoxy group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, a heteroaryl group, or a hydroxy group. When all of R11, R12, R21 and R22 represent a methyl group, R31 and R32 each represent an alkyl group, an aryl group, an alkoxy group, or a hydroxy group.

Description

有機銅錯体、有機銅錯体溶液、銅酸化物薄膜、銅酸化物薄膜の製造方法、および、化合物Organic copper complex, organic copper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound
 本発明は、有機銅錯体、有機銅錯体溶液、銅酸化物薄膜、銅酸化物薄膜の製造方法、および、化合物に関する。 The present invention relates to an organic copper complex, an organic copper complex solution, a copper oxide thin film, a method for producing a copper oxide thin film, and a compound.
 薄膜半導体デバイスには、種々の酸化物薄膜が用いられている。例えば、銅酸化物薄膜の1つである亜酸化銅(CuO)薄膜は、p型伝導性を示す直接遷移型半導体であることから、p型半導体として用いられている。 Various oxide thin films are used for thin film semiconductor devices. For example, a cuprous oxide (Cu 2 O) thin film, which is one of copper oxide thin films, is a direct-transition semiconductor that exhibits p-type conductivity, and is therefore used as a p-type semiconductor.
 また、これらの薄膜半導体デバイスは、種々の用途に適用されている。例えば、CuO薄膜を用いた用途としては、p型半導体であるCuO薄膜と、n型半導体であるZnOやIGZO薄膜などとをpn接合した太陽電池(例えば、特開2006-9083号公報および特開2007-13098号公報参照)、発光ダイオード(例えば、特開2001-210864号公報参照)、電界効果トランジスタ(例えば、特開2008-10861号公報参照)、銅電極と接合した熱電変換素子(例えば、特開2000-230867号公報参照)等が知られている。
 特に、CuO薄膜は、バンドギャップが2.1eV程度で、可視光領域の光を吸収しキャリアを生成することから、太陽電池の光電変換材料として期待されている。また、CuOは毒性が低く、環境への影響が小さい。
Moreover, these thin film semiconductor devices are applied to various uses. For example, applications using the Cu 2 O thin film, a Cu 2 O thin film is a p-type semiconductor, n-type semiconductor such as ZnO or IGZO thin film such as a solar cell pn junction (e.g., JP 2006-9083 And a light-emitting diode (for example, see JP-A-2001-210864), a field effect transistor (for example, see JP-A-2008-10861), and a thermoelectric conversion bonded to a copper electrode. An element (for example, see Japanese Patent Application Laid-Open No. 2000-230867) is known.
In particular, a Cu 2 O thin film is expected as a photoelectric conversion material for solar cells because it has a band gap of about 2.1 eV and absorbs light in the visible light region to generate carriers. Further, Cu 2 O has low toxicity and has little influence on the environment.
 ところで、銅酸化物薄膜を形成する手法としては、スパッタ法およびMBE(Molecular Beam Epitaxy;分子線エピタキシー)法等の真空成膜法、ならびに溶液塗布法およびゾル-ゲル法等の湿式法等が挙げられる。
 例えば、Thin Solid Films,442(2003)48では、ゾル-ゲル法を用いて、酸化銅薄膜を形成することが開示されている。また、溶液塗布による薄膜形成方法としては、例えば、銅アミノポリカルボン酸錯体および/または銅ポリカルボン酸錯体が溶解した溶液を基材表面にスピンコート法、ディップ法、バーコート法、フローコート法、スプレーコート法のうちのいずれかの方法により塗布する工程、基板表面に溶液を塗布した後、溶媒を揮発させて所定の厚さに溶液組成物を乾燥する工程、ならびに第18族の希ガス族および窒素から選ばれる単独かまたは2種以上を組み合わせた不活性ガス雰囲気の中で300℃~700℃で1分から3時間の熱処理する工程を含む製造方法により、p型半導体の性能を持つ酸化銅(I)膜を形成することが開示されている(例えば、特開2011-119454号公報参照)。
 また、Monatschefte fur Chemie,98,(1967),564には銅錯体の例が開示されている。
By the way, as a method for forming a copper oxide thin film, there are a sputtering method and a vacuum film forming method such as MBE (Molecular Beam Epitaxy) method, and a wet method such as a solution coating method and a sol-gel method. It is done.
For example, Thin Solid Films, 442 (2003) 48 discloses forming a copper oxide thin film using a sol-gel method. In addition, as a thin film forming method by solution coating, for example, a solution in which a copper aminopolycarboxylic acid complex and / or a copper polycarboxylic acid complex is dissolved is applied to a substrate surface by spin coating, dipping, bar coating, or flow coating. , A step of applying by any one of spray coating methods, a step of applying a solution to the substrate surface and then evaporating the solvent to dry the solution composition to a predetermined thickness, and a group 18 noble gas Oxidation having the performance of a p-type semiconductor by a manufacturing method including a step of heat treatment at 300 ° C. to 700 ° C. for 1 minute to 3 hours in an inert gas atmosphere alone or in combination of two or more selected from the group and nitrogen It is disclosed that a copper (I) film is formed (see, for example, JP-A-2011-119454).
Also, examples of copper complexes are disclosed in Monatschefte fur Chemie, 98, (1967), 564.
 真空成膜法による薄膜形成は、一般に、大型の真空装置が必要となるため、薄膜形成の製造コストが高くなる。そのため、Thin Solid Films,442(2003)48や特開2011-119454号公報に示すような湿式法により、薄膜を形成することが求められてきた。湿式法であれば簡便な装置で大面積に成膜が可能なため低コストで成膜を行うことができる。
 しかしながら湿式法での銅酸化物薄膜の形成には、これまで高温でのアニール処理(加熱処理)が必要であった。既述のように、例えば、特開2011-119454号公報に示す方法では、300℃以上の高温であることが必要である。このような高温でのアニール処理は、エネルギーコスト的に不利であり、基材や周辺部材の選択性が低くなる等の課題があった。
Thin film formation by the vacuum film forming method generally requires a large vacuum apparatus, and thus the manufacturing cost of the thin film formation increases. Therefore, it has been required to form a thin film by a wet method as shown in Thin Solid Films, 442 (2003) 48 and Japanese Patent Application Laid-Open No. 2011-119454. If it is a wet method, since it can form into a large area with a simple apparatus, it can form at low cost.
However, formation of a copper oxide thin film by a wet method has so far required annealing treatment (heating treatment) at a high temperature. As described above, for example, in the method disclosed in JP2011-119454A, a high temperature of 300 ° C. or higher is necessary. Such annealing treatment at a high temperature is disadvantageous in terms of energy cost, and there are problems such as low selectivity of the base material and peripheral members.
 特に、近年は、より軽量で、柔軟性に富む薄膜半導体デバイスが要求されているため、基材として、可撓性の基材、具体的には、例えば、樹脂基材を用いることが求められている。しかしながら、300℃以上の加熱処理では、基材の耐熱性を考慮する必要があるため、基材や周辺部材の選択性が低くなる。 In particular, in recent years, since a lighter and more flexible thin film semiconductor device is required, it is required to use a flexible substrate, specifically, for example, a resin substrate. ing. However, in the heat treatment at 300 ° C. or higher, it is necessary to consider the heat resistance of the base material, so that the selectivity of the base material and peripheral members is lowered.
 特開2011-119454号公報に示される方法では、酸化銅(I)膜を形成する際、銅化合物を熱により分解させることで酸化銅(I)等を発生させているが、低温化、特に樹脂基板上に銅薄膜が形成可能になる300℃未満の温度領域で分解可能な銅化合物は知られていなかった。また、Monatschefte fur Chemie,98,(1967),564に開示されている銅錯体についても、熱分解特性は不明であった。 In the method disclosed in Japanese Patent Application Laid-Open No. 2011-119454, when a copper (I) oxide film is formed, copper (I) oxide or the like is generated by thermally decomposing a copper compound. A copper compound that can be decomposed in a temperature range below 300 ° C. at which a copper thin film can be formed on a resin substrate has not been known. In addition, the thermal decomposition characteristics of the copper complex disclosed in Monatschefte fur Chemie, 98, (1967), 564 were also unknown.
 本発明は、低温でのアニール処理にて銅酸化物薄膜を形成可能な有機銅錯体、およびその配位子となる化合物、並びに、低温でのアニール処理にて銅酸化物薄膜を形成可能な有機銅錯体を含有する有機銅錯体溶液を提供することを課題とし、かかる課題を解決することを目的とする。
 また、基材の選択性に富む銅酸化物薄膜の製造方法、および、基材の選択性に富む銅酸化物薄膜の製造方法により製造された銅酸化物薄膜を提供することを課題とし、かかる課題を解決することを目的とする。
The present invention relates to an organic copper complex capable of forming a copper oxide thin film by annealing at a low temperature, a compound serving as a ligand thereof, and an organic capable of forming a copper oxide thin film by annealing at a low temperature. It aims at providing the organic copper complex solution containing a copper complex, and it aims at solving this subject.
It is another object of the present invention to provide a copper oxide thin film produced by a method for producing a copper oxide thin film rich in substrate selectivity and a method for producing a copper oxide thin film rich in substrate selectivity. The purpose is to solve the problem.
 上記目的を達成するため、以下の発明が提供される。
<1> 下記一般式1で表される構造を有する有機銅錯体である。
In order to achieve the above object, the following invention is provided.
<1> An organic copper complex having a structure represented by the following general formula 1.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式1中、R11、R12、R21、およびR22は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または炭素数3~20のヘテロアリール基を表す。R11とR21は、互いに連結して環を形成していてもよく、R12とR22は、互いに連結して環を形成していてもよい。
 R31およびR32は、それぞれ互いに同じでも異なっていてもよく、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、またはヒドロキシ基を表す。尚、R11、R12、R21、R22、R31、およびR32で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R11、R12、R21、およびR22がいずれもメチル基を表すとき、R31およびR32は、各々独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。
In General Formula 1, R 11 , R 12 , R 21 , and R 22 may be the same or different from each other, and are each independently an alkyl group having 1 to 20 carbon atoms or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms. R 11 and R 21 may be connected to each other to form a ring, and R 12 and R 22 may be connected to each other to form a ring.
R 31 and R 32 may be the same or different from each other, and each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 may be substituted with a monovalent substituent. However, when R 11 , R 12 , R 21 , and R 22 all represent a methyl group, R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
<2> 前記一般式1中のR11、R12、R21、およびR22が、各々独立に、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表し、R11とR21が、互いに連結して環を形成していてもよく、R12とR22が、互いに連結して環を形成していてもよく、R31およびR32が、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、またはヒドロキシ基を表す<1>に記載の有機銅錯体である。 <2> R 11 , R 12 , R 21 , and R 22 in General Formula 1 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 11 And R 21 may be connected to each other to form a ring, R 12 and R 22 may be connected to each other to form a ring, and R 31 and R 32 are each independently a hydrogen atom. The organocopper complex according to <1>, which represents an atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a hydroxy group.
<3> 前記一般式1中のR11およびR12が同一であり、R21およびR22が同一である<1>または<2>に記載の有機銅錯体である。 <3> The organic copper complex according to <1> or <2>, wherein R 11 and R 12 in the general formula 1 are the same, and R 21 and R 22 are the same.
<4> 前記一般式1中のR31およびR32が同一である<1>~<3>のいずれか1つに記載の有機銅錯体である。 <4> The organocopper complex according to any one of <1> to <3>, wherein R 31 and R 32 in the general formula 1 are the same.
<5> 前記一般式1中のR11およびR12が互いに異なり、R21およびR22が互いに異なる<1>、<2>または<4>に記載の有機銅錯体である。 <5> The organocopper complex according to <1>, <2>, or <4>, in which R 11 and R 12 in General Formula 1 are different from each other, and R 21 and R 22 are different from each other.
<6> 前記一般式1中のR11、R12、R21、およびR22が、各々独立に、炭素数1~4のアルキル基である<3>~<5>のいずれか1つに記載の有機銅錯体である。 <6> In any one of <3> to <5>, wherein R 11 , R 12 , R 21 , and R 22 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms. It is an organocopper complex of description.
<7> 前記一般式1中のR31およびR32が、各々独立に、炭素数1~4のアルキル基、または炭素数1~4のアルコキシ基である<4>~<6>のいずれか1つに記載の有機銅錯体である。 <7> Any one of <4> to <6>, wherein R 31 and R 32 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. It is an organocopper complex as described in one.
<8> 酸化銅薄膜の形成に用いられる<1>~<7>のいずれか1つに記載の有機銅錯体である。 <8> The organocopper complex according to any one of <1> to <7>, which is used for forming a copper oxide thin film.
<9> <1>~<8>のいずれか1つに記載の有機銅錯体と、溶媒とを含む有機銅錯体溶液である。 <9> An organic copper complex solution containing the organic copper complex according to any one of <1> to <8> and a solvent.
<10> 前記有機銅錯体を、少なくとも2種含む<9>に記載の有機銅錯体溶液である。 <10> The organic copper complex solution according to <9>, including at least two types of the organic copper complex.
<11> 前記有機銅錯体の濃度が、0.01mol/L~0.3mol/Lである<9>または<10>に記載の有機銅錯体溶液である。 <11> The organic copper complex solution according to <9> or <10>, wherein the concentration of the organic copper complex is 0.01 mol / L to 0.3 mol / L.
<12> 前記溶媒が、非プロトン性極性溶媒である<9>~<11>のいずれか1つに記載の有機銅錯体溶液である。 <12> The organic copper complex solution according to any one of <9> to <11>, wherein the solvent is an aprotic polar solvent.
<13> <9>~<12>のいずれか1つに記載の有機銅錯体溶液の塗布膜を乾燥および加熱処理して得られる銅酸化物薄膜である。 <13> A copper oxide thin film obtained by drying and heat-treating the coating film of the organocopper complex solution according to any one of <9> to <12>.
<14> 1価の銅を少なくとも含む<13>に記載の銅酸化物薄膜である。 <14> The copper oxide thin film according to <13>, which contains at least monovalent copper.
<15> <9>~<12>のいずれか1つに記載の有機銅錯体溶液を、基材上に塗布して、有機銅錯体溶液塗布膜を形成する有機銅錯体溶液塗布膜形成工程と、
 有機銅錯体溶液塗布膜を乾燥して有機銅錯体膜を得る乾燥工程と、
 有機銅錯体膜を、230℃以上300℃未満で加熱して、銅酸化物薄膜を形成する加熱処理工程と、
を含む銅酸化物薄膜の製造方法である。
<15> An organic copper complex solution coating film forming step of coating the organic copper complex solution according to any one of <9> to <12> on a substrate to form an organic copper complex solution coating film; ,
A drying step of drying the organic copper complex solution coating film to obtain an organic copper complex film;
A heat treatment step of heating the organic copper complex film at 230 ° C. or higher and lower than 300 ° C. to form a copper oxide thin film;
It is a manufacturing method of the copper oxide thin film containing this.
<16> 前記加熱処理工程は、酸素濃度が0.5体積%~50体積%である雰囲気下で、有機銅錯体膜を加熱する<15>に記載の銅酸化物薄膜の製造方法である。 <16> The heat treatment step is the method for producing a copper oxide thin film according to <15>, wherein the organic copper complex film is heated in an atmosphere having an oxygen concentration of 0.5 volume% to 50 volume%.
<17> 下記一般式2で表され、銅イオンに配位することで<1>~<8>のいずれか1つに記載の有機銅錯体を構成する化合物である。 <17> A compound which is represented by the following general formula 2 and forms an organocopper complex according to any one of <1> to <8> by coordination with a copper ion.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式2中、R13およびR23は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または炭素数3~20のヘテロアリール基を表す。R13とR23は、互いに連結して環を形成していてもよい。
 R33は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、またはヒドロキシ基を表す。尚、R13、R23、およびR33で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R13およびR23がメチル基を表すとき、R33は、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。
In general formula 2, R 13 and R 23 may be the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms and a non-aromatic carbon atom having 2 to 20 carbon atoms having an unsaturated bond. A hydrogen group, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms is represented. R 13 and R 23 may be connected to each other to form a ring.
R 33 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, or an aryl having 6 to 20 carbon atoms. Group, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the above groups represented by R 13 , R 23 , and R 33 may be substituted with a monovalent substituent. However, when R 13 and R 23 represent a methyl group, R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group. .
 本発明によれば、低温でのアニール処理にて銅酸化物薄膜を形成可能な有機銅錯体、および有機銅錯体の配位子となる化合物、並びに、低温でのアニール処理にて銅酸化物薄膜を形成可能な有機銅錯体を含有する有機銅錯体溶液が提供される。
 また、本発明によれば、基材の選択性に富む銅酸化物薄膜の製造方法、および、基材の選択性に富む銅酸化物薄膜の製造方法により製造された銅酸化物薄膜が提供される。
According to the present invention, an organic copper complex capable of forming a copper oxide thin film by annealing at a low temperature, a compound serving as a ligand of the organic copper complex, and a copper oxide thin film by annealing at a low temperature An organocopper complex solution containing an organocopper complex capable of forming an is provided.
Further, according to the present invention, there is provided a copper oxide thin film produced by a method for producing a copper oxide thin film rich in substrate selectivity and a method for producing a copper oxide thin film rich in substrate selectivity. The
実施形態に係るpn接合型太陽電池の構成の一例を示すpn接合型太陽電池の模式断面図である。It is a schematic cross section of a pn junction solar cell showing an example of a configuration of a pn junction solar cell according to an embodiment. 実施例1-1により得られた銅錯体1-1の構造である。It is the structure of the copper complex 1-1 obtained by Example 1-1. 実施例1-5により得られた銅錯体2-1の構造である。It is the structure of the copper complex 2-1 obtained in Example 1-5. 実施例1-7により得られた銅錯体5-1の構造である。It is the structure of the copper complex 5-1 obtained in Example 1-7. 実施例1-9により得られた銅錯体107-1の構造である。It is the structure of the copper complex 107-1 obtained in Example 1-9. 実施例1-11により得られた銅錯体108-1の構造である。It is the structure of the copper complex 108-1 obtained in Example 1-11. 実施例1-13により得られた銅錯体109-1の構造である。It is the structure of the copper complex 109-1 obtained in Example 1-13. 実施例1-15により得られた銅錯体110-1の構造である。It is the structure of the copper complex 110-1 obtained in Example 1-15. 実施例1-21により得られた銅錯体29-1の構造である。It is the structure of copper complex 29-1 obtained in Example 1-21. 実施例1-1により得られた銅錯体1-1のTG(Thermogravimetry)-DTA(Differential Thermal Analysis)曲線である。1 is a TG (Thermogravimetry) -DTA (Differential Thermal Analysis) curve of the copper complex 1-1 obtained in Example 1-1. 実施例1-1により得られた銅錯体1-1のMS(Mass Spectrometry)曲線である。2 is an MS (Mass Spectrometry) curve of the copper complex 1-1 obtained in Example 1-1. 銅錯体1-1を加熱して得た粉体の粉末X線回折曲線である。2 is a powder X-ray diffraction curve of a powder obtained by heating the copper complex 1-1. 実施例1-5により得られた銅錯体2-1および実施例1-7により得られた銅錯体5-1のTG(Thermogravimetry)曲線である。2 is a TG (Thermogravimetry) curve of the copper complex 2-1 obtained in Example 1-5 and the copper complex 5-1 obtained in Example 1-7. 実施例3-1により得られたCuO薄膜のXRD(X-ray Diffraction)パターンである。It is an XRD (X-ray Diffraction) pattern of the Cu 2 O thin film obtained in Example 3-1. 実施例3-1により得られたCuO薄膜のXRD(X-ray Diffraction)パターンである。It is an XRD (X-ray Diffraction) pattern of the Cu 2 O thin film obtained in Example 3-1.
 以下、本発明の有機銅錯体および有機銅錯体溶液について、詳細に説明する。 Hereinafter, the organic copper complex and the organic copper complex solution of the present invention will be described in detail.
<有機銅錯体>
 本発明の有機銅錯体は、下記一般式1で表される構造を有する有機銅錯体(以下、「特定銅錯体」とも称する)である。
 銅酸化物薄膜を形成するに当たり、原料として特定銅錯体を用いることで、低温度(例えば、300℃未満)で特定銅錯体を加熱処理し場合であっても、銅酸化物を得ることができる。後述するように、特定銅錯体と溶媒とを用いて特定銅錯体溶液を調製し、これを基材上に塗布し、加熱することにより、基材上に容易に銅酸化物薄膜を形成することができる。
<Organic copper complex>
The organocopper complex of the present invention is an organocopper complex having a structure represented by the following general formula 1 (hereinafter also referred to as “specific copper complex”).
In forming a copper oxide thin film, by using a specific copper complex as a raw material, a copper oxide can be obtained even when the specific copper complex is heat-treated at a low temperature (for example, less than 300 ° C.). . As described later, a specific copper complex solution is prepared using a specific copper complex and a solvent, and this is coated on a substrate and heated to easily form a copper oxide thin film on the substrate. Can do.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式1中、R11、R12、R21、およびR22は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または、炭素数3~20のヘテロアリール基を表す。R11とR21は、互いに連結して環を形成していてもよく、R12とR22は、互いに連結して環を形成していてもよい。
 R31およびR32は、それぞれ互いに同じでも異なっていてもよく、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、または、ヒドロキシ基を表す。尚、R11、R12、R21、R22、R31、およびR32で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R11、R12、R21、およびR22がいずれもメチル基を表すとき、R31およびR32は、各々独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、または、ヒドロキシ基を表す。
In General Formula 1, R 11 , R 12 , R 21 , and R 22 may be the same or different from each other, and are each independently an alkyl group having 1 to 20 carbon atoms or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms. R 11 and R 21 may be connected to each other to form a ring, and R 12 and R 22 may be connected to each other to form a ring.
R 31 and R 32 may be the same or different from each other, and each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 may be substituted with a monovalent substituent. However, when R 11 , R 12 , R 21 , and R 22 all represent a methyl group, R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Represents a group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
 一般式1においては、R11、R12、R21、およびR22が、各々独立に、炭素数1~20のアルキル基、または、炭素数6~20のアリール基を表すか、R11とR21が、互いに連結して環を形成し、R12とR22が、互いに連結して環を形成していることがより好ましく、また、R31およびR32が、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、またはヒドロキシ基を表すことがより好ましい。 In general formula 1, R 11, R 12, R 21, and R 22 are each independently an alkyl group having 1 to 20 carbon atoms, or, or an aryl group having 6 to 20 carbon atoms, and R 11 More preferably, R 21 is connected to each other to form a ring, and R 12 and R 22 are connected to each other to form a ring, and R 31 and R 32 are each independently a hydrogen atom. More preferably, it represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a hydroxy group.
 一般式1において、R11およびR12が同一であり、R21およびR22が同一であると、特定銅錯体が左右対称の構造をとることとなり、単一生成物が得られ易く、精製が容易となる。また、特定銅錯体の合成が容易であるため、特定銅錯体の生産コストを低下することができる。
 一般式1において、R31およびR32が同一であると、特定銅錯体の分解温度が均一になり易く、特定銅錯体が後述する有機銅錯体溶液に調製され、有機銅錯体溶液の塗布膜が乾燥および加熱された場合にも、均一な膜密度の銅酸化物薄膜が得られ易くなる。
In the general formula 1, when R 11 and R 12 are the same, and R 21 and R 22 are the same, the specific copper complex has a symmetrical structure, a single product is easily obtained, and purification is easy. It becomes easy. Moreover, since the synthesis | combination of a specific copper complex is easy, the production cost of a specific copper complex can be reduced.
In the general formula 1, when R 31 and R 32 are the same, the decomposition temperature of the specific copper complex tends to be uniform, and the specific copper complex is prepared in an organic copper complex solution described later. Even when dried and heated, a copper oxide thin film having a uniform film density is easily obtained.
 一方、一般式1において、R11およびR12が互いに異なり、R21およびR22が互いに異なると、特定銅錯体が後述する有機銅錯体溶液に調製される場合、特定銅錯体の溶媒への溶解性を高めることができる。また、特定銅錯体が結晶化しにくくなるため、有機銅錯体溶液の塗布膜が乾燥および加熱されることにより得られる銅酸化物薄膜の膜密度が均一になり易い。 On the other hand, in the general formula 1, when R 11 and R 12 are different from each other and R 21 and R 22 are different from each other, when the specific copper complex is prepared in an organic copper complex solution described later, the specific copper complex is dissolved in the solvent. Can increase the sex. Moreover, since it becomes difficult to crystallize a specific copper complex, the film density of the copper oxide thin film obtained by drying and heating the coating film of an organic copper complex solution tends to become uniform.
 一般式1において、R11、R12、R21、またはR22がアルキル基を表す場合、そのアルキル基は、炭素数が1~20であり、さらに、置換基を有していてもよい。R11、R12、R21、またはR22として表されるアルキル基は、直鎖状でも、分岐状でも、環状でもよく、例えば、メチル基、エチル基、プロピル基、n-ヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、2-エチルヘキシル基、1,3-ジメチルブチル基、1-メチルブチル基、1,5-ジメチルヘキシル基、1,1,3,3-テトラメチルブチル基、シクロへキシル基、およびベンジル基等が挙げられる。
 R11、R12、R21、またはR22がアルキル基を表す場合、R11、R12、R21、およびR22は、それぞれ互いに同じであっても、異なっていてもよい。
In General Formula 1, when R 11 , R 12 , R 21 , or R 22 represents an alkyl group, the alkyl group has 1 to 20 carbon atoms and may further have a substituent. The alkyl group represented by R 11 , R 12 , R 21 , or R 22 may be linear, branched, or cyclic. For example, a methyl group, an ethyl group, a propyl group, an n-hexyl group, n -Nonyl group, n-decyl group, n-dodecyl group, 2-ethylhexyl group, 1,3-dimethylbutyl group, 1-methylbutyl group, 1,5-dimethylhexyl group, 1,1,3,3-tetramethyl Examples include a butyl group, a cyclohexyl group, and a benzyl group.
When R 11 , R 12 , R 21 , or R 22 represents an alkyl group, R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
 R11、R12、R21、またはR22として表されるアルキル基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、1~4がさらに好ましい。また、直鎖状または分岐状であることが好ましく、直鎖状であることがより好ましい。
 R11とR21とが連結して形成される環およびR12とR22とが連結して形成される環の炭素数は、それぞれ、3~10であることが好ましく、4~8であることがより好ましく、5~7がさらに好ましい。
The alkyl group represented by R 11 , R 12 , R 21 , or R 22 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Moreover, it is preferable that it is linear or branched, and it is more preferable that it is linear.
The ring formed by linking R 11 and R 21 and the ring formed by linking R 12 and R 22 each preferably have 3 to 10 carbon atoms, and preferably 4 to 8 carbon atoms. More preferred is 5-7.
 一般式1において、R11、R12、R21、またはR22が不飽和結合を有する非芳香族炭化水素基を表す場合、その不飽和結合を有する非芳香族炭化水素基は、炭素数が2~20であり、さらに、置換基を有していてもよい。R11、R12、R21、またはR22として表される不飽和結合を有する非芳香族炭化水素基は、直鎖状でも、分岐状でも、環状でもよく、例えば、ビニル基、アリル基、クロチル基、プロパルギル基、5-ヘキセニル基、4-メチル-1-ペンテニル基、メタリル基、1-シクロへキセニル基、および1-シクロペンテニル基等が挙げられる。
 R11、R12、R21、またはR22が不飽和結合を有する非芳香族炭化水素基を表す場合、R11、R12、R21、およびR22は、それぞれ互いに同じであっても、異なっていてもよい。
In General Formula 1, when R 11 , R 12 , R 21 , or R 22 represents a non-aromatic hydrocarbon group having an unsaturated bond, the non-aromatic hydrocarbon group having the unsaturated bond has a carbon number of 2 to 20, and may further have a substituent. The non-aromatic hydrocarbon group having an unsaturated bond represented as R 11 , R 12 , R 21 , or R 22 may be linear, branched, or cyclic. For example, a vinyl group, an allyl group, Examples include crotyl group, propargyl group, 5-hexenyl group, 4-methyl-1-pentenyl group, methallyl group, 1-cyclohexenyl group, and 1-cyclopentenyl group.
When R 11 , R 12 , R 21 , or R 22 represents a non-aromatic hydrocarbon group having an unsaturated bond, R 11 , R 12 , R 21 , and R 22 may be the same as each other, May be different.
 R11、R12、R21、またはR22として表される不飽和結合を有する非芳香族炭化水素基の炭素数は、2~10であることが好ましく、2~6であることがより好ましく、2~4がさらに好ましい。また、直鎖状または分岐状であることが好ましく、直鎖状であることがより好ましい。 The number of carbon atoms of the non-aromatic hydrocarbon group having an unsaturated bond represented by R 11 , R 12 , R 21 , or R 22 is preferably 2 to 10, and more preferably 2 to 6. 2 to 4 are more preferable. Moreover, it is preferable that it is linear or branched, and it is more preferable that it is linear.
 一般式1において、R11、R12、R21、またはR22がアリール基を表す場合、そのアリール基は、炭素数が6~20の単環または縮合環のアリール基であり、さらに置換基を有していてもよい。アリール基の例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、m-トリル基、p-トリル基、m-アニシル基、p-アニシル基、m-クロロフェニル基、p-クロロフェニル基、およびキシリル基等が挙げられる。以上の中でも、R11、R12、R21、またはR22として表されるアリール基は、フェニル基、m-トリル基、p-トリル基、m-アニシル基、およびp-アニシル基が好ましい。R11、R12、R21、またはR22がアリール基を表す場合、R11、R12、R21、およびR22は、それぞれ互いに同じであっても、異なっていてもよい。 In the general formula 1, when R 11 , R 12 , R 21 , or R 22 represents an aryl group, the aryl group is a monocyclic or condensed ring aryl group having 6 to 20 carbon atoms, and a substituent. You may have. Examples of aryl groups include phenyl, naphthyl, anthryl, phenanthryl, biphenylyl, m-tolyl, p-tolyl, m-anisyl, p-anisyl, m-chlorophenyl, p-chlorophenyl. Group, xylyl group and the like. Among these, the aryl group represented by R 11 , R 12 , R 21 , or R 22 is preferably a phenyl group, an m-tolyl group, a p-tolyl group, an m-anisyl group, or a p-anisyl group. When R 11 , R 12 , R 21 , or R 22 represents an aryl group, R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
 R11、R12、R21、またはR22として表されるアリール基の炭素数は、6~10であることが好ましい。また、アリール基は、無置換であることが好ましい。 The number of carbon atoms of the aryl group represented by R 11 , R 12 , R 21 , or R 22 is preferably 6-10. The aryl group is preferably unsubstituted.
 一般式1において、R11、R12、R21、またはR22がヘテロアリール基を表す場合、そのヘテロアリール基は、炭素数が3~20の単環または縮合環のヘテロアリール基であり、さらに置換基を有していてもよい。ヘテロアリール基の例としては、チオフェン環、フラン環、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、およびこれらのベンゾ縮環体(例えばベンゾチオフェン)およびジベンゾジ縮環体(例えばジベンゾチオフェン、カルバゾール)、3-メチルチオフェン環、および3,4-ジエチルチオフェン環が挙げられる。以上の中でも、R11、R12、R21、またはR22として表されるヘテロアリール基は、チオフェン環、フラン環、およびオキサゾール基が好ましい。
 R11、R12、R21、またはR22がヘテロアリール基を表す場合、R11、R12、R21、およびR22は、それぞれ互いに同じであっても、異なっていてもよい。
In General Formula 1, when R 11 , R 12 , R 21 , or R 22 represents a heteroaryl group, the heteroaryl group is a monocyclic or condensed ring heteroaryl group having 3 to 20 carbon atoms, Furthermore, you may have a substituent. Examples of heteroaryl groups include thiophene rings, furan rings, pyrrole rings, imidazole rings, oxazole rings, thiazole rings, and benzo condensed rings (for example, benzothiophene) and dibenzodi condensed rings (for example, dibenzothiophene, carbazole). , 3-methylthiophene ring, and 3,4-diethylthiophene ring. Among these, the heteroaryl group represented as R 11 , R 12 , R 21 , or R 22 is preferably a thiophene ring, a furan ring, or an oxazole group.
When R 11 , R 12 , R 21 , or R 22 represents a heteroaryl group, R 11 , R 12 , R 21 , and R 22 may be the same as or different from each other.
 R11、R12、R21、またはR22として表されるヘテロアリール基の炭素数は、3~10であることが好ましい。また、ヘテロアリール基は、無置換であることが好ましい。
 尚、本発明において「アリール基」とは、ベンゼン環系および非ベンゼン環系の芳香環から選ばれる少なくとも1種を有する芳香族化合物から芳香環上の水素原子1個を除いた基を表し、また「ヘテロアリール基」とは、アリール基における芳香環上の炭素原子の少なくとも1個がヘテロ原子で置き換わった基を表す。
The heteroaryl group represented by R 11 , R 12 , R 21 , or R 22 preferably has 3 to 10 carbon atoms. The heteroaryl group is preferably unsubstituted.
In the present invention, the “aryl group” represents a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic compound having at least one selected from a benzene ring system and a non-benzene ring system aromatic ring, The “heteroaryl group” represents a group in which at least one carbon atom on the aromatic ring in the aryl group is replaced with a heteroatom.
 一般式1におけるR11、R12、R21、及びR22は、以上の中でも、アルキル基が好ましく、炭素数1~4のアルキル基であることがより好ましい。R11、R12、R21、及びR22が、炭素数1~4アルキル基であると、特定銅錯体の分子量が小さくなり、加熱により分解し易い。さらに、特定銅錯体が後述する有機銅錯体溶液に調製され、有機銅錯体溶液の塗布膜が乾燥および加熱された場合にも、特定銅錯体が分解し易く、膜中に有機成分が残存し難くなる。 Among the above, R 11 , R 12 , R 21 , and R 22 in the general formula 1 are preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms. When R 11 , R 12 , R 21 , and R 22 are an alkyl group having 1 to 4 carbon atoms, the molecular weight of the specific copper complex becomes small and is easily decomposed by heating. Furthermore, even when the specific copper complex is prepared in an organic copper complex solution described later, and the coating film of the organic copper complex solution is dried and heated, the specific copper complex is easily decomposed and the organic component hardly remains in the film. Become.
 一般式1において、R31またはR32がアルキル基を表す場合、そのアルキル基は、炭素数1~20であり、さらに置換基を有していてもよい。R31またはR32として表されるアルキル基は、直鎖状でも、分岐状でも、環状でもよく、例えば、メチル基、エチル基、プロピル基、t-ブチル基、n-ヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、2-エチルヘキシル基、1,3-ジメチルブチル基、1-メチルブチル基、1,5-ジメチルヘキシル基、1,1,3,3-テトラメチルブチル基、ベンジル基、およびシクロヘキシル基等が挙げられる。
 R31またはR32がアルキル基を表す場合、R31およびR32は、それぞれ互いに同じであっても、異なっていてもよい。
In General Formula 1, when R 31 or R 32 represents an alkyl group, the alkyl group has 1 to 20 carbon atoms and may further have a substituent. The alkyl group represented by R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, a propyl group, a t-butyl group, an n-hexyl group, and an n-nonyl group. Group, n-decyl group, n-dodecyl group, 2-ethylhexyl group, 1,3-dimethylbutyl group, 1-methylbutyl group, 1,5-dimethylhexyl group, 1,1,3,3-tetramethylbutyl group , A benzyl group, a cyclohexyl group, and the like.
When R 31 or R 32 represents an alkyl group, R 31 and R 32 may be the same as or different from each other.
 R31またはR32として表されるアルキル基の炭素数は、1~12であることが好ましく、1~8であることがより好ましく、1~6がさらに好ましい。 The alkyl group represented by R 31 or R 32 preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and still more preferably 1 to 6 carbon atoms.
 一般式1において、R31またはR32がアルコキシ基を表す場合、そのアルコキシ基は、炭素数1~20であり、さらに置換基を有していてもよい。R31またはR32として表されるアルコキシ基は、直鎖状でも、分岐状でも、環状でもよく、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、1-メチルブトキシ基、およびシクロヘキシルオキシ基等が挙げられる。
 R31またはR32がアルコキシ基を表す場合、R31およびR32は、それぞれ互いに同じであっても、異なっていてもよい。
In General Formula 1, when R 31 or R 32 represents an alkoxy group, the alkoxy group has 1 to 20 carbon atoms and may further have a substituent. The alkoxy group represented by R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a 1-methylbutoxy group, And a cyclohexyloxy group.
When R 31 or R 32 represents an alkoxy group, R 31 and R 32 may be the same as or different from each other.
 R31またはR32として表されるアルコキシ基の炭素数は、1~12であることが好ましく、1~8であることがより好ましく、1~6がさらに好ましい。また、R31またはR32として表されるアルコキシ基は、直鎖状または分岐状であることが好ましい。 The number of carbon atoms of the alkoxy group represented by R 31 or R 32 is preferably 1 to 12, more preferably 1 to 8, and still more preferably 1 to 6. Further, the alkoxy group represented by R 31 or R 32 is preferably a straight-chain or branched.
 一般式1において、R31またはR32が不飽和結合を有する非芳香族炭化水素基を表す場合、その不飽和結合を有する非芳香族炭化水素基は、炭素数が2~20であり、さらに、置換基を有していてもよい。R31またはR32として表される不飽和結合を有する非芳香族炭化水素基は、直鎖状でも、分岐状でも、環状でもよく、例えば、ビニル基、アリル基、クロチル基、プロパルギル基、5-ヘキセニル基、4-メチル-1-ペンテニル基、メタリル基、1-シクロへキセニ1-シクロペンテニル基等が挙げられる。
 R31またはR32が不飽和結合を有する非芳香族炭化水素基を表す場合、R31およびR32は、それぞれ互いに同じであっても、異なっていてもよい。
In the general formula 1, when R 31 or R 32 represents a non-aromatic hydrocarbon group having an unsaturated bond, the non-aromatic hydrocarbon group having an unsaturated bond has 2 to 20 carbon atoms, , May have a substituent. The non-aromatic hydrocarbon group having an unsaturated bond represented as R 31 or R 32 may be linear, branched or cyclic, and examples thereof include a vinyl group, allyl group, crotyl group, propargyl group, 5 -Hexenyl group, 4-methyl-1-pentenyl group, methallyl group, 1-cyclohexenyl 1-cyclopentenyl group and the like.
When R 31 or R 32 represents a non-aromatic hydrocarbon group having an unsaturated bond, R 31 and R 32 may be the same as or different from each other.
 R31またはR32として表される不飽和結合を有する非芳香族炭化水素基の炭素数は、2~10であることが好ましく、2~6であることがより好ましく、2~4がさらに好ましい。また、R31またはR32として表される不飽和結合を有する非芳香族炭化水素基は、直鎖状または分岐状であることが好ましく、直鎖状であることがより好ましい。 The number of carbon atoms of the non-aromatic hydrocarbon group having an unsaturated bond represented by R 31 or R 32 is preferably 2 to 10, more preferably 2 to 6, and further preferably 2 to 4. . Further, the non-aromatic hydrocarbon group having an unsaturated bond represented as R 31 or R 32 is preferably linear or branched, and more preferably linear.
 一般式1において、R31またはR32がアリール基を表す場合、そのアリール基は、炭素数が6~20の単環または縮合環のアリール基であり、さらに置換基を有していてもよい。アリール基の例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、m-トリル基、p-トリル基、m-アニシル基、p-アニシル基、m-クロロフェニル基、p-クロロフェニル基、およびキシリル基等が挙げられる。以上の中でも、R31またはR32として表されるアリール基は、フェニル基、m-トリル基、p-トリル基、m-アニシル基、およびp-アニシル基が好ましい。R31またはR32がアリール基を表す場合、R31およびR32は、それぞれ互いに同じであっても、異なっていてもよい。 In General Formula 1, when R 31 or R 32 represents an aryl group, the aryl group is a monocyclic or condensed ring aryl group having 6 to 20 carbon atoms, and may further have a substituent. . Examples of aryl groups include phenyl, naphthyl, anthryl, phenanthryl, biphenylyl, m-tolyl, p-tolyl, m-anisyl, p-anisyl, m-chlorophenyl, p-chlorophenyl. Group, xylyl group and the like. Among these, the aryl group represented by R 31 or R 32 is preferably a phenyl group, an m-tolyl group, a p-tolyl group, an m-anisyl group, or a p-anisyl group. When R 31 or R 32 represents an aryl group, R 31 and R 32 may be the same as or different from each other.
 R31またはR32として表されるアリール基の炭素数は、6~10であることが好ましい。また、アリール基は、無置換であることが好ましい。 The number of carbon atoms of the aryl group represented by R 31 or R 32 is preferably 6-10. The aryl group is preferably unsubstituted.
 一般式1において、R31またはR32がヘテロアリール基を表す場合、そのヘテロアリール基は、炭素数が3~20の単環または縮合環のヘテロアリール基であり、さらに置換基を有していてもよい。ヘテロアリール基の例としては、チオフェン環、フラン環、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、およびこれらのベンゾ縮環体(例えばベンゾチオフェン)およびジベンゾジ縮環体(例えばジベンゾチオフェン、カルバゾール)、3-メチルチオフェン環、3,4-ジエチルチオフェン環が挙げられる。以上の中でも、R31またはR32として表されるヘテロアリール基は、チオフェン環、フラン環、およびオキサゾール基が好ましい。
 R31またはR32がヘテロアリール基を表す場合、R31およびR32は、それぞれ互いに同じであっても、異なっていてもよい。
In the general formula 1, when R 31 or R 32 represents a heteroaryl group, the heteroaryl group is a monocyclic or condensed heteroaryl group having 3 to 20 carbon atoms, and further has a substituent. May be. Examples of heteroaryl groups include thiophene rings, furan rings, pyrrole rings, imidazole rings, oxazole rings, thiazole rings, and benzo condensed rings (for example, benzothiophene) and dibenzodi condensed rings (for example, dibenzothiophene, carbazole). , 3-methylthiophene ring and 3,4-diethylthiophene ring. Among the above, the heteroaryl group represented as R 31 or R 32 is preferably a thiophene ring, a furan ring, or an oxazole group.
When R 31 or R 32 represents a heteroaryl group, R 31 and R 32 may be the same as or different from each other.
 R31またはR32として表されるヘテロアリール基の炭素数は、3~10であることが好ましい。また、ヘテロアリール基は、無置換であることが好ましい。 The heteroaryl group represented by R 31 or R 32 preferably has 3 to 10 carbon atoms. The heteroaryl group is preferably unsubstituted.
 一般式1におけるR11、R12、R21、及びR22がいずれもメチル基を表すとき、R31およびR32は、各々独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。すなわち、R11、R12、R21、及びR22がいずれもメチル基を表すとき、R31およびR32は共に水素原子で表されない。 When R 11 , R 12 , R 21 , and R 22 in General Formula 1 all represent a methyl group, R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. An aryl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group. That is, when R 11 , R 12 , R 21 , and R 22 all represent a methyl group, R 31 and R 32 are not each represented by a hydrogen atom.
 一般式1におけるR31及びR32は、以上の中でも、各々独立に、アルキル基、アルコキシ基、不飽和結合を有する非芳香族炭化水素基、アリール基、またはヘテロアリール基が好ましい。R31及びR32がアルキル基、不飽和結合を有する非芳香族炭化水素基、アリール基、ヘテロアリール基、またはアルコキシ基のいすれかであると、R31及びR32が共に水素原子を表す場合に比べ、特定銅錯体が完全に分解するのに要する温度を低くすることができる。これは、アルキル基、不飽和結合を有する非芳香族炭化水素基、アリール基、ヘテロアリール基、またはアルコキシ基が、水素原子に比べ立体的に大きいため、熱分解の中間生成物同士が結合しにくくなるためと考えられる。銅錯体を加熱すると、銅錯体の熱分解により生じる中間生成物が互いに結合し、熱分解しにくい高分子量の化合物が生成してしまうことがある。このような高分子量の化合物が生成してしまうと、高分子量の化合物を分解するためさらに加熱を要する場合がある。特定銅錯体が、立体的に大きな基を有することで、熱分解時に、高分子量の化合物の生成を妨げる効果が大きいと考えられる。 Among the above, R 31 and R 32 in General Formula 1 are each independently preferably an alkyl group, an alkoxy group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, or a heteroaryl group. When R 31 and R 32 are any of an alkyl group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, a heteroaryl group, or an alkoxy group, both R 31 and R 32 represent a hydrogen atom. Compared with the case, the temperature required for the specific copper complex to be completely decomposed can be lowered. This is because an alkyl group, a non-aromatic hydrocarbon group having an unsaturated bond, an aryl group, a heteroaryl group, or an alkoxy group is sterically larger than a hydrogen atom, so that intermediate products of thermal decomposition are bonded to each other. This is thought to be difficult. When a copper complex is heated, intermediate products generated by thermal decomposition of the copper complex may be bonded to each other, and a high molecular weight compound that is difficult to be thermally decomposed may be generated. If such a high molecular weight compound is produced, heating may be required to decompose the high molecular weight compound. The specific copper complex having a sterically large group is considered to have a great effect of preventing the formation of a high molecular weight compound during thermal decomposition.
 一般式1におけるR31及びR32は、アルキル基またはアルコキシ基がより好ましい。
 R31及び/又はR32がアルキル基であることで、特定銅錯体の熱分解温度をより低くすることができる。また、R31及び/又はR32がアルコキシ基であることで、特定銅錯体が分子構造内に酸素を含むこととなるため、銅酸化物が得られ易くなる。
R 31 and R 32 in the general formula 1 are more preferably an alkyl group or an alkoxy group.
By R 31 and / or R 32 is an alkyl group, it is possible to lower the thermal decomposition temperature of the particular copper complexes. In addition, by R 31 and / or R 32 is an alkoxy group, because certain copper complexes will contain oxygen in the molecular structure, tends copper oxide is obtained.
 一般式1におけるR11、R12、R21、R22、R31、及びR32で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。
 一般式1におけるR11、R12、R21、R22、R31、またはR32がさらに有し得る置換基の例としては、特に制限されず、水酸基、アルキル基(メチル基、エチル基、ヘキシル基、t-ブチル基、シクロヘキシル基等)、アリール基(フェニル基、m-トリル基、p-トリル基、m-アニシル基、p-アニシル基等)、アシル基(アセチル基、プロパノイル基、ヘキサノイル基、オクタノイル基、2-エチルヘキサノイル基、ベンゾイル基等)、ハロゲン原子(フッ素原子、塩素原子、ヨウ素原子等)、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、1-メチルブトキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(フェニルオキシ基、4-メチルフェニルオキシ基、3-メチルフェニルオキシ基、2-メチルフェニルオキシ基、4-クロロフェニルオキシ基、2-クロロフェニルオキシ基等)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、2-エチルヘキシルオキシカルボニル基、フェニルオキシエチルオキシカルボニル基、2,4-ジ-t-アミルフェニルオキシエチルカルボニル基等)、アシルオキシ基(アセチルオキシ基、プロパノイルオキシ基、ヘキサノイルオキシ基、2-エチルヘキサノイルオキシ基、ベンゾイルオキシ基、4-メトキシベンゾイルオキシ基、2-クロロベンゾイルオキシ基等)、アシルアミノ基(アセチルアミノ基、プロパノイルアミノ基、ヘキサノイルアミノ基、2-エチルヘキサノイルアミノ基、ベンゾイルアミノ基、4-メトシキベンゾイルアミノ基、N-メチルアセチルアミノ基、N-メチルベンゾイルアミノ基、2-オキソピロリジノ基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジエチルカルバモイル基、N,N-ジブチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、シアノ基、カルボキシ基、スルホ基、ヘテロ環基(2-チエニル基、4-ピリジル基、2-フリル基、2-ピリミジニル基、2-ベンゾチアゾリル基、1-イミダゾリル基、1-ピラゾリル基、およびベンゾトリアゾール-1-イル基等)等が挙げられる。これらの置換基はさらに別の置換基で置換されていてもよい。
 置換基としては、アルキル基またはアリール基が好ましく、メチル基、エチル基またはフェニル基がより好ましい。また、置換基がアルキル基の場合は、置換基の炭素数は、1~20であることが好ましい。
H in the C—H bond of each of the above groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 in General Formula 1 may be substituted with a monovalent substituent. .
Examples of the substituent that R 11 , R 12 , R 21 , R 22 , R 31 , or R 32 in General Formula 1 may further have are not particularly limited, and are a hydroxyl group, an alkyl group (methyl group, ethyl group, Hexyl group, t-butyl group, cyclohexyl group, etc.), aryl group (phenyl group, m-tolyl group, p-tolyl group, m-anisyl group, p-anisyl group etc.), acyl group (acetyl group, propanoyl group, Hexanoyl group, octanoyl group, 2-ethylhexanoyl group, benzoyl group, etc.), halogen atom (fluorine atom, chlorine atom, iodine atom, etc.), alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group) 1-methylbutoxy group, cyclohexyloxy group, etc.), aryloxy group (phenyloxy group, 4-methylphenyloxy group, -Methylphenyloxy group, 2-methylphenyloxy group, 4-chlorophenyloxy group, 2-chlorophenyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, 2-ethylhexyloxycarbonyl group, Phenyloxyethyloxycarbonyl group, 2,4-di-t-amylphenyloxyethylcarbonyl group, etc.), acyloxy group (acetyloxy group, propanoyloxy group, hexanoyloxy group, 2-ethylhexanoyloxy group, benzoyl) Oxy group, 4-methoxybenzoyloxy group, 2-chlorobenzoyloxy group, etc.), acylamino group (acetylamino group, propanoylamino group, hexanoylamino group, 2-ethylhexanoylamino group, benzoylamino) Group, 4-methoxybenzoylamino group, N-methylacetylamino group, N-methylbenzoylamino group, 2-oxopyrrolidino group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group) N, N-diethylcarbamoyl group, N, N-dibutylcarbamoyl group, morpholinocarbonyl group, piperidinocarbonyl group, etc.), cyano group, carboxy group, sulfo group, heterocyclic group (2-thienyl group, 4-pyridyl group) Group, 2-furyl group, 2-pyrimidinyl group, 2-benzothiazolyl group, 1-imidazolyl group, 1-pyrazolyl group, and benzotriazol-1-yl group). These substituents may be further substituted with another substituent.
As the substituent, an alkyl group or an aryl group is preferable, and a methyl group, an ethyl group, or a phenyl group is more preferable. In addition, when the substituent is an alkyl group, the substituent preferably has 1 to 20 carbon atoms.
 本発明の特定銅錯体は、化学構造が、一般式1で表されるものであれば、特に制限されず、種々の構造をとることができる。例えば、R11、R12、R21、R22、R31、及びR32がいずれも同じ基(例えば、アルキル基)である場合、各々の炭素数は同じであっても異なっていてもよい。また、R11が炭素数の多いアルキル基、R12がアリール基、R21がアルコキシ基等の異なる基の組み合わせでもよい。 The specific copper complex of the present invention is not particularly limited as long as the chemical structure is represented by the general formula 1, and can take various structures. For example, when R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 are all the same group (for example, an alkyl group), each carbon number may be the same or different. . Further, R 11 may be a combination of different groups such as an alkyl group having a large number of carbon atoms, R 12 is an aryl group, and R 21 is an alkoxy group.
 特定銅錯体の一例として、例示化合物1~例示化合物135を下記表1~8に示すが、本発明の特定銅錯体は、これらに限られるものではない。 As an example of the specific copper complex, Exemplified Compound 1 to Exemplified Compound 135 are shown in Tables 1 to 8 below, but the specific copper complex of the present invention is not limited to these.
 表1~2および表4~7中、Phはフェニル基を示す。また、表2に示す例示化合物20~39において、R11とR21は、互いに連結して環を形成し、R12とR22は、互いに連結して環を形成しており、表2の「R11-R21」には、R11-R21で表される2価の連結基を示し、「R12-R22」には、R12-R22で表される2価の連結基を示しす。従って、例えば、「R11-R21」が(CHであるとき、R11とR21とが互いに連結して形成する環は、5員環となる。 In Tables 1-2 and 4-7, Ph represents a phenyl group. In the exemplified compounds 20 to 39 shown in Table 2, R 11 and R 21 are connected to each other to form a ring, and R 12 and R 22 are connected to each other to form a ring. “R 11 -R 21 ” represents a divalent linking group represented by R 11 -R 21 , and “R 12 -R 22 ” represents a divalent linking group represented by R 12 -R 22. Indicates a group. Therefore, for example, when “R 11 -R 21 ” is (CH 2 ) 4 , the ring formed by connecting R 11 and R 21 to each other is a 5-membered ring.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 一般式1で表される本発明の特定銅錯体は、R11、R12、R21、R22、R31、またはR32が連結手となることにより、より分子量の大きい化合物を形成してもよい。例えば、水分子等を介して隣接する他の特定銅錯体と連結していてもよい。水分子等による水素結合は結合が弱く、特定銅錯体の分解温度以下で十分脱離するため、本発明の特徴を損ないにくい。 The specific copper complex of the present invention represented by the general formula 1 forms a compound having a higher molecular weight when R 11 , R 12 , R 21 , R 22 , R 31 , or R 32 serves as a linkage. Also good. For example, you may connect with the other specific copper complex adjacent through a water molecule etc. Hydrogen bonds by water molecules or the like are weakly bonded and sufficiently desorbed below the decomposition temperature of the specific copper complex, so that the characteristics of the present invention are not easily impaired.
有機銅錯体の他の形態
 本発明の有機銅錯体は、既述の特定銅錯体であるが、銅酸化物薄膜の形成には、次に示す一般式1から誘導される単量体を繰り返し単位とする多量体、及び/又は一般式1に示される骨格を一部に有するポリマーを用いてもよい。
 具体的には、一般式1におけるR11、R12等が連結した参考化合物1、参考化合物2等の化合物が挙げられる。
Other forms of organocopper complex The organocopper complex of the present invention is the specific copper complex described above. In forming the copper oxide thin film, a monomer derived from the following general formula 1 is used as a repeating unit. And / or a polymer partially having a skeleton represented by the general formula 1 may be used.
Specific examples include compounds such as Reference Compound 1 and Reference Compound 2 in which R 11 , R 12 and the like in General Formula 1 are linked.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 参考化合物1は、R11~R31がいずれもメチル基である特定銅錯体の三量体のごとき構造をしている。つまり、参考化合物1は、特定銅錯体のR11が、他の特定銅錯体のR12と連結基で結ばれ、特定銅錯体のR21が、他の特定銅錯体のR22と連結基で結ばれた構造をしている。参考化合物2では、参考化合物1とは少し異なる形態の三量体を繰り返し単位としたオリゴマーまたはポリマーとして表される。参考化合物2においてnは繰り返し単位数であり、1以上の整数を表す。 Reference compound 1 has a structure such as a trimer of a specific copper complex in which R 11 to R 31 are all methyl groups. That is, in the reference compound 1, R 11 of the specific copper complex is connected to R 12 of another specific copper complex by a linking group, and R 21 of the specific copper complex is connected to R 22 of another specific copper complex. It has a connected structure. Reference compound 2 is represented as an oligomer or polymer having a trimer having a slightly different form from that of reference compound 1 as a repeating unit. In Reference Compound 2, n is the number of repeating units and represents an integer of 1 or more.
 参考化合物1および参考化合物2では、一般式1のR11、R12、R21、およびR22を介して多量化しているが、R31またはR32を介して多量化してもよい。参考化合物1および参考化合物2において、連結基は、単結合であるが、単結合に限られず、2価以上の炭化水素基、アミド基、エステル基、カルボニル基、酸素原子、または窒素原子等であってもよい。 In Reference Compound 1 and Reference Compound 2, it is multimerized via R 11 , R 12 , R 21 , and R 22 of General Formula 1, but it may be multiplied via R 31 or R 32 . In Reference Compound 1 and Reference Compound 2, the linking group is a single bond, but is not limited to a single bond, and is a divalent or higher hydrocarbon group, amide group, ester group, carbonyl group, oxygen atom, nitrogen atom, or the like. There may be.
 次に、銅イオンに配位することで特定銅錯体を形成する化合物(配位子)について説明する。
 本発明の前記一般式1で表される特定銅錯体は、配位子として下記一般式2で表される1,3-ジカルボニル化合物を用いて形成される。
Next, the compound (ligand) which forms a specific copper complex by coordinating to a copper ion will be described.
The specific copper complex represented by the general formula 1 of the present invention is formed using a 1,3-dicarbonyl compound represented by the following general formula 2 as a ligand.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式2中、R13及びR23は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または炭素数3~20のヘテロアリール基を表す。R13とR23は、互いに連結して環を形成していてもよい。
 R33は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、または、ヒドロキシ基を表す。尚、R13、R23、およびR33で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R13及びR23がメチル基を表すとき、R33は、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。
In general formula 2, R 13 and R 23 may be the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms and a non-aromatic carbon atom having 2 to 20 carbon atoms having an unsaturated bond. A hydrogen group, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms is represented. R 13 and R 23 may be connected to each other to form a ring.
R 33 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, or an aryl having 6 to 20 carbon atoms. A group, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group; Note that H in the C—H bond of each of the above groups represented by R 13 , R 23 , and R 33 may be substituted with a monovalent substituent. However, when R 13 and R 23 represent a methyl group, R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group. .
 一般式2におけるR13、R23、およびR33において、R13の定義は一般式1のR11およびR12の定義と同じであり、R23の定義は一般式1のR21およびR22の定義と同じであり、R33の定義は一般式1のR31およびR32の定義と同じである。 In R 13 , R 23 , and R 33 in General Formula 2, the definition of R 13 is the same as the definitions of R 11 and R 12 in General Formula 1, and the definition of R 23 is R 21 and R 22 in General Formula 1. And the definition of R 33 is the same as the definitions of R 31 and R 32 in formula 1.
 一般式2におけるR13およびR23がいずれもメチル基を表すとき、R33は、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。すなわち、R13およびR23がいずれもメチル基を表すとき、R33は水素原子、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、および炭素数3~20のヘテロアリール基を表さない。 When R 13 and R 23 in General Formula 2 each represent a methyl group, R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or Represents a hydroxy group. That is, when R 13 and R 23 both represent a methyl group, R 33 represents a hydrogen atom, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, and a heteroaryl group having 3 to 20 carbon atoms. Does not represent.
 本発明の特定銅錯体における配位子として用いられる化合物は、化学構造が、一般式2で表されるものであれば、特に制限されず、種々の構造をとることができる。例えば、R13、R23、又はR33がいずれも同じ基(例えば、アルキル基)である場合、各々の基の炭素数は同じであっても異なっていてもよい。また、R13が炭素数の多いアルキル基、R23がアリール基、R33がアルコキシ基等の異なる基の組み合わせでもよい。 The compound used as a ligand in the specific copper complex of the present invention is not particularly limited as long as the chemical structure is represented by the general formula 2, and can take various structures. For example, when R 13 , R 23 , or R 33 are all the same group (for example, an alkyl group), the carbon number of each group may be the same or different. Further, R 13 may be a combination of different groups such as an alkyl group having a large number of carbon atoms, R 23 is an aryl group, and R 33 is an alkoxy group.
 一般式2で表される化合物の一例として、例示化合物L-1~L-56を下記表9~表12に示すが、本発明における上記化合物は、これらに限られるものではない。 Illustrative compounds L-1 to L-56 are shown in the following Tables 9 to 12 as examples of the compound represented by the general formula 2, but the above compounds in the present invention are not limited thereto.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 次に、特定銅錯体の合成方法について説明する。
 本発明の一般式1で表される特定銅錯体の合成は、一般式2で表される1,3-ジカルボニル化合物と第二銅塩とを混合することにより行う。
Next, a method for synthesizing the specific copper complex will be described.
The synthesis of the specific copper complex represented by the general formula 1 of the present invention is performed by mixing the 1,3-dicarbonyl compound represented by the general formula 2 and a cupric salt.
 第二銅塩の種類は特に制限されない。
 第二銅塩の例としては、銅と、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、次亜臭素酸、亜臭素酸、臭素酸、過臭素酸、次亜ヨウ素酸、亜ヨウ素酸、ヨウ素酸、過ヨウ素酸、ホウ酸、炭酸、オルト炭酸、カルボン酸、ケイ酸、亜硝酸、硝酸、亜リン酸、リン酸、ヒ酸、亜硫酸、硫酸、スルホン酸、スルフィン酸、クロム酸、または過マンガン酸などのオキソ酸との塩(すなわち、オキソ酸第二銅塩);ならびに塩化第二銅、臭化第二銅、およびヨウ化第二銅等のハロゲン化第二銅塩等が挙げられる。
 以上の中でも、塩化第二銅、臭化第二銅、ヨウ化第二銅、硝酸第二銅、硫酸第二銅、酢酸第二銅、および安息香酸第二銅が、入手の容易性、溶媒への溶解性、および、副生成物ができにくい点で好ましい。
The kind of cupric salt is not particularly limited.
Examples of cupric salts include copper and hypochlorous acid, chlorous acid, chloric acid, perchloric acid, hypobromous acid, bromous acid, bromic acid, perbromic acid, hypoiodous acid, hypochlorous acid, Iodic acid, iodic acid, periodic acid, boric acid, carbonic acid, orthocarbonic acid, carboxylic acid, silicic acid, nitric acid, nitric acid, phosphorous acid, phosphoric acid, arsenic acid, sulfurous acid, sulfuric acid, sulfonic acid, sulfinic acid, chromium Acids, or salts with oxo acids such as permanganic acid (ie cupric oxoacids); and cupric halide salts such as cupric chloride, cupric bromide, and cupric iodide Etc.
Among these, cupric chloride, cupric bromide, cupric iodide, cupric nitrate, cupric sulfate, cupric acetate, and cupric benzoate are readily available, solvents It is preferable in terms of solubility in water and difficulty in forming by-products.
 一般式2で表される1,3-ジカルボニル化合物と第二銅塩は、それぞれ溶媒に溶解して溶液とした後、混合することが好ましい。溶媒としては、1,3-ジカルボニル化合物および第二銅塩それぞれを溶解するものであれば特に制限されず、水、アルコール、または水混和性の非プロトン性有機溶剤等、任意の溶媒を用いることができる。一般式2で表される化合物の分解を抑制する観点から、中でも、水、または水混和性の非プロトン性有機溶剤であることが好ましい。
 溶媒としてアルコールを用いるときは、一般式2で表される化合物の分解を抑制する観点から、50℃を越えない比較的低温条件下で用いることが好ましい。
 また、溶媒には、一般式2で表される1,3-ジカルボニル化合物と第二銅塩との混合により生じる油溶性の不純物を除去するために、トルエンやキシレンなどの水非混和性の有機溶剤を共存させてもよい。
The 1,3-dicarbonyl compound represented by the general formula 2 and the cupric salt are preferably dissolved in a solvent to form a solution and then mixed. The solvent is not particularly limited as long as it dissolves the 1,3-dicarbonyl compound and the cupric salt, and any solvent such as water, alcohol, or a water-miscible aprotic organic solvent is used. be able to. From the viewpoint of suppressing the decomposition of the compound represented by the general formula 2, water or a water-miscible aprotic organic solvent is particularly preferable.
When using alcohol as a solvent, it is preferable to use it on the comparatively low-temperature conditions which do not exceed 50 degreeC from a viewpoint of suppressing decomposition | disassembly of the compound represented by General formula 2.
In addition, in order to remove oil-soluble impurities generated by mixing the 1,3-dicarbonyl compound represented by the general formula 2 and the cupric salt, the solvent is water-immiscible such as toluene or xylene. An organic solvent may coexist.
 また、一般式2で表される化合物と第二銅塩との反応で生じる酸を捕捉するために、混合反応系内に、塩基を共存させるか、または、第二銅塩との混合の前に予め、一般式2で表される化合物を塩にしておくことが好ましい。 Further, in order to capture the acid generated by the reaction of the compound represented by the general formula 2 and the cupric salt, a base is allowed to coexist in the mixed reaction system, or before mixing with the cupric salt. It is preferable to prepare a salt of the compound represented by Formula 2 in advance.
 混合反応系内に共存させる塩基の例としては、アルカリ金属水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)、アルカリ土類金属水酸化物(水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等)、塩基性酸化物(酸化マグネシウム、酸化カルシウム等)、および求核性の乏しい有機塩基(トリエチルアミン、1,8-diazabicyclo[5.4.0]undec-7-ene等)等が挙げられる。 Examples of bases that coexist in the mixed reaction system include alkali metal hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.), alkaline earth metal hydroxides (magnesium hydroxide, calcium hydroxide, water) Barium oxide, etc.), basic oxides (magnesium oxide, calcium oxide, etc.), and organic bases with poor nucleophilicity (triethylamine, 1,8-diazabiccyclo [5.4.0] undec-7-ene, etc.) Can be mentioned.
 一般式2で表される1,3-ジカルボニル化合物と第二銅塩との混合形態としては、水混和性の有機溶剤中で反応を行なった後に水を加える混合方法、または、一般式2で表される配位子を水混和性の有機溶剤に溶かした溶液に、第二銅塩の水溶液を加える混合方法が、水に溶けにくい銅錯体を析出させることができるので好ましい。混合反応温度に特に制限は無いが、0℃~50℃が好ましく、10℃~40℃であることがより好ましい。 The mixed form of the 1,3-dicarbonyl compound represented by the general formula 2 and the cupric salt may be a mixing method in which water is added after the reaction in a water-miscible organic solvent, or the general formula 2 A mixing method in which an aqueous solution of a cupric salt is added to a solution in which a ligand represented by formula (1) is dissolved in a water-miscible organic solvent is preferable because a copper complex that is hardly soluble in water can be precipitated. The mixing reaction temperature is not particularly limited, but is preferably 0 ° C. to 50 ° C., more preferably 10 ° C. to 40 ° C.
 一般式1中、R11およびR12、R21およびR22、並びに、R31およびR32の各組み合わせにおいて、少なくとも一組が異なる基の組み合わせである特定銅錯体を合成する場合は、次のようにして合成すればよい。
 すなわち、一般式2におけるR11、R21、及びR31の少なくとも1つが異なる2種の化合物を混合して、第二銅塩と反応させることにより、R11およびR12、R21およびR22、並びに、R31およびR32のうちの少なくとも一組が異なる基の組み合わせとなる特定銅錯体が得られる。
In the general formula 1, in each combination of R 11 and R 12 , R 21 and R 22 , and R 31 and R 32 , when synthesizing a specific copper complex in which at least one set is a combination of different groups, In this way, synthesis may be performed.
That is, R 11 and R 12 , R 21 and R 22 are prepared by mixing two compounds different in at least one of R 11 , R 21 and R 31 in the general formula 2 and reacting with a cupric salt. In addition, a specific copper complex in which at least one of R 31 and R 32 is a combination of different groups is obtained.
 本発明の特定銅錯体は、そのまま用いてもよいし、溶媒中に分散して、または溶解して用いてもよいし、他の固体物質と混合して用いてもよい。
 中でも、特定銅錯体は、溶媒に溶解して、銅酸化物薄膜を形成する用途に用いるのが好ましい。
The specific copper complex of the present invention may be used as it is, or may be used after being dispersed or dissolved in a solvent, or may be used by mixing with other solid substances.
Especially, it is preferable to use a specific copper complex for the use which melt | dissolves in a solvent and forms a copper oxide thin film.
<有機銅錯体溶液>
 本発明の有機銅錯体溶液は、既述の一般式1で表される有機銅錯体(特定銅錯体)と、溶媒とを含む。以下、本発明の有機銅錯体溶液を、特定溶液ともいう。
 特定銅錯体を溶媒に溶解して溶液とすることで、溶液を基材等に塗布して形成した塗布膜から、低温で容易に銅酸化物薄膜を形成することができる。また、特定銅錯体を溶媒に溶解して溶液とすることで、銅濃度に偏りがない銅酸化物薄膜を得ることができる。
 特定溶液は、特定銅錯体および溶媒のほかに、本発明の効果を損なわない限度において、さらに、特定銅錯体以外の有機銅錯体等の金属化合物のほか、界面活性剤、及び/又は酸化剤等の添加剤を含んでいてもよい。
<Organic copper complex solution>
The organic copper complex solution of the present invention contains the organic copper complex (specific copper complex) represented by the general formula 1 described above and a solvent. Hereinafter, the organocopper complex solution of the present invention is also referred to as a specific solution.
By dissolving the specific copper complex in a solvent to form a solution, a copper oxide thin film can be easily formed at a low temperature from a coating film formed by coating the solution on a substrate or the like. Moreover, the copper oxide thin film without a bias | inclination in copper concentration can be obtained by melt | dissolving a specific copper complex in a solvent to make a solution.
In addition to the specific copper complex and the solvent, the specific solution is a metal compound such as an organic copper complex other than the specific copper complex, a surfactant, and / or an oxidizing agent, as long as the effects of the present invention are not impaired. The additive may be included.
特定銅錯体
 特定銅錯体の詳細については、既述のとおりである。
 特定溶液は、特定銅錯体を1種のみを含んでいてもよいし、2種以上を含んでいてもよい。
 特定溶液が2種以上の特定銅錯体を含有すると、特定溶液を用いて形成される塗布膜の結晶性を低くすることができる。
 特定溶液中の特定銅錯体の濃度は、特に制限はないが、特定溶液を基材等に塗布して塗布膜を形成した際の膜厚を高め、特定溶液中での特定銅錯体の析出を抑えると共に、塗布膜の平坦性を向上する観点から、0.01mol/L~0.3mol/Lであることが好ましい。
Specific copper complex The details of the specific copper complex are as described above.
The specific solution may contain only one type of the specific copper complex, or may contain two or more types.
When the specific solution contains two or more types of specific copper complexes, the crystallinity of the coating film formed using the specific solution can be lowered.
The concentration of the specific copper complex in the specific solution is not particularly limited, but the film thickness is increased when the specific solution is applied to a substrate or the like to form a coating film, and the specific copper complex is precipitated in the specific solution. From the viewpoints of suppressing and improving the flatness of the coating film, 0.01 mol / L to 0.3 mol / L is preferable.
溶媒
 特定溶液は、溶媒の少なくとも1種を含む。
 溶媒は特定銅錯体を溶解可能な溶媒であれば、特に限定されず、無機溶媒であっても、有機溶媒であってもよい。
 無機溶媒の例としては、酢酸、塩酸、およびリン酸等の酸;水酸化ナトリウム水溶液、水酸化カリウム水溶液、および塩化ナトリウム水溶液等の無機塩の水溶液;ならびに水等が挙げられる。
 有機溶媒の例としては、アミド溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなど)、アルコール溶媒(tert-ブチルアルコール、イソプロパノール、エタノール、メタノール、2,2,3,3-テトラフルオロ-1-プロパノール、2-ジエチルアミノエタノール等)、ケトン溶媒(アセトン、N-メチルピロリドン、スルホラン、N,N-ジメチルイミダゾリジノンなど)、エーテル溶媒(テトラヒドロフランなど)、ニトリル溶媒(アセトニトリルなど)、およびその他上記以外のヘテロ原子含有溶媒等が挙げられる。
Solvent The specific solution contains at least one solvent.
The solvent is not particularly limited as long as it can dissolve the specific copper complex, and may be an inorganic solvent or an organic solvent.
Examples of inorganic solvents include acids such as acetic acid, hydrochloric acid, and phosphoric acid; aqueous solutions of inorganic salts such as aqueous sodium hydroxide, aqueous potassium hydroxide, and aqueous sodium chloride; and water.
Examples of organic solvents include amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), alcohol solvents (tert-butyl alcohol, isopropanol, ethanol, methanol, 2,2,3,3-tetrafluoro -1-propanol, 2-diethylaminoethanol, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.), ether solvents (eg tetrahydrofuran), nitrile solvents (eg acetonitrile), and Other examples include hetero atom-containing solvents other than those described above.
 特定溶液の溶媒は、以上の中でも、特定銅錯体の溶解度を高める観点から、有機溶媒であることが好ましく、非プロトン性極性溶媒であることがより好ましい。
 非プロトン性極性溶媒の例としては、既述の有機溶媒のうち、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ピリジン、テトラヒドロフラン、N-メチルピロリドン、スルホラン、アセトニトリル、およびN,N-ジメチルイミダゾリジノン等が挙げられる。
 特定溶液の溶媒は、特定銅錯体の溶解度をより高める観点から、これらの非プロトン性極性溶媒の中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ピリジン、及びテトラヒドロフランを好適に用いることができる。
Among the above, the solvent of the specific solution is preferably an organic solvent and more preferably an aprotic polar solvent from the viewpoint of increasing the solubility of the specific copper complex.
Examples of the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, pyridine, tetrahydrofuran, N-methylpyrrolidone, sulfolane, acetonitrile, and N, N— Examples thereof include dimethyl imidazolidinone.
Among these aprotic polar solvents, N, N-dimethylformamide, N, N-dimethylacetamide, pyridine, and tetrahydrofuran are preferably used as the solvent for the specific solution from the viewpoint of further increasing the solubility of the specific copper complex. Can do.
 また、特定溶液を塗布して銅酸化物薄膜を形成する際の乾燥工程時の負荷軽減の観点から、溶媒の沸点は80℃~200℃であることが好ましい。
 溶媒の沸点が、80℃以上であることで、特定溶液から得た塗布膜の乾燥速度が速くなりすぎず、膜とした際の平滑性を良好にすることができる。溶媒の沸点が、200℃以下であることで、塗布膜から溶媒が揮発しやすく、塗布膜中から除去し易くなる。
 例えば、アミド溶媒であるN,N-ジメチルアセトアミドは、特定銅錯体を、常温で0.2mol/L、沸点以下の加温条件で0.3mol/L、それぞれ溶解させることができ、且つ、沸点が165℃であるため、特定溶液の溶媒として好適に用いることができる。
 なお、溶媒は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
In addition, the boiling point of the solvent is preferably 80 ° C. to 200 ° C. from the viewpoint of reducing the load during the drying process when the specific solution is applied to form the copper oxide thin film.
When the boiling point of the solvent is 80 ° C. or higher, the drying speed of the coating film obtained from the specific solution does not become too fast, and the smoothness in the film can be improved. When the boiling point of the solvent is 200 ° C. or less, the solvent is likely to volatilize from the coating film and is easily removed from the coating film.
For example, N, N-dimethylacetamide, which is an amide solvent, can dissolve a specific copper complex at 0.2 mol / L at room temperature and 0.3 mol / L under heating conditions below the boiling point, and has a boiling point. Since it is 165 degreeC, it can use suitably as a solvent of a specific solution.
In addition, a solvent may use only 1 type and may mix and use 2 or more types.
金属化合物
 特定溶液には、本発明の効果を損なわない限度において、特定銅錯体以外の金属化合物(「他の金属化合物」ともいう)を含んでいてもよい。
 他の金属化合物は、特に制限されず、例えば、ストロンチウム化合物等が挙げられる。
 特定銅錯体と共に、例えば、ストロンチウム化合物を溶媒に溶解して特定溶液を得ることで、SrCuを含む銅酸化物薄膜を形成することができる。
Metal Compound The specific solution may contain a metal compound other than the specific copper complex (also referred to as “other metal compound”) as long as the effects of the present invention are not impaired.
Other metal compounds are not particularly limited, and examples include strontium compounds.
A copper oxide thin film containing SrCu 2 O 2 can be formed by, for example, dissolving a strontium compound in a solvent and obtaining a specific solution together with the specific copper complex.
<銅酸化物薄膜>
 本発明の銅酸化物薄膜は、本発明の有機銅錯体溶液(特定溶液)の塗布膜を乾燥および加熱処理することにより形成される。
 つまり、本発明の銅酸化物薄膜は、特定溶液を、例えば、基材上に塗布し、乾燥することで形成される特定溶液の塗布膜を、加熱処理(アニール処理)することで、基材上に形成される薄膜である。
<Copper oxide thin film>
The copper oxide thin film of this invention is formed by drying and heat-processing the coating film of the organocopper complex solution (specific solution) of this invention.
That is, the copper oxide thin film of the present invention is obtained by subjecting a coating solution of a specific solution formed by, for example, applying a specific solution on a base material and drying the substrate to a heat treatment (annealing treatment). It is a thin film formed on top.
 本発明の銅酸化物薄膜は、1価の銅酸化物薄膜であっても2価の銅酸化物薄膜であってもよい。また、本発明の銅酸化物薄膜は、1価の銅酸化物と2価の銅酸化物とを含む複合銅酸化物からなる薄膜であってもよい。
 本発明の銅酸化物薄膜を半導体として機能させる観点からは、銅酸化物薄膜は、1価の銅を少なくとも含むことが好ましい。
 p型半導体層である銅酸化物薄膜を低温で基板上に形成する観点においては、本発明の銅酸化物薄膜は、1価の銅酸化物からなる薄膜であることが好ましい。1価の銅酸化物の例としては、CuOおよびSrCu等が挙げられる。
The copper oxide thin film of the present invention may be a monovalent copper oxide thin film or a divalent copper oxide thin film. The copper oxide thin film of the present invention may be a thin film made of a composite copper oxide containing a monovalent copper oxide and a divalent copper oxide.
From the viewpoint of causing the copper oxide thin film of the present invention to function as a semiconductor, the copper oxide thin film preferably contains at least monovalent copper.
From the viewpoint of forming a copper oxide thin film that is a p-type semiconductor layer on a substrate at a low temperature, the copper oxide thin film of the present invention is preferably a thin film made of monovalent copper oxide. Examples of the monovalent copper oxide include Cu 2 O and SrCu 2 O 2 .
 また、銅酸化物薄膜は、銅酸化物薄膜に含まれる全銅中の1価の銅の含有量が、70原子%以上であることが好ましい。全銅中の1価の銅の含有量が、70原子%以上であることで、銅酸化物薄膜を半導体として用いた際の移動度を向上することができる。
 銅酸化物薄膜に含まれる全銅中の1価の銅の含有量は、90原子%以上であることがより好ましく、95原子%以上であることがさらに好ましい。
The copper oxide thin film preferably has a monovalent copper content of 70 atomic% or more in the total copper contained in the copper oxide thin film. The mobility at the time of using a copper oxide thin film as a semiconductor can be improved because content of monovalent copper in all copper is 70 atomic% or more.
The content of monovalent copper in the total copper contained in the copper oxide thin film is more preferably 90 atomic% or more, and further preferably 95 atomic% or more.
 銅酸化物薄膜の厚みは、特に制限されず、銅酸化物薄膜の目的の用途に適した厚みを選択することができる。例えば、銅酸化物薄膜をpn接合型太陽電池のp型半導体層として用いる場合には、銅酸化物薄膜の厚みは、0.01μm~20μmの範囲とすればよい。
 銅酸化物薄膜の厚みは、特定溶液の塗布膜を乾燥し、さらに特定溶液を塗布する等して、特定溶液の上塗りを重ねることで調整してもよい。
 本発明の銅酸化物薄膜は、例えば、次の製造方法により製造することができる。
The thickness of the copper oxide thin film is not particularly limited, and a thickness suitable for the intended use of the copper oxide thin film can be selected. For example, when a copper oxide thin film is used as a p-type semiconductor layer of a pn junction solar cell, the thickness of the copper oxide thin film may be in the range of 0.01 μm to 20 μm.
You may adjust the thickness of a copper oxide thin film by drying the coating film of a specific solution, and also apply | coating a specific solution, and overlaying a specific solution.
The copper oxide thin film of this invention can be manufactured with the following manufacturing method, for example.
<銅酸化物薄膜の製造方法>
 本発明の銅酸化物薄膜の製造方法は、既述の一般式1で表される構造を有する有機銅錯体および溶媒を含む有機銅錯体溶液を、基材上に塗布して、有機銅錯体溶液塗布膜を形成する有機銅錯体溶液塗布膜形成工程と、有機銅錯体溶液塗布膜を乾燥して有機銅錯体膜を得る乾燥工程と、有機銅錯体膜を、230℃以上300℃未満で加熱して、銅酸化物薄膜を形成する加熱処理工程と、を含む。
 銅酸化物薄膜の製造方法が上記構成であることで、低温で銅酸化物薄膜を製造することができ、基材の選択可能性を高くすることができる。
<Method for producing copper oxide thin film>
The manufacturing method of the copper oxide thin film of this invention apply | coats the organic copper complex solution containing the organic copper complex which has the structure represented by the general formula 1 and the solvent on the base material, and the organic copper complex solution. An organic copper complex solution coating film forming step of forming a coating film, a drying step of drying the organic copper complex solution coating film to obtain an organic copper complex film, and heating the organic copper complex film at 230 ° C. or more and less than 300 ° C. And a heat treatment step of forming a copper oxide thin film.
When the manufacturing method of a copper oxide thin film is the said structure, a copper oxide thin film can be manufactured at low temperature and the selectability of a base material can be made high.
 本発明の銅酸化物薄膜の製造方法は、本発明の効果を損なわない限度において、上記の各工程に加え、さらに、他の工程を含んでいてもよい。他の工程の例としては、加熱処理工程により得られた銅酸化物薄膜を冷却する冷却工程、および乾燥工程後に得られた有機銅錯体膜にエネルギー線(電子線、赤外線、紫外線、真空紫外線、原子線、X線、γ線、可視光線等)を照射するエネルギー線照射工程等が挙げられる。
 以下、本発明の銅酸化物薄膜の製造方法に含まれる各工程について詳細に説明しながら、本発明の銅酸化物薄膜について説明する。
The method for producing a copper oxide thin film of the present invention may further include other steps in addition to the above steps as long as the effects of the present invention are not impaired. Examples of other processes include cooling processes for cooling the copper oxide thin film obtained by the heat treatment process, and energy rays (electron beams, infrared rays, ultraviolet rays, vacuum ultraviolet rays, etc.) on the organic copper complex film obtained after the drying step. An energy beam irradiation step of irradiating an atomic beam, X-rays, γ-rays, visible light, etc.).
Hereinafter, the copper oxide thin film of the present invention will be described while explaining in detail each step included in the method for producing a copper oxide thin film of the present invention.
有機銅錯体溶液塗布膜形成工程
 有機銅錯体溶液塗布膜形成工程では、特定銅錯体および溶媒を含む有機銅錯体溶液(特定溶液)を、基材上に塗布して、有機銅錯体溶液塗布膜が形成される。
 特定溶液は、基材表面に塗布してもよいし、基材上に設けられた他の層上に塗布してもよい。
 基材上に設けられた他の層の例としては、基材と有機銅錯体溶液塗布膜との密着を向上させるための接着層、および透明導電層等が挙げられる。
 
Organic copper complex solution coating film forming step In the organic copper complex solution coating film forming step, an organic copper complex solution (specific solution) containing a specific copper complex and a solvent is applied onto a substrate, and the organic copper complex solution coating film is formed. It is formed.
The specific solution may be applied to the surface of the substrate, or may be applied to another layer provided on the substrate.
Examples of other layers provided on the substrate include an adhesive layer for improving the adhesion between the substrate and the organic copper complex solution coating film, and a transparent conductive layer.
基材
 基材の種類は、特に制限されず、目的の用途に適した形で用いることができる。基材の例としては、ガラス、シリコン、金属等の無機材料、樹脂、ならびに、無機材料および樹脂の複合材料等が挙げられる。
Substrate The type of the substrate is not particularly limited, and can be used in a form suitable for the intended use. Examples of the substrate include inorganic materials such as glass, silicon, and metal, resins, and composite materials of inorganic materials and resins.
 樹脂の例としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミドーオレフィン、セルロース、およびエピスルフィド化合物等の合成樹脂が挙げられる。 Examples of resins include polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin , Synthetic resins such as aromatic ethers, maleimide-olefins, cellulose, and episulfide compounds And the like.
 無機材料および樹脂の複合材料の例としては、樹脂と無機材料との複合プラスチック材料が挙げられる。すなわち、樹脂と酸化珪素粒子との複合プラスチック材料、樹脂と金属ナノ粒子との複合プラスチック材料、樹脂と無機酸化物ナノ粒子との複合プラスチック材料、樹脂と無機窒化物ナノ粒子との複合プラスチック材料、樹脂とカーボン繊維との複合プラスチック材料、樹脂とカーボンナノチューブとの複合プラスチック材料、樹脂とガラスフレークとの複合プラスチック材料、樹脂とガラスファイバーとの複合プラスチック材料、樹脂とガラスビーズとの複合プラスチック材料、樹脂と粘土鉱物との複合プラスチック材料、樹脂と雲母派生結晶構造を有する粒子との複合プラスチック材料、樹脂と薄いガラスとの間に少なくとも1回の接合界面を有する積層プラスチック材料、および無機層と有機層を交互に積層することで、少なくとも1回以上の接合界面を有するバリア性能を有する複合材料等が挙げられる。 An example of a composite material of an inorganic material and a resin is a composite plastic material of a resin and an inorganic material. That is, composite plastic material of resin and silicon oxide particles, composite plastic material of resin and metal nanoparticles, composite plastic material of resin and inorganic oxide nanoparticles, composite plastic material of resin and inorganic nitride nanoparticles, Composite plastic material of resin and carbon fiber, composite plastic material of resin and carbon nanotube, composite plastic material of resin and glass flake, composite plastic material of resin and glass fiber, composite plastic material of resin and glass beads, Composite plastic material of resin and clay mineral, composite plastic material of resin and particles having mica-derived crystal structure, laminated plastic material having at least one bonding interface between resin and thin glass, and inorganic layer and organic By laminating layers alternately, at least 1 Composite material or the like having a barrier property having more bonding interface.
 以上の中でも、基材は、可撓性を有する材質であることが好ましい。可撓性を有する基材を用いて銅酸化物薄膜を成膜することで、曲げられる銅酸化物薄膜を製造したり、落としても割れ難い銅酸化物薄膜を製造することができる。
 中でも、軽量である点、可撓性を有する点から、基材としては、樹脂、または樹脂と樹脂以外の材料とを用いて得られる複合基材が好ましい。複合基材としては、例えば、金属板に樹脂板を張り合わせた積層基材が挙げられる。
Among the above, the base material is preferably a flexible material. By forming a copper oxide thin film using a flexible substrate, it is possible to produce a copper oxide thin film that can be bent or a copper oxide thin film that is difficult to break even if dropped.
Among these, from the viewpoint of light weight and flexibility, the base material is preferably a resin or a composite base material obtained using a resin and a material other than resin. As a composite base material, the laminated base material which bonded the resin plate to the metal plate is mentioned, for example.
 基材の厚みに特に制限はないが、50μm~1000μmが好ましく、50μm~500μmであることがより好ましい。基材の厚みが50μm以上であると、基材自体の平坦性が向上し、基材の厚みが1000μm以下であると、基材自体の可撓性が向上し、後述する薄膜半導体デバイスをフレキシブル半導体デバイスとして使用することがより容易となる。さらに500μm以下であるとさらに可撓性が向上するためより好ましい。 The thickness of the substrate is not particularly limited, but is preferably 50 μm to 1000 μm, and more preferably 50 μm to 500 μm. When the thickness of the base material is 50 μm or more, the flatness of the base material itself is improved, and when the thickness of the base material is 1000 μm or less, the flexibility of the base material itself is improved and the thin film semiconductor device described later is flexible. It becomes easier to use as a semiconductor device. Further, the thickness is more preferably 500 μm or less because the flexibility is further improved.
 特定溶液を基材上に塗布する手法としては、特に限定はなく、例えば、スピンコート法、ディップ法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、凹版印刷法、またはスプレーコート法等を用いることができる。
 特に、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法は、基材上の任意の位置に塗布膜を形成することができ、且つ、成膜後のパターンニング工程が不要なことから、プロセスコストを低減することができる。また、塗布膜を除去することなくパターン形成をすることができるため、環境負荷も低減することできる。
The method for applying the specific solution on the substrate is not particularly limited. For example, the spin coating method, the dip method, the ink jet method, the dispenser method, the screen printing method, the relief printing method, the intaglio printing method, the spray coating method, etc. Can be used.
In particular, the inkjet method, the dispenser method, the screen printing method, the relief printing method, and the intaglio printing method can form a coating film at an arbitrary position on the substrate, and a patterning step after the film formation is unnecessary. Therefore, the process cost can be reduced. Further, since the pattern can be formed without removing the coating film, the environmental load can be reduced.
 有機銅錯体溶液塗布膜の厚みは、特定溶液中の特定銅錯体の濃度や、特定溶液の塗布条件によって任意に変更することができる。
 より薄い有機銅錯体溶液塗布膜を形成する場合には、例えば、特定溶液中の特定銅錯体の濃度を低くすればよい。また、特定溶液をスピンコート法で塗布する場合には、特定溶液を基材上に塗布する際の基材回転数を高くすることによって、薄い有機銅錯体溶液塗布膜を得ることができる。
 より厚い有機銅錯体溶液塗布膜を形成する場合には、例えば、特定溶液中の特定銅錯体の濃度を高くすればよい。また、特定溶液をスピンコート法で塗布する場合には、特定溶液を基材上に塗布する際の基材回転数を低くすることによって、厚い有機銅錯体溶液塗布膜を得ることができる。
The thickness of the organic copper complex solution coating film can be arbitrarily changed depending on the concentration of the specific copper complex in the specific solution and the application conditions of the specific solution.
When forming a thinner organic copper complex solution coating film, for example, the concentration of the specific copper complex in the specific solution may be lowered. Moreover, when apply | coating a specific solution with a spin coat method, a thin organic copper complex solution coating film can be obtained by making the base-material rotation speed at the time of apply | coating a specific solution on a base material high.
When forming a thicker organic copper complex solution coating film, for example, the concentration of the specific copper complex in the specific solution may be increased. Moreover, when apply | coating a specific solution with a spin coat method, a thick organic copper complex solution coating film can be obtained by making the base-material rotation speed at the time of apply | coating a specific solution on a base material low.
乾燥工程
 乾燥工程では、有機銅錯体溶液塗布膜を乾燥して有機銅錯体膜が得られる。
 すなわち、乾燥工程は、有機銅錯体溶液塗布膜中に含まれる溶媒を揮発させる工程である。
 なお、乾燥工程後に得られる有機銅錯体膜は、加熱により銅酸化物薄膜が得られる前駆体であるため、乾燥工程後に得られる有機銅錯体膜を前駆体膜ともいう。
Drying step In the drying step, the organic copper complex solution coating film is dried to obtain an organic copper complex film.
That is, the drying step is a step of volatilizing the solvent contained in the organic copper complex solution coating film.
In addition, since the organic copper complex film | membrane obtained after a drying process is a precursor from which a copper oxide thin film is obtained by heating, the organic copper complex film | membrane obtained after a drying process is also called precursor film | membrane.
 有機銅錯体溶液塗布膜中に含まれる溶媒を揮発させるための手法や乾燥条件は、特定溶液に含まれる溶媒を塗布膜から除去可能な手法または条件であれば、特に制限されない。例えば、塗布膜を加熱したり、塗布膜を減圧環境下に置いたり、塗布膜を減圧環境下に置きつつ加熱すること等が挙げられる。
 基材として、熱に弱い樹脂基材を用いる場合は、塗布膜の加熱温度は、樹脂のガラス転移温度よりも低い温度であることが好ましい。
 また、乾燥工程後の有機銅錯体膜中の溶媒残存量は、特に制限はないが、加熱処理工程後の膜密度を高くする観点から、乾燥工程後に得られる有機銅錯体膜の全質量に対して、溶媒の全質量が50質量%以下となることが好ましい。
The method for volatilizing the solvent contained in the organic copper complex solution coating film and the drying conditions are not particularly limited as long as it is a technique or a condition capable of removing the solvent contained in the specific solution from the coating film. For example, the coating film is heated, the coating film is placed under a reduced pressure environment, or the coating film is heated while placed under a reduced pressure environment.
When using a heat resistant resin substrate as the substrate, the heating temperature of the coating film is preferably lower than the glass transition temperature of the resin.
In addition, the residual amount of the solvent in the organic copper complex film after the drying step is not particularly limited, but from the viewpoint of increasing the film density after the heat treatment step, the total mass of the organic copper complex film obtained after the drying step is The total mass of the solvent is preferably 50% by mass or less.
加熱処理工程
 加熱処理工程では、有機銅錯体膜を、230℃以上300℃未満で加熱して(アニール処理)、銅酸化物薄膜が形成される。
 有機銅錯体膜の加熱処理(アニール処理)は、有機銅錯体膜を230℃以上300℃未満で加熱することにより行う。加熱処理の温度が230℃以上であることで、特定銅錯体の熱分解が十分に進み、緻密な銅酸化物薄膜を得ることができる。また、加熱処理の温度が300℃未満であることで、有機銅錯体膜の加熱により銅酸化物薄膜を得る際に用いる基材などの銅酸化物薄膜の周辺部材の選択性が向上する。
Heat treatment step In the heat treatment step, the organic copper complex film is heated at 230 ° C. or higher and lower than 300 ° C. (annealing treatment) to form a copper oxide thin film.
The heat treatment (annealing) of the organic copper complex film is performed by heating the organic copper complex film at 230 ° C. or higher and lower than 300 ° C. When the temperature of the heat treatment is 230 ° C. or higher, the thermal decomposition of the specific copper complex proceeds sufficiently, and a dense copper oxide thin film can be obtained. Moreover, the selectivity of the peripheral member of copper oxide thin films, such as a base material used when obtaining the copper oxide thin film by heating the organic copper complex film, is improved by the temperature of the heat treatment being less than 300 ° C.
 加熱処理時間は、用いる基材の種類、及び/又は有機銅錯体膜の膜厚等により異なるが、例えば、1分~3時間とすればよい。
 加熱処理の方法は、特に限定はなく、例えば、電気炉による加熱、赤外線ランプ加熱、およびホットプレートによる加熱等が挙げられる。また、ランプ加熱を用いた高速熱処理装置(RTA装置;Rapid Thermal Annealing装置)等を用いることで、短時間で加熱処理を完了することができる。
The heat treatment time varies depending on the type of base material used and / or the thickness of the organic copper complex film, but may be, for example, 1 minute to 3 hours.
The method for the heat treatment is not particularly limited, and examples thereof include heating with an electric furnace, infrared lamp heating, and heating with a hot plate. In addition, the heat treatment can be completed in a short time by using a rapid heat treatment apparatus (RTA apparatus; Rapid Thermal Annealing apparatus) using lamp heating.
 また、加熱処理工程は、酸素を含む雰囲気で行われることが好ましい。有機銅錯体膜を、酸素を含む雰囲気下で加熱処理することで、銅酸化物薄膜が得られ易くなる。
 特に、1価の銅酸化物薄膜を得るという観点から、酸素を含む雰囲気の酸素濃度は、0.5体積%~50体積%であることがより好ましい。「酸素を含む雰囲気の酸素濃度」は、加熱処理を加熱装置で行う場合、加熱装置の加熱容器(炉)内の酸素濃度である。
 例えば、有機銅錯体膜が形成された基材を含む加熱容器内が、酸素(O)と不活性ガスであるアルゴン(Ar)との混合ガスで満たされている場合、「酸素を含む雰囲気の酸素濃度」は、100×O/(Ar+O)〔体積%〕として算出される。
 酸素を含む雰囲気の酸素濃度が高いとCuOが得られ易くなる。酸素濃度は、0.5体積%~10体積%であることがより好ましい。
The heat treatment step is preferably performed in an atmosphere containing oxygen. By heat-treating the organic copper complex film in an atmosphere containing oxygen, a copper oxide thin film can be easily obtained.
In particular, from the viewpoint of obtaining a monovalent copper oxide thin film, the oxygen concentration in the atmosphere containing oxygen is more preferably 0.5 volume% to 50 volume%. The “oxygen concentration in an atmosphere containing oxygen” is the oxygen concentration in the heating container (furnace) of the heating device when the heat treatment is performed by the heating device.
For example, when the inside of the heating container including the base material on which the organic copper complex film is formed is filled with a mixed gas of oxygen (O 2 ) and inert gas argon (Ar), “atmosphere containing oxygen” Is calculated as 100 × O 2 / (Ar + O 2 ) [volume%].
When the oxygen concentration in the atmosphere containing oxygen is high, Cu 2 O is easily obtained. The oxygen concentration is more preferably 0.5% to 10% by volume.
 上記より好ましい酸素濃度の範囲(0.5体積%~50体積%)で、有機銅錯体膜を加熱処理することによって、基材上に、CuO等の1価の銅を含む銅酸化物薄膜を得ることができる。 A copper oxide containing monovalent copper such as Cu 2 O on the base material by heat-treating the organocopper complex film in a more preferable oxygen concentration range (0.5 volume% to 50 volume%). A thin film can be obtained.
 なお、既述の各工程は、繰り返し行ってもよい。
 例えば、特定溶液を基材上に塗布する有機銅錯体溶液塗布膜形成工程と、塗布膜を乾燥する乾燥工程と、を繰り返す(乾燥した塗布膜上に再び特定溶液を塗布し、乾燥する)ことにより、有機銅錯体膜の厚みを調整することができる。
In addition, you may repeat each process mentioned above repeatedly.
For example, repeating an organic copper complex solution coating film forming process for coating a specific solution on a substrate and a drying process for drying the coating film (coating the specific solution again on the dried coating film and drying). Thus, the thickness of the organic copper complex film can be adjusted.
他の工程
 本発明の銅酸化物薄膜の製造方法は、有機銅錯体溶液塗布膜形成工程、乾燥工程、及び加熱処理工程のほかに、更に、冷却工程、及び/又はエネルギー線照射工程等の他の工程を有していてもよい。
Other Steps The manufacturing method of the copper oxide thin film of the present invention includes, in addition to the organic copper complex solution coating film forming step, the drying step, and the heat treatment step, in addition to the cooling step and / or the energy ray irradiation step. You may have the process of.
冷却工程
 冷却工程では、加熱処理工程により得られた銅酸化物薄膜を冷却する。
 銅酸化物薄膜を冷却することで、スループットが高まり、生産性が向上することができる。
 銅酸化物薄膜の冷却方法は特に制限されない。例えば、銅酸化物薄膜を空冷する方法、および銅酸化物薄膜が形成された基材を室温(例えば、25℃)の金属板上に接触させる方法等が挙げられる。
Cooling step In the cooling step, the copper oxide thin film obtained by the heat treatment step is cooled.
By cooling the copper oxide thin film, throughput can be increased and productivity can be improved.
The method for cooling the copper oxide thin film is not particularly limited. For example, the method of air-cooling a copper oxide thin film, the method of making the base material with which the copper oxide thin film was formed contact the metal plate of room temperature (for example, 25 degreeC), etc. are mentioned.
エネルギー線照射工程
 エネルギー線照射工程では、乾燥工程後に得られた有機銅錯体膜にエネルギー線(電子線、赤外線、紫外線、真空紫外線、原子線、X線、γ線、可視光線等)を照射する。
 有機銅錯体膜にエネルギー線を照射することで、膜密度が高い緻密な膜を得ることができる。
Energy ray irradiation step In the energy ray irradiation step, the organic copper complex film obtained after the drying step is irradiated with energy rays (electron rays, infrared rays, ultraviolet rays, vacuum ultraviolet rays, atomic rays, X rays, γ rays, visible rays, etc.). .
A dense film having a high film density can be obtained by irradiating the organic copper complex film with energy rays.
 以上説明した各工程を経ることによって、基材上に銅酸化物薄膜が製造される。
 特に1価の銅を含む銅酸化物薄膜、例えば、CuO薄膜は、p型半導体として機能するため、基材上に成膜されたCuO薄膜は、種々の薄膜半導体デバイスに好適に用いることができる。
By passing through each process demonstrated above, a copper oxide thin film is manufactured on a base material.
In particular, since a copper oxide thin film containing monovalent copper, for example, a Cu 2 O thin film functions as a p-type semiconductor, a Cu 2 O thin film formed on a substrate is suitable for various thin film semiconductor devices. Can be used.
 また、還元的雰囲気下において銅酸化物薄膜を形成した場合は、銅酸化物薄膜を構成する全原子に対する銅原子の含有量が、70原子%以上であることが好ましい。銅原子の含有量が、70原子%以上であることで、銅酸化物薄膜を導体として用いた際の移動度を向上することができる。
 銅酸化物薄膜に含まれる全原子に対する銅原子の含有量は、90原子%以上であることがより好ましく、95原子%以上であることがさらに好ましい。
In addition, when the copper oxide thin film is formed in a reducing atmosphere, the content of copper atoms with respect to all atoms constituting the copper oxide thin film is preferably 70 atomic% or more. When the copper atom content is 70 atom% or more, the mobility when the copper oxide thin film is used as a conductor can be improved.
The content of copper atoms with respect to all atoms contained in the copper oxide thin film is more preferably 90 atomic% or more, and further preferably 95 atomic% or more.
<薄膜半導体デバイス>
 本発明の薄膜半導体は、基材と、基材上に位置し、銅酸化物薄膜からなるp型半導体層とを有することで、半導体デバイスとすることが出来る。
 すなわち、本発明の薄膜半導体デバイスは、基材と、本発明の銅酸化物薄膜または本発明の銅酸化物薄膜の製造方法により製造された銅酸化物薄膜とを備える。
<Thin film semiconductor device>
The thin film semiconductor of this invention can be set as a semiconductor device by having a base material and the p-type semiconductor layer which is located on a base material and consists of a copper oxide thin film.
That is, the thin film semiconductor device of the present invention includes a base material and a copper oxide thin film manufactured by the method of manufacturing the copper oxide thin film of the present invention or the copper oxide thin film of the present invention.
 本発明の薄膜半導体は、さらに可撓性を有する基材を備え、p型半導体層は、基材上に位置する構成とすることができる。可撓性を有する基材上にp型半導体層を有することで、曲げられ、落としても壊れ難い薄膜半導体デバイスとすることができる。また、可撓性の基材を用いることで、薄膜半導体デバイスが軽量となり、且つ、薄膜半導体デバイスを巻いた形態で持ち運びが出来るため、例えばモバイル用の電源として好適に利用することができる。さらには、軽量であるため、建物の屋根に設置する際の、建物への負担が軽減される。 The thin film semiconductor of the present invention may further include a flexible base material, and the p-type semiconductor layer may be positioned on the base material. By having a p-type semiconductor layer on a base material having flexibility, a thin film semiconductor device that is bent and hardly broken even when dropped can be obtained. In addition, by using a flexible base material, the thin film semiconductor device can be reduced in weight and can be carried in a form in which the thin film semiconductor device is wound. Therefore, it can be suitably used as a power source for mobile devices, for example. Furthermore, since it is lightweight, the burden on a building at the time of installing on the roof of a building is reduced.
 なお、薄膜半導体デバイスが備え得る基材の例は、本発明の銅酸化物薄膜の製造方法で用いる基材の例と同じであり、好ましい態様も同様である。
 また、薄膜半導体デバイスが基材を備える場合、p型半導体層は、基材上に位置すればよく、p型半導体層と基材との間に、他の層を有していてもよい。他の層としては、例えば、p型半導体層と基材との密着性を高める接着層等、種々の機能性層が挙げられる。
In addition, the example of the base material which a thin film semiconductor device can be equipped with is the same as the example of the base material used with the manufacturing method of the copper oxide thin film of this invention, and its preferable aspect is also the same.
Moreover, when a thin film semiconductor device is equipped with a base material, a p-type semiconductor layer should just be located on a base material, and may have another layer between a p-type semiconductor layer and a base material. Examples of the other layers include various functional layers such as an adhesive layer that enhances the adhesion between the p-type semiconductor layer and the substrate.
 銅酸化物薄膜を用いた薄膜半導体デバイスは、種々の用途に適用することができ、例えば、太陽電池、発光ダイオード、電界効果トランジスタ、および熱電変換素子等に適用が可能である。特に、CuO薄膜を用いた薄膜半導体デバイスは、バンドギャップが2.1eV程度で、可視光領域の光を吸収し、キャリアを生成することから、太陽電池の光電変換材料として好適に用いることができる。 A thin film semiconductor device using a copper oxide thin film can be applied to various applications, for example, a solar cell, a light emitting diode, a field effect transistor, a thermoelectric conversion element, and the like. In particular, a thin film semiconductor device using a Cu 2 O thin film has a band gap of about 2.1 eV, absorbs light in the visible light region, and generates carriers. Therefore, the thin film semiconductor device is preferably used as a photoelectric conversion material for a solar cell. Can do.
<太陽電池>
 本発明の銅酸化物薄膜、または、本発明の銅酸化物薄膜の製造方法により製造された銅酸化物薄膜を備えた薄膜半導体デバイスは、太陽電池として好適に用いることができる。例えば、本発明の銅酸化物薄膜を含むp型半導体層と、n型半導体層とを備えるpn接合を有する薄膜半導体デバイスを用いて、pn接合型太陽電池としてもよい。
 pn接合型太陽電池のより具体的な実施形態としては、例えば、透明基板上に形成された透明導電膜上にp型半導体層およびn型半導体層が隣接して設けられ、p型半導体層およびn型半導体層の上に金属電極を形成する形態が考えられる。
<Solar cell>
The thin film semiconductor device provided with the copper oxide thin film of this invention or the copper oxide thin film manufactured by the manufacturing method of the copper oxide thin film of this invention can be used suitably as a solar cell. For example, it is good also as a pn junction type solar cell using the thin film semiconductor device which has a pn junction provided with the p-type semiconductor layer containing the copper oxide thin film of this invention, and an n-type semiconductor layer.
As a more specific embodiment of the pn junction solar cell, for example, a p-type semiconductor layer and an n-type semiconductor layer are provided adjacent to each other on a transparent conductive film formed on a transparent substrate. A form in which a metal electrode is formed on the n-type semiconductor layer is conceivable.
 pn接合型太陽電池の一例を、図1を用いて説明する。
 図1に、本発明の実施形態に係るpn接合型太陽電池100の模式断面図を示す。pn接合型太陽電池100は、透明基板10と、透明基板10上に設けられた透明導電膜12と、透明導電膜12上に本発明の銅酸化物薄膜を含むp型半導体層14と、p型半導体層14上に設けられたn型半導体層16と、n型半導体層16上に設けられた金属電極18とを含む。
 p型半導体層14とn型半導体層16とが隣接して積層されることで、pn接合型の太陽電池とすることができる。
An example of a pn junction solar cell will be described with reference to FIG.
FIG. 1 shows a schematic cross-sectional view of a pn junction solar cell 100 according to an embodiment of the present invention. The pn junction solar cell 100 includes a transparent substrate 10, a transparent conductive film 12 provided on the transparent substrate 10, a p-type semiconductor layer 14 including the copper oxide thin film of the present invention on the transparent conductive film 12, and p An n-type semiconductor layer 16 provided on the n-type semiconductor layer 14 and a metal electrode 18 provided on the n-type semiconductor layer 16 are included.
When the p-type semiconductor layer 14 and the n-type semiconductor layer 16 are laminated adjacent to each other, a pn junction solar cell can be obtained.
 透明基板10としては、透明であれば、本発明の銅酸化物薄膜の製造方法で用いる基材の例として挙げた材料と同じ材料を用いることができる。透明基板としては、例えば、ガラス基板、および樹脂基板等が挙げられる。本発明では、特定銅錯体を含む特定溶液を用いることで、低温(230℃以上、300℃未満)での銅酸化物薄膜形成が可能なことから、耐熱性の低い樹脂基板を、透明基板として用いることができる。
 耐熱性の低い樹脂基板の例としては、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリアミド、ポリイミド、ポリアミドイミド、およびポリエーテルイミド等が挙げられる。
If it is transparent as the transparent substrate 10, the same material as the material mentioned as an example of the base material used with the manufacturing method of the copper oxide thin film of this invention can be used. Examples of the transparent substrate include a glass substrate and a resin substrate. In the present invention, since a copper oxide thin film can be formed at a low temperature (230 ° C. or more and less than 300 ° C.) by using a specific solution containing a specific copper complex, a resin substrate having low heat resistance is used as a transparent substrate. Can be used.
Examples of the resin substrate having low heat resistance include polysulfone, polyethersulfone, polyarylate, polyamide, polyimide, polyamideimide, and polyetherimide.
 透明導電膜12の例としては、In:Sn(ITO)、SnO:Sb、SnO:F、ZnO:Al、またはZnO:F、CdSnO等により構成される膜が挙げられる。 Examples of the transparent conductive film 12 include a film made of In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F, ZnO: Al, ZnO: F, CdSnO 4 , or the like.
 p型半導体層14としては、既述のように、本発明の銅酸化物薄膜(例えば、CuO薄膜)が用いられる。
 n型半導体層16としては金属酸化物が好ましい。金属酸化物としては、具体的には、Ti、Zn、Sn、およびInの少なくとも一つを含む金属の酸化物が挙げられ、より具体的には、TiO、ZnO、SnO、およびIGZO等が挙げられる。n型半導体層は、製造コストの観点から、p型半導体層と同様に、湿式法(液相法ともいう)で形成されることが好ましい。
 金属電極18としては、例えば、Pt、Al、Cu、Ti、またはNi等を使用することができる。
As described above, the copper oxide thin film (for example, Cu 2 O thin film) of the present invention is used as the p-type semiconductor layer 14.
The n-type semiconductor layer 16 is preferably a metal oxide. Specific examples of the metal oxide include metal oxides including at least one of Ti, Zn, Sn, and In, and more specifically, TiO 2 , ZnO, SnO 2 , IGZO, and the like. Is mentioned. The n-type semiconductor layer is preferably formed by a wet method (also referred to as a liquid phase method) in the same manner as the p-type semiconductor layer from the viewpoint of manufacturing cost.
As the metal electrode 18, for example, Pt, Al, Cu, Ti, Ni, or the like can be used.
 以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。 Examples will be described below, but the present invention is not limited to these examples.
実施例1
特定銅錯体の合成
 例示化合物1は、合成例A~合成例Dに基づいて各々合成した(合成した例示化合物1をそれぞれ銅錯体1-1~銅錯体1-4とする)。
 例示化合物2は、合成例Eおよび合成例Fに基づいて各々合成した(合成した例示化合物2をそれぞれ銅錯体2-1および銅錯体2-2とする)。
 例示化合物5は、合成例Gおよび合成例Hに基づいて各々合成した(合成した例示化合物5をそれぞれ銅錯体5-1および銅錯体5-2とする)。
 例示化合物107は、合成例Kおよび合成例Lに基づいて各々合成した(合成した例示化合物107をそれぞれ銅錯体107-1および銅錯体107-2とする)。
 例示化合物108は、合成例Mおよび合成例Nに基づいて各々合成した(合成した例示化合物108をそれぞれ銅錯体108-1および銅錯体108-2とする)。
 例示化合物109は、合成例Oおよび合成例Pに基づいて各々合成した(合成した例示化合物109をそれぞれ銅錯体109-1および銅錯体109-2とする)。
 例示化合物110は、合成例Qおよび合成例Rに基づいて各々合成した(合成した例示化合物110をそれぞれ銅錯体110-1および銅錯体110-2とする)。
 例示化合物111は、合成例Sおよび合成例Tに基づいて各々合成した(合成した例示化合物111をそれぞれ銅錯体111-1および銅錯体111-2とする)。
 例示化合物58は、合成例Uに基づいて各々合成した(合成した例示化合物58を銅錯体58-1とする)。
 例示化合物126は、合成例Vに基づいて各々合成した(合成した例示化合物126を銅錯体126-1とする)。
 例示化合物29は、合成例Wに基づいて各々合成した(合成した例示化合物29を銅錯体29-1とする)。
 例示化合物131は、合成例Xに基づいて各々合成した(合成した例示化合物131を銅錯体131-1とする)。
 例示化合物132は、合成例Yに基づいて各々合成した(合成した例示化合物132を銅錯体132-1とする)。
 例示化合物133は、合成例Zに基づいて各々合成した(合成した例示化合物133を銅錯体133-1とする)。
Example 1
Synthesis of Specific Copper Complex Exemplified Compound 1 was synthesized based on Synthetic Examples A to D (The synthesized Exemplified Compound 1 is referred to as Copper Complex 1-1 to Copper Complex 1-4, respectively).
Exemplified Compound 2 was synthesized based on Synthetic Example E and Synthetic Example F, respectively (the synthesized Exemplified Compound 2 is referred to as Copper Complex 2-1 and Copper Complex 2-2, respectively).
Exemplified Compound 5 was synthesized based on Synthetic Example G and Synthetic Example H, respectively (the synthesized Exemplified Compound 5 is referred to as Copper Complex 5-1 and Copper Complex 5-2, respectively).
Exemplified compound 107 was synthesized based on Synthetic Example K and Synthetic Example L, respectively (the synthesized exemplified compound 107 is referred to as copper complex 107-1 and copper complex 107-2, respectively).
Exemplary compound 108 was synthesized based on Synthesis Example M and Synthesis Example N, respectively (the synthesized exemplary compound 108 is referred to as copper complex 108-1 and copper complex 108-2, respectively).
Exemplified compound 109 was synthesized based on Synthetic Example O and Synthetic Example P, respectively (the synthesized exemplified compound 109 is referred to as a copper complex 109-1 and a copper complex 109-2, respectively).
The exemplary compound 110 was synthesized based on Synthesis Example Q and Synthesis Example R, respectively (the synthesized exemplary compound 110 is referred to as a copper complex 110-1 and a copper complex 110-2, respectively).
The exemplified compound 111 was synthesized based on Synthesis Example S and Synthesis Example T, respectively (the synthesized exemplified compound 111 is referred to as a copper complex 111-1 and a copper complex 111-2, respectively).
The exemplified compound 58 was synthesized based on Synthesis Example U (the synthesized exemplified compound 58 is referred to as a copper complex 58-1).
The exemplified compound 126 was synthesized based on Synthesis Example V (the synthesized exemplified compound 126 is referred to as a copper complex 126-1).
Exemplary compound 29 was synthesized based on Synthesis Example W (synthesized exemplary compound 29 is referred to as copper complex 29-1).
The exemplified compound 131 was synthesized based on Synthesis Example X (the synthesized exemplified compound 131 is referred to as a copper complex 131-1).
The exemplary compound 132 was synthesized based on Synthesis Example Y (the synthesized exemplary compound 132 is referred to as a copper complex 132-1).
The exemplary compound 133 was synthesized based on Synthesis Example Z (the synthesized exemplary compound 133 is referred to as a copper complex 133-1).
実施例1-1
例示化合物1(特定銅錯体)の合成例A
 N,N-ジメチルアセトアミド50mLに、1,8-diazabicyclo[5.4.0]undec-7-ene 9.5gを加えた後、水冷しつつメルドラム酸を5分間にわたり断続的に合計9g添加して、混合液を得た。この間、混合液の液温は18℃~28℃であった。
 混合液に、さらに、無水酢酸7mLを5分間にわたり滴下した後、室温に一晩放置した。塩化第二銅4.2gを25mLのN,N-ジメチルアセトアミドに溶かし、前記混合液に加えた後、室温で1時間放置した。得られた混合液を激しく攪拌しつつ、混合液にトルエン200mLを加えた後、さらに水400mLを加えて激しく攪拌した。1時間放置した後、混合液を吸引濾過し、濾過物を、水200mLをかけて洗い、13gの水色結晶として銅錯体1-1(例示化合物1)を得た。
Example 1-1
Synthesis example A of exemplary compound 1 (specific copper complex)
After adding 9.5 g of 1,8-diazabiccyclo [5.4.0] undec-7-ene to 50 mL of N, N-dimethylacetamide, 9 g of meldrum acid was intermittently added over 5 minutes while cooling with water. To obtain a mixed solution. During this time, the liquid temperature of the mixed liquid was 18 ° C. to 28 ° C.
Further, 7 mL of acetic anhydride was added dropwise to the mixture over 5 minutes, and then left overnight at room temperature. Cupric chloride (4.2 g) was dissolved in 25 mL of N, N-dimethylacetamide, added to the mixture, and allowed to stand at room temperature for 1 hour. While vigorously stirring the obtained mixed solution, 200 mL of toluene was added to the mixed solution, and then 400 mL of water was further added and vigorously stirred. After standing for 1 hour, the mixture was filtered with suction, and the filtrate was washed with 200 mL of water to obtain copper complex 1-1 (Exemplary Compound 1) as 13 g of light blue crystals.
 得られた結晶の5.5gに、N,N-ジメチルアセトアミド48mLを加えて加熱溶解した。得られた液体を濾過した後、濾液を室温まで冷却し、激しく攪拌しつつトルエン20mLを加え、次いで水200mLを加えた後30分間放置した。生じた結晶を吸引濾過して集め、結晶にトルエン30mLを少しずつかけて洗った。結晶を風乾した後、減圧乾燥し、4.55gの水色結晶を得た。この結晶をテトラヒドロフランに溶かし、得られた溶液にトルエンを加えた後、すぐに析出が起きない程度の水を加えた。得られた液体を室温で一晩放置したところ、長さ約0.3mmの柱状単結晶が得られた。得られた柱状単結晶について、X線結晶構造解析を行った。詳細は後述する。 To 5.5 g of the obtained crystals, 48 mL of N, N-dimethylacetamide was added and dissolved by heating. After the obtained liquid was filtered, the filtrate was cooled to room temperature, 20 mL of toluene was added with vigorous stirring, and then 200 mL of water was added, and then left for 30 minutes. The resulting crystals were collected by suction filtration, and the crystals were washed with 30 mL of toluene little by little. The crystals were air-dried and then dried under reduced pressure to obtain 4.55 g of light blue crystals. This crystal was dissolved in tetrahydrofuran, and toluene was added to the resulting solution, and water was added to such an extent that no precipitation occurred immediately. When the obtained liquid was left overnight at room temperature, a columnar single crystal having a length of about 0.3 mm was obtained. The obtained columnar single crystal was subjected to X-ray crystal structure analysis. Details will be described later.
実施例1-2
例示化合物1(特定銅錯体)の合成例B
 まず、メルドラム酸ナトリウム塩を、P.Houghton and D.J.Lapham,Synthsis,1982年,451ページに記載された化合物1の合成法に従って合成した。
 次いで、得られたメルドラム酸ナトリウム塩8g(48mmol)を、N,N-ジメチルアセトアミド40mLに分散し攪拌しつつ、無水酢酸5.2mLを10mLのN,N-ジメチルアセトアミドに溶かした溶液に10分間にわたり滴下した後、得られた混合液を室温で一晩放置した。不溶物を濾過して除き、濾液を攪拌しつつ、無水塩化銅3.23g(24mmol)を20mLのN,N-ジメチルアセトアミドに溶かした溶液を5分間にわたって濾液に滴下した。得られた混合液を激しく攪拌しつつ、水150mLを3分割して添加し、生じた結晶を濾取し、水50mLで2回洗い、風乾して7.25gの水色結晶を得た。この結晶7.25gをN,N-ジメチルアセトアミド50mLに溶解し、濾過した。その後、濾液を激しく攪拌しつつ、水25mLを加え、更に175mLの水を加えて攪拌した。得られた混合物を、氷水浴に浸けて15℃まで冷却した後、生じた結晶を濾取した。得られた結晶を50mLの水で洗った後、減圧下で乾燥し、水色の結晶として4.75gの銅錯体1-2(例示化合物1)を得た。
Example 1-2
Synthesis example B of exemplary compound 1 (specific copper complex)
First, sodium meldrum acid salt Houghton and D.H. J. et al. The compound was synthesized according to the synthesis method of Compound 1 described in Lapham, Synthesis, 1982, page 451.
Next, 8 g (48 mmol) of the obtained Meldrum's sodium salt was dispersed in 40 mL of N, N-dimethylacetamide and stirred, while stirring for 10 minutes in a solution of 5.2 mL of acetic anhydride in 10 mL of N, N-dimethylacetamide. The resulting mixture was allowed to stand overnight at room temperature. Insoluble matter was removed by filtration, and a solution prepared by dissolving 3.23 g (24 mmol) of anhydrous copper chloride in 20 mL of N, N-dimethylacetamide was added dropwise to the filtrate over 5 minutes while stirring the filtrate. While vigorously stirring the resulting mixture, 150 mL of water was added in three portions, and the resulting crystals were collected by filtration, washed twice with 50 mL of water, and air dried to obtain 7.25 g of light blue crystals. 7.25 g of this crystal was dissolved in 50 mL of N, N-dimethylacetamide and filtered. Thereafter, while the filtrate was vigorously stirred, 25 mL of water was added, and 175 mL of water was further added and stirred. The obtained mixture was immersed in an ice-water bath and cooled to 15 ° C., and the resulting crystals were collected by filtration. The obtained crystals were washed with 50 mL of water and then dried under reduced pressure to obtain 4.75 g of copper complex 1-2 (Exemplary Compound 1) as light blue crystals.
実施例1-3
例示化合物1(特定銅錯体)の合成例C
 メルドラム酸(7.2g,0.05M)を、ジクロロメタン(60mL)に溶解し、内温を-5℃としてピリジン(7.9g,0.1M)を徐々に加え、約10分間撹拌して混合液を得た。次いで、得られた混合液に、塩化アセチル(4.3g,0.055M)のジクロロメタン(20mL)溶液を20分間にわたり滴下した。その後、得られた溶液を室温にて1時間反応させた後、1N-HClにて反応液を酸性とし、水洗し、MgSOでの乾燥を行ってから、溶媒留去し、赤褐色の油状物を得た。油状物をシリカゲルクロマトグラフィーにて2回精製を繰り返し(Hexane:AcOEt=10:1~5:1)、化合物Aを7.44g得た。
 なお、得られた化合物AをH-NMR(CDCl)で分析したところ、以下の結果が得られ、一般式2で表される下記構造を有する化合物であることが確認された。δ1.74(s,6H),2.68(s,3H),15.13(s,1H)。
Example 1-3
Synthesis example C of exemplary compound 1 (specific copper complex)
Meldrum's acid (7.2 g, 0.05 M) is dissolved in dichloromethane (60 mL), the internal temperature is set to −5 ° C., pyridine (7.9 g, 0.1 M) is gradually added, and the mixture is stirred for about 10 minutes and mixed. A liquid was obtained. Then, a solution of acetyl chloride (4.3 g, 0.055 M) in dichloromethane (20 mL) was added dropwise to the obtained mixture over 20 minutes. Thereafter, the resulting solution was reacted at room temperature for 1 hour, and then the reaction solution was acidified with 1N-HCl, washed with water, dried over MgSO 4 , and then the solvent was distilled off to obtain a reddish brown oily substance. Got. The oily substance was repeatedly purified twice by silica gel chromatography (Hexane: AcOEt = 10: 1 to 5: 1) to obtain 7.44 g of Compound A.
When the obtained compound A was analyzed by 1 H-NMR (CDCl 3 ), the following results were obtained and it was confirmed that the compound A had the following structure represented by the general formula 2. δ 1.74 (s, 6H), 2.68 (s, 3H), 15.13 (s, 1H).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 得られた化合物A 1.86g(10mmol)に、N,N-ジメチルアセトアミド10mLを加えて溶解し、化合物A溶液を得た。その後、無水塩化銅650mg(5mmol)を5mLのN,N-ジメチルアセトアミドに溶かした溶液を化合物A溶液に加え、次いでトリエチルアミン1.4mL(10mmol)を加え、室温にて30分攪拌した。得られた混合物を激しく攪拌しつつ90mLの水を加えた後、30分間放置し、生じた結晶を濾取し、水をかけて洗い、乾燥して1.9gの水色粉末として銅錯体1-3(例示化合物1)を得た。 To 1.86 g (10 mmol) of the obtained compound A, 10 mL of N, N-dimethylacetamide was added and dissolved to obtain a compound A solution. Thereafter, a solution obtained by dissolving 650 mg (5 mmol) of anhydrous copper chloride in 5 mL of N, N-dimethylacetamide was added to the compound A solution, and then 1.4 mL (10 mmol) of triethylamine was added, followed by stirring at room temperature for 30 minutes. 90 mL of water was added to the resulting mixture with vigorous stirring, and then allowed to stand for 30 minutes. The resulting crystals were collected by filtration, washed with water, and dried to give 1.9 g of a light blue powder of copper complex 1- 3 (Exemplary Compound 1) was obtained.
実施例1-4
例示化合物1(特定銅錯体)の合成例D
 水80mL中に、化合物A 1.86g(10mmol)を加え、更に1mol/L水酸化ナトリウム溶液を10mL加え、約10分間攪拌し、化合物Aを溶解し、化合物A溶液2を得た。その後、硫酸銅五水和物 1.24g(5mmol)を20mLの水に溶かした溶液を化合物A溶液2に加え、室温にて30分攪拌した。生じた結晶を濾取し、水をかけて洗い、乾燥して1.6gの水色粉末として銅錯体1-4(例示化合物1)を得た。
Example 1-4
Synthesis example D of exemplary compound 1 (specific copper complex)
In 80 mL of water, 1.86 g (10 mmol) of Compound A was added, 10 mL of 1 mol / L sodium hydroxide solution was further added, and the mixture was stirred for about 10 minutes to dissolve Compound A to obtain Compound A Solution 2. Thereafter, a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound A solution 2 and stirred at room temperature for 30 minutes. The resulting crystals were collected by filtration, washed with water, and dried to obtain 1.6 g of a light blue powder of copper complex 1-4 (Exemplary Compound 1).
実施例1-5
例示化合物2(特定銅錯体)の合成例E
 まず、Y.Oikawa,K.Sugano,O.Yonemitsu,J.Org.Chem.,Vol.43,2087(1978)に記載の化合物3aの合成法に従って、一般式2で表される下記構造の化合物Bを得た。
Example 1-5
Synthesis Example E of Exemplified Compound 2 (Specific Copper Complex) E
First, Y. Oikawa, K .; Sugano, O .; Yonemitsu, J. et al. Org. Chem. , Vol. 43, 2087 (1978), Compound B having the following structure represented by General Formula 2 was obtained according to the synthesis method of Compound 3a.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 得られた化合物B 2.00g(10mmol)に、N,N-ジメチルアセトアミド10mLを加えて溶解し、化合物B溶液を得た。その後、無水塩化銅650mg(5mmol)を5mLのN,N-ジメチルアセトアミドに溶かした溶液を化合物B溶液に加え、次いでトリエチルアミン1.4mL(10mmol)を加えて、室温にて30分攪拌した。得られた混合物を激しく攪拌しつつ90mLの水を加えた後、30分間放置し、生じた結晶を濾取し、水をかけて洗い、乾燥して2gの水色粉末として銅錯体2-1(例示化合物2)を得た。 10 mL of N, N-dimethylacetamide was added to and dissolved in 2.00 g (10 mmol) of the obtained compound B to obtain a compound B solution. Thereafter, a solution obtained by dissolving 650 mg (5 mmol) of anhydrous copper chloride in 5 mL of N, N-dimethylacetamide was added to the compound B solution, and then 1.4 mL (10 mmol) of triethylamine was added, followed by stirring at room temperature for 30 minutes. 90 mL of water was added to the resulting mixture while stirring vigorously, and the mixture was allowed to stand for 30 minutes. The resulting crystals were collected by filtration, washed with water and dried to give 2 g of a light blue powder of copper complex 2-1 ( Exemplified compound 2) was obtained.
 得られた結晶に、N,N-ジメチルアセトアミド48mLを加えて加熱溶解した。得られた液体を濾過した後、濾液を室温まで冷却し、激しく攪拌しつつトルエン20mLを加え、次いで水200mLを加えた後30分間放置した。生じた結晶を吸引濾過して集め、結晶にトルエン30mLを少しずつかけて洗った。結晶を風乾した後、減圧乾燥し、水色結晶を得た。この錯体をテトラヒドロフランに溶かし、得られた溶液にトルエンを加えた後、すぐに析出が起きない程度の水を加えた。得られた液体を室温で一晩放置したところ、長さ約0.3mmの柱状単結晶が得られた。得られた柱状単結晶について、X線結晶構造解析を行った。詳細は後述する。 To the obtained crystals, 48 mL of N, N-dimethylacetamide was added and dissolved by heating. After the obtained liquid was filtered, the filtrate was cooled to room temperature, 20 mL of toluene was added with vigorous stirring, and then 200 mL of water was added, and then left for 30 minutes. The resulting crystals were collected by suction filtration, and the crystals were washed with 30 mL of toluene little by little. The crystals were air-dried and then dried under reduced pressure to obtain light blue crystals. This complex was dissolved in tetrahydrofuran, toluene was added to the resulting solution, and water was added so that no precipitation occurred immediately. When the obtained liquid was left overnight at room temperature, a columnar single crystal having a length of about 0.3 mm was obtained. The obtained columnar single crystal was subjected to X-ray crystal structure analysis. Details will be described later.
実施例1-6
例示化合物2(特定銅錯体)の合成例F
 水80mL中に、化合物B 2.00g(10mmol)を加え、更に1mol/L水酸化ナトリウム溶液を10mL加え、約10分間攪拌し、化合物Bを溶解し、化合物B溶液2を得た。その後、硫酸銅五水和物 1.24g(5mmol)を20mLの水に溶かした溶液を化合物B溶液2に加え、室温にて30分攪拌した。生じた結晶を濾取し、水をかけて洗い、乾燥して2.0gの水色粉末として銅錯体2-2(例示化合物2)を得た。
Example 1-6
Synthesis Example F of Illustrative Compound 2 (Specific Copper Complex)
In 80 mL of water, 2.00 g (10 mmol) of Compound B was added, and further 10 mL of 1 mol / L sodium hydroxide solution was added and stirred for about 10 minutes to dissolve Compound B to obtain Compound B Solution 2. Thereafter, a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound B solution 2 and stirred at room temperature for 30 minutes. The resulting crystals were collected by filtration, washed with water, and dried to obtain copper complex 2-2 (Exemplary Compound 2) as 2.0 g of a light blue powder.
実施例1-7
例示化合物5(特定銅錯体)の合成例G
 まず、Y.Oikawa,K.Sugano,O.Yonemitsu,J.Org.Chem.,Vol.43,2087(1978)に記載の化合物3iの合成法に従って一般式2で表される下記構造の化合物Cを合成した。
Example 1-7
Synthesis example G of exemplary compound 5 (specific copper complex)
First, Y. Oikawa, K .; Sugano, O .; Yonemitsu, J. et al. Org. Chem. , Vol. 43, 2087 (1978), compound C having the following structure represented by general formula 2 was synthesized according to the synthesis method of compound 3i.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 得られた化合物C 2.6g(10mmol)に、N,N-ジメチルアセトアミド10mLを加えて溶解し、化合物C溶液を得た。その後、無水塩化銅650mg(5mmol)を5mLのN,N-ジメチルアセトアミドに溶かした溶液を化合物C溶液に加え、次いでトリエチルアミン1.4mL(10mmol)を加え、室温にて30分攪拌した。得られた混合物を激しく攪拌しつつ90mLの水を加えた後、30分間放置し、生じた結晶を濾取し、水をかけて洗った。次いでキシレン50mLに分散して洗い、濾取、乾燥して2gの水色粉末として銅錯体5-1(例示化合物5)を得た。 To 2.6 g (10 mmol) of the obtained compound C, 10 mL of N, N-dimethylacetamide was added and dissolved to obtain a compound C solution. Thereafter, a solution obtained by dissolving 650 mg (5 mmol) of anhydrous copper chloride in 5 mL of N, N-dimethylacetamide was added to the compound C solution, and then 1.4 mL (10 mmol) of triethylamine was added, followed by stirring at room temperature for 30 minutes. 90 mL of water was added to the resulting mixture while stirring vigorously, and the mixture was allowed to stand for 30 minutes. The resulting crystals were collected by filtration and washed with water. Next, it was dispersed in 50 mL of xylene, washed, filtered and dried to obtain copper complex 5-1 (Exemplary Compound 5) as 2 g of a light blue powder.
 得られた結晶に、N,N-ジメチルアセトアミド48mLを加えて加熱溶解した。得られた液体を濾過した後、濾液を室温まで冷却し、激しく攪拌しつつトルエン20mLを加え、次いで水200mLを加えた後30分間放置した。生じた結晶を吸引濾過して集め、結晶にトルエン30mLを少しずつかけて洗った。結晶を風乾した後、減圧乾燥し、水色結晶を得た。この錯体をテトラヒドロフランに溶かし、得られた溶液にトルエンを加えた後、すぐに析出が起きない程度の水を加えた。得られた液体を室温で一晩放置したところ、長さ約0.3mmの柱状単結晶が得られた。得られた柱状単結晶について、X線結晶構造解析を行った。詳細は後述する。 To the obtained crystals, 48 mL of N, N-dimethylacetamide was added and dissolved by heating. After the obtained liquid was filtered, the filtrate was cooled to room temperature, 20 mL of toluene was added with vigorous stirring, and then 200 mL of water was added, and then left for 30 minutes. The resulting crystals were collected by suction filtration, and the crystals were washed with 30 mL of toluene little by little. The crystals were air-dried and then dried under reduced pressure to obtain light blue crystals. This complex was dissolved in tetrahydrofuran, toluene was added to the resulting solution, and water was added so that no precipitation occurred immediately. When the obtained liquid was left overnight at room temperature, a columnar single crystal having a length of about 0.3 mm was obtained. The obtained columnar single crystal was subjected to X-ray crystal structure analysis. Details will be described later.
実施例1-8
例示化合物5(特定銅錯体)の合成例H
 水80mL中に、化合物C 2.62g(10mmol)を加え、更に1mol/L水酸化ナトリウム溶液を10mL加え、約10分間攪拌し、化合物Cを溶解し、化合物C溶液2を得た。その後、硫酸銅五水和物 1.24g(5mmol)を20mLの水に溶かした溶液を化合物C溶液2に加え、室温にて30分攪拌した。生じた結晶を濾取し、水をかけて洗い、乾燥して1.9gの水色粉末として銅錯体5-2(例示化合物5)を得た。
Example 1-8
Synthesis example H of exemplary compound 5 (specific copper complex)
In 80 mL of water, 2.62 g (10 mmol) of Compound C was added, and 10 mL of a 1 mol / L sodium hydroxide solution was further added, and the mixture was stirred for about 10 minutes to dissolve Compound C to obtain Compound C Solution 2. Thereafter, a solution obtained by dissolving 1.24 g (5 mmol) of copper sulfate pentahydrate in 20 mL of water was added to the compound C solution 2 and stirred at room temperature for 30 minutes. The resulting crystals were collected by filtration, washed with water, and dried to obtain copper complex 5-2 (Exemplary Compound 5) as 1.9 g of a light blue powder.
実施例1-9
例示化合物107(特定銅錯体)の合成例K
 まず、実施例1-5において、化合物Bの合成の際に用いたプロピオニルクロリドの代わりに、シクロプロパンカルボン酸クロリドを用いて同様の反応を行い、下記構造の化合物Eを合成した。
Example 1-9
Synthesis example K of exemplary compound 107 (specific copper complex)
First, in Example 1-5, a similar reaction was carried out using cyclopropanecarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound E having the following structure.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 実施例1-5において、合成例Eの化合物Bの代わりに化合物E 2.1g(10mmol)を用いて同様の反応を行い、2.1gの水色粉末として銅錯体107-1(例示化合物107)を得た。
 銅錯体107-1についても実施例1-5と同様に再結晶を行い、単結晶を作製し、X線結晶構造解析を行った。
In Example 1-5, the same reaction was carried out using 2.1 g (10 mmol) of Compound E instead of Compound B of Synthesis Example E, and copper complex 107-1 (Exemplary Compound 107) was obtained as 2.1 g of light blue powder. Got.
The copper complex 107-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and X-ray crystal structure analysis was performed.
実施例1-10
例示化合物107(特定銅錯体)の合成例L
 実施例1-6において、合成例Fの化合物Bの代わりに化合物E 1.7g(10mmol)を用いて同様の反応を行い、1.9gの水色粉末として銅錯体107-2(例示化合物107)を得た。
Example 1-10
Synthesis example L of exemplary compound 107 (specific copper complex)
In Example 1-6, the same reaction was performed using 1.7 g (10 mmol) of Compound E instead of Compound B of Synthesis Example F, and copper complex 107-2 (Exemplary Compound 107) was prepared as 1.9 g of light blue powder. Got.
実施例1-11
例示化合物108(特定銅錯体)の合成例M
 まず、Canadian Journal of Chemistry,1992,vol.70、p.1427~1445に記載の合成法に従って、下記構造の化合物Fを合成した。
Example 1-11
Synthesis example M of exemplary compound 108 (specific copper complex)
First, Canadian Journal of Chemistry, 1992, vol. 70, p. Compound F having the following structure was synthesized according to the synthesis method described in 1427 to 1445.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 実施例1-5において、合成例Eの化合物Bの代わりに化合物F 2.2g(10mmol)を用いて同様の反応を行い、1.6gの水色粉末として銅錯体108-1(例示化合物108)を得た。
 銅錯体108-1についても、実施例1-5と同様に再結晶を行い、単結晶を作製し、X線結晶構造解析を行った。
In Example 1-5, the same reaction was carried out using 2.2 g (10 mmol) of Compound F instead of Compound B of Synthesis Example E, and copper complex 108-1 (Exemplary Compound 108) was obtained as 1.6 g of light blue powder. Got.
The copper complex 108-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
実施例1-12
例示化合物108(特定銅錯体)の合成例N
 実施例1-6において、合成例Fの化合物Bの代わりに化合物F 1.7g(10mmol)を用いて同様の反応を行い、1.4gの水色粉末として銅錯体108-2(例示化合物108)を得た。
Example 1-12
Synthesis example N of exemplary compound 108 (specific copper complex)
In Example 1-6, the same reaction was carried out using 1.7 g (10 mmol) of Compound F instead of Compound B of Synthesis Example F, and copper complex 108-2 (Exemplary Compound 108) was obtained as 1.4 g of a light blue powder. Got.
実施例1-13
例示化合物109(特定銅錯体)の合成例O
 まず実施例1-5において、化合物Bの合成の際に用いたプロピオニルクロリドの代わりに、ブロモ酢酸クロリドを用いて同様の反応を行い、下記構造の化合物Gを合成した。
Example 1-13
Synthesis Example O of Exemplified Compound 109 (Specific Copper Complex) O
First, in Example 1-5, the same reaction was carried out using bromoacetic chloride instead of propionyl chloride used in the synthesis of Compound B, thereby synthesizing Compound G having the following structure.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 実施例1-5において、合成例Eの化合物Bの代わりに化合物G 2.7g(10mmol)を用いて同様の反応を行い、2.2gの水色粉末として銅錯体109-1(例示化合物109)を得た。
 銅錯体109-1についても実施例1-5と同様に再結晶を行い、単結晶を作製し、X線結晶構造解析を行った
In Example 1-5, the same reaction was performed using 2.7 g (10 mmol) of Compound G instead of Compound B of Synthesis Example E, and copper complex 109-1 (Exemplary Compound 109) was obtained as 2.2 g of light blue powder. Got.
The copper complex 109-1 was recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
実施例1-14
例示化合物109(特定銅錯体)の合成例P
 実施例1-6において、合成例Fの化合物Bの代わりに化合物G 2.7g(10mmol)を用いて同様の反応を行い、2.4gの水色粉末として銅錯体109-2(例示化合物109)を得た。
Example 1-14
Synthesis example P of exemplary compound 109 (specific copper complex)
In Example 1-6, the same reaction was performed using 2.7 g (10 mmol) of Compound G instead of Compound B of Synthesis Example F, and copper complex 109-2 (Exemplary Compound 109) was obtained as 2.4 g of light blue powder. Got.
実施例1-15
例示化合物110(特定銅錯体)の合成例Q
 まず、Canadian Journal of Chemistry,1992,vol.70、p.1427~1445に記載の合成法に従って、下記構造の化合物Hを合成した。
Example 1-15
Synthesis Example Q of Exemplified Compound 110 (Specific Copper Complex)
First, Canadian Journal of Chemistry, 1992, vol. 70, p. Compound H having the following structure was synthesized according to the synthesis method described in 1427 to 1445.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 実施例1-5において、合成例Eの化合物Bの代わりに化合物H 3.1g(10mmol)を用いて同様の反応を行い、2.7gの水色粉末として銅錯体110-1(例示化合物110)を得た。
 銅錯体110-1についても実施例1-5と同様に再結晶を行い、単結晶を作製し、X線結晶構造解析を行った
In Example 1-5, the same reaction was performed using 3.1 g (10 mmol) of Compound H instead of Compound B of Synthesis Example E, and copper complex 110-1 (Exemplary Compound 110) was prepared as 2.7 g of a light blue powder. Got.
The copper complex 110-1 was recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
実施例1-16
例示化合物110(特定銅錯体)の合成例R
 実施例1-6において、合成例Fの化合物Bの代わりに化合物H 3.1g(10mmol)を用いて同様の反応を行い、2.2gの水色粉末として銅錯体110-2(例示化合物110)を得た。
Example 1-16
Synthesis example R of exemplary compound 110 (specific copper complex)
In Example 1-6, the same reaction was carried out using 3.1 g (10 mmol) of Compound H instead of Compound B of Synthesis Example F, and copper complex 110-2 (Exemplary Compound 110) was prepared as 2.2 g of light blue powder. Got.
実施例1-17
例示化合物111(特定銅錯体)の合成例S
 まず実施例1-5において、化合物Bの合成の際に用いたプロピオニルクロリドの代わりに、メトキシ酢酸クロリドを用いて同様の反応を行い、下記構造の化合物Iを合成した。
Example 1-17
Synthesis example S of exemplary compound 111 (specific copper complex)
First, in Example 1-5, the same reaction was carried out using methoxyacetic acid chloride instead of propionyl chloride used in the synthesis of Compound B to synthesize Compound I having the following structure.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 実施例1-5において、合成例Eの化合物Bの代わりに化合物I 2.2g(10mmol)を用いて同様の反応を行い、2.0gの水色粉末として銅錯体111-1(例示化合物111)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, a similar reaction was performed using 2.2 g (10 mmol) of Compound I instead of Compound B of Synthesis Example E, and copper complex 111-1 (Exemplary Compound 111) was obtained as 2.0 g of a light blue powder. Got. The structure was confirmed from the mass spectrum of the obtained copper complex.
 マススペクトル測定には、Applied Biosystems Voyager Syetem 6306を用い、マトリックスにα-シアノ-4-ヒドロキシ桂皮酸を用い、溶媒にクロロホルムを用いた。以下、マススペクトルを測定した化合物は、同じ条件を用いた。 For the mass spectrum measurement, Applied Biosystems Voyager System 6306 was used, α-cyano-4-hydroxycinnamic acid was used for the matrix, and chloroform was used for the solvent. Hereinafter, the same conditions were used for the compounds whose mass spectra were measured.
実施例1-18
例示化合物111(特定銅錯体)の合成例T
 実施例1-6において、合成例Fの化合物Bの代わりに化合物I 2.2g(10mmol)を用いて同様の反応を行い、1.7gの水色粉末として銅錯体111-2(例示化合物111)を得た。
Example 1-18
Synthesis example T of exemplary compound 111 (specific copper complex)
In Example 1-6, the same reaction was carried out using 2.2 g (10 mmol) of Compound I in place of Compound B of Synthesis Example F, and copper complex 111-2 (Exemplary Compound 111) was prepared as 1.7 g of light blue powder. Got.
実施例1-19
例示化合物58(特定銅錯体)の合成例U
 まず、メルドラム酸 14g(100mmol)とアセトフェノン 13g(100mmol)をトルエン(200mL)中で、30分加熱還流させた後、n-ヘキサン、酢酸エチル、クロロホルムを展開溶媒に用いたシリカゲルカラム精製を行い、中間体J’を4.2g得た。その後、実施例1-5において化合物Bの合成の際用いたメルドラム酸の代わりに、中間体J’ 4g(20mmol)を用いて同様の反応を行い、4.4gの下記構造の化合物L-19を合成した。
 H-NMR(400MHz,DMSO-d)δ1.9(s,3H)、2.4(s、3H)、7.4-7.5(m,2H)、7.5-7.6(m,3H)
Example 1-19
Synthesis Example U of Exemplary Compound 58 (Specific Copper Complex)
First, 14 g (100 mmol) of Meldrum's acid and 13 g (100 mmol) of acetophenone were heated and refluxed in toluene (200 mL) for 30 minutes, followed by silica gel column purification using n-hexane, ethyl acetate and chloroform as developing solvents. 4.2 g of intermediate J ′ was obtained. Thereafter, the same reaction was carried out using 4 g (20 mmol) of the intermediate J ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 4.4 g of Compound L-19 having the following structure: Was synthesized.
I H-NMR (400 MHz, DMSO-d 6 ) δ1.9 (s, 3H), 2.4 (s, 3H), 7.4-7.5 (m, 2H), 7.5-7.6 (M, 3H)
 実施例1-5において、合成例Eの化合物Bの代わりに化合物L-19 2.2g(10mmol)を用いて同様の反応を行い、0.8gの水色粉末として銅錯体58-1(例示化合物58)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, the same reaction was performed using 2.2 g (10 mmol) of Compound L-19 instead of Compound B of Synthesis Example E, and copper complex 58-1 (Exemplary Compound) was obtained as 0.8 g of light blue powder. 58). The structure was confirmed from the mass spectrum of the obtained copper complex.
実施例1-20
例示化合物126(特定銅錯体)の合成例V
 実施例1-19のアセトフェノンの代わり2-アセチルチオフェンを用いて反応を行い、中間体K’を4.2g得た。その後、実施例1-5において化合物Bの合成の際用いたメルドラム酸の代わりに、中間体K’ 4.2g(20mmol)を用いて同様の反応を行い、3.6gの下記構造の化合物L-29を合成した。
 H-NMR(400MHz,DMSO-d)δ1.8(s,3H)、2.4(s、3H)、6.9-7.2(m,4H)
Example 1-20
Synthesis example V of exemplary compound 126 (specific copper complex)
The reaction was carried out using 2-acetylthiophene instead of acetophenone of Example 1-19 to obtain 4.2 g of intermediate K ′. Thereafter, a similar reaction was carried out using 4.2 g (20 mmol) of the intermediate K ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 3.6 g of Compound L having the following structure: -29 was synthesized.
I H-NMR (400 MHz, DMSO-d 6 ) δ1.8 (s, 3H), 2.4 (s, 3H), 6.9-7.2 (m, 4H)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 実施例1-5において、合成例Eの化合物Bの代わりに化合物L-29 2.5g(10mmol)を用いて同様の反応を行い、0.6gの水色粉末として銅錯体126-1(例示化合物126)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, the same reaction was carried out using 2.5 g (10 mmol) of compound L-29 instead of compound B of Synthesis Example E, and copper complex 126-1 (exemplary compound) was prepared as 0.6 g of a light blue powder. 126) was obtained. The structure was confirmed from the mass spectrum of the obtained copper complex.
実施例1-21
例示化合物29(特定銅錯体)の合成例W
 実施例1-19のアセトフェノンの代わりシクロヘキサノンを用いて反応を行い、中間体L’を9.2g得た。その後、実施例1-5において化合物Bの合成の際用いたメルドラム酸の代わりに、中間体L’ 3.7g(20mmol)を用いて同様の反応を行い、4.1gの下記構造の化合物L-39を合成した。
 H-NMR(400MHz,CDCl)1.5-1.8(m,6H)、1.9-2.4(m,7H)
Example 1-21
Synthesis example W of Exemplified compound 29 (specific copper complex)
The reaction was carried out using cyclohexanone instead of acetophenone of Example 1-19 to obtain 9.2 g of intermediate L ′. Thereafter, the same reaction was carried out using 3.7 g (20 mmol) of the intermediate L ′ in place of Meldrum's acid used in the synthesis of Compound B in Example 1-5, and 4.1 g of Compound L having the following structure: -39 was synthesized.
I H-NMR (400 MHz, CDCl 3 ) 1.5-1.8 (m, 6H), 1.9-2.4 (m, 7H)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 実施例1-5において、合成例Eの化合物Bの代わりに化合物L-39 2.3g(10mmol)を用いて同様の反応を行い、2.1gの水色粉末として銅錯体29-1(例示化合物29)を得た。 In Example 1-5, the same reaction was carried out using 2.3 g (10 mmol) of compound L-39 instead of compound B of Synthesis Example E, and copper complex 29-1 (exemplary compound) was obtained as 2.1 g of a light blue powder. 29) was obtained.
 銅錯体29-1についても実施例1-5と同様に再結晶を行い、単結晶を作製し、X線結晶構造解析を行った。 The copper complex 29-1 was also recrystallized in the same manner as in Example 1-5 to produce a single crystal, and an X-ray crystal structure analysis was performed.
実施例1-22
例示化合物131(特定銅錯体)の合成例X
 実施例1-19のアセトフェノンの代わり7-オクテン-2-オンを用いて反応を行い、中間体L’を2.2g得た。その後、実施例1-5において化合物Bの合成の際、用いたメルドラム酸の代わりに、中間体M’ 3.7g(20mmol)を用いて同様の反応を行い、2.4gの下記構造の化合物L-48を合成した。
 H-NMR(400MHz,CDCl)1.2-1.3(m,11H)、2.7(s、3H)、4.9~6.1(m,3H)
Example 1-22
Synthesis Example X of Exemplified Compound 131 (Specific Copper Complex)
The reaction was carried out using 7-octen-2-one instead of acetophenone of Example 1-19 to obtain 2.2 g of intermediate L ′. Thereafter, in the synthesis of Compound B in Example 1-5, the same reaction was carried out using 3.7 g (20 mmol) of the intermediate M ′ instead of Meldrum's acid used, and 2.4 g of the compound having the following structure L-48 was synthesized.
I H-NMR (400 MHz, CDCl 3 ) 1.2-1.3 (m, 11H), 2.7 (s, 3H), 4.9 to 6.1 (m, 3H)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 実施例1-5において、合成例Eの化合物Bの代わりに化合物L-48 2.4g(10mmol)を用いて同様の反応を行い、0.6gの水色粉末として銅錯体131-1(例示化合物131)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, the same reaction was carried out using 2.4 g (10 mmol) of compound L-48 instead of compound B of synthesis example E, and copper complex 131-1 (exemplary compound) was prepared as 0.6 g of a light blue powder. 131). The structure was confirmed from the mass spectrum of the obtained copper complex.
実施例1-23
例示化合物132(特定銅錯体)の合成例Y
 まず実施例1-5において、化合物Bの合成の際に用いたプロピオニルクロリドの代わりに、2-フランカルボン酸クロリドを用いて同様の反応を行い、下記構造の化合物L-7を合成した。
 H-NMR(400MHz,DMSO-d)δ1.8(s,6H)、6.8-7.3(m,4H)
Example 1-23
Synthesis example Y of exemplary compound 132 (specific copper complex)
First, in Example 1-5, the same reaction was carried out using 2-furancarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound L-7 having the following structure.
I H-NMR (400 MHz, DMSO-d 6 ) δ1.8 (s, 6H), 6.8-7.3 (m, 4H)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 実施例1-5において、合成例Eの化合物Bの代わりに化合物L-7 2.4g(10mmol)を用いて同様の反応を行い、0.7gの水色粉末として銅錯体132-1(例示化合物132)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, the same reaction was carried out using 2.4 g (10 mmol) of compound L-7 instead of compound B of Synthesis Example E, and copper complex 132-1 (exemplary compound) was prepared as 0.7 g of light blue powder. 132). The structure was confirmed from the mass spectrum of the obtained copper complex.
実施例1-24
例示化合物133(特定銅錯体)の合成例Z
 まず実施例1-5において、化合物Bの合成の際に用いたプロピオニルクロリドの代わりに、6-ヘプテンカルボン酸クロリドを用いて同様の反応を行い、下記構造の化合物Oを合成した。
Example 1-24
Synthesis example Z of exemplary compound 133 (specific copper complex)
First, in Example 1-5, the same reaction was carried out using 6-heptenecarboxylic acid chloride in place of propionyl chloride used in the synthesis of Compound B to synthesize Compound O having the following structure.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 実施例1-5において、合成例Eの化合物Bの代わりに化合物O 2.5g(10mmol)を用いて同様の反応を行い、0.8gの水色粉末として銅錯体133-1(例示化合物133)を得た。得られた銅錯体のマススペクトルより、構造を確認した。 In Example 1-5, the same reaction was carried out using 2.5 g (10 mmol) of Compound O instead of Compound B of Synthesis Example E, and copper complex 133-1 (Exemplary Compound 133) was obtained as 0.8 g of a light blue powder. Got. The structure was confirmed from the mass spectrum of the obtained copper complex.
<X線構造解析>
 以上のようにして合成された特定銅錯体のうち、銅錯体1-1、銅錯体2-1、銅錯体5-1、銅錯体107-1、銅錯体108-1、銅錯体109-1、銅錯体110-1、および銅錯体29-1に関して、X線結晶構造解析を行った。解析にはリガク社製のデスクトップ単結晶X線構造解析装置XtaLAB miniを用い、測定は23℃の条件下で行った。解析の結果得られた各種パラメータを以下に示す。なお、1Åは、0.1nmである。
<X-ray structural analysis>
Among the specific copper complexes synthesized as described above, copper complex 1-1, copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complex 108-1, copper complex 109-1, X-ray crystal structure analysis was performed on copper complex 110-1 and copper complex 29-1. For the analysis, a desktop single crystal X-ray structure analyzer XtaLAB mini manufactured by Rigaku Corporation was used, and the measurement was performed at 23 ° C. Various parameters obtained as a result of the analysis are shown below. Note that 1 mm is 0.1 nm.
銅錯体1-1
分子式:C1618CuO10
分子量:433.86
晶系 :trigonal
空間群:R-3
単位セルパラメーター:a=25.176(4)Å、c=8.955(2)Å、V=4916(2)Å
Calculated density:1.32g/cm
R値:0.07
Rw値:0.13
GOF:1.21
Copper complex 1-1
Molecular formula: C 16 H 18 CuO 10
Molecular weight: 433.86
Crystalline system: trigonal
Space group: R-3
Unit cell parameters: a = 25.176 (4) Å, c = 8.955 (2) Å, V = 4916 (2) Å 3
Calculated density: 1.32 g / cm 3
R value: 0.07
Rw value: 0.13
GOF: 1.21
 ここで、R-3は空間群の記号を表し、R値は最小二乗法の「相対残渣」を表し、Rw値は最小二乗法の「重み付き相対残渣」を表し、GOFは相関係数(Goodness of fitness)を表す。以下の銅錯体2-1、銅錯体5-1、銅錯体107-1、銅錯体108-1、109-1、銅錯体110-1、および銅錯体29-1のR値、Rw値およびGOFの定義についてもそれぞれ同じ定義である。また、銅錯体5-1、銅錯体107-1、銅錯体108-1、109-1、銅錯体110-1、および銅錯体29-1におけるP-1、P21/c、およびC2/cは、空間群の記号を表す。 Here, R-3 represents the symbol of the space group, the R value represents the “relative residue” of the least square method, the Rw value represents the “weighted relative residue” of the least square method, and GOF represents the correlation coefficient ( Goodness of fitness). R value, Rw value and GOF of the following copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complexes 108-1, 109-1, copper complex 110-1, and copper complex 29-1. The definition of is the same for each. In addition, P-1, P21 / c, and C2 / c in the copper complex 5-1, the copper complex 107-1, the copper complexes 108-1, 109-1, the copper complex 110-1, and the copper complex 29-1 are , Represents space group symbol.
銅錯体2-1
分子式:C1822CuO10
分子量:461.91
晶系 :trigonal
空間群:R-3
単位セルパラメーター:a=25.053(8)Å、c=9.171(3)Å、V=4985(3)Å
Calculated density:1.39g/cm
R値:0.06
Rw値:0.12
GOF:1.24
Copper complex 2-1
Molecular formula: C 18 H 22 CuO 10
Molecular weight: 461.91
Crystalline system: trigonal
Space group: R-3
Unit cell parameters: a = 25.053 (8) Å, c = 9.171 (3) Å, V = 4985 (3) Å 3
Calculated density: 1.39 g / cm 3
R value: 0.06
Rw value: 0.12
GOF: 1.24
銅錯体5-1
分子式:C2826CuO10
分子量:586.05
晶系 :triclinic
空間群:P-1
単位セルパラメーター:a=9.360(2)Å、b=14.777(3)Å、c=20.751(4)Å、V=2631(1)Å
Calculated density:1.48g/cm
R値:0.04
Rw値:0.10
GOF:1.06
Copper complex 5-1
Molecular formula: C 28 H 26 CuO 10
Molecular weight: 586.05
Crystalline system: triclinic
Space group: P-1
Unit cell parameters: a = 9.360 (2) Å, b = 14.777 (3) Å, c = 20.751 (4) Å, V = 2631 (1) Å 3
Calculated density: 1.48 g / cm 3
R value: 0.04
Rw value: 0.10
GOF: 1.06
銅錯体107-1
分子式:C2022CuO10
分子量:485.92
晶系 :三斜
空間群:P-1
単位セルパラメーター:a=9.299(6)Å、b=10.743(7)Å、c=10.937(7)Å、a=72.377(6)°、b=76.686(6)°、c=79.268(6)°、V=1005(1)Å
Calculated density:1.61g/cm
R値:0.05
Rw値:0.14
GOF:1.11
Copper complex 107-1
Molecular formula: C 20 H 22 CuO 10
Molecular weight: 485.92
Crystalline system: Triclinic space group: P-1
Unit cell parameters: a = 9.299 (6) Å, b = 10.743 (7) Å, c = 10.937 (7) Å, a = 72.377 (6) °, b = 76.686 ( 6) °, c = 79.268 (6) °, V = 1005 (1) Å 3
Calculated density: 1.61 g / cm 3
R value: 0.05
Rw value: 0.14
GOF: 1.11
銅錯体108-1
分子式:C182212Cu
分子量:493.9
晶系 :単斜
空間群:P21/c
単位セルパラメーター:a=10.718(5)Å、b=8.662(4)Å、c=11.479(5)Å、b=109.187(4)°、V=1006.6Å
Calculated density:1.63g/cm
R値:0.03
Rw値:0.08
GOF:1.01
Copper complex 108-1
Molecular formula: C 18 H 22 O 12 Cu
Molecular weight: 493.9
Crystalline system: Monoclinic space group: P21 / c
Unit cell parameters: a = 10.718 (5) Å, b = 8.662 (4) Å, c = 11.479 (5) Å, b = 109.187 (4) °, V = 1006.6Å 3
Calculated density: 1.63 g / cm 3
R value: 0.03
Rw value: 0.08
GOF: 1.01
銅錯体109-1
分子式:C1616BRCuO10
分子量:591.65
晶系 :単斜
空間群:C2/c
単位セルパラメーター:a=15.96(1)Å、b=7.449(6)Å、c=17.88(1)Å、a=90°、b=95.184(7)°、c=90°、V=2118(3)Å
Calculated density:2.012g/cm
R値:0.17
Rw値:0.52
GOF:2.29
Copper complex 109-1
Molecular formula: C 16 H 16 BR 2 CuO 10
Molecular weight: 591.65
Crystalline system: Monoclinic space group: C2 / c
Unit cell parameters: a = 15.96 (1) Å, b = 7.449 (6) Å, c = 17.88 (1) Å, a = 90 °, b = 95.184 (7) °, c = 90 °, V = 2118 (3) Å 3
Calculated density: 2.012 g / cm 3
R value: 0.17
Rw value: 0.52
GOF: 2.29
銅錯体110-1
分子式:C3236CuO13
分子量:692.16
晶系 :単斜
空間群:C2/c
単位セルパラメーター:a=23.007(9)Å、b=15.779(9)Å、c=17.007(8)Å、beta=92.111(6)°、V=6195(5)Å
Calculated density:1.48g/cm
R値:0.06
Rw値:0.11
GOF:0.99
Copper complex 110-1
Molecular formula: C 32 H 36 CuO 13
Molecular weight: 692.16
Crystalline system: Monoclinic space group: C2 / c
Unit cell parameters: a = 23.007 (9) Å, b = 15.779 (9) Å, c = 17.007 (8) Å, beta = 92.111 (6) °, V = 6195 (5) 3 3
Calculated density: 1.48 g / cm 3
R value: 0.06
Rw value: 0.11
GOF: 0.99
銅錯体29-1
分子式:C2226CuO10
分子量:513.98
晶系:単斜
空間群:P21/c
単位セルパラメーター:a=10.630(3)Å、b=12.571(3)Å、c=9.197(2)Å、beta=114.173(2)°、V=1121.3(5)Å
Calculated density:1.523g/cm
R値:0.04
Rw値:0.08
GOF:1.07
Copper complex 29-1
Molecular formula: C 22 H 26 CuO 10
Molecular weight: 513.98
Crystalline system: Monoclinic space group: P21 / c
Unit cell parameters: a = 10.630 (3) Å, b = 12.571 (3) Å, c = 9.197 (2) Å, beta = 114.173 (2) °, V = 1121.3 ( 5) Å 3
Calculated density: 1.523 g / cm 3
R value: 0.04
Rw value: 0.08
GOF: 1.07
 また、X線構造解析で得られた銅錯体1-1、銅錯体2-1、銅錯体5-1、銅錯体107-1、銅錯体108-1、銅錯体109-1、銅錯体110-1、および銅錯体29-1に関しての構造式を、それぞれ図2~図9に示した。
 以上の結果から、銅錯体1-1、銅錯体2-1、銅錯体5-1、銅錯体107-1、銅錯体108-1、銅錯体109-1、銅錯体110-1、および銅錯体29-1に関しては、いずれも既述の一般式1で示される錯体として得られていることが確認された。
In addition, copper complex 1-1, copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complex 108-1, copper complex 109-1, copper complex 110- obtained by X-ray structural analysis The structural formulas for 1 and copper complex 29-1 are shown in FIGS. 2 to 9, respectively.
Based on the above results, copper complex 1-1, copper complex 2-1, copper complex 5-1, copper complex 107-1, copper complex 108-1, copper complex 109-1, copper complex 110-1, and copper complex Regarding 29-1, it was confirmed that all were obtained as a complex represented by the general formula 1 described above.
<熱分解解析>
 次に、得られた銅錯体1-1を加熱することによって生じる銅錯体1-1の質量変化(TG;Thermogravimetry)、示差熱(DTA;Differential Thermal Analysis)、および揮発成分の質量(MS;Mass Spectrometry)を測定するため、示差熱重量-質量分析(TG-DTA-MS)を行った。
 測定条件は、Ar(80体積%)、O(20体積%)の雰囲気下で、2.0℃/minで室温から300℃まで昇温した。図10にTG-DTAの結果、図11にMS分析結果を、それぞれ示した。
 図10中、曲線(A)が銅錯体1-1のTG曲線であり、曲線(B)が銅錯体1-1のDTA曲線である。また、破線(C)は、銅錯体1-1からCOとアセトンが脱離した際の銅錯体1-1からの減少量;-47.1質量%を表し、破線(D)は、全ての銅錯体がCuOになったとした際の銅錯体1-1からの減少量;-83.7質量%を表す。
<Pyrolysis analysis>
Next, the mass change (TG; Thermogravimetry), differential heat (DTA; Differential Thermal Analysis), and mass of volatile components (MS; Mass) generated by heating the obtained copper complex 1-1. Differential thermogravimetry-mass spectrometry (TG-DTA-MS) was performed to measure (spectrometry).
The measurement conditions were a temperature increase from room temperature to 300 ° C. at 2.0 ° C./min in an atmosphere of Ar (80% by volume) and O 2 (20% by volume). FIG. 10 shows the results of TG-DTA, and FIG. 11 shows the results of MS analysis.
In FIG. 10, the curve (A) is a TG curve of the copper complex 1-1, and the curve (B) is a DTA curve of the copper complex 1-1. The broken line (C) represents the decrease from the copper complex 1-1 when CO 2 and acetone are desorbed from the copper complex 1-1; -47.1% by mass, and the broken line (D) is all The amount of decrease from the copper complex 1-1 when the copper complex is changed to Cu 2 O; represents −83.7% by mass.
 銅錯体1-1の質量減少は150℃~180℃と、180℃~230℃の2段階で起こり、一段階目の質量減少の際には、アセトンに起因するm/z=43(CHCO)、m/z=58(CHCOCH)のピーク、CO(m/z=44)のピーク、HO(m/z=18)のピークが確認された。メルドラム酸は、熱分解時にアセトンとCOとケテンに分解することが知られており、一段階目にメルドラム酸の熱分解が起こっていると考えられる。なお、m/zは、質量電荷比を意味する。 The mass reduction of the copper complex 1-1 occurs in two stages of 150 ° C. to 180 ° C. and 180 ° C. to 230 ° C., and in the first stage of mass reduction, m / z = 43 (CH 3 CO), m / z = 58 (CH 3 COCH 3 ) peak, CO 2 (m / z = 44) peak, and H 2 O (m / z = 18) peak were confirmed. Meldrum acid is known to decompose into acetone, CO 2 and ketene during thermal decomposition, and it is considered that the thermal decomposition of meltrum acid occurs in the first stage. In addition, m / z means mass to charge ratio.
 また、銅錯体1-1を大気中、230℃で1時間加熱した粉体の粉末X線回折測定を行った。測定にはリガク社製RINT-UltimaIIIを用いた。得られた回折パターンを図12に示す。得られたピークは全てCuO(JCPDS#05-0667)と一致した。すなわち、実施例1-1で得られた銅錯体1-1は、230℃という低温で熱分解し、CuOを形成することが確認された。 Further, powder X-ray diffraction measurement was performed on the powder obtained by heating the copper complex 1-1 in air at 230 ° C. for 1 hour. For the measurement, RINT-Ultima III manufactured by Rigaku Corporation was used. The obtained diffraction pattern is shown in FIG. All obtained peaks were consistent with Cu 2 O (JCPDS # 05-0667). That is, it was confirmed that the copper complex 1-1 obtained in Example 1-1 was thermally decomposed at a low temperature of 230 ° C. to form Cu 2 O.
 銅錯体2-1、及び銅錯体5-1に関しても同様に熱重量分析(TG)を行った。結果を図13に示す。なお、曲線(A)が銅錯体2-1のTG曲線であり、曲線(B)が銅錯体5-1のTG曲線である。銅錯体1-1同様に2段階での質量減少が見られ、いずれも300℃未満で質量減少が収束していることが確認された。 The thermogravimetric analysis (TG) was similarly performed on the copper complex 2-1 and the copper complex 5-1. The results are shown in FIG. Curve (A) is a TG curve of copper complex 2-1, and curve (B) is a TG curve of copper complex 5-1. Similar to the copper complex 1-1, mass reduction was observed in two stages, and it was confirmed that the mass reduction converged at less than 300 ° C.
 熱分解の完了については、銅錯体が分解しCuOが生じる計算値以上に質量減少が生じていること、質量減少が収束していること、DTAデータ等から昇華が起きていないことから判断した。 Completion of thermal decomposition is judged from the fact that the mass reduction is greater than the calculated value that causes the Cu complex to decompose and Cu 2 O, the mass reduction has converged, and that no sublimation has occurred from DTA data. did.
 そのほかの銅錯体のTGの結果を表13にまとめる。300℃未満で熱分解が完了したものをAで、300℃以上のものはBで示す。
 銅錯体107-1~133-1については、いずれも300℃未満で熱分解が完了した。一方、前述の特開2011-119454号公報で行った手法(具体的には特開2011-119454号公報の段落0046~0056に記載の化合物)では、熱分解温度が500℃以上であった。
Table 13 summarizes the TG results for other copper complexes. A sample whose thermal decomposition is completed at less than 300 ° C. is indicated by A, and a sample having a temperature of 300 ° C. or higher is indicated by B.
For all of the copper complexes 107-1 to 133-1, the thermal decomposition was completed at less than 300 ° C. On the other hand, the thermal decomposition temperature was 500 ° C. or higher in the method performed in the above-mentioned Japanese Patent Application Laid-Open No. 2011-119454 (specifically, the compounds described in paragraphs 0046 to 0056 of Japanese Patent Application Laid-Open No. 2011-119454).
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
実施例2
銅錯体溶液の作製
実施例2-1
 銅錯体1-1を用いて、特定溶液である銅錯体溶液1を調製した。銅錯体1-1を1.95g秤量し、常温(25℃、以下同じ)のN,N-ジメチルアセトアミド30mL中に攪拌しながら加え、30分攪拌することで、0.15mol/Lの濃青色透明溶液(銅錯体溶液1)を得た。
Example 2
Preparation Example of Copper Complex Solution Example 2-1
A copper complex solution 1 as a specific solution was prepared using the copper complex 1-1. 1.95 g of copper complex 1-1 was weighed, added to 30 mL of N, N-dimethylacetamide at room temperature (25 ° C., the same applies hereinafter) with stirring, and stirred for 30 minutes to give a dark blue color of 0.15 mol / L. A transparent solution (copper complex solution 1) was obtained.
実施例2-2
 銅錯体1-1を0.65g秤量し、90℃に加熱した2,2,3,3-テトラフルオロ-1-プロパノール30mL中に攪拌しながら加え、30分攪拌することで、0.05mol/Lの濃青色透明溶液(銅錯体溶液2)を得た。
Example 2-2
0.65 g of the copper complex 1-1 was weighed and added to 30 mL of 2,2,3,3-tetrafluoro-1-propanol heated at 90 ° C. with stirring, and stirred for 30 minutes. A dark blue transparent solution of L (copper complex solution 2) was obtained.
実施例2-3
 銅錯体1-1を0.33g秤量し、常温の2-ジエチルアミノエタノール30mL中に攪拌しながら加え、30分攪拌することで、0.025mol/Lの透明溶液(銅錯体溶液3)を得た。
Example 2-3
0.33 g of the copper complex 1-1 was weighed, added to 30 mL of normal 2-diethylaminoethanol with stirring, and stirred for 30 minutes to obtain a 0.025 mol / L transparent solution (copper complex solution 3). .
実施例2-4
 銅錯体1-1を0.65g秤量し、常温のピリジン30mL中に攪拌しながら加え、30分攪拌することで、0.05mol/Lの透明溶液(銅錯体溶液4)を得た。
Example 2-4
0.65 g of the copper complex 1-1 was weighed, added to 30 mL of normal temperature pyridine while stirring, and stirred for 30 minutes to obtain a 0.05 mol / L transparent solution (copper complex solution 4).
実施例2-5
 銅錯体1-1を0.65g秤量し、常温のテトラヒドロフラン30mL中に攪拌しながら加え、30分攪拌することで、0.05mol/Lの透明溶液(銅錯体溶液5)を得た。
Example 2-5
0.65 g of the copper complex 1-1 was weighed, added to 30 mL of normal temperature tetrahydrofuran with stirring, and stirred for 30 minutes to obtain a 0.05 mol / L transparent solution (copper complex solution 5).
実施例2-6
 銅錯体1-1と銅錯体2-1を用いて、特定溶液である銅錯体溶液6を調製した。銅錯体1-1を1.3g、銅錯体2-1を1.4g秤量し、常温のN,N-ジメチルアセトアミド30mL中に攪拌しながら加え、30分攪拌することで、銅錯体濃度が0.2mol/Lの濃青色透明溶液(銅錯体溶液6)を得た。
Example 2-6
A copper complex solution 6 as a specific solution was prepared using the copper complex 1-1 and the copper complex 2-1. 1.3 g of copper complex 1-1 and 1.4 g of copper complex 2-1 were weighed and added to 30 mL of N, N-dimethylacetamide at room temperature with stirring, and stirred for 30 minutes, so that the copper complex concentration was 0. A 2 mol / L dark blue transparent solution (copper complex solution 6) was obtained.
 同様にして、下記表14にまとめた銅錯体溶液を調製した。 Similarly, copper complex solutions summarized in Table 14 below were prepared.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
実施例3
CuO薄膜の作製
実施例3-1:基材表面がシリコン基板
 実施例2-1で作製した銅錯体溶液(銅錯体溶液1)を用いて、以下の手順でCuO薄膜を作製した。
Example 3
Preparation of Cu 2 O thin film Example 3-1: The substrate surface was a silicon substrate. Using the copper complex solution (copper complex solution 1) prepared in Example 2-1, a Cu 2 O thin film was prepared by the following procedure. .
有機銅錯体溶液塗布膜形成工程と乾燥工程
 銅錯体溶液1を、25mm四方のシリコン基板上に、3000rpmの回転速度で60秒スピンコートした後、200℃に加熱したホットプレート上で5分間乾燥させる工程を5回繰り返すことで、膜厚40nm程度の前駆体膜1(有機銅錯体膜)を得た。
Organic copper complex solution coating film forming step and drying step The copper complex solution 1 is spin-coated on a 25 mm square silicon substrate at a rotational speed of 3000 rpm for 60 seconds and then dried on a hot plate heated to 200 ° C. for 5 minutes. By repeating the process five times, a precursor film 1 (organic copper complex film) having a film thickness of about 40 nm was obtained.
加熱処理工程
 得られた前駆体薄膜1を、下記アニール温度、および下記アニール雰囲気下で加熱した。
 アニールは、200℃、230℃、250℃、280℃、300℃、または350℃の各アニール温度で行った。また、アニール雰囲気を、O/(Ar+O)流量比(体積基準)で、0(つまり、加熱処理時の炉内の酸素濃度0体積%)、0.1(酸素濃度10体積%)、0.2(酸素濃度20体積%)、0.5(酸素濃度50体積%)、0.8(酸素濃度80体積%)、または1.0(酸素濃度100体積%)と変えて、加熱処理を施した。
 なお、加熱処理は、高速熱処理装置(Allwin21社製AW-410)を用いて行い、50℃/secで所望の温度まで昇温し、3分間保持した後、炉内で冷却した。加熱処理時のガス総流量は2L/minとした。
Heat treatment process The obtained precursor thin film 1 was heated in the following annealing temperature and the following annealing atmosphere.
The annealing was performed at each annealing temperature of 200 ° C., 230 ° C., 250 ° C., 280 ° C., 300 ° C., or 350 ° C. Further, the annealing atmosphere is O 2 / (Ar + O 2 ) flow rate ratio (volume basis), 0 (that is, oxygen concentration in the furnace at the time of heat treatment 0 volume%), 0.1 (oxygen concentration 10 volume%), Heat treatment is performed by changing to 0.2 (oxygen concentration 20 vol%), 0.5 (oxygen concentration 50 vol%), 0.8 (oxygen concentration 80 vol%), or 1.0 (oxygen concentration 100 vol%). Was given.
The heat treatment was performed using a high-speed heat treatment apparatus (AW-410 manufactured by Allwin21). The temperature was raised to a desired temperature at 50 ° C./sec, held for 3 minutes, and then cooled in the furnace. The total gas flow rate during the heat treatment was 2 L / min.
 得られた各CuO薄膜について薄膜X線回折測定を行った。測定にはリガク社製RINT-UltimaIIIを用い、入射角を0.35°に固定した2θ測定にて評価を行った。
 図14に、アニール雰囲気をO/(Ar+O)=0.2(加熱処理時の炉内の酸素濃度20体積%)に固定し、200℃、230℃、250℃、280℃、300℃、または350℃の各アニール温度で加熱処理を行った薄膜のXRD(X-ray Diffraction;X線回折)パターンを示す。曲線Fで示される200℃ではピークが確認できなかった。曲線E~Cで示される230℃、250℃、及び280℃ではCuO(JDPDS#05-0667)のピークが主として確認された。
Thin film X-ray diffraction measurement was performed on each of the obtained Cu 2 O thin films. For the measurement, RINT-Ultima III manufactured by Rigaku Corporation was used, and evaluation was performed by 2θ measurement with an incident angle fixed at 0.35 °.
In FIG. 14, the annealing atmosphere is fixed at O 2 / (Ar + O 2 ) = 0.2 (oxygen concentration in the furnace during heat treatment is 20% by volume), 200 ° C., 230 ° C., 250 ° C., 280 ° C., 300 ° C. Or an XRD (X-ray Diffraction) pattern of a thin film that has been heat-treated at each annealing temperature of 350 ° C. At 200 ° C. indicated by curve F, no peak could be confirmed. The peaks of Cu 2 O (JDPDS # 05-0667) were mainly confirmed at 230 ° C., 250 ° C., and 280 ° C. indicated by curves E to C.
 図14中の(c)で示されるピークはCuO(111)の存在を表し、(d)で示されるピークはCuO(200)の存在を表す。
 また、曲線Bで示される300℃、および曲線Aで示される350℃では、CuOのピークに加えてCuO(JCPDS#48-1548)のピークが確認された。図14中の(a)で示されるピークはCuO(11-1)の存在を表し、(b)で示されるピークはCuO(111)の存在を表す。
The peak indicated by (c) in FIG. 14 represents the presence of Cu 2 O (111), and the peak indicated by (d) represents the presence of Cu 2 O (200).
Further, at 300 ° C. indicated by the curve B and 350 ° C. indicated by the curve A, a peak of CuO (JCPDS # 48-1548) was confirmed in addition to the peak of Cu 2 O. The peak indicated by (a) in FIG. 14 represents the presence of CuO (11-1), and the peak indicated by (b) represents the presence of CuO (111).
 図15にアニール温度を250℃に固定し、O/(Ar+O)=0(酸素濃度0体積%)、0.005(酸素濃度0.5体積%)、0.015(酸素濃度1.5体積%)、0.05(酸素濃度5体積%)、0.1(酸素濃度10体積%)、0.2(酸素濃度20体積%)、0.5(酸素濃度50体積%)、0.6(酸素濃度60体積%)、0.8(酸素濃度80体積%)、または1.0(酸素濃度100体積%)の各アニール雰囲気下で加熱処理を行った薄膜のXRDパターンを示す。 In FIG. 15, the annealing temperature is fixed at 250 ° C., and O 2 / (Ar + O 2 ) = 0 (oxygen concentration 0 vol%), 0.005 (oxygen concentration 0.5 vol%), 0.015 (oxygen concentration 1. 5 (vol%), 0.05 (oxygen concentration 5 vol%), 0.1 (oxygen concentration 10 vol%), 0.2 (oxygen concentration 20 vol%), 0.5 (oxygen concentration 50 vol%), 0 6 shows an XRD pattern of a thin film that has been heat-treated in each annealing atmosphere of 0.6 (oxygen concentration 60% by volume), 0.8 (oxygen concentration 80% by volume), or 1.0 (oxygen concentration 100% by volume).
 O/(Ar+O)=0.005~0.05(曲線(B)~曲線(D))に関してはCuOのピークのみが確認できた。
 O/(Ar+O)が0.1~0.5(曲線(E)~曲線(G))の範囲ではCuOのピークのみが確認された。一方、O/(Ar+O)=0.8以上(曲線(I)~曲線(J))のサンプルからは明瞭なピークが確認できなかった。また、O/(Ar+O)=0(曲線(A))では、Cu(JCPDS#04-0836)のピークが確認された。
Regarding O 2 / (Ar + O 2 ) = 0.005 to 0.05 (curve (B) to curve (D)), only the peak of Cu 2 O could be confirmed.
In the range of O 2 / (Ar + O 2 ) of 0.1 to 0.5 (curve (E) to curve (G)), only the peak of Cu 2 O was confirmed. On the other hand, no clear peak could be confirmed from the samples of O 2 / (Ar + O 2 ) = 0.8 or more (curve (I) to curve (J)). In addition, when O 2 / (Ar + O 2 ) = 0 (curve (A)), a peak of Cu (JCPDS # 04-0836) was confirmed.
 なお、図15中の(a)で示されるピークはCu(111)の存在を表し、(b)で示されるピークはCu(200)の存在を表す。また、図15中の(c)で示されるピークはCuO(111)の存在を表し、(d)で示されるピークはCuO(200)の存在を表し、(e)で示されるピークはCuO(220)の存在を表す。 In addition, the peak shown by (a) in FIG. 15 represents the presence of Cu (111), and the peak shown by (b) represents the presence of Cu (200). Further, the peak indicated by (c) in FIG. 15 represents the presence of Cu 2 O (111), the peak indicated by (d) represents the presence of Cu 2 O (200), and is indicated by (e). The peak represents the presence of Cu 2 O (220).
 O/(Ar+O)=0.6のXRDパターン(曲線(H))では明瞭なピークが確認されなかったため、CuOが得られる範囲は0.005(酸素濃度0.5体積%)≦O/(Ar+O)≦0.5(酸素濃度50体積%)であることがわかった。 In the XRD pattern (curve (H)) of O 2 / (Ar + O 2 ) = 0.6, a clear peak was not confirmed, so the range in which Cu 2 O was obtained was 0.005 (oxygen concentration 0.5 vol%) It was found that ≦ O 2 / (Ar + O 2 ) ≦ 0.5 (oxygen concentration 50% by volume).
実施例3-2
 実施例2-6で作製した銅錯体溶液(銅錯体溶液6)を用いて、CuO薄膜を作製した。
Example 3-2
A Cu 2 O thin film was produced using the copper complex solution (copper complex solution 6) produced in Example 2-6.
有機銅錯体溶液塗布膜形成工程と乾燥工程
 銅錯体溶液6を、25mm四方のシリコン基板上に、3000rpmの回転速度で60秒スピンコートした後、200℃に加熱したホットプレート上で5分間乾燥させる工程を5回繰り返すことで、膜厚40nm程度の前駆体薄膜6(有機銅錯体膜)を得た。
Organic copper complex solution coating film forming step and drying step The copper complex solution 6 is spin-coated on a 25 mm square silicon substrate at a rotational speed of 3000 rpm for 60 seconds, and then dried on a hot plate heated to 200 ° C. for 5 minutes. By repeating the process 5 times, a precursor thin film 6 (organic copper complex film) having a film thickness of about 40 nm was obtained.
加熱処理工程
 前駆体薄膜6を、アニール温度が250℃、アニール雰囲気がO/(Ar+O)流量比(体積基準)で、0.2(酸素濃度20体積%)の条件にて、加熱処理を施しCuO薄膜6を得た。
Heat treatment process The precursor thin film 6 is heat-treated under the conditions of an annealing temperature of 250 ° C. and an annealing atmosphere of O 2 / (Ar + O 2 ) flow rate ratio (volume basis) of 0.2 (oxygen concentration 20% by volume). To obtain a Cu 2 O thin film 6.
 CuO薄膜6について、同様に薄膜X線回折測定を行ったところ、CuOのピークが主として確認された。 When the thin film X-ray diffraction measurement was similarly performed on the Cu 2 O thin film 6, the peak of Cu 2 O was mainly confirmed.
 以下同様に、前駆体薄膜を作製し、前駆体薄膜6と同じ条件でCuO薄膜を作製した。結果を表15にまとめる。また、薄膜X線回折測定を行った際、CuOのピークが主として確認されたものをA、主として確認できなかったものをBで表す。CuO薄膜7~15においても、薄膜X線回折測定を行った際、主なピークがCuO由来であることが確認された。 Similarly, a precursor thin film was prepared, and a Cu 2 O thin film was prepared under the same conditions as the precursor thin film 6. The results are summarized in Table 15. In addition, when thin film X-ray diffraction measurement was performed, A in which the peak of Cu 2 O was mainly confirmed was represented by A, and B was mainly unidentified. Also in the Cu 2 O thin films 7 to 15, when thin film X-ray diffraction measurement was performed, it was confirmed that the main peak was derived from Cu 2 O.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
実施例3-3:基材表面が樹脂基板
 実施例2-1で調製した銅錯体溶液1-1を用いて、以下の手順でCuO薄膜を作製した。
 まず、基材として、25mm四方のシリコン基板上にアクリル系粘着剤を介して剥離可能に貼り付けられたポリイミド樹脂基板を有する積層基材を用意した。
 次に、銅錯体溶液1-1を、積層基材のポリイミド樹脂基板表面に、3000rpmの回転速度で60秒スピンコートした後、200℃に加熱したホットプレート上で5分間乾燥させる工程を5回繰り返すことで、膜厚40nm程度の前駆体膜2(基材つきの有機銅錯体膜)を得た。
 得られた前駆体薄膜2について、アニール温度250℃、アニール雰囲気をO/(Ar+O)=0.15とし、3分の加熱処理を施したところ、薄膜X線回折測定において、実施例3-1の結果と同様にCuOのピークのみが確認された。
Example 3-3: Base material surface is resin substrate Using the copper complex solution 1-1 prepared in Example 2-1, a Cu 2 O thin film was prepared by the following procedure.
First, a laminated base material having a polyimide resin substrate that was detachably attached to a 25 mm square silicon substrate via an acrylic adhesive was prepared as a base material.
Next, the process of spin-coating the copper complex solution 1-1 on the polyimide resin substrate surface of the laminated base material at a rotational speed of 3000 rpm for 60 seconds and then drying it on a hot plate heated to 200 ° C. for 5 minutes 5 times By repeating, the precursor film | membrane 2 (Organic copper complex film | membrane with a base material) with a film thickness of about 40 nm was obtained.
The obtained precursor thin film 2 was subjected to a heat treatment at an annealing temperature of 250 ° C. and an annealing atmosphere of O 2 / (Ar + O 2 ) = 0.15 for 3 minutes. Similar to the result of -1, only the peak of Cu 2 O was confirmed.
 以上のようにして得られたCuO薄膜は、p型半導体として機能するため、薄膜半導体デバイスに適用することができる。また、n型半導体となる部材と隣接する構成で薄膜半導体デバイスを製造することで、pn接合を有する薄膜半導体デバイスとすることができると共に、pn接合型太陽電池への適用にも適している。
 さらに、実施例3-2からわかるように、加熱温度250℃でアニールを行っても、銅酸化物薄膜であるCuO薄膜を作成することができるため、熱に弱い可撓性の樹脂基板も基材として用いることができ、フレキシブルな薄膜半導体デバイスの製造も可能であることがわかる。
Since the Cu 2 O thin film obtained as described above functions as a p-type semiconductor, it can be applied to a thin film semiconductor device. Moreover, by manufacturing a thin film semiconductor device with a configuration adjacent to a member to be an n-type semiconductor, a thin film semiconductor device having a pn junction can be obtained, and it is also suitable for application to a pn junction solar cell.
Further, as can be seen from Example 3-2, a Cu 2 O thin film, which is a copper oxide thin film, can be produced even when annealing is performed at a heating temperature of 250 ° C. It can also be used as a base material, and it can be seen that a flexible thin film semiconductor device can be manufactured.
 日本国特許出願第2012-207255号および第2013-192216号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application Nos. 2012-207255 and 2013-192216 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (17)

  1.  下記一般式1で表される構造を有する有機銅錯体。
    Figure JPOXMLDOC01-appb-C000001

     一般式1中、R11、R12、R21、およびR22は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または、炭素数3~20のヘテロアリール基を表す。R11とR21は、互いに連結して環を形成していてもよく、R12とR22は、互いに連結して環を形成していてもよい。
     R31およびR32は、それぞれ互いに同じでも異なっていてもよく、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、またはヒドロキシ基を表す。尚、R11、R12、R21、R22、R31、およびR32で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R11、R12、R21、およびR22がいずれもメチル基を表すとき、R31およびR32は、各々独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。
    An organocopper complex having a structure represented by the following general formula 1.
    Figure JPOXMLDOC01-appb-C000001

    In General Formula 1, R 11 , R 12 , R 21 , and R 22 may be the same or different from each other, and are each independently an alkyl group having 1 to 20 carbon atoms or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms. R 11 and R 21 may be connected to each other to form a ring, and R 12 and R 22 may be connected to each other to form a ring.
    R 31 and R 32 may be the same or different from each other, and each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a carbon number 2 having an unsaturated bond. Represents a non-aromatic hydrocarbon group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the groups represented by R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 may be substituted with a monovalent substituent. However, when R 11 , R 12 , R 21 , and R 22 all represent a methyl group, R 31 and R 32 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group.
  2.  前記一般式1中のR11、R12、R21、およびR22が、各々独立に、炭素数1~20のアルキル基、または炭素数6~20のアリール基を表し、R11とR21が、互いに連結して環を形成していてもよく、R12とR22が、互いに連結して環を形成していてもよく、R31およびR32が、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、またはヒドロキシ基を表す請求項1に記載の有機銅錯体。 R 11 , R 12 , R 21 , and R 22 in the general formula 1 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 11 and R 21 May be connected to each other to form a ring, R 12 and R 22 may be connected to each other to form a ring, and R 31 and R 32 are each independently a hydrogen atom, carbon 2. The organocopper complex according to claim 1, which represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a hydroxy group.
  3.  前記一般式1中のR11およびR12が同一であり、R21およびR22が同一である請求項1または請求項2に記載の有機銅錯体。 The organic copper complex according to claim 1 or 2, wherein R 11 and R 12 in the general formula 1 are the same, and R 21 and R 22 are the same.
  4.  前記一般式1中のR31およびR32が同一である請求項1~請求項3のいずれか1項に記載の有機銅錯体。 The organocopper complex according to any one of claims 1 to 3, wherein R 31 and R 32 in the general formula 1 are the same.
  5.  前記一般式1中のR11およびR12が互いに異なり、R21およびR22が互いに異なる請求項1、請求項2または請求項4に記載の有機銅錯体。 The organocopper complex according to claim 1, 2 or 4, wherein R 11 and R 12 in the general formula 1 are different from each other, and R 21 and R 22 are different from each other.
  6.  前記一般式1中のR11、R12、R21、およびR22が、各々独立に、炭素数1~4のアルキル基である請求項3~請求項5のいずれか1項に記載の有機銅錯体。 6. The organic according to any one of claims 3 to 5, wherein R 11 , R 12 , R 21 , and R 22 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms. Copper complex.
  7.  前記一般式1中のR31およびR32が、各々独立に、炭素数1~4のアルキル基、または炭素数1~4のアルコキシ基である請求項4~請求項6のいずれか1項に記載の有機銅錯体。 The R 31 and R 32 in the general formula 1 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. The organocopper complex described.
  8.  酸化銅薄膜の形成に用いられる請求項1~請求項7のいずれか1項に記載の有機銅錯体。 The organic copper complex according to any one of claims 1 to 7, which is used for forming a copper oxide thin film.
  9.  請求項1~請求項8のいずれか1項に記載の有機銅錯体と、溶媒とを含む有機銅錯体溶液。 An organic copper complex solution comprising the organic copper complex according to any one of claims 1 to 8 and a solvent.
  10.  前記有機銅錯体を、少なくとも2種含む請求項9に記載の有機銅錯体溶液。 The organocopper complex solution according to claim 9, comprising at least two of the organocopper complexes.
  11.  前記有機銅錯体の濃度が、0.01mol/L~0.3mol/Lである請求項9または請求項10に記載の有機銅錯体溶液。 The organic copper complex solution according to claim 9 or 10, wherein the concentration of the organic copper complex is 0.01 mol / L to 0.3 mol / L.
  12.  前記溶媒が、非プロトン性極性溶媒である請求項9~請求項11のいずれか1項に記載の有機銅錯体溶液。 The organic copper complex solution according to any one of claims 9 to 11, wherein the solvent is an aprotic polar solvent.
  13.  請求項9~請求項12のいずれか1項に記載の有機銅錯体溶液の塗布膜を乾燥および加熱処理して得られる銅酸化物薄膜。 A copper oxide thin film obtained by drying and heat-treating the coating film of the organocopper complex solution according to any one of claims 9 to 12.
  14.  1価の銅を少なくとも含む請求項13に記載の銅酸化物薄膜。 The copper oxide thin film according to claim 13, comprising at least monovalent copper.
  15.  請求項9~請求項12のいずれか1項に記載の有機銅錯体溶液を、基材上に塗布して、有機銅錯体溶液塗布膜を形成する有機銅錯体溶液塗布膜形成工程と、
     前記有機銅錯体溶液塗布膜を乾燥して有機銅錯体膜を得る乾燥工程と、
     前記有機銅錯体膜を、230℃以上300℃未満で加熱して、銅酸化物薄膜を形成する加熱処理工程と、
    を含む銅酸化物薄膜の製造方法。
    An organic copper complex solution coating film forming step of coating the organic copper complex solution according to any one of claims 9 to 12 on a substrate to form an organic copper complex solution coating film;
    Drying the organic copper complex solution coating film to obtain an organic copper complex film;
    The organic copper complex film is heated at 230 ° C. or higher and lower than 300 ° C. to form a copper oxide thin film,
    The manufacturing method of the copper oxide thin film containing this.
  16.  前記加熱処理工程は、酸素濃度が0.5体積%~50体積%である雰囲気下で、前記有機銅錯体膜を加熱する請求項15に記載の銅酸化物薄膜の製造方法。 16. The method for producing a copper oxide thin film according to claim 15, wherein in the heat treatment step, the organic copper complex film is heated in an atmosphere having an oxygen concentration of 0.5 volume% to 50 volume%.
  17.  下記一般式2で表され、銅イオンに配位することで請求項1~請求項8のいずれか1項に記載の有機銅錯体を構成する化合物。
    Figure JPOXMLDOC01-appb-C000002

     一般式2中、R13およびR23は、それぞれ互いに同じでも異なっていてもよく、各々独立に、炭素数1~20のアルキル基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、または炭素数3~20のヘテロアリール基を表す。R13とR23は、互いに連結して環を形成していてもよい。
     R33は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、不飽和結合を有する炭素数2~20の非芳香族炭化水素基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、またはヒドロキシ基を表す。尚、R13、R23、R33で表される上記各基のC-H結合におけるHは、一価の置換基で置換されていてもよい。ただし、R13およびR23がメチル基を表すとき、R33は、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、またはヒドロキシ基を表す。
    The compound which is represented by the following general formula 2 and forms an organocopper complex according to any one of claims 1 to 8 by coordination with a copper ion.
    Figure JPOXMLDOC01-appb-C000002

    In general formula 2, R 13 and R 23 may be the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms and a non-aromatic carbon atom having 2 to 20 carbon atoms having an unsaturated bond. A hydrogen group, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 3 to 20 carbon atoms is represented. R 13 and R 23 may be connected to each other to form a ring.
    R 33 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a non-aromatic hydrocarbon group having 2 to 20 carbon atoms having an unsaturated bond, or an aryl having 6 to 20 carbon atoms. Group, a heteroaryl group having 3 to 20 carbon atoms, or a hydroxy group. Note that H in the C—H bond of each of the above groups represented by R 13 , R 23 , and R 33 may be substituted with a monovalent substituent. However, when R 13 and R 23 represent a methyl group, R 33 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group. .
PCT/JP2013/075325 2012-09-20 2013-09-19 Organocopper complex, organocopper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound WO2014046193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157006812A KR101748050B1 (en) 2012-09-20 2013-09-19 Organocopper complex, organocopper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-207255 2012-09-20
JP2012207255 2012-09-20
JP2013192216A JP5988941B2 (en) 2012-09-20 2013-09-17 Organic copper complex, organic copper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound
JP2013-192216 2013-09-17

Publications (1)

Publication Number Publication Date
WO2014046193A1 true WO2014046193A1 (en) 2014-03-27

Family

ID=50341497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075325 WO2014046193A1 (en) 2012-09-20 2013-09-19 Organocopper complex, organocopper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound

Country Status (4)

Country Link
JP (1) JP5988941B2 (en)
KR (1) KR101748050B1 (en)
TW (1) TW201412753A (en)
WO (1) WO2014046193A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130987A (en) * 1980-12-24 1982-08-13 Isf Spa Ketohydroxyiminocephalosporins
JP2001518457A (en) * 1997-09-29 2001-10-16 ザ、プロクター、エンド、ギャンブル、カンパニー Process for the production of .BETA.-ketoester aromatic proaccords from 1,3-dioxane-4,6-diones
WO2002096915A1 (en) * 2001-05-25 2002-12-05 Samsung Fine Chemicals Co., Ltd. Process for producing optically pure δ - hydroxy-β -ketoester derivatives
JP2005173198A (en) * 2003-12-11 2005-06-30 Konica Minolta Medical & Graphic Inc Heat developable photographic sensitive material and image forming method for the same
JP2006515597A (en) * 2003-01-09 2006-06-01 アステラス製薬株式会社 Pyrrolopyridazine derivatives
JP2011119454A (en) * 2009-12-03 2011-06-16 Tftech:Kk Manufacturing method of copper-oxide (i) film having performance of p-type semiconductor and method of manufacturing solution for creating the film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451746B1 (en) * 2000-11-03 2002-09-17 Chemlink Laboratories, Llc Carrier for liquid ingredients to be used in effervescent products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130987A (en) * 1980-12-24 1982-08-13 Isf Spa Ketohydroxyiminocephalosporins
JP2001518457A (en) * 1997-09-29 2001-10-16 ザ、プロクター、エンド、ギャンブル、カンパニー Process for the production of .BETA.-ketoester aromatic proaccords from 1,3-dioxane-4,6-diones
WO2002096915A1 (en) * 2001-05-25 2002-12-05 Samsung Fine Chemicals Co., Ltd. Process for producing optically pure δ - hydroxy-β -ketoester derivatives
JP2006515597A (en) * 2003-01-09 2006-06-01 アステラス製薬株式会社 Pyrrolopyridazine derivatives
JP2005173198A (en) * 2003-12-11 2005-06-30 Konica Minolta Medical & Graphic Inc Heat developable photographic sensitive material and image forming method for the same
JP2011119454A (en) * 2009-12-03 2011-06-16 Tftech:Kk Manufacturing method of copper-oxide (i) film having performance of p-type semiconductor and method of manufacturing solution for creating the film

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIHLMAYER, G. A. ET AL.: "Cyclic acylals. XVII. Hydroxy- and aminomethylene derivatives of Meldrum's acid", MONATSHEFTE FUER CHEMIE, vol. 98, no. 3, 1967, pages 564 - 78 *
GEORGIADES, SAVVAS N. ET AL.: "Synthetic libraries of tyrosine-derived bacterial metabolites", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 10, 2008, pages 3117 - 3121 *
KNOTH, TANJA ET AL.: "The Ras Pathway Modulator Melophlin A Targets Dynamins", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 48, no. 39, 2009, pages 7240 - 7245 *
LERMER, LEONARD ET AL.: "The synthesis of P-keto lactones via cyclization of P-keto ester dianions or the cyclization of Meldrum's acid derivatives", CANADIAN JOURNAL OF CHEMISTRY, vol. 70, no. 5, 1992, pages 1427 - 45 *
LI, AN-HU E ET AL.: "Synthesis, CoMFA Analysis, and Receptor Docking of 3,5-Diacyl-2,4- Dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists", JOURNAL OF MEDICINAL CHEMISTRY, vol. 42, no. 4, 1999, pages 706 - 721 *
PEMBERTON, NILS ET AL.: "Synthesis of Multi Ring-Fused 2-Pyridones via an Acyl-Ketene Imine Cyclocondensation", ORGANIC LETTERS, vol. 8, no. 5, 2006, pages 935 - 938 *
YAMAMOTO, YUTAKA ET AL.: "1,3-Oxazines and related compounds. V. N-Acylacetylation of carboxamides with the diketene- halotrimethylsilane system or acyl Meldrum's acids", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 30, no. 10, 1982, pages 3505 - 12 *

Also Published As

Publication number Publication date
KR20150043489A (en) 2015-04-22
JP2014076987A (en) 2014-05-01
TW201412753A (en) 2014-04-01
JP5988941B2 (en) 2016-09-07
KR101748050B1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6907440B2 (en) New compounds and organic light emitting devices using them
JP5615261B2 (en) Polycyclic aromatic compounds
JP5658145B2 (en) Silylmethylpentacene compounds and compositions, and methods for their production and use
JP6080870B2 (en) Organic semiconductor material for solution process and organic semiconductor device
JP7071739B2 (en) Complex and its manufacturing method
TW202026287A (en) Dicyanopyrazine compound, a light-emitting material, a light-emitting device using the same
JPWO2006070817A1 (en) Organic boron π-electron compounds and synthetic intermediates thereof
US11401284B2 (en) Organic semiconducting material and its synthesis and organic semiconducting component with the material
KR102119409B1 (en) Transition Metal Precursors, Liquid Composition Comprising Thereof and Method For Producing Transition Metal chalcogenides Thin Film Using Same
JP5490421B2 (en) Compound, method for producing organic pigment, and method for producing organic electronic device
DE10353094A1 (en) Process for preparing linear organic thiophene-phenylene oligomers
JP5044226B2 (en) Bicycloporphyrin compound, bicyclopyrrole compound, method for producing compound, organic semiconductor and method for producing the same
JP5988941B2 (en) Organic copper complex, organic copper complex solution, copper oxide thin film, method for producing copper oxide thin film, and compound
JP5141154B2 (en) [1] Benzochalcogeno [3,2-b] [1] Compound having benzochalcogenophene skeleton and organic transistor using the same
JP5076466B2 (en) Biphenylene derivative, use thereof, and production method thereof
JP5147103B2 (en) Method for synthesizing benzometall and novel diyne compound
JP2007261961A (en) (thiophene/phenylene) cooligomer compound
DE102008037499B4 (en) Metal oxide coatings
JP2015151358A (en) Method for producing metal complex solution and thin film, metal complex, thin film, electronic element, thin-film transistor, display device, image sensor and x-ray sensor
TWI630210B (en) Precursors for the production of thin oxide layers and the use thereof
JP2017008129A (en) Surface modifier
Chukhlantseva et al. Synthesis and Physicochemical Properties of New Chalcones Containing a 2-Chloroimidazo [1, 2-a] pyridine Fragment
JP6278386B2 (en) Phthalocyanine compounds and organic semiconductor materials
JP2023519108A (en) Novel compounds and uses thereof
JP6373177B2 (en) Triarylamine compound, production method thereof, and dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839852

Country of ref document: EP

Kind code of ref document: A1