WO2014045998A1 - Second class absorption heat pump, and primary industrial facility and air heating method using second class absorption heat pump - Google Patents

Second class absorption heat pump, and primary industrial facility and air heating method using second class absorption heat pump Download PDF

Info

Publication number
WO2014045998A1
WO2014045998A1 PCT/JP2013/074661 JP2013074661W WO2014045998A1 WO 2014045998 A1 WO2014045998 A1 WO 2014045998A1 JP 2013074661 W JP2013074661 W JP 2013074661W WO 2014045998 A1 WO2014045998 A1 WO 2014045998A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heating
heat pump
refrigerant
absorption heat
Prior art date
Application number
PCT/JP2013/074661
Other languages
French (fr)
Japanese (ja)
Inventor
松本 健
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2014045998A1 publication Critical patent/WO2014045998A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

Provided is a second class absorption heat pump that uses the earth's heat as a heat source, and a primary industrial facility and an air heating method that use the second class absorption heat pump. A second class absorption heat pump (1) is configured comprising a heater (2), an absorber (3), a regenerator (4), and a condenser (5), and the heat pump achieves a heat output such that the temperature of a medium (T) to be heated is higher than the temperature of a heating medium (H) led into the evaporator (2) or the regenerator (4). The heat pump also has: a atmospheric heat exchanger (6) which has a channel for a cooling medium (C) for cooling refrigerant vapor (Rg) in the condenser (5) and which cools the cooling medium (C) with atmospheric air (A); and an earth's heat exchanger (7) which has a channel for a heating medium (H) for heating a refrigerant liquid (R) in the evaporator (2) and heating an absorbent dilute solution (Sd) in the regenerator (4), and which heats the heating medium (H) with the earth's heat (Gh).

Description

第二種吸収式ヒートポンプ、ならびに第二種吸収式ヒートポンプを用いた第一次産業施設および暖房方法Second type absorption heat pump, and primary industrial facility and heating method using second type absorption heat pump
 本発明は、地中熱を高温熱源として利用する第二種吸収式ヒートポンプと、それを使用した第一次産業施設および暖房方法に関するものである。 The present invention relates to a second type absorption heat pump that uses underground heat as a high-temperature heat source, and a primary industrial facility and a heating method using the same.
 一般に、第二種吸収式ヒートポンプは、蒸発器において、加熱媒体によって冷媒液を加熱して冷媒蒸気を発生させ、この発生した冷媒蒸気を、吸収器において、吸収溶液に吸収させ、この際発生する吸収熱で被加熱媒体を加熱するように構成されている。再生器においては、溶質濃度が低くなった吸収溶液を加熱媒体によって加熱することで、冷媒蒸気を発生させるとともに、溶質濃度が高くなった吸収溶液を生成するように構成されている。 In general, the second type absorption heat pump generates refrigerant vapor by heating a refrigerant liquid with a heating medium in an evaporator, and the generated refrigerant vapor is absorbed by an absorbing solution in the absorber and is generated at this time. The heated medium is heated by the absorbed heat. In the regenerator, the absorbing solution having a low solute concentration is heated by a heating medium, thereby generating refrigerant vapor and generating an absorbing solution having a high solute concentration.
 凝縮器においては、再生器で発生した冷媒蒸気を冷却媒体によって冷却することで、凝縮液化させ、冷媒液を生成するように構成されている。 The condenser is configured such that the refrigerant vapor generated in the regenerator is cooled by a cooling medium to be condensed and liquefied to generate a refrigerant liquid.
 そして、吸収器に導入される被加熱媒体は、蒸発器または前記再生器に導入する加熱媒体の温度よりも高い温度で熱出力することができるように構成されていた。 Further, the medium to be heated introduced into the absorber is configured to be able to output heat at a temperature higher than the temperature of the heating medium introduced into the evaporator or the regenerator.
 従来より、このような第二種吸収式ヒートポンプは、加熱媒体の加熱熱源として、ガスエンジンやディーゼルエンジンなどの原動機の排熱を使用し、冷媒蒸気を冷却して凝縮させる冷却媒体の冷却熱源として、大気や地中熱を使用することで、利用しやすい0.4MPa(飽和温度143.62℃)以上の蒸気を取り出すことが行われていた(例えば、特許文献1参照)。 Conventionally, such a second type absorption heat pump uses a waste heat of a prime mover such as a gas engine or a diesel engine as a heating heat source of the heating medium, and as a cooling heat source of a cooling medium that cools and condenses the refrigerant vapor. In addition, by using atmospheric air or geothermal heat, it has been performed to take out vapor of 0.4 MPa (saturation temperature 143.62 ° C.) or more which is easy to use (for example, see Patent Document 1).
特開2010-65862号公報JP 2010-65862 A
 しかしながら、上記従来の第二種吸収式ヒートポンプにおいては、加熱熱源である排熱を得るために、原動機を使用しなければならなかった。
また、高温の蒸気を取り出すために、地中熱は、冷却熱源として使用することしか考えられていなかった。
However, in the conventional second type absorption heat pump, a prime mover has to be used in order to obtain exhaust heat that is a heating heat source.
Moreover, in order to take out high temperature steam, the geothermal heat was only considered to be used as a cooling heat source.
 本発明は、係る実情に鑑みてなされたものであって、地中熱を加熱熱源として使用する第二種吸収式ヒートポンプと、それを使用した第一次産業施設および暖房方法を提供することを目的としている。 The present invention has been made in view of such circumstances, and provides a second type absorption heat pump that uses geothermal heat as a heating heat source, and a primary industrial facility and a heating method using the same. It is aimed.
 上記課題を解決するための本発明に係る第二種吸収式ヒートホンプは、冷媒液を加熱し、冷媒蒸気を発生させる蒸発器と、吸収溶液が前記蒸発器で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器と、前記吸収器にて冷媒蒸気を吸収することにより溶質濃度が低くなった吸収希溶液を導入し、加熱することで冷媒蒸気を発生し、同時に溶質濃度が高い吸収溶液を生成する再生器と、前記再生器にて発生した冷媒蒸気を冷却し、冷媒液を生成する凝縮器とを備えて構成され、前記被加熱媒体の温度が、前記蒸発器または前記再生器に導入する加熱媒体の温度よりも高くなる熱出力を得る第二種吸収式ヒートポンプであって、凝縮器の冷媒蒸気を冷却する冷却媒体の経路を有し、冷却冷媒を大気で冷却する大気熱交換器と、蒸発器の冷媒液を加熱し、再生器の吸収希溶液を加熱する加熱媒体の経路を有し、加熱媒体を地中熱で加熱する地中熱交換器とを有するものである。 A second type absorption heat pump according to the present invention for solving the above-described problems is an evaporator that heats a refrigerant liquid and generates refrigerant vapor, and an absorption solution that absorbs the refrigerant vapor generated in the evaporator. An absorber that heats the medium to be heated with absorption heat, and an absorption dilute solution whose solute concentration is reduced by absorbing the refrigerant vapor in the absorber is introduced and heated to generate refrigerant vapor, and at the same time, the solute A regenerator that generates an absorbent solution having a high concentration; and a condenser that cools the refrigerant vapor generated in the regenerator and generates a refrigerant liquid, wherein the temperature of the medium to be heated is the evaporator Or a second type absorption heat pump that obtains a heat output higher than the temperature of the heating medium introduced into the regenerator, having a cooling medium path for cooling the refrigerant vapor of the condenser, and the cooling refrigerant in the atmosphere Cooling atmospheric heat exchanger and Heating the refrigerant liquid in the evaporator, having a path of a heating medium for heating the absorption dilute solution of the regenerator, and has a geothermal heat exchanger for heating the heating medium in the ground heat.
 第二種吸収式ヒートポンプは、熱交換器を介して吸収器から得られる、温水または温風を、暖房熱源とする暖房装置を具備するものであってもよい。 The second type absorption heat pump may include a heating device that uses hot water or hot air obtained from the absorber via a heat exchanger as a heating heat source.
 第二種吸収式ヒートポンプは、大気熱交換器の冷却媒体経路に、たとえば放射冷却器などの冷却装置を具備するものであってもよい。 The second type absorption heat pump may be provided with a cooling device such as a radiant cooler in the cooling medium path of the atmospheric heat exchanger.
 第二種吸収式ヒートポンプは、前記冷媒液がアンモニアで、前記吸収液が水となされたものであってもよい。 The second type absorption heat pump may be one in which the refrigerant liquid is ammonia and the absorption liquid is water.
 また、上記課題を解決するための本発明の第一次産業施設は、施設本体内部の暖房のための熱源として上記暖房装置を具備する第二種吸収式ヒートポンプを具備するものである。 Moreover, the primary industrial facility of the present invention for solving the above-described problems includes a second-type absorption heat pump including the heating device as a heat source for heating inside the facility main body.
 さらに、上記課題を解決するための本発明の第二種吸収式ヒートポンプを用いた暖房方法は、上記第二種吸収式ヒートポンプを用いた暖房方法であって、地中熱よりも大気温度が低い場所において、地中熱を加熱熱源として、当該地中熱よりも高い熱出力を得て、得られた熱出力を暖房熱源とするものである。 Furthermore, the heating method using the second type absorption heat pump of the present invention for solving the above problem is a heating method using the second type absorption heat pump, and has an atmospheric temperature lower than the underground heat. In the place, the ground heat is used as a heating heat source, a heat output higher than the ground heat is obtained, and the obtained heat output is used as a heating heat source.
 本発明によると、地中熱を加熱熱源として有効利用することができる。 According to the present invention, geothermal heat can be effectively used as a heating heat source.
本発明に係る第二種吸収式ヒートポンプの全体構成の概略を示す冷媒回路図である。It is a refrigerant circuit figure showing the outline of the whole composition of the 2nd kind absorption heat pump concerning the present invention. (a)および(b)は、図1に示す第二種吸収式ヒートポンプにおける加熱媒体の供給経路の他の実施の形態を示す概略図である。(A) And (b) is the schematic which shows other embodiment of the supply path | route of the heating medium in the 2nd type absorption heat pump shown in FIG. 図1に示す第二種吸収式ヒートポンプを熱源として使用した植物工場の概略を示す概略図である。It is the schematic which shows the outline of the plant factory which used the 2nd type absorption heat pump shown in FIG. 1 as a heat source.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明に係る第二種吸収式ヒートポンプ1の全体構成の概略を示す冷媒回路図である。 FIG. 1 is a refrigerant circuit diagram showing an outline of the entire configuration of a second type absorption heat pump 1 according to the present invention.
 本発明に係る第二種吸収式ヒートポンプ1は、蒸発器2と、吸収器3と、再生器4と、凝縮器5とを具備し、凝縮器5の冷媒蒸気Rgを冷却する大気熱交換器6と、蒸発器2の冷媒液Rおよび再生器4の吸収希溶液Sdを加熱する地中熱熱交換器7とを有している。 The second type absorption heat pump 1 according to the present invention includes an evaporator 2, an absorber 3, a regenerator 4, and a condenser 5, and an atmospheric heat exchanger that cools the refrigerant vapor Rg of the condenser 5. 6 and a geothermal heat exchanger 7 for heating the refrigerant liquid R of the evaporator 2 and the absorbing diluted solution Sd of the regenerator 4.
 蒸発器2は、後述する地中熱熱交換器7を流れる加熱媒体Hによって冷媒液Rを加熱して冷媒蒸気Rgを発生するように構成されている。蒸発器2と凝縮器5との間は、冷媒ポンプ101を介して冷媒供給経路11で接続さている。蒸発器2と吸収器3との間は、レシーバ102を介して冷媒蒸気供給経路12で接続されている。 The evaporator 2 is configured to generate the refrigerant vapor Rg by heating the refrigerant liquid R with the heating medium H flowing through the underground heat exchanger 7 described later. The evaporator 2 and the condenser 5 are connected by a refrigerant supply path 11 via a refrigerant pump 101. The evaporator 2 and the absorber 3 are connected by a refrigerant vapor supply path 12 via a receiver 102.
 これにより、凝縮器5から冷媒供給経路11を経て蒸発器2に供給された冷媒液Rは、この蒸発器2で加熱され、冷媒蒸気Rgとなった後、冷媒蒸気供給経路12からレシーバ102を経て吸収器3へと供給される。 As a result, the refrigerant liquid R supplied from the condenser 5 to the evaporator 2 via the refrigerant supply path 11 is heated by the evaporator 2 to become the refrigerant vapor Rg, and then the receiver 102 is supplied from the refrigerant vapor supply path 12. Then, it is supplied to the absorber 3.
 吸収器3は、再生器4から供給される吸収溶液Sが、冷媒蒸気供給経路12から供給される冷媒蒸気Rgを吸収して吸収熱を発生するようになされている。吸収器3は、この吸収熱によって、当該吸収器3内に設けた熱交換器81を流れる被加熱媒体Tを加熱して熱出力を得ることができるように構成されている。吸収器3の上部と再生器4の底部との間は、溶液ポンプ103を介して吸収溶液供給経路13によって接続されている。吸収器3の底部と再生器4の上部との間は、膨張弁104を介して吸収希溶液回収経路14によって接続されている。冷媒蒸気供給経路12は、吸収器3の上部に接続されている。吸収溶液供給経路13と吸収希溶液回収経路14とは、溶液熱交換器105によって互いに熱交換するように構成されている。 The absorber 3 is configured such that the absorbing solution S supplied from the regenerator 4 absorbs the refrigerant vapor Rg supplied from the refrigerant vapor supply path 12 to generate absorption heat. The absorber 3 is configured to heat the heated medium T flowing through the heat exchanger 81 provided in the absorber 3 and obtain a heat output by the absorbed heat. The upper part of the absorber 3 and the bottom part of the regenerator 4 are connected by an absorbing solution supply path 13 via a solution pump 103. The bottom of the absorber 3 and the top of the regenerator 4 are connected via an expansion valve 104 by an absorbing diluted solution recovery path 14. The refrigerant vapor supply path 12 is connected to the upper part of the absorber 3. The absorbing solution supply path 13 and the absorbing dilute solution recovery path 14 are configured to exchange heat with each other by the solution heat exchanger 105.
 これにより、吸収器3の上部から冷媒蒸気供給経路12を経て供給された冷媒蒸気Rgは、同じく吸収器3の上部から吸収溶液供給経路13を経て供給された吸収溶液Sに吸収され、その際の吸収熱で被加熱媒体Tの熱交換器81を加熱するようになされている。冷媒蒸気Rgの吸収によって溶質濃度が低くなった吸収希溶液Sdは、吸収器3の底部から吸収希溶液回収経路14を介して再生器4へと回収するようになされている。また、吸収希溶液回収経路14から再生器4へと回収される吸収希溶液Sdは、吸収器3で吸収熱が全て回収されずに未回収熱を有するので、溶液熱交換器105は、この未回収熱を有する吸収希溶液Sdが流れる吸収希溶液回収経路14と、再生器4からの吸収溶液Sが流れる吸収溶液供給経路13との間で熱交換し、吸収器3へと供給される吸収溶液Sの温度を高めるように構成されている。 As a result, the refrigerant vapor Rg supplied from the upper part of the absorber 3 via the refrigerant vapor supply path 12 is similarly absorbed by the absorption solution S supplied from the upper part of the absorber 3 via the absorbent solution supply path 13. The heat exchanger 81 of the medium to be heated T is heated with the absorbed heat. The diluted absorption solution Sd having a reduced solute concentration due to the absorption of the refrigerant vapor Rg is recovered from the bottom of the absorber 3 to the regenerator 4 via the absorption diluted solution recovery path 14. Moreover, since the absorption dilute solution Sd recovered from the absorption dilute solution recovery path 14 to the regenerator 4 does not recover all the absorption heat in the absorber 3 and has unrecovered heat, the solution heat exchanger 105 Heat is exchanged between the absorbing diluted solution recovery path 14 through which the absorbing diluted solution Sd having unrecovered heat flows and the absorbing solution supply path 13 through which the absorbing solution S from the regenerator 4 flows and is supplied to the absorber 3. The temperature of the absorption solution S is increased.
 再生器4は、後述する地中熱熱交換器7を流れる加熱媒体Hによって吸収希溶液Sdを加熱して冷媒蒸気Rgを発生させるとともに、溶質濃度が高くなった冷媒溶液Sを生成するように構成されている。再生器4の上部と凝縮器5の上部との間は、冷媒蒸気供給経路15によって接続されている。再生器4の上部には、吸収希溶液回収経路14が接続されている。この吸収希溶液回収経路14は、膨張弁104と再生器4との間の分岐点aから、レシーバ102の底部に接続する冷媒蒸気回収経路16が接続されている。この冷媒蒸気回収経路16にも膨張弁106が設けられている。この膨張弁106とレシーバ102との間の冷媒蒸気回収経路16の分岐点bからは、冷媒供給経路11へのバイパス経路17が設けられている。このバイパス経路17には、開閉弁107が設けられており、通常時は「閉」となっている。 The regenerator 4 generates the refrigerant vapor Rg by heating the absorption dilute solution Sd by the heating medium H flowing through the underground heat exchanger 7 described later, and generates the refrigerant solution S having a high solute concentration. It is configured. The upper part of the regenerator 4 and the upper part of the condenser 5 are connected by a refrigerant vapor supply path 15. An absorbing diluted solution recovery path 14 is connected to the upper part of the regenerator 4. The absorption diluted solution recovery path 14 is connected to a refrigerant vapor recovery path 16 connected to the bottom of the receiver 102 from a branch point a between the expansion valve 104 and the regenerator 4. The refrigerant vapor recovery path 16 is also provided with an expansion valve 106. A bypass path 17 to the refrigerant supply path 11 is provided from the branch point b of the refrigerant vapor recovery path 16 between the expansion valve 106 and the receiver 102. The bypass path 17 is provided with an on-off valve 107, which is normally “closed”.
 これにより、吸収器3から吸収希溶液回収経路14を経て再生器4に供給された吸収希溶液Sdは、この再生器4で加熱され、冷媒蒸気供給経路15から凝縮器5へと冷媒蒸気Rgが供給される。この冷媒蒸気Rgの供給により、溶質濃度が高くなった吸収溶液Sは、溶液ポンプ103によって吸収溶液供給経路13から吸収器3へと供給される。 As a result, the diluted absorbent solution Sd supplied from the absorber 3 to the regenerator 4 via the absorbed diluted solution recovery path 14 is heated by the regenerator 4 and is transferred to the condenser 5 from the refrigerant vapor supply path 15 to the refrigerant vapor Rg. Is supplied. The absorption solution S having a higher solute concentration due to the supply of the refrigerant vapor Rg is supplied from the absorption solution supply path 13 to the absorber 3 by the solution pump 103.
 凝縮器5は、後述する大気熱交換器6を流れる冷却媒体Cによって、再生器4から冷媒蒸気供給経路15を介して供給される冷媒蒸気Rgを凝縮液化するように構成されている。凝縮器5の上部には、冷媒蒸気供給経路15が接続されている。凝縮器5の底部には、冷媒供給経路11が接続されている。 The condenser 5 is configured to condense and liquefy the refrigerant vapor Rg supplied from the regenerator 4 via the refrigerant vapor supply path 15 by a cooling medium C flowing through an atmospheric heat exchanger 6 described later. A refrigerant vapor supply path 15 is connected to the upper part of the condenser 5. A refrigerant supply path 11 is connected to the bottom of the condenser 5.
 これにより、再生器4から冷媒蒸気供給経路15を経て凝縮器5に供給された冷媒蒸気Rgは、この凝縮器5で冷却され、冷媒液Rとなった後、冷媒供給経路11から冷媒ポンプ101を経て蒸発器2へと供給される。 Thus, the refrigerant vapor Rg supplied from the regenerator 4 through the refrigerant vapor supply path 15 to the condenser 5 is cooled by the condenser 5 to become the refrigerant liquid R, and then the refrigerant pump 101 from the refrigerant supply path 11. After that, it is supplied to the evaporator 2.
 大気熱交換器6は、凝縮器5内に設けた熱交換器61との間が、冷却媒体Cの循環経路62によって接続されている。この冷却媒体Cは、循環経路62に設けた循環ポンプ60によって大気熱交換器6と熱交換器61との間を循環できるように構成されている。 The atmospheric heat exchanger 6 is connected to a heat exchanger 61 provided in the condenser 5 by a circulation path 62 of the cooling medium C. The cooling medium C is configured to be circulated between the atmospheric heat exchanger 6 and the heat exchanger 61 by a circulation pump 60 provided in the circulation path 62.
 これにより、屋外の大気熱交換器6で大気Aによって冷却された冷却媒体Cは、循環経路62を介して凝縮器5内の熱交換器61で冷媒蒸気Rgを冷却して凝縮液化した後、再度循環経路62を介して大気熱交換器6へと戻され、以後、循環ポンプ60によって、この循環が繰り返される。 Thereby, after the cooling medium C cooled by the atmosphere A in the outdoor atmospheric heat exchanger 6 cools the refrigerant vapor Rg in the heat exchanger 61 in the condenser 5 via the circulation path 62 and condenses and liquefies, The flow is again returned to the atmospheric heat exchanger 6 through the circulation path 62, and thereafter, this circulation is repeated by the circulation pump 60.
 地中熱熱交換器7は、蒸発器2内に設けた熱交換器71と、再生器4内に設けた熱交換器72との間が、加熱媒体Hの循環経路73によって接続さている。この加熱媒体Hは、循環経路73に設けた循環ポンプ70によって地中熱熱交換器7と熱交換器71と熱交換器72との間を循環できるように構成されている。この際、地中熱熱交換器7は、15℃~20℃の比較的安定した温度の地中熱Ghが得られるように、地下5m以上の深さに設けられる。 In the underground heat exchanger 7, the heat exchanger 71 provided in the evaporator 2 and the heat exchanger 72 provided in the regenerator 4 are connected by a circulation path 73 of the heating medium H. The heating medium H is configured to be circulated among the underground heat exchanger 7, the heat exchanger 71, and the heat exchanger 72 by a circulation pump 70 provided in the circulation path 73. At this time, the underground heat exchanger 7 is provided at a depth of 5 m or more underground so that the underground heat Gh having a relatively stable temperature of 15 ° C. to 20 ° C. can be obtained.
 これにより、地中熱熱交換器7によって加熱された加熱媒体Hは、循環経路73を介して蒸発器2内の熱交換器71で冷媒液Rを加熱して冷媒蒸気Rgとした後、再生器4内の熱交換器72で吸収希溶液Sdを加熱して冷媒蒸気Rgを発生させた後、再度循環経路73を介して地中熱熱交換器7へと戻され、以後、循環ポンプ70によってこの循環が繰り返される。 Thus, the heating medium H heated by the underground heat exchanger 7 is regenerated after the refrigerant liquid R is heated to the refrigerant vapor Rg by the heat exchanger 71 in the evaporator 2 through the circulation path 73. After the absorption dilute solution Sd is heated by the heat exchanger 72 in the vessel 4 to generate the refrigerant vapor Rg, it is returned again to the underground heat exchanger 7 through the circulation path 73, and thereafter the circulation pump 70. This cycle is repeated.
 なお、図1においては、蒸発器2に設けた熱交換器71と再生器4に設けた熱交換器72とを直列に接続しているが、図2(a)に示すように並列に接続してもよいし、図2(b)に示すようにそれぞれの熱交換器71,72に対応してそれぞれ循環ポンプ70と地中熱熱交換器7とを接続するものであってもよい。 In FIG. 1, the heat exchanger 71 provided in the evaporator 2 and the heat exchanger 72 provided in the regenerator 4 are connected in series, but are connected in parallel as shown in FIG. Alternatively, as shown in FIG. 2B, the circulation pump 70 and the underground heat exchanger 7 may be connected to correspond to the heat exchangers 71 and 72, respectively.
 このようにして構成される第二種吸収式ヒートポンプ1は、地中熱Ghを加熱熱源とし、大気Aを冷却熱源として利用するため、地中熱Ghよりも大気Aの温度が低い環境下で使用される。具体的には、15℃~20℃で安定している地中熱Ghに対して、この温度よりも大気Aの温度が低い地域で使用する。この場合、地中熱Ghよりも大気Aの温度が低いといっても、温度差が少なすぎるとヒートポンプサイクルを構成することができないので、地中熱Ghよりも大気Aの温度が15℃以上低い温度差の地域で使用することが好ましい。また、地中熱Ghの温度よりも大気Aの年平均温度が高い地域でも、例えば、冬期の温度が低ければ、冬期に使用することができる。 The second type absorption heat pump 1 configured as described above uses the underground heat Gh as a heating heat source and uses the atmosphere A as a cooling heat source. Therefore, in an environment where the temperature of the atmosphere A is lower than the underground heat Gh. used. Specifically, it is used in an area where the temperature of the atmosphere A is lower than this temperature against the geothermal heat Gh that is stable at 15 ° C. to 20 ° C. In this case, even if the temperature of the atmosphere A is lower than the geothermal heat Gh, if the temperature difference is too small, a heat pump cycle cannot be configured, so the temperature of the atmosphere A is 15 ° C. or higher than the geothermal heat Gh. It is preferable to use in areas with low temperature differences. Further, even in a region where the annual average temperature of the atmosphere A is higher than the temperature of the geothermal heat Gh, for example, if the temperature in winter is low, it can be used in winter.
 これにより、第二種吸収式ヒートポンプ1は、地中熱Ghよりも高い約22℃~30℃の温度の熱出力が得られることとなる。例えば、地中熱Ghの温度が17℃で大気Aの温度が0℃の場合、26℃の熱出力を得ることができる。 Thereby, the second type absorption heat pump 1 can obtain a heat output at a temperature of about 22 ° C. to 30 ° C. higher than the underground heat Gh. For example, when the temperature of the ground heat Gh is 17 ° C. and the temperature of the atmosphere A is 0 ° C., a heat output of 26 ° C. can be obtained.
 また、冷え込みが厳しい極寒地であっても、地中熱自体の温度は安定しているため、この第二種吸収式ヒートポンプ1によると、常に地中熱Ghよりも高い約22℃~30℃の温度の熱出力を得ることができる。この22℃~30℃の熱出力は、極寒地においては、人を暖房するための補助熱源として使用することができる。また、極寒地における人への利用以外にも、寒冷地や厳冬期における補助空調用の温水や温風として使用することができる。例えば、図3は、第二種吸収式ヒートポンプ1の熱出力を、植物を一定温度で管理することが求められる第一次産業施設としての植物工場10の補助暖房に使用している。この植物工場10は、工場内に設けた暖房装置8と、第二種吸収式ヒートポンプ1の吸収器3内に設けた熱交換器81との間を循環経路82で接続して被加熱媒体Tを循環させ、第二種吸収式ヒートポンプ1の吸収器3からの熱出力を暖房装置8を介して植物工場10で使用するように構成されている。この場合、暖房装置8としては、ファン(図示省略)によって植物工場10内に温風を出すようにしたものであってもよいし、水耕栽培の水温管理に使用するものであってもよいし、輻射熱暖房に使用するものであってもよい。水耕栽培の水温管理に使用する場合、水耕栽培の培養液自体を、被加熱媒体Tとして使用してもよい。 Even in extremely cold regions where the cooling is severe, since the temperature of the underground heat itself is stable, according to the second type absorption heat pump 1, it is always about 22 ° C. to 30 ° C. higher than the underground heat Gh. The heat output of the temperature of can be obtained. The heat output of 22 ° C. to 30 ° C. can be used as an auxiliary heat source for heating people in extremely cold regions. Moreover, it can be used as hot water or hot air for auxiliary air conditioning in cold regions or severe winter seasons, in addition to use in people in extremely cold regions. For example, FIG. 3 uses the heat output of the second-type absorption heat pump 1 for auxiliary heating of a plant factory 10 as a primary industrial facility that is required to manage plants at a constant temperature. The plant factory 10 connects a heating device 8 provided in the factory and a heat exchanger 81 provided in the absorber 3 of the second type absorption heat pump 1 by a circulation path 82 to be heated medium T. And the heat output from the absorber 3 of the second type absorption heat pump 1 is used in the plant factory 10 via the heating device 8. In this case, the heating device 8 may be one that emits warm air into the plant factory 10 by a fan (not shown) or may be used for water temperature management in hydroponics. However, it may be used for radiant heat heating. When used for water temperature management of hydroponics, the culture medium itself of hydroponics may be used as the heated medium T.
 また、上記した植物工場10以外の第一次産業施設としては、例えば、家畜の飼育施設において、エサや飲み水や施設の凍結防止のための補助暖房に使用したり、生簀や水槽などの水産設備において、水温管理のための補助暖房に使用したり、倉庫において、保管した保管品の凍結による凍傷や冷凍乾燥を防止するための補助暖房として使用したりすることもできる。飼育施設の場合、暖房装置8は、飼育施設内に温風を出すようにしたものであってもよいし、エサや飲み水が凍結しないように温めて、これらエサや飲み水の温度管理に使用するものであってもよいし、施設の床面や壁面の輻射熱暖房に使用するものであってもよい。生簀や水槽の場合、暖房装置8は、これら生簀や水槽を設けた空間内に温風を出すようにしたものであってもよいし、生簀や水槽の水を直接温めて、これら生簀や水槽の水温管理に使用するものであってもよい。倉庫の場合、暖房装置8は、倉庫内に温風を出すようにしたものであってもよいし、倉庫の床面や壁面の輻射熱暖房に使用するものであってもよい。 In addition, as a primary industrial facility other than the plant factory 10 described above, for example, in a livestock breeding facility, it is used for auxiliary heating to prevent food, drinking water, and the facility from freezing, or fishery such as a ginger or a fish tank. It can be used for auxiliary heating for water temperature management in equipment, or as auxiliary heating for preventing frostbite and freeze-drying due to freezing of stored items stored in a warehouse. In the case of a breeding facility, the heating device 8 may be one that emits warm air in the breeding facility, or warms the food and drinking water so that they are not frozen, and controls the temperature of the food and drinking water. It may be used, or may be used for radiant heating of a floor or wall surface of a facility. In the case of a ginger or an aquarium, the heating device 8 may be one that emits warm air into the space provided with the ginger or the aquarium, or directly warms the water in the ginger or the aquarium, and the ginger or the aquarium. It may be used for water temperature management. In the case of a warehouse, the heating device 8 may be one that emits warm air into the warehouse, or may be one that is used for radiant heating of the floor or wall surface of the warehouse.
 しかも、この第二種吸収式ヒートポンプ1にける加熱熱源は、エンジン排熱などのように、燃料消費によって得るものではなく、自然から入手するものであるため、低いコストで熱出力を得ることができる。 In addition, the heating heat source in the second type absorption heat pump 1 is not obtained by fuel consumption, such as engine exhaust heat, but is obtained from nature, so that heat output can be obtained at low cost. it can.
 また、地中熱Ghをそのまま利用するのであれば、熱容量が不足して有効利用ができないような極寒地や寒冷地であっても、本発明の第二種吸収式ヒートポンプ1によると、その地中熱Ghを最大で1.5倍程度まで熱容量を増やすことができる。したがって、今まで熱容量が不足して地中熱Ghの利用ができなかった極寒地や寒冷地であっても地中熱Ghの利用の促進を図ることが可能となる。 Further, if the geothermal heat Gh is used as it is, even if it is a very cold region or a cold region where the heat capacity is insufficient and cannot be effectively used, according to the second type absorption heat pump 1 of the present invention, the ground The heat capacity can be increased up to about 1.5 times the maximum amount of medium heat Gh. Therefore, it is possible to promote the use of the geothermal heat Gh even in extremely cold regions and cold regions where the heat capacity has been insufficient so far and the geothermal heat Gh cannot be used.
 なお、地中熱Ghは、地面に埋設した地中熱熱交換器7内に加熱媒体Hを通過させて地中熱Ghを吸収するように構成しているが、地中熱Ghの他に地中または地表の安定した熱源を使用してもよい。例えば、工場排水や生活排水を含む下水または河川を流れる水と、加熱媒体Hとを熱交換して吸収するものであってもよい。工場排水や生活排水は排水自体がある程度の温度を有しており、地中に埋設された下水管を通過して排水されるため、地中熱Ghと同等の温度が得られる。河川を流れる水も、地盤や地下水脈を通過して地中熱Ghで温められているため、冬季に氷結していない河川などでは、地中熱Ghと同等の温度が得られる。その他、農地の肥料として集められた家畜の糞尿と、加熱媒体Hとを熱交換するものであってもよい。このような家畜の糞尿は、発酵しているため、加熱媒体Hによって熱吸収しても、比較的安定した温度が得られる。 The geothermal heat Gh is configured to pass the heating medium H through the geothermal heat exchanger 7 embedded in the ground and absorb the geothermal heat Gh. A stable heat source in the ground or on the ground may be used. For example, water that flows through sewage or rivers including factory wastewater or domestic wastewater and the heating medium H may be heat-exchanged and absorbed. Industrial wastewater and domestic wastewater have a certain temperature, and are drained through a sewer pipe buried in the ground, so that a temperature equivalent to the underground heat Gh can be obtained. Since the water flowing through the river passes through the ground and groundwater veins and is warmed by the underground heat Gh, the temperature equivalent to the underground heat Gh can be obtained in rivers that are not frozen in winter. In addition, the excrement of livestock collected as farmland fertilizer and the heating medium H may be heat-exchanged. Since such livestock manure is fermented, even if heat is absorbed by the heating medium H, a relatively stable temperature can be obtained.
 また、冷却媒体Aは、外気を直接取り込むように構成しているが、たとえば放射冷却器等の冷却装置を通した外気や不凍液を冷却熱源としてもよい。第二種吸収式ヒートポンプは、冷却媒体Aの温度が低いほど吸収器出口の被加熱媒体Tの温度が高くなるという性質がある。そのため、冷却媒体Aに冷却装置を具備することによって、本発明の効果をより大きく得ることができる。 Further, although the cooling medium A is configured to directly take in the outside air, the outside air or antifreeze liquid that has passed through a cooling device such as a radiant cooler may be used as a cooling heat source. The second type absorption heat pump has a property that the temperature of the heated medium T at the absorber outlet increases as the temperature of the cooling medium A decreases. Therefore, by providing the cooling medium A with the cooling device, the effect of the present invention can be obtained more greatly.
 また、本発明の第二種吸収式ヒートポンプ1は、15℃~20℃で安定している地中熱Ghを加熱熱源として使用することを考えると、冷媒液Rをアンモニア、吸収液Sを水としたアンモニア-水系の媒体を使用することが好ましい。しかし、設置する場所によっては、火山活動の影響で地中熱Ghが高くなっていたり、河川の水が温泉になっていたり、工場排水が高温になっていたりするので、このような場合には、その温度帯にあった好適な冷媒液Rおよび吸収液Sを使用することができる。 Further, the second type absorption heat pump 1 of the present invention considers that the geothermal heat Gh that is stable at 15 ° C. to 20 ° C. is used as a heating heat source, and the refrigerant liquid R is ammonia and the absorption liquid S is water. It is preferable to use the ammonia-water medium. However, depending on the installation location, the geothermal heat Gh is increased due to the volcanic activity, the river water is hot springs, and the factory effluent is hot. A suitable refrigerant liquid R and absorption liquid S suitable for the temperature range can be used.
 なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。 Note that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiments are merely examples in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Furthermore, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.
1 第二種吸収式ヒートポンプ
10 植物工場(第一次産業施設)
2 蒸発器
3 吸収器
4 再生器
5 凝縮器
6 大気熱交換器
7 地中熱熱交換器
8 暖房装置
81 熱交換器
A 大気
C 冷却冷媒
H 加熱冷媒
Sd 吸収希溶液
S 吸収溶液
T 被加熱媒体
Tp 熱出力
R 冷媒
Rg 冷媒蒸気
Gh 地中熱
1 Type 2 absorption heat pump 10 Plant factory (primary industrial facility)
2 Evaporator 3 Absorber 4 Regenerator 5 Condenser 6 Atmospheric Heat Exchanger 7 Geothermal Heat Exchanger 8 Heating Device 81 Heat Exchanger A Atmosphere C Cooling Refrigerant H Heating Refrigerant Sd Absorbing Dilute Solution S Absorbing Solution T Heated Medium Tp Heat output R Refrigerant Rg Refrigerant vapor Gh Underground heat

Claims (10)

  1.  冷媒液を加熱し、冷媒蒸気を発生させる蒸発器と、
    吸収溶液が前記蒸発器で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器と、
     前記吸収器にて冷媒蒸気を吸収することにより溶質濃度が低くなった吸収希溶液を導入し、加熱することで冷媒蒸気を発生し、同時に溶質濃度が高い吸収溶液を生成する再生器と、
     前記再生器にて発生した冷媒蒸気を冷却し、冷媒液を生成する凝縮器とを備えて構成され、
     前記被加熱媒体の温度が、前記蒸発器または前記再生器に導入する加熱媒体の温度よりも高くなる熱出力を得る第二種吸収式ヒートポンプであって、
     凝縮器の冷媒蒸気を冷却する冷却媒体の経路を有し、冷却冷媒を大気で冷却する大気熱交換器と、
     蒸発器の冷媒液を加熱し、再生器の吸収希溶液を加熱する加熱媒体の経路を有し、加熱媒体を地中熱で加熱する地中熱交換器とを有することを特徴とする第二種吸収式ヒートポンプ。
    An evaporator for heating the refrigerant liquid and generating refrigerant vapor;
    An absorber that heats the medium to be heated with absorption heat when the absorbing solution absorbs the refrigerant vapor generated in the evaporator;
    A regenerator that introduces an absorbing dilute solution having a reduced solute concentration by absorbing the refrigerant vapor in the absorber, generates refrigerant vapor by heating, and simultaneously generates an absorbing solution having a high solute concentration;
    A condenser for cooling the refrigerant vapor generated in the regenerator and generating a refrigerant liquid,
    A second type absorption heat pump that obtains a heat output in which the temperature of the heated medium is higher than the temperature of the heating medium introduced into the evaporator or the regenerator,
    An atmospheric heat exchanger having a cooling medium path for cooling the refrigerant vapor of the condenser and cooling the cooling refrigerant in the atmosphere;
    And a ground heat exchanger that heats the refrigerant liquid of the evaporator and heats the absorption dilute solution of the regenerator, and has a ground heat exchanger that heats the heating medium with ground heat. Seed absorption heat pump.
  2.  熱交換器を介して吸収器から得られる、温水または温風を、暖房熱源とする暖房装置を具備する請求項1記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 1, further comprising a heating device using hot water or hot air obtained from the absorber via a heat exchanger as a heating heat source.
  3.  熱交換器を介して凝縮器から吸熱する冷却媒体経路に冷却装置を具備する請求項1記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 1, further comprising a cooling device in a cooling medium path that absorbs heat from the condenser via the heat exchanger.
  4.  熱交換器を介して凝縮器から吸熱する冷却媒体経路に冷却装置を具備する請求項2記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 2, wherein the cooling medium path is configured to absorb heat from the condenser via the heat exchanger.
  5.  前記冷媒液がアンモニアで、前記吸収液が水となされた請求項1記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 1, wherein the refrigerant liquid is ammonia and the absorption liquid is water.
  6.  前記冷媒液がアンモニアで、前記吸収液が水となされた請求項2記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 2, wherein the refrigerant liquid is ammonia and the absorption liquid is water.
  7.  前記冷媒液がアンモニアで、前記吸収液が水となされた請求項3記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 3, wherein the refrigerant liquid is ammonia and the absorption liquid is water.
  8.  前記冷媒液がアンモニアで、前記吸収液が水となされた請求項4記載の第二種吸収式ヒートポンプ。 The second type absorption heat pump according to claim 4, wherein the refrigerant liquid is ammonia and the absorption liquid is water.
  9.  施設本体内部の暖房のための熱源として請求項1ないし8の何れか一記載の第二種吸収式ヒートポンプを具備する第一次産業施設。 A primary industrial facility comprising the second type absorption heat pump according to any one of claims 1 to 8 as a heat source for heating inside the facility main body.
  10.  請求項1ないし8の何れか一記載の第二種吸収式ヒートポンプを用いた暖房方法であって、地中熱よりも大気温度が低い場所において、地中熱を加熱熱源として、当該地中熱よりも高い熱出力を得て、得られた熱出力を暖房熱源とすることを特徴とする第二種吸収式ヒートポンプを用いた暖房方法。 A heating method using the second type absorption heat pump according to any one of claims 1 to 8, wherein the underground heat is used as a heating heat source in a place where the atmospheric temperature is lower than the underground heat. A heating method using a second type absorption heat pump, wherein a higher heat output is obtained and the obtained heat output is used as a heating heat source.
PCT/JP2013/074661 2012-09-21 2013-09-12 Second class absorption heat pump, and primary industrial facility and air heating method using second class absorption heat pump WO2014045998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012208617A JP2014062691A (en) 2012-09-21 2012-09-21 Second type absorption heat pump, and agriculture facility and heating method using second type absorption heat pump
JP2012-208617 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045998A1 true WO2014045998A1 (en) 2014-03-27

Family

ID=50341312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074661 WO2014045998A1 (en) 2012-09-21 2013-09-12 Second class absorption heat pump, and primary industrial facility and air heating method using second class absorption heat pump

Country Status (2)

Country Link
JP (1) JP2014062691A (en)
WO (1) WO2014045998A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783023A (en) * 2016-05-04 2016-07-20 中国华能集团清洁能源技术研究院有限公司 Device and method for driving air heater through absorption type heat pump
CN111023624A (en) * 2018-10-09 2020-04-17 荏原冷热系统株式会社 Absorption heat exchange system
CN112361650A (en) * 2020-11-10 2021-02-12 昊姆(上海)节能科技有限公司 Opening-closing type integrated heat pump device and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058063A (en) * 2015-09-16 2017-03-23 荏原冷熱システム株式会社 Absorption heat pump system utilizing earth thermal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480564A (en) * 1990-07-20 1992-03-13 Ebara Corp Operating method for absorption refrigerating machine
JP2006313049A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2009276029A (en) * 2008-05-16 2009-11-26 Denso Corp Heat pump cycle device
JP2010065862A (en) * 2008-09-08 2010-03-25 Osaka Gas Co Ltd Second class absorption heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480564A (en) * 1990-07-20 1992-03-13 Ebara Corp Operating method for absorption refrigerating machine
JP2006313049A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2009276029A (en) * 2008-05-16 2009-11-26 Denso Corp Heat pump cycle device
JP2010065862A (en) * 2008-09-08 2010-03-25 Osaka Gas Co Ltd Second class absorption heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783023A (en) * 2016-05-04 2016-07-20 中国华能集团清洁能源技术研究院有限公司 Device and method for driving air heater through absorption type heat pump
CN111023624A (en) * 2018-10-09 2020-04-17 荏原冷热系统株式会社 Absorption heat exchange system
CN112361650A (en) * 2020-11-10 2021-02-12 昊姆(上海)节能科技有限公司 Opening-closing type integrated heat pump device and application thereof

Also Published As

Publication number Publication date
JP2014062691A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
KR101775024B1 (en) Fusion energy system of geothermal, solar and water heat energy
KR101845300B1 (en) Fusion energy system of geothermal, solar and water heat energy
WO2014045998A1 (en) Second class absorption heat pump, and primary industrial facility and air heating method using second class absorption heat pump
KR101319080B1 (en) Geothermal energy- heating and cooling system of hybrid type using extra heating source of available surplus heat
US20150163965A1 (en) System and method of managing cooling elements to provide high volumes of cooling
KR20120137743A (en) Apparatus for using remainder heat in cooling/heating system
JP2010038507A (en) Heat pump utilizing underground heat reserve
Mahmood et al. Design and analysis of a renewable energy driven greenhouse integrated with a solar still for arid climates
KR101021964B1 (en) heating and cooling system and using a heat pump
KR101478101B1 (en) Geothermal heat simultaneous heating and cooling apparatus for glass greenhouse
RU2755501C1 (en) Method for heat and cold supply using an absorption thermotransformer with two-stage absorption
KR100958213B1 (en) Heating and cooling system and using a heat pump
KR101347153B1 (en) Building air conditioning/heating and the seawater introducing system using siphon
Patel et al. Geothermal ventilation system for animal house: A new approach
US20170101900A1 (en) Exhaust heat collecting system
JP6060463B2 (en) Heat pump system
KR20120032620A (en) Cooling/heating equipment using saline underground water
KR101303576B1 (en) Soil heating apparatus using remainded Heat of house and heat pump
JP6928937B2 (en) Power generation system and power generation method
JP2004060970A (en) Piping structure of heating system
KR101241816B1 (en) Cooling/Heating equipment of water heat exchanging type having generator
Puglisi et al. Climate control inside a greenhouse by means of a solar cooling system
KR20110017941A (en) A heat pump to produce a high efficiency energy by adjusting the inspination pressure in the severe cold
KR101551650B1 (en) The system of simultaneously employing cooling device and heat pumping device using the heat of storage water
Assad et al. Geothermal Heat Pumps: Principles and Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839515

Country of ref document: EP

Kind code of ref document: A1