WO2014046103A1 - Semiconductor device having dual rescue detection circuit - Google Patents

Semiconductor device having dual rescue detection circuit Download PDF

Info

Publication number
WO2014046103A1
WO2014046103A1 PCT/JP2013/075087 JP2013075087W WO2014046103A1 WO 2014046103 A1 WO2014046103 A1 WO 2014046103A1 JP 2013075087 W JP2013075087 W JP 2013075087W WO 2014046103 A1 WO2014046103 A1 WO 2014046103A1
Authority
WO
WIPO (PCT)
Prior art keywords
relief
circuit
address information
circuits
detection circuit
Prior art date
Application number
PCT/JP2013/075087
Other languages
French (fr)
Japanese (ja)
Inventor
独伸 野口
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014046103A1 publication Critical patent/WO2014046103A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/785Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes

Definitions

  • the present invention relates to a device, and more particularly, to a semiconductor memory device that employs a redundancy relief method.
  • Patent Document 1 discloses an example of a semiconductor device including a plurality of electric fuse circuits.
  • a plurality of electrical fuse circuits included in a semiconductor device are used as a storage unit for storing a defective address detected by a good / defective inspection performed after the semiconductor device is assembled.
  • the inspection after the assembly includes a plurality of different tests such as a high temperature test and a low temperature test.
  • a defective address detected in each test in the plurality of different tests is written in one of the plurality of electric fuse circuits immediately after each test. For this reason, the defective address detected in the first test and written in the first electrical fuse circuit is identical to the defective address detected in the second test and written in the second electrical fuse circuit. There is a possibility of doing (double relief).
  • a semiconductor device includes a plurality of first relief determination circuits each having an electric fuse circuit used for holding first relief address information, and the plurality of first relief determination circuits. And a double relief detection circuit for detecting whether or not the same information is present in the plurality of first relief address information held by.
  • a double relief detection circuit for detecting whether or not the same information exists in the plurality of first relief address information held by the plurality of first relief judgment circuits.
  • FIG. 1 is a block diagram showing a schematic configuration of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an internal configuration of a repair determination circuit included in a determination circuit used in the semiconductor device of FIG. 1.
  • FIG. 2 is a logic circuit diagram showing an internal configuration of a double relief detection circuit used in the semiconductor device of FIG. 1. 2 is a flowchart for explaining a manufacturing process of the semiconductor device of FIG. 1; It is a logic circuit diagram which shows the internal structure of the double relief detection circuit used for the semiconductor device which concerns on the 2nd Embodiment of this invention.
  • a DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • PRAM Phase change (Random Access memory)
  • flash memory etc.
  • FIG. 1 shows a block diagram of a semiconductor device (DRAM chip) 10 according to a first embodiment of the present invention.
  • the illustrated semiconductor device 10 includes a command input circuit 101, an address input circuit 102, an internal clock generation circuit 103, a command decoder 104, a determination circuit 105, a row predecoder 106, a double relief detection circuit 107, a row decoder 108, and a column decoder 109.
  • the command input circuit 101 receives a command signal (/ CS, / RAS, / CAS, / WE (“/” indicates low active)) input to the command input terminal, and outputs it to the command decoder 104.
  • a command signal (/ CS, / RAS, / CAS, / WE (“/” indicates low active)
  • the address input circuit 102 receives an address signal (ADD0 to ADD13) input to the address input terminal and outputs it to each unit.
  • the internal clock generation circuit 103 receives an external clock CLK supplied from the outside, generates an internal clock ICLK, and supplies it to each unit.
  • the command decoder 104 receives a command signal from the command input circuit 101, decodes the command signal, and supplies an internal command to each unit.
  • the determination circuit 105 includes a plurality of relief determination circuits. As will be described later, when the address indicated by the information stored therein matches the address indicated by the address signal from the address input circuit 102, the plurality of relief determination circuits output a match (HIT) signal.
  • HIT match
  • the row predecoder 106 outputs a prerow address for selecting the word line WL based on the row address signal that is a part of the address signal from the address input circuit 102.
  • a redundant address corresponding to the HIT signal is output regardless of the row address signal from the address input circuit 102.
  • the double relief detection circuit 107 outputs a simultaneous selection negate signal to the column decoder 109 when two or more HIT signals are simultaneously output from the determination circuit 105.
  • the row decoder 108 selectively drives one of the plurality of word lines WL based on the internal command from the command decoder 104 and the pre-row address from the row pre-decoder 106.
  • the column decoder 109 is a switch element connected between each of the plurality of bit lines BL and a local IO line (not shown) in response to a column address signal that is a part of an address signal from the address input circuit 102.
  • a Y switch (YS) signal for controlling is output. When the simultaneous selection negate signal from the double relief detection circuit 107 is input, the YS signal is not output.
  • the memory cell array 110 is connected to a plurality of word lines WL, a plurality of bit lines BL, a plurality of memory cells MC arranged to be connected to the word lines WL and the bit lines BL, and each bit line. And a sense amplifier array including a plurality of sense amplifiers SA.
  • the memory cell array 110 writes information inputted from the outside to the memory cell MC selected by the row decoder 108 and the column decoder 109, reads the information written in the memory cell MC, and outputs it to the outside.
  • the data amplifier circuit 111 amplifies data exchanged between the memory cell array 110 and the data input / output circuit 112.
  • the data input / output circuit 112 receives the data DQ0 to DQn input to the data terminals in the write mode and outputs them to the data amplifier circuit 111.
  • the data input / output circuit 112 outputs data read from the memory cell array 110 and amplified by the data amplifier circuit 111 to the data terminal in the read mode.
  • the present invention particularly relates to the determination circuit 105 and the double relief detection circuit 107.
  • Other configurations are the same as those of a known semiconductor device.
  • the double relief detection circuit 107 operates significantly in a test (double relief detection test described later) included in the semiconductor manufacturing process. In the normal mode, the double relief detection circuit 107 operates so as not to hinder the same operation as a known semiconductor device.
  • the plurality of repair determination circuits included in the determination circuit 105 are configured as shown in FIG. That is, the repair determination circuit 20 includes a fuse circuit 201 and a comparison circuit 202.
  • the fuse circuit 201 has a plurality of fuse elements 203.
  • the fuse circuit 201 stores information, that is, relief address information (code or number) by cutting / not cutting the plurality of fuse elements 203.
  • As the fuse element 203 an electric fuse (or antifuse) element that can be electrically cut (or conducted) or a laser fuse element that can be cut by laser trimming can be used.
  • the semiconductor device 10 of FIG. 1 uses two repair determination circuits EFUSE 1 and 2 (first repair determination circuit) using an electrical fuse circuit including an electrical fuse element, and a laser fuse circuit 1 including a laser fuse element.
  • Individual repair determination circuits LASER second repair determination circuits).
  • the relief determination circuits EFUSE1 and EFUSE1 and EFUSE2 can be used, for example, to store a (first) relief address detected by a test performed after the semiconductor device 10 is assembled.
  • the repair determination circuit LASER can be used, for example, to store a (second) repair address detected by a test performed before the semiconductor device 10 is assembled.
  • the comparison circuit 202 compares the repair address stored in the fuse circuit 201 with the row address input to the repair determination circuit 20, and outputs a HIT signal if they match.
  • FIG. 3 shows the internal configuration of the double relief detection circuit 107.
  • the double relief detection circuit 107 includes a first detection circuit 301, a second detection circuit 302, and a third detection circuit 303.
  • the first detection circuit 301 includes a first AND circuit that calculates a logical product of the outputs of the two relief determination circuits EFUSE 1 and EFUSE 1.
  • the first detection circuit 301 outputs a first detection signal when the HIT signals A and B are simultaneously output from the two relief determination circuits EFUSE1 and EFUSE1.
  • This first detection signal indicates that the same repair address information is written in the repair determination circuits EFUSE 1 and EFUSE 2. That is, the first detection circuit 301 detects whether or not the same relief address information is written in the relief determination circuits EFUSE1 and EFUSE1.
  • the second detection circuit 302 calculates the logical product of the first OR circuit that calculates the logical sum of the outputs of the two repair determination circuits EFUSE1 and EFUSE1, and the output of the first OR circuit and the output of the repair determination circuit LASER. Second AND circuit.
  • the second detection circuit 302 When the HIT signal C is output from the repair determination circuit LASER, the second detection circuit 302 outputs the second signal when the hit signal A and / or B is output from at least one of the two repair determination circuits EFUSE1,2.
  • a detection signal is output.
  • the second detection signal indicates that the same repair address as the repair address information written in the repair determination circuit LASER is written in at least one of the repair determination circuits EFUSE1 and EFUSE1. That is, the second detection circuit 302 detects whether or not the same relief address information as the relief address information written in the relief determination circuit LASER is written in either of the relief determination circuits EFUSE1 and EFUSE1.
  • the third detection circuit 303 outputs a simultaneous selection negate signal when at least one of the first detection signal from the first detection circuit 301 and the second detection signal from the second detection circuit 302 is output. To do.
  • FIG. 4 is a flowchart of a non-defective / defective product selection process included in the manufacturing process of the semiconductor device 10. Writing of the repair address to the repair determination circuit included in the determination circuit 105 is performed in this selection step.
  • a pre-assembly test is performed on the wafer-state semiconductor device 10 obtained by the previous process (wafer process) (step S401) (step S402). Multiple tests are included in the pre-assembly test. These plural types of tests are continuously performed using a single tester (PW tester), and each result (defective address information) is passed on to the next test. Based on the test results obtained after all the tests are completed, the defective dress information is written as the repair address information in the repair determination circuit LASER using the laser trimming apparatus (step S403). In this embodiment, since there is one repair determination circuit LASER provided with a laser fuse element, defective address information detected first is written as repair address information.
  • FIG. 4 shows an example in which the row address “1111h” is written.
  • the semiconductor device 10 may include a plurality of repair determination circuits LASER.
  • the same relief address is not written to two or more relief judgment circuits LASER.
  • the relief address information written in each of the plurality of relief judgment circuits LASER is different from each other, and there is no possibility that double relief occurs. This is because in the pre-assembly test, the result of each test is taken over by the next test, so that the same address is not duplicated and detected as a defective address.
  • step S404 a post-process is performed to package the semiconductor device 10 (step S404). This makes it impossible to write information to the repair determination circuit LASER using the laser trimming apparatus. Therefore, the defective address information detected by the test included in the subsequent post-assembly sorting process is written in the repair determination circuit EFUSE having an electric fuse.
  • a test is performed using a tester for package memory.
  • a high temperature test is performed (step S405).
  • the first defective address detected by the high temperature test is written as a repair address in the repair determination circuit EFUSE1 (step S406).
  • the repair determination circuit EFUSE2 is not assigned for a later low temperature test, the second detected defective address is written in the repair determination circuit EFUSE2.
  • the row address “0000h” is written in the repair determination circuit EFUSE1.
  • step S407 a stress test is performed (step S407), followed by a low temperature test (step S408). Then, the defective address first obtained by the low-temperature test is written in the relief determination circuit EFUSE2 as a relief address (step S409).
  • the tester for package memory is not configured to take over the result of each test to the next test. Therefore, the results of each test are independent, and the same defective address may be detected in different tests.
  • the relief address written in the relief determination circuit EFUSE1 based on the result of the high temperature test may coincide with the relief address written in the relief determination circuit EFUSE2 based on the result of the low temperature test. For example, the row address “0000h” is written in the relief determination circuit EFUSE2 under the above assumption.
  • the double relief detection circuit 107 is provided in the semiconductor device 10 so that it can be confirmed whether or not double relief has occurred. Then, using this configuration, a double relief detection test is performed (step S410).
  • the determination circuit 105 receives an address signal that sequentially designates all addresses. For example, if the address information is 4 bits, address information of 0000h to 1111h is generated by the tester and sequentially input to the determination circuit 105 through the address input circuit 102.
  • the HIT signals A and B are activated when the address “0000 h” is received from the address input circuit 102.
  • the first detection circuit 301 of the double repair detection circuit 107 detects that both the HIT signals A and B from the repair determination circuits EFUSE1 and EFUSE are activated, and outputs a first detection signal.
  • the first detection signal is supplied to the column decoder 109 through the third detection circuit 303 as a simultaneous selection negate signal.
  • the column decoder 109 masks the YS signal at the time of reading according to the simultaneous selection negate signal. As a result, the read data is not output to the data amplifier circuit 111, and the tester cannot perform the data read, so that it is possible to recognize that double relief has occurred.
  • the second detection circuit 302 detects the HIT signal C and the HIT signal. It detects that at least one of A and B is activated, and outputs a second detection signal.
  • the second detection signal is supplied as a simultaneous selection negate signal to the column decoder 109 through the third detection circuit 303. As a result, the tester can recognize that double relief has occurred.
  • the double relief detection circuit 107 operates even during normal operation, but different relief addresses are written in a plurality of relief determination circuits included in the determination circuit 105 of the semiconductor device 10 determined to be non-defective. Therefore, the simultaneous selection negate signal is not output. Therefore, the semiconductor device 10 operates normally.
  • the semiconductor device 10 is discarded (step S420).
  • one or both of the repair determination circuits EFUSE1 and EFUSE2 may be disabled, and the state where the same repair address is written in two or more repair determination circuits may be eliminated. Further, in the state where the same repair address is written in the repair determination circuits EFUSE1 and EFUSE3 and there is an unused repair determination circuit EFUSE3, both the repair determination circuits EFUSE1 and 2 are disabled, The relief address information that has been written to may be rewritten to the relief judgment circuit EFUSE3.
  • a high temperature test and a room temperature test are performed on the semiconductor device 10 (steps S411 and S412). If these tests are passed, the semiconductor device 10 is determined to be a good product and shipped as a product (step S413).
  • the double relief detection circuit 107 outputs a simultaneous selection negate signal when the same relief address is written in a plurality of relief judgment circuits included in the judgment circuit 105. As a result, output of data read from the memory cell array 110 to the data amplifier circuit 111 is blocked. As a result, the tester cannot read data and can confirm that double relief has occurred.
  • the semiconductor device 10 can confirm the occurrence of double relief.
  • the semiconductor device according to the present embodiment is different from the determination circuit 105 and the double relief detection circuit 107 of the semiconductor device 10 according to the first embodiment in that a decision circuit 105-1 and a double relief detection circuit shown in FIG. The difference is that 107-1 is provided. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.
  • the determination circuit 105-1 includes two repair determination circuits LASER1 and 2 each including a laser fuse element, and two repair determination circuits EFUSE1 and 2 each including an electric fuse element. Including.
  • the double relief detection circuit 107-1 further includes a (second) OR circuit for calculating the logical sum of the outputs of the relief determination circuits LASER1 and LASER2. is doing.
  • the HIT signals A and B are activated.
  • a detection signal is output from the first detection circuit 301, and a simultaneous selection negate signal is output from the third detection circuit 303 to the column decoder 109.
  • the HIT signals A and B are activated when the address is “0000 h” from the address input circuit 102.
  • a detection signal is output from the first detection circuit, and a simultaneous selection negate signal is output from the third detection circuit 303.
  • either of the HIT signals A and B is used. One or both of them and either one of the HIT signals C1 and C2 are activated. As a result, a detection signal is output from the second detection circuit 302, and a simultaneous selection negate signal is output from the third detection circuit 303 to the column decoder 109.
  • the HIT signal C1 is activated when the address is “0000h” from the address input circuit 102.
  • the HIT signals A and B are also activated, a detection signal is output from the second detection circuit, and a simultaneous selection negate signal is output from the third detection circuit 303. Note that it is apparent from the configuration that if one of the HIT signals A and B is activated, a detection signal is output from the second detection circuit.
  • the determination circuit includes both the repair determination circuit EFUSE including the electrical fuse element and the repair determination circuit LASER including the laser fuse element has been described.
  • the determination circuit includes any one repair determination circuit. It may be a thing.
  • the number of relief determination circuits including laser fuse elements is 1 or 2, but may be 3 or more.
  • the number of relief determination circuits including electrical fuse elements may be three or more.
  • the configuration of the double relief detection circuit becomes complicated depending on the number of relief judgment circuits, but can be easily realized by a combination of an AND circuit and an OR circuit.

Abstract

A semiconductor device includes a plurality of first rescue determination circuits having electric fuse circuits, each of which is used for holding first rescue address information; and a dual rescue detection circuit that detects whether or not identical pieces of information exist in a plurality of pieces of the first rescue address information that are respectively held by the first rescue determination circuits.

Description

[規則37.2に基づきISAが決定した発明の名称] 二重救済検出回路を有する半導体装置[Title of Invention Determined by ISA Based on Rule 37.2] Semiconductor Device with Double Relief Detection Circuit
 本発明は、装置に関し、特に、冗長救済方式を採用する半導体記憶装置に関する。 The present invention relates to a device, and more particularly, to a semiconductor memory device that employs a redundancy relief method.
 特許文献1には、複数の電気ヒューズ回路を備える半導体装置の一例が開示されている。 Patent Document 1 discloses an example of a semiconductor device including a plurality of electric fuse circuits.
特開2005-259890号公報JP 2005-259890 A
 半導体装置に含まれる複数の電気ヒューズ回路は、その半導体装置の組み立て後に行われる良/不良検査によって検出された不良アドレスを記憶する記憶部として利用される。 A plurality of electrical fuse circuits included in a semiconductor device are used as a storage unit for storing a defective address detected by a good / defective inspection performed after the semiconductor device is assembled.
 組み立て後の検査には、例えば、高温試験及び低温試験というように、互いに異なる複数の試験が含まれる。 The inspection after the assembly includes a plurality of different tests such as a high temperature test and a low temperature test.
 通常、当該異なる複数の試験における各試験で検出された不良アドレスは、各試験の直後に複数の電気ヒューズ回路のいずれかに書き込まれる。このため、第1の試験で検出され、第1の電気ヒューズ回路に書き込まれた不良アドレスと、第2の試験で検出され、第2の電気ヒューズ回路に書き込まれた不良アドレスとが、互いに一致する(二重救済の)可能性がある。 Normally, a defective address detected in each test in the plurality of different tests is written in one of the plurality of electric fuse circuits immediately after each test. For this reason, the defective address detected in the first test and written in the first electrical fuse circuit is identical to the defective address detected in the second test and written in the second electrical fuse circuit. There is a possibility of doing (double relief).
 このような二重救済は、半導体装置の正常な動作を妨げるという問題点がある。 Such double remedy has a problem that it prevents normal operation of the semiconductor device.
 本発明の一実施の形態に係る半導体装置は、各々が第1の救済アドレス情報の保持に用いられる電気ヒューズ回路を有する複数の第1の救済判定回路と、前記複数の第1の救済判定回路が保持する複数の第1の救済アドレス情報の中に同一の情報が存在するか否かを検出する二重救済検出回路と、を備えている。 A semiconductor device according to an embodiment of the present invention includes a plurality of first relief determination circuits each having an electric fuse circuit used for holding first relief address information, and the plurality of first relief determination circuits. And a double relief detection circuit for detecting whether or not the same information is present in the plurality of first relief address information held by.
 本発明によれば、半導体装置が、複数の第1の救済判定回路が保持する複数の第1の救済アドレス情報の中に同一の情報が存在するか否かを検出する二重救済検出回路を備えることで、二重救済の発生の有無を確認することができる。 According to the present invention, there is provided a double relief detection circuit for detecting whether or not the same information exists in the plurality of first relief address information held by the plurality of first relief judgment circuits. By providing, it is possible to confirm whether double relief has occurred.
本発明の第1の実施の形態に係る半導体装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a semiconductor device according to a first embodiment of the present invention. 図1の半導体装置に用いられる判定回路に含まれる救済判定回路の内部構成を示すブロック図である。FIG. 2 is a block diagram illustrating an internal configuration of a repair determination circuit included in a determination circuit used in the semiconductor device of FIG. 1. 図1の半導体装置に用いられる二重救済検出回路の内部構成を示す論理回路図である。FIG. 2 is a logic circuit diagram showing an internal configuration of a double relief detection circuit used in the semiconductor device of FIG. 1. 図1の半導体装置の製造工程を説明するためのフローチャートである。2 is a flowchart for explaining a manufacturing process of the semiconductor device of FIG. 1; 本発明の第2の実施の形態に係る半導体装置に用いられる二重救済検出回路の内部構成を示す論理回路図である。It is a logic circuit diagram which shows the internal structure of the double relief detection circuit used for the semiconductor device which concerns on the 2nd Embodiment of this invention.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。ここでは、半導体装置としてDRAM(Dynamic Random Access Memory)を例示するが、これに限らず、本発明は、冗長救済方式を採用する他の半導体装置、例えば、SRAM(Static Random Access Memory),PRAM(Phase change Random Access Memory),フラッシュメモリ等にも適用可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, a DRAM (Dynamic Random Access Memory) is exemplified as a semiconductor device, but the present invention is not limited to this, and the present invention is not limited to this, but other semiconductor devices adopting a redundancy relief method, for example, SRAM (Static Random Access Memory), PRAM ( Phase change (Random Access memory), flash memory, etc.
 図1に、本発明の第1の実施の形態に係る半導体装置(DRAMチップ)10のブロック図を示す。 FIG. 1 shows a block diagram of a semiconductor device (DRAM chip) 10 according to a first embodiment of the present invention.
 図示の半導体装置10は、コマンド入力回路101、アドレス入力回路102、内部クロック発生回路103、コマンドデコーダ104、判定回路105、ロウプリデコーダ106、二重救済検出回路107、ロウデコーダ108、カラムデコーダ109、メモリセルアレイ110、データアンプ回路111、及びデータ入出力回路112を含む。 The illustrated semiconductor device 10 includes a command input circuit 101, an address input circuit 102, an internal clock generation circuit 103, a command decoder 104, a determination circuit 105, a row predecoder 106, a double relief detection circuit 107, a row decoder 108, and a column decoder 109. A memory cell array 110, a data amplifier circuit 111, and a data input / output circuit 112.
 コマンド入力回路101は、コマンド入力端子に入力されるコマンド信号(/CS,/RAS,/CAS,/WE(“/”はローアクティブを表す。))を受け取り、コマンドデコーダ104へ出力する。 The command input circuit 101 receives a command signal (/ CS, / RAS, / CAS, / WE (“/” indicates low active)) input to the command input terminal, and outputs it to the command decoder 104.
 アドレス入力回路102は、アドレス入力端子に入力されるアドレス信号(ADD0~ADD13)を受け取り、各部へ出力する。 The address input circuit 102 receives an address signal (ADD0 to ADD13) input to the address input terminal and outputs it to each unit.
 内部クロック発生回路103は、外部から供給される外部クロックCLKを受け、内部クロックICLKを発生し各部へ供給する。 The internal clock generation circuit 103 receives an external clock CLK supplied from the outside, generates an internal clock ICLK, and supplies it to each unit.
 コマンドデコーダ104は、コマンド入力回路101からのコマンド信号を受け取り、コマンド信号をデコードして内部コマンドを各部へ供給する。 The command decoder 104 receives a command signal from the command input circuit 101, decodes the command signal, and supplies an internal command to each unit.
 判定回路105は、複数の救済判定回路を含む。後述するように、複数の救済判定回路は各々が記憶する情報が示すアドレスとアドレス入力回路102からのアドレス信号が示すアドレスとが一致すると一致(HIT)信号を出力する。 The determination circuit 105 includes a plurality of relief determination circuits. As will be described later, when the address indicated by the information stored therein matches the address indicated by the address signal from the address input circuit 102, the plurality of relief determination circuits output a match (HIT) signal.
 ロウプリデコーダ106は、アドレス入力回路102からのアドレス信号の一部であるロウアドレス信号に基づいてワード線WLを選択するためのプリロウアドレスを出力する。判定回路105からのHIT信号が入力されている場合は、アドレス入力回路102からのロウアドレス信号にかかわらず、HIT信号に対応する冗長アドレスを出力する。 The row predecoder 106 outputs a prerow address for selecting the word line WL based on the row address signal that is a part of the address signal from the address input circuit 102. When the HIT signal from the determination circuit 105 is input, a redundant address corresponding to the HIT signal is output regardless of the row address signal from the address input circuit 102.
 二重救済検出回路107は、判定回路105から同時に2以上のHIT信号が出力された場合に、カラムデコーダ109に対して同時選択ネゲート信号を出力する。 The double relief detection circuit 107 outputs a simultaneous selection negate signal to the column decoder 109 when two or more HIT signals are simultaneously output from the determination circuit 105.
 ロウデコーダ108は、コマンドデコーダ104からの内部コマンド及びロウプリデコーダ106からのプリロウアドレスとに基づいて、複数のワード線WLのうちの一つを選択的に駆動する。 The row decoder 108 selectively drives one of the plurality of word lines WL based on the internal command from the command decoder 104 and the pre-row address from the row pre-decoder 106.
 カラムデコーダ109は、アドレス入力回路102からのアドレス信号の一部であるカラムアドレス信号に応じて、複数のビット線BLの各々とローカルIO線(図示せず)との間に接続されたスイッチ素子を制御するYスイッチ(YS)信号を出力する。二重救済検出回路107からの同時選択ネゲート信号が入力されている場合には、YS信号の出力を行わない。 The column decoder 109 is a switch element connected between each of the plurality of bit lines BL and a local IO line (not shown) in response to a column address signal that is a part of an address signal from the address input circuit 102. A Y switch (YS) signal for controlling is output. When the simultaneous selection negate signal from the double relief detection circuit 107 is input, the YS signal is not output.
 メモリセルアレイ110は、複数のワード線WLと、複数のビット線BLと、これらワード線WL及びビット線BLに接続されるように配列形成された複数のメモリセルMCと、各ビット線に接続された複数のセンスアンプSAを含むセンスアンプ列とを含む。メモリセルアレイ110は、ロウデコーダ108及びカラムデコーダ109により選択されたメモリセルMCに外部から入力される情報を書き込み、又メモリセルMCに書き込まれた情報を読み出して外部へ出力する。 The memory cell array 110 is connected to a plurality of word lines WL, a plurality of bit lines BL, a plurality of memory cells MC arranged to be connected to the word lines WL and the bit lines BL, and each bit line. And a sense amplifier array including a plurality of sense amplifiers SA. The memory cell array 110 writes information inputted from the outside to the memory cell MC selected by the row decoder 108 and the column decoder 109, reads the information written in the memory cell MC, and outputs it to the outside.
 データアンプ回路111は、メモリセルアレイ110とデータ入出力回路112との間でやり取りされるデータを増幅する。 The data amplifier circuit 111 amplifies data exchanged between the memory cell array 110 and the data input / output circuit 112.
 データ入出力回路112は、ライトモード時においてデータ端子に入力されるデータDQ0~DQnを受けて、データアンプ回路111へ出力する。また、データ入出力回路112は、リードモード時においてメモリセルアレイ110から読み出されデータアンプ回路111で増幅されたデータをデータ端子へ出力する。 The data input / output circuit 112 receives the data DQ0 to DQn input to the data terminals in the write mode and outputs them to the data amplifier circuit 111. The data input / output circuit 112 outputs data read from the memory cell array 110 and amplified by the data amplifier circuit 111 to the data terminal in the read mode.
 以上のように構成された半導体装置10において、本発明は、特に判定回路105及び二重救済検出回路107に関する。他の構成については、公知の半導体装置と同様である。また、二重救済検出回路107は、半導体製造工程に含まれる試験(後述する二重救済検出試験)において有意に動作する。通常モード時において、二重救済検出回路107は、公知の半導体装置と同様の動作を妨げないように動作する。 In the semiconductor device 10 configured as described above, the present invention particularly relates to the determination circuit 105 and the double relief detection circuit 107. Other configurations are the same as those of a known semiconductor device. The double relief detection circuit 107 operates significantly in a test (double relief detection test described later) included in the semiconductor manufacturing process. In the normal mode, the double relief detection circuit 107 operates so as not to hinder the same operation as a known semiconductor device.
 以下、判定回路105及び二重救済検出回路107について詳述する。 Hereinafter, the determination circuit 105 and the double relief detection circuit 107 will be described in detail.
 判定回路105に含まれる複数の救済判定回路は、図2に示すように構成される。即ち、救済判定回路20は、ヒューズ回路201と比較回路202とを含む。そして、ヒューズ回路201は、複数のヒューズ素子203を有している。 The plurality of repair determination circuits included in the determination circuit 105 are configured as shown in FIG. That is, the repair determination circuit 20 includes a fuse circuit 201 and a comparison circuit 202. The fuse circuit 201 has a plurality of fuse elements 203.
 ヒューズ回路201は、複数のヒューズ素子203の切断/非切断により情報、即ち、救済アドレス情報(符号又は番号)、を記憶する。ヒューズ素子203としては、電気的に切断(又は導通)可能な電気ヒューズ(又はアンチヒューズ)素子又はレーザートリミングによって切断可能なレーザーヒューズ素子を用いることができる。図1の半導体装置10は、電気ヒューズ素子を含む電気ヒューズ回路を用いた2個の救済判定回路EFUSE1,2(第1の救済判定回路)と、レーザーヒューズ素子を含むレーザーヒューズ回路を用いた1個の救済判定回路LASER(第2の救済判定回路)とを有している。 The fuse circuit 201 stores information, that is, relief address information (code or number) by cutting / not cutting the plurality of fuse elements 203. As the fuse element 203, an electric fuse (or antifuse) element that can be electrically cut (or conducted) or a laser fuse element that can be cut by laser trimming can be used. The semiconductor device 10 of FIG. 1 uses two repair determination circuits EFUSE 1 and 2 (first repair determination circuit) using an electrical fuse circuit including an electrical fuse element, and a laser fuse circuit 1 including a laser fuse element. Individual repair determination circuits LASER (second repair determination circuits).
 救済判定回路EFUSE1,2は、例えば、半導体装置10の組み立て後に行われる試験によって検出された(第1の)救済アドレスを記憶するために用いることができる。他方、救済判定回路LASERは、例えば、半導体装置10の組み立て前に行われる試験によって検出された(第2の)救済アドレスを記憶するために用いることができる。 The relief determination circuits EFUSE1 and EFUSE1 and EFUSE2 can be used, for example, to store a (first) relief address detected by a test performed after the semiconductor device 10 is assembled. On the other hand, the repair determination circuit LASER can be used, for example, to store a (second) repair address detected by a test performed before the semiconductor device 10 is assembled.
 比較回路202は、ヒューズ回路201に記憶された救済アドレスと、救済判定回路20へ入力されるロウアドレスとを比較し、一致した場合にHIT信号を出力する。 The comparison circuit 202 compares the repair address stored in the fuse circuit 201 with the row address input to the repair determination circuit 20, and outputs a HIT signal if they match.
 図3に二重救済検出回路107の内部構成を示す。 FIG. 3 shows the internal configuration of the double relief detection circuit 107.
 図3に示すように、二重救済検出回路107は、第1の検出回路301、第2の検出回路302及び第3の検出回路303を含む。 As shown in FIG. 3, the double relief detection circuit 107 includes a first detection circuit 301, a second detection circuit 302, and a third detection circuit 303.
 第1の検出回路301は、2つの救済判定回路EFUSE1,2の出力の論理積を求める第1のアンド回路を含む。第1の検出回路301は、2つの救済判定回路EFUSE1,2から同時にHIT信号A,Bが出力されたとき、第1の検出信号を出力する。この第1の検出信号は、救済判定回路EFUSE1,2に同一の救済アドレス情報が書き込まれていることを表す。つまり、第1の検出回路301は、救済判定回路EFUSE1,2に同一の救済アドレス情報が書き込まれているか否かを検出する。 The first detection circuit 301 includes a first AND circuit that calculates a logical product of the outputs of the two relief determination circuits EFUSE 1 and EFUSE 1. The first detection circuit 301 outputs a first detection signal when the HIT signals A and B are simultaneously output from the two relief determination circuits EFUSE1 and EFUSE1. This first detection signal indicates that the same repair address information is written in the repair determination circuits EFUSE 1 and EFUSE 2. That is, the first detection circuit 301 detects whether or not the same relief address information is written in the relief determination circuits EFUSE1 and EFUSE1.
 第2の検出回路302は、2つの救済判定回路EFUSE1,2の出力の論理和を求める第1のオア回路と、第1のオア回路の出力と救済判定回路LASERの出力との論理積を求める第2のアンド回路とを含む。第2の検出回路302は、救済判定回路LASERからHIT信号Cが出力されたとき、2つの救済判定回路EFUSE1,2のうち少なくとも一方からヒット信号A及び/又はBが出力されると第2の検出信号を出力する。この第2の検出信号は、救済判定回路EFUSE1,2の少なくとも一方に、救済判定回路LASERに書き込まれた救済アドレス情報と同一の救済アドレスが書き込まれていることを表す。つまり、第2の検出回路302は、救済判定回路EFUSE1,2のいずれかに救済判定回路LASERに書き込まれた救済アドレス情報と同一の救済アドレス情報が書き込まれているか否かを検出する。 The second detection circuit 302 calculates the logical product of the first OR circuit that calculates the logical sum of the outputs of the two repair determination circuits EFUSE1 and EFUSE1, and the output of the first OR circuit and the output of the repair determination circuit LASER. Second AND circuit. When the HIT signal C is output from the repair determination circuit LASER, the second detection circuit 302 outputs the second signal when the hit signal A and / or B is output from at least one of the two repair determination circuits EFUSE1,2. A detection signal is output. The second detection signal indicates that the same repair address as the repair address information written in the repair determination circuit LASER is written in at least one of the repair determination circuits EFUSE1 and EFUSE1. That is, the second detection circuit 302 detects whether or not the same relief address information as the relief address information written in the relief determination circuit LASER is written in either of the relief determination circuits EFUSE1 and EFUSE1.
 第3の検出回路303は、第1の検出回路301からの第1の検出信号及び第2の検出回路302からの第2の検出信号の少なくとも一方が出力されたとき、同時選択ネゲート信号を出力する。 The third detection circuit 303 outputs a simultaneous selection negate signal when at least one of the first detection signal from the first detection circuit 301 and the second detection signal from the second detection circuit 302 is output. To do.
 次に、半導体装置10の製造工程に含まれる良品/不良品選別工程について説明し、併せて試験時の半導体装置10、特に二重救済検出回路107の動作について説明する。 Next, the non-defective / defective product selection process included in the manufacturing process of the semiconductor device 10 will be described, and the operation of the semiconductor device 10 at the time of the test, in particular, the double relief detection circuit 107 will be described.
 図4は、半導体装置10の製造工程に含まれる良品/不良品選別工程のフローチャートである。判定回路105に含まれる救済判定回路への救済アドレスの書込みは、この選別工程において実施される。 FIG. 4 is a flowchart of a non-defective / defective product selection process included in the manufacturing process of the semiconductor device 10. Writing of the repair address to the repair determination circuit included in the determination circuit 105 is performed in this selection step.
 まず、前工程(ウエハープロセス)(ステップS401)により得られたウエハー状態の半導体装置10に対して、組み立て前テストを実施する(ステップS402)。組み立て前テストには複数種類のテストが含まれる。これら複数種類のテストは、単一のテスタ(PWテスタ)を用いて連続して行われ、各々の結果(不良アドレス情報)は、次のテストへと引き継がれる。全テストが終了した後に得られたテスト結果に基づき、レーザートリミング装置を用いて、救済判定回路LASERに不良ドレス情報を救済アドレス情報として書き込む(ステップS403)。本実施の形態では、レーザヒューズ素子を備える救済判定回路LASERが1個なので、最初に検出された不良アドレス情報が救済アドレス情報として書き込まれる。図4では、ロウアドレス“1111h”が書き込まれた例を示している。 First, a pre-assembly test is performed on the wafer-state semiconductor device 10 obtained by the previous process (wafer process) (step S401) (step S402). Multiple tests are included in the pre-assembly test. These plural types of tests are continuously performed using a single tester (PW tester), and each result (defective address information) is passed on to the next test. Based on the test results obtained after all the tests are completed, the defective dress information is written as the repair address information in the repair determination circuit LASER using the laser trimming apparatus (step S403). In this embodiment, since there is one repair determination circuit LASER provided with a laser fuse element, defective address information detected first is written as repair address information. FIG. 4 shows an example in which the row address “1111h” is written.
 なお、半導体装置10は、複数の救済判定回路LASERを備えていてもよい。その場合、同一の救済アドレスが2個以上の救済判定回路LASERに書き込まれることはない。換言すると、複数の救済判定回路LASERにそれぞれ書き込まれる救済アドレス情報は互いに異なっており、二重救済が発生する恐れはない。これは、組み立て前テストでは、各テストの結果が次のテストに引き継がれるため、同一のアドレスを重複して不良アドレスとして検出することがないからである。 Note that the semiconductor device 10 may include a plurality of repair determination circuits LASER. In that case, the same relief address is not written to two or more relief judgment circuits LASER. In other words, the relief address information written in each of the plurality of relief judgment circuits LASER is different from each other, and there is no possibility that double relief occurs. This is because in the pre-assembly test, the result of each test is taken over by the next test, so that the same address is not duplicated and detected as a defective address.
 なお、上記説明は、レーザヒューズ素子を備える複数の救済判定回路を、互いに独立している複数のテストの結果の保持に利用することはできない、という意味ではない。つまり、互いに独立した複数のテスト結果をレーザヒューズ素子を備える複数の救済判定回路に保持させることも可能である。その場合、第1の検出回路301と同様の回路を用いることで、二重救済の発生を検出することができる。 Note that the above description does not mean that a plurality of relief determination circuits including laser fuse elements cannot be used for holding a plurality of independent test results. In other words, a plurality of test results independent of each other can be held in a plurality of relief determination circuits including laser fuse elements. In that case, occurrence of double relief can be detected by using a circuit similar to the first detection circuit 301.
 次に、後工程を実施し、半導体装置10をパッケージングする(ステップS404)。これにより、レーザトリミング装置を用いた救済判定回路LASERへの情報の書込みは不可能になる。そのため、これ以降の組み立て後選別工程に含まれる試験によって検出される不良アドレス情報は、電気ヒューズを備える救済判定回路EFUSEに書き込まれる。 Next, a post-process is performed to package the semiconductor device 10 (step S404). This makes it impossible to write information to the repair determination circuit LASER using the laser trimming apparatus. Therefore, the defective address information detected by the test included in the subsequent post-assembly sorting process is written in the repair determination circuit EFUSE having an electric fuse.
 組み立て後選別工程では、パッケージメモリ用のテスタを用いて試験が行われる。 In the post-assembly sorting process, a test is performed using a tester for package memory.
 まず、高温試験を行う(ステップS405)。そして、高温試験により検出された最初の不良アドレスを救済判定回路EFUSE1に救済アドレスとして書き込む(ステップS406)。不良アドレスが複数検出された場合、救済判定回路EFUSE2が後の低温試験用に割り当てられたものでなければ、2番目に検出された不良アドレスを救済判定回路EFUSE2に書き込む。ここでは、救済判定回路EFUSE1にロウアドレス“0000h”が書き込まれたものとする。 First, a high temperature test is performed (step S405). Then, the first defective address detected by the high temperature test is written as a repair address in the repair determination circuit EFUSE1 (step S406). When a plurality of defective addresses are detected, if the repair determination circuit EFUSE2 is not assigned for a later low temperature test, the second detected defective address is written in the repair determination circuit EFUSE2. Here, it is assumed that the row address “0000h” is written in the repair determination circuit EFUSE1.
 次に、ストレス試験を行い(ステップS407)、続いて低温試験を行う(ステップS408)。そして、低温試験により最初に得られた不良アドレスを救済アドレスとして救済判定回路EFUSE2に書き込む(ステップS409)。 Next, a stress test is performed (step S407), followed by a low temperature test (step S408). Then, the defective address first obtained by the low-temperature test is written in the relief determination circuit EFUSE2 as a relief address (step S409).
 ここで、パッケージメモリ用のテスタは、各試験の結果を次の試験に引き継ぐように構成されていない。そのため、各試験の結果はそれぞれ独立しており、異なる試験において同一の不良アドレスが検出される場合がある。その結果、高温試験の結果に基づいて救済判定回路EFUSE1に書き込まれた救済アドレスと、低温試験の結果に基づいて救済判定回路EFUSE2に書き込まれた救済アドレスとが一致する場合がある。例えば、上記仮定の下で、救済判定回路EFUSE2にロウアドレス“0000h”が書き込まれた場合である。 Here, the tester for package memory is not configured to take over the result of each test to the next test. Therefore, the results of each test are independent, and the same defective address may be detected in different tests. As a result, the relief address written in the relief determination circuit EFUSE1 based on the result of the high temperature test may coincide with the relief address written in the relief determination circuit EFUSE2 based on the result of the low temperature test. For example, the row address “0000h” is written in the relief determination circuit EFUSE2 under the above assumption.
 また、救済判定回路EFUSE1、2に書き込まれた救済アドレスが、救済判定回路LASERに書き込まれた救済アドレスと一致する可能性もある。 Also, there is a possibility that the relief address written in the relief judgment circuits EFUSE 1 and EFUSE 2 matches the relief address written in the relief judgment circuit LASER.
 このように、複数の救済判定回路LASER,EFUSE1,2の中に、同一の救済アドレスを保持するものが存在すると、その不良アドレスにアクセスしようとした際に、2つの冗長ワード線が同時に選択されるという二重救済が生じる。 As described above, if there are those holding the same relief address among the plurality of relief determination circuits LASER, EFUSE1, and 2, when two redundant word lines are simultaneously selected when trying to access the defective address. A double remedy occurs.
 そこで本実施の形態では、上述したように、半導体装置10に二重救済検出回路107を設け、二重救済が生じているか否かを確認できるように構成している。そして、この構成を利用して、二重救済検出試験を行う(ステップS410)。 Therefore, in the present embodiment, as described above, the double relief detection circuit 107 is provided in the semiconductor device 10 so that it can be confirmed whether or not double relief has occurred. Then, using this configuration, a double relief detection test is performed (step S410).
 ここで、再び図3を参照する。救済判定回路EFUSE1、2には、ともにロウアドレス“0000h”が書き込まれているとする。二重救済検出試験では、全てのアドレスに対するアクセス(ライト→リード)が順次行われる。つまり、判定回路105には、全てのアドレスを順次指定するアドレス信号が入力される。例えば、アドレス情報が4ビットであるとすると、0000h~1111hのアドレス情報がテスタで生成され、アドレス入力回路102を通じて順次判定回路105に入力される。 Here, referring to FIG. 3 again. It is assumed that the row address “0000h” is written in the relief determination circuits EFUSE 1 and EFUSE 2. In the double relief detection test, access to all addresses (write → read) is sequentially performed. In other words, the determination circuit 105 receives an address signal that sequentially designates all addresses. For example, if the address information is 4 bits, address information of 0000h to 1111h is generated by the tester and sequentially input to the determination circuit 105 through the address input circuit 102.
 救済判定回路EFUSE1、2には、ともにロウアドレス“0000h”が書き込まれているので、アドレス入力回路102からのアドレス“0000h”のとき、HIT信号A,Bが活性化される。 Since the row address “0000h” is written in the repair determination circuits EFUSE 1 and EFUSE 2, the HIT signals A and B are activated when the address “0000 h” is received from the address input circuit 102.
 二重救済検出回路107の第1の検出回路301は、救済判定回路EFUSE1、2からのHIT信号A,Bがともに活性化されたことを検出して第1の検出信号を出力する。第1の検出信号は第3の検出回路303を通じて、カラムデコーダ109へ同時選択ネゲート信号として供給される。 The first detection circuit 301 of the double repair detection circuit 107 detects that both the HIT signals A and B from the repair determination circuits EFUSE1 and EFUSE are activated, and outputs a first detection signal. The first detection signal is supplied to the column decoder 109 through the third detection circuit 303 as a simultaneous selection negate signal.
 カラムデコーダ109は、同時選択ネゲート信号に応じて、リード時のYS信号をマスクする。これにより、リードデータはデータアンプ回路111へ出力されず、テスタはデータリードができないことから、二重救済が生じていることを認識することができる。 The column decoder 109 masks the YS signal at the time of reading according to the simultaneous selection negate signal. As a result, the read data is not output to the data amplifier circuit 111, and the tester cannot perform the data read, so that it is possible to recognize that double relief has occurred.
 救済判定回路LASERに書き込まれている救済アドレスと、救済判定回路EFUSE1、2のいずれかに書き込まれている救済アドレスとが一致する場合には、第2の検出回路302がHIT信号CとHIT信号A,Bの少なくとも一方が活性さされたことを検出して、第2の検出信号を出力する。第2の検出信号は第3の検出回路303を通じて、カラムデコーダ109へ同時選択ネゲート信号として供給される。その結果、テスタは二重救済が生じていることを認識することができる。 When the repair address written in the repair determination circuit LASER and the repair address written in one of the repair determination circuits EFUSE1 and EFUSE2 match, the second detection circuit 302 detects the HIT signal C and the HIT signal. It detects that at least one of A and B is activated, and outputs a second detection signal. The second detection signal is supplied as a simultaneous selection negate signal to the column decoder 109 through the third detection circuit 303. As a result, the tester can recognize that double relief has occurred.
 なお、二重救済検出回路107は、通常動作時にも動作するが、良品と判定された半導体装置10の判定回路105に含まれる複数の救済判定回路には、互いに異なる救済アドレスが書き込まれているので、同時選択ネゲート信号が出力されることはない。よって、半導体装置10は、正常に動作する。 The double relief detection circuit 107 operates even during normal operation, but different relief addresses are written in a plurality of relief determination circuits included in the determination circuit 105 of the semiconductor device 10 determined to be non-defective. Therefore, the simultaneous selection negate signal is not output. Therefore, the semiconductor device 10 operates normally.
 図4に戻ると、二重救済試験により二重救済が生じていることが確認された場合は、その半導体装置10を破棄する(ステップS420)。あるいは、救済判定回路EFUSE1,2の一方又は両方を不能(disable)にして、同一の救済アドレスが2以上の救済判定回路に書き込まれた状態を解消するようにしてよい。また、救済判定回路EFUSE1,2に同一の救済アドレスが書き込まれた状態で、未使用の救済判定回路EFUSE3が存在する場合には、救済判定回路EFUSE1及び2の両方を不能にした上で、それらに書き込まれていた救済アドレス情報を救済判定回路EFUSE3に書き直すようにしてもよい。 Referring back to FIG. 4, if it is confirmed that double relief has occurred in the double relief test, the semiconductor device 10 is discarded (step S420). Alternatively, one or both of the repair determination circuits EFUSE1 and EFUSE2 may be disabled, and the state where the same repair address is written in two or more repair determination circuits may be eliminated. Further, in the state where the same repair address is written in the repair determination circuits EFUSE1 and EFUSE3 and there is an unused repair determination circuit EFUSE3, both the repair determination circuits EFUSE1 and 2 are disabled, The relief address information that has been written to may be rewritten to the relief judgment circuit EFUSE3.
 一方、二重救済試験により二重救済が生じていないことが確認された場合は、その半導体装置10に対して高温試験及び室温試験(動作確認試験)を行う(ステップS411,S412)。そしてこれらの試験をパスしたならば、半導体装置10を良品と判断し、製品として出荷する(ステップS413)。 On the other hand, when it is confirmed by the double relief test that no double relief has occurred, a high temperature test and a room temperature test (operation confirmation test) are performed on the semiconductor device 10 (steps S411 and S412). If these tests are passed, the semiconductor device 10 is determined to be a good product and shipped as a product (step S413).
 以上の構成により、二重救済検出回路107は、判定回路105に含まれる複数の救済判定回路に同一の救済アドレスが書き込まれている場合に、同時選択ネゲート信号を出力する。これにより、メモリセルアレイ110から読み出されたデータのデータアンプ回路111への出力は阻止される。その結果、テスタはデータの読み出しができず、二重救済が生じていることを確認することができる。 With the above configuration, the double relief detection circuit 107 outputs a simultaneous selection negate signal when the same relief address is written in a plurality of relief judgment circuits included in the judgment circuit 105. As a result, output of data read from the memory cell array 110 to the data amplifier circuit 111 is blocked. As a result, the tester cannot read data and can confirm that double relief has occurred.
 以上のように、本実施の形態に係る半導体装置10は、二重救済の発生を確認することができる。 As described above, the semiconductor device 10 according to the present embodiment can confirm the occurrence of double relief.
 次に、本発明の第2の実施の形態について説明する。 Next, a second embodiment of the present invention will be described.
 本実施の形態に係る半導体装置は、第1の実施の形態に係る半導体装置10の判定回路105及び二重救済検出回路107に代えて図5に示す判定回路105-1及び二重救済検出回路107-1を備える点で異なっている。それ以外の構成は、第1の実施の形態と同様であるので、その説明を省略する。 The semiconductor device according to the present embodiment is different from the determination circuit 105 and the double relief detection circuit 107 of the semiconductor device 10 according to the first embodiment in that a decision circuit 105-1 and a double relief detection circuit shown in FIG. The difference is that 107-1 is provided. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.
 図5に示すように、判定回路105-1は、それぞれがレーザーヒューズ素子を備える2個の救済判定回路LASER1,2と、それぞれが電気ヒューズ素子を備える2個の救済判定回路EFUSE1,2とを含む。これに対応して、二重救済検出回路107-1は、二重救済検出回路107の構成に加え、救済判定回路LASER1,2の出力の論理和を求める(第2の)オア回路をさらに有している。 As shown in FIG. 5, the determination circuit 105-1 includes two repair determination circuits LASER1 and 2 each including a laser fuse element, and two repair determination circuits EFUSE1 and 2 each including an electric fuse element. Including. Corresponding to this, in addition to the configuration of the double relief detection circuit 107, the double relief detection circuit 107-1 further includes a (second) OR circuit for calculating the logical sum of the outputs of the relief determination circuits LASER1 and LASER2. is doing.
 上記構成によれば、救済判定回路EFUSE1,2に書き込まれた救済アドレス情報が同一の場合には、HIT信号A,Bが活性化される。これにより、第1の検出回路301から検出信号が出力され、第3の検出回路303から同時選択ネゲート信号がカラムデコーダ109へ出力される。 According to the above configuration, when the repair address information written in the repair determination circuits EFUSE 1 and EFUSE 2 is the same, the HIT signals A and B are activated. As a result, a detection signal is output from the first detection circuit 301, and a simultaneous selection negate signal is output from the third detection circuit 303 to the column decoder 109.
 図5の例では、救済判定回路EFUSE1,2にともにロウアドレス“0000h”が書き込まれているので、アドレス入力回路102からのアドレス“0000h”のとき、HIT信号A,Bが活性化される。その結果、第1の検出回路から検出信号が出力され、第3の検出回路303から同時選択ネゲート信号が出力される。 In the example of FIG. 5, since the row address “0000h” is written in the relief determination circuits EFUSE 1 and EFUSE 2, the HIT signals A and B are activated when the address is “0000 h” from the address input circuit 102. As a result, a detection signal is output from the first detection circuit, and a simultaneous selection negate signal is output from the third detection circuit 303.
 また、救済判定回路LASER1,2のいずれかに書き込まれた救済アドレス情報が、救済判定回路EFUSE1,2のいずれかに書き込まれた救済アドレス情報と同一の場合には、HIT信号A,Bのいずれか一方又は両方と、HIT信号C1,C2のいずれか一方が活性化される。これにより、第2の検出回路302から検出信号が出力され、第3の検出回路303から同時選択ネゲート信号がカラムデコーダ109へ出力される。 If the relief address information written in one of the relief determination circuits LASER 1 and 2 is the same as the relief address information written in either the relief judgment circuit EFUSE 1 or 2, either of the HIT signals A and B is used. One or both of them and either one of the HIT signals C1 and C2 are activated. As a result, a detection signal is output from the second detection circuit 302, and a simultaneous selection negate signal is output from the third detection circuit 303 to the column decoder 109.
 図5の例では、救済判定回路LASER1にロウアドレス“0000h”が書き込まれているので、アドレス入力回路102からのアドレス“0000h”のとき、HIT信号C1が活性化される。このとき、HIT信号A,Bも活性化されているので、第2の検出回路から検出信号が出力され、第3の検出回路303から同時選択ネゲート信号が出力される。なお、HIT信号A,Bのうち、いずれか一方が活性されていれば、第2の検出回路から検出信号が出力されることは、その構成から明らかである。 In the example of FIG. 5, since the row address “0000h” is written in the repair determination circuit LASER1, the HIT signal C1 is activated when the address is “0000h” from the address input circuit 102. At this time, since the HIT signals A and B are also activated, a detection signal is output from the second detection circuit, and a simultaneous selection negate signal is output from the third detection circuit 303. Note that it is apparent from the configuration that if one of the HIT signals A and B is activated, a detection signal is output from the second detection circuit.
 以上のように、本実施の形態に係る半導体装置においても、二重救済の発生を確認することができる。 As described above, even in the semiconductor device according to the present embodiment, occurrence of double relief can be confirmed.
 以上、本発明についていくつかの実施の形態に即して説明したが、本発明は上記実施の形態に限定されず、発明の趣旨を逸脱しない範囲で種々の変形・変更が可能である。例えば、上記実施の形態では、判定回路が、電気ヒューズ素子を備える救済判定回路EFUSEとレーザーヒューズ素子を備える救済判定回路LASERの両方を備える例について説明したが、いずれか一方の救済判定回路を備えるものであってよい。また、上記実施の形態では、レーザーヒューズ素子を備える救済判定回路の数を1又は2としたが3以上でもよい。同様に、電気ヒューズ素子を備える救済判定回路の数を3以上としてもよい。救済判定回路の数に応じて二重救済検出回路の構成は複雑になるが、アンド回路及びオア回路の組み合わせで容易に実現可能である。 As mentioned above, although this invention was demonstrated according to some embodiment, this invention is not limited to the said embodiment, A various deformation | transformation and change are possible in the range which does not deviate from the meaning of invention. For example, in the above embodiment, the example in which the determination circuit includes both the repair determination circuit EFUSE including the electrical fuse element and the repair determination circuit LASER including the laser fuse element has been described. However, the determination circuit includes any one repair determination circuit. It may be a thing. In the above embodiment, the number of relief determination circuits including laser fuse elements is 1 or 2, but may be 3 or more. Similarly, the number of relief determination circuits including electrical fuse elements may be three or more. The configuration of the double relief detection circuit becomes complicated depending on the number of relief judgment circuits, but can be easily realized by a combination of an AND circuit and an OR circuit.
 この出願は、2012年9月21日に出願された日本出願特願2012-207835号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-207835 filed on September 21, 2012, the entire disclosure of which is incorporated herein.
  10  半導体装置
  101  コマンド入力回路
  102  アドレス入力回路
  103  内部クロック発生回路
  104  コマンドデコーダ
  105,105-1  判定回路
  106  ロウプリデコーダ
  107,107-1  二重救済検出回路
  108  ロウデコーダ
  109  カラムデコーダ
  110  メモリセルアレイ
  111  データアンプ回路
  112  データ入出力回路
  20  救済判定回路
  201  ヒューズ回路
  202  比較回路
  203  ヒューズ素子
  301  第1の検出回路
  302  第2の検出回路
  303  第3の検出回路
DESCRIPTION OF SYMBOLS 10 Semiconductor device 101 Command input circuit 102 Address input circuit 103 Internal clock generation circuit 104 Command decoder 105, 105-1 decision circuit 106 Row predecoder 107, 107-1 Double relief detection circuit 108 Row decoder 109 Column decoder 110 Memory cell array 111 Data amplifier circuit 112 Data input / output circuit 20 Relief determination circuit 201 Fuse circuit 202 Comparison circuit 203 Fuse element 301 First detection circuit 302 Second detection circuit 303 Third detection circuit

Claims (10)

  1.  各々が第1の救済アドレス情報の保持に用いられる電気ヒューズ回路を有する複数の第1の救済判定回路と、
     前記複数の第1の救済判定回路が保持する複数の前記第1の救済アドレス情報の中に同一の情報が存在するか否かを検出する二重救済検出回路と、を備えることを特徴とする装置。
    A plurality of first relief determination circuits each having an electrical fuse circuit used to hold first relief address information;
    A double relief detection circuit for detecting whether or not the same information is present in the plurality of first relief address information held by the plurality of first relief judgment circuits. apparatus.
  2.  第2の救済アドレス情報の保持に用いられるレーザーヒューズ回路を有する少なくとも一つの第2の救済判定回路を更に備え、
     前記二重救済検出回路は、前記複数の第1の救済判定回路が保持する前記複数の第1の救済アドレス情報の中に前記第2の救済判定回路が保持する前記第2の救済アドレス情報と一致する情報が存在するか否かを更に検出することを特徴とする請求項1に記載の装置。
    Further comprising at least one second relief determination circuit having a laser fuse circuit used for holding second relief address information;
    The double relief detection circuit includes the second relief address information held by the second relief determination circuit in the plurality of first relief address information held by the plurality of first relief judgment circuits. The apparatus according to claim 1, further detecting whether there is matching information.
  3.  前記複数の第1の救済判定回路及び前記少なくとも一つの第2の救済判定回路の各々は、それぞれが保持する前記第1の救済アドレス情報又は前記第2の救済アドレス情報と外部から入力される入力アドレス情報とが一致した場合に一致信号を出力し、
     前記二重救済検出回路は、前記複数の第1の救済判定回路及び前記少なくとも一つの第2の救済判定回路から同時に2以上の一致信号が入力された場合に検出信号を出力する、
     ことを特徴とする請求項2に記載の装置。
    Each of the plurality of first relief determination circuits and the at least one second relief judgment circuit is inputted with the first relief address information or the second relief address information held by each from the outside Outputs a match signal when the address information matches,
    The double relief detection circuit outputs a detection signal when two or more coincidence signals are simultaneously inputted from the plurality of first relief judgment circuits and the at least one second relief judgment circuit;
    The apparatus according to claim 2.
  4.  前記検出信号は、前記入力アドレス情報の入力に応じて当該半導体装置から出力されるべき出力信号の信号経路に設けられたスイッチを制御する制御信号をマスクすることを特徴とする請求項3に記載の装置。 4. The detection signal masks a control signal for controlling a switch provided in a signal path of an output signal to be output from the semiconductor device in response to an input of the input address information. Equipment.
  5.  前記入力アドレス情報によって指定される複数のメモリセルを備えることを特徴とする請求項4に記載の装置。 The apparatus according to claim 4, comprising a plurality of memory cells specified by the input address information.
  6.  前記複数のメモリセルに接続される複数のビット線と、
     前記複数のビット線に其々対応する複数のIO線と、を更に備え、
     前記スイッチは前記複数のビット線及び前記複数のIO線との間に其々接続されることを特徴とする請求項5に記載の装置。
    A plurality of bit lines connected to the plurality of memory cells;
    A plurality of IO lines respectively corresponding to the plurality of bit lines;
    6. The apparatus of claim 5, wherein the switch is connected between the plurality of bit lines and the plurality of IO lines.
  7.  救済アドレス情報をそれぞれ保持し得る3以上の救済判定回路と、
     前記3以上の救済判定回路に保持された前記救済アドレス情報の中に同一の情報が存在するか否か検出する二重救済検出回路と、
    を備えることを特徴とする装置。
    Three or more relief determination circuits each capable of holding relief address information;
    A double relief detection circuit for detecting whether or not the same information is present in the relief address information held in the three or more relief determination circuits;
    A device comprising:
  8.  前記救済判定回路の各々は、救済アドレス情報の保持に用いられるヒューズ回路をそれぞれ含むことを特徴とする請求項7に記載の装置。 8. The apparatus according to claim 7, wherein each of the relief determination circuits includes a fuse circuit used for holding relief address information.
  9.  前記3個以上の救済判定回路のうち、少なくとも2つは、前記ヒューズ回路に電気ヒューズを含むことを特徴とする請求項8に記載の装置。 9. The apparatus according to claim 8, wherein at least two of the three or more repair determination circuits include an electric fuse in the fuse circuit.
  10.  前記3個以上の救済判定回路のうち、少なくとも1つは、前記ヒューズ回路にレーザーヒューズを含むことを特徴とする請求項9に記載の装置。 10. The apparatus according to claim 9, wherein at least one of the three or more repair determination circuits includes a laser fuse in the fuse circuit.
PCT/JP2013/075087 2012-09-21 2013-09-18 Semiconductor device having dual rescue detection circuit WO2014046103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207835 2012-09-21
JP2012-207835 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014046103A1 true WO2014046103A1 (en) 2014-03-27

Family

ID=50341413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075087 WO2014046103A1 (en) 2012-09-21 2013-09-18 Semiconductor device having dual rescue detection circuit

Country Status (1)

Country Link
WO (1) WO2014046103A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255498A (en) * 1995-01-28 1996-10-01 Samsung Electron Co Ltd Row redundant circuit of nonvolatile semiconductor memory
JP2003288795A (en) * 2001-12-28 2003-10-10 Samsung Electronics Co Ltd Semiconductor memory device post-repair circuit and device
JP2006286141A (en) * 2005-04-04 2006-10-19 Toshiba Corp Semiconductor storage device
JP2006302464A (en) * 2005-04-25 2006-11-02 Nec Electronics Corp Semiconductor memory device
JP2007066380A (en) * 2005-08-30 2007-03-15 Elpida Memory Inc Redundant circuit and semiconductor device equipped with it
JP2012150860A (en) * 2011-01-18 2012-08-09 Elpida Memory Inc Semiconductor device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255498A (en) * 1995-01-28 1996-10-01 Samsung Electron Co Ltd Row redundant circuit of nonvolatile semiconductor memory
JP2003288795A (en) * 2001-12-28 2003-10-10 Samsung Electronics Co Ltd Semiconductor memory device post-repair circuit and device
JP2006286141A (en) * 2005-04-04 2006-10-19 Toshiba Corp Semiconductor storage device
JP2006302464A (en) * 2005-04-25 2006-11-02 Nec Electronics Corp Semiconductor memory device
JP2007066380A (en) * 2005-08-30 2007-03-15 Elpida Memory Inc Redundant circuit and semiconductor device equipped with it
JP2012150860A (en) * 2011-01-18 2012-08-09 Elpida Memory Inc Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101890820B1 (en) Semiconductor integrated circuit having array e-fuse and driving method thereof
US8730744B2 (en) Semiconductor memory with redundant word lines, system, and method of manufacturing semiconductor memory
JP6097775B2 (en) Semiconductor memory device and semiconductor integrated circuit device
US9401219B2 (en) Electronic fuse semiconductor device for selecting failed redundancy word lines
CN103295648A (en) Storage device unit restoring device and method and storage device system comprising device
KR20150018106A (en) Semidonductor memory device with repair circuit
CN110473870A (en) The method of semiconductor memory system and operation semiconductor memory system
JP2004234770A (en) Semiconductor memory and test method
US9030898B2 (en) Semiconductor device
US9852814B1 (en) Rupture control device and semiconductor device to improve yield
US8730743B2 (en) Repair method and integrated circuit using the same
US8867288B2 (en) Memory device and test method thereof
US8339868B2 (en) Semiconductor device and write control method for semiconductor device
US9847142B2 (en) Semiconductor apparatus and repair method thereof
US9508458B2 (en) Semiconductor memory device and operating method thereof
JP4257342B2 (en) Semiconductor memory device, memory module, and memory module inspection method
KR100963552B1 (en) Semiconductor memory
US9607718B2 (en) Semiconductor memory device and test operation method thereof
US20030048680A1 (en) Semiconductor memory device having a plurality of signal lines for writing and reading data
JP5528747B2 (en) Semiconductor device, relief address information writing device, and relief address information writing method
WO2014046103A1 (en) Semiconductor device having dual rescue detection circuit
KR20200132035A (en) Semiconductor memory devices and methods of operating semiconductor memory devices
US20230377672A1 (en) One-time programmable memory device and semiconductor memory device including the same
JP2012033234A (en) Semiconductor device and method for replacing defective memory
JP2012108973A (en) Semiconductor device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838279

Country of ref document: EP

Kind code of ref document: A1